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Foreword 

This report is a part of research conducted at the Center for Multisource Information 

Fusion (CMIF) at the State University of New York at Buffalo (SUNY at Buffalo) during 

the second and third year of a three-year Air Force Office of Scientific Research 

(AFOSR)-funded research grant to Calspan-UB Research Center, Inc. (CUBRC). The 

overarching research objective of this grant is to provide understanding about the nature 

of multi-platform and distributed data fusion and the influence that such methods might 

have on flight-testing of future multi-platform systems at major range facilities such as, in 

particular, Edwards Air Force Base, and also with a special focus on Electronic Warfare 

(EW) aspects and impacts. The effort stems from the visions for future combat depicted 

in various DoD forward-looking documents such as Joint Vision 2010 (JV2010), the 

Advanced Battlespace Information System (ABIS), and New World Vistas (NWV), 

among other similar reports. In those documents, sensibly all views of the future theater 

environment show a highly distributed but highly connected information environment, 

with the backbone datalinking infrastructure generally labeled as the "Infosphere" or 

"Cybersphere". In essence the backbone for information reconnaissance in future theater 

environment will be a set of complex distributed data fusion systems consisting of (but 

not limited to) onboard and offboard fusion systems. 
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As the employment of Data Fusion system increases it becomes pertinent that the systems 

being employed be dependable in terms of efficiency and accuracy. In this context, 

rigorously evaluating the performance of the Data Fusion systems is of prime importance. 

There are several motivating factors for conducting an evaluation of the Data Fusion 

system. First, the system designer has numerous choices when selecting a particular 

design concept for a given application. Making an intelligent selection demands the 

comparison of candidate algorithms, which leads to evaluating them on the same basis 

without bias. Some examples of systems level issues raised in this process are: 

. What is the best combination of sensors to meet a given set of detection probability. 

Target discrimination, and Target location requirements. 

. What level of detection, discrimination, and location performance can be achieved by 

fusion of a given set of existing sensors? What improvements are accrued by adding 

sensors or improving the performance of individual sensors? 

Second, the evaluation process can also be used to refine the performance of the selected 

Data Fusion concept, especially the Tracking algorithms. The designer has the mandate to 

find ways to use the available resources as efficiently as possible. Hence, the evaluation 

process must allow the measurement of performance criteria for the candidate algorithms, 

providing quantitative inputs to support their optimization. 

"Approved for public release; distribution is unlimited." iv 



Unfortunately, no widely accepted scheme for characterizing the performance of Data 

Fusion systems / Multi Target Tracking system is currently in use. This document 

proposes such a formal framework for performance evaluation of such systems in 

computer simulations. 

In this report we present A Formal Frame Work for Performance Evaluation of 

Multi Target Tracking Systems, which is one of the main focal points of this research 

effort. In doing so we heavily draw upon the existing (and widely excepted) frameworks, 

models and techniques of the target tracking community. This has two major advantages 

- (1) Facilitates reusability of existing s/w and h/w components and (2) Using standard 

frameworks and norms makes it easier for the tracking community to adopt it - thus 

giving this aspect of tracking a highly needed jumpstart. 

'Approved for public release; disfribution is imlimited. 
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Chapter 1 

Introduction and Literature Review 

1.1   Background 

Multi-Target Tracking Systems (MTTS) are important components of surveillance 

systems used mainly by the Department of Defense (DOD). The function of a Multi- 

Target Tracking System is to employ the measurements from single or multiple sensors 

about the location and/or kinematic parameters of moving objects present in the space of 

interest (or objects entering or leaving it), and compute a "best" estimate of their location 

and related kinematic parameters, in real time. For example, an MTTS monitoring a 

given air space would be expected to track man-made objects flying within the range of 

the sensor systems of the MTTS; this study is in fact focused on aircraft type objects. 

Also the MTTS would usually need to report the latest kinematic information such as 

position, velocity etc from time to time, depending on the ratio between sensor sampling 

time and the time dynamics of the observed phenomenology i.e. the rate of change of 

'Approved for public release; distribution is unlimited.' 



object location and/or direction. (The reporting time of an MTTS depends on many 

factors such as system capabiHties, mission requirements etc). 

1.1.1    Sensors 

In the military applications of interest here, these are devices (example Radars, Sonar, 

Infrared detectors etc) capable of detecting distant objects and measuring their 

kinematics. But getting high quality measurements from these devices is complicated due 

to:(a) underlying sensor limitations regarding precision and accuracy, reliability, etc., (b) 

natural phenomena that complicate the observing process (weather effects, terrain clutter, 

etc) and (c) in the defense-problems of interest, from the possible use of sensor counter- 

measures employed (covertly) by an adversary. In short, the output of these devices 

cannot be accepted at face value and has to be processed in order to bring it within 

acceptable limits of error. Figure 1.1 depicts a typical problem scenario of interest to this 

research project. There are multiple, moving/maneuvering (possibly hostile) aircraft 

being observed at relatively long ranges by a sensor system array comprised of disparate 

sensor types. Sensor data are processed in an MTTS which incorporates "Data Fusion" 

techniques that are capable of exploiting the multiple observations on a given aircraft 

from several of the sensors to produce an improved estimate of true aircraft kinematic 

behavior (i.e. better than an estimate based on any single sensor data stream). 

'Approved for public release; disfribution is unlimited.' 
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Figure 1.1 Concept of a Multi-Target Tracking System 

1.1.2   Data Fusion Node: 

The raw data from the sensors is processed to reduce errors and eliminate "noise" 

(irrelevant data). The output of the data fiision node is an estimate of position of the 

objects but may also include estimates of velocity, acceleration and other attributes of the 

objects (depending on the system capabilities and mission requirements). Figure 1.2 

shows the conceptual design of a typical Data Fusion "Tree" (data fiision processing is 

usually partitioned according to various design criteria that leads to a network, or tree- 

type overall processing architecture). 

'Approved for public release; distribution is unlimited." 



The main components of Data Fusion Node are: 

1. Data Preparation (aka Common Referencing): The data from different sensors is 

aUgned against a common time, position and directional reference. This function 

may also account for inter-sensor biases and also filter out "obviously" bad data. 

2. Data Association: In this step or function, the many measurements are associated 

with many objects that were previously detected or they are labeled as related to 

"new objects". This process determines the allocation of the observations to the 

estimation algorithms that estimate parameters of interest for every object. 

Different algorithms and systems designs can be used for this process. An in- 

depth discussion of Data Association techniques is given in the concluding part of 

this chapter. 

3. State Estimation and Prediction: Optimal estimators such as the Kalman filter are 

used in this step to obtain an optimal estimate of the kinematics of the objects 

based on all of the observations assigned to the algorithm in the Data Association 

step. These estimators or "Trackers" are typically recursively-structured 

optimization algorithms, often based on satisfying a minimum-variance 

optimization criterion. These estimators also make a prediction of the kinematics 

of the objects for the next time point. References [1, 2] are suggested as further 

readings on optimal estimators for interested readers. 

The output from an MTTS node is often fed to a succeeding MTTS node, or may 

possibly be provided to a user via some sort of interface. The user may react to this 

output and provide his inputs to the next node by modifying or tuning some parameters. 

"Approved for public release; distribution is unlimited." 4 



In all Data Fusion (DF) processing applications, the Data Association (DA) step is 

crucial. This function is usually achieved by applying a 3-step process. The steps of this 

process involve a "Hypothesis Generation (Hg)" step, a "Hypothesis Evaluation (He)" 

step, and a "Hypothesis Selection (Hs)" step to produce a "good" allocation of the sensor 

measurements to the appropriate object-specific optimal estimation algorithms. The 

problem being addressed is most typically a problem in Combinatoric Optimization, since 

there are often many measurements and many feasible objects at any time point. The 

problem we are addressing is that of "Track Maintenance" wherein Track initiation has 

been accomplished and the Trackers are maintaining optimal kinematic estimates for all 

initiated Tracks (or objects). Thus the Combinatoric Optimization problem being 

addressed here is that in which we are comparing measured kinematics with predicted 

kinematics. Often, to reduce the combinatorics, what are called "gating" techniques have 

be used either as part of or prior to DA in order to prevent all measurements from having 

to be compared to all objects, ie to reduce the combinatoric dimensionality. Gating 

techniques typically employ some type of a priori domain knowledge that, e.g., may 

suggest that objects cannot move faster than some maximum velocity, in which case 

object-to-measurement associations, which exceed this criterion, are eliminated from 

consideration. 

'Approved for public release; distribution is imlimited. 
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1.1.2.1      Data Association 

Data association uses models of sensor errors and estimation errors to determine which 

data should be associated for improved state estimation (i.e., which data belongs together 

representing the same physical object or collaborative unit-such as for situation 

awareness). Mathematically, data association is a labeled set covering decision problem. 

This means that, given a set of prepared sensor data (for example, the designated data 

shown in Figure 1.3), the problem is to find the best way to collect this data into subsets 

where each subset contains the data to be used for the next state estimation about a given 

object. This collection of subsets must cover all the input data and each must be labeled 

as to which object they are associated to. In Figure 1.3, the red symbols denote the object 

locations predicted from the so-called Track Fiher. The Data Association process, as 

noted above, takes advantage of prior knowledge of sensor errors and errors in state 

estimation (typically built into the estimation algorithms; e.g., the Kalman Filter 

inherently has a built-in process which estimates its own prediction error) to determine 

"Approved for public release; distribution is unlimited." 



which observations are "closest" to the predicted location based on an assessment of the 

composite errors. 

Object 1 

Object 2 \ 

Object 3 

\   Object 4 

(D' X »A) Sensor A, B, C reports 

Solid lines - 1^* Association Hypothesis 
Dashed lines - 2"^ Association Hypothesis 
Red Stars - Predicated Obiect Locations 

Figure 1.3 Data Association - A labeled set-covering problem 

Data Association is segmented into three parts. These are discussed below. 

1.1.2.1.1    Hypothesis Generation (HG) 

In this step all possible measurement - Track pair hypotheses are formed. As a result of 

this step, the search space is reduced for the subsequent functions by limiting the feasible 

data association hypotheses. Further limitations in the feasible hypotheses are achieved 

by use of the previously mentioned "Gating Techniques" to eliminate infeasible 

hypotheses.   Conceptually, the idea here is to nominate the minimally-sized list of all 

'Approved for public release; distribution is unlimited. 



possible "causes" that could give rise to any expected measurement or observation. This 

list forms the constrained-set of possible hypotheses to which any observation will be 

allowed to associate. Examples might be: Object Track, Natural Clutter (e.g. weather 

causes), hostile deception, etc.; of course, it is hoped that the sensor set employed will 

primarily yield observations about the Object Track, and be resistant to clutter effects and 

to hostile deception measures. 

1.1.2.1.2 Hypothesis Evaluation (HE) 

Even with the employment of an HG function and Gating, ambiguities will arise in the 

sense of observations being feasibly associated to more than one hypothesis. In order to 

deal with this in a quantitative way, the feasible hypotheses are evaluated or scored using 

kinematics, parametric, attribute, ID, and a priori data [3]. The output of the HE function 

is a quantified evaluation or ranking of the feasible hypotheses, based on a statistically- 

developed "closeness" metric, as described in relation to Figure 1.3. Thus, the hypothesis 

evaluation task processes the association matrix, and develops quantitative measures to 

determine how feasible or likely these explanations are. Many different measures can be 

used including probabilistic metrics, similarity measures, distance calculations, likelihood 

functions, and many others. The HE function populates or fills in the association matrix 

with numerical values representing the feasibility or relative likelihood of the alternative 

hypotheses explaining the incoming data. The gist of the processing operations in HE is 

shown m Figure 1.4. As part of this processing, an "Association Matrix" is formed that 

relates observations ("O") to hypotheses (Hi).   The matrix cells contain the computed 

"Approved for public release; distribution is unlimited." 8 



scores for each possible cell relationship or association. As noted above, in spite of these 

scores there may still be ambiguity in determining a "best" set of associations; this 

ambiguity is addressed in the next step. 

Data Fusion Tree node 

Prior   Data 

Fusion 

Data 

Preparation 

Associated /Correlated 
Matrix 

Hi H2 H3 H7 
Oi 
02 
03 
• • • 

On 

Feasible Hypothesis set 

Associated /Correlated 
Matrix 

Hi H2 H3 .... Hn 

0, 
02 ^ .# 

03 "^ 

r?: ̂  
On ^# 

Qualified Feasible Hypothesis set 

Quantitative measures of the 
viability or likelihood of the 
feasible hypothesis 

The Hypothesis Evaluation Function of Association computes quantitative measures 
to allow comparison amongst feasible hypothesis 

Figure 1.4 An overview of Hypothesis Evaluation Function of Association. 

A discussion on scoring techniques for Hypothesis Evaluation is out of the scope of this 

thesis. However the scoring technique adopted for this work will be discussed later. 
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1.1.2.1.3 Hypothesis Selection (HS) 

Once the HG and HE processes have been completed, the overall association process has 

reached a point where the "most feasible" set of both multi-sensor measurements and 

Tracks (State estimation process) exists and these measurements remain to be assigned to 

the appropriate estimation processes that can exploit them for improved computation and 

prediction of the states of interest. This process is called Hypothesis Selection, where the 

hypothesis set comprises of all feasible assignment permutations of the inputs to the 

estimation process. So the input to this process is a two dimensional (can be greater than 

2D but usually its two dimensional) matrix (or matrices). The two dimensions being the 

measurements or observations "O" as noted above, and the Tracks (state estimation 

processes) and any other feasible hypotheses designated at the HG step, "Hi" in Figure 

1.4. The matrix is populated with "costs" of assigning any single measurement to any 

single estimator. These costs also known as "scores" in Tracking terminology are 

computed in the Hypothesis Evaluation process. Basically these costs are likelihood of 

measurement to estimation association and are in fact stochastic in nature. Depending on 

the HE technique these costs can be integer values or real values. 

