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Abstract 

The goal of this project was to use real time data from the US Naval Academy's 
Prototype Communications Satellite (PC-Sat) to calculate atmospheric density in the satellite's 
orbit over various time intervals. This involved using the latitude, longitude, altitude, and time 
data from a GPS receiver on board PC-Sat and fransforming them into the orbiter's classical 
orbital elements (COEs). From these, the change in the size of the orbit can be determined via 
the change in the semi-major axis. Changes to the orbit are due primarily to the non-spherical 
Earth and the atmosphere. Therefore, by accounting for the change in semi-major axis due to the 
non-spherical Earth, the researcher can conclude that the remaining change is due solely to 
atmospheric density. 

The ability to determine atmospheric density in a specific orbit by knowing only the 
position of the satellite and few characteristics of the satellite itself will allow many small 
satellites with GPS receivers to contribute to the collection of data about the upper atmosphere. 
Being able to measure the Earth's atmospheric density with increased accuracy will then allow 
satellite orbit and ftiel usage predictions to be much more accurate and has the potential to lower 
the cost of missions. 
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Introduction 

The Naval Academy launched its first midshipman-designed and built spacecraft on 

September 30, 2001 from Kodiak, Alaska. The satellite is Prototype Communications Satellite, 

(PC-Sat), and its main mission is to "provide mobile and handheld satellite digital 

communications for amateur satellite operators worldwide using the Automatic-Position- 

Reporting-System (APRS)."^ The satellite also has a Global Positioning System (GPS) receiver 

on board that transmits the satellite's position and time. 

MIDN John Young completed a Trident project in 2001 in which he developed an 

algorithm to calculate atmospheric density using real-time GPS data. His goal was to determine a 

method for calculating the density of the atmosphere at a specific point at a specific time in a 

single satellite's orbit. As more satellites with GPS receivers are used, a more accurate model of 

atmospheric density can thus be determined. 

The atmospheric density over several periods of time in the orbit of PC-Sat has been 

determined using the GPS data received and the algorithm developed by MIDN Young. The 

GPS data are received as latitude, longitude, altitude, and time in the Earth-Centered, Earth- 

Fixed (ECEF) rotating reference frame of the Earth. The satellite is most easily described in a 

reference firame which is inertial with respect to the center of the Earth and the stars. Therefore 

the position in the rotating reference frame must be transformed into the inertial reference frame 

using rotation matrices. Once the position is known in the inertial reference frame, the velocity 

vector of the satellite must be calculated for each position vector. The position and velocity 

vectors at each time can be used to calculate the classical orbital elements of the satellite at each 

time. The challenge to the researcher lies in finding the velocity vectors of the satellite from 

only the position vectors. 



Until recently, GPS receivers have not been very common on spacecraft. Most users 

have not had a need for the accuracy available with GPS for use with space operations. The idea 

of using GPS onboard spacecraft is somewhat novel, and this is among the first research to use 

GPS for a purpose other than positioning. 

Background 

PC-Sat 

PC-Sat is a 10-inch cube with solar panels on all six faces. Five of the six faces use off- 

the-shelf solar panels. The sixth face has a solar panel designed for space use, which failed 

shortly after launch. This severely limits the amount of power PC-Sat collects while it is in the 

sunhght, especially when the failed solar panel is facing towards the sun. Batteries must be used 

while tie satellite is not in view of the sun and when the satellite is using more energy than it is 

producing fi-om the solar arrays. The coordinate system corresponding to PC-Sat is shown in 

Figure 1. 

Figure 1: PC-Sat coordinate system 



The orbital period of PC-Sat is approximately 100 minutes. During its orbit it spends 

a maximum of 35 minutes in eclipse and a minimum of 65 minutes in the sun. Figure 2 shows 

the eclipse times in minutes from October 2001 to May 2002. 
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Figure 2: PC-Sat eclipse times for November 2001-May 2002 

The high inclination of PC-Sat's orbit (67 degrees) and the angle of Earth's spin axis 

sometimes allow PC-Sat to be in the Sun for an entire orbit for several days, the first occurrence 

of which was January 10-21,2002. During these twelve days of continuous sun, PC-Sat had 

enough power to allow the GPS receiver to remain on continuously. PC-Sat does not have 

memory on board and carmot store data to transmit once it passes over a ground station. 

Therefore it transmits telemetry continuously, but only that which is received by a ground station 

is recorded. With the help of ground stations in South Africa and Great Britain, PC-Sat's 

position according to the GPS receiver was recorded during that period. 
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The data received from the GPS receiver on PC-Sat comes in the "GGA" format 

shown in Figure 3. It gives the time the position was taken, the latitude, longitude, and altitude 

of the satellite, and the number of satellites tracked. 

time [YRhhmmss.ms] (2002,2056.00) 
I— latitude [DcgMin.Sec] (37° 47.2811' N) 

, longitude [DegMin.Sec] (144° 58.7417' W) 

)(),3' $GPGGA,022056.06,3747.2811,N, '14459.7417,W, 1, 12,0.7,   803863.1,M,0.0,M„*7B 
I.I.I       l_ 

accuracy of fix (1 = accurate, 0 = inaccurate)- 
number of satellites tracked (12)  
altitude [m] (803863.1 m)  

Figures: GPS format 

Orbits 

An orbit is an ellipse, as was discovered by Kepler in the 1600s. An ellipse is one of the 

curves in the family of conic sections. Figure 4 shows the various curves created by the 

intersection of a plane and a right circular cone, all of which are possible orbits. The elliptical 

orbit is most common, the circular orbit being a special case of the elliptical orbit. Parabolic and 

hyperbolic trajectories also exist, although bodies in these orbits only pass by once. 

Circle 

Hyperbola 

Ellipse 

Parabola 

Figure 4: Family of conic sections; orbital paths 



Ellipses have foci as shown in Figure 5. For a sateUite in orbit about Earth, Earth is at one 

focus and the other focus is vacant. Perigee is the point of the ellipse that comes closest to the 

Earth. The apogee is the point farthest from the Earth. 

perigee 

eccentricity Earth 

Figure 5: Parts of an elliptical orbit 

A satellite's orbit is defined by six classical orbital elements (COEs), much as a position 

on the earth is described by latitude and longitude. The COEs are in the inertial reference frame 

with respect to the stars, meaning the coordinate system does not appear to move relative to the 

stars. In defining this coordinate system, the first step is to determine the first point of aries, ?, 

which is the line from the Earth to the Sun on the first day of spring. The COEs are based on the 

first point of aries. Figure 6 illustrates these elements. 
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dincfion 

Figure 6: Classical Orbital Elements 

Semi-major axis, a, is the length of the long axis of the ellipse, and also the mean radius 

of the path. The eccentricity, e, is the variance of an orbit from a perfect circle, and a measure of 

the difference between the long and short axes of the ellipse. If the semi-major axis and semi- 

minor axis, b, are the same length, the orbit is circular and the eccentricity is zero. As the semi- 

major axis increases relative to the semi-minor axis, the orbit becomes more elliptical and the 

eccentricity increases. The eccentricity of an ellipse is between zero and one. When the 

eccentricity equals 1, the orbit is the special case of a parabola. A hyperbola has an eccentricity 

greater than 1. 

The orbit of a satellite does not necessarily he in the plane of the Earth's equator, and 

inclination, i, is the angular measurement from the equatorial plane to the plane of the orbit. An 

orbit is also defined by the longitude at which the plane of the orbit and the equatorial plane 

cross. This actually occurs at two points, so the crossing is defined as the longitude of the 
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ascending node (O) and is the longitude at which the satellite ascends from the southern 

hemisphere to the northern hemisphere. The angle from this line to the point of perigee is called 

the argument of perigee (?). The position of the spacecraft along the orbit from the point of 

perigee is the true anomaly (?) and is measured as the angle between the vectors connecting the 

center of the earth to perigee and the spacecraft. These six elements, a, e, i, ^, co, and v define a 

single orbit and the satellite's position in that orbit. Table 1 shows the approximate values of the 

COEs for PC-Sat as taken from NORAD. 

Table 1: PC-Sat Classical Orbital Elements 

COE value 
a 7178 km 
e 0.0005 
i 67deg 
a varies (-210 deg in Jan 2002) 
(0 varies (-275 deg in Jan 2002) 
V varies with time 

GPS 

The Global Positioning System (GPS) is made up of 3 segments: the space segment, 

control segment, and user segment. The space segment is a constellation of 24 satellites in semi- 

synchronous orbit, meaning they each orbit the Earth twice a day. From any point on the surface 

of the Earth, at least 4 satellites are in view at any time. This means that a receiver on Earth, 

barring possible blockage by local obstructions, can determine its position anywhere. Each GPS 

satellite transmits 2 microwave carrier signals with a navigation message (time corrections, space 

vehicle orbital data sets, etc.) and code signals (the fingerprint of each space vehicle). The 

control segment is the ground network that tracks the GPS satelhtes and corrects the clocks on 

each satellite to ensure very precise location measurements. The user segment consists of the 
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GPS receivers and the user community. The GPS receiver uses the time difference between 

the times sent from the satelhte and the receiver time to calculate what is known as the pseudo- 

range, the distance from each individual satellite to the GPS receiver.   A receiver's position is 

computed using triangulation from four pseudo-ranges from four different GPS satellites. Figure 

7 shows the geometry of the satellites relative to the receiver, the lines connecting each showing 

the pseudo-range.^ As more satellite signals are processed and as the angles between the 

satelhtes increase, the position determined by the GPS receiver is more accurate. 

±; 
XYZT 

Figure?: Optimum geometry of GPS satellites relative to receiver for position fix 

For a receiver on the ground, only satellites that are above the horizon are in view and are 

available for determining position. The actual number in view is a minimum of 4, but could be 5 

or 6 satellites. At 800 km, however, there is an average of thirteen satellites in view at any given 

time. The receiver on PC-Sat can track only twelve of the satellites in view, and on average 

tracked ten to eleven satellites at any given time."* 

The positions from GPS receivers are provided in latitude, longitude, and altitude above 

the geoid Earth. The Earth is not a perfect sphere; it is wider at the equator than it is between the 
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poles. It also has a slight egg-shape to it. Therefore, the position on a geoid earth is more 

accurate than the position on a spherical earth. World Geodetic System 1984 (WGS-84) is the 

datum or mathematical model of the Earth's shape used by GPS.^ This is also the datum used for 

maps used every day, and thus makes the conversion from GPS position to a map position very 

simple. 

