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Abstract 

An Eulerian, sharp interface, Cartesian grid method is developed for the numerical 
simulation of the response of materials to impact, shocks and detonations. The mass, 
momentum, and energy equations are solved along with evolution equations for 
deviatoric stresses and equivalent plastic strain. These equations are cast in Eulerian 
conservation law form. The Mie-Gruneisen equation of state is used to obtain pressure 
and the material is modeled as a Johnson-Cook solid. The ENO scheme is employed to 
capture shocks in combination with a hybrid particle level set technique to evolve sharp 
immersed boundaries. The numerical technique is able to handle collisions between 
multiple materials and can accurately compute the dynamics of the immersed 
boundaries. Results of calculations for axisymmetric Taylor bar impact and penetration 
of a Tungsten rod into steel plate show good agreement with moving finite element 
solutions and experimental results. Qualitative agreement with theory is shown for the 
void collapse phenomenon in an impacted material containing a spherical void. 

1. Introduction 

An Eulerian methodology is presented for computing a range of problems that can be 
classified as high-speed multimaterial interactionsiZukas, 1982, Meyers, 1994). Such 
interactions can arise in phenomena such as munition-target interactions, geological 
impact dynamics, shock-processing of powders, formation of shaped charges upon 
detonation and their subsequent interaction with targets, and the impact-induced 
detonation of porous high-explosives. 

The fundamental challenges to a simulation capability designed to solve problems in the 
physical phenomena listed above arise fi-om the presence of nonlinear wave propagation 
and the large deformations suffered by the interacting materials. Therefore, to simulate 
the physics of multimaterial interactions, the numerical approach should be able to track 
the propagating boundaries and shock waves simultaneously and accurately. 
Traditionally, methods that have been used to solve such problems have been termed 
hydrocodes. The broad range of available hydrocodes has been reviewed by Anderson 
(1987) and Benson (1992). The wide variety of available methods indicates both that 



computational research in this area has been a robust enterprise and that the existing 
methods all carry limitations that have spurred continuing development efforts. 

Hydrocodes treat the moving material boundaries by either allowiiig the boundaries to 
flow through a fixed mesh while computing the flow field on the fixed mesh, or by 
allowing the mesh to follow the material points in the deforming materials. An 
intermediate approach, ALE (Arbitrary Lagrangian Eulerian), allows the mesh to move 
so as to conform to the contours of the deforming object, but the mesh is not necessarily 
attached to the material points. Lagrangian and Arbitrary Lagrangian Eulerian (ALE) 
methods (Liu et al., 1986) for the simulation of problems with severe material 
deformation have been applied extensively in the solid mechanics community. For 
example, Camacho and Ortiz (1996, 1997) have performed Lagrangian finite element 
calculations for impact and deformation of brittle materials (Camacho and Ortiz 1996), 
and ductile penetration (Camacho and Ortiz 1997). Their approach is based on adaptive 
meshing, exphcit contact/fHction algorithm, and rate dependent plasticity. In moving 
mesh methods, considerable complexity is enjoined by the need for mesh management, 
i.e. in maintaining an adequately refined mesh with good mesh quality. For very severe 
deformations, meshless methods (Duarte and Oden, 1996, Johnson et al., 1996, Liu et al., 
2000, Belytschko et al., 2000), or a combination of finite element methods with 
embedded boundary tracking and local enrichment (Dolbow et al., 2000, Moes et al., 
1999, Sukumar et al., 2000), have emerged as attractive alternatives in recent years. In 
these methods, one either entirely dispenses with a mesh or the mesh does not distort as 
the embedded boundary (such as a crack) propagates through the mesh. 

Eulerian methods have been applied to study material deformation by some researchers 
by adapting techniques fi-om computational fluid dynamics. For example, Trangenstein 
(1990, 1994, 1995), and Trangenstein and Pember (1991) have adopted Godunov's 
method to handle multimaterial impact as a Riemann type problem with second-order 
accuracy. Benson and coworkers (Benson, 1995, Cooper et al., 2000) have applied 
Eulerian methods to study the collapse of voids and shock-induced compaction in 
materials under impact loading. The methods presented by Benson and coworkers, 
although based on an Eulerian fixed mesh setting are of the Lagrangian-plus-remap type, 
where the material deformation calculations are split into two steps. First the material is 
evolved by a Lagrangian step which deforms nodes to new positions and then the field is 
mapped back to the fixed Eulerian mesh and the new interfaces reconstructed using 
Young's reconstruction. This approach has been used to good effect in the solution of 
mesoscale response of energetic materials in shock compression (Menikoff and Kober, 
1999) and void collapse (Cooper et al., 2000). 

Shock-capturing methods that were developed for gas dynamics have been extended to 
condensed media for application to high velocity (in liquids) or high strain rate (in solids) 
problems where nonUnear wave propagation phenomena are important. Glaister (1988) 
and Arienti et al. (1999) employ the Roe scheme in an approximate Riemann solver to 
capture shocks. While the former work is restiicted to gases and 1-dimension with a 
general convex equation of state, the latter deals with solid materials with the Mie- 
Griineisen equation of state for the pressure, but they solve the Euler equations for the 



flow of the condensed material, i.e. the strength of the material is not considered. Arienti 
et al. (1999) have also investigated 2-dimensional problems in that setting. Following 
Dukowicz (1985), Miller and Puckett (1996) presented an approximate Riemann solver 
for multimaterials for general equations of state where material interfaces can lie within 
cells. They treated the multiple materials as a mixture within each cell (i.e. volume 
fractions) without resorting to the Lagrangian-plus-remap approach. Material strength 
was not considered. The discrete Riemann solver for their formulation was fairly 
challenging to develop, particularly at the faces of the mixed cells. A simpler approach 
is the Ghost Fluid Method due to Fedkiw and coworkers (1999a). hi this method the 
interface is treated as a sharp entity that resides on the fixed mesh and appropriate 
boundary conditions at the interface are applied by extrapolating the field to an extended 
"ghost" material. This approach leads to a local reduction in order of accuracy at the 
computational points adjoining the immersed interfaces. However, since such points are 
few in number, the overall accuracy is still maintained at the high-order. Fedkiw et al. 
(1999a) have applied the ENO schemes to study the propagation of shocks in media 
where the pressure is governed by a variety of equation of states (gases and liquids). 
Their results show that the ENO scheme can accurately handle the shock formation in 
such systems. 

In a recently published paper (Udaykumar et al, 2003) we presented an Eulerian 
methodology to simulate high-speed impact of materials. The ENO scheme was used 
along with expUcit interface tracking and a Prandtl-Reuss material model to describe 
elasto-plastic deformation. Validation exercises were carried out for one-dimensional 
hydrodynamic and elasto-plastic impact situations. These ID results showed good 
agreement with exact solutions and with a Lagrangian technique using a moving mesh. 
Although a third-order ENO scheme was used the fact that the material was only weakly 
compressible rendered the captured discontinuities to be somewhat more smeared than 
for strong hydrodynamic shocks. Sharpening of the shock by use of different limiters 
along with the ENO scheme was studied. Based on this study, the Local-Lax Friedrichs 
ENO scheme with the minmod limiter was found to be the most robust and captured the 
physical features of elasto-plastic waves with optimal resolution. The present paper 
advances the methodology by employing the hybrid particle level set method to ti-ack 
boundaries and by incorporating rate-dependent plasticity (through the Johnson-Cook 
model) to better represent the dynamics. In addition, substantial improvements and 
simplifications in application of interface conditions are derived from the level-set 
representation. 

The characteristics of the present numerical method that make it attractive relative to 
other methods employed in hydrocodes (including our previous work presented in 
Udaykumar et al. (2003)) for high-speed multimaterial flows are: 

1. The equations governing the material deformation are solved in an Eulerian 
setting on a fixed Cartesian mesh. Well-developed high-accuracy shock capturing 
schemes are easily applied to compute the nonlinear wave-propagation 
phenomena in this framework. Here the ENO scheme is used for all calculations. 
Addition of problem-dependent shock viscosity is not called for since adequate 
dissipation at discontinuities is built into the scheme. 



2. The mesh remains fixed while the material flows through the mesh. Thus, issues 
such as mesh deformation, entangling, catastrophic mesh distortion in regions 
that have changed phase from solid to Uquid and thus have lost strength, do not 
arise within the current fixed-grid approach. The materials can fragment or 
collide and/or merge without affecting the flow calculations. 

3. The interfaces are tracked in a sharp fashion. They are not smeared over the mesh 
as in fraditional Eulerian methods. Thus materials can approach each other 
without mixing and a mixture formulation is not required in treating cells with 
multiple interfaces or in cells that are only partially filled. The exact interface 
location is known at all times due to the level set representation. Boundary 
conditions and jump conditions can be applied at the sharp interfaces at both free 
surfaces and material-material interfaces. 