The usual optimal strategy is to find the set of hypotheses with lowest total cost 

assignment; depending on the scoring technique it the objective may be to maximize the 

cost. The cost of assigning any given input to any of a few or several estimators may be 

reasonable within the thresholds of acceptable costs. If this condition exists across many 

of the inputs, the identification of the total-lowest-cost assignments may be a complex 
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problem, due to the existence of many alternative patterns within which to allocate the 

measurements. The central problem to be solved in HS is that of defining a method of 

selecting the hypothesis-set with minimum total cost out of all feasible hypotheses. This 

problem is specifically what is called an "Assignment problem" in the domain of 

combinatorial optimization. The selection of assignment technique for HS is a very 

critical part of System design. The important issues governing selection of assignment 

technique for HS are 

• Timeliness (Governed by mission goals) 

• Optimality desired. (Governed by mission goals) 

• Structure of Matrix (2D or N-D. Depends on system design) 

• Nature of costs. (Real or Integer values. Depends on HE technique employed) 

• Size of Matrix (Depends on the Environment) 

• Sparseness (Depends on HG process and Environment) 

1.1.2.2 State Estimation 

When the HS processing is completed, an optimal assignment of the multiple 

observations to each "causal" factor or hypothesis will have been completed. For those 

observations assigned to objects being tracked, the observations are processed by each 

Tracking filter which is maintaining track on each particular object. That is, the 

observations are in effect assigned not to an object but to a particular estimation 

algorithm which is recursively computing (estimating) a best estimate, based on all 

assigned  observations,  of the  object  location  and kinematics.     The  "object"  is 
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conceptually instantiated in the system by invoking a Tracking algorithm, which 

designates its presence. For those observations assigned to other causal factors, such as 

deception, other algorithms will be employed that exploit the information contained in 

the observations for other purposes, e.g., to determine the best deception-countermeasure 

to employ. Our interests here are of course only on the Tracking process, not "other" 

hypotheses in the system. 

1.1.2.2 Data Fusion Node and Process Design 

The design of an overall Data Fusion Process for target tracking will possibly involve a 

series of Data Fusion Nodes, each having processing operations of the type discussed 

above. As mentioned previously, such processes typically are structured in a network or 

tree framework, and the overarching strategy to develop the overall design can be 

unagined to be quite complex, given that each node's operations involve the steps just 

discussed. Our focus here is to begin exploring structured techniques for evaluating a 

candidate or prototype Data Fusion-based target tracking system. 

1.2 Introduction: The Performance Evaluation Problem 

The design and development of algorithmic techniques for estimating the "best" location 

and related kinematic parameters of moving objects which are observed by single or 

multiple sensors is a complex process [4]. It is complicated in part by: (1) the difficulty 

of obtaining high-quality measurements from sensor systems due to underlying sensor 

"Approved for public release; distribution is unlimited." 12 



limitations regarding precision and accuracy, reliability, etc., from natural phenomena 

that complicate the observing process (weather effects, terrain clutter, etc), and in the 

defense-problems of interest, from the possible use of sensor countermeasures employed 

(covertly) by an adversary. Another complicating factor is: (2) the inaccuracy associated 

with the estimation algorithm being used. Virtually all estimation algorithms are model- 

based, and employ a priori models of Target motion, sensor errors, system noises etc in 

order to estimate the Target kinematics. 

However, if the inter-object/target spacing is large enough and other factors that degrade 

DA are not present, then most current-day Data Association processes will separate the 

observations into the correct sets, ie into observation-sets correctly aligned with the 

objects. Said otherwise, the observations will be grouped into sets that are "caused" by 

the objects^ Our concern is for those problem cases where the factors influencing the 

Data Association process for the --"System Under Test (SUT)" fusion process are such as 

to result in ambiguous associations for the SUT. Among the factors influencing DA are 

inter-target separation distance and also sensor sampling rate; 

Thus, for many cases of interest, a perfect match between the a priori models and the true 

behavior of the objects, the sensor observational processes, and the nominated data 

associations from the DA of the SUT cannot occur due to the stochastic behavior of the 

elements involved. As a result, there is a divergence in the estimated (from the SUT) and 

the real ("truth ") picture of the composite multi-object kinematic behavior. The goal of a 

' It can be argued that this never happens in an entirely correct way but we are discussing degrees of 
problem cases in a general way here. 
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Multi Target Tracking System designer is to develop a fusion-based tracking system that 

yields a composite, estimated kinematic picture which is in some sense considered a 

"good enough" estimate of the composite, true object behavior. Hence at various stages 

in development of a tracking system it is necessary to evaluate the performance of the 

system in order to see how close the system's estimate is to the true picture. This is the 

fundamental issue addressed here: given all the components of a typical tracking system 

(whose design, as a network of separate fiision processing nodes, is often referred to as a 

"Data Fusion Tree"), along with the overarching stochastic characteristics of the problem, 

on what basis can an equitable approach to evaluation of a candidate-design tracking 

system—the "SUT"- be based? 

The process of performance evaluation allows the analysis of the absolute and relative 

performance of SUT's, through comparisons of the measured and estimated tactical 

pictures with what has come to be called the "Air Truth" picture. There are several 

motivating factors for conducting an evaluation of the Tracking System. First, the system 

designer has numerous choices when selecting a particular design concept for a given 

application. Making an intelligent selection demands the comparison of candidate 

algorithms, which leads to evaluating them on the same basis without bias. Some 

examples of systems level issues raised in this process are [5]: 

. What is the best combination of sensors to meet a given set of detection probability. 

Target discrimination, and Target location requirements. 
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. What level of detection, discrimination, and location performance can be achieved by 

fusion of a given set of existing sensors? What improvements are accrued by adding 

sensors or improving the performance of individual sensors? 

Second, the evaluation process can also be used to refine the performance of the selected 

Tracking System concept, especially the Tracking algorithms. The designer has the 

mandate to find ways to use the available resources as efficiently as possible. Hence, the 

evaluation process must allow the measurement of performance criteria for the candidate 

algorithms, providing quantitative inputs to support their optimization. 

Finally, the quantitative performance assessment can be applied to determine the relative 

contribution of the Tracking System to the success of the mission for which it is being 

employed. In the context of a Tracking System design problem that starts fi-om scratch, 

with design choices open for sensors, operating conditions, and algorithms, many factors 

are involved. Table 1.1 shows some of these factors and the design choices 

Factors Affecting Tracking 
Algorithm Design 

Effects on Tracking System 
Design 

Target 
Characteristics 

• Target Signature (example. 
Radar Cross Section) 

• Target Motion (Maneuvers) 
• Target Scintillation 

Characteristics 

Models are required for each 
expected Target; thus this 
requires understanding the 
Target-set expected. 

Scenarios • Sensor-Target Geometry 
• Target Density (Many 

Objects) 
• Highly Dynamic environment 
• Target Proximity 

(Closely spaced Objects) 

This defines the sensor-to- 
Target geometries and range 
of expected Target kinematic 
behaviors—^this establishes 
models of detection 
probability, sensor 
performance, and complexity 
of Target kinematic models 
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Physical 
Environment 

• Clutter 
• Propagation Effects 

(Complementary Sensors) 
• Electronic Countermeasures 

(Enemy interference) 
• Weather conditions 
• Day/night operation 

This defines the physics of 
sensor operating conditions 
and affects the sensor 
perfomiance models but also 
affects the feasible operating 
conditions for the algorithms 
being studied, eg viability to 
operate under different weather 
conditions and night/day 
conditions 

Measurement 
Process 

• Sensor Power 
• Sensor Sensitivity 
• Sensor Detection threshold 
• Sensor Resolution 
• Sensor Noise 
• Sensor Misalignment 
• Sensor Failures 
• Limited processing capabilities 

Determines what sensor design 
parameters can be modified by 
the system designer, and 
thereby overall sensor 
performance 

Estimation 
Process 

• Bad Assumptions in Target 
Models 

• Bad tuning of parameters 
• Limited processing capabilities 

Affects the overall quality of 
the estimation algorithms and 
their processing speed 

Table 1.1 Factors affecting the performance of Tracking System [6] 

affected by each. The focus of this study however is not so broad; we focus here on 

evaluating the Tracking algorithms per se, given the overall Tracking System design. 

Our focus in particular is not to conduct the evaluation of these algorithms with algorithm 

performance improvement in mind but with the general purpose of understanding 

methodological options in forming a performance evaluation approach since, as we argue 

below, such basic imderstanding has not yet been developed in the data fusion 

community. 
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1.3 Approaches to Performance Evaluation 

There are two distinct approaches to the performance evaluation problem [5], Analytical 

and Simulation-based. 

1.3.1    Framework for Tracker Performance Evaluation 

Figure 1.5 shows a depiction of the overall framework for evaluating object-Tracking 

algorithm performance. 

£hvlronmerit 
Txriln 
IntwttniK*, iDMthH 
DM-liliMiiitlle daU 

Figure 1.5 Overall Framework for Tracker Performance Evaluation [7] 

This Figure, along with Table 1.1, provides a context for understanding the issues, 

factors, and complexities in defining and carrying out a performance analysis of object- 

Tracking algorithms in a data fusion-based context, i.e. in situations where the algorithm 
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also depends on a Data Association process, and wherein there are multiple observations 

for each object. In reference to Figure 1.5, we see that there is the notion of the "Truth 

Picture", meaning the actuality of object positions over time and the actuality of the 

sensor data/observations/measurements, and also of the environment. In the cases of 

interest here, this Truth Picture is known when the analysis is simulation-based but for 

real-world cases the Truth Picture may itself need to be estimated from observations; this 

is a separate matter not addressed herein. The Measured Picture is developed from the 

Measurement Process and the factors, noted in Table 1.1 and in Figure 1.5, which affect 

that process. In the data fiision case, these multiple measurements need to be correlated 

to (assigned to) particular estimation algorithms operating on each objects kinematics. 

Subsequent to association processing, the Tracking algorithms produce estimates of 

object locations and other kinematic factors over time, producing the Estimated Picture. 

For algorithms that have a recursive structure, they can also propagate the kinematics 

estimates forward in time, and this produces the Predicted Picture. 

As noted in Figure 1.5, analytically based evaluations typically compare the effectiveness 

of estimation algorithms in extracting all available information content from the 

measurements. Simulation-based evaluation methods typically compare the Truth Picture 

(requiring a composite, "all-Tracks" metric) with either or both of the Estimated Picture 

and the Predicted Picture. 
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1.3.2 Analytical Methods 

A number of investigations have been carried out on the development of performance 

prediction (and thus performance analysis) of a Tracking System. For example Sea and 

Singer [8, 9] analyzed the performance of nearest-neighbor type data association 

algorithms. They provide a method for predicting Track accuracy as a function of Track 

history. Blackman [10] derived some analytic expressions for computing the probabilities 

for correct correlation, false correlation and correct decision. Another example is the use 

of covariance analysis to evaluate the effects of mismatch between the Kalman filter 

model and the true Target dynamic model, offering a reduction of the model state space 

dimensions and the variation of the sampling interval of the sensor. 

Analytical evaluations are also helpful in estimating the upper bounds for the 

performance and to identify the key factors contributing to the Tracking performance [7]. 

These bounds are typically based on the information content of the data and are not 

related to any particular estimation technique. These techniques are very useful in 

performing sensitivity analysis. However these bounds are optimistic and no estimation 

technique can guarantee to achieve them. Hence to get the real picture Simulation 

evaluation becomes a necessity. Figure 1.5. 

A complexity and limitation of Analytical methods is that the various processes shown in 

Figure 1.5 are not connected by an integrated set of closed-form mathematics. Thus, the 

interdependencies among each succeeding processing operation cannot be expressed in a 
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connected set of mathematics; this aspect is further compHcated by the stochastic nature 

of the mathematics. There is also the time-dependency aspect. As a result, Analytical 

forms are typically applied using assumptions of various types and also framed for the 

steady-state case, reflecting average performance rather than temporally dependent 

performance. 

1.3.3 Simulation-Based Evaluation 

The Performance evaluation through computer simulations refers to the examination of 

output results of Tracking algorithms running against different scenarios established in a 

simulation system (i.e. computer-based system) under a set of pre-established measures. 

The major advantage of this method is that the simulations can be designed to reflect the 

real application environment as closely as possible and the models employed can be 

much more complete that those used in the analytical evaluations. A generic model for 

evaluation through simulations is as shown in Figure 1.6. 

CXitput 
Track 

Scenario 
Generation > 

Sensor 
Module 

Tracking Svstem IVl   Results 
^  Under Test i  Analysis 

Figure 1.6 General model for Simulation based Testing and Evaluation [5]. 
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1.3.4 Issues And Difficulties In Tracking System Evaluation. 

Wolff and Fixen [11] discuss a wide range of difficulties that are encountered in 

designing a performance evaluation system. These are enumerated below. 

l.Lack of Global Measures of Performance 

The currently available measures of performance are not applicable to all kinds of 

algorithms. There is a need for Global measures which can be applied to most of the 

algorithms. 

2.Diversity of Aspects Involved 

The Tracking System provides answer to many different questions for example location, 

velocity, attributes, identity etc. It is necessary to know how well does the system 

performs in each of its regimes. This requires a set of measures of performance that cover 

all the aspects of performance of these systems. 

3.Complexity and Stochastic Behavior 

The Target estimates are a blend of random distributions, hard to evaluate because they 

jump around too much. Even if the same scenario is repeated many times, each repetition 

may be expected to produce a different set of answers. Hence in order to evaluate at any 

confidence level one needs to conduct several runs and then take an average. 
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4.Location Effects 

Sensors accuracies are always dependent on range and angle of the Target. Hence while a 

sensor might be very accurate in one scenario and very in accurate in another scenario. 

This makes it very hard to establish the accuracy expectation of a Tracking System. 

Hence it becomes necessary to test the system against a set of scenarios so as to bring out 

to ascertain its accuracies in different conditions. 

5.Target Priorities 

Some Targets are more important than others. Trackers spend more time on high priority 

Targets; consequently their performance against such Targets might be better than against 

normal priority Targets. This should be taken into account while designing the evaluation 

system. 