GPS Receiver 
Most GPS receivers are designed for ground use, where the motion between the receiver 

and the GPS satellites is relatively small. The velocities of these terrestrial GPS receivers with 

reference to the Earth are also very small. For a spacecraft traveling at 7-8 km/s, however, the 

relative motion between the GPS satelhtes and the GPS receiver becomes an issue. "The DLR 

Orion GPS Receiver [onboard PC-Sat] was originally designed for terrestrial applications, but 

has received numerous modifications to provide accurate and reliable tracking under highly 

varying signal dynamics encountered in space applications."^   This modification includes an 

orbit propagator in the receiver that predicts the satellite's position before the GPS signals are 

received. From this estimated position, the Doppler shift of the signals as observed by the 

receiver is calculated. Knowing the expected shift in frequencies allows the receiver to frack the 

specific satellites in view rather than searching through the wide Doppfer frequency band for all 

the GPS satellites. "^ For a GPS satelhte directly above the receiver relative to the center of the 

Earth, there is no Doppler shift. It is well known within the GPS user community that using 

satellites directly overhead for a fix have poor altitiide accuracies. The Orion receiver does not 

discard signals from satellites directly overhead, and could have some error in the calculation of 

altitude. 
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The Inter-agency GPS Executive Board (IGEB) published the US Government's 

standard precision of GPS in 2001, after the removal of Selective Availability. They pubhsh a 

horizontal accuracy of 13 meters, and a vertical accuracy of 22 meters.* Since the satellite is in 

space, its receiver does not experience as much refraction of the atmosphere to cause errors, and 

theoretically should have equal or better accuracy. The receiver has a mask angle of-15 

degrees, meaning it does not look for satellites that are below 15 degrees of the horizon of the 

antenna. The manufactiirer of the Orion GPS receiver confirmed the accuracy of the receiver. In 

testing the receiver before it was installed on PC-Sat, the receiver had an accuracy of 3.4 meters 

in position and 0.8 m/s in velocity. ^ 

The antenna used on PC-Sat to receive the GPS signals is a small monopole, quarter- 

wavelength antenna located on one comer of PC-Sat. The altitude of the orbit in which PC-Sat is 

located is far below the altitude of the GPS transmitting satellites, and is therefore still within the 

constellation of GPS satellites. NASA has successfully developed a GPS receiver, named 

PiVoT, for use in highly elliptical orbits and orbits that move beyond the orbits of the GPS 

satellite. ^^ This receiver has received numerous improvements for detecting very weak and 

highly varying signals. The problems encountered when using GPS in this higher orbit are much 

greater than those experienced at the 800 km altitude of PC-Sat. Although a receiver for space 

use does require some modifications, the receiver that is on board PC-Sat does not need the same 

rigorous changes that PiVoT does. 

Based on the testing of the Orion receiver, the GPS data retumed should have been highly 

accurate and reliable. The tumbling of the satelhte, however, does limit some reception to the 

single receiving antenna. The antenna was placed on the comer so that it would have the least 

amount of area blocking it from incoming signals. Shortly after launch the GPS was turned on, 
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and the receiver was unable to get a single position. Several months later, the receiver was 

turned on again and data were taken over 12 days. The difference between the two data- 

gathering attempts was the tumbling of the satellite. Between the on-board magnets aligning the 

z-axis with the Earth's magnetic field and the painted antennas regulating the speed of rotation, 

PC-Sat settled into a slower tumble. This allowed the GPS receiver to pick up GPS signals and 

predict forward to the next expected signal fi-equency. As the satellite tumbles, however, it still 

could lose one satellite, pick up a new satellite, and not realize what occurred. The receiver 

would report an inaccurate position, but label it as accurate. Figure 3 shows how the accuracy of 

the fix is reported.   There are several points in the GPS data where it appears this has occurred. 

The positions of the satellite track along an apparent orbit, one to twelve consecutive positions 

appear drastically out of place, and then the positions return to the expected orbit. In the 12 days 

of data and over 1600 positions reported, this occurs only 7 apparent times. Figure 8 shows one 

example of the outiiers. The points that are stars should be between the squares as expected for a 

nearly circular orbit 
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Figure 8: Outliers in GPS data 

NORAD 

"The North American Aerospace Defense Command (NORAD) is a bi-national United 

States and Canadian organization charged with the missions of aerospace warning and aerospace 

control for North America. Aerospace warning includes the monitoring of man-made objects in 

space. "^' "The Space Control Center (SCC) supports the US Space Command's, 

(USSPACECOM's), missions of surveillance and protection in space. The center's primary 

objective in performing the surveillance mission is to detect, track, identify, and catalog all man- 

made objects orbiting the earth. The SCC currently tracks over 8,300 objects including 

payloads, rocket bodies and debris. Knowing where these objects are contributes to several 

mission areas, including collision avoidance for the space shuttle crew."^^ 
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NORAD is able to track these Earth satellites using a system called Space Detection 

and Tracking System (SPADATS). This system is "capable of detecting and tracking space 

vehicles from earth and reporting the orbital characteristics of these vehicles to a central control 

facility. "^^ SPADATS is made up of two parts: US Navy's Space Surveillance System 

(SPASUR) and the US Air Force's SPACETRACK system. SPASUR detects and determines the 

orbital elements of man-made objects orbiting Earth by using an electronic fence, a continuous 

wave of energy beamed vertically across the continental United States. This 'fence' stretches 

from Georgia to California, 1,600 km off each coast, and 24,100 km up into space. It uses 

bistatic radar made up of three transmitters (each up to two miles in length) and six receivers. 

The receivers are located separately from the transmitters and receive signals from the 

transmitters that have reflected off of an object in space. Observations from two or more 

receivers are used to calculate the position of the object.'"* "SPACETRACK consists of a 

worldwide network of radars, space-probing cameras, and communications. An operational 

control center with a central data-processing facility called the Space Defense Center, located at 

NORAD headquarters, serves to integrate the entire network of both Navy and Air Force 

information."'^ The result of all these transmitters, receivers, radars, cameras, and 

communications is a sophisticated satellite tracking system. NORAD then publishes the orbital 

information of each object on the World Wide Web in the 2-line element format. Figure 9 shows 

a sample 2-line element set and what the different numbers represent. 
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r^i 

 19-20 Epoch Year (Last two digits of year) 
21-32 Epoch (Julian Day and fractional portion of the day) 

—34-43 First Time Derivative of the Mean Motion 
  [rev/day^2] 

1 16609U 86017A 01307.54647707.00060637 00000-0 35601-3 0 364 
2 16609 51.6568 349.0629 0001427126.1776 233.939915.77672538783357 

J._,_.._.l I I 

i.i3-63 Mean Motion [Revs per day] 
 44-51 Mean Anomaly [Degrees] 

i 35-42 Argument of Perigee [Degrees] 
-27-33 Eccentricity (decimal point assumed) 

,        18.25 Right Ascension of the Ascending Node [Degrees] 
09-16 Inclination [Degrees] 

Figure 9: Sample NORAD 2-line elements 

PC-Sat Details 

PC-Sat has no propulsion system on board and is free to rotate. It uses metal tape 

measures of different lengths as antennas for the different downlink and uplink frequencies. 

Those that are in the x-y plane are painted white on one side and black on the other to allow solar 

pressure to create rotation about the z-axis. As photons from the sun hit the antennas that are 

painted black, they are absorbed by the antenna and momentum transfer occurs. When the 

photons hit the white sides of the antennas, they are reflected, and the antenna receives a 

momentum exchange of twice what the black antenna receives. The greater torque on the white 

anterma causes the spacecraft to spin. Figure 10 shows the rotation about the z-axis created by 

pressure in the x- and y-axes. 
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© 

Figure 10: Rotation of PC-Sat about the z-axis 

Theoretically the spacecraft would continue to speed up indefinitely. However, PC-Sat is 

operating in the Earth's magnetic field. As a conductor is moved through a magnetic field, a 

voltage is induced in die conductor. The current which is produced creates a magnetic field in 

the opposite direction. Therefore, as PC-Sat is spinning through the Earth's magnetic field, an 

equilibrium spin rate is reached when the magnitude of the force of the induced magnetic field 

equals the magnitude of the force of the sunlight's momentum on the antennas. The spin rate is 

also moderated by the time in eclipse. When the sun is blocked fi-om the satellite's view by the 

Earth, it no longer causes the satellite to spin, and the latter slows down. 

PC-Sat also has temperature sensors on each solar panel face. These temperature 

readings are sent back to Earth as a part of the telemetry data continuously transmitted by PC- 

Sat. The USNA ground station collects these telemetry data every time PC-Sat passes over 

Annapolis, Maryland. CDR Robert Bruninga, USNA satellite ground station director and PC-Sat 

main operator, has monitored these temperature telemetry data over the past year and has 

determined the spin rate to be about 0.6 rpm while orbit is in eclipse season, and 0.8 rpm during 

full sun periods.'^ 
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The orientation of PC-Sat with the magnetic field is accomphshed by magnets placed 

in PC-Sat. The +z face is designed to point towards the south pole, and the -z face to point to 

the north pole. Therefore, the satellite is always aligned with the magnetic field of the Earth. If 

PC-Sat were in a polar orbit, meaning it had an inclination of 90 degrees and went directly over 

both poles, it would have a tumble rate of 2 complete tumbles per orbit. This is not easy to 

visuahze, but think of the satellite above the North Pole with the -z face towards the earth. Then 

at the equator, the z-axis is aligned with the -z face now pointing to the north and the +z face 

pointing towards the south. When the sateUite is over the south pole, the +z face is now facing 

the earth, but it is again in the same orientation as it was at the North Pole. Therefore it 

underwent an entire rotation about the x- or y-axis in half of an orbit Figure 11 illustrates this 

motion. 

0 
4- 

Figure 11: Rotation of magnetically aligned satellite in polar orbit 

PC-Sat is not in a polar orbit, however, and therefore will not completely roll over the z- 

axis. Instead it will wobble along the z-axis. The motion that results fi-om the spin and wobble 

is not a simple addition of two rotations as a spinning top is. Instead it is a complex tumble, the 

modeling of which could be a project of its own. 
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Atmospheric Density 

The ideal gas law connects temperature T, pressure p, and density ?, of a gas of 

molecular weight M, as shown in equation (1) where R is the gas constant. 

L = K (1) 
p     M 

The change in pressure with height y is given by the hydrostatic equation in equation (2) 

and is accurate up to several himdred kilometers. 

^-Pg (2) 
dy 

These two equations are the basis for the exponential decrease of the density of the 

atmosphere as a function of height, y, the result of which is shown in equation (3) where h is the 

scale height, the altitude at which the atmospheric density is 1/e the density at the surface of the 

Earth. '^ 

y-yt) 
h p = p,e^   " ^ (3) 

In practice, it has been determined that equation (3) loses accuracy above approximately 500 

km ^^ This is due mostly to the mean free path of the air molecules being larger than the scale 

height, and therefore the molecules have ballistic paths rather than colliding with one another. 

