AFRL-IF-RS-TR-2003-142

Final Technical Report
June 2003

ENHANCING SURVIVABILITY WITH
DISTRIBUTED ADAPTIVE COORDINATION

University of Massachusetts at Amherst

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F160

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2003-142 has been reviewed and is approved for publication.

APPROVED: W J VM

ROBERT J. VAETH
Project Engineer

FOR THE DIRECTOR: m/‘

WARREN H. DEBANY Jr., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
JUNE 2003

3. REPORT TYPE AND DATES COVERED

Final Jun 97 — Jun 00

4. TITLE AND SUBTITLE
ENHANCING SURVIVABILITY WITH DISTRIBUTED ADAPTIVE
COORDINATION

6. AUTHOR(S)
Victor Lesser

5. FUNDING NUMBERS
C -F30602-97-1-0249

PE -62702F
PR -F160
TA - 40
WU - 34

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts at Amherst

Department of Computer Science

140 Governors Drive

Amherst Massachusetts 01003-9264

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGB

3701 North Fairfax Drive 525 Brooks Road

Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-142

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert J. Vaeth/IFGB/(315) 330-2182/ Robert.Vaeth@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The focus of this effort was to develop distributed detection and diagnosis algorithms for use in recognizing and
explaining the cause of unacceptable performance of a distributed, multi-agent system. The explanation generated by
the diagnosis algorithms was to be used by other components of the agent to reorganize processing in order to improve
performance given current capabilities and resources. In this way, the system would have a higher degree of
survivability in the event of software errors, hardware malfunctions, or hostile attacks. The researchers view survivable
systems as computational organizations that can redesign themselves in response to threats and opportunities. A
central assumption of organizational design is that there exist alternative ways to accomplish tasks in terms of agents,
methods and resources used. In systems of any complexity, such alternatives do exist, and systems constructed for
survivability will intentionally contain them. Under these conditions, the central challenges of survivability are making
effective use of the available alternatives, acquiring knowledge about those alternatives, and making inferences based

on that knowledge.

14. SUBJECT TERMS
Distributed Systems, Agents, Adaptive Coordination

15. NUMBER OF PAGES
52

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

SUbJECt TErMS: ... 1
Project SUMMArY: ... e e s e s e e e e e e mmnna e e e e s 1
Chronological List of Publications Resulting from this Research Project....2
Appendix A Diagnosis as an Integral Part of Multi-Agent Adaptability 5
Appendix B Using Self-Diagnosis to Adapt Organization Structures.......... 15

Appendix C An Agent Infrastructure to Build and Evaluation Multi-Agent
Systems: The Java Agent Framework and Multi-Agent System Simulator 23

Subject Terms:

Adaptive multi-agent systems, diagnosis, fault detection

Project Summary:

The researchers view survivable systems as computational organizations that can redesign
themselves in response to threats and opportunities. A central assumption of organizational
design is that there exist alternative ways to accomplish tasks in terms of the agents, methods, and
resources used. In systems of any complexity, such alternatives do exist, and systems constructed
for survivability will intentionally contain them. Under these conditions, the central challenges of
survivability are making effective use of the available alternatives, acquiring knowledge about
those alternatives, and making inferences based on that knowledge.

The are three technologies that need to be developed to address this view of survivable systems:
(1) distributed coordination mechanisms that enable systems to organize themselves and
accomplish critical tasks with available resources; (2) learning techniques that enable systems to
improve with experience and model themselves and their environment, and thus creating the
knowledge necessary for organizational design; and (3) detection and diagnosis algorithms that
enable systems to use models that detect important changes and diagnose why those changes
occurred. Detection and diagnosis provides the capability to effectively use learned knowledge
for organizational design.

The focus of this work is the development of domain-independent detection and diagnosis
algorithms that operate in an environment where agents are in some known distributed
coordination pattern and where there is knowledge about the performance characteristics of
agents. The agent's capabilities and behavior patterns are expressed in a domain-independent
language called TAEMS. It is designed to model the problem-solving activities of an intelligent
agent operating in environments with deadlines and limits on resource usage, where the
information required for the optimal performance of a computational task may not be available,
where the results of multiple agents' computations (to interdependent subproblems) may need to
be aggregated in order to solve a high-level goal, and where an agent may be contributing
concurrently to the solution of multiple goals. The TEMS approach is based on explicitly
modeling what is known and uncertain about agent goals, hierarchical task structures, alternative
actions, sets of resources, and external agent capabilities.

As part of this effort, in order to provide an appropriate framework for evaluation, a Multi-Agent
Survivability Simulator (MASS) has been developed to provide a concrete, deterministic, and
welldefined environment suitable for testing multi-agent coordination, negotiation, and diagnosis
algorithms. MASS was created to test various coordination mechanisms by allowing the elements
of the system to detect, react and adapt in the face of adverse working conditions. Each agent has
its own local view of the world and its own goals, but is capable of coordinating these goals with
respect to remote agents. To accurately model these complex systems, an environment is needed
which permits the simulation of an agent's method execution. To this end, a distributed event-
based simulator has been developed that is capable of simulating the effects that directed attacks
and/or a capricious environment have on agent method execution and recovery. Features of the
current implementation include support for an arbitrary number of mixed agents, scriptable event
and task generation, and controllable resource limitations and behavior.

Included with this report are three papers that represent the major output of the research project.
The first paper, entitled “Diagnosis as an Integral Part of Multi-Agent Adaptability,” describes
how agents working under real world conditions may face an environment capable of changing
rapidly from one moment to the next, either through perceived faults, unexpected interactions or
adversarial intrusions. To gracefully and efficiently handle such situations, the members of a
multi-agent system must be able to adapt, either by evolving internal structures and behavior or
repairing or isolating those external influences believed to be malfunctioning. The first step in
achieving adaptability is diagnosis — being able to accurately detect and determine the cause of a
fault based on its symptoms. This paper examines how domain-independent diagnosis plays a role
in multi-agent systems, including the information required to support and produce diagnoses.
Particular attention is paid to coordination-based diagnosis directed by a causal model. Several
examples are described in the context of an Intelligent Home environment, and the issue of
diagnostic sensitivity versus efficiency is addressed.

The second paper, entitled “Using Self-Diagnosis to Adapt Organizational Structures,” illustrates
another use of diagnosis for adaptability. The specific organization used by a multi-agent system
is crucial for its effectiveness and efficiency. In dynamic environments, or when the objectives of
the system shift, the organization must be able to change as well. Results from experiments
employing such a system in the Producer-Consumer-Transporter domain are also presented.

The last paper, entitled “An Agent Infrastructure to Build and Evaluate Multi-Agent Systems:
The Java Agent Framework and Multi-Agent System Simulator,” discusses the simulation system
used for experiments on multi-agent adaptability. It describes their component-based Java Agent
Framework (JAF) used for rapidly building different types of agents, and addresses the issues
encountered in designing a suitable environmental space for evaluating the adaptive qualities of
multi-agent systems.

Chronological List of Publications Resulting from this

Research Project

1. Horling, Bryan; Benyo, Brett; and Lesser, Victor. Using Self-Diagnosis to Adapt
Organizational Structures. In Proceedings of the 5th International Conference on
Autonomous Agents, ACM Press, pp. 529-536, Montreal, June 2001. Also published as
University of Massachusetts/Amherst CMPSCI Technical Report 1999-64, November
1999.

2. Raja, A.; Wagner, T.; Lesser, V. “Reasoning about Uncertainty in Agent Control.” In
Proceedings of the 5th International Conference on Information Systems, Analysis, and
Synthesis, Computer Science and Engineering: Part 1, Volume VII, pp. 156-161,
Orlando, FL, 2001.

3. Raja, Anita; Wagner, Thomas; and Lesser, Victor. “Reasoning about Uncertainty in
Design-to- Criteria Scheduling.” In Proceedings of AAAI 2000 Spring Symposium on
Real-Time Autonomous Systems, AAAI Press, pp. 76-83, Stanford, CA, March 2000.

4, Raja, Anita; Lesser, Victor; and Wagner, Thomas. “Toward Robust Agent Control in
Open Environments.” In Proceedings of 4th International Conference of Autonomous
Agents (AA 2000), pp. 84-91, Barcelona, Spain, June 2000. Also published as University
of Massachusetts/Amherst CMPSCI Technical Report 1999-059.

5. Vincent, Regis; Horling, Bryan; Lesser, Victor. “Experiences in Simulating Multi-Agent
Systems Using TEMS.” In The Fourth International Conference on MultiAgent Systems
(ICMAS 2000), Boston, MA: AAAI Press, pp. 455-456. Also published as University of
Massachusetts/Amherst CMPSCI Technical Report 1999-75.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Wagner, T.; Lesser, V. “Relating Quantified Motivations for Organizationally Situated
Agents.” In Intelligent Agents VI: Agent Theories, Architectures, and Languages, N.R
Jennings & Y. Lesperance (eds.). Berlin: Springer-Verlag, 2000. Vol. 1757, pp. 334-349.
Also published as University of Massachusetts/Amherst CMPSCI Technical Report
1999-21.

Xuan, P; Lesser, V; Zilberstein, S. “Communication in Multi-Agent Markov Decision
Processes.” Extended abstract in Proceedings of the Fourth International Conference on
Multi- Agent Systems (ICMAS’2000), Boston, MA: AAAI Press, pp. 467-468. Also
published as University of Massachusetts/ Amherst CMPSCI Technical Report 2000-01.
Xuan, Ping; Lesser, Victor. “Incorporating Uncertainty in Agent Commitments.” In
Intelligent Agents VI: Agent Theories, Architectures, and Languages, N.R Jennings & Y.
Lesperance (eds.). Berlin: Springer-Verlag, 2000. Vol. 1757, pages 57-70.

Xuan, Ping; Lesser, Victor; Zilberstein, Shlomo. “Formal Modeling of Communication
Decisions in Cooperative Multi-agent Systems.” In Proceedings of the Second Workshop
on Game Theoretic and Decision Theoretic Agents, 2000.

Horling, Bryan; Lesser, Victor; Vincent, Regis; Bazzan, Ana; and Xuan, Ping.
“Diagnosis as an Integral Part of Multi-Agent Adaptability.” In Proceedings of DARPA
Information Survivability Conference and Exposition, IEEE Computer Society. pp. 211-
219, Hilton Head, SC, January 2000. Also published as University of
Massachusetts/Amherst CMPSCI Technical Report 1999- 03.

Lesser, V.; Atighetchi, M.; Benyo, B.; Horling, B.; Raja, A.; Vincent, R.; Wagner, T.;
Xuan, P.; and Zhang, S.X.Q. “A Multi-Agent System for Intelligent Environment
Control.” In Proceedings of the Third International Conference on Autonomous Agents,
New York, NY: ACM Press, 1999, pp. 291-298.

Horling, Bryan; and Lesser, Victor. “Using Diagnosis to Learn Contextual Coordination
Rules.” In Proceedings of the AAAI-99 Workshop on Reasoning in Context for Al
Applications, AAAI Press, pp. 70-74, Orlando, FL, July 1999. Also published as
University of Massachusetts/Amherst CMPSCI Technical Report 99-15.

Jensen, David; Atighetchi, Michael; Vincent, Régis; Lesser, Victor. “Learning
Quantitative Knowledge for Multiagent Coordination.” In Proceedings of the 16th
National Conference on Artificial Intelligence (AAAI-99), American Association for
Artificial Intelligence, pp. 24-31, Orlando, FL, August 1999. Also published as
University of Massachusetts/Amherst CMPSCI Technical Report 1999-04.

Lesser, Victor; Atighetchi, Michael; Benyo, Brett; Horling, Bryan; Raja, Anita; Vincent,
Regis; Wagner, Thomas; Xuan, Ping; Zhang, Shelley XQ. “The Intelligent Home
Testbed.” In Proceedings of the Autonomy Control Software Workshop (Autonomous
Agent Workshop), Seattle, 1999.

Wagner, Thomas; Shapiro, Jonathan; Xuan, Ping; Lesser, Victor. “Multi-Level Conflict
in Multi- Agent Systems.” In Proceedings of the AAAI-99 Workshop on Negotiation in
MAS, AAAI Press, pp. 50-55, Orlando, FL, April 1999. Also available as University of
Massachusetts/Amherst CMPSCI Technical Report 99-17.

Xuan, Ping; Lesser, Victor. “Handling Uncertainty in Multi-Agent Commitments.”
University of Massachusetts/Amherst CMPSCI Technical Report 1999-05, 1999.
Horling, Bryan. “A Reusable Component Architecture for Agent Construction.” In
University of Massachusetts/Amherst CMPSCI Technical Report 1998-49, October 1998.
Raja, Anita; Lesser, Victor; and Wagner, Thomas. “A More Complex View of Schedule
Uncertainty Based on Contingency Analysis.” In University of Massachusetts/Amherst
CMPSCI Technical Report 98-04, February 1998.

Sugawara, T. and Lesser, V. “Learning to Improve Coordinated Actions in Cooperative
Distributed Problem-Solving Environments.” In Machine Learning, 33, 1998, pp. 129—
153.

20.

21.

22.

Vincent, Regis; Horling, Bryan; Wagner, Tom; Lesser, Victor. “Survivability Simulator
for Multi-Agent Adaptive Coordination.” In International Conference on Web-Based
Modeling and Simulation, Volume 30, Number 1. Fishwick, P., Hill, D. and Smith R.
(eds.), The Society for Computer Simulation International, pp. 114-119, San Diego, CA,
1998.

Wagner, Thomas; Raja, Anita; Lesser, Victor. “Modeling Uncertainty and Its
Implications to Design-to-Criteria Scheduling.” University of Massachusetts/Amherst
CMPSCI Technical Report 1998-51.

Lander, S.; and Lesser, V. “Sharing Meta-Information to Guide Cooperative Search
Among Heterogeneous Reusable Agents.” In /EEE Transactions on Knowledge and Data
Engineering, Volume 9, Number 2, 193-208, 1997.

APPENDIX A

Diagnosis as an Integral Part of Multi-Agent Adaptability *

Bryan Horling, Victor Lesser, Régis Vincent, Ana Bazzan, Ping Xuan
Department of Computer Science
University of Massachusetts

UMass Computer Science Technical Report 99-03

Abstract

Agents working under real world conditions may face
an environment capable of changing rapidly from one
moment to the next, either through perceived faults,
unexpected interactions or adversarial intrusions. To
gracefully and efficiently handle such situations, the
members of a multi-agent system must be able to
adapt, either by evolving internal structures and be-
havior or repairing or isolating those external influ-
enced believed to be malfunctioning. The first step in
achieving adaptability is diagnosis - being able to accu-
rately detect and determine the cause of a fault based
on its symptoms. In this paper we examine how do-
main independent diagnosis plays a role in multi-agent
systems, including the information required to support
and produce diagnoses. Particular attention is paid
to coordination based diagnosis directed by a causal
model. Several examples are described in the context
of an Intelligent Home environment, and the issue of
diagnostic sensitivity versus efficiency is addressed.

Content Areas: Intelligent Agents : Tasks or
Problems : Multi-Agent Communication or Co-
ordination or Collaboration; Intelligent Agents
: Tasks or Problems : Learning and Adaptation

Overview and Motivation
Designing systems utilizing a multi-agent paradigm of-
fers several advantages. They can easily utilize dis-
tributed resources, work towards multiple goals in par-
allel, and reduce the risk of a single point of failure.

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Lab-
oratory Air Force Materiel Command, USAF, under agree-
ment number F30602-97-1-0249 and by the National Science
Foundation under Grant number IIS-9812755 and number
IRI-9523419. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), Air Force Research Laboratory,
National Science Foundation, or the U.S. Government.

One common failing of multi-agent systems, however, is
brittleness. In the face of an adverse or changing envi-
ronment, assumptions which designers commonly make
during the construction of these complex networks of
interacting processes may become incorrect. For in-
stance, the designer may assume a certain transfer rate
over the local network, or that a particular method may
produce results of a given quality, both of which can
easily change over time. In today’s networked environ-
ment, it is also quite possible for adversarial intrusions
to occur, capable of producing an even wider range of
symptoms. Failure to act on incorrect assumptions can
lead to degraded performance, incorrect results, or in
the worst case even bring the entire system to a halt.

One solution is for the designer to be extremely para-
noid, and essentially over-engineer each aspect of the
system to reduce the chance of failure (e.g. always
over-coordinate, execute redundant plans). Although
such precautions certainly have their place in comput-
ing systems, they can also increase overhead to unde-
sirable levels. This overhead then decreases the overall
level of efficiency, as the system essentially wastes effort
avoiding failures which would not have occurred in any
case.

To improve the robustness of multi-agent systems,
without unduly sacrificing efficiency, the system should
be designed with adaptability in mind. An agent work-
ing under changeable conditions must have knowledge
of its expected surroundings, goals and behavior - and
the capacity to generate new, situation-specific coor-
dination plans when these expectations are not met.
The key to initiating adaptive behavior, therefore, is de-
tecting such failed expectations, and determining their
cause so they may be corrected. We believe that this
need can be satisfied, and thus adaptability promoted,
by incorporating domain and coordination independent
diagnosis capabilities into the individual agents within
the multi-agent system.

In this paper we will discuss how diagnosis plays a
role in the adaptability of an intelligent home multi-
agent system (Lesser et al. 1999). In this environment,
major appliances, such as the dishwasher, waterheater,
air conditioner, etc., are each controlled by an individ-
ual autonomous agent. The intelligent home provides

us with interesting working conditions, allowing the cre-
ation of scenarios involving constrained resources, con-
flicting objectives and cooperative interactions. We be-
lieve the issues raised by the intelligent home model
can be sufficiently generalized to apply to multi-agent
systems operating in other domains.