6. Model Matching Issues 

There are several types of sensor models, hi lab simulation its important that the sensor 

model used by the simulator concurs with the one used in the estimation algorithm other 

wise the algorithm gets penalized for the mismatch. 

7.Model Fidelity Issues 

In an ideal Tracking System very high fidelity models would enable very accurate 

Tracking. But in tactical systems, the Tracker is often called upon to respond to high data 

rates and time-critical requirements under severed limitations of size, power and weight. 
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These constraints militate against high fidelity and force the designer to compromise. 

Hence it's prudent that the tactical algorithms evaluated "at speed". 

8.Differences Between Algorithms 

Difference between algorithms interferes in comparative evaluations and makes the 

process very expensive. 

9. Performance evaluation Ambiguities 

In order to compute measures of performances such as Position estimation error the real 

position of the object or the Air Truth' (hence forth referred to as Truth) and the 

estimated position or the Output Track^ (hence forth referred to as Track/s) have to be 

compared. An advantage of laboratory simulations is that the Truth is easily available. 

Knowing the Truth would be enough in Single Target enviroimients. In such a situation 

there would be just one set of Truth data and one set of Track data for comparison. But in 

case of Multi Target environments there would be many sets of ground Truth data and 

almost as many (or more) sets of Track data. In order to compare Track to Truth one 

needs to know which Track represents which Truth. The process of correlating Truth to 

the representative Track is termed as ''Track to Truth Association'. 

Track to Truth Association is a complex problem in Multi Target Multi sensor 

environments; the complexity increases in dense environments of clutter, false alarms, 

and closely spaced Targets. Often in such environments Tracks get updated from more 
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than one source for example consider a scenario wherein two Targets are maneuvering as 

shown in Figure 1.7(a) 

Figure 1.7(a) Two crossing Targets 

Figure 1.7(b) shows how the measurement generated from Truth-A gets assigned to 

Track-1, which had been representing Truth-B till this time point. Similarly the 

measurement generated from Truth B gets assigned to Track-2 that had been representing 

Truth-A till this time point. Thus a "Switching" has occurred at this point i.e. that 

Target/Truth that was earlier being represented by some Track is now being represented 

by another Track. This kind of Switching is frequently observed in environments where 

Targets are maneuvering closely. Several factors contribute to Switching; some of which 

are listed in table 1.1. 

DD Track'1' 

Measurement 
produced from A 

10 Track '2' 1 L 
Measurement 

produced from B 

Figure 1.7(b) Origin of Switching 
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A possible output of the Tracking System for the Targets is shown in Figure 1.7(c). Thus 

for some part of the scenario Track-1 represented Truth-A and for the other part of the 

scenario Track-2 represented Truth-A. So the question arises which Track should 

represent which Target for evaluating the Tracking System. 

Figure 1.7(c) Concept of Switching 

1.4 Methods Of Evaluation 

Some of the different methods of simulation evaluation that have been observed in the 

Tracking community are discussed below. 

1.4.1. Drummond's work 

Drummond along with others has discussed some of the aspects of Performance 

evaluation in his various publications [12, 13, 14, 15]. The focus of these publications has 

been around ambiguities involved in evaluating the performance of Tracking System and 
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metrics for evaluation of performance. Some methods to assigning Track to Truth have 

been suggested and metrics for evaluating the performance have been presented. 

In his work Drummond presents a two-step methodology for performance evaluation of 

Tracking System. As shown in Figure 1.8 the first step of this methodology is about 

assigning Track to Truth while the second step deals with computing the performance 

metrics give the Track to Truth assignment. 

Track 
Truth 

Select the 
Truth for 

each Track 

Track - Truth pairs 
False Track, 

Missed Targets 

Evaluate 
performance 

measures 

Performance 
measures 

Stepl Step 2 

Figure 1.8 The Two steps of the PE Methodology 

Two alternatives to computing scores for Track to Truth assignment have been discussed 

in [14]. The first one is based on using the statistical distance between Track and Target 

locations. Different functions can be used to measure the distance. For instance, the sum 

of the squares of the difference between each component of the Track state vector and the 

Truth state vector is one measure of this distance. Another measure could involve the 

position components of the Track and Truth state vectors. Yet another one suggested is 

based on the difference between the estimated state of the Track and the Truth state and 
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weighted by the error covariance matrix of the Track. They also suggest the use of a 

threshold value on this measure to perform gating. 

Another method is based on Track purity. In this method the objective behind the 

assignment of Track to Truth is to maximize Track purity. Kovachich and Chong first 

discussed this method [16]. In their 1991 paper [13] Drummond and Fridling discuss this 

method but prefer the distance based scoring method to it. 

Overall preference has been given to the distance based method because it does not 

require the evaluator to know anything about the measurements and their source nor 

about the Tracking algorithms. 

Four different methods for dealing with ambiguities involved in assigning Track to Truth 

have been presented. These methods have been distinguished on the basis of Track-Truth 

Association "strategy". These strategies dictate whether Track Switching is allowed or 

not. From the perspective of evaluation. Track Switching refers to changes in the 

assignment of Track to Truth over time. 

In these methods Tracks are either declared as valid in which case they are assigned to 

some Truth or else they are declared as invalid or False Track. Truth, which is not 

assigned to any Track, is declared as Missed Truth. Depending on the method a Track 

may be assigned to more than one Truth during it life time but it is never assigned to 

more that one Truth at a time i.e. unique assigimient of Track and Truth is done. 
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a. Method 1: The Switching Strategy 

In this method there is no limit on Track Switching. The assignment of Track to Truth is 

computed at time points of interest independent of the assignments at other time points. 

As result a Truth can be associated with some Track at a time point and the same Truth 

can get associated to a different Track at the very next time point. Figure 1.9 depicts the 

assignment of Truth to Tracks at various time points of the scenario. For example Truth 

'A' was declared as missed for the first time point. It was then assigned to Track '1' at the 

next tune point i.e. to say Track '1' represented Truth 'A' at that time point. At the very 

next time point Track '4' represented Truth 'A'; resulting in a Track Switch. 
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Figure 1.9 Hypothetical assignments of Truth to Track using Switching Strategy 
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b. Method 2: The No Switch Strategy 

This method does not allow Track Switching within a run; however a Truth may be 

associated with a different Track for different Monte Carlo runs. Track to Truth 

assignment is done only once for a single run. Scores are calculated at time points of 

interest for all candidate Track-Truth pairs. Then sum is taken over the time from the 

earliest occurrence of the Track or Truth until the latest occurrence of the Track or Truth. 

Thus there is a penalty imposed for Missed Truth or False Track. Figure 1.10 shows a 

typical Track-Truth association using No Switch Strategy. Here Truth 'A' was represented 

by Track '2' for all time points when Track '2' existed. 
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Figure 1.10 Hypothetical assignments of Targets to Track using No Switch Strategy 
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c. Method 3: Restricted Switch Strategy 

This method allows Track Switching under very limited conditions. A sequence of 

Tracks can be assigned to a Truth if the sequence is feasible. In a "feasible Track 

sequence" no two Tracks exist at the same time. Thus a Track cannot be started before 

the prior Track is terminated i.e. only after the termination of the Track that had 

associated to a Truth other Tracks get a chance to get associated with that Truth. Figure 

1.11 shows a typical Track-Truth association using Restricted Switch Strategy. Here 

Truth 'A' is initially represented by Track '1' for all time points when Track T exists. 

Once Track '1' ceases to exist a new representative Track for Truth A' is selected which 

is Track '2' in this case. 

First the assignment cost for each candidate Track-Truth pair is computed as described in 

method-2. Then for each Truth, all feasible sequences of Tracks are enumerated. The 

assignment cost for each feasible Truth-Track sequence is computed as described in 

method-2. Finally the assignment of Truth to Track or Truth to Track sequence is done by 

solving N-Dimensional assignment problem (N>2). The major drawback of this method 

is the computational complexity involved in solving N-D assigimient problems. 
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Figure 1.11 Hypothetical assignments of Targets to Track using Restricted Switch Strategy 

d. Other Methods 

Some ad-hoc methods to discourage Track Switching have been suggested. 

1. Reduce the cost of current candidate Track-Target pair that was assigned last 

time. 

2. Compute a "recent cost " using a moving window of the instantaneous costs to 

compute a weighted average of the costs. 

3. Computed three tentative recent costs and choose the lowest of the three. The 

three recent costs are computed using 

a. A past cost window. 

b. A future cost window (past cost window computed backwards in time). 
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c.   A centered window having equal number of past and fiiture time points. 

4.   Uniquely assign a Track to Truth when the Track is first available and continue 

that assignment until the Track is terminated. Then uniquely assign another Track 

to the Truth. 

1.4.2 Track Purity Method 

Kovacich and Chong have described the use of Track purity for Track-Truth association. 

Track purity has been defined in strict sense and loose sense. In the strict sense Track 

purity measures the degree to which a Track is consistently updated with measurements 

from a single Target. In loose sense, it measures the degree to which a Track is 

consistently updated with measurements from a set of Targets. 

In this method the score for an association hypothesis between Track 'i' and Target 'j' is 

computed as the ratio of # of measurements in. the Measurement set (measurements 

which have cleared gating) for Track 'i' whose Truth set contains Truth 'j' to # of 

measurements in the Measurement set for Track 'i'. These scores are then used for Track 

-Truth assignment. 

1.4.3 Measurement Source 

Another possible way to solve the Track-Truth association problem is the use 

measurement source as the assignment criteria. This requires the evaluator to identify, 
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which observations were used by which Track and which was the originating Target for 

those observations. This is not an easy task especially when the sensor fidelity in the 

simulation is high. It might require the evaluator to weigh the observation - Target and 

observation - Track relationship and then solve that assignment problem. Another 

drawback with this method is that it cannot be applied for on-field testing or lab testing 

where the real Truth data is being used. 

1.4.4 Trial and Error Methods 

It has been observed that often the user/system designer manually assigns Track to Truth 

for computation of metrics. These methods again enforce No Switch strategy. 

1.4.5 Selection of Association Strategy 

It can be observed from above discussion that Track-Truth association strategy has a deep 

influence on the design of Performance evaluation process. The Track-Truth association 

strategy can be divided into three categories the No-Switch strategy, the Switching 

Strategy and the Restricted Switching strategy. So which strategy is the best? There is no 

single opinion as to which of these strategies is the best because each of these strategies 

optimizes some aspect of Tracking. For example let us consider the scenario described in 

Figure 1.12(a) 
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Figure 1.12 (a) Track to Truth Association Problem 

Now methods adopting No-Switch strategy could yield a solution shown in Figure 

1.12(b) for this problem. This solution would give a very poor overall accuracy while 

giving very high Track purity. 

Figure 1.12 (b) Probable Track to Truth association using No-Switch Strategy 

Methods adopting Switching Strategy might associate the Track and Truth as shown in 

Figure 1.12(c). Thus Truth 'A' gets represented by Track T part of the scenario and by 

Track '2' for rest of the scenario. It can be observed that such an assignment would result 

in better kinematic accuracy when compared to the assignment shown m Figure 1.2 (b). 

Using the Switching strategy one would get much better overall accuracy but one would 
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have no control whatsoever over Track purity or Switching. On the other hand adopting 

the No Switch strategy could yield very poor ambiguity metrics. 

Figure 1.12 (c) Probable Track to Truth association using Switching Strategy 

Also one could take the middle path of Restricted Switch strategy, which might yield 

better purity and Switch metrics than the Switching strategy while compromising the 

overall accuracy. 

In short no particular strategy is the "best". Each strategy optimizes some metrics at the 

cost of other metrics. So the question arises what factors detennine the selection of the 

Track to Truth association methodology for evaluation of Tracking System? The answer 

lies in the definition of the word "evaluation". The evaluation of a Tracking System is the 

process of determining the value of the Tracking System. The value of a Tracking System 

is something that has to be measured in context of the mission of which the Tracking 

System is a part. Hence it is the mission goal that dictates what the Tracking System 

should try to achieve. For example with reference to the No-Switch strategy Drummond 

states [14], "This methodology might be useful for a Tracking System that is used to feed 

a combat identification processing fiinction". It is obvious that the basis for this statement 
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stems from the interpretation that such missions require a Tracking System that does not 

Switch i.e. the system consistently updates Tracks from same Target. But then how do we 

confirm whether the system has a tendency to Switch or not? The only way to the study 

the Switching characteristic of a system is by evaluating it using a Switching strategy 

rather than using No-Switch strategy as Drummond suggests. 

1.5 Performance Metrics 

Abundance of literature discussing this aspect of evaluation of Tracking Systems is 

available. A brief summary of these from the perspective of Level 1 data fiision is 

discussed here. 

1. Accuracy 

This criterion quantifies the accuracy of the Kinematics estimates of the system output. 

For example 

a. Radial Miss distance (RMD) 

It is measured as the Pythagorean distance between the Track position and the source 

position 

b. Track Accuracy 

As assessed for a particular object that should be Tracked, the root mean sum squared 

error (RMSE) history in position, RSME in velocity, the root sum squared average error 
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(RSSAE) history in position and RSSAE in velocity of the Track assigned to that object 

compared to the Truth states for that object. 

c. Track Covariance Consistency 

As for a particular object that should be Tracked, the mean normalized Chi- squared 

statistic of the Track assigned to that object. 

2. Association Performance 

This deals with the ability of the system to correctly associate the Track with their 

sources. For example 

a. Number of Track Switch 

The niimber of times the source of a Track Switched during the lifetime of the Track. 

b. Track purity 

Track purity is defined as the degree to which a Track uniquely represents a single 

Target. This can further be classified as loose sense of purity and Strict sense of purity. 