Above this 500 km threshold a much more complicated model includes the effects of day and 

night, the Sun's solar activity, the geomagnetic planetary index, and a still unknown variability of 

±10 percent. Accurate density predictions become extremely difficult as the number of variables 

increases. Equation (3) also incurs some errors from the way it was calculated. The acceleration 

due to gravity, g, is also not a constant as the altitude increases, and the simple integration of 

equation (2) to equation (3) is not accurate over large differences in height. 
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There are many published models of atmospheric density, broken into various 

categories and taking into account a range of variables. Some cover specific conditions or 

geographic regions, such as the International Tropic Reference Atmosphere. Others are general 

models for the whole Earth, such as the Jacchia J70 model. The choice of density model is 

dependent upon the purpose of its use, and so the selection of a model can be difficult. 

The atmospheric density that is expected at 800 km using the exponential model 

(Equation 3) is on the order of lO'''* kg/m?. 

Young's Algorithm 

In MIDN John Young's Trident project, he developed an algorithm for calculating 

atmospheric density fi-om a satellite's GPS data. He used Satellite Tool Kit (STK) and ran two 

models of a satellite's orbit; one without atmospheric drag and one with atmospheric drag. He 

used the difference between the two models to calculate the change in the orbit due to drag. The 

position and velocity data taken fi-om a GPS receiver were transformed into the COEs of the 

orbit. The semi-major axis, a, is a constant throughout an undisturbed orbit, and therefore the 

change in a is a good measure of the change in the orbit. The density can be related to the 

change in the semi-major axis over time, as well as to the eccentricity of the orbit and the ttiie 

anomaly. Equation (4)^*' shows the equation for atmospheric density from COEs. 

n*-vl-( o = _^*__^L_*_L* 
-Jl + e^+2*e*cos^) 

(4) 
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The mass (m), coefficient of drag (CD), and cross-sectional area (A) are all properties 

of the satellite. The velocity of the satellite relative to the atmosphere, rather than to the surface 

of the Earth, is \iei. The classical orbital elements in this equation are n, e, ?, and a. 

Young made several assumptions in his analysis. One was that the spacecraft had a 

constant cross-sectional area and coefficient of drag. Another was that the atmosphere rotates 

with the surface of the earth. He also assumed that the effects on the orbit due to the shape of the 

earth and the atmosphere were independent of one another. Young concluded that the largest 

potential source of error would be the rotation speed of the atmosphere relative to the satelhte. 

To solve for the expected change in semi-major axis over time for a given density, 

Equation 4 can be worked backwards. For the density of the exponential model of 1x10" 

kg/n^, the expected change in semi-major axis over time is -8.9x10"* m/s. Table 2 shows the 

expected changes over various time intervals. 

Table 2: Expected changes in semi-major axis for density of 10^-14 kg/m'^S 

Time interval Change in semi-major axis 
100 minute orbit -0.053 meters 
1 day -0.768 meters 
12 days -9.212 meters 
1 year -280.2 meters 

Spacecraft Mass 

PC-Sat has no propulsion system on board and therefore has a constant mass. The mass 

of the spacecraft is 12 kg. Therefore in the equation for atinospheric density, this mass is also a 

constant for all orientations and positions. 
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Cross-Sectional Area 
In order to calculate the atmospheric density from Young's algorithm, the cross-sectional 

area of PC-Sat is needed. Because it is tumbling, the area is continuously changing. Therefore 

an assumed average value of the cross-sectional area for the entire orbit is needed This average 

value was calculated in a way similar to how the average power output of the solar panels was 

calculated. We know that the rotation of PC-Sat is random and is a tumbling motion as opposed 

to a spinning motion. Assuming each orientation has an equal chance to be facing the direction 

of motion, each orientation was weighted according to its frequency of occurrence on the 

spacecraft. A cube has 6 faces, 12 edges, and 8 comers for a total of 26 "basic" orientations. 

The three integral orientations (face, edge, and comer) are not the only possible orientations as 

the satellite can be oriented at any angle between. Figure 12 shows these three orientations, their 

dimensions, and their respective areas. 

Comer View 

^ ,r_... Edge View 

A= 141.42 in^ 

Figure 12: Cross-sectional areas for the 3 major orientations 

The face view occurs six times out of 26 orientations, so the area of 100 in^ is weighted 

6/26. After weighting each of these areas according to their frequency of occurrence, the 

average cross-sectional area is 140.9 in^ (0.091 m^). A sphere touching the comers of the cube 

would have a cross-sectional area of 157.0 in^ (0.101 n?). 
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NORAD includes in its 2-line elements a term called Bstar (B*). This is not the 

ballistic coefficient, but is related to it. The ballistic coefficient is a part of the equation used to 

calculate density fi-om the change in semi-major axis. Equation (5) shows how the two terms are 

related. 

^^ = BC (5) 
25* 

The atmospheric density here is the density at the orbit's perigee and is assumed to be 

constant for a given altitude. The radius of the Earth is 6378.135 km, giving a simphfied 

equation for the ballistic coefficient.^' 

BC = ^ 4 (6) 
12.7416215*/M^ 

Figure 13 shows the variance of the ballistic coefficient over a year. The points that are 

square are the days for which GPS data were collected in January of 2001. 
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Figure 13: B* values from NORAD 2 line elements 

The method by which NORAD calculates this B* value is not well-published. In order to 

determine the feasibility of using a constant ballistic coefficient, a comparison between the 

atmospheric densities calculated using the variable B* and the constant baUistic coefficient was 

done. The result is shown in Figure 14. NORAD apparently uses a constant density, based on 

the altitude of the satellite, to calculate a B* to fit a smooth atmospheric model. Figure 14 does 

not show this smooth density that is expected with the B* values, but it does show a smooth 

density for the constant ballistic coefficient. The scale of the graph is also important to note, as 

the density is of the same magnitude as predicted using equation (3). The values for atmospheric 

density that were calculated using equation (4) and NORAD data only are reasonable. 
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NORAD density over time 
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Figure 14: Comparison of variable B* and constant ballistic coefficient 
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Aerodynamic Drag: Coefficient of Drag 

It is important to know the density of the atmosphere through which objects are travehng 

because of the aerodynamic drag force it creates on the object. Although spacecraft operate in 

space, there is still a significant amount of atmosphere at low-earth orbit (LEO) altitudes. At an 

altitude of 800 km, the atmospheric density is approximately twelve to thirteen orders of 

magnitude less than that found at sea level, around lO"^'* kg/n^.^^ This, however, is still 

significantly denser than the vacuum of space at higher altitudes and therefore this drag effect 

must be taken into account at lower altitudes. The amount of drag an object experiences is 

dependent on the amount of atmosphere present, or the atmospheric density. Therefore, the drag 



28 
force due to the atmosphere must be accounted for in predicting the orbit of a sateUite in low- 

earth orbit. 

There is a major difference between airflow on the surface of the earth and the flow of 

the atmosphere at orbital altitudes. The airflow experienced on Earth as wind and weather is the 

result of continuum-flow aerodynamics, meaning the particles in the atmosphere continuously 

collide with one another and interfere with the path of other particles. Satelhtes generally 

experience free-molecule flow in which the molecules are reflected or re-emitted from the 

spacecraft and do not interfere with approaching or incident molecules. This is a legitimate 

assumption for spacecraft above 200 km because of the large mean free path of the air molecules 

relative to the size of the satelhte.^^ 

Aerodynamic drag is created by particles in the atmosphere colhding with a spacecraft 

and fransferring part of the particle's momentum to the spacecraft. The exact amount of 

momentum transfer is dependent on the angle of the surface compared to the fluid flow. 

Equation (7) gives the momentum fransfer for any collision where pi is the momentum of the 

incident particle and pr is the momentum of the reflected particle. Equation (8) shows equation 

(7) in terms of pi, which is usually a known quantity. ^"^ The angle ? is the angle of incidence 

measured with respect to the normal of the surface. 

Ap=p, + p, (7) 

Ap = p, 1+^ = /;,(l + /(0))=mv(l+/(0)) (8) 
Pi ^ 

In a given amount of time. At, the total mass deposited on a surface is shown in equation (9). 

m = pAvAt (9) 
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By substituting equation (9) into equation (8) and then using the definition of a force as the 

change in momentum over the change in time, the result is equation (10). 

F,=^pvi,AC,. (10) 

The atmospheric density is ?, the velocity of the spacecraft relative to the atmosphere is M:ei, the 

cross-sectional area is A, and Co is the coefficient of drag of the spacecraft. 

The coefficient of drag is a dimensionless quantity used to describe the interaction 

between a fluid and an object traveling through the fluid.    It is defined as shown in equation 

(11), taken fi-om equations (8) and (10). 

c, = 2{i+f{e)) (11) 

The exact value of f(?) is difficult to calculate theoretically because of the uncertainty of the 

nature of individual atomic collisions. Particles may scatter either elastically or they may adhere 

to the surface until thermal equilibrium is achieved and scatter randomly. The first is called 

specular reflection; the latter diffuse reflection. ^^ Therefore the most accurate method of 

determining a spacecraft's coefficient of drag is to determine it experimentally. Drag coefficient 

values can range fi"om 1.9 to 2.6, with the average value at 2.20.^^ 

The coefficient of drag is constant for a spacecraft that has a constant orientation with 

respect to the atmosphere. This is true for satellites that are perfect spheres or have attitude 

control systems that keep them in a specific orientation. PC-Sat does not meet either of these 

qualifications, and therefore does not have a constant coefficient of drag. It is tumbling through 

space and the faces of the cube are constantiy changing angles relative to the atmosphere. Figure 

15 shows experimental coefficients of drag for a flat plate at various angles relative to the 

direction of motion.^' 
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Figure 15: Experimental Coefficients of Drag for a flat plate at varying angles 

If PC-Sat were flying face-on with the normal of the face in the direction of motion, it 

would have a coefficient of drag of about 2.5. If it was flying with an edge in the direction of 

motion, PC-Sat would effectively be two flat plates flying at a 45 degree angle and the 

coefficient of drag would be about 2.00. If PC-Sat had a comer in the direction of motion, it 

would effectively be three flat plates flying with an angle of incidence of 45 degrees. This would 

also give a coefficient of drag of about 2.00. Using the same method as for the cross-sectbnal 

area to weight the different occurrences of each orientation, the average coefficient of PC-Sat is 

2.11. 

The error that comes fi-om using the average value of 2.11 for the drag coefficient can be 

estimated. The equation for density as given in equation (4) shows that density is inversely 

proportional to the coefficient of drag. If the average coefficient of drag is 2.11 and the 

instantaneous coefficient of drag is the maximum theoretical value of 2.5, the increase in drag is 

18 percent of the average. This in turn causes a change in density of about 18 percent. 
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Considering the goal of using this method is to reduce the uncertainty in measurement to 

below 15 percent, using an average value for coefficient of drag will not allow this. The 

conclusion section will further address this issue. 