4. A particle-level set method (Enright et al., 2001) is used. This technique is shown 
to maintain sharp comers of objects without excessive smoothing due to the 
inherent entropy fix in the advection scheme used to evolve the narrow-band grid- 
based level set. Thus, spurious mass loss effects due to stretching and shearing of 
interfaces that plague all Eulerian interface tracking schemes are avoided in the 
present method. No difficulty arises in freating multiple boundaries. These are 
simply evolved as different level set functions. The interfaces can undergo 
topological changes without occasioning difficulties for the flow solver. 

5. Extension to 3-dimensions should be straightforward. The numerical schemes for 
the governing equations are obtained by field-by-field decomposition along each 
dimension and therefore addition of the third dimension will only necessitate 
discretization of the equations in that direction. Furthermore, the level set 
formulation is also easily extended to 3D, thus allowing for tracking of three- 
dimensional objects as a straightforward extension of the technique presented in 
this work. 

The method is benchmarked in this work by comparing with solutions using moving 
FEM techniques and experimental data. 

2. Formulation of the Problem 

2.1 Constitutive Relations 

The equations governing the material deformation appropriate for high strain rate 
applications can be formulated by assuming that the volumetric or dilatational response 
is governed by an equation of state while the deviatoric response obeys a conventional 
flow theory of plasticity. The system of equations describing the material deformation in 
Lagrangian form can be written as follows. The stress in the material is expressed as the 
sum of the dilatational and deviatoric parts: 

a.j=Sy-p5y (1) 

Here a-j is the Cauchy sfress tensor, Sy its deviatoric part, and/j the hydrostatic pressure 
taken to be positive in compression. 
The rate of change of deviatoric stress is given by: 

I,=2G(Ay-An (2) 



SiJ=Sy+Sy^Q^-ni^S^j (3) 

V 

where G is the shear modulus, sy the Jaumann derivative and sy the total derivative of 
Sy, Dy the deviatoric strain-rate, D,^ the plastic strain-rate, and Q.. the spin tensor. The 
Jaumann derivative is used to ensure material frame indifference with respect to rotation. 
The spin tensor and the strain-rate tensor are given by: 

where Dy = Dy + Dfj is the strain-rate tensor composed of the elastic strain rate D-j and 

the plastic strain rate Dfj and Vj is the i* velocity component and ^ij='^ ■ 

The deviatoric strain-rate is: 

D.=D..--Dt,S.. (6) ij tj       o      kk    ij ^   ' 

The plastic strain-rate follows the relationships: 
tr(Dp = 0 (7) 

D^=ANy (8) 

s- . . 
where Ny =      "      is the unit outward normal to the yield surface and A a positive 

y^kl^kl 

parameter called the consistency parameter. 
The effective stress (Se) and effective plastic strain (e'') are given by: 

S^ltrisys,) (9) 

(J'')'=|KA;A;) (10) 

The evolution of the temperature due to heat conduction and thermal energy produced by 
work done during elasto-plastic deformation, is written as: 

pCt = kV'T-a(3X + 2M)TJl,+J3W^ (11) 
where T is the temperature, C the specific heat, k the thermal conductivity, a the 
thermal expansion coefficient, A and ju are the Lame constants, /3 the Taylor-Quinney 
parameter implies the fraction of mechanical power convert to thermal power (Taylor and 
Quinney, 1934), and is taken as 0.9, and the stress power due to plastic work, 
W =e''S^.   For the applications considered in this work, the conduction and elastic 
work terms are small compared to the plastic work term. 
The material models used in this work are rate-independent (Prandtl-Reuss material) and 
shear rate and temperature dependent (Johnson-Cook, 1985) models, given (respectively) 
in general form as: 

(j^=A + B{s''y (12) 



a=(A + Bi£''y)il + C\n 
ff^ 
\^0J 

){\-e"') (13) 

T-r 
Here  A,B,C,n,m,SgSrQ model constants, and  0 = —, where  T^  and  T^   are 

m o 

reference room temperature and melting temperature, respectively. In the Johnson-Cook 
model, equation (13), the flow stress, a^, increases with an increase in the effective 

plastic strain and the effective plastic strain-rate, and decreases with an increase in 
temperature. The yield stress in fact, goes to zero as the temperature approaches the 
melting temperature of the material. 

2.2 Governing Equations 

In the Eulerian setting, since material points are not followed, the above constitutive 
equations need to be combined with calculations of the flow of material. The equations 
governing axisymmetric deformation and flow of the material can be written as a system 
of conservation laws using the primitive variables as: 

dt        dx dy 
(14) 

where the vector of conserved variables (Q), and the   convective flux vectors in the 

x(radial)-andy(axial)-directions(F(0 and G(0)are: 

pu 

.2 

Q = 

p 
pu 

pv 

E 

P'yy 

P^xy 

pu~ + p 

puv 

F{Q) = <u[E + p]    \    G{Q) = \v[E + p-\    \ (15) 

P^Syy 

P^^xy 

The above equations, written in conservative form include the evolution of the deviatoric 
stresses according to Eq. (2). The dilatational part of the stress (pressure) is obtained 
from an equation of state. The source vector that appears in Eq. (14) is of the form: 

pv 

puv 

2 pv- ^p 

v{E^p-\ 

Pvs„ 

P^'yy 

PV^xy 



SiQ) = 

X 

ds^^    ds xy 

dx      dy 

ds„,    ds 'xy + - yy 

dx      dy 

+ <^ 

+ <t> 

^xx '^^yy'^^xy 

^xy       pUV 

X X 

pu 2\ 

where, 
,(uiE + p)   (t^s^+vs   h    d( \    ^( \ 

For the deviatoric stress evolution equations, the source terms are as follows: 
(du    dv^ 

S     =s.. — + — 
dx    dy^ 

+2Q  s   +2G xy   xy 

du 

dx 
-Z 

5     =s yy 
'yy 

(du    dv^ — + — 
^dx    dy 

+ 2Q,„5,„ +2G yx    xy 

5      =5 
jcy 

xy 

where E = 

(du_   dv^ 
dx    dy ^ 

\( du    u    dv 

+ ^xx^xy + ^xySyy ' ^xy^xx ' ^yy^xy + ^^ 
du    dv^ — + — 
dy    dx 

(16a) 

(16b) 

(16c) 

(16d) 

+ - + 
dx    X    dy 

, and ^ = 0 or 1 for the 2D or 2D-axisymmetric formulations 

respectively. 

The equation for evolution of the plastic strain and temperature fields are also solved to 
deduce the thermo-mechanical effects of the multimaterial interactions. These are written 
as:   

ds" 

dt pL 

(17) 

(18) 

The eigenvalues of the equation system (14) were found to be real (Udaykumar et al., 
2003) for the range of parameters, i.e. material properties and impact velocities, of 
interest in this work For ID formulation, the eigenvalues were shown to be (Vanden, 
1998): 

A,=A2=A3=M (19a) 



X,=c + u (19b) 

A,=c-u (19c) 

The sound speed depends on the particular equation of state chosen for the pressure and 
is given below for the case of the Mie-Griineisen equation of state. 

The above system of equations are first solved using the Essentially Non-Oscillatory 
(ENO) numerical scheme (Shu and Osher, 1988, 1989) as will be described in a 
subsequent section. The radial return algorithm is then applied to bring the stress state 
back to the yield surface if the predicted von Mises stress falls outside the admissible 
states. Equations (17) and (18) for the effective plastic strain and temperature field are 
solved separately using a simple second-order upwind scheme. 

2.3 Mie-Griineisen e.o.s. for Solids 

It is necessary to relate pressure, specific volume, and internal energy through an 
equation of state in order to close the system of equations above. The overall pressure in 
a solid may be expressed as a sum of two terms, the first due to the thermal excitation, 
and the second due to the pressure resulting fi-om the attractive/repulsive forces in the 
lattice of atoms. For the present work, due to the high strain-rate, large deformation 
problem of concern, we utilize the Mie-Griineisen e.o.s. If e^ and p^ denote respectively 

the "cold" (atOK) energy and pressure, the incomplete, temperature-independent 
formulation of the Mie-Griineisen e.o.s. is: 

(e-e (V)) 
p{e,v)~nv) ^— + P^(V) = r- + f(V) (20) 

where, by definition, 
E    u 

^~ P      2 
(21) 

V^- ill) 
P 

and the Griineisen parameter is defined as: 

r = K|'^l   =^^ (23) 
p 

where po is the density of the unstressed material, co and s are coefficients that relate the 
shock speed Us and the particle velocity u^. Experiments on solids provide a relation 

between [/.and u^ (Olinger et al, 1975).   A first approximation consists of a linear 

relation (generally applicable for strong shocks): 
U,=c,+su^ (24) 

where c^ is the bulk sound speed for the material at rest, and s is related to the 

isentropic pressure derivative of the isentropic bulk modulus. In general, CQ and 5 are 

obtained from experiments. 