3. Tracking System Responsiveness 

This criterion deals with the time that the Tracker needs to come to a decision. For 

example 
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a. Track initiation time 

Time taken by the Tracker to initiate the Track once the Target has entered the volume of 

interest 

b. Track confirmation time 

Time taken by the Tracker to confirm the Track after the time of initiation 

c. Track deletion 

Time taken by the Tracker to delete the Track once the Target has left the volume of 

interest 

4. Ambiguity 

This criterion measvires the redundant and spurious Tracks in the output. For example 

a. Redundant Track Mean Ratio 

In a gated non-unique assignment, the number of declared Tracks that are assignable to 

real objects, divided by the number of valid declared Track. 

b. Spurious Track mean ratio 

In a gated non-unique assignment, the number of declared Tracks that are un-assignable 

to real objects, divided by the number of valid declared Track. 
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5. System Loading 

This criterion measures computational load necessary for the system. For example 

a. Communications Data Loading 

Sum of rates input from all platforms into the communications function for distribution to 

other platforms. 

b. Processor Loading 

Peak number of floating point operations per Tracker per scenario per second. 

1.6 Summary 

In section 1.3.3 we discussed several issues and problems associated with simulation 

based performance evaluation. Following this in section 1.4 we presented a critical 

discussion of the various performance evaluation methods and philosophies that have 

been observed to date in the tracking community. Now keeping in sight the various 

methods of Performance Evaluation and issues surrounding them, let us summarize the 

steps generally involved in the performance evaluation process design. 

1. Selection of Performance Measures 

As mentioned in the previous chapter the assessment of delivered value of the MTTS 

should be done in the light of mission goals and objectives i.e. the mission goals and 

objectives need to be translated into measures of performance. The process of this 
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translation gives the system designer an insight to the critical tracking performance 

measures. An important aspect of the overall evaluation process is that the underlying 

problems are temporally dynamic; thus, some sort of strategy needs to be defined to 

accoimt for these dynamics in the evaluation approach and in the computation of 

performance measures. The definition of performance measures should therefore 

comprise what is to be measured, the frequency at which it has to be computed and how it 

is to be aggregated (i.e. over time or over various simulation runs, etc.). 

2. Selection of Track-Truth Association strategy 

The critical tracking performance metrics play an important role in the selection of the 

Track-Truth association strategy. For example, for applications involving the evaluation 

of combat identification processing as affected by association ambiguities, switching is 

discouraged [14]; hence the only option (of those explored in this thesis) is to adopt the 

No Switch approach. If for some mission purity is critical, then the emphasis would be to 

achieve high purity. This would require the system to be rigorously tested for switching 

behavior, which cannot be done using the No-Switch approach. 

3. Selection of the Gating Criterion 

In the same way as for regular (i.e. systems-under-test) Association processes, gating is 

used in Performance Evaluation to eliminate improbable Track-Truth Associations. 

Usually selection of gating criteria is an easy task since such criteria are not affected by 

other factors 
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4. Selection of the Scoring Method 

The performance metrics and the association strategy affect the selection of a scoring 

method. For example, if the No Switch approach has been selected, and purity is more 

important than accuracy, then the scoring method could be based on Kovachich and 

Chong's Track purity approach [16]. But if accuracy is important then distance based 

scoring could be used. Also, depending on the association strategy, the computation of 

average scores might be required. 

5. Assignment Technique Selection 

Selection of the assignment technique for Track-Truth assignment depends on many 

factors (refer to Section 1.1.2.1.3 on Hypothesis Selection). The most critical factor 

affecting assignment technique selection for Track-Truth association is the association 

strategy. For example, Drummond's Method #3 based on a Restricted Switching 

approach requires an N-D assignment formulation. 

6. Data Flow Design 

Data flow design is the process of defining the data and control flow within the various 

components of the PE module. The data flow design process also specifies how the PE 

module is to be integrated with the components of fusion system under test. 

Thus, the task of designing the Performance Evaluation process is as complicated as the 

original task of designing a Data Fusion-based Tracking System. A close look at the 

steps summarized above reveals that the mains steps involved in designing the PE 
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process are similar to those involved in designing the data fusion process for the SUT. In 

this research effort we propose a formal design framework for the Performance 

Evaluation process based on the data fusion tree paradigm. Such a framework would 

facilitate reusability of the software/hardware components designed for the data fusion 

process for the SUT—ie; to some degree it should be possible to share SUT and PE 

process components. 

The remainder of this thesis is organized as follows: Chapter 2 presents a Formal 

Framework for PE System Design followed by a Case Study Implementation of the 

Framework in Chapter 3. hi Chapter 4 we present the Case Study implementation resuhs 

and analysis. We conclude with conclusion and recommendations in Chapter 5. 
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Chapter 2 

Performance Evaluation System Design Framework 

2.1 Introduction 

In section 1.4 we presented a critical discussion of the various performance evaluation 

methods and philosophies that have been observed to date in the tracking community. 

Following this in section 1.6 we presented a summary of steps involved in designing a PE 

system. In this chapter we present a formal framework for PE system design, which is 

one of the main focal points of this research effort. In doing so we heavily draw upon the 

existing (and widely excepted) frameworks, models and techniques of the target tracking 

community. This has two major advantages - (1) Facilitates reusability of existing s/w 

and h/w components and (2) Using standard frameworks and norms makes it easier for 

the tracking community to easily adopt it - thus giving this aspect of tracking a highly 

needed jumpstart. 
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2.2 The PE System Design Framework 

The PE System Design Framework is shown in the Figure 2.1. The Framework is 

partitioned into 4- hierarchical levels each of which looks at the PE system from a 

different depth i.e. the very first level looks at the PE system with reference to its 

environment whereas the lowest level deals with the intrinsic of the PE system 
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Figure 2.1 PE System Design Framework 
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components. Each level goes through three phases, namely the requirements analysis 

phase, the actual design phase, and the evaluation phase. Each sub-level provides 

feedback to the predecessor level, which might trigger another set of design iterations 

through the hierarchy. 

2.2.1 PE System Role Design 

PE System Requirements Analysis 

This phase begins with an in-depth analysis of the role of the SUT within the C3I 

infrastructure, i.e., within the intended application context. This analysis gives insight to 

the critical aspects of SUT performance, which the PE system should estimate. Said in 

other words this analysis leads to a broad definition of the MOPs, which the PE system 

should be capable of estimating. 

The complete picture of the PE system needs is expressed as the concept of operations 

(CONOPS) for the system. The CONOPS [and the resuhing PE system design criteria, 

and constraints] defines the problem for the PE system design development. In summary, 

the CONOPS provides the following: 

■ Objectives of the SUT, 

■ Description of SUT operational scenarios and activities, 

■ Description of the SUT output data 
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Objectives of the PE system i.e. the description of the characteristics of the SUT 

to be evaluated by the PE system. 

PE System Functional Role Design 

The PE system is just a subset of the MTTS development process. This second step in PE 

system role design development has two main goals, (1) to optimize the functional role 

of the PE system within the system environment and (2) to facilitate the seamless 

integration of the PE system as a "black box" within the system environment. This is an 

iterative process that culminates in a PE System Specification, which includes: 

■ System functional capabilities [to include capabilities implied from the CONOPS 

and the modes of the system required in support], 

■ Data bases [to include requirements on data bases that must be incorporated into 

system] 

■ External I/O interfaces [to include descriptions of physical interfaces, 

communication media, nature of data, and security issues to external systems, 

support environments, data bases, and users], 

■ HW/SW environment [to include physical/environmental characteristics, 

computer equipment, and support SW that must be used by the system], 

■ Software life-cycle cost and complexity (i.e., affordability); 

■ Robustness to errors/mismodeling (i.e., graceful degradation); 

■ Ease of user adaptability (i.e., operational improvements and personalization); 
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■ Result explanation to user (i.e., responds to queries to justify result). 

■ Documentation [to include requirements for manuals, test plans, procedures, 

training, and other descriptive materials in various hard copy, electronic, and 

audio/video forms]. 

This "black box" design determines the relationship of the proposed system with 
respect to the other supporting systems. 

2.2.2 PE Tree Optimization 

After the role for the PE system (i.e., as a black box) is defined as described above, the 

component phase design is optimized using a similar feedback process to that described 

above. Namely, a fiirther refinement of the requirements defines the problem, from 

which a PE tree design solution is developed, and then iterated upon. 

PE Tree Requirements Analysis 

The PE system role requirements are fiirther refined as necessary to optimize the batching 

of the data for optimal MOP estimation. Note that data batching is a main driver to the 

particular structure of the PE Tree, i.e. that the layers of a PE Tree reflect layers of PE 

process partitions, largely defined by how the SUT resuhs will be aggregated for MOP 

estimation. These requirements mainly focus on the input data quality, availability, and 

timeliness, as well as the corresponding output requirements - mainly the MOPs. A 

crucial point to be noted is that the relationship between the input data characteristics 
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(note that PE inputs are SUT outputs, i.e. Track estimates) and the MOPs characteristics 

is a driving factor in the selection of Track - Truth Association strategy which in turn can 

affect the PE Tree design. 

More specifically, requirements refinement includes more detailed descriptions of the 

range of tracking-problem scenarios that the SUT might be subjected to, SUT output data 

description, system output requirements, system functional capability requirements, the 

SW/HW system environment I/O, and user interfaces. Sufficient description of the 

problem is provided in this step to enable the PE tree design development trades on 

performance vs cost/complexity. 

PE Tree Design Development 

The Performance Evaluation MOP estimation requires the association of the SUT Tracks 

to the Truth entity states, since the basic evaluation context is based on differences 

between SUT output and the truth states. A trade-off of evaluation system performance 

versus complexity must be made to design the Track-Truth Association strategy and 

resulting MOP estimation approach and associated software design. 

The PE tree design process describes how the SUT Track data is to be batched (e.g., over 

time, scenarios, platforms, object ID data, sensors, reports, etc.) for processing by PE 

nodes. For the range of problems addressed in this thesis, the PE tree design is mainly 

governed by the Track to Truth association strategy adopted. However, in more complex 
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applications, the tree design may be influenced by factors similar to those affecting the 

design of the Fusion Tree for the system-under-test (ie, processing speed, other cost- 

driving factors such as ease of interpretation of resuhs, etc). Thus, on a case-by-case 

basis, the factors influencing the design of a PE tree will be more or less similar to the 

design considerations for the application. 

The selection of an effective PE tree requires understanding the data inputs, the SUT 

fusion requirements and above all the PE system requirements. The tree structure 

provides the designer with a formal mechanism for an imderstanding of how difficuU the 

problem is, how accurately he needs to solve it, and under what processing and cost 

constraints. To reduce complexity/cost he wants to accomplish as much as possible as 

early and as easy as possible in the processing. 

Those PE trees with simpler PE node processing are those, which use smaller batches of 

data. However too small batch size may not create a sufficiently broad perspective for 

MOP estimation. On the other hand too large batch size may create unnecessary 

computational overheads (generally, computational complexity increases exponentially 

with relation to input data size), with hardly any improvement in the MOP estimation 

process quality. For example, when partitioning input data based on the timestamp it 

bears, batch size is determined in accordance with a time window of size "At" i.e. the n 

batch consists of all the input data generated between time "T +(n-l)*At" and "T + n*At". 

Now if "At" is too small then it might happen that some of the Truth data gets assigned to 

one batch and the SUT Track data representing that particular set of Truth data might get 
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assigned to the next batch. (In high fideUty simulations there is always a time lag between 

the timestamps on the truth data and track data). But a high value of "At" will result in 

very big batch size with no extra advantage. In other words the size of the batch of input 

data - in this case governed by the choice of "At", should be chosen to be only as large 

as necessary to enable the consideration of the other data needed to achieve sufficiently 

accurate Track-to-Truth association and MOP estimation results. Thus, the size of the 

batches to be selected must trade-off performance versus computational complexity/cost. 

Whenever a batch of data can be segmented from other data for association and MOP 

estimation and still achieve the performance requirements then a simpler PE node type 

can be inserted with reduced overall solution complexity. 

Figure 2.2 {a, b, c, d} shows some examples of simple PE trees. The circles denote a data 

source, which could be a database or a simulation process providing the truth data and the 

output track data. The boxes denote the PE tree nodes. 
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Figure 2.2(a) A Simple Single Node PE Tree 
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One approach to structuring a PE tree would be to take all the data from a scenario in one 

large batch and then perform an optimal association of the tracks to truth. Figure 2.2(a) 

displays such a simple PE tree wherein all the incoming data is processed together at one 

go. The data is aligned in the data preparation node prior to being sent to Hypotheses 

Generation and Hypothesis Evaluation nodes; in that order. The scored hypotheses are 

then passed on to the Hypothesis Selection node, which is the last node of the Track - 

Truth association stage. From the Hypothesis Selection node the Track-Truth pairs are 

directed to the MOP estimation node. These estimates are then sent to the MOP 

aggregation node, which creates an aggregate picture of the MOPs. Such an approach is 

usually infeasible, as it requires extensive computation and perhaps even xmworkable 

computation; it also implies ND assignment problem solutions that are NP-hard and very 

complex, even to structure the solution. 

Figure 2.2(b) shows a simple "recursive" PE tree wherein the incoming data is batched 

according the timestamp it bears (At as described above). Thus for a given time window 

all the data obtained during that period is processed together by invoking a new instance 

of the PE Node. The PE Node is recursively instantiated in this type of Tree design. The 

Track-Truth pairs are from the HS node are directed to the local MOP estimation node. 

The local MOP estimation node generates estimates of measures with reference to the 

data input for the given window only. These estimates are then sent to the MOP 
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Figure 2.2(c) shows a time-batched recursive PE tree wherein the hypothesis scores from 

the HE node of one time window are passed on to the HE node of the next time window. 

Such a tree would be used when the HE process is designed to "learn" from the past. As 

an example the HE node could use the previous hypothesis scores to "average out" the 

effects of erratic data. Figure 2.2(d) shows another example of a PE tree wherein the HE 

node for a given window learns from previous windows. In this tree the MOP aggregate 

picture is passed on to the succeeding window's HE node. The HE node refines its 

scoring equations based on the aggregated MOPs. For example the probability of False 

Alarm estimated in the MOP aggregation node of a preceding window could be used to 

update relevant probabilities in Hypothesis scoring equations of the current window. 
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The PE trees in Figure 2.2 {a, b, c, d} are "single node" trees i.e. these tree designs 

contains only a single PE Node which is invoked recursively for each time window. 