Relative Velocity 

The velocity of the satellite relative to the fluid through which it is traveling is the 

relative velocity referred to in equation (4). The velocity that is calculated for the satellite in the 

inertial reference fi-ame is relative to the center of the earth. The velocity of the atmosphere 

relative to center of the center of the earth must be known in order to calculate the velocity of the 

satellite relative to the atmosphere. 

King-Hele derives an equation for the velocity relative to the atmosphere dependent on 

the spacecraft's velocity relative to the center of the Earth, v, the spacecraft's distance from the 

center of the Earth, r, and the inclination of the spacecraft's orbit, i.^* Equation (12) shows the 

result, with w as the angular rotation of the atmosphere in the east-west direction. 

Vre;=vl cos/ (12) 
I      ^        ) 

If the atmosphere is assumed to rotate with the surface of the Earth, at 800 km the 

atmosphere will be moving at approximately 0.4 km/s. The atmospheric rotation in the north- 

south direction is assumed to be zero because it is significantly smaller than the east-west winds 

of 0.4 km/s. PC-Sat has an orbital speed on the order of 7.5 km/s. The east-west winds are then 

seen to be about five percent of the orbital speed In equation (4), the atmospheric density is 

inversely proportional to the square of this relative velocity. Altering the relative velocity by 
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five percent gives a change in the density of about ten percent. If this were the only 

uncertainty in the calculation of atmospheric density, this would give a more accurate density 

than the current model. 

Velocity from Position 

The GPS data received from PC-Sat are in the form of time, latitude, longitude, and 

altitude. The vital piece of information that is missing is the velocity vector. Knowing the 

position vectors of the satellite at two different times should make the velocity easy to find 

Unfortunately this is not the case. The path over which the satellite has traveled during the time 

between GPS fixes is not a straight line, so v = ?d/? t is not an accurate calculation. Figure 16 

shows the difference in distances between the straight and curved sections. This difference leads 

to large errors in the calculated velocity. The velocity of the satellite is very important because it 

is necessary for extracting the classical orbital elements fi:om the GPS positions, the COEs that 

are in turn necessary to calculate the atmospheric density. 

Figure 16: Difference in path length of curve and straight line 
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GPSandNORAD 

One source of PC-Sat's velocity is the NORAD data. The NOR AD classical orbital 

elements are taken only once or twice a day. However, the velocity can be easily determined 

from the classical orbital elements for those one or two readings each day. Figure 17 shows the 

velocities from the NORAD data through the year. 

7455.5 

7451.5 

velocity from NORAD data 

150 200 
time [days] 

Figure 17: Velocity of PC-Sat from NORAD data 

Although the velocities appear to be randomly scattered, they are in a very narrow window 

between 7451 m/s and 7456 m/s. The reason the velocity is changing over time is because the 

NORAD elements are averages over a section of the orbit. The orbit is slightly elliptical, so the 

velocity at perigee is slightly faster than the velocity at apogee. The NORAD elements are taken 
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at the same position from Earth each time, but the satelHte is in a different part of its orbit, 

and so the velocity captured by NORAD changes shghtly. This average velocity is not suitable 

for calculations of atmospheric density. The instantaneous values are necessary for any analysis 

of the atmospheric density from GPS data. 

Herrick-Gibbs Method 

One method of calculating instantaneous velocity is to use only position vectors to 

calculate the orbit and thus the velocity. This Gibbs method uses three time-sequential coplanar 

position vectors of a satellite in its orbit. ^^ The result of the method is a velocity vector that 

corresponds to the middle position vector. When this method is used the velocity ranges wildly 

with an apparent maximum velocity about 7.6 km/s. This indicates that the method used to 

calculate velocity is incorrect rather than the data. The lower velocities could be due to larger 

time spans between position vectors and thus a similar result as shown in Figure 16 above. 

The Herrick-Gibbs method is similar to the Gibbs method in that it uses 3 consecutive 

position vectors, but it also incorporates the time between the fixes into the solution for the 

velocity. The method uses a Taylor-series expansion to obtain the velocity vector for the middle 

position vector. The method is specifically designed for position vectors taken by a ground 

station, which are generally very close together. This is equivalent to the data received from the 

GPS receiver, as they are also position vectors spaced close together. Figure 18 shows the 

velocities calculated using Herrick-Gibbs method. 

The Herrick-Gibbs program includes a test to ensure the three data points are actually co- 

planar before the velocity vector is calculated. Because PC-Sat does not have memory on board 

to store data between passes over the ground station, only the data retrieved real-time are 



35 
available. The result is gaps in the data between ground stations across which the velocity 

vectors cannot be accurately calculated. Therefore, if the spacing between two of the three 

position vectors is greater than 0.3 degrees, the velocity vector is set to zero. 
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Figure 18: Velocity from Herrick Gibbs 

The majority of the velocity magnitudes are around 7.45 km/s as is expected from the 

NORAD average velocities. The mean velocity calculated using the Herrick Gibbs method is 

7.4484 km/s. From Figure 18, any velocity above 7.47 and below 7.44 appears to be an outher. 

If these points are not included, the mean velocity is 7.4528 km/s. There appear to be a large 

number of outliers on this plot. When examined closer, these points are almost all the first or last 
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few GPS positions in a group. This phenomenon will be explained later in the GPS Outliers 

section. 

Kalman Filter 

An alternate way to calculate the instantaneous velocity vector is using a Kalman filter. 

This is "a technique for computing the best estimate of the state of a time-varying process."    It 

is a predictor-corrector technique, where the state is estimated at each successive observation 

time to compare to the actual observation. The Kalman filter also "carries all the information 

concerning past measurements in its current state and covariance estimates and therefore doesn't 

need to reprocess all of the past measurement information at each step."'' Because an orbit is 

not linear, an extended Kalman filter must be used. The extended filter has a two-step method. 

The new state estimate is predicted using previous data, and then the prediction is updated with 

the new observations. It uses a set of matrices to bias the calculation of the propagated set of 

data based on accuracies of the current set of data. 

The extended Kalman filter requires a starting position and velocity vector. The NORAD 

data are very useful for this. A Matlab program titled "NORADtoRVlO.m" transforms the COEs 

fi-om the 2-line elements of January 10, 2002 into position and velocity vectors measured at the 

time of the NORAD reading. This is the first NORAD data point after the start of the GPS data. 

The Matlab program "Predictm" turns the position and velocity vectors back into the COEs and 

propagates them forward to the next observation time. The predict program uses only the effect 

due to the oblateness of the Earth and atmospheric drag to predict the future orbital elements. 

The predicted position is compared to the GPS measured position and the difference is recorded 
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in a matrix. The bias matrices then are used to calculate a final and "filtered" position and 

velocity vector using both the predicted and measured data. Figure 19 and Figure 20 show the 

velocities calculated using the Kalman filter. 
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Figure 19: Velocity from Kalman filter: same scale as HGibbs velocity 
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Figure 20: Velocity from Kalman filter: different scale from HGibbs velocity 

Orbit Prediction: Non-Spherical Earth 

The prediction program used for the Kalman filter only takes two disturbances into 

account as it propagates the satellite's position forward. The orbit of a satellite would be a 

perfect ellipse if it occurred about a point mass in a perfect vacuum. The classical orbital 

elements would be constants and the satellite would retum to the same position in space every 

oibit. The earth is not a point mass, and space is not a perfect vacuum, especially at 800 km 

where PC-Sat is orbiting. The different perturbations affecting orbits can be accounted for 

mathematically. 

"The Earth is appreciably oblate, the equatorial diameter being 42.77 km greater than the 

polar diameter.'^^ The result of this oblateness is a change in the right ascension of the 

ascending node, Q., and a change in the argument of perigee, (O. The orbit rotates about the Earth 
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in the inertial reference frame, and the orbit rotates in the orbital plate. The amount of each 

rotation is each dependent on the semi-major axis, the eccentricity, and the inclination of the 

orbit as shown in equations (13) and (14).^^ 

( 
Q. = —nJ-, 

G) = —«J, 

R V 

ad-e) 
cosz 

R 
(5cos'/-l) 

(13) 

(14) 

Each of these equations is a simplified version using only the J2 term, the expanded 

version of each uses ii values 2 and above. The numerical values for the even ^, terms were 

developed using accurate measurements of Q. for many satellites in different inclinations and 

solving for the smaller ^ values. The odd Jn values were determined by the same method but 

using the equation for the periodic variation in perigee distance. Table 3 shows the numerical 

values of Jn.^'* 

Table 3 Numerical values of J„ 

10^J2 = 1082626±1 10%=-245±5 10% = -210±8 
10^J3 = -2530±4 10^ J6 = 543±7 10^J9 = -90±7 
10^J4 = -1624±2 10%=-336±6 lO^Jio = -242±9 

Equations (13) and (14) are shown in the simplified form using only the h term and 

assuming the other Jn terms are sufficiently small to be disregarded. The critical inclination for 

the change in longitude of the ascending node (equation (13)) is 90 degrees. At this inclination 

the longitude of the ascending node does not change as the cos(90 deg) is zero. Therefore for 

higher inclination orbits the change is less than for equatorial orbits. The critical inclination in 

equation (14) is 63.4 degrees, the inclination at which there is no rotation of the argument of 
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perigee due to the gravitational field of the Earth. The closer a satellite's orbit is to this 

inclination, the less the Earth's oblateness affects the position of the argument of perigee. 

Orbit Prediction: Effects of the Sun and Moon 

The Sun and the Moon also affect orbits about the Earth by their gravitational attractions 

and also by solar radiation pressure fi-om the Sun. "The effects of the luni-solar gravitational 

attractions are generally small and periodic: the change in perigee distance rarely exceeds 2 km 

for a close satellite (less than 1500 km) with e < 0.2, although much larger changes occur for 

highly eccentric orbits. The four orbital elements e, i, 0, and ? are all affected, but a remains 

constant."^^ Since the focus of this project is on the semi-major axis, a, the gravitational effects 

of the Sun and Moon can be ignored. 

The solar radiation pressure is a periodic perturbation, unlike the atmospheric drag. As 

referenced earUer, this solar radiation pressure is the force which causes spin about the z-axis on 

PC-Sat, and is not accounted for beyond this. 

Classical Orbital Elements 

The equation for atmospheric density (equation (4)) requires several Classical Orbital 

Elements (COEs), including the eccentricity, mean motion, true anomaly, and semi-major axis. 