To overview the role diagnosis may play in a multi-
agent system, consider the following scenario. A dish-
washer and waterheater exist in the house, related by
the fact that the dishwasher uses the hot water the wa-
terheater produces. Under normal circumstances, the
dishwasher assumes sufficient water will be available
for it to operate, since the waterheater will attempt
to maintain a consistent level in the tank at all times.
Because of this assumption and the desire to reduce un-
necessary network activity, coordination is normally un-
necessary between the two agents. Consider next what
happens when this assumption fails, perhaps when the
owner decides to take a shower at a conflicting time (i.e.
there is an assumption that showers only take place in
the morning), or if the waterheater is put into “conser-
vation mode” and thus only produces hot water when
requested to do so. The dishwasher will no longer have
sufficient resources to perform its task. Lacking diag-
nosis or monitoring, the dishwasher could repeatedly
progress as normal but do a poor job of dish-washing,
or do no washing at all because of insufficient amounts
of hot water. Using diagnosis, however, the dishwasher
could, as a result of poor performance observed through
internal sensors or user feedback, first determine that a
required resource is missing, and then that the resource
was not being coordinated over. By itself, this would be
sufficient to produce a preliminary diagnosis the dish-
washer could act upon simply by invoking a resource
coordination protocol. After reviewing its assumptions,
later experiences or interactions with the waterheater,
it could refine and validate this diagnosis and perhaps
update its assumptions to note that hot water should
now be coordinated over, or that there are certain times
during the day when coordination is recommended. It
should be clear that even simple diagnostics capabilities
can provide a fair measure of robustness under some cir-
cumstances.

This work represents the continuation of our previous
work on diagnosis for single agent (Hudlickd & Lesser
1987) and multi-agent systems (Hudlickd et al. 1986;
Bazzan, Lesser, & Xuan 1998; Sugawara & Lesser 1993;
1998). The emphasis of this new work is to show that
diagnosis can be exploited for a wider set of issues than
indicated in our earlier work and more importantly that
this diagnosis can be done in a domain-independent
manner. The use of diagnosis is also a recent theme in
the work by Kaminka and Tambe (Kaminka & Tambe
1998). Our work differs in the set of issues we are inter-
ested in diagnosing. For example, in Kaminka, collabo-
rative agents use one another reflectively based on plan
recognition, as sources of comparative information to
detect aberrant behavior due to, for example, inconsis-
tent sensing by different agents of environmental con-

ditions. Our work in contrast is mainly concerned with
the performance issues surrounding the use of situation-
specific coordination strategies. In this view of coordi-
nation, the strategy used for agent coordination must
be tailored to specifics of the current/expected environ-
ment and the coordination situations that an agent will
encounter. Over or under coordination can be harm-
ful, respectively, because of the expenditure of resources
to implement a coordination strategy that doesn’t con-
tribute sufficiently to a more efficient use of resources
or the lack of appropriate coordination that leads to
suboptimal use of resources. Implicit in this discussion
is that there are a set of assumptions about agents be-
haviors and availability of resources that is the basis
for effective situation specific coordination. Detection
in this case involves recognizing when a monitored per-
formance based assumption is no longer valid; diagnosis
is then taking this triggering symptom and determining
the detail set of assumptions about agent and resource
behavior that is responsible for the symptom in the cur-
rent context.

Several facets of agent diagnosis will be covered in
this paper by detailing a diagnosis system that we
have implemented in the Intelligent Home environment.
What sort of information is needed? How can the di-
agnosis be produced? How does the diagnosis affect
adaptability? These questions will be addressed us-
ing the diagnosis framework we have created, which
focuses on the resources, coordination and activities as-
sociated with the agent. In the following section, the
use of assumptions and organizational knowledge, along
with fault detection techniques, will be discussed. Our
diagnosis-generating framework, incorporating and uti-
lizing this information, will then be introduced. Several
examples detailing diagnosis in the Intelligent Home
will provide further motivation and functional details
about our system. We will then provide a more quan-
titative analysis of detection and diagnosis sensitivity
tradeoffs, and conclude with directions for future re-
search.

Information Requirements

For diagnosis to function, some sort of knowledge about
expected behavior must be known a priori, to serve as
a basis for comparison. The exact information which
is needed depends on the diagnosis capabilities needed
by the agent, but the data typically fits into one of
three categories: knowledge about the agent’s expected
operational behavior, including environmental assump-
tions; methods for detecting deviations from those ex-
pectations; and faculties for diagnosing these deviations
when they are found.

Expectations and Assumptions

For diagnosis to function, some information must be
available describing what the correct, or at least ex-
pected, behavior of the agent should be. We have found
that a great deal of useful method execution and goal

D2 1.0)

consumes
(10 1. 0) E

wash-dishds

pre-rinse-hgt
Q:(80.8)
(50.2) i
C:(01.0)
D:(3 1.0)

rinse-cycle

|pre-rinse-warr‘p [quick- dry{ { oroduces
Consumes iQ:(5056) " /@ro
510 ¢ (804 produces % g
4 C(01.0) ©10) :
D:(31.0)

Figure 1: Abbreviated TEMS task structure example for the dishwasher agent

achievement information can be succinctly encoded in
a domain-independent way with a goal/task decompo-
sition language called TEMS (Decker & Lesser 1993).
A graphical example of the dishwasher’s TAEMS task
structure can be seen in Figure 1. TAMS provides
an explicit representation for goals, and the available
subgoal pathways able to achieve them; each branch in
the tree terminates at an executable method. Expected
method behavior and interactions between other meth-
ods and resources may also be represented explicitly.
Associated with each method is a distribution-based
description of its expected quality, cost and duration
measures. These descriptions are represented by the
Expected Method Results in the figure, where each pos-
sible method result along each trait consists of expected
value-probability pair. Similarly, the effects of hard (A
enables or disables B), soft (A facilitates or hinders B)
and resource (A produces or consumes resource B) in-
terrelationships are also quantitatively described with
distributions.

In our discussion so far we have not focused on the
underlying coordination architecture. Our initial think-
ing was that diagnosis needed to be strongly tied to the
specifics of this architecture, so initial efforts (Bazzan,
Lesser, & Xuan 1998) were thus bound to the GPGP co-
ordination architecture (Decker & Lesser 1995). How-
ever, our stance has changed on this matter. We now
feel that so long as TAEMS is a faithful representation
of the expected local agent behavior and its interaction
with other agents and resources, and that information
is provided about what aspects of TEMS were used
in the current coordination context, and what was the
actual schedule and results of activities executed, diag-
nosis can be done largely in a domain and coordination
independent structure.

Another set of information, describing pertinent ex-
ternal assumptions, is needed for the diagnosis system
to reason about the agent’s interactions with its en-
vironment. Such characteristics currently used in our
agents include network behavior (e.g. bandwidth, la-
tency), entities thought to exist external to the agent
(e.g. entities one might interact with), and resource
characteristics (e.g. low/high bound, usage patterns),
each of which has a direct correlation with how the
agent should coordinate with other agents in the sys-
tem. Organizational knowledge, the information an
agent has about where and how it fits into its soci-
ety, is a subset of this category. It may be useful, for
instance, for the agent to have a record of the types of
agents it is expected to interact with, and what sort of
interactions should take place. In the the introductory
example, this sort information let the dishwasher know
that there was a prior assumption that coordination
over hot water was unnecessary.

Detecting Possible Failures

Once descriptive information and models are incorpo-
rated into the agent, the process of using that infor-
mation to detect possible inconsistencies becomes rel-
evant. Consider the simple case of detecting abnor-
mal method results. Within the TAMS structure, the
expected cost, quality and duration outcomes are de-
scribed for each method. Armed with this information,
the diagnosis system can use a light-weight comparison
monitor to determine when a deviation from expected
behavior might have occurred. The dishwasher used the
method-resource relationship description in its TAMS
task structure, for instance, to determine that hot wa-
ter was necessary for its dish-washing task to success-
fully complete. Performance threshold assumptions can

IncorrectMethodRsrcUsage

|IncorrectCoordinatedDurationEstimw FailedDurationEstimale

FalseDurationEstimate

IncorrectMethodDurDistribution

[IncorrectRsrcUsageDistributipn

[IncorrectMethodCostDistributidn

[IncorrectMethodQualDistributidn

|UnecessaryRsrcCoordinatjon

|UnexpectedResourceUs &

|UnexpectedTaskFrequerjcy

|GoalDeadlineUnattainatfi

ResourceDamage

[RorConrnatngcrets
Sensoamagda

VethodFaurd
[rsuficentrundh
:

d

Normal Nodg
Triggerable Nodp

NoRsrcCoordinatio|
NonExistantResour¢e
OverloadedResourge

d

{UnexpectedScheduleDuratjon

[MalfunctioningResourde

Figure 2: Example causal model structure for diagnosis in the Intelligent Home

then be used to determine the severity of the deviation,
which would help determine the correct diagnosis and
response later on. On-line learning of models can also
be used to track long term trends in behavior, which
can help determine if a deviation is caused by a fun-
damental shift in the environment or is just a one-time
aberration.

Using knowledge about method interactions, also
found in the TAEMS model, the diagnosis system can
determine if a failure might have been brought about by
some other method which had or had not successfully
executed. If the method’s source is local, an activity
log can be checked for more evidence. If the offending
method’s source is remote, the list of known external
agents can then be used to track down the culprit. A
mixture of model based comparisons, combined with
directed evidence gathering, provides a good base for
detecting possible failures.

Performing the Diagnosis

The agent can now use its expectation information and
failure detection methods to begin the actual process
of diagnosis. Diagnosis is a well-researched field, with
many different methods and techniques already avail-
able to the system designer (W. Hamscher 1992). Our
goal was to use a technique that offered great flexibil-
ity in the information it could use and the diagnoses
it could generate, without sacrificing subject scope or
domain independence. Recent work in the field of diag-
nosis (Kaminka & Tambe 1998; Toyama & Hager 1997)
has shown that viable new technologies are still being
developed. It is not clear, however, that any single di-
agnostic technique is suitable for the entire range of
faults exhibited by multi-agent systems. It was there-
fore desirable to use a system or framework capable of
incorporating different diagnostic techniques, i.e. make
use of different specific methods for the types of failures
they best address.

Expanding on work first researched in (Sugawara &
Lesser 1993), we chose to organize our diagnostic pro-
cess using a causal model. The causal model is a di-
rected, acyclic graph organizing a set of diagnosis nodes.
Figure 2 shows such a graph, constructed to address is-
sues brought up by examples in this paper, which we
have implemented for the Intelligent Home agents; com-
plete graphs addressing broader topics can be found in
(Bazzan, Lesser, & Xuan 1998). Each node in the graph
corresponds with a particular diagnosis, with varying
levels of precision and complexity. As a node produces
a diagnosis, the causal model can be used to determine
what other, typically more detailed, diagnoses can be
used to further categorize the problem. Within the di-
agnosis system, the causal model then acts as a sort of
road map, allowing diagnosis to progress from easily de-
tectable symptoms to more precise diagnostic hypothe-
ses as needed.

The causal model in Figure 2 focuses on coordina-
tion, behavior and resource issues. Within the dia-
gram, several nodes have bold-faced outlines. These
nodes are triggerable, meaning they periodically per-
form simple comparison checks to determine if a fault
may have occurred. This trigger-checking activity is
a primary mechanism for initiating the diagnostic pro-
cess. The runtime usage of the causal model is shown
when considering the diagnostic activity of the agent
in the introductory example. In the example, the dish-
washer has performed an activity, but achieved a lower
than expected amount of quality in the results. Using
the given causal model, the LowerQuality node would
be triggered. The resulting diagnosis would activate
the child nodes of LowerQuality: IncorrectMethodRsr-
cUsage, IncorrectMethodDurDistribution, and Incor-
rectMethodQualDistribution. The first node attempts
to encapsulate the idea that something went wrong
with the resources expected to be used by the method,
while the latter two address possible discrepancies in

the method’s expected duration and quality. Incorrect-
MethodRsrcUsage would then produce a diagnosis, ac-
tivating IncorrectRsrcUsageDistribution and Resource-
Unavailable. The resource was not used, so ResourceU-
navailable would be triggered, activating its four child
nodes. Of these, NoRsrcCoordination (possibly in com-
bination with OverloadedResource) would then deter-
mine the exact problem.

The causal model addresses each of the design goals
previously mentioned. The automatic flow of diagnoses
through the graph structure allows the designer to add
or remove subgraphs and nodes at will to increase or
decrease the diagnostic specificity offered by the model.
Thus, although the model shown in this paper is tar-
geted towards a specific set of faults, the causal model in
general allows one to create a diagnostic system for any
range of faults or intrusions who’s set of symptoms that
can be observed or deduced are differentiable from one
another. In our implementation, each node in the model
corresponds to an individual persistent diagnostic ob-
ject, capable of passively listening for data or actively
gathering evidence. This means that, within the causal
framework, individual nodes are free to use whichever
diagnostic technique is needed, offering a great deal of
flexibility to the system designer. The persistent nature
of the diagnosis object also allows for direct control over
the amount of evidence required for a diagnosis to be
triggered and produced, since diagnostic analysis can
continue through several episodes. We will come back
to this notion of diagnosis sensitivity and confidence in
a later section.

Faults involving multiple symptoms (or lack thereof)
can be handled elegantly by the causal model, by in-
corporating a single node for the fault which uses diag-
nostic evidence from several other symptom-verifying
nodes. For instance, a node diagnosing incorrect local
method behavior descriptions could be derived with a
diagnosis from another node detecting methods which
take too long to execute, in conjunction with a lack
of diagnoses from nodes diagnosing competing theories.
A detected fault may also be caused by the cumula-
tive effects of several other deviations, which did not
merit diagnosis individually. This can occur, for in-
stance, when a goal deadline is missed because each in
a series of method invocations took slightly longer than
expected. Individually, the methods’ durations were
within their respective distribution ranges; an expected
deadline produced with the mean of each of these distri-
butions could very well be missed under these circum-
stances.

The designer is also free to make nodes as domain in-
dependent as possible, so with a carefully thought out
structure it is possible to transport the model from one
system to the next with little modification. In addition
to being domain independent, we also hypothesize that
such a structure may be coordination independent; ac-
curate diagnoses can be formed about coordination ac-
tivities independent of the protocol’s details. The fact
that the framework scales so easily in scope means that

a common, domain independent core may also be used
among a group of agents, which augment the model
with more specific nodes to meet their individual diag-
nostic needs.

Example Diagnosis Generation

In this section we will go over several multi-agent sce-
narios from the Intelligent Home domain, and how diag-
nosis based adaptation plays a vital role in its successful
behavior. The first example gives a complete agent-by-
agent description of a malfunctioning agent scenario,
while the remaining examples will sketch out the use-
fulness of diagnosis under other circumstances.

Detecting Software Failure

This scenario contains three agents, each with its own
set of capabilities, goals and knowledge (see Figure 3),
and a set of water pipes which connect them. The cen-
tral figure in the scene is the waterheater, which pro-
duces hot water at a rate dictated by requests posed
by the agents it serves. The owner of the house, being
quite thrifty, has set the waterheater’s goal to produce
the minimum amount of hot water possible, thereby
minimizing cost. The waterheater will therefore keep
no minimum amount of water in the tank, forcing any
agent needing hot water to coordinate over its usage
(i.e. to explicitly schedule the production of hot water
at a specific time). Elsewhere in the house is some other
hot water-using appliance, which has a generic goal it
needs to complete by a certain time. It is functioning
normally, coordinating with the waterheater as needed.

The third agent, a dishwasher, has as its goal to wash
the load of dishes currently in its possession. It has suc-
cessfully started this operation, but through some sort
of malfunction has arrived in a state where it is end-
lessly executing the method “pre-rinse-hot”, a method
which uses hot water (see Figure 1). The coordination
component in the dishwasher still functions however,
and therefore is also repeatedly coordinating over the
hot water being used by the cyclic execution. As it hap-
pens, the dishwasher has also been set with a higher
priority level than the other generic appliance working
towards its goal. This has the end result of overwhelm-
ing the waterheater, forcing it to reject the hot water
requests of the other appliance.

Lacking diagnosis, this scenario would end in fail-
ure. The dishwasher would never complete its load,
the waterheater will produce much more water than
would normally be needed, and the other appliance will
fail to meet its goal deadline. Each agent, however, is
equipped with information and a diagnosis model simi-
lar to that shown in Figure 2. Figure 3 should give the
reader some notion of the characteristics each agent has
which are relevant to this situation.

The dishwasher is first to detect a problem. The Un-
expected TaskFrequency node in its causal model is trig-
gered, which proceeds to gather evidence on the cur-
rent situation. Using the local activity log, schedule,

OA DW

HW Line 1 - HW Line 2
< = WH < =

Other Appliance (OA)

Status:

Water Heater (WH)

Status:

Functioning normally Functioning normally Cyclic execution pre-rinse-hot
Knowledge/Assumptions: Knowledge/Assumptions : Knowledge/Assumptions :

Goal completion deadline Expected water line usage Method execution frequency
Goal: Goal: Goal:

Generic goal X Minimal water production ~ Wash dishes
Diagnostics: Diagnostics: Diagnostics:

Goal achievement Resource usage Task analysis

Dish Washer (DW)

Status:

Figure 3: Software failure scenario overview

and assumptions about expected task frequency, it pro-
duces a diagnosis with a high confidence value. For this
example, we will assume the dishwasher has no repair
mechanisms for this problem, so no further actions are
taken.

Eventually, the diagnosis component at the water-
heater is also triggered. A root node Unexpecte-
dResourceUsage is activated, which uses knowledge
about expected hot water usage to determine a fail-
ure may be occurring. This node then activates each
of its children in the causal model: ResourceDamaged,
NonCoordinatingClient, SensorDamaged and Malfunc-
tioningClient. Analysis of coordination logs, and sen-
sor data from both the tank and output pipes rule out
the first three possibilities. MalfunctioningClient pro-
ceeds to contact those agents using water line two - only
the dishwasher in this case. The dishwasher sends the
waterheater its diagnosis of Unexpected TaskFrequency,
which acts as supportive evidence for the Malfunction-
ingClient diagnosis. The waterheater, acting on this
diagnosis, can either reduce the priority of the dish-
washer’s coordination requests, or cut off the flow of
water into water line two.