The expression for the sound speed is given by: 



c' = 
f ?^^\ dp 

\^pj 

dp 
+ ^ -t\   =Te + fXV) + T^ (25) 

For low energy and low pressure (as in a rarefaction), round-off and approximation errors 
may result in negative values of c% since /' changes sign. To correct this, and 
following the approach by Miller and Puckett (1996), Arienti et. al. (1999) prolong the 
e.o.s. with a pseudo elastic-solid e.o.s. The final expression for f{V), to accommodate 
for negative pressure (tension) and preserve positive sound speed-squared, is written as: 

nv) 
Po^oV 

ii-s<py 

V 

l- — iV,-V) 

oj 

if   V<V, 

if   V>V, 

(26) 

where (p = \ . 

2.4 Radial Return Algorithm 

When a material deforms plastically, the set of stresses marking the transition boundary 
between the admissible and the inadmissible stress states is defined by the yield surface. 
The stress must be constrained to always fall either within or on the yield surface. 
Typically, numerical solutions of the plasticity equations tentatively assume that the 
material response for the entire time increment is purely elastic. If the resulting 
"predicted" or "tiial" updated sti-ess is found to fall outside the yield surface, then the 
numerical algorithm recognizes that the tentative assumption of elasticity must have been 
wrong. Classical retiim algorithms assert that the correct updated sti-ess can be obtained 
by projecting the inadmissible trial stiess back to the yield surface. There are various 
methods by which such return of the stiess to the yield surface can be effected (Montan 
and Borja, 2002, Bilotta, 2001, van Le and Saxce, 2000). Here, we adopt an algorithm 
due to Ponthot (1998). 

We assume tiie existence of a general yield fiinction / given, for a J^ von Mises material 
with isotropic hardening, by: 

f{Sy,S,) = S,-a, (27) 

where a^ is the current yield stress. 
The admissible stress states are constrained to remain on or within the domain defined by 
this yield fimction, i.e. we require that / < 0. The hardening law is given by: 

(28) 



where h is called the hardening coefficient and corresponds to the slope of the effective 
stress versus effective plastic strain curve under uniaxial loading conditions. Substitution 

of Eq. (8) into Eq. (10) results in s'' = J-A. Eq. (28) can also be written as: 

&,=ht'' (29) 

which clearly indicates the role of the hardening coefficient. Time integration of the 
deviatoric stress equation for elasto-plastic deformations, i.e.: 

sy^sAj-Q,s, =200-0") (30) 

is split into two parts, the elastic predictor which yields a trial stress assuming purely 
elastic deformation of the material: 

s-   +S; Q.-Q;S.., =2GD (31a) 

and the plastic corrector to bring the computed trial stress back to the yield surface: 
Sy,cor=-2GD''=-2GANy (31b) 

where the subscript tr is for trial, and cor is for correction. Note that the update of the 
deviatoric stress in Eq. (31a) is reflected in the source terms in Eq. (16b-d). Following the 
update using the system of equations in Eq. (14) the correction of the deviatoric stresses 
through the radial return is performed using Eq. (31b). The unit normal to the yield 
surface is approximated as: 

N..^ =   , ^'^'"- (32) 
ij,lr / ^      ' 

^J^kl,tr^kl,lr 

The return is effected in a direction normal to the yield surface as follows: 
Sy,cor=Sy,,-2G4Ny^, (33) 

€,"=8,"+^^ (34) 

where the unknown scalar parameter ^ = JAdt where to and ti are the beginning and end 

of the time interval of integration. This parameter is determined by the enforcement of 
the consistency condition, / = 0, at time ^ = f,, i.e. we require that: 

/ = ^1 k.r - 2G^iJ,.r Krr " 2^^,,. ] " ^i  = 0 (35) 

Eq. (35) can be solved for | by first discretizing Eq. (28) in time as: 

^4 ^■"^"=J-M (36) 
At 

1 
where superscripts 0 and 1 denote the values at to and ti respectively. Substituting for a^ 

using Eq. (36) into Eq. (35) and solving for(^, one obtains the final expression: 

I -     /2//T° 

^= 7—r\— ^^^^ 
20 1 + — 

3G 
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Thus, once ^is obtained the correction of the predicted deviatoric stresses is performed 
using Eq. (31b) and the consistency condition is enforced. 

3. Numerical Method 

3.1. Local Lax Friedrichs Essentially Non-Oscillatory (LLF-ENO) Scheme 

To solve the hyperbolic system of equations in 1- and 2-dimensions, the ENO shock- 
capturing scheme (Shu and Osher, 1988, 1989) is used. The Convex ENO scheme due to 
Liu and Osher (1998) is implemented, to enable the oscillation-free solution of the 2- 
dimensional equations without field-by-field decomposition in the presence of large 
gradients. The discretization has been described in detail in a previous paper (Udaykumar 
et al, 2003) and is only briefly outlined below. 
Consider the governing equation for one-dimensional transport: 

^JIM^S(Q) (38) 
dt        dx 

Let 
dQ 

where 

i^ = i(0 (39) 
at 

L(Q) = -^^-^ + D(Q) (40) 

Fe and Fw are the fluxes at the east and west faces shown, and Xe and Xw are the locations 
of the east and west faces respectively, as shown in Figure 1(a). £> is an appropriate 
discrete operator for the source terms. In the current work, the source terms are 
discretized using a 2"^-order central difference scheme. This was found to be robust for 
the calculations performed. However, it may be necessary in fiiture work to develop a 
more sophisticated differencing procedure for the source terms as well. 

The three-step third-order in time Runge-Kutta scheme is used in this work and takes the 
form (Shu and Osher, 1988,1989): 

Q(^) = QO) + AtLiQ^"^) 

g(2)=i(gO)+3g<'')) + lA/I(e(')) (41) 

The spatial order of accuracy of the ENO formulation used to solve Eq. (38) is 
determined by the interpolation practices used to evaluate the fluxes at the faces e and w, 
i.e. in obtaining Fg and F^, in Eq. (40). Due to the presence of immersed boundaries, as 
illustrated in Figure 1(b), care must be taken in computing these fluxes. The flux 
evaluations for the ENO formulation comes from derivatives of an interpolating fimction 
H(x) as follows: 

F.-^[H{x)l__, (42) 
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The derivatives are evaluated from divided differences and the flux evaluation is 
performed as follows: 

Fe = F; + F; = H'\x,) + H'-ixJ (43) 

The superscripts (+) and (-) indicate the positive and negative direction fluxes at the face 
e under consideration as illustrated in Figure 1(a). The derivatives H' arc obtained by 
polynomial reconstruction of the fields as in the standard ENO implementations. The 
present formulation based on the Convex ENO scheme proposed by Liu and Osher 
(1998) chooses the divided difference value "closest" to the previous order flux chosen. 
The scheme reduces to low-order automatically at discontinuities, while maintaining 
higher-order in smooth regions. The first divided difference is obtained as follows: 

= ^(/(9[^y]) + «. A^j]> (44a) H'\x,) = H' 

and 

H'-ixJ = H- 

'-2 

Xg,X    3 

'^1 

2^^—      j.. 

= ^(/(9K..])-«. i^k.il) (44b) 
2 " ^i 

where a^.,,/2 is the characteristic speed evaluated at the cell face location Xj^^j ■ This is 
evaluated as the maximum eigenvalue of the set in Eq. (38) at the cell face. 

For points that are adjacent to the immersed interface such as 7 in Figure 1(b), the flux 
evaluations need to be modified. Here, the east face is still taken at the grid cell face and 
for pointy.- 

1 H'\x,) = H[x   ,,x,] = -{f{q[xj])^a   ,q[x^], (45a) 
n        2 ^       yi 

H"{X, ) = H{X,, X     3 ] = - {fiqpHantom ) " « .^ 1 <1 pHanton, ) (45b) 

where qghost is the ghost value of the convected scalar variable q (see Fig. 1(c)). This 
value needs to be obtained while satisfying appropriate boundary conditions on the 
immersed interface as described below. This type of interfacial flux treatment of course 
reduces the order of accuracy at the immersed boundaries by one order. However, the 
high-order scheme is retained in the bulk of the computational domain. Similar 
considerations apply in the Ghost Fluid Method (Fedkiw et al., 1999a) for multifluid 
interactions, and flux separation method (Tran et al., 1999) for the treatment of shock and 
contact discontinuities. 

3.2 Boundary Conditions 

To evaluate the fluxes in the discrete form as in Eq. (40), appropriate boundary 
conditions need to be applied at the interface location. As can be seen in Figure 2(a), 
when two interfaces coUide a portion of an interface in the material-material contact 
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region can have an immediately adjoining portion that falls in the material-void region of 
the interface. At each instant of the interface deformation, the ghost points (defined as 
points which are immediately outside a given body as indicated in Figure 2(b)) 
associated with each portion of the interface have to be classified as collision (material- 
material or M-M) or fi-ee (material-void or M-V) ghost points and the appropriate b.c.'s 
applied at the interfaces by supplying values to the ghost points. The procedure for 
determining how a ghost point of an interface is to be classified as collision or fi-ee ghost 
point is discussed in section 4.3. 