Figure 2.3 shows a complex PE Tree consisting of four different PE Nodes, which are 

recursively invoked for each data batch. This PE Tree is designed to study the quality of 

estimates obtained from different sensors and fusion nodes of the SUT. Each of the four 

PE Nodes processes the data independent of the other nodes and reports its MOP 

estimates separately. 

TRUTH DATA 

Node with ID 
info processii 

capability 

Node w/o ID 
info processing 

capability 
PE System 

"Approved for public release; distribution is unlimited.' 

Figure 2.3 A complex PE Tree 

54 



As shown in Figure 2.3 the SUT consists of 3 sensors and 2 Fusion Nodes. Sensor-1 

generates estimates with Identity information besides the usual kinematics data. However 

Sensor-2 and Sensor-3 provide kinematics estimation only. Fusion Node-1 fuses the 

kinematics data obtained from Sensor-2 and Sensor-3. This is followed by Fusion Node- 

2, which fuses the "fused" estimates provided by Fusion Node-1 with the estimates 

obtained from Sensor-1 (which includes identity information). 

Now in this PE System the nodes, PE Node-1 and PE Node-2 process Sensor-1 estimates. 

Here PE Node-1 is designed to deal with "sensor estimates" having identity information 

besides the kinematics information whereas PE Node-2 ignores the identity information 

and process only the kinematics information. PE Node-3 processes the fused estimates 

obtained from Fusion Node-2 (which as mentioned above performs identity fusion 

besides kinematics data fusion). The last node i.e. PE Node-4 processes the sensor-sensor 

fusion estimates obtained from Fusion Node-1. 

This PE System would be extremely useful in analyzing the role of the identity 

information obtained from Sensor-1 in overall SUT Fusion process output data quality. 

Since this PE System is designed to facilitate analysis and comparison of the various 

components of the SUT, it is critical that the MOP estimation process should bias free. 

Also the format of the MOPs and the frequency of MOP estimation should be 

commensurate amongst these nodes. 
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2.2.3 PE Node Optimization 

At this third level the PE Tree Node processing design is optimized. 

2.2.3.1 PE Node Requirements Analysis 

Based on the Tree Design the requirements analysis in this phase provides further 

refinement for each PE node to include detailed descriptions of the node input data and 

form of output data expected from it. Sufficient description of the problem is provided to 

enable the PE node design development trade on performance vs cost/complexity. 

2.2.3.2 PE Node Design Development 

PE tree nodes are specialized by the type of input batching, and can be categorized 

according to combinations in a variety of dimensions. The design of a PE node within a 

PE tree involves selection among alternative techniques for preparing, associating and 

combining data received by the node. 

The PE node should be able to carry out the following functions 

1. Align the data 

2. Generate Track - Truth association hypothesis 

3. Score Track -Truth association hypothesis 

4. Perform Track - Truth assignment 
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5.   Compute PE metrics; both local and global metrics as per design specifications. 

Thus the PE node structures are quite similar to the SUT Fusion Node. 

Based on these requirements, the general PE node structure is as shown in Figure 2.4. 

The basic components of the PE node are discussed in the subsequent subsections. 
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Hypothesis Evaluation 

Hypothesis Selection  - 

Figure 2.4 General PE Node Structure 
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2.2.3.2.1 Data preparation And Alignment 

This stage involves processing and refinement of the data and estimated performance 

metrics for use by the subsequent nodes. Depending upon the simulation system and the 

means of data storage used in the system, the data processing steps may involve time and 

spatial alignment of data, metrics conversion, removing duplicate or redundant data, 

making structural changes to the way data is stored etc. 
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2.2.3.2.2 Track -Truth Association 

As discussed previously the structure of the Track - Truth association problem is similar 

to the application-domain data association problem. Hence the software components 

employed for the Data association phase could be reemployed for the Track-Truth 

association phase. A key question here however, is whether using the same software 

components in track-truth association is justified from the point of view of assuring true 

objectivity in evaluation. One argument could be that this might cause bias in the 

performance metrics, whereas another perspective could be that reuse of software 

components would help understand the results produced by the fiision system under test. 

These issues will be addressed fiirther in the concluding part of this research. The three 

components of the Track- Truth association phase are discussed below. 

Hypothesis Generation (HG) 

Hypothesis Generation is the step at which the range of what the analyst considers as 

feasible Track-Truth relationships are nominated. For example, under certain problem 

conditions it would be expected that the system-under-test would generate many 

Redundant Tracks due to high data clutter conditions. If so, the analyst would include 

such Track-Truth associations as feasible in the HG step. If the opposite were true then 

no such association hypotheses would be incorporated into the Track-Truth association 

process. Insightful decisions at this point are dependent on very good domain knowledge 

and good understanding of tracker operations and mathematics. 
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Given a set of computed tracks and a set of truth trajectories, track to truth hypotheses 

could be generated by associating every track with every truth and vice-versa. 

Associating each track with a non-existent "dummy" truth object generates a False Track 

hypothesis. Similarly, Missed Truth hypotheses are generated by associating each Truth 

object with a non-existent "dummy" track. 

Having created the association hypotheses, the next step is to reduce the processing 

combinatorics involved in the overall association calculations by employing association 

gates. Generally, for track-truth association hypotheses, simple gating techniques are 

used. An example would be the use of a threshold on the Euclidian distance between 

Track and Truth locations as a gating criterion. 

Hypothesis Evaluation (HE) 

In this phase the feasible hypotheses from the HG phase are assigned scores or likelihood 

values that objectively reflect the "closeness" of the candidate Track to a given Truth 

trajectory that falls in the association gate for the Track. In Section 1.4 we saw that the 

scoring techniques that are generally employed for this purpose are quite simple and 

straightforward. However it is our conviction that this problem deserves a treatment at 

par with the original data association problem. Employing advanced scoring techniques, 

which are now fmding their way into real operational Data Fusion-based tracking 

systems, would be quite simple within our PE framework. The selection of a scoring 
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technique would be governed by the availability of truth data, computational facility, and 

time, especially when employing the PE software in real time. [18] provides a 

comprehensive discussion on scoring techniques. 

Hypothesis Selection (HS) 

Once the HG and HE processes have been completed, the overall association process has 

reached a pomt where the "most feasible" set of both Truth and Track (State estimation 

process) relationships or associations exist, and the question is to find the optimal set of 

Truth-Track pairs for computing performance metrics. In spite of a sound scoring 

methodology, ambiguities often exist in determining which of the feasible associations is 

"best" in some way. The usual optimality strategy is to find the hypotheses with lowest 

total cost assignment. (Depending on the scoring technique, the optimality objective 

may alternately be to maximize the cost). As mentioned in Section 1.1.2.1.3 this problem 

is called Assignment problem in the domain of combinatorial optimization. 

The input to this process is a two dimensional matrix (or matrices) whose dimensions are 

Tracks and Truths, and whose contents reflect in all cases the corresponding Track-Truth 

score values. (The matrices may be greater than two dimensions depending on the Track- 

Truth Association strategy; for example, a third matrix dimension could be time, such 

that the associations are optimized over time as well as Track-Truth combinations at a 

given time; such problems however are much more difficult that two-dimensional 

problems.). It should be noted that the matrix would be a square one with equal number 
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of rows and columns. The reason for this is quite obvious; for example, if we have n 

tracks and m truths, then during the HG phase m dummy tracks and n dummy truth are 

added to create Missed Truth and False Track hypotheses. This resuhs in a (m+n) x 

(n+m) matrix. The advantage of having a square matrix is that many assignment 

algorithms work only on square matrices. 

2.2.3.2.3 MOP Estimation 

As mentioned previously, the State Estimation process in a PE context relates to the 

estimation of a measure used for evaluation. That measure, one of a set of MOP's, is an 

estimate in the sense that Track-Truth associations exhibit some degree of imperfection in 

the same fashion that Observation-Track assignments do, and also reflect an imperfect 

policy for computation and evaluation. That is, no single evaluation policy (such as a No 

Switch policy) will be totally correct or sufficient for an objective, complete evaluation of 

an association and tracking algorithm under test. However, once the Track-Truth pairs 

have been assigned, various Measures of Performance (MOPs) are able to be estimated. 

The definition of an MOP prescribes when and how to compute it. We have already seen 

a variety of MOPs in Section 1.5. 

For each node, the PE Node functions (i.e., common referencing, data association, MOP 

estimation, MOP aggregation) are designed. The algorithmic characterizations for each 

of these three functions can then be determined. The detailed techniques or algorithms are 

not needed nor desired at this point.    However, the characterization of the type of 
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filtering, parsing, gating, scoring, searching, tracking, and identification in these fusion 

functions is accompHshed. 

The emphasis is on achieving balance within the nodes for these functions in their 

relative computational complexity and accuracy. It is at this point, for example, where a 

particular Track-Truth Association strategy is adopted. The detailed design and 

development (e.g., the actual equations) are not done until this node processing 

optimization balance is achieved on this third level. 

2.2.4 PE Module Optimization 

The final level determines the detailed design of the solution "patterns" for each sub 

function of each node in the fusion tree. There is a further flow down of the requirements 

and evaluation criteria for each of the sub functions. The design specifications generated 

at the four levels are actually implemented as software code at this level. 

2.2.4.1 PE Module Requirements Analysis 

In this phase the requirements for each function of every PE Node is refined with 

reference to the PE Node design specifications. 
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2.2.4.2 PE Module Design 

In this phase solutions are developed for performing each function of every PE Node 

based on the requirement specifications. For some of the functions the solution can be in 

the form of simple mathematical computations and numerical conversions for example 

the MOP estimation process takes Track-Truth pairs as inputs and computes the 

Euclidean distance between the two as a measure of Kinematics Error. But for some other 

functions the solution approach is not that simple. The two functions whose solution 

requires complex set of algorithms are the HE and HS. hi the Tracking community there 

exist several techniques for achieving the HE and HS tasks. A discussion on the HE 

techniques is out of scope of this thesis - [18] is a comprehensive reference for HE 

techniques. 

As mentioned m Section 2.2.3.2.2, the HS problem is basically a form of the Assignment 

problem. The solution technique for HS plays an important role in PE system 

performance for two reasons - (1) This is the most complex (computationally) function 

of the PE system (2) This is where Track-Truth pairs are selected. A discussion on 

Assignment techniques follows in the next subsection. 

1.. 1.1. .1 Assignment problem 

The assignment problem is one in which the goal is to obtain an optimal way to assign N 

resources to M processes (M o= N), such that a resource can be assigned to only a 
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single process and vice versa. Each feasible assignment of resource to process has a cost 

(or value; we have called this the "score" above) associated with it and correspondingly 

the optimal assignment strategy would be to minimize the overall assigimient cost (or 

maximize the overall assignment value). 

An N X N assignment problem may be defined as follows 

Minimize ?^ ^^^^ ^^■' 
(or Maximize) 

Subject to 

EXij = l,./£J 

S Xij = 1, iel 

Xij = 0,1, iel jeJ 

Assignment Problems and Computational Complexity 

Given the "mission" goals (or whatever the top-level goals or purposes of the systen- 

under-test are), computation-time and solution optimality are the important aspects 

governing the selection of a particular assignment technique. In spite of the efficient HG 

and HE processing, the assignment matrix still may not be very be sparse, and so 

generally the only way to assure an optimal, minimum cost solution is to conduct an 

exhaustive search of all feasible assignment patterns and costs. Usually complexity grows 

as an inverse fiinction of scarcity and direct fiinction of matrix size. In addition, multi- 

dimensional assignment problems in their general formulation are NP-hard and have to 

be solved by sub-optimal techniques. 
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Classes of Assignment problems 

In the applications of interest here, the assignment problems can be broadly partitioned 

into two classes, two-dimensional (2D) and those having more than two dimensions, 

henceforth referred to as N-dimensional (ND). The two dimensional problem has already 

been discussed. The N-dimensional problem consists of 2D data sets over N time points. 

But because of the interdependence between the 2D data sets it cannot be treated as N 

independent 2D problems. 

The two dimensional problems are generally tractable whereas the N-dimensional 

problems are more complex and generally deemed NP hard. Poore [19] has shown a 

partitioning method for solving the N-dimensional HS problem. 

Solution Techniques for the Assignment Problem 

A comprehensive discussion on Solution Techniques for HS is out of the scope of this 

thesis, however in order to give the reader an essence of it, a brief discussion on some 

frequently cited solution procedures for assignment problems is provided here: 
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•    Relaxation Algorithms 

The relaxation methods relax the single assignment constraint of the problem, thereby 

allowing multiple assignments, essentially an easier problem. The relaxation algorithm 

gradually builds an optimal assignment by identifying the lowest cost paths from over 

assigned inputs to unassigned inputs. The Hungarian method of Kuhn [20] is an example 

of this. The Hungarian algorithm is potentially slow. 

In 1957 James Munkres presented a modified form of the Hungarian algorithm called the 

Mimkres Algorithm [25], which is computationally faster. It is one of the most cited 

algorithms in data ftision applications. The Munkres algorithm is for what is often called 

a balanced problem (i.e square matrix). Kaufinann [26] used dummy entries for squaring 

off rectangular matrices to solve them using the Munkres algorithm. Bourgeois and 

Lassalle's modification [27] to the Munkres algorithm for solving non-square matrices is 

faster than Kaufinann's method. 

•    Successive Shortest Path (SSP) 

The successive shortest path algorithm maintains dual feasibility of the solution at every 

step and strives to attain primal feasibility. At each step SSP selects an unassigned input 

and an unsatisfied estimator and assigns the input to the estimator with the lowest 

assignment cost. The SSP is similar to primal dual algorithm but instead of assigning 

multiple inputs it assigns one input at a given step. 
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•    Auction Algorithm 

Bertsekas[28] devised the auction algorithm for solving assignment problems. As the 

name suggests this method is based on the "auctioning process". The auction algorithm is 

also primal-dual type solutions. In this algorithm the estimators / processes act as bidders 

bidding on the input data. The estimators/ processes bid on the inputs using bid amounts 

based on the utilities or costs associated with each feasible assignment. At each iteration 

an unassigned estimator/ process bids on an input that has the highest marginal utility for 

that estimator. 