The average values of these COEs for PC-Sat can be directly taken from the NORAD two-line 

element sets. They can also be calculated firom the position and velocity vectors at each instant 

for which we have data. 
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NORADData 

The data from NORAD are initially in the form of the 2-line elements. Rather than the 

specific position of the satellite, the NORAD data give information about the overall orbit in 

which the satellite ti'avels. The semi-major axis is not specifically given in the 2-line element 

set, but the mean motion is. The relationship between mean motion (n) and semi-major axis is 

«-JJ. (.5) 
Figure 21 shows the semi-major axis for PC-Sat calculated from NORAD over 10 

months, with January 1, 2002 as day zero. The data overlaid are for the days that have 

corresponding GPS data. The decline in semi-major axis determined from the NORAD data 

across the 12 days of January containing GPS data is 60 m. Compared to Table 2, this change in 

semi-major axis is almost 10 times greater, which means a factor often difference between the 

NORAD density and the exponential model density should be expected. 
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Figure 21: Semi-major axis from NORAD data 

GPS Data 

Eccentricity 

The eccentricity vector can be determined directly from the position and velocity vectors 

at a point in time. The magnitude of the vector is the eccentricity of the orbit. The direction of 

the vector points toward perigee. PC-Sat's orbit is almost circular, so the actual position of 

perigee is somewhat difficult to define. Only the magnitude is necessary for final calculations, 

which will not count on the direction, but the vector is needed to calculate the velocity. Equation 

(16) shows the equation for the eccentricity vector, where \i is the gravitational constant. 

e=l U  (16) 
M 
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Mean Motion 
The mean motion is a function of the semi-major axis. Equation (17) shows the 

relationship. 

^ (17) 
.a 

True Anomaly 
The true anomaly is the position of the spacecraft in its orbit, referenced to the point of 

perigee. It is calculated from the eccentricity and position vector. Equation (18) gives the 

equation. 

^'^'''liM (18) 
if(rv<0),thenv=360°-v 

Semi-Major Axis 

The semi-major axis is also a function of the position and velocity at any particular time. 

Equation (19) shows the relationship. 

a ±-^ (19) 
r    LL 

Another method of finding the semi-major axis is to use the period. The period of the 

orbit is directly related to the semi-major axis, as shown in equation (20). The symbol \i is the 

Earth's gravitational parameter, the product of Earth's gravitational constant G and Earth's mass 

m. The numerical value of \i is 3.986x10^ kmVs^. 

27r   3/2 

-1=' 4ii 
P = -^a (20) 
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The difficulty of this method Has in the fact that the orbit is not a closed loop. The 

satellite does not return to the exact same position every orbit, one of the results of atmospheric 

drag. Therefore a definition of orbital period for PC-Sat must be agreed upon before determining 

the value of the orbital period. The right ascension and declination would be the best coordinates 

system for this because they are inertial with respect to space and the orbital plane, similar to 

longitude and latitude relative to the surface of the Earth. Therefore a certain right ascension 

could be defined as the starting point of the orbit and a period is complete when the satellite 

returns to that right ascension. The errors involved with this calculation come fi-om the time 

between data points. In thirty seconds PC-Sat travels approximately 225 km. The time of 

crossing can be approximated by using linear interpolation between the two points on either side 

of the reference right ascension. This method assumes that the satellite is traveling at a constant 

speed between the two data points used for interpolation. This is true for a perfectly circular 

orbit, but PC-Sat's is slightly elliptical. 

Experimentally, this method did not give the desired accuracies. The rehability of the 

semi-major axis calculated greatly depended upon the right ascension or declination chosen. The 

right ascension I chose was the longitude of the Naval Academy because most of the GPS data 

recorded were taken here, so the position coordinates of PC-Sat are much more fi-equent across 

this right declination. Table 4 shows the varying average semi-major axis as a function of the 

reference latitude. The difference between the semi-major axis calculated at the equator and at 

the top of the orbit is about 60 km. The chosen reference point for the beginning and end of the 

orbit has too much influence on the accuracy to be used with this data set to calculate the 

atmospheric density to within 15 percent. With smaller intervals between GPS positions, this 
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method could be possible. The thirty second intervals, however, show in Table 4 to be too 

large for accurate calculation of semi-major axis. 

Table 4: Semi-major axis calculated using period 

Outliers 

Reference 
latitude [deg] 

Mean semi-major 
axis [km] 

0 7134.2 
10 7079.1 
20 7001.9 
30 7002.1 
40 6982.8 
50 6974.0 
60 6973.6 

NORAD Outlier 

The outlier in the time-series data of the NORAD semi-major axis (Figure 21) is 

somewhat confusing. We know from orbital dynamics that it is physically impossible for the 

satellite to have a semi-major axis decrease or increase that amount without a propulsion system 

or a significant collision with another object in space. For it to have decreased and then 

increased back to the original orbit by two collisions is impossible. Even if it was knocked into a 

lower orbit somehow, it would then be travehng at a higher velocity and it would not return to 

the same orbit it left. Therefore the single outUer in the NORAD data was discarded as being a 

corrupted data point. 

GPS Outliers 
The outUers in the GPS data tend to occur infrequently, several at a time, and afterwards 

the orbit returns to the expected orbit. As with the NORAD outlier, the satellite cannot move 

from one orbit to another and back again without some propulsion system or collision. PC-Sat 
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does not have a propulsion system, which leaves only collisions as a possibility. The return 

of the satellite to the predicted position after several outliers indicates that the orbit did not 

actually change as the data suggest. 

The Kalman filter diverged several times rather than converging as it was designed. The 

divergence occurred when the predicted position and the observed position were drastically 

different than one another and the program could not resolve which position was correct. The 

source of the divergence was GPS data points that were not a part of the expected orbit. Figure 

22 shows just one of these outlier groups in the data, along with the points around them to show 

where the orbit is expected to be. 
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Figure 22: Outlier in GPS position vectors 
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In Figure 22, the small dots are the satellite's orbit. The larger squares clumped 

together are the points to either side of the outliers and are along the path expected for the 

satellite's orbit. The stars are the outliers, and should lie between the two groups of diamonds. 

They are in noticeably different positions from the rest of the expected orbit. The prediction 

program in the Kalman filter predicted a position vector to be along the expected orbit, and then 

compared the prediction to the outlier. The result was a large difference between the expected 

and reported position and filter was unable to predict the next position, causing a divergence. 

These few outliers are most likely caused by the tumbling of the satellite. The GPS 

receiver that is on PC-Sat has in it a program to predict where each of the GPS satellites will be 

from one observation to the next. Of the 12 possible satellites from which the receiver can 

receive, 10 to 11 are constantly in view. The receiver tracks these satellites that are in view and 

predicts where they will be for the next pass. The tumbling, however, is not accounted for in the 

program. The receiver rapidly detects new GPS satellites in view, but in these three cases, 

probably is not as quick. New satellites were most likely added to the solution during these 

observations, and the receiver was either unable to track them or unaware that they were not the 

ones being tracked. The receiver notes these observations as being accurate, but the figures 

above show that they are not. The Kalman filter also shows that when the outliers are removed 

from the data set, the filter converges and produces positions and velocities at each observation 

time. With the outliers included, the Kalman filter diverges at the first one and the program 

stops. 

Sunny Leung, German Space Operations Center, German Aerospace Center (DLR), has 

also noticed these few outhers and attributes them to the tumbling motion of PC-Sat. "Also bear 

in mind, there is a small spin on PC-Sat which caused frequent change in GPS visibility, and this 
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may lead to erroneous measurements."^^ The first and initial attempt to use the GPS receiver 

was immediately after launch of the spacecraft. "Rapidly varying antenna attitude with respect 

to the GPS constellation introduced great difficulty to the receiver in achieving bit and firame 

synchronization with a particular PRN. Although the Doppler aiding algorithm was providing 

correct Doppler shift inft)rmation to the frequency search routing inside the receiver, the 

unfavorable tracking condition caused difficulty.... In the second attempt, on the 31 October 

2001, the GPS receiver was able to track 11-12 satelhtes. ... This observation indicated the 

improved GPS antenna attitude over the 30 day period, which would suggest a reduced spin rate 

and tiimbling motion caused by the magnetic stabilization onboard."^^ The tiimbling initially 

caused massive problems for the GPS receiver, but the magnets in PC-Sat have slowed the 

tumbling and allowed the satellite to receive signals and calculate its position. However, the few 

outiiers that did occur are most likely due to the tumbling motion and can be eliminated from the 

data set. 

Results 

Table 5 summarizes the average atmospheric density over the twelve day period during 

which the GPS receiver was activated. 

Table 5: Summary of average atmospheric densities using various methods 

Method Density [kg/m*] 
Theoretical -IxlO-^'^ 
NORAD 0.91x10-'' 

Herrick Gibbs 1.46x10-'^ 
Kalman Filter 1.29x10"'^ 

NORAD Results 
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From the NORAD data, there is a decrease in semi-major axis between each data point 

taken, each a half day to a day apart. This visible decrease in the orbit over the short period of 

time shows that the atmosphere at 800 km is affecting the satellite. Using equation (4) to 

calculate the density gives an average density of 0.91x10"'^ kg/n^ over the 12 day period. The 

average density of the atmosphere through which the satellite traveled between NORAD data 

points throughout the year 2002 was 6.29x10"''*. 

The predicted atmospheric density between each pair of NORAD data points can also be 

calculated. Figure 23 shows the result of this calculation. The density does vary over each time 

period, which is expected because the slope of the semi-major axis in Figure 21 is not constant. 

The greater the slope, the higher the atmospheric density is expected to be. The days over which 

GPS data were taken have some of the steeper slopes in the data, and are therefore expected to 

have higher densities. There is no known relationship between the higher density recorded 

during the time the GPS receiver was turned on and the fact that the receiver was on. 
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GPS Results 

The goal of this project was to be able to calculate the atmospheric density from the GPS 

data over near-real time intervals. The first calculation was the overall change over the twelve 

days. The change here is expected to be comparable with the change expected from the NORAD 

two-line elements, giving similar density calculations. 

First used was the Herrick-Gibbs approach to calculate the velocity and atmospheric 

density. Once the outliers were eliminated (discussed with Figure 18), mean density for the 

twelve days was 1.4554x10"^^ kg/rt^. This differs by an order of magnitude from the simple 

theoretical density, as well as the density calculated using NORAD data. The density was also 

calculated by using the change in semi-major axis between each GPS data point, but that method 
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was not successful. The data were not smoothed in any way, so the calculated densities took 

into account all the noise in the data. The result was a mixture of positive and negative densities, 

physically impossible because the density cannot be negative. The Herrick-Gibbs was not the 

best choice for this research. Had the data points received from the GPS receiver on PC-Sat been 

completely continuous without any large gaps in time, the Herrick-Gibbs method could have 

proved very useful. However, the number of discontinuities severely limited the applicability of 

this method. 