At the outset, all the dependent variables are extrapolated fi-om the interior of a material 
to the ghost points. Thereafter, depending on the boundary conditions, these extrapolated 
values are replaced by values that satisfy the boundary conditions at the boundary of the 
material in question. Therefore, before discussing the boundary conditions, it is usefiil to 
outline the procedure for extrapolating values fi-om the interior of a given material to 
ghost points lying across the boundary of the material, hi order to extrapolate values 
fi-om an object to the ghost point P, as illustrated in Figure 3, the ghost point at P is first 
reflected (along the local normal obtained from the level set field) across the material 
interface. The values of all the dependent variables at the mirror point Ii are then 
determined by interpolation from the surrounding nodes. Care is exercised to ensure that 
there are four immediate surrounding nodes lie in the same phase in which point Ii 
resides. If this is the case, then bilinear interpolation procedure can be carried out in a 
sh-aightforward way to obtain values for point I]. A second point, Point I2 in Figure 3 is 

also placed at a distance dl = ■yjAx^ + Ay^ from point I] (Figure 3) along the normal from 
ghost point P to the interface. Again bilinear interpolation is employed to obtain values 
for point h if there exist four immediate neighboring nodes in the same phase. If all four 
of the surrounding points are not in the same material for either point Ii or I2, then 
distance-weighted interpolation from the surrounding grid points that lie in the same 
phase is performed to obtain values for that point. Using values at points Ij and I2, linear 
exfrapolation is then performed to obtain values for the ghost point P. hiitially all the 
dependent variables are exfrapolated to the ghost points. These values are then replaced 
as described below depending on the type of boundary condition to be applied on the 
interface adjoining the ghost point. 

Type 1: Material-material interface 
Boundary conditions on portions of the interface which qualify as material-material 
interfaces are developed based on the physically imposed interface conditions. At a 
material-material (or collision) interface we enforce continuous material point velocities 
normal to the interface for the two materials and the continuity of normal fraction and 
temperature, whereas the tangential fraction component may remain discontinuous. The 
procedure for applying the interface conditions is illustrated in Figure 4(a), where the 
subscript A denotes object A and subscript B denotes object B. We want to determine 
the variables at point PA (ghost point of A, which ties inside object B) by replacing the 
exfrapolated values with ones that apply the required boundary conditions at the interface 
location O shown in Figure 4(a). First, the unit normal vector is computed at point PA for 
object A using the level set field. The normal and tangential velocity components at point 
PA are related to the x- and y-direction velocities as: 
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v„="p«.+Vpn, (46a) 

Vi=Upny + Vpn^ (46b) 

Since normal velocities are continuous across the interface the value of the normal 
velocity component in Eq. (46a) is specified to be that of the object B at that point. The 
tangential velocity component in Eq. (46b) is assigned to be the extrapolated value from 
the material A. With these values of Vn and Vt, the Cartesian velocity components at the 
point PA are then obtained from: 

"p=VA+v,«, (47a) 

Vp=v„ny-v,n, (47b) 

With the exfrapolated values of p and E, pressure is obtained from equation of state. 

The tangential, normal, and shear stresses at the ghost point PA are computed such that 
the continuity of normal sfress is enforced at the interface. The components of stress 
oriented with the local tangent and normal directions are computed from: 

0-« = "L^yyM + f^l.A^xxM ' ^"x,A"y.A^xy,A ' P,A (48a) 

C^nn = "l,A^xx,B + "l.A^yy.B + 2n,,^«^,^5,^,5 - /J,^ (48b) 

0-«, =n,,Any,A(^yy.B ' ^ ^,B) + ("IA " «M Ky,B (48c) 
where subscripts t and n denote tangent and normal directions to the interface at point O 
and subscripts A and B indicate the material from which the data are obtained. Note that 
in Eq. (48a), the tangential sfress is computed using the extrapolated values of object A at 
PA. This impUes that the tangential sfress remains discontinuous across the interface, hi 
Eqs (48b) and (48c), the normal and shear component sfresses are computed using field 
values of object B at PA- This results in continuity of normal and shear stresses across 
the interface. 

Converting to Cartesian coordinates, using Eqs (48a), (48b), and (48c), the total stresses 
at the ghost point PA of object A are obtained: 

<^xx = "I.A f^nn+^VA^tt- 2«.,^W;,,^^^nt (49a) 

c^yy = nl,A^„„ + nl^a,, + In.^n^^^cr^, (49b) 

ffXV =»x,Any,A ((^nn " O^^ ) + («L " «M )^'.' C^^'^) 
Assuming continuity of the temperature at the interface between the materials, the value 
of temperature at PA is assigned the value of temperature in object B at the grid point 
coincident with PA- The value of equivalent plastic sfrain is extrapolated from the interior 
of object A. 

When interface conditions are obtained as above at impact boundaries "overheating" of 
the material can resuU, as pointed out by Glaister (1988). The problem arises due to the 
colUsion of the impinging shock on a soUd wall and the reflected shock coming off a 
solid wall (Menikoff, 1994). The overshoots in the density and temperature are numerical 
artifacts that arise due to the unphysical dissipation inherent in the numerical schemes 
and the inability of the Euler equations to conduct heat away from the overheated region 
into the wall thus causing a buildup of temperature (Donat and Marquina,1996). Pressure 
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and velocity appear to equilibrate quickly but internal energy (temperature) does not and 
the use of the e.o.s. renders the density value inaccurate also. This problem has been 
shown in a previous paper (Udaykumar et al, 2003) to exist in both Eulerian and 
Lagrangian computations of impact. A fix for this problem has been suggested by 
Fedkiw et al. (1999b) for the case of gases and other materials. In the present 
computations with solids this fix has not been applied since fiuther examination of this 
condition is required to determine its suitability to materials with strength, since the 
pressure in the present case is also related to the stresses in the material. 

Tvpe 2: Material-void interface 
For a material-void interface, the physically imposed conditions on the interface are that 
the surface tractions be negligible. Therefore: 

ni-pl + T) = 0 (50) 

where I is the unit tensor and T is the deviatoric stress tensor. In the ID case the zero 
traction condition reduces to: 

± + 
= 0 (51) 

This condition is easily applied at the material-void interface in ID for the independent 
variable Sx at the interface, since the pressure is given by the equation of state. 

In the two-dimensional case, implementation of this boundary condition requires care. 
To apply the zero-traction condition, we first rotate the stress tensor as follows. Let 

a = A^aA (52) 

where a = ^m    <^„t and A = 
X -«/ 

L^m   0-„ J V^y ""   J 
are the rotated stress and orientation matrices 

due to the transformation fi-om x-y to t-n coordinates, the latter coordinates having axes 
oriented along the tangent and normal to the interface. The physical conditions at the 
interface require that the normal and shear components of traction be zero, while the 
tangential component may remain discontinuous. As illustrated in Figure 4(b), we first 
compute the imit normal vector at the ghost point P (which lies in the void) fi-om the 
level set field. The reflection of point P across the interface lies inside the material at 
point I. Expanding Eq. (52), the sti-esses oriented along the normal and tangent at P are 
obtained at the point I by interpolation from: 

'««,/ «>«,/ + K^yy.1 + ^^."yS.y,I " P.I (53a) 

(^nU = ("I - "I )^xy,I + ^x^y {S^j - S^j ) (53b) 

Since the values at the interface for all tractions are zero for a„„ and a„,, linear 
exfrapolation is performed to obtain the cr„„ and a„, at point P, using the values at I 
given by Eqs. (53) and the interfacial values. If the distance between point E and the 
interface is less than a certain tolerance (here, we use 0.1 x min(Ax:, A>;)), then (T„„ and 

a„, are then taken to be zero at the point P. If not, then: 
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<y..P=-^<^n., (54a) 

<yn.,F—^^nU (54b) 

The stress component cr„ is not required to be continuous across the interface and is 
obtained using the extrapolated ghost values at P: 

o-„,/. = n]s^p + nls^p - In^n^s^yp - Pp (55) 

Converting to Cartesian components, from Eqs (54a), (54b), and (55), the stresses at the 
ghost point P are obtained from: 

o-x.,p = «>««.p - 2«.«,o-„,,p + «Jo-„,p (56a) 

^yy,p = K^nn,p + ^n,n^a„,p + «>„,p (56b) 

^.y.P = n,n^{(j„„p -cr„,p) + («,' -«')o-„,,p (56c) 

All other variables are exfrapolated. Note that no boundary conditions are required on 
the void side of the interface since the equations are not solved in the void region. 