The other appliance, unaware of the problems be-
ing handled by the waterheater, only knows that
its coordination attempts have been consistently re-
fused for quite a while. Realizing that its abil-
ity to meet its deadline requirement is in ques-
tion, the diagnosis node GoalDeadlineUnattainable ac-
tivates its child nodes: MethodFailure, Insufficient-
Funds, GoalDeadlineMissed, UnexpectedScheduleDu-
ration and ResourceUnavailable. The ResourceUnavail-
able node can use the attempted schedule, local TAEMS
task structure and coordination logs to determine
that the hot water resource is unavailable. This in
turn activates the child nodes NoRsrcCoordination,
NonExistantResource, OverloadedResource and Mal-
functioningResource. OverloadedResource gains evi-
dence by querying for and receiving the Unexpect-
edResourceUsage and MalfunctioningClient diagnoses
from the waterheater. At this point, the other appli-
ance can reschedule with the knowledge that the hot
water resource is overloaded. Further analysis by the
OverloadedResource node could also detect when the
problem had been resolved, allowing the other appliance

10

to continue using hot water as it becomes available.

Slight modifications to this example demonstrate how
diagnosis can be used to detect aggressive intrusions
into the multi-agent system. In the altered scenario,
the dishwasher’s logic has been compromised in such
a way that it continually uses hot water without coor-
dination. The activity exhibited by the remaining two
agents could remain much the same, with the exception
that the dishwasher would produce a NonCoordinating-
Client diagnosis in lieu of MalfunctioningClient (since
it is unlikely that the compromised dishwasher would
admit to malfunctioning). The waterheater could uni-
laterally react to this diagnosis by cutting off the water
supply to line two, a reasonable short term repair for
this problem.

Over-coordination

One interesting efficiency scenario is that of over-
coordination. A spectrum of coordination models is
possible in multi-agent systems, ranging from fully ex-
plicit, verbose communication to “well-known” assump-
tions or implicit agreements. Clearly, it is more effi-
cient to reduce inter-agent communication if possible,
but how can an agent know when it is safe to do so? One
method, similar to a technique described in (Toyama &
Hager 1997), makes use of a persistent diagnostic pro-
cess to monitor tested changes.

In this example, the UnecessaryRsrcCoordination
node begins its work by monitoring the coordination
which takes places over the system’s resources. If it
detects that requests for a particular resource are al-
ways being satisfied, it forms the hypothesis that it
is not necessary to coordinate over that resource, ei-
ther because it is automatically replenished (e.g. a low-
bound maintaining waterheater) or a common resource
lacking contention (e.g. electricity under normal cir-
cumstances). The problem solving component in the
agent could then react to this diagnosis by ceasing co-
ordination over that resource. Over time, the persis-
tent diagnosis object then monitors this resource, to
see if methods requiring it are affected, and adjusting
the diagnosis as needed. This diagnosis can then pro-
vide the feedback necessary for the agent to maintain
the situation-specific assumptions needed for it to be
efficient in its environment. A more complicated diag-
nostic process could also further classify coordination
relations, based on coordination type, temporal cycles
or sensitivity to requested resource amounts.

Method Outcome Discrepancies

A key measure of adaptability is how the agent responds
to unexpected results. If a method fails, does the sys-
tem blindly reschedule, or does it take into account the
reasons for the failure? How does the agent react when
method performance varies within what is considered
normal ranges?

The introductory example demonstrates a problem
of this type. In the example, a NoRsrcCoordina-
tion diagnosis was used to target the perceived fault,

which allowed the agent to repair its original sched-
ule rather than generate a new one which may have
made the same mistake. A more interesting scenario
involves an agent’s reaction to different levels of dis-
crepancies - when should an agent adapt to, ignore or
repair a problem? The TAMS task language allows
the designer to explicitly encode the expected behav-
ioral ranges a method may exhibit, and learning algo-
rithms can be employed to maintain the structure as
time passes. Results falling within these ranges are
expected, and should not trigger diagnosis. The re-
maining issue requires more information to discriminate
enough to make an intelligent choice. More detailed or-
ganizational knowledge about method behavior can be
used to determine thresholds, allowing the agent to dis-
criminate between acceptable and unacceptable varia-
tions in long term performance deviations. Diagnosis
can then use this information and other available evi-
dence to provide the specific problem description seen
in other examples, which the problem solver can use to
pick the appropriate course of action.

Consider an example involving method duration. An
agent executes method X, expecting it take between 10
and 15 clicks to complete (a click being an arbitrary unit
of time), as encoded in its task structure. In addition,
the designer has specified in the organizational knowl-
edge that durations up to 40 clicks are within “accept-
able” tolerances, which is designed to take into account
such things as network activity fluctuations or noisy
sensor data. If X were to complete in 25 to 35 clicks, the
agent would take note of the event and modify perfor-
mance characteristics in TAMS after determining the
deviation was not caused by a fault other than inaccu-
rate expectations (such as missing resources, hindering
method interrelationships). Instead, X takes 100 clicks
to complete, clearly outside of its expected range. This
value is also well outside of the acceptable tolerances, so
the agent should not adapt its expectations to this new
situation. The aberration would then initiate diagnosis
activity, which would monitor future behavior of this
method. We will assume that the operating conditions
match no other diagnosis’ symptoms. Over time, as X
is executed again, a clearer picture of its current perfor-
mance could be generated, which can help determine if
the failure was a single event, or the first instance of a
software or hardware fault, or an intrusion.

Detection and Diagnosis Sensitivity

While diagnosing problems in a multi-agent setting is
an interesting problem in its own right, it is also impor-
tant to examine the effect of detection and diagnostic
frequency on overall system behaviors. Specifically, one
may wonder what the appropriate level of “aggressive-
ness” is for detection and diagnosis. On one hand, if the
process is very sensitive, effort may be wasted monitor-
ing behaviors operating normally, or adapting to faults
that don’t exist. On the other hand, a more skeptical
diagnostic system may ignore triggers signifying larger
problems, or spend so much time gathering evidence

11

Detection Frequency (clicks between detection actions)

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

1.6+ s Message Traffic
Total Quality

— — Executions
Coordination Change

(Normalized, Unitless)

1 2 3 4

Diagnosis Evidential Threshold (number required for diagnosis)

Figure 4: Results from the over-coordination scenario

and improving confidence that the eventual adaptation
comes too late.

The notion of inappropriate coordination will be used
to more closely examine this continuum. In the exper-
iment, a water-using appliance and the waterheater in-
teract. The water-using appliance executes a schedule
using different amounts of water, at different times. The
waterheater attempts to maintain a pre-specified level
of water in the tank, and so will react to unanticipated
usage. The heater is also able to coordinate over water
usage, thus ensuring that the water is available when
it is needed. The challenge here is to determine when
the water should be coordinated over: should the agent
expend energy to ensure the needed water is present,
or should it simply use the water and accept the fact
that there is some probability of failure due to lack of
resources?

To diagnose the situation, the water-using appli-
ance examines the coordination pattern with the wa-
terheater, and the resulting effects when coordination
is stopped. Thus, if the agent determines it is almost
always receiving positive responses from its coordina-
tion requests, it may opt to stop coordinating with the
hypothesis that the waterheater can reactively keep up
with its requests. If, however, this is not the case, neg-
ative execution results will prompt the agent to begin
coordinating again.

Two parameters are varied in the different experi-
ments: the frequency at which the coordination and
result data is examined, and the amount of evidence
required for a diagnosis to be produced (e.g. for a
change in coordination to take place). The scenario
is allowed to run for a set amount of time, after which
the number of coordination messages, overall quality,
number of method executions, and number of coordi-
nation changes are recorded. An optimal agent would
thus minimize the number of coordination attempts and
maximize quality. The number of coordination changes
and executions is not good or bad in and of itself, but
is indicative of the rate and results of adaptation the
agent has exhibited.

The results of the experiment can be seen in Figure 4.
The lower X axis measures the amount of evidence re-
quired for the agent to create the diagnosis which would
effect coordination decisions. The upper X axis should
be viewed as four separate cases, each of which measure
the effects of decreased detection frequency. The data
shown is otherwise unitless and normalized, to help ac-
centuate the observed trends.

The overall trend of the graph indicates that as more
pieces of diagnostic evidence are required, or if the de-
tection frequency is decreased, the agent will be more
conservative in its coordination decision. To see this
trend, look at the rate of coordination change first along
the lower axis, representing increases in required evi-
dence, then in each of the four subsections indicated by
the upper axis, which shows decreases in detection fre-
quency. In each case, the rate of coordination change
decreases.

The effects of this coordination decision are shown
by the bars in the graph. At higher rates of change
(e.g. the left side of the graph and sub-graphs), the
agent tends to communicate less, while at the same
time producing more quality. This may at first seem
contradictory - one would expect that an agent which
coordinated more would have a higher quality, since it is
supposedly increasing the probability that the required
water will be available. What is not considered, how-
ever, is the time cost of coordination. When coordinat-
ing, the agent both wastes time waiting for coordination
responses, thereby delaying the start of execution, and
may also decide not to execute at all, when its coordi-
nation request is denied. These two items combine to
reduce the rate of execution under coordination (shown
by the Executions line), which in turn reduces the total
amount of quality. Thus, this data suggests that under
these environmental and behavioral circumstances, the
diagnosis component should be restricted to a narrow
window of data, which is continuously analyzed, allow-
ing the agent to quickly react to changes.

The results shown here are meant to persuade the
reader that an important continuum exists in the sensi-
tivity of diagnostic components, rather than claim that
any one point is reasonable for all, or even this particu-
lar type of fault. Clearly the optimal point in this range
is dictated both by the techniques being employed and
the circumstances under which they are used. Design-
ers of diagnosis-capable agents should keep this trade-
off in mind, so as to avoid counteracting the benefits of
adaptability with unnecessary overhead.

Current Implementation & Future Work

The diagnosis architecture described in this paper has
been implemented, and used in several coordination and
behavior fault based scenarios. We have over a dozen
agents operating in the Intelligent Home, with vary-
ing levels of diagnostics ability and ad hoc adaptability.
The causal model shown in this paper has also been im-
plemented, and extensions to other software, hardware
and intrusion based faults are being considered.

12

In the future, we plan on more closely addressing
the eventual reaction to diagnosis: adaptation and re-
pair mechanisms. Specifically, the implementation, do-
main independence and quantitative analysis of these
mechanisms will be considered. We also plan to more
thoroughly analyze the efficiency cost of adapting to
non-fault conditions.

Conclusion

Adaptation can be an important part of any computa-
tional system, but the susceptible of multi-agent sys-
tems to broad classes of computational, behavioral and
adversarial faults make it especially vital. We believe
that a robust and flexible diagnostic component, cou-
pled with informative models and data, is a necessary
part of this adaptive capability. Agents capable of self
and remote diagnosis will play an important role in
making multi-agent systems both robust and efficient.

References

Bazzan, A. L.; Lesser, V.; and Xuan, P. 1998.
Adapting an Organization Design through Domain-
Independent Diagnosis. Computer Science Techni-
cal Report TR-98-014, University of Massachusetts at
Ambherst.

Decker, K. S., and Lesser, V. R. 1993. Quanti-
tative modeling of complex environments. Interna-
tional Journal of Intelligent Systems in Accounting,
Finance, and Management 2(4):215-234. Special is-
sue on “Mathematical and Computational Models of
Organizations: Models and Characteristics of Agent
Behavior”.

Decker, K. S., and Lesser, V. R. 1995. Designing
a family of coordination algorithms. In Proceedings
of the First International Conference on Multi-Agent
Systems, 73-80. San Francisco: AAAT Press.

Hudlicka, E., and Lesser, V. R. 1987. Model-
ing and diagnosing problem-solving system behavior.
IEEE Transactions on Systems, Man, and Cybernetics
17(3):407-419.

Hudlickd, E.; Lesser, V., P.; J.; and Rewari, A. 1986.
Design of a distributed diagnosis system. UMASS De-
partment of Computer Science Technical Report 86-
63.

Kaminka, G. A., and Tambe, M. 1998. What is wrong
with us? improving robustness through social diagno-
sis. In in Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI-98). AAAL

Lesser, V.; Atighetchi, M.; Horling, B.; Benyo, B.;
Raja, A.; Vincent, R.; Wagner, T.; Xuan, P.; and
Zhang, S. X. 1999. A Multi-Agent System for
Intelligent Environment Control. In Proceedings of

the Third International Conference on Autonomous
Agents. Seattle, WA, USA: ACM Press.

Sugawara, T., and Lesser, V. 1993. Learning control
rules for coordination. In Multi-Agent and Cooperative
Computation '93, 121-136.

Sugawara, T., and Lesser, V. R. 1998. Learning to
improve coordinated actions in cooperative distributed
problem-solving environments. Machine Learning. To
appear.

Toyama, K., and Hager, G. D. 1997. If at first
you don’t succeed... In in Proceedings of the 14th
National Conference on Artificial Intelligence (AAAI-
97). AAAL

W. Hamscher, L. Console, J. d. K., ed. 1992. Readings
in Model-Based Diagnosis. Morgan Kaufmann.

Appendix: Diagnosis Implementation
Details

To allow the reader to better understand how diagno-
sis currently functions in the agent, the implementation
details of several of the causal model nodes will be dis-
cussed in this appendix.

LongerDuration

As can be see from Figure 2, the LongerDuration node
is triggerable, meaning it periodically checks simple ob-
servable traits which might be symptoms of a larger
problem. The node uses two pieces of information to
perform this check: the list of currently executing meth-
ods and the local TEMS task structure. During the
trigger-check phase, the node will compare the current
running time of each executing method to the expected
time indicated by the task structure. If the current time
exceeds the mean of the expected time plus some given
threshold, the node becomes activated.

Once activated, a new instance of node is created
which more closely monitors that single method whose
duration seems to be too long. A different, presumably
looser, standard is used to determine excessive duration
at this point. This allows the triggering to be some-
what sensitive, while the actual diagnosis can allow for
a wider range of performance. If this new threshold is
also passed, a diagnosis will be generated noting the
problem. If the method does not pass the new thresh-
old, the instance will silently deactivate itself.

IncorrectMethodQualDistribution

As this node is not triggerable, it depends on other
nodes for activation. Typically, this node will be acti-
vated by the LowerQuality node, which itself would be
triggered by a method whose resultant quality is lower
than expected (determined by a method similar to that
described in the previous section).
IncorrectMethodQualDistribution, once activated,
acts primarily as an interface to a local long-term learn-
ing component. The learning component will indepen-
dently monitor all method invocations, and track their
execution characteristics. As results are obtained, the
learning component is able to build its own local ver-
sion of the task structure, which can be used to verify
or contradict the expected values present in the agent’s
actual task structure. If a sufficient amount of evidence

13

has been gathered by the learning component, a chi-
squared test is made to determine the significance of
the differences (if any) between what it has learned and
what was expected. If the difference is significant, a
diagnosis is produced, otherwise the node silently deac-
tivates itself.

The two nodes IncorrectMethodDurDistribution and
IncorrectMethodCostDistribution work similarly.

NoRsrcCoordination

This node, typically activated when a method results
differ from expectations, is used to determine if the
symptoms could have been caused by a missing resource
which was uncoordinated over. The diagnosis activat-
ing the node will contain a reference to the method
which has misbehaved. By examining the agent’s local
task structure, the node can determine if the method
in fact used resources by searching for the method-to-
resource interrelationships which conventionally indi-
cated such usage.

Agents in our environment actually posses two copies
of its task structure, which are differentiated as subjec-
tive and conditioned views. The subjective view rep-
resents what the agent believes to be the true working
conditions imposed by the environment. Interrelation-
ships included in this model indicate that relationships
between methods and resource do exist, and will have
impact on one another (so far as the agent knows). The
conditioned view, however, represents only those rela-
tionships which the agent deems necessary to coordi-
nate over. Thus, a method-to-resource relationship in
the subjective view indicates the the agent is aware a
certain method will interact with the resource; the pres-
ence of the same relationship in the conditioned view
indicates the the agent has actively decided to coordi-
nate over that interaction. Thus, the conditioned view
is used as a coordination-independent view of the coor-
dination activities the agent will exhibit at runtime.

By examining the dichotomy between the subjec-
tive and conditioned view, the NoRsrcCoordination
node can determine both when resource interactions
are taking place, and whether or not coordination took
place over that interaction. When a poorly performing
method is delivered to the node, it first determines if
an interaction took place by looking for relationships in
the subjective view. If such relationships don’t exist,
the node simply deactivates because there was no coor-
dination that could have taken place. If the relationship
does exist, however, and the corresponding relationship
is not present in the conditioned view, the NoRsrcCo-
ordination may pose a diagnosis indicating that poor
performance may be a result of needed resources which
were not coordinated over (and therefore may have not
been available).

UnecessaryRsrcCoordination

This node is also triggerable, searching for possible in-
stances where coordination may be unnecessary. The
triggering activity in this case is whenever coordination

over a resource is performed for the first time, which is
determined by listening to the event stream emanating
from the coordination component. Once a coordination
event is observed, the node proceeds to set up long term
monitoring facilities to track the activity and results of
this coordination.

Once in place, the monitors count the number of
times a resource is attempted to be coordinated over,
and the number of acceptances and rejections arising
from these attempts. Once a certain amount of evidence
(coordination attempts) have been made, the node ex-
amines the gathered data to calculate the probability
of a coordinate attempt being accepted. If this ratio is
above a certain threshold, a diagnosis is created indi-
cating that coordination may be unnecessary.

If no coordination changes are made by the agent, the
node will continue gathering evidence and updating its
diagnosis when changes are observed. A sliding win-
dow of evidential data is maintained which helps pre-
vent the node’s diagnosis from being unduly affected
by historical events. If, however, a coordination change
is made, the node will response by throwing out all of
its evidence, and begin listening to the NoRsrcCoordi-
nation node. Because no coordination is taking place,
the monitors previously put in place will offer no new
evidence as time passes. Instead, The results of the
action will be the new, albeit indirect, source of evi-
dence. By monitoring the NoRsrcCoordination node,
UnecessaryRsrcCoordination can determine if its diag-
noses adversely affects the activity of the agent, and
can revise its diagnosis as necessary, which should al-
low the agent to know when and if coordination should
be restored.

FailedDurationEstimate

This node is responsible for diagnosing when an agent
performing a previously-coordinated over task fails to
meet local and remote expectations (as opposed to
FalseDurationEstimate, which attempts to determine
when a remote agent misrepresents the duration). A
good example of this is when an acting agent fails to
achieve the duration estimate it submitted in a con-
tract accepted through a contract-net protocol because
of a local execution error (a required resource might not
have been available, or the local distribution description
might be incorrect).