A better method turned out to be the Kalman filter. Because it smoothes the data as it 

runs, the Kalman filter gives results more free of high frequency noise. It is also able to use all 

the data points in the set without relying on the points to either side being close in time. Using 

the Kalman filter, the average atmospheric density for the twelve days was calculated to be 

1.2919x10-^^ kg/m?.   This is also about two orders of magnitude different than the theoretical 

and one order of magnitude from the NORAD calculated densities. The next step was to 

calculate the atmospheric density by binning the data over varying numbers of points. The 

results were also heavily dependent on the number of points averaged into a single calculated 

density. Table 6 shows the mean of the densities calculated using various numbers of data points 

per bin. 

Table 6: Densities using Kalman filter, averaged across various data ranges 

Number of data 
points per bin 

Density 
(kg/m^) 

19 1.63x10-'' 
219 1.58x10-'" 
519 1.18x10-'" 
819 7.26x10-" 
1119 1.19x10-'" 
1519 1.28x10-'" 
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The densities calculated using the GPS data do not match what they were expected to 

be using simplistic theory, which is not of much concern. The theory uses an exponential 

atmospheric model, but it well known that the atmosphere does not decrease exponentially at 800 

km altitude. TheGPS densities are only about an order of magnitude different from what was 

calculated using the NORAD data. To identify the source of this difference, the data themselves 

were examined. For an 800 km orbit with an approximate eccentricity of 0.0005, a difference of 

7.2 km between perigee and apogee is expected. The plot of the magnitudes of the position 

vectors is shown in Figure 24. The difference between the largest and smallest of these numbers 

is 6.9 km. 
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Figure 24: Magnitude of position vectors from GPS data 

The calculation of these position vectors includes the eccentricity of the Earth itself and 

the altitude of the satellite. Without including the eccentricity of the Earth, the range would be 

19.5 km rather than just 6.9 km. The semi-major axis calculated from these was expected to be 
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slightly decreasing over time. Instead what they showed was that the semi-major axis moved 

similarly to the orbits. Figure 25 shows that as the satellite moved closer to the Earth, the semi- 

major axis seemed to decrease, and as the satellite moved away from the Earth, the semi-major 

axis seemed to increase. 
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Figure 25: Comparison of semi-major axis and position vector 

The semi-major axis should not depend on the satellite's position in the orbit and should 

be independent of the actual distance of the satellite from the center of the Earth. As the satellite 

gets closer, the speed should increase and the semi-major axis, a function of position and 

velocity shown in equation (19), should remain constant. This is not the case shown in Figure 25 

and it appears that the calculated velocity is the probable source of the error. 
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I was able to calculate a density using the GPS data. The result was different than 

predicted by a simple model, but this acceptable because the simple exponential model is not 

recognized to be correct at 800 km. My results are also only an order of magnitude different 

than the average values calculated using NORAD. 

Conclusion and Future Work 

This project has turned out to be true research. The method that was originally designed 

to determine semi-major axis did not work, and neither did several others. The final result was 

that neither the Herrick-Gibbs method nor the Kalman filter were able to calculate the accurate 

velocities needed for determination of the semi-major axis. This in turn did not allow accurate 

calculation of the atmospheric density. 

A part of the difficulty was that PC-Sat was not the optimal satellite to use for this 

research. An ideal satellite would be spherical and, since the effects of atmospheric drag are also 

much greater at lower altitudes, a lower altitude orbit would also be better for this analysis. The 

GPS receiver on PC-Sat took position fixes about three to four times per rotation, during which 

the coefficient of drag changed. This causes a significant error of up to 18 percent. Another 

difficulty was the lack of velocity data fi-om the GPS receiver. The receiver can calculate these 

data, but velocity was not a part of the data received firom PC-Sat. A higher rate of positioning 

would also give better results in calculating density. The receiver on PC-Sat was set to fix at 30 

second intervals, during which the satellite travels almost 225 km. Shorter fix intervals would 

give smaller errors between predictions and GPS positions and perhaps improve the accuracy of 

the Kalman filter in calculating the velocity. 
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Future work with this particular data set could continue. There are other ways of 

calculating the velocity of a spacecraft given its position than were examined during this 

research. It would also be interesting to study a different satellite with different orbital 

characteristics. A better GPS receiver, previously space tested and designed to measure height 

above the surface of the Earth, would also improve the results of this method for calculating 

atmospheric density. Being able to use real-time or near-real time data to calculate the 

atmospheric density for a small interval of an orbit would be a great leap in knowledge of the 

Earth's upper atmosphere. With current accuracies at or greater than 15 percent, there is 

certainly room for improvement. Several satellites of known ballistic coefficients and circular 

orbits would make this research possible. 
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Appendix A: Matlab Programs 

ReadGPS.m 

%z is the length of the arrays 
%data is the [z,4,12] array of all the data taken 
%latS is the array of satellite latitudes 
%longS is the array of satellite longitudes 
%altS is the array of satellite altitudes 
%timeS is the array of time in [hhmmss] 
%seconds is the number of seconds at each time data point 
%minutes is the number of minutes at each time data point 
%hours is the hour of the time data poin t 
%time is the array of time in [hh mm ss] 

file='diskD'; 
iffile='diskD' 

datal 0=csvread('D:\Text files\PCSAT_020110_GPS.txt' 
datal l=csvread('D:\Text files\PCSAT_02011 l_GPS.txt' 
datal 2=csvread('D:\Text files\PCSAT_020112_GPS.txt' 
datal 3=csvread('D:\Text files\PCSAT_020113_GPS.txt' 
datal4=csvread('D:\Text files\PCSAT_020114_GPS.txt' 
datal 5=csvread('D:\Text files\PCSAT_020115_GPS.txt' 
datal 6=csvread('D:\Text files\PCSAT_020116_GPS.txt' 
datal 7=csvread('D:\Text files\PCSAT_020117_GPS.txt' 
datal 8=csvread('D:\Text files\PCSAT_020118_GPS.txt' 
datal 9=csvread('D:\Text files\PCSAT_020119_GPS.txt' 
data20=csvread('D:\Text files\PCSAT_020120_GPS.txt' 
data21=csvread('D:\Text files\PCSAT_020121_GPS.txt' 

end 

z=274; 
dataGPS=zeros(z,4,12); 
[m,n]=size(datal 0); 
dataGPS(l:m,:,l)=datalO; 
[m,n]=size(datal 1); 
dataGPS(l:m,:,2)=datal 1; 
[m,n]=size(datal 2); 
dataGPS(l :m,:,3)=datal2; 
[m,n]=size(datal 3); 
dataGPS(l :m,:,4)=datal 3; 
[m,n]=size(datal4); 
dataGPS(l:m,:,5)=datal4; 
[m,n]=size(datal5); 
dataGPS(l :m,:,6)=datal 5; 
[m,n]=size(datal 6); 
dataGPS(l:m,:,7)=datal6; 
[m,n]=size(datal 7); 
dataGPS(l:m,:,8)=datal7; 
[m,n]=size(datal 8); 
dataGPS(l:m,:,9)=datal8; 
[m,n]=size(datal9); 
dataGPS(l:m,:,10)=datal9; 
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[m,n]=size(data20); 
dataGPS(l :m,:,l 1 )=data20; 
[m,n]=size(data21); 
dataGPS(l:m,:,12)=data21; 

fori=l:12 
latStemp=fix(dataGPS(:,2,i)./100); 
latS(:,:,i)=(latStemp+(dataGPS(:,2,i)-latStemp.*100)/60).*pi/180; %[rad] latitude of satellite 
longStemp=fix(dataGPS(:,3,i)./100); 
longS(:,:,i)=(longStemp+(dataa>S(:,3,i)-longStemp.*l 00)/60).*pi./l 80;      %[rad] longitude of satellite 
altS(:,:,i)=dataGPS(:,4,i)/1000; %[kin] altitude of satellite 
timeSGPS(:,:,i)=dataGPS(:,l ,i); %[hhmmss] time data was taken 
hoursGPS(:,:,i)=fix(timeSGPS(:,:,i)./10000); 
minutesGPS(:,:,i)=fix((timeSGPS(:,:,i)-hoursGPS(:,:,i).*10000)./100); 
secondsGPS(:,:,i)=fix((timeSGPS(:,:,i)-hoursGPS(:,:,i).*10000-minutesGPS(:,:,i).*100)); 
timeSGPS(:,l,i)=hoursGPS(:,l,i).*60.*60+minutesGPS(:,l,i).*60+secondsGPS(:,l,i);   %time in seconds 
timeGPS(:,l,i)=hoursGPS(:,:,i); 
timeGPS(:,2,i)=minutesGPS(:,:,i); 
timeGPS(:,3,i)=secondsGPS(:,:,i); 
DateGPS(l,l,i)=i+9; %days; 10Jan2002=10 etc 
forj=l:z 

if hoursGPSG,l,i)==0 & niinutesGPS(j,l,i)==0 & secondsGPS(j,l,i)==0 
DaysGPS(j,l,i)=0; 

else 
DaysGPS(j,l,i)=DateGPS(l,I,i)+hoursGPSG,l,i)/24+minutesGPS(j,l,i)/1440+secondsGPS0,l,i)/86400; 

%days 
end 

end 
end 

f=i; 
fori=l:12 

for j=l :z 
ifDaysGPS(j,:,i)~=0 

Day(f,l)=DaysGPSa,l,i); 
lat(f,l)=latsa,l,i); 
long(f,l)=longSa,l,i); 
alt(f,l)=altSa,l,i); 
hour(f,l )=hoursGPS(j,l ,i); 
minute(f, 1 )=nmiutesGPS(j,l ,i); 
second(f, 1 )=secondsGPS(j, 1 ,i); 
seconds(f,l)=timeSGPS(i,l,i); 
time(f,:)=timeGPS(j,:,i); 
f=f+l; 

end 
end 

end 
g=f-i; 
forj=2:g 

dtGPS(j,l)=(DayG,l>Day(j-l,l))*86400; 
end 
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LST.m 

%LST.m calculates the local sidereal time from the Julian day 

thetaGO=l.753637361;    %rad for lJan2002 

thetaGGPS=thetaG0+1.002737909350795*2*pi.*(Day-l);   %rad 
thetaGPS=thetaGGPS+long;   %rad 
thetaGPS=mod(thetaGPS,2*pi); 
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GPSPosition.m 

%Read data files into array data(z,4,12) 
%turn data from time, lat, long, and alt arrays into position in UK frame 

ReadGPS; 

mu=3.986004415e5; %km'^3/s'^2 

%Calculate site time data 
LST; 