4. Interface Capturing Scheme 

Discontinuities in properties will typically exist across interfaces between interacting 
materials and will need to be maintained during their interactions. For example, the 
density and material strength properties across an interface could be different by several 
orders of magnitude (e.g. at an air-copper boundary). Traditional purely Eulerian 
nimierical methods solve the governing equations by adopting the single domain 
approach, i.e. the same governing equations are solved at each node in the domain, 
whether void or material node. The embedded interfaces and accompanying 
discontinuities are then accounted for by using different techniques, including volume- 
averaging, mixture theories (Benson, 1997), or by using "numerical" delta or heaviside 
functions (Peskin, 1977, Sussman et al, 1998). As an alternative to such Eulerian 
(diffuse interface) methods it is possible to formulate a sharp-interface technique on fixed 
meshes. In sharp-interface approaches, accurately maintaining the physically expected 
sharp interfaces between materials requires sophisticated interface tracking methods and 
discretization schemes that account for the embedded sharp interfaces. Such approaches 
have been advanced recently by various researchers (Fedkiw et al., 1999a, Leveque et al., 
1994, Udaykumar et al., 2003, Tran et al., 1999). 

In previous work (Udaykumar et al., 2003), the interface was tracked explicitly using 
marker particles and parametrized curves. Such an approach can become complicated in a 
3-dimensional setting or when the interfaces undergo topological changes. An alternative 
is to frack the interfaces implicitly over the mesh using the level set approach. The 
advantage of the level set approach is that while a purely Eulerian update is employed to 
advance the interface via the level set (distance function) representation, the exact 
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location of the interface can be deduced from the level set field. Thus the level set 
method is compatible with a sharp-interface treatment. Furthermore, the level set 
approach easily extends to 3D and can naturally handle merger/fragmentation of the 
interface. However, grid-supported level set methods build in an entropy condition that 
leads to smoothing of sharp comers (cusps) on the interface. While in most physical 
problems this feature of level set advection can be advantageous, as unphysical re-entrant 
interfaces are naturally avoided, in the cases of interest to the present work this aspect of 
the level set method proves to be a hindrance. This is because we wish to follow the 
dynamics of soUd objects, which may possess comers and other geometric features which 
must be carried without deterioration over the mesh. Recently, a Hybrid Particle Level 
Set (HPLS) method was presented by Enright et al. (2001), which allows transport of 
comers and other sharp geometric features without dissipation. This method is briefly 
described in the following section and the results from the calculations using the method 
demonsfrate the usefulness and appropriateness of the method for the class of problems 
solved in the present study. 

4.1 Level Set Method 

hi the present work a local-level set formulation is used to capture the moving boundaries 
on a fixed Cartesian computational grid.   The method introduces a continuous scalar 
fimction(l)(x,0, where the position of the actual interface is identified by an iso-value of 
the field, i.e. 0 = 0. If multiple objects are present, a separate level set function is used 
to describe each object. 

The motion of the interface is determined by a velocity field u, which can depend on 
position, time, and geometry of the interface. The motion of the interface can thus be 
described by a scalar convection equation: 

—+ M-VO = 0 (57) 
dt 

Since we are only interested in the location of the interfaceO(x,0 = 0, the above 
equation only needs to be solved locally near the interface (Adalsteinson and Sethian, 
1995; Peng et al, 1999). Eq. (57) is integrated using fourth-order ENO scheme in space 
and a third-order Runge-Kutta scheme in time. 
The unit normal on the interface, drawn from inside the material (O < 0) to outside of 
the material (O > 0), and the curvature of the interface can easily be expressed in terms 

ofO(ic,0: 

„    VO 
n = 

VO 

fvo^ 
and    K = W- -. i 

0=0 Vl 1/ 

(58) 
<D=0 

The standard reinitialization algorithm maintains the signed distance property by solving 
to steady state the equation: 

</)^+w-V(p = signiO) (59) 

where T is the fictitious time. 
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sign(0)=   , and     w = sign(^)7-—: (60) 
Vo + (Ax)' r^l 

with the initial condition: 
^(^,0) = 0(Jc) (61) 

However, due to the built-in dissipation in the ENO scheme and the reinitialization 
procedure, excessive regularization occurs at under-resolved regions. Thus sharp comers 
are rounded off and objects may lose mass during large deformations. Introducing 
Lagrangian particles in combination with the grid-based level set can remedy this 
problem as shown by Enright et al.(2001). 

4.2 Hybrid Particle Level Set (HPLS) Method 

The hybrid particle level set method (Enright et al., 2001) is the combination of an 
Eulerian level set method and particle-based Lagrangian scheme. The particles, of 
positive and negative type, are placed randomly near the interface, attracted to the correct 
side to the interface (positive for O > 0 and negative for <D< 0) and passively advected 
with the flow using the equation: 

^ = fla,) (62) 

where x is the position of the particle, which is the center of a sphere of radius r^ and 

u{x ) is its velocity. Since this advection procedure entails no dissipation, the distance 
function values carried by the Lagrangian particles can be considered to be "correct". 
Thus, if the grid-based level set function differs in some region of the interface from the 
level set values carried by the particles, the grid-based level set function is taken to be in 
need of correction. 

While the particles do not have mass, they have volume.  The radius of each particle is 
bounded by minimum and maximum values based upon grid spacing. The maximum and 
minimum radii which work well, according to Enright et. al., are: 

''rain = 0.1 min(Ax, Ay, Az) (63) 
r^ = 0.5 min(Ax, A;;, Az) (64) 

Initially particles of both signs are randomly placed within a band of 3 x max(Ax, Ay, Az) 
of the interface.   Particles are then attracted to the correct side of the interface (i.e. 
positive particles to the O > 0 side and negative particles to the O < 0 side). Finally, each 
particle radius is set according to: 

r^=Lo{x^)    ifr^„<s^0(x^)<r^, (65) 

The marker particles and the level set function are separately integrated forward in time. 
The particles that escaped to the wrong side of the interface are used to locate possible 
errors in the level set function since the escaped particles indicate that the characteristics 
have most likely been incorrectly merged through regularization, i.e. the level set has 

18 



computed an incorrect weak solution (see Figure 5). Once errors are located, reduction of 
error is carried out to rebuild the grid-based level set at these local regions. Detailed 
implementation is discussed in the paper by Enright et al (2001). 

The error correction procedure due to Enright et al. is as follows. Given a grid-based 
level set O identify the set of escaped positive particles E* (a escaped positive particle 
is defined as a positive type particle that happens to be located on the negative side of the 
grid level set as illustrated in Figure 5). Initialize O^ with O, and then calculate, 

(66) 

where O (3c) is defined as: 

and Sp is the sign of the particle. 

O^ = max(0^,0^) 

^nix) = s(r-\x-x.\) (67) 

Similarly, to calculate a reduced error presentation of the O < 0 region, initialize O" 
with O, then calculate. 

O' = max (0,0") (68) 
V/)e£ 

O^ and O" are then merged back into a single level set by setting O equal to the value 
of O"^ or O' which is least in magnitude at each grid point, 

o = 
O"    if Ol < 

o~  //• b^ 

O' 

O" 
(69) 

The minimum magnitude is used to reconstruct the interface, since it gives priority to 
values that are closer to the interface. 

The above procedure for error correction was found to yield somewhat unsatisfactory 
results for certain types of rigid body motions when the meshes used were not sufficiently 
fine. When several field equations, such as in the present case, need to be solved 
simultaneously with the level-set equation, the grid sizes required to robustly ti-ack the 
sharp comers become rather prohibitive. A modification to the error correction procedure 
of Enright et. al. was therefore made, as given below, which appears to be more robust 
(although somewhat more dissipative), based on test problems run using modest grid 
sizes. 

Given a level-set fimctionO and a set of escaped positive particles E* ,we initialize the 
corrected distance fiinction values at the 4 surrounding grid points O"^ with O, the values 
obtained by advection of the grid-based level set, and then calculate: 

O" =max(Op,0^) 
VpeE* 

>ipcE* 

ifO^ >0 

O* =-min(|o„,|oH) j/O^ <0 

(70a) 

(70b) 
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For all the escaped particles marked as positive type (Figure 5), Eqs 70(a) and 70(b) 
attempt to correct the interface location by computing new level set values at the four 
comers. This in effect moves the grid-based interface (i.e. the 0=0 level) so that the 
escaped positive particle would be returned to the correct distance on the positive side of 
the interface. Similarly, a correction of the grid values can be applied in the correction 
procedure for the negative escaped particles. Thus, for a set of escaped negative particles 
£", we initialize O" with O and then calculate 

O" = min(|o J,b-|) ifO->0 (71a) 

(D-=-max(b.L|o-|) if^-<0 (71b) 

The O"^ and O" values are then merged back to obtain the distance function field O on 
the grid as described above. 