The parent node, IncorrectCoordinatedDurationEs-
timate, has presumably already determined that the
method in question was both coordinated over and ex-
ceeded the agreed upon duration. If this is the case,
and the observed duration was greater than the agreed
upon duration (if any), diagnosis takes place. Failed-
DurationEstimate node uses a form of distributed di-
agnosis to gather evidence by querying the executor for
pertinent diagnoses it may have generated. If the exe-
cuting agent reports a diagnosis concerning the method
in question and its duration, the requesting node can
infer that an execution error occurred, which resulted
in the method taking longer to complete. A diagnosis

14

could be produced based on this information.

APPENDIX B

Using Self-Diagnosis to Adapt Organizational Structures *

Bryan Horling, Brett Benyo, and Victor Lesser
University of Massachusetts
Department of Computer Science
Ambherst, MA 01003
{bhorling, bbenyo, lesser }@cs.umass.edu

ABSTRACT

The specific organization used by a multi-agent system is crucial
for its effectiveness and efficiency. In dynamic environments, or
when the objectives of the system shift, the organization must there-
fore be able to change as well. In this paper we propose using
a general diagnosis engine to drive this process of adaptation, us-
ing the TAMS modeling language as the primary representation of
organizational information. Results from experiments employing
such a system in the Producer-Consumer-Transporter domain are
also presented.

Keywords: Organization and social structure, organization self-
design.

1. OVERVIEW

As the sizes of multi-agent systems grow in the number of their
participants, the organizationof those agents will be increasingly
important. In such an environment, an organization is used to limit
the range of control decisions agents must make, which is a nec-
essary component of scalable systems. Are agent agents arranged
in clusters, a hierarchy, a graph, or some other type of organiza-
tion? Are the agents‘ activities or behaviors driven solely by lo-
cal concerns, or do external peers or managers have direct influ-
ence as well? Is communication between agents active, via mes-
saging of some sort, or passive, using observations or engineered

*The effort represented in this paper has been sponsored by the De-
fense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command, USAF, un-
der agreement numbers F30602-99-2-0525 and F30602-97-1-0249,
and by the Department of the Navy, Office of the Chief of Naval Re-
search, under Grant No. N00014-97-1-0591. This material is also
based upon work supported by the National Science Foundation
under Grant No. IIS-9812755. The views and conclusions con-
tained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), Air Force Research Laboratory, or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AGENTS’01May 28-June 1, 2001, Montréal, Quebec, Canada.

Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

15

assumptions? These and other characteristics define the organiza-
tional structureof a multi-agent system - the rules which define the
roles agents play and the manners in which they interact with other
agents in the system.

Clearly the characteristics described above will have an impact
on the efficiency and responsiveness of both large and small multi-
agent systems. It should also be intuitively clear that the effective-
ness of the organization is dependent on the agents, environment,
and goals involved in the system. The problem then, is how to
derive such a structure given a particular situation. The simplest
option is to statically define the organization when the system is
developed. This has the benefit of being a simple and direct solu-
tion, but can become impractical when the sets of agents and goals
are large and diverse. Static solutions also suffer when elements
of the multi-agent system are dynamic, since characteristics of the
environment, organizational goals, or member agents may change
such that the initial organization becomes inefficient. Members of
the agent pool may become deactivated or compromised in some
way, making it impossible for the system to function correctly, or
other agents may not be used effectively when they are added. In
this sense, the organization is a set of assumptions that the system
works by. As these assumptions become invalid, the organization
must be able to adapt to keep the system viable.

The term Organizational Self-Design (OSD) has been used pre-
viously [2] to describe the general technique of employing the mem-
bers of a multi-agent system to generate or adapt their own orga-
nizational structures at runtime. Earlier work in this area tended
to focus on adapting specific qualities of the organization, such as
task allocation [9] or load balancing [6, 8]. Organizational struc-
ture generation has also been proposed as arising from local [6],
global [2], and hybrid [11] perspectives. Each of these systems
demonstrated specific techniques that worked well and efficiently
in their respective environments, but they were not general solu-
tions to the problem. In this paper we propose a more general ap-
proach, using diagnosis, to detect deficiencies in the organizational
model and assist in the creation of solutions to those deficiencies;
the eventual goal being to create a reusable organizational adapta-
tion engine. We will show how a general diagnosis engine, coupled
with a powerful representation of that organization, can be used
to effect change in a wide range of characteristics from arbitrary
perspectives.

To help make this notion of organizational adaptation more con-
crete, we will look at an example from the Producer, Consumer,
Transporter (PCT) domain [4]. In this domain, there are concep-
tually three types of agents: producers, which generate resources;
consumers, which use them; and transporters, which move resources
from one place to another. In general, a producer and consumer
may actually be different faces of a factory, which consumes some

Figure 1: The initial (L) and revised (R) transporter organizations.

quantity of resources in order to produce others. There are several
characteristics of this domain where alternatives exist for the fac-
tories and transporters - the choices made at these points by or for
the PCT agents make up the organizational structure of the system.
Examples of such characteristics include the types and quantities of
resources a producer should generate, the set of potential sources a
consumer should obtain required resources from, and what paths a
transporter may choose to follow as it moves about.

In this example, consumers F> and F, shown in Figure 1, re-
quire some amount of resource X . In the initial organization, each
is being supplied with X by producer Fi. X is then supplied to F»
and F3 by transporters 77 and 7%, respectively, each of which oper-
ates at 50% capacity. Factory F} is initially idle, but at some future
point in time it obtains production request, which requires resource
Y to be satisfied. Fortunately, F3 produces Y, but in the initial
organization, no additional transporters are available to deliver the
needed goods. With a diagnostic system in place, the transporters
could determine that their initial organization, while functional un-
der the initial conditions, included under-loaded transporters and
was therefore potentially suboptimal. Instead of using two trans-
porters running at 50% capacity, just one at 100% capacity could
satisfy the original requirements for X expressed by F> and F3,
albeit at a slight time penalty because of the extra stop. Thus, if
instantiated, the revised organization would leave T% free to per-
form the transportation required by Fy. More quantitative results
from this domain will also be covered in section 4. Related work,
using diagnosis to learn coordination rules in an intelligent home
scenario, can also be seen in [5].

Figure 2 shows at a high level how we propose organizational de-
sign can be situated and integrated in an agent. In this architecture,
critical components within the agent, such as those responsible for
problem solving, negotiation and scheduling, obtain the vast major-
ity of their information from an organizational design layer. This
layer abstracts and filters elements of the operating environment in
a manner consistent with the agent’s role in the organization. The
abstraction is composed of one or more information sources, such
as TEMS structures or MQ values [12], capable of encoding the
various aspects of the organization. TEMS a task and interaction
modeling language, will be discussed in detail in a later section.
MQ (motivational quantity) values, which give the agent a more
powerful way to reason about the utilities of its tasks, will not be
covered in this paper. To permit adaptation, the organizational de-
sign layer is maintained by a diagnostic subsystem, which attempts
to repair faults and inefficiencies by adjusting elements of the or-
ganizational structure. This diagnostics process can itself be driven
by a number of sources, including observations of the environment,
conditions monitored within the agent, and discourse with other
agents. The direct effects of these diagnoses typically take place
within a relatively small group of agents, so one can think of this
technique as being a search process for the correct organization
through local adaptation. The organization will go through a set of

16

distribution adaptations, each involving a series of local adaptations
by individual agents.

Going back to the previous PCT example, we can see how this
technique would work in practice. The initial organizational struc-
ture would be encoded in TAEMS structures in both the transporters
and factories. They would indicate such characteristics as what
goals the factories and transporters should work towards and how
they could be accomplished. Initially, the organization would be
unconstrained, permitting the type of interactions seen in Figure 1L.
Diagnosis running on the transporters or factories would determine
that while the transporter loads were well balanced in the initial
state, the arrangement was not necessarily the most efficient use of
their abilities. F5 could use this information to add a constraint to
it’s local organizational representation, indicating that it should use
T for its transportation needs. Later, when Fy requests the use of
a transporter, T> will then be available.

In the next section we will give more details about our view of the
actual knowledge used by an agent to represent the organizational
information that makes up the abstraction layer shown in Figure 2.
Following this, we will cover our diagnostic system, shown in the
middle of this same figure, and how it is integrated into and used
by our agents. In section 4 results from an experiment in the PCT
domain will be covered, and in section 5 we will present our con-
clusions.

2. ORGANIZATIONAL KNOWLEDGE

As mentioned in the previous section, the range of information
that comprises an organizational structure can be quite broad. It
is our opinion that there is no single, comprehensive set of char-
acteristics that might make up the definition of an organizational
structure. Instead, the set is dependent more on what alternatives
are possible within a particular multi-agent system and which of
those alternatives can have an impact on the system’s behavior and
effectiveness. Given that, we will present in this section our or-
ganizational representation, called TAEMS (Task Analysis, Envi-
ronmental Modeling, and Simulation), which is flexible enough to
model a wide range of organizational characteristics.

21 TAMS

The primary representation of the organizational structure is done
with the domain-independent TAEMS task modeling language [3]
(see Figure 3 for a simple example). A T/EMS task structure is es-
sentially a goal decomposition tree, where leaf nodes represent exe-
cutable primitive methods and internal task nodes provide a hierar-
chical organization. Root level tasks (those with no supertasks) are
known as task groups, and conceptually represent high level goals
that might be achieved. Associated with each task is a quality-
accumulation function (QAF), which indicates how the quality of
the task is calculated from that of its subtasks. Associated with each
method is a distribution-based description of its expected quality,
cost and duration measures. Together, the probabilistic method de-

Scheduling

Coordination

Reactions

Short/Long Term Diagnoses

Symptoms |

Models

Negotiation

Problem Solving

Figure 2: Role of organizational knowledge within an agent.

scriptions and QAFs allow a scheduler to effectively reason about
the traits and tradeoffs of a wide range of possible schedules. A
third type of element, interrelationships, which arise between in-
ternal tasks, methods and resources can be used to indicate a wide
range of interactions, such as enables, facilitates, hinders and pro-
duces (e.g. performing a task will enablethe execution of another,
or a task will producesome amount of resource, as seen in Figure
3). Interrelationships may also span task structures between agents,
and tasks and methods performed by remote agents may be repre-
sented locally. Combined, the capabilities give developers using
TZAMS the flexibility to model a wide range of traits, from low-
level performance characteristics of a single action to a high-level
representation of the system’s control hierarchy.

TAMS task structures are typically used to encode the different
mechanisms for achieving a goal, and the constraints and tradeoffs
associated with each potential plan. They are also used to describe
both the potential capabilities of an agent and the subset of those
capabilities it should employ given its place in the organization. To
do this, each agent will have two different versions, called views of
its local task structure: subjectiveand conditioned The subjective
view contains what the agent believes to be the complete model of
its local execution alternatives'. The conditioned view is a copy of
the subjective which has gone through a process of conditioning- it
may contain task, method or interrelationship deletions, modifica-
tions or insertions. The conditioned view is normally used for plan
construction, so these modifications indirectly allow the problem
solver performing the conditioning process to focus the attention
of the scheduling and coordination mechanisms. As we will see
below, the conditioned view can also represent the instantiation of
the role assigned to it by the organizational structure.

2.2 Task and Goal Representation

Since the general purpose of TAMS is to facilitate plan genera-
tion, it is well suited for representing the different task alternatives
available to an agent in an organization. In an agent’s subjective
view we can represent (or dynamically generate) structures describ-
ing each of the high level goals the agent can achieve. Each of these
structures would in turn describe the various alternate ways that a

! There is also an omniscient objectiveview, inaccessible to agents,
which defines the real execution alternatives. In simulation, one can
engineer differences between the objective and subjective views to
create scenarios where the agent’s expectations are not met.

17

particular goal might be achieved. The subjective view would then
be, in this light, a complete description of all the possible roles an
agent might be assigned to, and how the agent might act to satisfy
that role.

Within a particular organizational structure, however, an agent
will typically (but not necessarily) be working toward just a sin-
gle or limited set of goals. Thus, in the conditioned view there
will be a single task group representing that goal. The subtree un-
derneath that task group might be further pruned to reflect other
decisions within the organization. For example, in the subjective
view there might be two possible ways to complete a task, one lo-
cal solution and another using a remote contract, whereas an or-
ganizational constraint could remove the remote option from the
conditioned view. So, using this representation we can encode all
the tasks a particular agent might be working on, and also the spe-
cific task(s) they have chosen or been assigned. These techniques
are used in the experiment shown in section 4 to control the path
selection done by transporter agents.

2.3 Specifying Interactions

As mentioned above, TEMS allows the agent to represent tasks
and methods that other agents may perform. This capability allows
TZAMS to model potential interactions between agents very effec-
tively. Consider the case where agent C requires resource X as
part of its manufacturing process, as seen in Figure 3. Here, C1
has a method Get-Materials, which consumes some amount of re-
source X. In the subjective view we can see that C; knows of
three other agents that can produce X for it: Py, P>, and Ps, each
of which is represented by a shaded, nonlocal method that has a
produces interrelationship to X. In the conditioned view only P
is represented, which indicates that in this organization, C1 should
obtain X from P». A less restrictive organization might allow Cy
to choose probabilistically from either P; or P>, which could be
represented by adding Pi’s produces interrelationship to the con-
ditioned view. In this new model, the local scheduler would select
from the two each time the resource is needed, based on the charac-
teristics that differentiate the two produces interrelationships. This
type of probabilistic usage relationship will be discussed further in
the example in section 4.

Other interrelationship types might inform the agent that another
agent’s actions could enable, disable, facilitate or hinder local ex-
ecution. Assuming the agent needs to interact, explicitly or not,

Manufacture-Z

Get-Materials

Produce_X P1

Make_X_P2

Assemble-Z

Make_X_P1

Consume_X

Make_X_P3
Produce X _P3

0.0/0.0/100.0 0.0/0.0/100.0

Make_X_P2

(Manufacture-Z)

seq_sum

| Get-Materials | | Assemble-Z |

| Consume_X | | Produce_Z |

0.0/0.0/100.0 0.0/0.0/100.0

Figure 3: Subjective (left) and conditioned (right) views ofC}’s task structure.

with those remote agents to exploit these interrelationships, they
then indicate a point of potential coordination. For instance, if a
remote agent’s method enables one at the local agent (i.e. there is
an enables interrelationship between them), the local agent must
ensure that the remote method has successfully completed before it
can succeed at its local method. This implies that some sort of co-
ordination must take place to cause the correct ordering of events.
Thus, an agent using this type of model can succinctly encode what
sort of coordination is needed (based on the interrelationship type),
with what other agents it should take place, and given a schedule of
execution, when it should occur.

2.4 Other Organizational Details

Data concerning particular agents, existing commitments, and
execution schedules are also stored within TAMS models. In-
evitably, however, there are some details particular to a given or-
ganization that do not directly fit into this representation. For these
situations, all elements in a TAMS model can be associated with
an arbitrary set of attributes, where one could specify such things as
preferred communication medium, optimal load measurements, or
interaction history with a particular agent. Also stored here are per-
formance characteristics, such as result thresholds and tolerances
and expected frequency statistics, which the diagnosis subsystem
can use to help identify potential failures.

With this information, we can now return to the questions posed
in the overview section. The arrangement of agents can be ex-
pressed and derived locally by using the complete structure and
owning agent tags of tasks and interrelationships. Commitments
can exhibit potential influences on agent activities, or by explicitly
modeling the task of obtaining goals from remote agents. Interre-
lationships can denote communication alternatives among agents,
and their presence in the conditioned view determines if they should
be explicit or implied. Our subjective view represents all the pos-
sible roles and responsibilities the agent may hold in the organi-
zation, while the conditioned view indicates its currently assigned
position. The organizational search space is therefore specified by
the range of possible conditioned structures. To adapt its role in the
organization, the agent must develop an appropriate mapping from
the subjective to conditioned. The TAMS knowledge representa-
tion thus serves as a reasonable representation of the organizational
structure; the task now is to use diagnosis to find the appropriate

mapping.

3. THE DIAGNOSTIC SUBSYSTEM

Figure 4 shows the architecture of the diagnostics subsystem we
currently employ. It uses a blackboard-based design, separating the
process into three distinct layers: symptoms, diagnoses, and reac-
tions. This type of system offers several advantages. It promotes
a clear chain of reasoning, since the diagnoses supporting a given

18

reaction can easily be identified, as can the symptoms that sup-
port a particular diagnosis. Each layer is also subdivided by time,
so a history of activity on each level is readily accessible. The
blackboard layers also clearly define the separation of responsibil-
ities. This modularity allows any of the layers to be accessed at
any time, enabling arbitrary components or even remote agents to
asynchronously use and add to elements on the blackboard. The
different layers of the blackboard, and the components which make
use of them (excepting the effect monitor), will be discussed below.
In our current systems, each agent uses this subsystem to perform
local diagnosis, although it is quite feasible that in other systems a
specialized “diagnosis” agents would be responsible for monitoring
small groups of their peers.

The lowest level of the blackboard contains symptoms, elements
that contain observations about such things as the environment,
agent activities and commitments. Two classes of components cur-
rently generate symptoms: observersand modelers Observers
work by simply monitoring different aspects of the agent, and gen-
erating symptoms when appropriate. Modelers take a more proac-
tive approach by building or learning models, and then using these
models as a basis for comparison, an approach similar to that used
in conventional model-based diagnosis. As models are updated, or
predictions derived from the models fail, appropriate symptoms de-
scribing these instances are noted on the blackboard. We have ex-
perimented with modelers that learn interrelationships in TEMS ob-
jects [7] and others that predict environmental resource usage.

Diagnosis is a well-researched field, with many different meth-
ods and techniques already available to the system designer. Our
goal was to use a technique that offered great flexibility in the in-
formation it could use and the diagnoses it could generate, with-
out sacrificing subject scope or domain independence. It is not
clear from the outset, however, that any single diagnostic technique
(e.g., model-based, symptom-directed, collaborative) is suitable for
the entire range of faults exhibited by multi-agent systems. It was
therefore desirable to use a system or framework capable of incor-
porating different diagnostic techniques. In such an architecture we
can make use of a variety of different methods, given the types of
failures they best address, and the performance characteristics they
exhibit (e.g. convergence time, scalability, efficiency, etc.).