The auction algorithm is potentially slow. To overcome this Bertsakas [28] devised a 

forward-reverse auction-based approach, which alternately has estimators bidding on 

inputs, and/or inputs bidding on estimators to caused faster matching. 

•    Shortest A ugmenting Path A Igorithm. 

This is an extension of SSP conceptualized by Tomizawa [21]. He augments partial 

assignments into a complete assignment solution by primal steps in each of which one 

shortest augmenting path is determined. Jonker and Volgenant [22] developed a variant 

of this approach, a shortest augmenting path algorithm that exploits the augmenting cycle 

property and achieves good computational performance. This is one of the fastest 

algorithms for HS. 
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• Branch and Bound Techniques 

Since we are dealing with problems that have finite solution boundaries, it is natural to 

consider some type of enumeration procedure for finding an optimal solution. In many 

cases however, the number of feasible solutions can still be very large since the problems 

tend to be of a factorial type in the number of variables and the number of values the 

variables can take on. However, if we could define an enumeration strategy, which does 

not explicitly enumerate all feasible solutions but implicitly eliminates a large group of 

solutions without evaluating their cost fiinctions, a practical approach might be produced. 

Such implicit enumeration techniques include the Dynamic programming approach and 

Branch and Bound (B&B) techniques. It should be noted that these methods are usually 

termed, as "strategies" because the specifics of implementation are highly problem 

dependent, and the methods are not explicit algorithms in the usual sense. 

The basic idea behind B&B is the following. Suppose that an objective/cost function is to 

be minimized. Assume that an upper bound on the optimal values of this function is 

available. In B&B approach, the first step is to partition the set of all feasible solutions 

into several subsets, and for each one to determine the lower bound on the value of 

objective function for all solutions within the subset. Those subsets with lower bound 

greater than the upper bound are then excluded from further consideration (the excluded 

subsets are said to be fathomed). Of the remaining subsets, the one - say with the lowest 

lower boimd is then further partitioned into subsets and the reduction process continues. 

The branch step is one in which the decision of which subset to expand into further 
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subsets is made. Two most popular branching rules for selecting the subset are best- 

bound rule and the newest bound rule. The best-bound rule selects the subset having the 

most favorable bound (e.g. smallest lower bound for minimization problems). The newest 

bound rule selects the most recently created subset. The bound step is one in which the 

lower bound for each subset is calculated. 

The B&B method is a potentially useful method (computationally tractable) for solving 

ND assignment problems. Although the solutions have exponential time behavior, it is 

quite appealing in ND assignment problems that are generally classified as NP-hard. 

There are a few citations of application of B&B methods for muhiple target tracking 

problems - for example [23]. An important point of consideration while employing B&B 

methods is selecting a stopping point for which the solution is good enough. 

2.3. Summary 

The four phases of the PE design framework are summarized as the following: 

1. PE System Role Design: analysis of system requirements to determine the 

relationship of a proposed data fusion system with respect to other systems with 

which it interfaces. 

2-   PE Tree Design:   defining how the data is batched to partition the Track-Truth 

Association problem. 
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3.   PE Node Design:  defining the data and control flow within the nodes of a selected 

fiision tree. 

4.   PE Module Design:  defining processing methods for the functions to be performed 

within each fusion node. 

The topmost level i.e. the PE System Role Design as said earlier is a very meta-level 

view, mostly focused on designing a black box system that seamlessly integrates with the 

concerned environment. The lowest level i.e. the PE Module Design mainly involves 

designing algorithms and generating software in accordance with the Node Design and 

Tree Design. In other words the issues and problems encountered at these two levels are 

more or less commonplace (for the Tracking System Designer); thus rendering the role of 

these levels inconsequential in the development of the nascent PE technology. 

Of the four levels of PE System Design framework the Tree Design and the Node Design 

are very critical since the core aspects of the PE problem are dealt with at these two 

levels. For the advancement of the PE technology it is crucial that the Tracking 

community gets more insight into the issues and problems encountered at these two 

levels. 
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Chapter 3 

A Case Study Implementation of the Performance 

Evaluation (PE) System Design Framework 

3.1 Introduction 

In Chapter-2 we presented the PE System Design Framework. In this chapter we present 

a Case Study implementation of this Framework. The main objectives for this 

implementation were 

■ To demonstrate a proof of concept for the Framework 

■ To demonstrate the need to address the Track-Truth Association problem in a 

single but representative case. 

■ To understand the  interdependencies between the  Track-Truth Association 

strategies and the MOPs. 

■ To identify critical issues/roadblocks in the development of a PE System. 
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In the following subsections we shall discuss a phase-by-phase implementation of the PE 

System Design Framework. 

3.2 PE System Role Design 

The role for the PE system in this Case Study is to estimate the performance of a typical 

or generic tracking SUT in a Case Study that involves some of the challenges to PE tree 

design. No "Mission" context for the use of the particular SUT is specified as the basic 

role for PE here is to serve as a generic PE process model for a relatively simple but 

demonstrative example. This is a constraint to the overall role for the PE process since a 

mission context would provide a basis for effectiveness evaluation of the SUT, but the 

purpose of the Case Study is to raise some general issues in PE tree design, and to show 

some of the design tradeoffs involved. 

3.2.1 PE System Requirements Analysis 

For our purpose this phase involves a thorough understanding of the SUT that leads to 

systematic evolution of the PE System objectives. The SUT description is presented in 

Section 3.2.1.1, which is followed by discussion on PE System objectives in Section 

3.2.1.2. The basic PE requirement here is to enable an evaluation process for a case 

where the SUT association ambiguity extends over a range of values and thus a range of 

complexity in defining an equitable evaluation approach. 
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3.2.1.1 Description of the SUT 

Prior to understanding the requirements of the PE system it is important to understand the 

"Test Object" that the PE system is supposed to evaluate. The SUT in this case is built 

using Level-1 Data Fusion simulation tool CASEATTI. The characterization of the SUT 

is as follows. 

(a) Objective of the SUT 

Since we are considering the SUT out of context of the missions, which it might support, 

the only high-level objective of the SUT is to Track the multiple targets in the scenario 

accurately, and continuously. 

(b) Description of the SUT operational scenarios 

As said earlier, one of the main objectives of this case study is to study the 

interdependencies between the Track-Truth Association strategies and the MOPs. In 

order to bring out the characteristics of the Track-Truth Association problem the 

operational scenarios were designed to be highly dynamic and consisting of multiple, 

maneuvering objects in trajectory configurations that lead to potential association 

problems. The main characteristics of the operational scenarios are as follows: 

• Multiple objects (# of objects >1). 

• Objects displaying kinematics variation 
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• Objects performing high speed maneuvers (even cross over maneuvers) 

• Object spacing varying drastically over the scenario (sometimes closely spaced 

and at times very much apart) 

Two sets of scenarios were designed with the above requirements in mind. The first 

scenario set contained only one simple scenario and the other scenario set contained three 

scenarios. These scenario sets are discussed below 

Scenario Set 1: Single Feigned Crossing Target Scenario 

The driving factor behind this scenario was to demonstrate how a simple, one time switch 

in the SUT data association process can lead to highly disparate evaluation of the SUT 

under different PE Track-to-Truth switching methods. This scenario is shown in Figure 

3.1. As shown in the figure, the scenario begins with two Targets far apart fi-om each 

other. As the scenario proceeds the Targets come very close to each other (approximately 

200 meters apart) and then turn around and diverge. This maneuver forces data 

association errors in the SUT, and as a resuh the SUT output shows two Targets traveling 

in straight lines and crossing each other. 
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Figure 3.1 "Feigned" Crossing Target Scenario 

Scenario Set 2: Maneuvering Targets with Intertarget Spacing Varying over Scenarios 

Blackman [30] has shown that Target spacing is a scenario parameter that can create 

ambiguities in data association; simply put "the closer the Targets are, greater is the 

confusion in data association", although the degree of induced ambiguity is itself a 

function of yet other factors, such as sensor resolution. In section 1.2 we presented an 

elaborate discussion as to how the data association ambiguities give rise to the key issue 

in the evaluation process i.e. the Track-Truth Association problem. A set of 3 scenarios 

was designed to demonstrate how the Track-Truth Association process inherits the data 

association ambiguities created due to inter Target Spacing. As shown in Figure 3.2, in 

these scenarios four sets of Targets perform high-speed maneuvers. The only difference 

in the three scenarios was the variations in inter Target spacing. The first scenario had 
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Figure 3.2 Generic Trajectories for the Maneuvering Targets 

Targets flying very close to each other; as a consequence the data association ambiguities 

were high, hi the second scenario the Targets were some what separated creating 

infrequent association ambiguities. The third scenario had the Targets travehng widely 

apart from each other resulting in no association ambiguities except for the instant when 

the Targets crossed each other (this crossing occurs in the middle of the turns for each 

target pair). 

While designing any scenario an important consideration was that it should be complex 

enough to capture the effects of a real operational scenario without overloading the 

hardware support available for the PE System. 
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(c) SUT output data description. 

The output data from the SUT was available in two formats - (1) Large text files 

containing unlabelled numeric values - (2) Data distributed into several tables of an 

Oracle database. 

The summary of SUT output data characteristics is as follows 

• Object ID - for both Truth and the Track 

• Kinematics data (position, velocity and acceleration) - for both Truth and the 

Track 

• Time-stamp - for both Truth and the Track 

• Identity information (for identity tracking). - only for Truth. The version of SUT 

used in this case study did not possess Identity tracking capability; hence there 

was no identity information in the Tracking data. 

• Tracker covariance matrix 

• New data arrival rate <2 sec. 

3.2.1.2 PE System Objective 

One of the main goals of this case study is to study the effects of different Track-Truth 

Association strategies on MOP's over a range of association-complexities, in order to 

develop some initial empirically-based knowledge about the sensitivities of Track-Truth 
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association strategies to SUT association complexity and to problem-space (ie target 

spacing) factors. Given a Track-Truth Association strategy the objective of the PE 

System is to evaluate the overall Tracking performance of the SUT and present it to the 

user. Following three categories of performance were nominated for estimation. 

• Kinematics Accuracy 

This criterion quantifies the accuracy of the Kinematics estimates of the system 

output. 

• Association Performance 

This deals with the ability of the system to correctly associate the Track with their 

sources. 

• Detection Performance 

This criterion evaluates the reliability of system in Target identification. 

The reason behind nominating these three categories is that they broadly capture the 

essence of a Tracking system. Also there is no inverse relation amongst these measures 

i.e. tweaking the SUT for achieving better detection performance does occur at the cost of 

other two measures. Another important characteristic of these three measures is that the 

Track-Truth Association directly affects them. 
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3.2.2 PE System Role Design 

For the purpose of this case study the interaction of the PE system is only with the SUT 

and the user. The interaction with the SUT is only in form of "pulling" the data from it 

and vice-versa is not true. Similarly the interaction with the user is also a one-way 

process in form of the PE System sending output data to the user. Thus the PE system 

should have following characteristics 

• It should be able to connect to SUT output database and pull data from it. As we 

saw earlier the SUT has two formats for the output data. We choose to use the 

output in database format since "parsing" the output in text files is a complicated 

business. Also the database in question is Oracle database, which provides 

excellent data manipulation fimctionalities, which will come handy in data 

preparation and hypothesis generation stages. 

• It should store the intermediate computations for purpose of later 

reference/validation. 

• In this case study the PE System output has to be presented only to the user i.e. it 

does not need to be fed to the SUT as a feedback or to any other component of the 

MTTS development environment. The output to the user should be in two forms- 

(1) Detailed information should be presented in form of database tables and (2) 

Aggregate picture should be provided in form of view graphs. 
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3.3 PE Tree Optimization 

In this section we shall discuss the design of composite tree enabling all switching 

strategies at once. 

3.3.1 PE Tree Requirement Analysis 

One of the aims of this case study is to understand the characteristics of various Track- 

Truth Association strategies. Keeping this in mind it was decided that the PE System 

should be able to implement following three strategies 

• The Switching Strategy 

• The No Switch Strategy 

• Restricted Switch Strategy 

Thus the PE Tree should consist of three different "recursive" PE Nodes, one for each 

switching strategy. In the following phase we shall see how these three Nodes are 

integrated to form the PE Tree. 

3.3.2 PE Tree Design 

A simple method of batching would be to create a new data batch every time the tracker 

reports an update on any track. The new data batch would consist of incoming tracker 

"Approved for public release; distribution is unlimited." 80 



data (which may not contain information about all the existing tracks) and truth 

information for all the targets. 
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Figure 3.3 Case Study PE Tree Structure 

Since the PE System needs to implement different Track-Truth Association strategies and 

facilitate their comparison, the PE Tree should consist of three independent PE Nodes. 

Each PE Node would be fed with the same data set but the Track-Truth Association 

process would be designed in accordance with the Track-Truth Association strategy 

allocated to that particular node. However the MOP computation process should be 

similar for each of the three PE Nodes so that the comparison between the various nodes 

is justified. Based on these specifications the time-batched recursive PE Tree structure is 
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as shown in Figure 3.3. As shown in Figure 3.3 the PE Nodes are recursively instantiated 

for each batch. 

3.4 PE Node Design 

3.4.1 PE Node Requirements Analysis 

For the PE Tree shown in Figure 3.3 three different PE Nodes need to be designed. These 

nodes should be able to support recursion since they will be invoked recursively for each 

batch of data. Depending on the point design the nodes may be required to have a 

"memory" which stores information during the recursive calls. Now lets see the 

individual requirements for each of the three PE Nodes. 