4.3 Detecting and Resolving Collisions 

In the present work, material interfaces are expected to collide with other interfaces or 
collapse and fi-agment. Such events need to be tracked and appropriate interface 
conditions applied on the interacting parts of the interfaces. In the current framework, 
multiple objects with different material properties are described by different level set 
functions. Only one material can possess a given computational grid point at any time, 
whether it be void or solid material. 

The collision between various objects is determined by first defining the properties of 
each level set. Each level set (object) is associated with a set of grid points which straddle 
the object boundary, i.e. the zero-contour of the level-set. hi 2D, these grid points are 
identified as those across which the level set values change sign from negative to 
positive. Among this set, the grid points that lie within the material defined by that 
particular level set function are called "boundary" points and those lying just outside are 
classified as "ghost" points. This set of points is stored in a one-dimensional array, with 
mapping assigned to access the grid indexes. At any given time step, one can search 
through this set of grid points that straddle the zero-level for each object to determine 
whether these points are fi-ee boundary nodes or colUsion nodes as described below. 

Various situations can arise when two different objects move toward each other as shown 
in Figures 2(c, i-iii). The distance between two interfaces is easily computed using the 
level set functions associated with each interface. At any grid point, if we are solving for 
two level set functions, the values of each level set at that point represent the distance to 
their respective interfaces. Therefore, the difference in these values represents the 
distance between the two interfaces. If the distance between two approaching level sets 
is less than a specified tolerance, set to O.lx min(Ax,Ay), as in Figures 2(c)(ii & iii), then 
the ghost point is marked as a collision boundary point. If not (Figure 2(c)(i)), then the 
ghost point is marked as a fi-ee boundary point. This process is repeated for each level set 
after the calculation of the interface velocity for each level set. For the collision 
boundary nodes, each level set interface velocity must be corrected so that one object will 
not penetrate the other.   For two level sets, each defining a moving boundary under 
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impending collision, the normal velocity at the interface is continuous through the impact 
surface, whereas the tangential component may be discontinuous as sliding is permitted. 
No surface friction is accounted for in this work but can easily be included in the present 
framework. If one level set is specified as moving boundary type and the other as rigid 
stationary boundary type, then the normal component of velocity is zero when two such 
interfaces collide. 

Having marked the ghost points as coUision or free boundary points, the boundary 
conditions can be applied at the interface locations as described in section 3.3. The level 
set velocities are then obtained and the interfaces are advected to their new positions. 
After all the level set fimctions are evolved, we then again find a new set of ghost points 
and determine the collision nodes. 

5. Results 

The numerical scheme applied to evolve the flowfields through Eq.(14) has been tested 
for ID problems involving impact and deformation in previous work (Udaykumar et al., 
2003). Here we apply the scheme, in combination with the particle-level-set interface 
capturing method and the boundary treatments described in previous sections to two- 
dimensional problems. The results are compared with benchmark solutions and 
experimental data. 

5.1 2D Axisymmetric Taylor Impact of a Copper Rod 

In the 2D setting, we first validate the methods presented above by testing against the 
well known Taylor bar benchmark test (Zhu and Cescotto, 1995). A cylindrical rod made 
of copper with an initial radius of 3.2 mm and a length of 32.4 mm is given a velocity of 
227 m/s (schematic shovm in Figure 6) and impacts against a rigid planar surface. The 
deformation of the rod is presumed to be axisymmetric. The rod has an initial density of 
8930 kg/m^ Young's modulus E = \\lGPa, Poisson's ratio v = 0.35, and yield stress 
a = 400MP(3. The material is assumed to harden linearly with a plastic modulus of 
\OOMPa. The calculations are carried out up to a time of 80;zs, at which point nearly all 
the initial kinetic energy has been dissipated as plastic work (Hallquist, 1987). 

Two level sets are initialized, one for the copper rod and the other for the rigid body. 
Since the bottom rigid body is not moving, there is no need to initialize it with particles. 
Therefore particles are seeded only for the copper rod. CoUision between two bodies is 
detected using the algorithm discussed in section 4.3, and the calculations are carried out 
with the material-material and material-void boundary conditions applying on the 
coUision and free surfaces of the rod, as discussed in section 3.4. 

A grid independence study is performed using 20x100, 40x200, 60x300, and 80x400 
meshes. Figure 7 shows the final shapes (at BOjus) for all the meshes mentioned. It is 
clear that the solution converges with grid refinement and grid independent resuhs are 
approached for the finest mesh, 80x400. 
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Figure 8 shows the (grid-independent) solutions for the 80x400 mesh at four different 
times after impact, i.e. IQ/JS, 40/is, 60/^, and 80/js. It can be observed that the rod 
initially extends out rapidly at the point of impact and continues to extend at the foot up 
to around 40/is. As the material in the foot hardens, a second bulge is formed, 
extending out to approximately 0.004 m from the axis. The extent of the bulge, both in 
the radial and longitudinal directions, is in excellent agreement with the results of 
Camacho and Ortiz (1997). The rod reaches a rest state around the time of 80//s in 
agreement with Camacho and Ortiz, showing that the conversion of kinetic energy to 
plastic work is correctly predicted. 

The numerical values for final rod length, radius, and maximum equivalent plastic strain 
are compared with other results in literature in Table 1. Our results fall squarely in the 
range of values reported in literature. The slight discrepancies with the results of 
Camacho and Ortiz may be due to differences in the treatment of the rate-dependent 
plasticity model and due to the comparatively coarser mesh in the present case near the 
impact surface due to the use of a uniform Cartesian mesh. At the moment of impact, 
extreme stress and velocity gradients are developed in the rod and capturing these 
features may require a very fine mesh. Camacho et al. used a moving finite element 
mesh with mesh clustering in the high-gradient regions. In fiiture extensions of the 
present work, adaptive local refinement techniques will be implemented in the current 
Cartesian grid framework to better resolve such transient features. 

The evolution of velocity magnitudes along with velocity vectors are shown in Figure 
9(a-d) for four different instants after impact. Initially, the base of the rod expands out 
rapidly, forming the foot-like shape. After around AO/Js, the base hardens and remains 
practically stationary, and the remaining kinetic energy is dissipated in the work required 
to form the second bulge, above the foot of the rod. At SO jus, the copper rod is nearly at 
rest. 

Figures lO(a-d) shows the equivalent plastic strain contours at four different times, 20jus, 
40/Js, 60jus, and SO/js. One can see the development of large plastic strains in the foot 
region, and a local minimum in the plastic strain field at the symmetry axis, centered 
between 3 and 4 mm above the rigid surface at the symmetry axis. A large region of the 
rod registers negligible plastic sfrain. These features are clearly shown in Figure 10(d). 
The values and distribution of the plastic strain are in very good agreement with the 
results of Camacho and Ortiz (1997). 

The maximum temperature of around 500K, is achieved close to the base at around the 
40/zs instant, i.e. when the plastic deformation of the base reaches a maximum, as 
expected. This is the point in time where nearly all the plastic work done in deforming 
the foot has been converted to heat and raises the temperature of the foot. As the base of 
the foot hardens, the maximum rate of plastic work conversion moves up to form the 
second bulge and the heat is dissipated at that location. However, as seen from Figure 10 
the plastic sti-ain accumulated at the second bulge is relatively small. 
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5.2 2D Axisymmetric Penetration of Steel Target by WHA Long Rod 

The validation of our method for two deformable objects with different material 
properties (a case requiring 2 different level sets) is carried out using a slender tungsten 
heavy alloy (WHA) rod projectile penetrating an initially planar target made of a steel 
plate with a velocity of 1250 m/s. A schematic defining the problem is shown in Figure 
11. Table 2 shows the material properties used for WHA and steel. A Johnson-Cook 
material model is used and the corresponding strength parameters for both materials are 
shown in Table 3. Note that fiiction between the two impacting surfaces is neglected in 
these calculations. 

Due to the use of the uniform Cartesian grid, in order to place sufficient mesh points to 
resolve the timgsten rod, a very large mesh size is required. This is due to the large aspect 
ratio of the rod (length/radius = 25). Thus, improving the resolution in the radial 
direction necessitates the use of fine meshes in the vertical direction also. This limitation 
can be overcome by use of adaptive meshes or rectangular Cartesian meshes. However, if 
the latter is used, issues concerning inaccuracies in capturing large gradients oriented 
arbitrarily with respect to a stretched mesh will need to be addressed. We leave these 
aspects to future work. To enable reasonable computational effort, we limit the axial 
dimension of the problem to r = 0.0125 and study what effects this smaller domain has on 
the solutions. 

A grid independence study is carried out using 3 meshes: 50x344, 75x516, and 100x688. 
The final shapes (at 80//s) of the two deformed bodies are shovra in Figures 12(a-c). It is 
seen that as the grid is refined the penetration depth as well as the length of the upwelling 
WHA material (hereafter called ejecta) become larger. At the finest mesh, 100x688, the 
solution was foimd to be nearly grid independent. Based on the observed trends, fiirther 
refinement of the mesh will result in somewhat larger extents of the ejecta of the WHA 
material. For now, we will use the 100x688 mesh results, which suffice to compare the 
penetration rate and depth results with available experimental and numerical results 
(Anderson et al., 1995 and Camacho and Ortiz, 1997). 