Expanding on work first researched in [10], we chose to organize
our diagnostic process using a causal model. The causal model is
a directed, acyclic graph that organizes a set of diagnosis nodes.
Figure 5 shows an example of such a graph; more examples of
graphs addressing broader topics can be found in [1]. A more ap-
plied model used in the PCT domain can also be seen in Figure 6.
Each node in the causal model corresponds to a particular diagno-
sis, with varying levels of precision and complexity. As a node pro-
duces a diagnosis, the causal model can determine what other, more
detailed, diagnoses may further categorize the problem. Within the

C TEMS

7y

Reactions

Reaction
Generator

Short/Long Term Diagnoses

Symptoms

Effect
Monitor

Models

Causal
Model

EnVlronment

Figure 4: High-level architecture of the diagnostics subsystem.

|C0mpletionTimeDelayed|

StartTimeDelayed EnablingTaskDelayed
PreviousTaskDelayed

IncorrectLimitsNLE

|UnexpectedActlonDuratlon v

|IncorrectCoordinatedDurationEstimate |

|UnexpectedAct10nQuahty

IncorrectMethodRsrcUsage

|IncorrectC0nsumesNLE|

UnexpectedActlonCost

| IncorrectMethodDurDistribution

IncorrectProducesNLE

ActionAborted|

|IncorrectMethodCostDistribution|

NoRsrcCoordination

|IncorrectMethonualDistribution|

IncorrectModelOfRschsage|

|IncorrectNLEDurationPower

ResourceUnavailable

|IncorrectNLEQualityPowerl

IncorrectN LEDelayPowerl

|IncorrectNLECostPower|

PeriodicCoordination

|Nurmal Node

ITriggerable Node|

Figure 5: Causal model for diagnosing action- and coordination-based faults.

diagnosis system, the causal model then acts as a sort of road map,
allowing diagnosis to progress from easily detectable symptoms to
more precise diagnostic hypotheses as needed. A more advanced
technique can also use the same structure to help validate diag-
noses, by using backward chaining through the branches to deter-
mine the state of other potentially related diagnostic nodes.

It is worth mentioning that nodes in the causal model do not
necessarily produce single-shot diagnoses. Some nodes, such as
UnexpectedActionDuration, simply produce a diagnosis and stop.
Others, such as PeriodicCoordination, can produce a diagnosis and
monitor it over time to determine if conditions change or more ev-
idence is found. Thus, a node could pose an initial diagnostic hy-
pothesis when confronted with a particular situation. Since it only
has limited evidence (presumably one data point), the confidence
on that diagnosis would be low. The node can persist, however,
and either passively watch for related evidence, or actively gather
new information that either contradicts or corroborates the initial
diagnosis. Furthermore, since other diagnoses or reactions may be
based on that initial diagnosis, a change may also affect their con-
fidence, causing a ripple effect throughout the blackboard as the
original diagnosis accumulates new information.

The reactions level contains descriptions of the potential solu-
tions to diagnoses found on the previous level. In some sense, then,
these reactions are the effectors of organizational change. As di-
agnoses are hypothesized, and their confidence reaches a certain
threshold, the reaction generator will pose solutions to those diag-
noses. For instance, if the causal model determines that insufficient

19

resources were available for a particular action because their us-
age was not coordinated over, a potential reaction would modify
the conditioned view of the agent’s TAEMS model so that coordi-
nation would take place for that action in the future. A different
reaction for that problem might remove the offending method from
the view altogether. Similarly, if a diagnosis determined that an
agent’s actions were predictably periodic, a reaction could set up
default commitments to reduce the need for explicit communica-
tion during each of those cycles. Like diagnoses, reactions can also
be long-lived, providing incremental change in response to updated
diagnoses or to slowly test new organizational changes.

Organizational changes for higher level characteristics work the
same way. For instance, in Figure 3, a consumer’s choice of pro-
ducers limited is by the organization. A reaction could implement
this change by removing the methods and interrelationships that
describe those extra producers from the conditioned view. In the
initial PCT organizations seen in Figure 1, a reaction would mod-
ify the conditioned view of F3 to indicate it should use 77. When
this change is made, T> would be free to accept the transportation
request from Fy.

Similar methods can drive more large scale reorganizations, al-
though additional safeguards should be present to protect against
the likely larger cost of failure. In these cases, local reactions
can directly implement sophisticated reorganization techniques like
those seen in [6, 8, 11, 9], or they can direct the local agent con-
troller or problem solver to do so. For instance, local diagnosis
could first determine that the control hierarchy for the current orga-

nization is inefficient or overwhelmed, because one or more high-
level managing units was unable to cope with its workload. Be-
cause resolving such an issue can result in an interruption of ser-
vice, this diagnosis would first cause a more detailed view of the
situation to be analyzed, by evaluating different metrics, analyzing
trends, or gathering additional evidence from remote sources. If
this more advanced diagnosis also determines a problem exists, a
reaction can be generated which prompts a more sophisticated di-
rect, distributed search for a more appropriate organizational struc-
ture.

The task of selecting from among several potential reactions lies
with the inducer. Our current inducer simply instantiates any reac-
tion it sees on the blackboard. In future versions this component
would be more complex, able to differentiate between reactions,
analyze the potential benefits and drawbacks of each, and deter-
mine the best reaction given the agent’s current context and prior
history.

4. EXPERIMENTAL RESULTS

A specific system using the architecture outlined in the previous
sections has been implemented and tested using scenarios from the
PCT domain. In this section, we will outline one of those experi-
ments, examining the effects of organizational changes in a small,
eight member multi-agent system.

In this scenario, there are four factories and four transporters op-
erating in the environment shown in Figure 1. As shown in that
figure, there are also four “doorways”, or potential points of con-
tention along the lengthwise transporter routes. These doorways
only allow one transporter through at a time, which transporters
must be aware of as they select their routes. The objective for
transporters is then to deliver their cargo on time, given the poten-
tial vagaries of factory production and the need to avoid collisions
on travel pathways. Factories in the environment have different
production capabilities and resource requirements, summarized in
Table 1, and they must also select one or more transporters to de-
liver materials to them. Each factory is capable of producing both
a simple resource, one that requires no external elements to build,
and a complex resource, which requires other resources to produce.
Fy4 can also produce an even more complex resource), which is
the combination of four other resources.

Factory | Simple Complex
Fr og— A B+C— X
F g— C B+D—Y
Fs3 o— D A+C —- W
Fy o — B A+D — Z
A+CH+X+Y = Q

Table 1: Production rules for factories in PCT example.

In the initial phase of the scenario, the goal of each factory is
to produce seven of each type of complex resource by time 700.
After time 700, the objective shifts so that the system as a whole
should produce as much @ as possible by time 1200. To provide
further context, the round trip duration from Fi to F3 is around
forty time units (barring path contention), and resource production
can take five time units. Two organizational characteristics have
alternatives as part of this scenario - the transporter selected for a
particular transportation task, which is decided by the consuming
factory, and the path the transporter selects to perform that task.
Each consumer then chooses one of the four available transporters
to satisfy its delivery needs. Each transporter has a choice of two
different viable paths for any given delivery task. This latter selec-
tion is implemented probabilistically, so a given transporter might
have a 70% chance of selecting path A, and a 30% of path B. Three

20

runs were performed, the first employed an arbitrary static organi-
zation, the second used diagnosis with only task allocation nodes
from the causal model shown in Figure 6, and the third used the
entire causal model, which added path selection diagnosis to the
second trial. The objectives behind most of the nodes in the model
should be intuitive: DeadlineMissed fires when action’s deadline
has not been achieved, TransporterOverloaded is true when a trans-
porter’s task load is disproportionate to those of it’s peers, and
OverCoordination determines when excessive coordination activ-
ity has been detected, as would occur when a particular route is
highly contended. Organizational change occurs under two circum-
stances. A TransporterOverloaded diagnosis will result in the trans-
porter attempting to shift some of its current delivery tasks to alter-
nate transporters. This will also induce change in the consumer’s
organizational model such that future requests will go to the alter-
nate transporter. An OverCoordination diagnosis associated with
the route coordination protocol (which prevents transporters from
colliding along a common path) will cause the transporter to adjust
its local route selection probabilities.

Table 2 shows the results from the experiments; average delay
is the average amount of time from when a factory begins gather-
ing materials for resource production to when the resource is com-
pleted. As shown in the table, the results from the static organiza-
tion are quite poor, except those for resource X, which benefitted
from using relatively underloaded transporters in the organization.
The delays during production of @ are particularly bad, being more
than three times those in other runs. Clearly this performance is
dependent on the organization that was initially chosen, but more
important to this discussion is the fact that an initial poor organi-
zation was greatly improved with the addition of diagnostic-based
adaptation, as shown by the results from the second and third runs.

Average Delay
Adaptation w X Y Z Q
None | 261.9 | 94.5 | 253.6 | 252.0 | 422.0
CM (Tasks) | 97.8 | 88.4 | 90.3 98.4 | 1189
CM (Full) | 93.0 | 90.0 | 92.5 96.5 99.6

Table 2: Results from three trials in the PCT scenario.

In the results from the second run we see that the average pro-
duction delay for each resource was reduced by nearly two-thirds
in most cases. These gains were obtained by using load statistics,

which can be generated from the transporter’s conditional TEMS view,

to more efficiently allocate transporters to the various tasks avail-
able. Reallocation was performed by adding or removing interrela-
tionships from a factory’s conditional view, which constrained the
set of transporters the factory could potentially use. Initially, the
consumers chose from all transporters available in the environment,
which was quite inefficient because transporters working on long-
haul (diagonal) runs were selected as often as those on shorter runs.
Through incremental changes to their conditional views, reacting
to transporter performance and load, consumers in the second trial
settled into an organization where more lightly-loaded transporters
were selected more frequently, producing a more efficient alloca-
tion. The allocation for the initial phase settled around time 240,
after four task reassignments. When the second phase started, after
time 700, additional task reallocations took place every 100 pulses
or so until the system completed.

With the introduction of path selection diagnosis in the third
run the delays dropped again, especially that of resource @, which
due to its larger component set has the most potential for conflict-
ing transporter routes. Diagnosis relevant to path selection was
performed by the TooManyConflicts and OverCoordination nodes,
which determined if a transporter encountered excessive conflicts

| TooManyConflicts

OverCoordination

SystemOverloaded

ProducerOverloaded

— 2
DeadlineMissed &
‘

AbnormalLoad

TransporterOverloaded

Tran sporterUnderloaded|

| Statistical Anomaly |

Figure 6: Causal model structure used in the PCT scenario.

when coordinating with other transporters over route usage. In this
trial, the transporters’ options regarding path selection were im-
proved by constraining them in such a way to reduce the possibility
of conflict. This was also implemented through local incremental
change, this time by the transporters themselves, as they experi-
mented with varying path probabilities (the chance that a particu-
lar route will be chosen) until one was found which incurred few
conflicts. By lowering the potential for conflicts, the path proba-
bilities reduced the overhead spent on both control decisions and
coordination, which left more time for the actual act of transport-
ing. Interestingly, despite similar final results, the organizational
changes with both techniques available were very different than
those of the previous trial. Periodic task reallocations were done
every 100 pulses or so until time 800. Additionally, two to three
path probability changes were made before time 200 for each of
the transporters, and one or two more after time 700. These differ-
ences are caused by the fact that the adaptations were performed au-
tonomously by individual agents in response to different efficiency
metrics. Because no central authority governs the organizational
changes, it is probable that the agents will adapt differently to the
different metrics, but eventually settle on a similar result. There-
fore, the various states the organization as a whole will go through
towards this result will vary depending on the type of diagnosis
being performed.

5. CONCLUSION

Generating an effective organizational structure for a multi-agent
system is a crucial part of making them efficient, especially for
large systems where global control is impractical. Adapting these
organizations at runtime therefore becomes important when the en-
vironment, goals, or participants are liable to change. Several spe-
cific techniques have been offered by previous work in this area;
we propose a more general solution to the problem by organizing
such activity under the umbrella of diagnosis. A general diagnos-
tic engine such as that shown in this paper is capable of detecting
and diagnosing a variety of faults and inefficiencies, which can be
used to drive organizational change. The organization itself is rep-
resented using models, such as TAMS structures, which abstract
the relevant portions of agents’ capabilities and interactions in a
way that facilitates both its use by agent control components and
its adaptation by diagnosis. In this architecture, the methods driv-
ing change, and the characteristics affected by adaptation, can then
be simplified to general techniques updating a domain independent
representation, which can be reused from one system to the next.

A number of issues remain to be researched in this area. How
efficient are the resulting organizations? How long does it take to
discover a problem, and then to converge on a viable solution? Can
one guarantee that the reactions will do no harm, and avoid oscil-
lations? Our use of a blackboard structure, which can be searched
for historical reactions, can help avoid these pitfalls. How much

21

of the diagnostic engine can be domain independent, and how are
reaction values and thresholds calculated. Of these these latter is-
sues, can some sort of learning technique be used to automate value
selection? We hope to address these areas in future work.

6. REFERENCES

[1] Ana L.C. Bazzan, Victor Lesser, and Ping Xuan. Adapting an
Organization Design through Domain-Independent
Diagnosis. Comp Sci Technical Report TR-98-014,
University of Massachusetts at Amherst, February 1998.
Daniel D. Corkill and Victor R. Lesser. The use of meta-level
control for coordination in a distributed problem solving
network. In Proceedings of the Eighth International Joint
Conference on Atrtificial Intelligencgages 748-755,
Karlsruhe, Germany, August 1983.

Keith S. Decker and Victor R. Lesser. Quantitative modeling
of complex environments. International Journal of
Intelligent Systems in Accounting, Finance, and
Management2(4):215-234, December 1993. Special issue
on “Mathematical and Computational Models of
Organizations: Models and Characteristics of Agent
Behavior”.

Edmund H. Durfee and Thomas A. Montgomery.
Coordination as distributed search in a hierarchical behavior
space. IEEE Transactions on Systems, Man, and Cybernetics
21(6):1363-1378, 1991.

Bryan Horling and Victor Lesser. Using diagnosis to learn
contextual coordination rules. In in Proceedings of the
AAAI-99 Workshop on Reasoning in Context for Al
Applications, a version also available as UMASS CS Tech
Report TR99-15AAAL, 1999.

Toru Ishida, Makoto Yokoo, and Les Gasser. An
organizational approach to adaptive production systems. In
National Conference on Artificial Intelligence (AAAI-90)
pages 52-58, 1990.

D. Jensen, M. Atighetchi, R. Vincent, and V. Lesser.
Learning quantitative knowledge for multiagent
coordination. In Proceedings of the Sixteenth National
Conference on Artificial Intelligen¢c®rlando, FL, July
1999. AAAL

Onn Shehory, Katia Sycara, Prasad Chalasani, and Somesh
Jha. Agent cloning: An approach to agent mobility and
resource allocation. IEEE Communication$6(7):58-67,
July 1998.

Y. So and E. H. Durfee. Modeling and designing
computational organizations. In Working Notes of the AAAI
Spring Symposium on Computational Organization Design
1994.

[10]

[11]

T. Sugawara and V. Lesser. Learning control rules for
coordination. In Multi-Agent and Cooperative Computation
‘93, pages 121-136, 1993.

Roy Turner and Elise Turner. Organization and

reorganization of autonomous oceanographic sampling
networks. In Proceedings of the IEEE Interlational
Conference on Robotics and Automatio998.

22

[12] Thomas Wagner and Victor Lesser. Relating quantified

motivations for organizationally situated agents. In N.R.
Jennings and Y. Lespérance, editors, Intelligent Agents VI —
Proceedings of the Sixth International Workshop on Agent
Theories, Architectures, and Languages (ATAL-88}ture
Notes in Artificial Intelligence. Springer-Verlag, Berlin,

2000.

APPENDIX C

An Agent Infrastructure to Build and Evaluate
Multi-Agent Systems:
The Java Agent Framework and Multi-Agent
System Simulator *

Regis Vincent, Bryan Horling, and Victor Lesser

Dept of Computer Science,
University of Massachusetts,
Ambherst MA 01003
USA

{vincent,bhorling,lesser}@cs.umass.edu

Abstract. In this paper, we describe our agent framework and address
the issues we have encountered designing a suitable environmental space
for evaluating the coordination and adaptive qualities of multi-agent sys-
tems. Our research direction is to develop a framework allowing us to
build different type of agents rapidly, and to facilitate the addition of
new technology. The underlying technology of our Java Agent Framework
(JAF) uses a component-based design. We will present in this paper, the
reasons and the design choices we made to build a complete system to
evaluate the coordination and adaptive qualities of multi-agent systems.
Abbreviation:

- JAF Java Agent Framework;

- MASS Multi-Agent System Simulator

1 Introduction

Agent technology, in one form or another, is gradually finding its way into main-
stream computing use, and has the potential to improve performance in a wide
range of computing tasks. While the typical commercial meaning of the word
agent can refer to most any piece of software, we believe the real potential of this

* Effort sponsored by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory Air Force Materiel Command, USAF, under agree-
ment number #F30602-97-1-0249 and #F30602-99-2-0525. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. This material is based upon work sup-
ported by the National Science Foundation under Grant No.IIS-9812755. The views
and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Air Force Research Laboratory or the U.S. Government.

23

paradigm lies with more sophisticated, autonomous entities. In general, our defi-
nition of an agentis an autonomous entity capable of reacting to its environment,
determining its most appropriate goals and actions in its world, and reasoning
about deadlines and tradeoffs arising from those determinations. To correctly
develop such autonomous, intelligent, reactive pieces of software, we must have
good ways of implementing, debugging and evaluating them. Many researchers
have realized this, and have begun to develop the required infrastructure [2, 10,
16,20, 3,19]. Our research has done the same, but with a different approach. Our
direction is to develop a framework allowing us to build different type of agents
rapidly, and to facilitate the addition of new technology.

The underlying technology of our Java Agent Framework (JAF) uses a component-
based design. Developers can use this plug and play interface to build agents
quickly using existing generic components, or to develop new ones. For instance,
a developer may require planning, scheduling and communication services in
their agent. Generic scheduling and communication components exist, but a
domain-dependent planning component is needed. Additionally, the scheduling
component does not satisfy all the developer’s needs. Our solution provides the
developer with the necessary infrastructure to create a new planning compo-
nent, allowing it to interact with existing components without unduly limiting
its design. The scheduling component can be derived to implement the special-
ized needs of their technology, and the communication component can be used
directly. All three can interact with one another, maximizing code reuse and
speeding up the development process. We also respect the fact that researchers
require flexibility in the construction of their software, so in general, our solution
serves as simple scaffolding, leaving the implementation to the developer beyond
a few API conventions.