(a)PENode-l 

This node has to implement the Switching Strategy. Enforcing the Switching Strategy 

requires that the Track-Truth Association process for any given data batch be 

independent of the processing of the adjacent batches. Thus the Track-Truth Association 

processing of PE Node-1 should be memory less i.e. to say that when the PE Node-1 is 

called during a recursion (or instantiated) it does not store and carry ahead any piece of 

information for its next recursion (or instantiation). 
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(b) PE Node-2 

This node has to implement the No Switch Strategy. The No Switch Strategy requires 

solving the Track-Truth association problem for the whole scenario all at once. This calls 

for cumulating the association hypothesis scores for all the batches. In other words the PE 

Node-2 should be able to store the association hypothesis over its various recursions. 

(c) PE Node-3 

This node has to implement the Restricted Switch Strategy. We have seen several 

variations of this strategy in Chapter-1. One such strategy uses a moving window based 

average of hypothesis scores for Track-Truth Association. This variation of the Restricted 

Switch Strategy was adopted for the case study implementation. The following discussion 

explains the motivation behind adopting this strategy 

Often there are isolated jumps in the Tracker output in which suddenly for one update the 

Track estimate is way off the real picture, but the very next update retums a normal 

estimate. When using the Switching strategy such jumps get reported as a Track Switch 

or a Missed Truth rather than reporting it as a jump in Kinematic Error. Hence to 

minimize the effects of such isolated jumps a moving window average approach is used. 

According to this strategy the hypothesis score fed to the HS process is an average of 

hypothesis scores over that particular window and a given number of its predecessor 

batches. 
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3.4.2 PE Node Design Development 

3.4.2.1 Data Preparation and Alignment 

This fiinction was directed at establishing an efficient approach to handling and 

processing of the SUT output data. The simulation enviroimient employed in this case 

study stores data in Oracle tables. One of the main processing steps is to structurally align 

the data since the data is distributed in several tables with structural inconsistencies 

among other disparities. An example of structural inconsistency - the information about 

ground Truth data is stored in a single table which contained the true Target identity and 

its kinematics information with reference to time, while the output information is spread 

across different tables some of which are stored with reference to time while others are 

referencing some other entity. 

3.4.2.2 Hypothesis Generation 

Three types of association hypothesis were nominated. 

"    Track-Truth Hypothesis in which output Tracks would be paired with Truth 

entities 

■ False Track Hypothesis in which output Tracks would be paired with non-existent 

"diimmy" Truth entities. 

■ Missed Truth Hypothesis in which non-existent "dummy" Tracks would be paired 

with Truth entities 
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In this case study for the sake of simplicity the issues of "redundant/duphcate" tracks and 

spiirious tracks were not treated separately; the False Track Hypothesis definition would 

encompass redundant and spurious tracks. The scenarios designed for this Case Study 

had no abrupt birth or death of a Truth entity i.e. all the Targets existed from the start of 

the scenario run till the end of the scenario. So New Target pop-up hypotheses or Target 

Drop Hypotheses were not required. 

Euclidean distance between the Track and the Truth would be used as a gating criterion. 

The Track-Truth Hypothesis that fails the gating process would not be considered for the 

subsequent HE and HS processing. 

3.4.2.3 Hypothesis Evaluation 

For the three PE Node designs, the Association Hypothesis scoring technique would be 

the same however the method in which the hypothesis scores are aggregated/not 

aggregated over batches would differ. 

(a) PENode-1: The Switching Strategy Node 

For the node implementing the Switching Strategy every batch is independent of the 

other batches. So the hypothesis scores computed for a given batch are used during HS 

process of that batch only. Thus the structural design of this node is same as the general 

node structure that was shown in Figure2.x and discussed in Section 2.xyz. 
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(b) PE Node-2: The No Switch Strategy Node 

This node stores the hypothesis scores for each batch till end of the scenario. At the end 

of the scenario these set of hypothesis scores are to be used to solve the Track-Truth 

Association problem using some assignment technique. Now one can come up with 

several ways of solving the assignment problem for this large set of association 

hypothesis matrices; however even the near optimal solutions would be computationally 

complex. A simple way to solve this problem would be to compute the average 

hypothesis score, averaged over all the hypothesis score matrices. The assignment 

problem then will be reduce to just a single assignment matrix which can be solved 

easily. The design for such a PE node is shown in Figure 3.4. 
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As shown in Figure 3.4 this PE node contains an additional component that is responsible 

for aggregating the HE results. At the end of the scenario this component feeds the 

aggregate scores to the HS component, which then processes the Track-Truth Association 

problem. 

(c) PE Node-3: The Restricted Switch Strategy Node 

The design for this node somewhat resembles the design used for PE Node-2. Figure 3.5 

shows how the data flows through the various components of this node over several 

iterations/instances. The example shown in this figure has window size of "3" - said in 

other words for each instance of this node the Score Aggregation component keeps stored 

at most three batches of hypothesis scores. The average of these scores is fed to the HS 

component. 
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The window size should be just big enough to smooth out the isolated jumps. However 

no particular criterion has been developed for nomination of an optimal window size. 

3.4.2.4 Hypothesis Selection 

The input to HS process for all the three PE Nodes is a square, 2-D matrix. Since we are 

restricting association of a Track to only 1 Truth and vice versa, this becomes a simple 

assignment problem. This makes the task for the selection of assignment technique very 

simple, hi fact all the three PE Nodes can have exactly the same design for the HS 

process. 

Kuhn's Hungarian Method was nominated for selecting the best hypotheses. Harold W. 

Kuhn devised this method in 195 5 [20] to solve the assignment problem. His algorithm is 

based on work by Hvingarian mathematicians Konig and Egervary [24]. Li honor of them 

Kuhn called his method the Hungarian Method. Section 3.2.3.1 discusses the optimality 

of the Hungarian Method and Section 3.2.3.2 gives the actual procedure used to 

implement the Hungarian Method. 
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Optimality of the Hungarian Method 

Consider the following Assignment Problem. 

Minimize   1/^1^^^^^ "^^^ 

Subject to 

LXij = lj£:J -(2) 
lel 

L Xij = 1, iel -(3) 

Xii = 0,1, iel jeJ "(4) 

Now introduce a variable Ui for each row 7' where Ui = min Cij for that row. Introduce a 

variable Vj for each column 'j' where Vj = min (Cij - Ui) for that column. 

Define new cost elements as, 

Wij = Cij - (Ui + Vj) for each i,j and Wij >0 -(6) 

E Cij Xij = 2 Ui Xij + 2: Vj Xij + S Wij Xij -(7) 

Since Wij and Xij are non negative and (7) can be reduced as 

I Cij Xij > 2 Ui Xij + S Vj Xij -(8) 

Also due to (2) and (3) we can further reduce (8) as 

S Cij Xij > 2 Ui +1 Vj -(9) 
i,j    •'    '    i ,/ 
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We can now formulate the dual of the assignment problem as follows. 

Maximize  ZUi +SVj '(1^) 
i J 

Subject to  Ui + Vj <Cij, for ally -(12) 

The inequality in (8) tells us that feasible values of the objective variable for the dual 

problem are always less than or equal to feasible values of the objective variable for the 

assignment problem. Thus if we can find feasible values for these two objective variables 

that are equal, each will be optimal for its problem. From (7) we can say that these two 

objective variables are equal if and only if, 

I Wij Xij =0 
ij 

Since Wij and Xij are nonnegative it follows that Wij should be zero for non zero values 

of Xij. Thus if we can find a reduced cost matrix with 'n' independent zeros we have a 

feasible solution for the dual as well as the assignment problem. This forms the basis of 

the Hungarian Method. 
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3.4.2.5 MOP Computation 

(a)Kinematics Accuracy 

Two parameters were selected to describe the kinematics accuracy namely the position 

estimation error and the standard deviation of the position error. 

Each of these measures is estimated at two distinct levels. One is the local estimation in 

which these measures are computed for each individual Truth Entity for each time point. 

The second level aggregates these measures over all the Truth Entities but still computed 

independently for each time point. 

(b)Detection Performance 

The Detection Process Performance is estimated in form of probability of False Track 

and probability of Missed Truth. 

Simply put the probability of False Track is the percentage of Tracks that have been 

declared as being "False" (i.e. they did not represent any Truth entity). Thus the 

Probability of False Track is computed as the number of Tracks not associated with any 

Truth. This measure is cumulated over all the time points. 
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The probability of Missed Track is the percentage of Truth Entities that have been not 

been represented by any vaUd Track. This measure is also cumulated over all the time 

points. 

(c) Association Performance 

The Association Performance is described in terms of Track Purity and Track Switches. 

Track Purity gives an estimate of consistency with which a given Target was represented 

by the same Track. This measure is cumulated over all targets and all time points. 

Track Switches is a measure of Track unfaithfulness in consistently representing the same 

Target. Said in other words it captures the frequency with which the Track switches over 

from representing one Target to representing another Target. This measure is cimiulated 

over all targets and all time points. 

3.5 PE Module Optimization 

The final level determines the detailed design of the solution "patterns" for each sub 

fiinction of each node in the fiision tree. 
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3.5.1 PE Module Requirement Analysis 

The requirements for the PE Module are basically the design specifications fi-om the 

previous level. 

3.5.2 PE Module Design 

In this phase solutions are developed for performing each function of every PE Node 

based on the requirement specifications. 

3.5.2.1 Hypothesis Evaluation 

For evaluating the Track -Truth association hypothesis we develop a scoring scheme 

based on the Max a Priori Scoring. The Max a Priori Deterministic data association 

technique is a popular method for correlating Sensor measurements with Tracks during 

the Data Association stage. At any one point, the overall MAP hypothesis score is the 

product of three MAP individual scores, which are explained subsequently. 

As mentioned earlier in this Case Study we are concerned about the following three 

hypotheses 

■ Track-Truth association hypotheses 

■ False Track Hypothesis 

■ Missed Truth Hypothesis 
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In the following subsections we present the MAP scoring along with its adaptation for 

our purpose for the above-mentioned hypothesis. 

Kinematics Scoring for Association Hypotliesis 

The association hypothesis kinematic scoring for a new incoming sensor mesurement, 

y(5) to an existing Track, y(7) assumes a multivariate Gaussian distribution [ellipsoid], 

with a central Track covariance P which models the error in the Track location due to 

possible motion. Then the kinematics score for Measurement to Track association 

hypothesis '/?'is computed as follows: 

Ah) = {1/ (27cf'} {\V\"^} exp[-l/2{/F'/}] (3.1) 

where 

• y(5) are the sensor measurment Gaussian kinematics with covariance R, 

• y(7) are the Track Gaussian kinematics with covariance P, 

• his the hypothesis that the Sensor measurement and Track are associated, 

• dis the dimension of the Gaussian kinematics state, 

• |F| is the determinant of the innovations covariance, V=[ <f>P^ + Q] + R, 

• (|) is state transition matrix, Q is the noise covariance, and the measurement matrix, h, 

is the identity, 

• /is the innovations vector, /= y(5) - y(7). 
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When all the covariances have a constant dimension the first term becomes constant 

through out and hence it can be dropped. Thus we have a simplified Kinematics score 

equation. 

y(/^)={|Pl'^'}exp[-l/2{/F'/}] (3.2) 

Now we are concerned with associating Truth with Tracks. Here instead of y(5) i.e. the 

Sensor measurement we have the Truth data. As a result we do not have the sensor noise 

covariance "g" and the sensor measurement kinematics covariance "i?". The state 

transition matrix "([)" can also be ignored since the "lag" between time of Track update 

and time of measurement is negligible. So the kinematic score equation for Track to 

Truth association hypothesis '//' can be described as follows. 

fih)={\V\"'}cxp[-V2{fr'l}] (3.3) 

where 

• y(S) are the Truth Data, 

• y(7) are the Track Gaussian kinematics with covariance P, 

• his the hypothesis that the report and Track are associated, 

• |F] is the determinant of the innovations covariance, V=P 

• /is the innovations vector, /= y(5) - y(7). 
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Kinematics Scoring for non-Association Hypothesis involving Track data 

The approach to computing kinematics score for hypothesis involving only the Track data 

and not the Sensor measurements is somewhat different from Equation 3.3 since for these 

hypothesis y(S) does not exist. Here the chi-square statistic (i.e., {/ V' I}) is replaced 

with its mean, \i. Namely, 

\i - .455 for 1 degree of freedom (DOF) (e.g., bearings-only) 

^i = 1.39 for 2 DOF (e.g., x and y) 

p, = 2.37 for 3 DOF (e.g., Cartesian (x, y, z)) 

(I = 3.36 for 4 DOF (e.g., 2 dimensions with rates) 

|i = 4.35 for 5 DOF 

|X = 5.35 for 6 DOF (e.g., Cartesian (x, y, z) with rates) 

Thus the kinematics scoring equation for non-Association Hypothesis involving Track 

data such as False Track hypothesis is as follows, 

Ah)^     \V\"^ \l (3.4) 

This equation can be adopted as it is for our purpose. 
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Kinematics Scoring for non-Association Hypothesis involving Truth data 

For non association hypothesis involving only the Truth Data the terms y(7) and V are 

not available in Equation 3.3. The only available data in this regard is the Truth 

Kinematics information, which does not provide any insight into non-Association 

hypothesis such as Missed Truth hypothesis etc. Hence we can ignore the kinematics 

score term for such a hypothesis. 

Parametric/Attribute Association Scoring 

Often tracking algorithms incorporate object classification techniques for more accurate 

data association. Object classification is based on the object attributes measured by the 

various sensors. For example a stealth bomber would have a different range of speed, 

maneuverability, thermal emissions etc as compared to an anti aircraft missile. The 

parametric scormg is computed as the product of commensurate attributes and non- 

commensurate attributes. 

However the tracking scenario developed for our case-study implementation does not 

incorporate object classification techniques for data association. Hence we ignore this 

second term in the MAP scoring equation. 
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A Priori Association Hypotliesis Scoring 

This part of the hypothesis score nominates apriori probabiUties for the given hypothesis. 