Figures 12(d) show the final shape of the two deformed bodies at SO jus for the 100x688 
mesh. In Figure 12(d), we see that the right side of the steel plate, top and bottom, barely 
moves firom the original position, hi reality the plate used in experiment has a larger 
radius than that shown in Figures 12. We therefore examined whether the solutions 
obtained fi-om our calculations on the truncated domain is valid by extending the width of 
steel plate fi-om 0.0125 m to 0.02 m, while maintaining the same grid density as the 
100x688 mesh. This extended domain case for the steel plate (r = 0.02 m) is shown in 
Figures 13(a-d) with evolution of the two deformed bodies at times of 20jus, 40/js, 
60//S, and 80//s for a mesh of 160x688 points. Note that, due to the large aspect ratio of 
the problem, even for this fairiy large mesh size, there are only 16 mesh points within the 
initial rod radius. Nevertheless, the results obtained agree very well with the benchmarks 
and with experiments as demonstrated below. The top and bottom surfaces of the steel 
plate do not deform much at r > 0.01 m. This behavior agrees well with calculations 
reported by Camacho and Ortiz. The ejected length of WHA material (Figure 13(d)) is 
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slightly shorter compared to that for narrower domain (r = 0.0125 m) in Figure 12(d). 
This is perhaps due to the absorption and dissipation of energy within the larger mass of 
material in the plate in the extended domain case, hi particular, the top surface of the steel 
plate appears to deform more for the extended domain case shown in Figure 12(d). 
However, the main features of the computed solutions appear to be relatively insensitive 
to the domain size and thus the truncation of the domain to facilitate computational 
economy does not appear to be very significant. 

The evolution of equivalent plastic strain is shown in Figures 14(a-d) for the extended 
domain with a 160x688 mesh. The maximum equivalent plastic strain is found to be 
around 4.5, occurring mostly near the impact surfaces. The values of equivalent plastic 
strain are higher in the WHA material compared to those in the steel material. The 
plastic strains obtained by Camacho and Ortiz using Lagrangian finite element method 
with an adaptive mesh agree very well with the present results, both in terms of the 
magnitude and distributions of the plastic strains. In particular, a trough in the plastic 
strain distribution is noticed in both our results as well as those of Camacho and Ortiz and 
occurs near the bottom surface in the steel plate at the symmetry axis, as seen in Figure 
14(e). The ejection length of the WHA material is higher in the Camacho and Ortiz 
calculations when compared to our results. However, the resolution of the ejected region 
afforded by the mesh used in the present calculations is too low, with just 3 mesh points 
across the vertically oriented trails of the ejecta. The grid refinement study performed 
above indicates that as the mesh is refined further the length of the ejecta will increase. 
As shown below, at the current mesh resolution, the overall penetration characteristics 
and material deformation are adequately predicted. 

Figures 15(a-d) shows the v-component velocity contour at different times, lOfJs, 40fjs, 
6QiJs, and 80;/s, for the extended domain with a 160x688 mesh. The maximum positive 
v-component velocity is observed around 40/z$, occurring in the ejecting mass of the 
WHA material. Around 80//s, the rod comes to rest and only small residual velocities 
remain. 

The maximum temperatures occur around the impacted surfaces as this the region of 
maximum rate of conversion of plastic work to heat. The recorded maximum 
temperature is around 1300 K in the WHA material, below the melting temperature of 
1777 K for WHA and 1723 K for steel. The largest temperature occurs at around 40/zs, 
and decreases as the rod goes to rest state. This shows that the largest plastic work done 
occurs before this time of AOfJs. 

Figure 16 shows the projectile nose and tail trajectories as a function of time, for the 
extended domain case, and is compared with the superposed results fi"om experiment 
(Anderson et al., 1995) and fi-om Camacho and Ortiz. Also plotted are the original rear 
and impact surfaces. Our results show reasonable agreement with those of experiment 
and Camacho and Ortiz. The tail trajectory is in much better agreement as its surface 
experiences less extreme conditions during impact and penetration. The present 
calculation predicts the penetration depth in good agreement with experiments. Despite 
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the marginal resolution of the ejected trails, the overall penetration and deformation 
behavior is predicted in good accord with the adaptive finite element simulations of 
Camacho and Ortiz (1997). 

Figure 17 shows the projectile nose (upper curves) and tail (lower curves) velocity 
histories, for the extended domain case, compared against the results firom experiment 
(Anderson et al., 1995) and from Camacho and Ortiz. Note that since the resuUs from 
Camacho and Ortiz display considerable noise in the initial phases after impact, the 
plotted values were hand-picked to show only a few representative points after smoothing 
their curves. Similar conclusions can be drawn as in Figure 16, the velocity data obtained 
from the present calculations being in good agreement with the benchmarks with the tail 
results being in better agreement than nose results. The oscillatory nature of the results, 
seen in both the present and the FEM calculations of Camacho and Ortiz is perhaps due 
to the transient wave phenomena in the initial stages of impact. 

5.3 2D Axisymmetric Void Collapse in a Copper Matrix 

hi this test case, a spherical void with a radius of 1 micrometer within a copper matrix 
imdergoes axisymmetric deformation due to a propagating shock created by imposing a 
particle velocity at the bottom boundary (i.e. simulating a piston moving at specified 
speeds). A schematic of the problem is shown in Figure 18. The impulsive velocity 
supplied at the bottom boundary seeks to simulate the effect of impact at the bottom 
surface of the copper plate. The material response is modeled using a Johnson-Cook 
model, with constants applicable to copper (Table 3). The wave moves through the 
copper matrix and is transmitted out through the upper boundary. The right boundary is 
subjected to symmetric conditions, whereas the left boundary is the axis of symmetry. 
The simulation is carried out for three different initial piston velocities: 50 m/s, 200 m/s, 
and 500 m/s, using a 200x400 mesh. The void collapse phenomenon has implications for 
the initiation process in energetic materials (Bowden and Yoffe, 1952, Carroll and Holt, 
1972, Kang et al., 1992, Menikoff and Kober, 1999). Here we examine the behavior of 
the void in copper, for which the material parameters are well characterized. Void 
collapse can occur in different modes depending on the strength of the impinging shock. 
As the shock strength increases the void collapse goes from a nearly spherical (visco- 
plastic) mode to a jet (hydrodynamic) mode where the lower surface of the void forms a 
jet which impacts on the upper surface at high velocity. The criterion for the transition 
from the visco-plastic to hydrodynamic mode is provided by the analysis of Khasainov 
(1981) in terms of the ratio of shock passage time to the void deformation time scales. 
When the shock passage time scale is larger than the void collapse time scale the mode of 
collapse is visco-plastic; when the shock passage time scale is comparable with the void 
collapse time scale the mode of collapse is hydrodynamic. This latter mode is 
characterized by the formation of a jet of material which issues from the lower side of the 
void and impacts the upper side, leading to large temperatures on the impact location due 
to dissipation of kinetic energy of the jet. This transition is displayed in the following 
results. 
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For the low impact velocity case, i.e. 50m/s, Figures 19(a-d) show the void at t = 2.52e-9 
s, after which fiirther deformation nearly ceases. The figures show the final shape (19a), 
pressure contour (19a), temperature contours (19b), and velocity magnitude contour (19b) 
along with streamlines. The maximum temperature achieved is around 404 K, occurring 
around the void. The collapsing process is not concentric as the original void center was 
at (0,2e-06) m. However, the void does not markedly deviate fi-om its original spherical 
shape. No jetting phenomenon is observed, although the maximum v-component velocity 
(~ 100 m/s) is at the lower surface at the axisymmetric coordinate. The kinetic energy 
developed due to the imposed shock is dissipated through plastic work. Figure 20 shows 
the evolution of shapes of the void at equal time intervals. Most of the deformation 
occurs on the lower surface, and during the earlier phase of the process. 

Results for imposed boundary velocity of 200 m/s, i.e. intermediate shock strength, are 
shown in Figures 21(a-d) at t = 9.45e-10 s. This void collapses completely and the instant 
shown is shortly before complete void collapse. The figures show the final shape (21a), 
pressure contour (21a), temperature contour (21b), and velocity magnitude contour (2Id) 
along with streamlines. It is observed that in this case, jetting occurs to some extent, with 
maximum jetting velocity around 2600 m/s. The maximum temperature in the material 
during the collapse is around 1570 K, which is above the melting temperature of 1400 K 
for copper. The highest temperatures occur around the collapsing void as this is where 
highest rate of plastic work is localized. 