%ecc is the eccentricity of the earth 
%radius is the radius of the earth 
%altA is the altitude of the ground point above spherical earth 
%xR and zR are the distances from the center of the earth along 
% the x-y plane and in the z-direction, respectively 
%RGroundPoint is the position of the satellite ground point in XYZ 
%RGPmag is the magnitude of the RGroundPoint vector 

%ecc=0; 
ecc=0.081819221456; 
radius=6378.1363;   %km 

xR=(radius./sqrt(l-ecc'^2.*(sin(lat)).'^2)+alt).*cos(lat);   %km 
zR=(radius.*(l-ecc^2)./sqrt(l-ecc'^2.*(sin(lat)).'^2)+alt).*sin(lat);    %km 
radiusE=sqrt(xR.'^2+zR.^2); 
rIJKGPS(:,l)=xR.*cos(thetaGPS); 
rIJKGPS(:,2)=xR.*sin(thetaGPS); 
rIJKGPS(:,3)=zR; 
rIJKGPSmag=sqrt(rIJKGPS(:,l).'^2+rIJKGPS(:,2).'^2+rIJKGPS(:,3).'^2); 
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NORADtoRVlO-m 

mu=3.986004415e5; %km'^3/s'^2 
Rearth=6378.1363; %km 

%read in classical orbital elements at starting point from line elements 
11=67.0482; %inclination, degrees 
bigomegal=214.3693; %right ascension of the ascending node, degrees 
el=0.0004963; %eccentricity, no units 
littleomegal =276.9578; %argument of perigee, degrees 
Ml=83.0837; %mean anomaly, degrees 
nl=14.2861444; %mean motion, revs/day 
year=2002; %epoch year, used for thetaGO 
day 1 =010.94044338; %day and fraction of day of tracking data 
ndotl =0.00000955*2; %first time derivative of mean motion, rev/day^2 
ndotl =ndotl *2*pi/86400'^2;  %rad/s'^2 

%start calculations 
nlrad=nl*2*pi; %rad/day 
al=(mu/(nlrad/86400)^2)'^(l/3);       %km 

%change degrees to radians 
ilrad=il*pi/180; 
bigomegalrad=bigomegal*pi/l 80; 
littleomegalrad=littleomegal *pi/l 80; 
Mlrad=Ml*pi/180; 

%calculate eccenfric anomaly from mean anomaly 
ETrad-10000; 
Elrad=Mlrad; 
while abs(Elrad-ETrad)>0.0001 

ETrad=Elrad; 
E1 rad=Ml rad-e 1 *sin(ETrad); 

end 
Elrad; 
El=Elrad*180/pi; 
%calculate nu from eccentric anomaly 
nulrad=acos((cos(Elrad)-el)/(l-el*cos(Elrad))); 
ifElrad>pi 

nu 1 rad=2*pi-nu 1 rad; 
end 
nulrad; 

%calculate r and v in PQW coordinates 
pl=al*(l-el^2); 
r 1 PQabs=p 1 /(1 +e 1 *cos(nu 1 rad)); %km 
rlPQ=[rlPQabs*cos(nulrad); rlPQabs*sin(nulrad);0]; %km, [P;Q;W] 
vlPQ=sqrt(mu/(pl)).*[-sin(nulrad); (el+cos(nulrad));0]; %km/s, [P;Q;W] 
vlPQabs=sqrt(vlPQ(l)'^2+vlPQ(2)'^2); %km/s 

%calculate in IJK coordinates 
R=zeros(3,3); 
R(l,l)=cos(bigomegalrad)*cos(littleomegalrad>sin(bigonBgalrad)*sin(littleomegalrad)*cos(ilrad); 
R(l,2)^cos(bigomegalrad)*sin(littleomegalrad)-sin(bigomegalrad)*cos(littleomegalrad)*cos(ilrad); 
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R(l,3)=sin(bigomegalrad)*sin(ilrad); 
R(2,l)=sm(bigomegalrad)*cos(littleomegalrad)+cos(bigomegalrad)*sin(littleomegalrad)*cos(ilrad); 
R(2,2)^sin(bigomegalrad)*sin(littleomegalrad)+cos(bigomegalrad)*cos(littleomegalrad)*cos(ilrad); 
R(2,3)—cos(bigomegalrad)*sin(ilrad); 
R(3,l)=sin(littleomegalrad)*sin(ilrad); 
R(3,2)=cos(littleomegalrad)*sin(ilrad); 
R(3,3)=cos(ilrad); 
R; 

rIJKl=R*rlPQ; %km 
vIJKl=R*vlPQ; %kin 
rmagl =sqrt(rIJKl (1 )^2+rIJKl (2)^2+rIJKl (3)'^2); %km/s 
vmag 1 =sqrt(vIJKl (1 )'^2+vI JKl (2)'^2+vIJKl (3)'^2); %kin/s 
Xl=[rIJKl(l);rIJKl(2);rUKl(3);vUKl(l);vIJKl(2);vIJKl(3)];   %initial state vector forkalman filter 
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Predict.m 

mu=3.986004415e5; %km'^3/s'^2 
Rearth=6378.1363; %km 
12=0.0010826269; %assume units as [ ] 
%J2=0; 
%Tum position and velocity vectors into classical orbital elements 

h=cross(rIJKl,vIJKl); %km'^2/s 
hmag=sqrt(h( 1 )'^2+h(2)'^2+h(3)'^2);   %km^2/s 
K=[0; 0; 1]; 
LoN=cross(K,h); %km^2/s 
LoNmag=sqrt(LoN(l)^2+LoN(2)^2+LoN(3)'^2);   %km^2/s 

el=((vmagr2-mu/rmagl)*rIJKl-dot(rIJKl,vIJKl)*vUKl)/mu; 
elmag=sqrt(el(l)^2+el(2)'>2+el(3)^2); 
Energy=vmagl'^2/2-mu/miagl; %km'^2/s'^2 

al=-mu/(2*Energy); %km 
pl=al*(l-elmag'^2); %km 
inml=sqrt(mu/al'^3); %rad/s 

il=acos(h(3)/hmag); %rad 
big01=acos(LoN(l)/LoNmag); %rad 
if LoN(2)<0 

big01=2*pi-big01; 
end 
little01=acos(dot(LoN,el)/(LoNmag*elmag)); %rad 
ifel(3)<0 

Iittle01=2*pi-little01; 
end 
mil=acos(dot(el,rIJKl)/(elmag*rmagl));   %rad 
ifdot(rIJKl,vIJKl)<0 

nul=2*pi-nul; 
end 

El=acos((elmag+cos(nul))/(l+elmag*cos(nul)));  %rad 
ifnul >pi 

El=2*pi-El; 
end 
Ml=El-elmag*sin(El); %rad 

%Update for perturbations, no drag when ndotl=0 
a2=al-2*al/(3*ninl)*ndotl*dt; %km 
e2=elmag-2*(l-elniag)/(3*mml)*ndotl*dt;     %[] 
big02=big01-(3*mml*Rearth^2*J2)/(2*pl'^2)*cos(il)*dt;    %rad 
little02=little01+(3*mml*Rearth'^2*J2)/(4*pl'^2)*(4-5*(sin(il)'^2))*dt;    %rad 
M2=Ml+mml*dt+ndotl/2*dt'^2; %rad 
p2=a2*(l-62-^2); %km 
i2=il; %rad 

%calculate eccentric anomaly from mean anomaly 
M2=mod(M2, 2*pi); 
ET=-10000; 
E2=M2; 
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while abs(E2-ET)>0.00000001 

ET=E2; 
E2=M2+e2*sin(ET); 

end 
%calculate nu from eccentric anomaly 
nu2=acos((cos(E2>e2)/(l-e2*cos(E2))); %rad 
ifE2>pi 

nu2=2*pi-nu2; 
end 
mm2=sqrt(mu/a2'^3); 

%Tum COEs into new position and velocity vectors 
rPQW2=[p2*cos(nu2)/(l+e2*cos(nu2)); p2*sin(nu2)/(l+e2*cos(nu2)); 0];   %km 
vPQW2=[-sqrt(mu/p2)*sin(nu2); sqrt(mu/p2)*(e2+cos(nu2)); 0]; %km/s 

R=zeros(3,3); 
R(l,l)=cos(big02)*cos(little02)-sin(big02)*sin(little02)*cos(i2); 
R(l,2)^cos(big02)*sin(little02)-sin(big02)*cos(little02)*cos(i2); 
R(l,3)=sin(big02)*sin(i2); 
R(2,l)=sin(big02)*cos(littIe02)+cos(big02)*sin(little02)*cos(i2); 
R(2,2)^sin(big02)*sin(little02)+cos(big02)*cos(little02)*cos(i2); 
R(2,3)=-cos(big02)*sin(i2); 
R(3,l )=sin(little02)*sin(i2); 
R(3,2)=cos(little02)*sin(i2); 
R(3,3)=cos(i2); 

rIJK2=R*rPQW2;      %km 
vIJK2=R*vPQW2;      %km/s 
rmag2=sqrt(rl JK2(1 )^2+rIJK2(2)'^2+rIJK2(3)'^2);      %km 
vmag2=sqrt(vIJK2(l )^2+vIJK2(2)'^2+vIJK2(3)'>2);      %km/s 

X2=[rIJK2(l);rIJK2(2);rIJK2(3);vIJK2(l);vIJK2(2);vIJK2(3)]; 



67 
Kalmanl .m 
%Kalmanl .m uses a kalman filter for the GPS data converted to position vectors. 
%The initial position and velocity vectors are taken from the NORAD TLBs. 

mu=3.986004415e5; %km^3/s^2 
Rearth=6378.1363; %km 

%First read in NORAD TLBs and transform the COEs into position and velocity 
%Retums the initial state vector XI ([rx;ry;rz;vx;vy;vz]) 
NORADtoRVlO; 
rlJKl; 
vIJKl; 
rmagl; 
vmagl; 

%Calculate the r vectors from the GPS data 
%Retums the future state vector z ([rx;ry;rz]) 
GPSPosition; 

%Initialize H vector 
H=[l 0000 0 

010000 
0 0 10 0 0]; 

%Initialize P matrix 
P=[l 0 0 0 0 0 

010 0 0 0 
0010 0 0 
0 0 0 .0001 0 0 
0 0 0 0 .0001 0 
00 0 0 0.0001]; 

%counter for filteredX and filteredb 
c=l; 

%fori=l:12 
forj=l:g 

ifj>=619&j<=633 
j=634; 

end 
ifj==723 

j=724; 
end 
ifj>=1190&j<=1192 

j=1193; 
end 
ifj>=1213&j<=1215 

j=1216; 
end 
ifj>=1257&j<=1258 

j=1259; 
end 
ifj==1085 

j=1086; 
end 
ifj>=1250&j<=1254 
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j=1255; 

end 
ifj>=1347&j<=1354 

j=1355; 
end 

%Determine the time difference between the last data point and the next 
day2=Day(j,l); 
dt=(day2-dayl)*86400;     %seconds 