Much of the generality available in existing JAF components is derived from
their common use of a powerful, domain-independent representation of how
agents can satisfy different goals. This representation, called TEMS [4, 5], allows
complex interactions to be phrased in a common language, allowing individual
components to interact without having direct knowledge of how other compo-
nents function. Implemented components in JAF are designed to operate with
relative autonomy. Coincidentally, a reasonable analogy for a JAF agent’s inter-
nal organization is a multi-agent system, to the degree that each has a limited
form of autonomy, and is capable of interacting with other components in a vari-
ety of ways. They are not sophisticated agents, but within the agent, individual
components do provide specific, discrete functionality, and may also have fixed
or dynamic goals they try to achieve. This functionality can be requested by
components via direct method invocation, or it may be performed automatically
in response to messages or events occurring in the agent.

Our objective was to allow developers to implement and evaluate systems
quickly without excessive knowledge engineering. This way, one can avoid work-
ing with domain details, leaving more time and energy to put towards the more
critical higher level design. We have also focused on more precise and controlled
methods of agent evaluation technologies. Together with the agent framework, we

24

ryanp

ryanp

ryanp

ryanp

ryanp

have built a simulation environment for the agents to operate in. The motivation
for the Multi-Agent System Simulator (MASS) is based on two simple, but po-
tentially conflicting, objectives. First, we must accurately measure and compare
the influence of different multi-agent strategies in an deterministic environment.
At the same time, it is difficult to model adaptive behavior realistically in multi-
agent systems within a static environment, for the very reason that adaptivity
may not be fully tested in an environment that does not substantively change.
These two seemingly contradictory goals lie at the heart of the design of MASS
- we must work towards a solution that leads to reproducible results, without
sacrificing the dynamism in the environment the agents are expected to respond
to.

In this paper, we describe our agent framework and address the issues we have
encountered designing a suitable environmental space for evaluating the coordi-
nation and adaptive qualities of multi-agent systems. In the following sections,
we will describe both the JAF framework and the MASS simulation environ-
ment. To describe how these concepts work in practice, we will also present an
example implemented system, the Intelligent Home (IHome) domain testbed.
Lastly, we present an example of the how a JAF-based multi-agent system can
run in an alternate simulated environment, and also how it was migrated to
a real-time, hardware-based system. We conclude with a brief overview of the
future directions of this project.

2 Java Agent Framework

An architecture was needed for the agents working within the MASS environment
which effectively isolated the agent-dependent behavior logic from the underlying
support code which would be common to all of the agents in the simulation. One
goal of the framework was therefore to allow an agent’s behavioral logic to per-
form without the knowledge that it was operating under simulated conditions,
e.g. a problem solving component in a simulated agent would be the same as in a
real agent of the same type. This clean separation both facilitates the creation of
agents, and also provides a clear path for migrating developed technologies into
agents working in the real world. As will be shown later, this has been recently
done in a distributed sensor network environment, where agents were migrated
from a simulated world to operating on real hardware [15]. The framework also
needed to be flexible and extensible, and yet maintain separation between mutu-
ally dependent functional areas to the extent that one could be replaced without
modifying the other. To satisfy these requirements, a component-based design,
the Java Agent Framework (JAF) [12], was created’.

Component, based architectures are relatively new arrivals in software engi-
neering which build upon the notion of object-oriented design. They attempt to
encapsulate the functionality of an object while respecting interface conventions,

! This architecture should not be confused with Sun’s agent framework of the same
name.

25

ryanp
3

thereby enabling the creation of stand alone applications by simply plugging to-
gether groups of components. This paradigm is ideal for our agent framework,
because it permits the creation of a number of common-use components, which
other domain-dependent components can easily make use of in a plug-and-play
manner. Note that the agents produced with this scheme act as small multi-
agent systems in and of themselves, where components function as partially
autonomous entities that communicate and interact to achieve their individual
goals. For instance, our system has a scheduling component, whose goal it is
to schedule activities as best as possible, respecting quality, time and resource
constraints. It can operate in several ways, the most common being to respond
to events describing new tasks needing to be performed. On receiving such an
event, the scheduler attempts to integrate these actions into the existing sched-
ule, which in turn will be used by an execution component to determine when
to perform the actions. Thus, the scheduling component operates autonomously,
reacting to changes and requests induced by other components. This arrange-
ment is key to the flexibility of JAF. Because other components for the most part
do not care how or where in an agent an operation is performed, the designer is
free to add, modify or adapt components as needed.

=l Jl

Manitor

File Edit View Help

statProblemsaluer

RobotProblemsoluer

[agent.heme. RobotProblemselver |

Froblemsolver A EE A EEEEEET,

state #[agent.mass.Communicate |/

_— rrrrrrrrrrirrsrrrr T
earning

X / agent.mass.Execute
Commuicate
EuentLogiger B S agent.mass.Control
CoordinateRroblemsal

agent.mass.State

ScreenLog
FileLog
Asggorgiesign Status:

DishwasherProblemso

Criagnostics

Log =

ExeCute

Eimulator.cs.umass.edu
Control remoteHostAddr I

simplecoardinate 5
P remoteHostPort IiBO

WaterHeaterProblems

CoffeeMakerfroblems descriptor IEagent.mass.Communicate
LearnFroblemsoluer -
MEssagestatistics serverPort I30
Contractsourceprable

Fig. 1. Sun Beanbox, which can be used to build JAF agents.

26

ryanp
4

JAF is based on Java Beans, Sun Microsystem’s component model architec-
ture. Java Beans supplies JAF with a set of design conventions, which provides
behavior and naming specifications that every component must adhere to. Specif-
ically, the Java Beans API gives JAF a set of method naming and functional
conventions which allow both application construction tools and other beans to
manipulate a component’s state and make use of its functionality easily. This
is important because it provides compatibility with existing Java Beans tools,
and facilitates the development process by providing a common implementa-
tion style among the available components. JAF also makes heavy use of Java
Bean’s notion of event streams, which permit dynamic interconnections to form
between stream generating and subscribing components. For instance, we have
developed a causal-model based diagnosis component [13] which tracks the over-
all performance of the agent, and makes suggestions on how to optimize or repair
processes performed by, or related to, the agent. The observation and diagnosis
phase of this technology is enabled by the use of dynamic event streams, which
the diagnosis component will form with other components resident in the agent.
The component will begin by listening to one or more components in the agent,
such as the local coordination component. This stream could tell the diagno-
sis component when coordination attempts where made, who the remote agents
were, whether the coordination succeeded or not, and if the resulting commit-
ment, was respected. Events arising from this component are analyzed, and used
to discover anomalous conditions. In the case of the coordination component,
a series of similar failed coordination attempts could indicate that a particu-
lar remote agent has failed, or that it no longer provides the desired service.
More proactive analysis into the current state of the coordination component
could then yield further information. By both monitoring the events the compo-
nents produce, and the state they are currently in, the diagnosis component can
determine if the components are performing correctly, and generate potential
solutions to the problems it finds. Our experience with the diagnosis component
was that we did not have to modify other components in order to integrate its
functionality.

Component/Class API
T | | | [=5
L~
Common APK [
=
7] | | 7 Events
Dependencies=| | | | | | | | |<4—>Data
State Data

Fig. 2. Abstract view of a typical JAF component.

27

ryanp
5

JAF builds upon the Java Beans model by supplying a number of facilities
designed to make component development and agent construction simpler and
more consistent. A schematic diagram for a typical JAF component can be seen
in figure 2. As in Java Beans, events and state data play an important role
in some types of interactions among components. Additional mechanisms are
provided in JAF to specify and resolve both data and inter-component depen-
dencies. These methods allow a component, for instance, to specify that it can
make use of a certain kind of data if it is available, or that it is dependent on
the presence of one or more other components in the agent to work correctly. A
communications component, for example, might specify that it requires a local
network port number to bind to, and that it requires a logging component to
function correctly. These mechanisms were added to organize the assumptions
made behind flexible autonomy mentioned above - without such specifications
it would be difficult for the designer to know which services a given component
needs to be available to function correctly. More structure has also been added
to the execution of components by breaking runtime into distinct intervals (e.g.
initialization, execution, etc.), implemented as a common API among compo-
nents, with associated behavioral conventions during these intervals. Individual
components will of course have their own, specialized API, and “class” APIs will
exist for families of components. For instance a family of communication com-
ponents might exist, each providing different types of service, while conforming
to a single class API that allows them to easily replace one another.

The goal of a designer using JAF is to use and add to a common pool of
components. Components from this pool are combined to create an agent with
the desired capabilities (see Figure 1). For instance, rather than regenerating
network messaging services for each new project, a single Communicate compo-
nent from the pool can be used from one domain to the next. This has the added
benefit that once a component has been created, it may be easily swapped out
of each agent with one that respects the original class API, but offers different
services. Later in this paper we will describe the MASS simulation environment,
which provides simulation and communication services to agents. Messages sent
from an agent working in this environment must be routed through MASS, which
requires a specialized Communication component which is “aware” of MASS and
how to interact with it. In our pool of components we thus have a simple Com-
municate which operates in the conventional sense using TCP, and a MASS
Communicate which automatically routes all messages through the simulation
controller. Components using communication need not be aware of the internal
delivery system being used, and can therefore be used without modification in
both scenarios. Revisiting the hybrid simulation issue raised earlier, we can have
an agent which conforms to the MASS communication specification, or uses real
world messaging as needed by just exchanging these two components. Analo-
gously, one could have a MASS Execute component, which uses the simulator
to perform all executable actions, or one which actually performed some actions
locally, and reported the results to the MASS controller when completed. In this

28

ryanp
6

latter case, the consistency of the simulation environment is maintained through
the notification, but real data may be still generated by the agent.

The organization of a JAF agent does not come without its price. The au-
tonomous nature of individual components can make it difficult to trace the
thread of control during execution, a characteristic exacerbated by the use of
events causing indirect effects. It can also be difficult to implement new func-
tionalities in base components, while respecting conventions and APIs in derived
ones. However, we feel the flexibility, autonomy and encapsulation offered by a
component oriented design makes up for the additional complexity.

To date, more than 30 JAF components have been built. A few of these are
explained below.

— Communicate This component serves as the communication hub for the
agent. TCP based communication is provided through a simple interface,
for sending messages of different encodings (KQML, delimited or length-
prefixed). It also serves as both a message receiver and connection acceptor.
Components interact with Communicate by listening for message events, or
by directly invoking a method to send messages. Derived versions exist to
work with MASS and other simulation environments.

— Preprocess Taems Reader T&MS is our task description language, which
will be covered later in this article. This component allows the agent to
maintain a library of T&MS structure templates, which can be dynamically
instantiated in different forms, depending on the needs of the agent. For
example, the designer may update method distributions based on learned
knowledge, or add in previously unrecognized interactions as they are dis-
covered. This is important because it facilitates the problem solving task by
allowing the developer to condition generated task structures with respect to
current working conditions. Data manipulation capabilities exist which per-
mit mathematical and conditional operations, along with TEMS structure
creation and manipulation. Simple routines can then be written with these
tools to use information given to the preprocessor to condition the structure.
The ability to perform these operations within the T&MS file itself allows
the problem solving component to be more generic. A derived version of the
component also exists which reads simple static task structure descriptions.

— Scheduler The scheduling component, based on our Design-To-Criteria
(DTC) scheduling technology [22], is used by other components to schedule
the T &EMS task structures mentioned above. The resulting schedule takes into
account the cost and quality of the alternative solutions, and their durations
relative to potential deadlines. The scheduler functions by both monitoring
state for the addition of new T&MS structures, for which it will produce
schedules, and through direct invocation.

— Partial Order Scheduler A derived version of the Scheduler component,
the partial-order scheduler provides the agent with a more sophisticated
way of managing its time and resources [21]. Replacing the Scheduler with
this component allows the agent to correctly merge schedules from differ-
ent structures, exploit areas of potential parallelism, and make efficient use

29

ryanp
7

of available resources. Functionally, it provides a layer on top of the DTC
Scheduler component, first obtaining a conventional schedule as seen above.
It then uses this to reason about agent activity in a partially-ordered way
- concentrating on dependencies between actions and resources, rather then
just specifying times when they may be performed. This characteristic allows
agents using the partial order scheduler to more intelligently reason about
when actions can and can not be performed, as well as frequently speeding
up failure recovery by avoiding the need to replan.

— State The state component serves as an important indirect form of inter-
action between components by serving as a local repository for arbitrary
data. Components creating or using common information use State as the
medium of exchange. Components add data through direct method calls,
and are notified of changes through event streams. Thus one component can
react to the actions of another by monitoring the data that it produces. For
instance, when the problem solving component generates its task and places
it in State, the scheduler can react by producing a schedule. This sched-
ule, also placed in State, can later be used by the execution component to
perform the specified actions.

— Directory Services This component provides generic directory services to
local and remote agents. The directory stores multi-part data structures,
each with one or more keyed data fields, which can be queried through
boolean or arithmetic expressions. Components use directory services by
posting queries to one or more local or remote directories. The component
serves as an intermediary for both the query and response process, monitor-
ing for responses and notifying components as they arrive. This component
can serve as the foundation to a wide variety of directory paradigms (e.g.
yellow pages, blackboard, broker).

— FSM Controller The FSM component can be used as a common interface
for messaging protocols, specifically for coordination and negotiation inter-
actions. It is first used to create a finite state machine describing the protocol
itself, including the message types, when they can arrive, and what states
a particular message type should transition the machine to. This scaffold-
ing, provided by the FSM and used by the FSM Controller at runtime, is
then populated by the developer with code to send and process the differ-
ent messages. This clean separation between a protocol and its usage allows
protocols to be quickly migrated from one environment to the next.

Other components provide services for logging, execution, local observation,
diagnosis, and resource modeling, as well as more domain dependent functions.
Examples of agents implemented with JAF will be covered later in this article.

3 Evaluation Environment for Multi-Agent Systems
Numerous problems arise when systematic analysis of different algorithms and

techniques needs to be performed. If one works with a real-world MAS; is it pos-
sible to know for certain that the runtime environment is identical from one run

30

ryanp
8

to the next? Can one know that a failure occurs at exactly the same time in two
different runs when comparing system behavior? Can it be guaranteed that inter-
agent message traffic will not be delayed, corrupted, or non-deterministically
interleaved by network events external to the scenario?

If one works within a simulated environment, how can it be known that the
system being tested will react optimally a majority of the time? How many
different scenarios can be attempted? Is the number is large enough to be rep-
resentative?

Based on these observations, we have tried to design an environment that
allows us to directly control the baseline simulated environment (e.g. be deter-
ministic from one run to the next) while permitting the addition of “determinis-
tically random” events that can affect the environment throughout the run. This
enables the determinism required for accurate coordination strategy comparisons
without sacrificing the capricious qualities needed to fully test adaptability in
an environment.

Hanks et al. define in [11] several characteristics that multi-agent system
simulators should have:

— Exogenous events, these allow exogenous or unplanned events to occur during
simulation.

— Real-world complexity is needed to have a realistic simulation. If possible, the
simulated world should react in accordance with measures made in the real world.
Simulated network behavior, for instance, may be based on actual network perfor-
mance measures.

— Quality and cost of sensing and effecting needs to be explicitly represented in
the test-bed to accurately model imperfect sensors and activators. A good simulator
should have a clear interface allowing agents to “sense” the world.

— Measures of plan quality are used by agents to determine if they are going to
achieve their goal, but should not be of direct concern to the simulator.

— Multiple agents must be present to simulate inter-agent dependencies, interac-
tions and communication. A simulator allowing multiple agents increases both its
complexity and usefulness by adding the ability to model other scenarios, such
as faulty communications or misunderstanding between agents, delay in message
transfer.

— A clean interface is at the heart of every good simulator. We go further than this
by claiming that the agents and simulator should run in separate processes. The
communication between agents and simulator should not make any assumptions
based on local configurations, such as shared memory or file systems.

— A well defined model of time is necessary for a deterministic simulator. Each
occurring event can be contained by one or more points in time in the simulation,
which may be unrelated to real-world time.

— Experimentation should be performed to stress the agents in different classes of
scenarios. We will also add deterministic experimentation as another impor-
tant feature of a simulator. To accurately compare the results separate runs, one
must be sure that the experimental parameters are those which produce different
outcomes.

We will show in this section how MASS addresses these needs. One other
characteristic, somewhat uncommon in simulation environments, is the ability

31

ryanp
9

to have agents perform a mixture of both real and simulated activities. For in-
stance, an agent could use the simulation environment to perform some of its
actions, while actually performing others. Executable methods, sensor utiliza-
tion, spatial constraints and even physical manifestations fall into this category
of activities which an agent might actually perform or have simulated as needed.
An environment offering this hybrid existence offers two important advantages:
more realistic working conditions and results, and a clear path towards migrat-
ing work from the laboratory to the real world. We will revisit how this can be
implemented in later sections.

Quality Accumulation
Function

Task

Method
Interrelationship
Method

[load-dishek [load-glassds[load-swark [wash-cyclé [rinse-cycl¢

Q:(10 0.95)
(0 0.05)
c010) [ld-dshs-fagt [Id-glasses-fabt

D:(5 1.0)

Di(2 1.0)

Expected
Method
Results

c
(1010 Di(31.0)

’ 7S 10)
Resource
Resource
Interrelationship

Fig. 3. TEMSs task structure for the IHome Dishwasher agent

4 Multi Agent System Simulator

MASS is a more advanced incarnation of the T&EMS simulator created by Decker
and Lesser in 1993 [7]. It provides a more realistic environment by adding sup-
port for resources and resource interactions, a more sophisticated communication
model, and mixed real and simulated activity. It also adds a scripting language, a
richer event model, and a graph-like notion of locations and connectors in which
agents can move about (e.g. rooms and doorways, or towns and roads). The
new MASS simulator is completely domain independent; all domain knowledge
is obtained either from configuration files or data received from agents working
in the environment.