Figure 22 shows the evolution of the shapes during the void collapse process plotted at 
equal time intervals. The jetting phenomenon is clearly observed, eventually breaking the 
void at the symmetry axis into two smaller voids, which eventually disappear. This 
simulation demonstrates the ability of the method to handle extreme topological changes. 

For an imposed particle velocity of 500 m/s, i.e. the highest shock strength, the flow field 
at three different times during the collapse process, i.e. 3.78 x 10"'%, 5.67 x 10~'°5, and 
6.93 X 10"'°5, are shown in Figures 23,24, and 25. Final shapes (a), pressure contour (a), 
temperature contour (b), and velocity magnitude contours (b) along with streamlines are 
plotted in each figure. For this high strength of shock, a distinct jet can be observed, with 
the highest velocity of the jetting material being around 4130 m/s, much higher than the 
imposed particle velocity, and the maximum temperature recorded during the collapse 
process is around 2110 K, well above the melting temperature of copper. One can see 
that the void would be completely collapsed before the shock wave reaches the top 
boundary of the domain, i.e. The shock passage time in this case is comparable with the 
void collapse time. This case represents the hydrodynamic mode of collapse in 
agreement with the criterion mentioned above. The maximum temperatures are 
concentrated around the void, and increase fi-om 426 K (at 3.78xlO""'^) to 2110 K (at 
6.93 X10"'° j), as the plastic work is dissipated as heat. 

Figure 26 shows the evolution of the void collapse process. One can see a clear jetting 
phenomenon after the time of 5.67 x lO""'^. Following the final shape shown, the void is 
completely collapsed and thus the void space disappears. The computational method is 
capable of simulating the entire process of void deformation, collapse and disappearance. 
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6. Conclusions 

We have developed a numerical technique designed to solve problems involving high- 
speed multimaterial interactions occurring in impact, penetration and collapse. The 
distinguishing feature of the approach presented here is that the shortcomings associated 
with traditional Eulerian and Lagrangian methods are avoided. The methodology can 
easily be extended to three-dimensions. The technique can handle the following physical 
phenomena typical of impact problems: 

1. Large deformations, including fragmentation and merger of the materials. All 
boundaries are treated in a sharp manner. The grid remains fixed however and 
problems associated with maintaining a high-quality grid under large 
deformations do not arise. 

2. Nonlinear wave-propagation and the development of shocks in materials 
governed by rate-dependent plasticity. The nonlinear waves are tracked using 
high-resolution shock capturing schemes implemented on the fixed grid. 

3. Accurate elasto-plastic behavior of the material during impact. This aspect is 
captured for material response governed by the Johnson-Cook model and a radial 
return algorithm to maintain consistency with the yield surface. 

For 2-dimensional problems the hybrid particle level set method is used to track 
boundaries with sharp comers that are carried without deterioration through the large 
deformations of the materials. Benchmark calculations for the multi-dimensional case 
including axisymmetric Taylor bar impact and penetration of a Tungsten rod into steel 
plate show excellent agreement with moving finite element solutions. Qualitative 
agreement with theory is shown for void collapsing process in an impacted material 
containing a spherical void. The method has thus been shown to be suitable for 
applications involving high-velocity, multimaterial impacts leading to large strain-rates, 
nonlinear elasto-plastic waves and topological changes. 
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Case Final length (mm) Final mushroom 
radius (mm) 

Max. equivalent 
plastic strain 

Current 21.15 7.15 2.86 
Camacho & Ortiz 21.42-21.44 7.21-7.24 2.97-3.25 

DYNA2D 21.47 7.13 3.05 
Zhu & Cescotto 21.26-21.40 6.97-7.18 2.75-3.03 

Table 1. Comparison of results for Taylor bar impact problem. 
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Material P 
(kg/m') 

E (GPa) V C 
(W/m/K) 

k 
(J/kg/K) 

r Co(m/s) T„,(K) 

Tungsten 
heavy alloy 

17600 200 0.29 477 38 1.43 4030 1777 

High- 
strength steel 

7850 323 0.30 134 75 1.16 4570 1723 

Copper 8930 117 0.35 383.5 401 2.0 3940 1358 

Table 2. Material properties and Mie-GrUneisen equation of state parameters. 
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Material Yo (GPa) B (GPa) n C m G (GPa) 
Tungsten 
heavy allow 

1.51 0.177 0.12 0.016 1.00 124.0 

High-hard 
steel 

1.50 0.569 0.22 0.003 1.17 77.3 

Copper 0.400 0.100 1.0 0.025 1.09 43.33 

r-j; 
a^=iY,+Bs;)^ + C\n0^lsSil-e*'"),e,=\.Os-\   0'=—-^,   T,= 294 K. 

Table 3. Constitutive parameters. 
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Figure 1 (a) Illustration of grid point and grid face definitions for discretization of 
governing equations. H'"*^ and H'" are derivatives of the interpolating function evaluated from 
the left and right stencils respectively, (b) Grid point and grid face definitions for evaluation 
of fluxes in the presence of an immersed boundary, (c) Example of profile of q variable 
along X. 
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Figure 2. a) Illustration of boundary types when multiple bodies interact, b) Zoom-in 
view of two bodies in contact show ghost and collision nodes, c) Collision scenarios of 
two bodies in ID. 
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Neighbor nodes of I2 

Neighbor nodes of Ii 

Figure 3. Illustration of extrapolation process. 
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a) 

b) Phantom point 
Interpolated value 

Figure 4.   Illustration of boundary conditions for a) Material-Material 
boundaries and b) Material-Void boundary. 
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Figure 5. Illustration of escaped positive and negative particles used in error 
correction procedure. 
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Figure 6. Schematic of the Taylor bar impact problem. 
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Figure 7. Grid refinement study in Taylor bar impact calculation, with a 
velocity of 227 m/s.   Final shapes of 20x100 mesh ( ), 40x200 
mesh ( ), 60x300 mesh ( ), and 80x400 mesh ( ). 
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Figure 11. Schematic of a tungsten rod penetrating a steel plate target. 
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Figure 12. Grid refinement study of a tungsten rod penetrating a steel plate 
with a velocity of 1250 m/s. a) 50x344 mesh, b) 75x516 mesh, and c) 
100x688 mesh. 
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Figure 13. Shapes of a tungsten rod penetrating a steel plate using 160x688 mesh, 
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Figure 14. Equivalent plastic strain contour of a tungsten rod penetrating a steel plate 
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Figure 16. Projectile nose and tail trajectories of a tungsten rod penetrating steel 
plate using a 160x688 mesh, with a velocity of 1250 m/s. 
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Figure 17. Projectile nose and tail velocity histories of a tungsten rod penetrating 
steel plate using a 160x688 mesh, with a velocity of 1250 m/s. 
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Figure 18. Schematic of setup for void collapse in a copper matrix. 
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Figure 19. Void collapse calculation using 200x400 mesh in a copper matrix, with a diameter 
= 1 /zm, V = 50 m/s, and t = 2.52x 10'' s. a) left - shape, right - pressure contour, b) left - 
temperature contour, right - velocity magnitude contour and velocity streamline 
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Figure 21. Void collapse calculation using 200x400 mesh in a copper matrix, with a diameter 
= 1 ijm,V = 200 m/s, and t = 9.45x 10"'° s. a) left - shape, right - pressure contour, b) left - 
temperature contour, right - velocity magnitude contour and velocity streamline. 
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Figure 22.   Shapes at different times of void collapse process using 200x400 
mesh in a copper matrix, with a diameter = 1 //w and V = 200 m/s. 
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Figure 23. Void collapse calculation using 200x400 mesh in a copper matrix, with a diameter 
= 1 /^, V = 500 m/s, and t = 3.78x 10"'° s. a) left - shape, right - pressure contour, b) left - 

temperature contour, right - velocity magnitude contour and velocity streamline 
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Figure 24. Void collapse calculation using 200x400 mesh in a copper matrix, with a diameter 
= 1 ;/w, V = 500 m/s, and t = 5.67x 10"'° s. a) left - shape, right - pressure contour, b) left - 
temperature contour, right - velocity magnitude contour and velocity streamline 
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Figure 25. Void collapse calculation using 200x400 mesh in a copper matrix, with a diameter 
= 1 jLm,W = 500 m/s, and t = 6.93x 10"'° s. a) left - shape, right - pressure contour, b) left - 
temperature contour, right - velocity magnitude contour and velocity streamline 
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Figure 26.  Shapes at different times of void collapse process using 200x400 
mesh in a copper matrix, with a diameter =1 /zm and V = 500 m/s. 

61 



T 

DISTRIBUTION LIST 
AFRL-MN-EG-TR-2003-7102 

Defense Technical Information Center 
8725 John J. Kingman Road, Ste 0944 
FtBelvoir.VA 22060-6218 

EGLIN AFB OFFICES: 

AFRL/CA-N 1 
AFRL/MNOC-1 (STINFO Office) 1 
AFRL/MNA 2 
AFRL/MNAC 10 