%Predict the next position vector 
%Find closest ndot from NORAD data 
%Input rlJKl, vIJKl, rmagl, vmagl 
%Retum X2 ([rx;ry;rz]) (rIJK2, vIJK2, rmag2, vmag2) 
Predict; 

%Calculate phi matrix 
phi(l,l)=l+(3*mu*dt^2*rnKl(l)^2)/(2*imagr5)-(mu*dt'^2)/(2*rmagl'^3); 
phi(l ,2)=(3*mu*dt'>2*rIJKl (l)*rIJKl (2))/(2*rmagl ^5); 
phi(l ,3)=(3*mu*dt'^2*rIJKl (1 )*rIJKl (3))/(2*rmagl'^5); 
phi(2,l)=phi(l,2); 
phi(2,2)=l+(3*mu*dt^2*rIJKl(2)'^2)/(2*rmagl^5)-(mu*dt'>2)/(2*rmagl'>3); 
phi(2,3)=(3*mu*dt'^2*rIJKl (2)*rIJKl (3))/(2*rmagl -^5); 
phi(3,l)=phi(l,3); 
phi(3,2)=phi(2,3); 
phi(3,3)=l+(3*mu*dt'^2*rIJKl(3)'^2)/(2*rmagr5)-(mu*dt'^2)/(2*rmagl'^3); 

phi(4,l)=(3*mu*dt*rIJKl(l)^2)/(rmagl'-5Kmu*dt)/(rmagr3); 
phi(4,2)=(3*mu*dt*rIJKl(l)*rIJKl(2))/(nnagl'^5); 
phi(4,3)=(3*mu*dt*rIJKl(l)*rIJKl(3))/(rmagl'^5); 
phi(5,l)=phi(4,2); 
phi(5,2)=(3*mu*dt*rIJKl(2)'^2)/(rmagl^5Hmu*dt)/(rmagl^3); 
phi(5,3)=(3*mu*dt*rIJKl(2)*rIJKl(3))/(rmagl'*-5); 
phi(6,l)=phi(4,3); 
phi(6,2)=phi(5,3); 
phi(6,3)=(3*mu*dt*rIJKl(3)^2)/(rmagl^5>(mu*dt)/(rmagl'^3); 

phi(l:3,4:6)=[dt 0 0 
Odt 0 
0 Odt]; 

phi(4:6,4:6)=[l 0 0 
01 0 
0 01]; 

phi; 
%Calculate predicted error covariance 

%Initialize Q matrix 
Q=[.01 0 0 0   0   0 

0 .01 0 0   0   0 
0 0.01 0   0   0 
0 0 0 .0001 0   0 
0 0 0 0 .0001 0 
0 0 0 0   0 .0001]; 
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%Calculate next Ptemp 

Ptemp=phi*P*phi'+Q; 

%Input next measured position: z=[rx,ry,rz] 
zA=[rIJKGPSa,l);rIJKGPSG,2);rIJKGPS(j,3)]; 

%Calcu]ate b vector: difference between predicted and measured position 
b=zA-H*X2; 

%Calculate Kalman gain, K 
R=[.25 0   0 

0   .25 0 
0    0   .25]; 

tempA=H*Ptemp*H'+R; 
tempB=inv(tempA); 
Kgain=Ptemp*H'*tempB; 

%Update state change estimate 
dx=Kgain*b; 

%Update Error covariance estimate 
P=Ptemp -Kgain*H*Ptemp; 

%Update state estimate 
Xfinal=X2+dx; 

%print filtered position and velocity with time 
day2; 
Xfinal; 
r=sqrt(Xfinal( 1 )^2+Xfmal(2)'^2+Xfinal(3)'^2); 
v=sqrt(Xfinal(4)'-2+Xfmal(5)'^2+XfinaI(6)^2); 
r; 

%save data 
filteredX(:,c)=Xfmal; 
filteredb(:,c)=b; 
filteredt(:,c)=day2; 
c=c+l; 

%reassign initial values for next iteration 
rIJKl=Xfmal(l:3); 
vIJKl=Xfinal(4:6); 
rmagl=r; 
vmagl=v; 
dayl=day2; 

end 
%end 
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KalmanltoCOE.m 

count=size(filteredX); 
count=count(2); 

Position=sqrt(filteredX(l,:).'^2+filteredX(2,:).'^2+filteredX(3,:).'>2); 
Velocity=sqrt(filteredX(4,:).'^2+filteredX(5,:).'^2+filteredX(6,:).'^2); 

%calculate semi-major axis 
aK(l,:)=l./((2./Position(l,:)>(Velocity(l,:).^2/mu)); 
aK=aK'; 
forj=2:count 

dadtK(lJ)=(aK(j,l>aKG-l,l))./dtGPSO,l); 
end 
mmK=sqrt(mu./aK.^3); 
hK=cross(filteredX(l:3,:),filteredX(4:6,:)); 
hKabs=sqrt(hK(l,:).^2+hK(2,:).''2+hK(3,:).^2); 
vcrosshK=cross(filteredX(4:6,:),hK); 
fork=l:3 

eK(k,:)=(vcrosshK(k,:)./mu>(filteredX(k,:)./Position(l,:)); 
end 
eKmag=sqrt(eK(l,:).^2+eK(2,:).^2+eK(3,:).^2); 

for j=l:count 
ifhKabs(lj)~=0 

incK(l j)=acos(hK(3 J)./(hKabs(l J))); 
else 

incK(lj)=0; 
end 
nodevectorK(:J)=cross(K,hK(:j)); 

end 
nodeK(l,:)=sqrt(nodevectorK(l,:).'>2+nodevectorK(2,:).'^2+nodevectorK(3,:).''2); 

for j=l:count 
ifnodeK(lj)~=0 

bigomegaK(lJ)=acos(nodevectorK(lJ)/nodeK(l j)); 
littleomegaK(lj)=acos(dot(nodevectorK(:J),eK(:j))/(nodeK(lj).*eKmag(lj))); 
nuK(l o)=acos(dot(eK(: J),filteredX(l :3 J))./(eKmag(l J).*Position(l J))); 

else 
bigomegaK(lJ)=0; 
littleomegaK(lJ)=0; 
nuK(lj)=0; 

end 
ifnodevectorK(2J)<0 

bigomegaK(l,j)=2*pi-bigomegaK(lJ); 
end 
ifeK(3J)<0 

littleomegaK(l j)=2*pi-littIeomegaK(l J); 
end 
if dot(filteredX(l :3 J),filteredX(4:6J))<0 

nuK(lj)=2*pi-nuK(lJ); 
end 

end 

bigomegaK=bigomegaK.* 180./pi; 
littleomegaK=littleomegaK.* 180./pi; 
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%filter out the erroneous data points: SMA below 7170 km and above 7186 km 
aboveA=fmd(aK>7186); 
below A=fmd(aK<7170); 
goodA=fmd(aK>=7170 & aK<=7186); 
count2=size(goodA); 
count2=count2(l); 
aKfmal=aK(goodA); 
Dayfinal=Day(goodA); 
Positionfinal=Position(goodA); 
Velocityfinal=Velocity(goodA); 
incKfmal=mcK(goodA); 
mmKfmal=mmK(goodA); 
eKmagfmal=eKmag(goodA); 
nuKfinal=nuK(goodA); 

figure; 
scatter(Day,aK); 
hold; 
scatter(Dayfinal,aKfmal,'g'); 
xlabel('time [Day]'); 
ylabel('semi-inajor axis [km]'); 
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COEtoDensity.m 

%COEtoDensity.m takes the COEs from Kalmanl toCOE.m and calculates the density using a running average 
%over a certain time period. 

%run Kalmanl .m and Kalman 1 toCOE.m first 

%calculate the relative velocity of the sateUite to the atmosphere, with initial assumption 
%that the atmosphere rotates with the earth 
omega=7.292115856e-5;     %rad/s 
omegaE=[0,0,omega]; 

Vrel=Velocity final.*(l-omega.*Positionfinal.A^elocityfinal.*cos(incKfmal)); 
Vrel=Vrel.*10'^3;      %m/s 

%calculate the baUistic coeeficient 
mass=12;%kg 
cD=2.11; 
CSArea=140.9;   %in'^2 
CSArea=CSArea*0.0254'^2; %m'^2 
BC=mass/(cD*CSArea); 

%calculate the average density 
slope All=polyfit(Dayfinal,aKfmal, 1); 
densityAll=-slopeAll(l).*1000./86400.*(BC).*(l./((mean(Vrel)).^2)).*(mean(mmKfmal).*sqrt(l- 
mean(eKmagfmal).^2)./sqrt(l+mean(eKmagfinal).'^2+2.*mean(eKmagfmal).*cos(mean(nuK)))); 

%calculate the change in semi -major axis 
p=i; 
datapoints=1519; %must be an odd number; is the number of points to be averaged across 
middle=(datapoints+l)/2;       %this is the point for which the average decrease in semi-major axis will be 
calculated 
delta=middle-l; 
order=l; 
for j=middle:(count2-middle) 

slopeG,:)=polyfit(Dayfinal(G-delta):(j+delta),l),aKfinal((j-delta):(j+delta),l),order); 
da(j,l)=0; 
for loop = 1: order 

da(j,l) = slope(j,loop)*(order+l -loop)*Dayfinal(j,l)''(order-loop)+da(j,l); 
end 
Vmean(l J)=mean(Vrel(l ,(j-delta):G+delta))); 
imnKmeanQ, 1 )=mean(mmKfmal((j-delta): (j+delta), 1)); 
eKmagmean(lj)=mean(eKmagfmal(l,(j-delta):(j+delta))); 
nuKmean(l ,j)=mean(nuKfinal(l ,(j-delta):(j+delta))); 

%calculate the atmospheric density 
if eKmagmean( 1J )<0.1 

density(j,p)=-da(j,l).*1000./86400.*(BC).*(l.A'mean(lJ).'^2).*(mmKmean(j,l).*sqrt(l- 
eKmagmean(lJ).'^2)./sqrt(l+eKmagmean(lJ).'^2+2.*eKjnagmean(lJ).*cos(nuKmean(lj)))); 

else 
density (j,p)=0; 

end 
end 
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%plot 
figure; 
hold; 
scatter(Day(middle:count2-middle,l),density(middle:count2-middle,l)); 
xlabel('time [Day]'); 
ylabel('density [kg/m^3]'); 

meandensity=mean(density(middle:count2-middle)); 
fprintf('\n The mean density using %i data points per density calculation is %i.', datapoints, meandensity); 