Agents running in the MASS environment use T &£Ms [14, 6], a domain-independent,
hierarchical representation of an agent’s goals and capabilities (see Figure 3), to
represent their knowledge. TEMS , the Task Analysis, Environmental Model-
ing and Simulation language, is used to quantitatively describe the alternative

32

ryanp
10

ways a goal can be achieved [9,14]. A T&EMS task structure is essentially an
annotated task decomposition tree. The highest level nodes in the tree, called
task groups, represent goals that an agent may try to achieve. The goal of the
structure shown in figure 3 is wash-dishes. Below a task group there will be
a set of tasks and methods which describe how that task group may be per-
formed, including sequencing information over subtasks, data flow relationships
and mandatory versus optional tasks. Tasks represent sub-goals, which can be
further decomposed in the same manner. clean, for instance, can be performed
by completing wash-cycle, and rinse-cycle. Methods, on the other hand, are
terminal, and represent the primitive actions an agent can perform. Methods
are quantitatively described, in terms of their expected quality, cost and dura-
tion. pre-rinse-warm, then, would be described with its expected duration and
quality, allowing the scheduling and planning processes to reason about the ef-
fects of selecting this method for execution. The quality accumulation functions
(QAF) below a task describes how the quality of its subtasks is combined to
calculate the task’s quality. For example, the sum QAF below load specifies that
the quality of load will be the total quality of all its subtasks - so only one of
the subtasks must be successfully performed for the sum task to succeed. Inter-
actions between methods, tasks, and affected resources are also quantitatively
described as interrelationships. The enables between pre-rinse and wash, for
instance, tells us that these two must be performed in order. The curved lines at
the bottom of figure 3 represent resource interactions, describing, for instance,
the different consumes effects method pre-rinse-hot and pre-rinse-warm has
on the resource HotWater.

One can view a TAEMS structure as a prototype, or blueprint, for a more
conventional domain-dependent problem solving component. In lieu of generat-
ing such a component for each domain we apply our technologies to, we use a
domain independent component capable of reasoning about TAEMS structures.
This component recognizes, for instance, that interrelationships between meth-
ods and resources offer potential areas for coordination and negotiation. It can
use the quantitative description of method performance, and the QAFs below
tasks, to reason about the tradeoffs of different problem solving strategies. The
task structure in figure 3 was used in this way to implement the washing ma-
chine agent for the intelligent home project discussed later in this article. Figure
6 shows how an agent in the distributed sensor network domain (also discussed
later), can initialize its local sensor. With this type of framework, we are essen-
tially able to abstract much of the domain-dependence into the T&MS structure,
which reduces the need for knowledge engineering, makes the support code more
generic, and allows research to focus on more intellectual issues.

Different, views of a T £MS structure are used to cleanly decouple agents from
the simulator. A given agent will make use of a subjective view of its structure, a
local version describing the agent’s beliefs. MASS, however, will use an objective
view, which describes the true model of how the goals and actions in the structure
would function and interact in the environment. Differences engineered between
these two structures allow the developer to quickly generate and test situations

33

ryanp
11

where the agent has incorrect beliefs. We will demonstrate below how these
differences can be manifested, and what effects they have on agent behavior. This
technique, coupled with a simple configuration mechanism and robust logging
tools, make MASS a good platform for rapid prototyping and evaluation of
multi-agent systems.

The connection between MASS and JAF is at once both strong and weak.
A JAF agent running within a MASS environment uses the simulator for the
vast majority of its communication and execution needs, by employing “MASS-
aware” components which route their respective data and requests through the
simulation controller. The agent also provides the simulator with the objective
view of its task structure, as well as the resources it provides and its location. The
simulator in turn gives the agent a notion of time, and provides more technical
information such as a random number generator seed and a unique id. Despite
this high level of interconnection, the aspects of a JAF agent performing these
actions are well-encapsulated and easily removed. Thus, an agent can be run
outside of MASS by simply replacing those MASS-aware components with more
generic ones. Outside of MASS, an agent would use conventional TCP/IP based
communication, and would perform its actions locally. It would, for instance,
use the local computer’s clock to support its timeline, and read the random
seed from a configuration file. An example of how this type of separation can be
achieved will be covered in section 5.2, where we will show JAF agents running
both in a different simulation environment, and independently on real hardware.

Agent A Agent B Agent C
| | S|
Problem Problem Problem
Solver State Solver State Solver State
Control — Control — Control —
. .
L L
Execution | L09 Execution | L09 Execution | 09
Communications Communications Communications
I W I
pulse TAEMS Models Monitoring Method execution
Resource Definitions during the execution and request results (cost,
Agent Specific time, quality, rsrc usage)
Sensors and Scripts
()
[O O Communications Module
T —
' 4
T A DATABASES

Execution Simulation
TAEMSDB

1
w .
< Config
Resource DB
Resource Manager M Log Control
4
L Sensor DB il Random Seed
o | Scripts
L] (= A Events Engine
9 Event Scripting DB Sensors
-~ =

Clock Stream

\

Fig. 4. Architecture of the MASS and agent systems.

34

ryanp
12

Figure 4 shows the overall design of MASS, and, at a high level, how it in-
teracts with the agents connected to it. On initialization, MASS reads in its
configuration, which defines the logging parameters, random seed, scripts (if
any) and global sensor definitions. These are used to instantiate various sub-
systems and databases. While the simulator itself is not distributed, connections
to the simulator are made with standard TCP-based sockets, so agents can be
distributed among remote systems. When connected, agents will send additional
information to be incorporated into this configuration, which allows environ-
mental characteristics specific to the agent to be bundled with that agent. For
instance, an agent might send a description of a sensor which it needs to func-
tion, or a resource which it makes available to the environment. Arguably the
most important piece of data arising from the agents is their T£MS task struc-
tures, which are assimilated into the T&MS database shown in figure 4. This
database will be used by the execution subsystem during simulation to quan-
tify both the characteristics of method execution and the effects resource and
method interactions have on that method. The resource manager is responsible
for tracking the state of all resources in the environment, and the event engine
manages the queue of events which represent tangible actions that are taking
place. The last component shown here, the communications module, maintains
a TCP stream connection with each agent, and is responsible for routing the
different kinds of messages between each the agent and their correct destination
within the controller.

The MASS controller has several tasks to perform while managing simulation.
These include routing message traffic to the correct destination, providing hooks
allowing agents to sense the virtual environment and managing the different
resources utilized by the agents. Its primary role, however, is to simulate the
execution of methods requested by the agents. Each agent makes use of its
partial, subjective view of the environment, typically describing its local view
of a goal and possible solutions, which determines the expected values resulting
from such an execution. As mentioned above, the simulator also has the true,
objective view of the world which it uses to compute the results of activities in the
environment. The distributions from the objective view are used when computing
the values for a method execution, and for determining the results of method
or resource interactions. This probabilistic distribution describes the average
case outcomes; the simulator will degrade or improve results as necessary if, for
instance, required resources are not available, or other actions in the environment
enable or facilitate the method’s execution in some way. For example, consider
what would happen if the enables interrelationship between rinse and dry were
absent in the subjective view of figure 3. During scheduling, the agent would
be unaware of this interdependency, and thus would not enforce an ordering
constraint between the two actions. If the agent were to perform dry first, the
simulator would detect that its precondition rinse had not been performed, and
would report that the dry method failed. In this case, the agent would need to
detect and resolve the failure, potentially updating its subjective view with more
accurate information.

35

ryanp
13

MASS is also responsible for tracking the state and effects of resources in the
environment. Figure 3 shows three such resources: Electricity, HotWater, and
Noise. Two types of resources are supported - consumable and non-consumable.
The level of a consumable resource, like HotWater is affected only through di-
rect consumption or production. A non-consumable resource, like Noise, has a
default level, which it reverts back to whenever it is not being directly modified.
MASS uses the objective view from each agent to determine the effects a given
method will have on the available resources. Also present in the objective view
is a notion of bounds, both upper and lower, which the resource’s level cannot
exceed. If an agent attempts to pass these bounds, the resource switches to an
error state, which can affect the quality, cost and duration of any action cur-
rently using that resource. At any given time, MASS must therefore determine
which methods are affecting which resources, what effects those actions will have
on the resources’ levels, if the resource bounds have been exceeded, and what
quantitative repercussions there might be for those violations.

Another responsibility consuming a large portion of the simulator’s atten-
tion is to act as a message router for the agents. The agents send and receive
their messages via the simulator, which allows the simulation designer to model
adverse network conditions through unpredictable delays and transfer failures.
This routing also plays an important role in the environment’s general deter-
minism, as it permits control over the order of message receipt from one run to
the next. Section 4.1 will describe this mechanism in more detail.

4.1 Controllable Simulation

In our simulated experiments, our overriding goal is to be able to compare the
behavior of different algorithms in the same environment under the same condi-
tions. To correctly and deterministically replicate running conditions in a series
of experiments, the simulator should have its own notion of time, “randomness”
and sequence of events. Two simulation techniques exist which we have exploited
to achieve this behavior: discrete time and events. Discrete time simulation seg-
ments the environmental time line into a number of slices. In this model, the
simulator begins a time slice by sending a pulse to all of the actors involved,
which allows them to run for some period of (real) CPU time. In our model, a
pulse does not represent a predefined quantity of CPU time, instead, each agent
decides independently when to stop running. This allows agent performance to
remain independent of the hardware it runs on, and also allows us to control
the performance of the technique itself. To simulate a more efficient scheduling
algorithm, for instance, one could simply reduce the number of pulses required
for it to complete. Since the agent dictates when it is finished its work, this can
be easily accomplished by performing more work before the response is sent.
This allows us to evaluate the potential effects of code optimization before ac-
tually doing it. The second characteristic of this simulation environment is its
usage of events, which are used to instigate reactions and behaviors in the agent.
The MASS simulator combines these techniques by dividing time into a num-
ber of slices, during which events are used to internally represent actions and

36

ryanp
14

interact with the agents. In this model, agents then execute within discrete time
slices, but are also notified of activity (method execution, message delivery, etc.)
through event notification.

In the next section we will discuss discrete time simulation and the benefits
that arise from using it. We will then describe the need for an event based
simulation within a multi-agent environment.

Discrete time simulation Because MASS utilizes a discrete notion of time, all
agents running in the environment must be synchronized with the simulator’s
time. To enable this synchronization, the simulator begins each time slice by
sending each agent a “pulse” message. This pulse tells the agent it can resume
local execution, so in a sense the agent functions by transforming the pulse to
some amount of real CPU time on its local processor. This local activity can take
an arbitrary amount of real time, up to several minutes if the action involves
complex planning, but with respect to the simulator, and in the perceptions of
other agents, it will take only one pulse. This technique has several advantages:

1. A series of actions will always require the same number of pulses, and thus
will always be performed in the same amount of simulation time. The num-
ber of pulses is completely independent of where the action takes place,
so performance will be independent of processor speed, available memory,
competing processes, etc...

2. Events and execution requests will always take place at the same time. Note
that this technique does not guarantee the ordering of these events within
the time slice, which will be discussed later in this section.

Using this technique, we are able to control and reproduce the simulation to
the granularity of the time pulse. Within the span of a single pulse however, many
events may occur, the ordering of which can affect simulation results. Messages
exchanged by agents arrive at the simulator and are converted to events to
facilitate control over how they are routed to their final destination. Just about
everything coming from the agents, in fact, is converted to events; in the next
section we will discuss how this is implemented and the advantages of using such
a method.

Event based simulation Fvents within our simulation environment are de-
fined as actions which have a specific starting time and duration, and may be
incrementally realized and inspected (with respect to our deterministic time line,
of course). Note that this is different from the notion of event as it is tradition-
ally known in the simulation community, and is separate from the notion of the
“event streams” which are used internally to the agents in our environment.
All of the message traffic in the simulation environment is routed through the
simulator, where it is instantiated as a message event. Similarly, execution re-
sults, resource modifiers or scripted actions are also represented as events within
the simulation controller. We attempt to represent all activities as events both

37

ryanp
15

for consistency reasons and because of the ease with which such a representation
can be monitored and controlled.

The most important classes of events in the simulator are the execution and
message events. An execution event is created each time an agent uses the sim-
ulator to model a method’s execution. As with all events, execution events will
define the method’s start time, usually immediately, and duration, which de-
pends on the method’s probabilistic distribution as specified in the objective
TEMS task structure (see section 3). The execution event will also calculate the
other qualities associated with a method’s execution, such as its cost, quality
and resource usage. After being created, the execution event is inserted into the
simulator’s time based event queue, where it will be represented in each of the
time slots during which it exists. At the point of insertion, the simulator has
computed, but not assigned, the expected final quality, cost, duration and re-
source usage for the method’s execution. These characteristics will be accrued
(or reduced) incrementally as the action is performed, as long as no other events
perturbate the system. Such perturbations can occur during the execution when
forces outside of the method affect its outcome, such as a limiting resource or
interaction with another execution method. For example, if during this method’s
execution, another executing method overloads a resource required by the first
execution, the performance of the first will be degraded. The simulator models
this interaction by creating a limiting event, which can change one or more of
the performance vectors of the execution (cost, quality, duration) as needed. The
exact representation of this change is also defined in the simulator’s objective
TAMS structure.

As an example, we can trace the lifetime of an action event in the MASS
system - the pre-rinse-hot method from figure 3. The action begins after the
agent has scheduled and executed the action, which will typically be derived from
a TAEMS task structure like that seen in the figure. The Execute component in
the agent will redirect this action to MASS, in the form of a network message
describing the particular method to be executed. MASS will then resolve this
description with its local objective T £MS structure, which will contain the true
quantitative performance distributions of the method. When found, it will use
these distributions to determine the resulting quality, cost and duration of the
method in question, as well as any resource effects. In this case, MASS determines
the results of pre-rinse-hot will have a quality of 8, a cost of 0 and a duration of
3. In addition, it also determines the method will consume 10 units of HotWater
for each time unit it is active. An action event is created with these values,
and inserted into MASS’s action queue. Under normal conditions, this event will
remain in the queue until its assigned finish time arrives, at which point the
results will be sent to the agent. Interactions with other events in the system,
however, can modify the result characteristics. For instance, if the HotWater
resource becomes depleted during execution, or if a conflicting method is invoked,
the duration of the action may be extended, or the quality reduced. These effects
may change the performance of the action, and thus may change the results
reported to the agent.

38

ryanp
16

Real activities may be also incorporated into the MASS environment by al-
lowing agents to notify the controller when it has performed some activity. In
general, methods are not performed by MASS so much as they are approxi-
mated, by simulating what the resulting quality, cost and duration of the action
might be. Interactions are simulated among methods and resources, but only in
an abstract sense, by modifying those same result characteristics of the target
action. The mechanism provided by MASS allows for mixed behavior. Some ac-
tions may be simulated, while others are performed by the agent itself, producing
the actual data, resources or results. When completed, the agent reports these
results to the simulator, which updates its environmental view accordingly to
maintain a consistent state. For example, in section 5.2 we will see how agents
fuse sensor data from disparate sources to produce a estimated target position.
This position is needed to determine how and when other agents subsequently
gather their data. A simulated fusion of this data would be inadequate, because
MASS is unable to provide the necessary domain knowledge needed to perform
this calculation. An agent, however, could do this, and then report to the simula-
tor its estimated quality, cost and duration of the analysis process. Both parties
are satisfied in this exchange - the agent will have the necessary data to base its
reasoning upon, while the simulator is able to maintain a consistent view of the
results of activities being performed. Using this mechanism, agents may be incre-
mentally improved to meet real world requirements by adding real capabilities
piecemeal, and using MASS to simulate the rest.

The other important class of event is the message event, which is used to
model the network traffic which occurs between agents. Instead of communicat-
ing directly between themselves, when a message needs to be sent from one agent
to another (or to the group), it is routed through the simulator. The event’s life-
time in the simulation event queue represents the travel time the message would
use if it were sent directly, so by controlling the duration of the event it is pos-
sible to model different network conditions. More interesting network behavior
can be modeled by corrupting or dropping the contents of the message event.
Like execution events, the message event may also may be influenced by other
events in the system, so a large number of co-occurring message events might
cause one another to be delayed or lost.

To prevent non-deterministic behavior and race conditions in our simulation
environment, we utilize a kind of “controlled randomness” to order the realiza-
tion of events within a given time pulse. When all of the agents have completed
their pulse activity (e.g. they have successfully acknowledged the pulse message),
the simulator can work with the accumulated events for that time slot. The sim-
ulator begins this process by generating a a unique number or hash key for each
event in the time slot. It uses these keys to sort the events into an ordered list. It
then deterministically shuffles this list before working through it, realizing each
event in turn. This shuffling technique, coupled with control over the random
function’s initial seed, forces the events to be processed in the same order during
subsequent runs without unfairly weighting a certain class of events (as would
take place if we simply processed the sorted list). This makes our simulation com-

39

ryanp
17

pletely deterministic, without sacrificing the unpredictable nature a real world
environment would have. That’s how we control the simultaneity problem.

5 Experiences

5.1 Intelligent Home project

The first project developed with MASS was the Intelligent Home project [18]. In
this environment, we have populated a house with intelligent appliances, capable
of working towards goals, interacting with their environment and reasoning about
tradeoffs. The goal of this testbed was to develop a number of specific agents that
negotiate over the environmental resources needed to perform their tasks, while
respecting global deadlines on those tasks. The testbed was developed to explore
different types of coordination protocols and compare them. The goal was to
compare the performance of specialized coordination protocols (such as seen in
[17]) against generic protocols (like Contract-Net[1] and GPGP[8]). We hoped to
quantitatively evaluate how these techniques functioned in the environment, in
terms of time to converge, the quality and stability of the resulting organization,
and the time, processing and message costs.

JAF and TEMS were used extensively, to develop the agents and model their
goal achievement plans, respectively. MASS was used to build a "regular day in
the house” - it simulates the tasks requested by the occupants, maintains the
status of all environmental resources, simulates agent interactions with the house
and resources, and manages sensors available to the agents. MASS allowed us to
that events occurred at the same time in subsequent trials, and the only changes
from one run to the next were due to changes in agent behavior. Such changes
could be due to different reasoning activities by the agents, new protocols or
varied task characteristics.

The Intelligent Home project includes 9 agents (dishwasher, dryer, washing
machine, coffee maker, robots, heater, air conditioner, water-heater) and were
running for 1440 simulated minutes (24 hours). Several simulations were run with
different resource levels, to test if our ad-hoc protocols could scale up with the
increasing number of resource conflicts. Space limitations prevent a a complete
report of the project here, more complete results can be found in [17]. Instead, we
will give a synopsis of a small scenario, which also makes use of diagnosis-based
reorganization [13].

A dishwasher and waterheater exist in the house, related by the fact that
the dishwasher uses the hot water the waterheater produces. Under normal cir-
cumstances, the dishwasher assumes sufficient water will be available for it to
operate, since the waterheater will attempt to maintain a consistent level in
the tank at all times. Because of this assumption, and the desire to reduce un-
necessary network activity, the initial organization between the agents says that
coordination is unnecessary between the two agents. In our scenario, we examine
what happens when this assumption fails, perhaps because the owner decides to
take a shower at a conflicting time (i.e. there might be a preexisting assumption

40

ryanp
18

that showers only take place in the morning), or if the waterheater is put into
“conservation mode” and thus only produces hot water when requested to do
so. When this occurs, the dishwasher will no longer have sufficient resources to
perform its task. Lacking adaptive capabilities, the dishwasher could repeatedly
progress as normal but do a poor job of dishwashing, or do no washing at all
because of insufficient amounts of hot water. We determined that using a diag-
nostics engine the dishwasher could, as a result of poor performance observed
through internal sensors or user feedback, first determine that a required re-
source is missing, and then that the resource was not being coordinated over -
the dishwasher did not explicitly communicate its water requirements to the wa-
terheater. By itself, this would be sufficient to produce a preliminary diagnosis
the dishwasher could act upon simply by making use of a resource coordination
protocol. This diagnosis would then be used to change the organizational struc-
ture to indicate that explicit coordination should be performed over hot water
usage. Later, after reviewing its modified assumptions, new experiences or inter-
actions with the waterheater, it could also refine and validate this diagnosis, and
perhaps update its assumptions to note that that there are certain times during
the day or water requirement thresholds when coordination is recommended. The
MASS simulator allowed us to explore and evaluate this new approach to adap-
tation without the need for a tremendous investment in knowledge engineering
to create a realistic environment.

5.2 Distributed Sensor Network

A distributed sensor network (DSN) stresses a class of issues not addressed in the
IHome project. We are presented in this research with a set of sensor platforms,
arranged in an environment. The goal of the scenario is for the sensors to track
one or more mobile targets that are moving through that environment. No one
sensor has the ability to precisely determine the location of a target by itself,
so the the sensors must be organized and coordinated in a manner that permits
their measurements to be used for triangulation. In the abstract, this situation
is analogous to a distributed resource allocation problem, where the sensors
represent resources which must be allocated to particular tasks at particular
times. Additional hurdles include a lack of reliable communication, the need to
scale to hundreds or thousands of sensor platforms, and the ability to reason
within a real time, fault prone environment. In this section we will show how
JAF was migrated to new simulation and hardware environments.

Several technical challenges to our architectures are posed by this project.
It operates in real-time, it must work in both a foreign simulation environment
(called Radsim) and on an actual hardware implementation, it must function
in a resource-constrained environment, and handle communication unreliability.
We were provided with Radsim as a simulator, obviating the need for MASS?.
Radsim is a multi-agent simulation environment operating in the DSN domain.
One or more agents inhabit its environment, each attached to a sensor node.

2 Radsim is developed and maintained by Rome Labs

41

ryanp
19

1
.Execute: ' ControFl : Communicatle :
__________________ 1

|Senso' | Statei | Lob' Resource ModlallalDirectory ServicH Schec#JllarObser\,ieI

Fig. 5. Organization of a DSN JAF agent. Upper bounds contain the domain dependent
components, the lower bounds the independent.

Radsim models the communication between agents, the capabilities and action
results of the individual sensors, and the position and direction of one or more
mobile targets. Radsim differs from MASS in several significant ways. Because
it is domain-specific, Radsim simulates a finite number of predefined actions, re-
turning actual results rather than the abstract quality value returned by MASS.
It’s timeline is also continuous - it does not wait for pulse acknowledgement be-
fore proceeding to the next time slice. This, along with the lack of a standard
seeding mechanism, causes the results from one run to the next to be non-
deterministic. Our first challenge, then, was to determine what changes were
required for JAF to interface with this new environment. This was done by de-
riving just three JAF components: Control, Communicate and Execute, as shown
in figure 5. The new Control component determines the correct time (either in
Radsim or hardware), the Communicate component funnels all message traffic
through the radio-frequency medium provided in the environment, and additions
to Execute provide the bridge allowing JAF actions to interface with the sensor.
These changes were made with around 1,000 lines of code, the remainder of the
JAF worked unchanged, allowing us to reuse roughly 20,000 lines of code. A do-
main dependent problem solver, which reasons about the various goals an agent
should pursue, and scan scheduler, which produces scanning pattern schedules,
were also implemented.

Setup_Hardware
waefmn

Duration ||] [set-Sector] [P] [Calc-Bkgrd

) el

Fig. 6. T&EMS task structure for initializing a DSN agent.

To address real-time issues, the partial-order scheduler (mentioned in sec-
tion 2) was used to provide quick and flexible scheduling techniques. A resource

42

ryanp
20

modeling component was used to track both the availability of the local sensor,
and the power usage of the sensor. This component was used by the scheduler
to determine when resources were available, and to evaluate the probability that
a given action might fail because of unexpected resource usage. The Commu-
nicate component was enhanced to add reliable messaging services (using se-
quence numbers, timeouts and retransmits), enabling other components to flag
their messages as “reliable”, if needed. Several new components were added to
address the domain-specific tasks of scheduling the target detection scans, man-
aging the track generation and performing the negotiation. In all cases there
was a high degree of interaction between the new components and the generic
domain-independent, ones. Much of the necessary domain dependent knowledge
was added with the use of TA&MS task structures, such as seen in figure 6. Here
we see the initialization structure, which dictates how the agent should initial-
ize its local sensor, perform background measurements, and contact its regional
manager.

In our solution to this problem, a regional manager negotiates with individual
sensors to obtain maximal area coverage for a series of fast target-detection scans.
Once a target is found, a tracking manager negotiates with agents to perform the
synchronized measurements needed for triangulation. Our technology enables
this, by providing fine grained scheduling services, alternative plan selection
and the capacity to remove or renegotiate over conflicting commitments. Two
of the metrics used to evaluate our approach are the RMS error between the
measured and actual target tracks, and the degree of synchronization achieved
in the tracking tasks themselves.

After successfully demonstrating JAF in a new simulation environment, we
were then challenged with the task of migrating it to the actual sensor hardware.
In this case, JAF agents were hosted on PCs attached to small omnidirectional
sensors via the serial and parallel ports. Our task was facilitated by the devel-
opment of a middle layer, which abstracted the low level sensor actions into the
same API used to interface with Radsim®. The actual environment, however,
differed from Radsim in its unpredictable communication reliability, extreme
measurement noise values and varied action durations. It also lacked the central
clock definition needed to synchronize agent activities. In this case, the agents
were modified to address the new problems, for instance by adding a reliable
communication model to Communicate, and a time definition scheme to the
control component. These JAF agents have been successfully tested in this new
hardware environment, and we are currently in the process of developing better
negotiation and scaling techniques to apply to this interesting domain [15].

5.3 Producer Consumer Transporter

The JAF/MASS architecture has also been used to prototype an environment for
the to the producer, consumer, transporter (PCT) domain [13]. In this domain,
there are conceptually three types of agents: producers, which generate resources;

3 Middle layer API and sensor drivers were implemented by Sanders.

43

ryanp
21

consumers, which use them; and transporters, which move resources from one
place to another. In general, a producer and consumer may actually be different
faces of a factory, which consumes some quantity of resources in order to produce
others. There are several characteristics of this domain where alternatives exist
for the factories and transporters - the choices made at these points by or for
the PCT agents make up the organizational structure of the system.

Reactions

Short/Long Term Diagnoses

Symptoms | Models

Negotiation Problem Solving

Fig. 7. Role of organizational knowledge within a PCT agent.

This particular system differs from the previous two in that it used the TEMS
representation as an organizational design layer, in addition to describing the lo-
cal goals and capabilities of the agent. For instance, the subjective view would
describe which agents in the system a consumer could obtain resources from,
or identify the various pathways a transporter could take. It also made use of a
third view of TEMS - the conditioned view. The agent’s conditioned TEMS view
is essentially the subjective view, modified to better address current runtime
conditions. In figure 8, we see a subjective view which provides three potential
candidates capable of producing X. Instead of specifying all producers a con-
sumer could coordinate with, the conditioned view might identify only those
which were most promising or cheap or fast, depending on the current goals of
the agent. On the right side of the figure, we can see an example of this, where
P1 and P3 have been removed from consideration. The idea is to constrain the
search space presented by the task structure, to both speed up the reasoning
and selection process, and increase the probability of success. The conditioned
view was used as the organizational design for the agent - since the majority of
decision making was based on this structure, changes in the organization could
be made there to induce change in the agent’s behavior.

In addition to local reasoning, a diagnosis component was used to gener-
ate the conditioned view. As mentioned earlier, the diagnosis component made
use of a causal model, which served as a road map from symptom to poten-
tial diagnoses. The component itself would monitor the state of the agent, by
listening to event streams and monitoring state, to detect aberrant behavior.

44

ryanp
22

Manufacture-Z (Manufacture-Z)

q seq_su / seq_sum

|Get-Materials | |Assemble-z | |Get-MateriaIs | |Assemble-Z |

Make_X_P1

Produce_X_P1

Make X P2

Make_X_P3

Produce X _P3

VA \

0.0/0.0/100.0 0.0/0.0/100.0 0.0/0.0/100.0 0.0/0.0/100.0

Consume_X Consume_X

Produce_X_P2

Fig. 8. Subjective and conditioned task structures for PCT

Once detected, the causal model would be used to identify potential causes of
the problem, which would result in a set of candidate solutions. These solutions
would be induced by making changes to the organizational design in the agent,
through modification to the local conditioned view, as shown in figure 7. The
JAF architecture facilitated this sort of technology, by providing the common
mechanisms for interaction among components. The diagnosis component was
integrated by simply plugging it into the agent, and no modifications to other
components were necessary.

®x| |®® | i |

A. |

Fig. 9. Experimental solutions in the PCT environment.

Experiments in this environment focused on the convergence time of various
diagnosis techniques to stable organizations, and the efficiency of those organi-
zations. For instance, in figure 9, initial conditions in the environment on the
left included transporters T; and T3 bringing resource X from producer Fj to
consumers F» and F3. Later in the scenario, the needs of Fy change, such that
it now requires Y. Several different organizations are possible, not all of them
functional and efficient. Different diagnosis techniques were applied to situations
like this to evaluate the characteristics of the individual organizations, and even-
tually converging on a solution like that shown on the right side of the figure.
More details on the results of these experiments can be found in [13], and more
sophisticated PCT environments are currently being tested and evaluated with
the help of Dr. Abhijit Deshmukh and Tim Middelkoop.

45

ryanp
23

6 Conclusions

The key idea in this article is the ability of the JAF/MASS architecture to quickly
and easily prototype and explore different environments. Varied coordination,
negotiation, problem solving and scheduling can all be implemented and tested,
while retaining the ability to reuse code in future projects or migrate it to an
actual implemented solution.

The JAF component-based agent framework provides the developer with
a set of guidelines, conventions and existing components to facilitate the pro-
cess of agent construction. We have seen in several examples how generic JAF
components can be combined with relatively few domain specific ones to pro-
duce agents capable of complex reasoning and behaviors. The use of TAMS as
a problem solving language further extends the usefulness of this framework by
providing a robust, quantitative view of as agent’s capabilities and interactions.
Of particular importance is JAF’s demonstrated ability to easily work in a wide
range of environments, including the discrete time MASS simulator, the real-
time Radsim simulator, and on actual hardware, while making use of existing,
generic components.

The MASS simulation environment was built to permit rapid modeling and
testing of the adaptive behavior of agents with regard to coordination, detection,
diagnosis and repair mechanisms functioning in a mercurial environment. The
primary purpose of the simulator is to allow successive tests using the same
working conditions, which enables us to use the final results as a reasonable
basis for the comparison of competing adaptive techniques.

In the Intelligent Home project, we showed how a heterogenous group of
agents were implemented in JAF and tested using MASS. Different coordi-
nation and problem solving techniques were evaluated, and the TaMS lan-
guage was used extensively to model the domain problem solving process. In
the distributed sensor network project, JAF agents were deployed onto both
a new simulation environment, and real hardware. Agents incorporated com-
plex, partial-ordered scheduling techniques, and ran in real-time. Finally, in the
producer/consumer/transporter domain, notions of organizational design and
conditioning were added, and adapted over time by a diagnosis component.

We feel the main advantages of the JAF framework are its domain indepen-
dence, flexibility, and extensibility. Our efforts in MASS to retain determinism
without sacrificing unpredictability also make it well suited for algorithm gener-
ation and analysis.

7 Acknowledgements

We wish to thank the following individuals for their additional contributions to
the research described in this paper. Thomas Wagner contributed the Design-
To-Criteria scheduler and to extensions to the T&EMS formalization. Michael
Atighetchi, Brett Benyo, Anita Raja, Thomas Wagner, Ping Xuan and Shelley
XQ. Zhang contributed to the Intelligent Home project. The DSN project was

46

ryanp
24

implemented by Raphen Becker, Roger Mailler and Jiaying Shen, and Sanders
and Rome Labs provided background, simulation and hardware expertise. Brett
Benyo contributed to our work in the PCT domain.

References

10.

11.

12.

13.

. Martin Andersson and Tumas Sandholm. Leveled commitment contracts with

myopic and strategic agents. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, pages 38—44, 1998.

. K. S. Barber, A. Goel, and C. E. Martin. Dynamic adaptive autonomy in multi-

agent systems. Journal of Ezperimental and Theoretical Artificial Intelligence,
2000. Accepted for publications. Special Issue on Autonomy Control Software.
Deepika Chauhan. A Java-based Agent Framework for MultiAgent Systems De-
velopment and Implementation. PhD thesis, ECECS Department, University of
Cincinnati, 1997.

. K. Decker. Environment Centered Analysis and Design of Coordination Mecha-

nisms. PhD thesis, Department of Computer Science, University of Massachusetts,
Ambherst, 1995.

Keith Decker and Victor Lesser. Generalizing the partial global planning algorithm.
International Journal of Intelligent Cooperative Information Systems, 1(2):319-
346, 1992.

Keith Decker and Victor Lesser. Quantitative modeling of complex environments.
Technical report, Computer Science Department, University of Massachusetts,
1993. Technical Report 93-21.

Keith S. Decker. Task environment centered simulation. In M. Prietula, K. Car-
ley, and L. Gasser, editors, Simulating Organizations: Computational Models of
Institutions and Groups. AAAT Press/MIT Press, 1996. Forthcoming.

Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algo-
rithm. International Journal of Intelligent and Cooperative Information Systems,
1(2):319-346, June 1992.

Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex envi-
ronments. International Journal of Intelligent Systems in Accounting, Finance,
and Management, 2(4):215-234, December 1993. Special issue on “Mathematical
and Computational Models of Organizations: Models and Characteristics of Agent
Behavior”.

Keith S. Decker and Victor R. Lesser. Coordination assistance for mixed human
and computational agent systems. In Proceedings of Concurrent Engineering 95,
pages 337-348, McLean, VA, 1995. Concurrent Technologies Corp. Also available
as UMASS CS TR-95-31.

Martha E. Pollack Hanks, Steven and Paul R. Cohen. Benchmarks, testbeds,
controlled experimentation, and the design of agent architectures. Al Magazine,
14(4):pp. 17-42, 1993. Winter issue.

Bryan Horling. A Reusable Component Architecture for Agent Construction.
UMASS Department of Computer Science Technical Report TR-1998-45, Octo-
ber 1998.

Bryan Horling, Brett Benyo, and Victor Lesser. Using Self-Diagnosis
to Adapt Organizational Structures. Computer Science Technical Re-
port TR-99-64, University of Massachusetts at Amherst, November 1999.
[http://mas.cs.umass.edu/ bhorling/papers/99-64/].

47

ryanp
25

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bryan Horling et al. The teems white paper, 1999. http://mas.cs.umass.edu/res-
earch/taems/white/.

Bryan Horling, Régis Vincent, Roger Mailler, Jiaying Shen, Raphen Becker, Kyle
Rawlins, and Victor Lesser. Distributed sensor network for real time tracking.
Submitted to Autonomous Agents 2001, 2001.

Lyndon Lee Hyacinth Nwana, Divine Ndumu and Jaron Collis. Zeus: A tool-kit
for building distributed multi-agent systems. Applied Artifical Intelligence Journal,
13(1):129-186, 1999.

Victor Lesser, Michael Atighetchi, Bryan Horling, Brett Benyo, Anita Raja, Regis
Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ. Zhang. A Multi-Agent
System for Intelligent Environment Control. Computer Science Technical Report
TR-98-XX, University of Massachusetts at Amherst, October 1998.

Victor Lesser, Michael Atighetchi, Bryan Horling, Brett Benyo, Anita Raja, Regis
Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ. Zhang. A Multi-Agent Sys-
tem for Intelligent Environment Control. In Proceedings of the Third International
Conference on Autonomous Agents, Seattle, WA, USA, May 1999. ACM Press.
Nelson Minar, Roger Burkhart, Chris Langton, and Manor Askenazi. The swarm
simulation system: A toolkit for building multi-agent simulations. Web paper:
http://www.santefe.edu/projects/swarm/, Sante Fe Institute, 1996.

Nortel Networks. Fipa-os web page. Web, 2000.
http://www.nortelnetworks.com/products/announcements/fipa/.

Régis Vincent, Bryan Horling, Victor Lesser, and Thomas Wagner. Implementing
soft real-time agent control. Submitted to Autonomous Agents 2001, 2001.
Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task
Scheduling. International Journal of Approzimate Reasoning, Special Issue on
Scheduling, 19(1-2):91-118, 1998. A version also available as UMASS CS TR-97-
59.

48

ryanp
26