The apriori probability is computed using the knowledge about the SUT (i.e. the sensors 

and the tracking algorithm characteristic) and the scenario characteristic. Some of these 

characteristics are given below: 

Probability of detection and false alarm statistics 

Object birth and death statistics 

Sensor scan rate 

Source field-of-view, operating mode, and conditions 

A priori scene descriptors and probability of redetection 

For computing the apriori probabilities for the above three hypotheses, the detection and 

false alarm statistics were deemed to be sufficient. For this purpose we define the 

following probabilities 

■ Pd(S)-The probability that the given Truth is represented by a valid Track. New 

Truth arrival statistics and sensor coverage statistics are used to determine the 

apriori value of this probability. However when available the value of this term 

could be updated dynamically with the help of estimates obtained fi-om the PE 

System itself 
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■ Pfa(T) - The probability that the given Track is a false Track. Track death 

statistics and sensor false alarm statistics are used to determine the apriori value 

of this probability. However when available the value of this term could be 

updated dynamically with the help of estimates obtained from the PE System 

itself 

Now that we have defined Pd(S) and Pfa(T) let us see how the apriori probabilities are 

computed for the 3 association hypotheses. 

■ Track-Truth association hypotheses: This hypothesis requires computing the 

probability that the given Track was caused by the given Truth. For this the given 

Track needs to be a valid Track which is computed as 1 minus the Pfa(T). This 

probability multiplied by probability that the given Track is represented by some 

valid Track Pd(S) gives us the apriori probability for the association hypothesis. 

Thus we have, 

P(association) = [1- Pfa(T)] x Pd(S) (3.5) 

False Track Hypothesis: For this one needs to compute the probability that the 

given Track is invalid i.e. it does not represent any Truth Entity. Simply put this is 

same as Pfa(T). Thus 

P(False Track) = Pfa(T) (3.6) 
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Missed Truth Hypothesis: This hypothesis requires computing the probabiUty 

that the given Truth is not represented by a vahd Track which is 1 minus Pd(S). 

Thus 

P(Missed Truth) = 1- Pd(S) (3.7) 

The Hypothesis Scoring Equations 

3.   Track - Truth Association Hypothesis 

This consists of two parts the kinematics score (Equation 3.3) and the apriori score 

(Equation 3.5), which add up to give the following equation. 

Ah) = { |V|'''} exp[-l/2{f V-' I}] [1- Pfa(T)] Pd(S) 

2.  False Track Score 

This consists of two parts the kinematics score (Equation 3.4) and the apriori score 

(Equation 3.6), which add up to give the following equation. 

Ah)= {M'^} ^l  Pfa(T) 
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3.   Missed Truth Score 

As we saw earlier the kinematics score for this hypothesis in not available. So the scoring 

equation for this hypothesis has only the apriori score (Equation 3.7), which is as follows. 

/(//)= l-Pd(S) 

Looking at the SUT characteristics and the scenarios developed for the Case Study 

following values were nominated for the constants in the above three hypothesis scoring 

equations 

■ Pd(S)=0.95 

■ Pfa(T)=0.03 

■ p.= 4 

3.5.2.2 Hypothesis Selection 

The Hungarian Algorithm was nominated for the HS phase for all the 3 Node designs. 

The Hungarian Method procedure is explained as follows in Table 3.1. 

Step# Action 

1 If the minimum element in row 'i' is not 0, then subtract this minimum 

element from each element in row i. 

2 If the minimum element in column 'j' is not 0, then subtract this minimum 

element from each element in column 'j'. 
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3 Examine rows successively, beginning with row 1, from a row with exactly 

one unmarked zero. If at least one exists, mark this zero with a star '*' sign 

to denote assignment. Mark 'X' on the other zeroes in the same column so 

additional assignments will not be made to that column. Repeat the process 

until each row has no unmarked zeros or at least two unmarked zeroes. 

4 Examine columns successively for single, unmarked zeroes and them with a 

star '*' sign to denote assignment. Mark 'X' on the other zeroes in the same 

row so additional assignments will not be made to that row. Repeat the 

process until each column has no unmarked zeros or at least two unmarked 

zeroes. 

5 

(a) 

(b) 

(c) 

Repeat steps 3 and 4 until one of the following occurs 

■ Every row has an assignment' *'. 

■ There are at least two unmarked zeroes in each row and each column. 

■ There are no zeroes left unmarked and a complete assignment has not 

been made. 

6 If 5(a) occurs, then the assignment is complete and it is an optimal 

assignment. If 5(b) occurs, arbitrarily make an assignment '*' to one of the 

zeroes and mark 'X' on rest of the unmarked zeroes in the same row and 

column, and then proceed to step3. If 5(c) occurs, go to step 7. 

7 Check (V) all rows for which an assignment '*' has not been made. 

8 Check (V) columns not already checked that have a zero in the checked rows. 

9 Check (V) all rows not already checked that have assignments made in the 

checked columns. 
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10 Repeat steps 8 and 9 until the chain of checking ends. 

11 Draw lines through all unchecked rows and through all checked columns. 

This will give the minimal cover. 

12 Examine the elements that do not have at least one line through them. Select 

the smallest of these and subtract it from every element in each row that 

contains at least one uncovered element. Add the same element to every 

element in each column that has a vertical line through it. Return to step3. 

Table 3.1 The Himgarian Algorithm Procedure 

3.5.2.3 MOP Estimation 

The definition of the MOPs nominated at the Node design level is as follows: 

Position Error 

Position Error for Truth Entity 'i', for the given time point is computed as the Euclidean 

distance between the true location of the Truth Entity at that time point and the estimated 

location of the Track (which is representing this Truth Entity at that time point). This 

mefric is usefiil in analyzing how the SUT performance with reference to each Truth 

Entity. 

If (xl,yl) is the true location of Truth Entity 'i' at time 't' and (x2,y2) is the estimate 

location of Track 'j' (which is representing 'i' at time 't') the Position Error is computed 

as follows 
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PerrorCi)  =   {(xl -x2) ' + (yl-y2)'} ^'' 

If at any time point a given Truth Entity is declared as "Missed Truth" then this metric is 

not computed for that particular Truth Entity for that time point. 

Average Position Error 

Average Position Error for a given time point is the Average of Position Errors for all 

the Truth Entities that existed at the time point. This is computed as 

n 
-Terror avg(t) —   1/n 2^ ■« error (v 

i=l 

This metric gives overall perspective as to how the SUT fared in its task of estimating 

location of the Truth Entities in the Field of View. 

Track File Probability of detection (Pd) 

Track File Probability of Detection for a given time point is defined as the number of 

Truth Entities represented by valid Tracks divided by the total number of Truth Entities 

existing at that time point. 

Pd =   # Truth Entities represented bv valid Tracks at time "t" 

Total # of Truth entities at time "t" 
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Probability of False Track (Pf) 

Probability of False Track for a given time point is computed as the number of Tracks 

not associated with any Truth for the give time point divided by the number of Tracks at 

that time point. 

Pf= # of imassociated Track at time "t" 

Total # of Truth entities cumulated at time "t" 

Track Purity (Tp) 

Track purity for Truth Entity 'i' is computed as the ratio of number of associations of 

Truth Entity 'i' with Track 'j' to the total number of associations for Truth Entity 'i' with 

any valid Track (where 'j' has been associated with 'i' more than any other Track). This 

is the only metric in this Case Study, which is computed over the complete scenario. 

Tp(i,j) = # of associations for Truth "i" with a valid Track 'i" over the whole scenario 

Total # of associations for Truth "i" with any valid Track over the whole scenario 

Tp(i) = maxTp(i,j)  ¥ "j" 
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Track Switches (Ts) 

Track Switches for a given time Y_ is computed as the number of Truth Entities assigned 

to a different Track as compared to their assignment at time 't-l' divided by the total 

number of Truth Entities existing at time point't'. So for example if Truth Entity 'i' was 

being represented by Track 'j' at time 't' and at time 't+l' Track 'k' represents Truth 

Entity 'i', then it is counted as a "switch". However missed Truth is not counted as a 

switch. 

Ts=        # of Switches at time T 

Total # of Truth entities at time "t" 
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Chapter 4 

Case Study Results and Analysis 

4.1 Introduction 

As discussed previously two set of scenarios were implemented in this Case Study. In the 

following sections we described the results of these scenario sets. 

4.2 Feigned Crossing Target Scenario 

The Feigned Crossing Target Scenario was designed to demonstrate effects of a simple 

one time switching on the PE process. Figure 4.1 displays the trajectory of two targets, 

which come very close to each other and then move apart. The red oval shown in the 

Figure 4.1 marks the zone in which there is high probability of association complexities. 

The targets were flying at a constant velocity of 500m/sec. The scenario consisted of a 

single ground based platform, which had 2 sensors (Radars) mounted on it. The details of 

the sensors are presented in Table 4.1. The Fusion system details are given in Table 4.2. 

"Approved for public release; distribution is unlimited." 107 



Figure 4.1 "Feigned" Crossing Target Scenario 

Scan RPM Probability 
of detection 

False 
Alarms 

Platform 1 
(Stationary) 

Sensor 1 
Sensor 2 

60 
40 

0.9 
0.95 

No 
No 

Table 4.1 Sensor Details 

Filter IMM Filter 
Gating 
Gating criteria 
Assigiraient algorithm 
Fusion Architecture 

Ellipsoidal Gating 
Probabilistic 
JVC 
Contact Fusion 

Table 4.2 Tracker Details 
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The tracker output for this scenario is shown in Figure 4.2. As shown in the figure 

initially measurements generated by Truth-1 were used to update Track - 'A' and 

measurements generated by Truth-2 were used to update Track - 'B'. However when the 

two Truth Entities come very close to each other, the Tracker got confused, dropping 

Tracks 'A' and 'B', and initiating new tracks for a next few updates. After that the 

Tracker reinitialized Track -'B' but failed to reinitialize Track - 'A'. However now 

Track 'B' was updated from the measurements generated by Truth-1. Thus a "switch" 

occurred during Data Association. A new Track, Track -'C was initiated and it got 

updated from the measurements generated by Truth-2 till the end of the scenario. 

Figure 4.2 "Feigned" Crossing Target Scenario Tracker Output 
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The performance of the SUT under this scenario was tested using the Case Study PE 

system implementation. The results and analysis of this testing is presented in the 

following subsections. 

4.2.1 Position Error Estimation 

The Position Error Estimation plots for Truth Entity-1 are shown in Figure 4.3 and those 

for Truth Entity-2 are shown in Figure 4.4. Each of these plots shows Position Error 

Estimates for the Switching Node and the No-Switch Node. In these plots Position Error 

is shown to be zero for those time points for which the Truth Entity has been declared as 

Missed. 

As seen in Figure 4.3 for the first half of the scenario, both the Switching Node and the 

No-Switch Node report same values for Position Error estimates most of the time. But 

after time point "50 seconds", the No-Switch Node reports a value of "0" for Position 

Error estimates - implying that it could not associate the Truth Entity-1 with any valid 

Tracks. Whereas the Switching Node continued to chum estimates for Position Error with 

some intermittent hiccups during the "confiision zone". 

Similar behavior is echoed in the Position Error plot for Truth Entity -2. Here the No- 

Switch Node could not associate the Truth Entity-2 with any valid Tracks for the first 

half of the scenario. 
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Crossing Target Scenario - Trutli:1 

Figure 4.3 Position Error Estimates for Truth Entity-1 

Crossing Target Scenario - Truth:2 
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Figure 4.4 Position Error Estimates for Truth Entity-2 
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The Probability of Detection plot for the two Nodes is shown in Figure 4.5. As shown in 

the figure, the PD for the Switching Node has value of 1.0 most of the time while the PD 

for the No-Switch Node has value of 0.5. This perfectly matches with our above analysis. 

Crossing Target Scenario 

Switch 

No Switch 

Figure 4.5 Probability of Detection 

Now let us see what was the exact outcome of Track-Truth Association process for the 

two PE Nodes. Figure 4.5 displays the Track-Truth Association result for Truth Entity-1 

by the No-Switch Node As one can see here the Truth Entity -1 was represented by 

Track -A. However since the lifespan of Track -A was only the first half of the scenario, 

Truth Entity -1 was declared as Missed Truth for the second half of the scenario (since 

the No-Switch policy does not allow representation of a Truth Entity by more than one 

Track throughout the life span of the Truth entity). 
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Now Figure 4.6 displays the Track-Truth Association resuh for Truth Entity-1 by the 

Switching Node. Here just Uke the No-Switch Node, Track -A represented the Truth 

Entity-1 for the first half of the scenario. During the second half of the scenario Track - C 

represented the Truth Entity-1. In the "confusion zone" where the two Tracks A and B 

did not exist, the Switching Node represented Truth Entity -1 by the residual Tracks. 

GMW: D:'iLcase\dala\crossing_tracker_oulput1.txl 

Track "A' 

Truth Enlitv -1 

Figure 4.5 Truth Entity-1 representation by No-Switch Node 
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Figure 4.6 Truth Entity-1 representation by Switch Node 

Thus the outcome of the Track-Truth Association process for the two switching policies 

is as expected. So going by the results of the No-Switch Node one would declare the 

performance of the SUT as bad whereas judging by the results of the Switching Node one 

could call the SUT performance as consistent and fair. 

4.3 Maneuvering Targets Scenarios 

A second set of scenarios consisting of three scenarios was created. The main difference 

across this set of scenarios was the inter target spacing. Accordingly the three scenarios 

have been named as the Low Spacing scenario in which the targets were quite close to 

each other, Medium Spacing scenario in which the targets were somewhat close and the 

High Spacing scenario in which the targets were quite apart. The driving factor behind 

this set of scenarios was to study the effect of the relationship between inter-target 
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spacing and the Track-Truth Association policy on the estimation process. This scenario 

set would also be used to demonstrate the use of the estimates obtained from the PE 

System for analysis. 

Figure 4.7 displays the basic set of these scenarios. As shown in the figure the scenario 

consists of four sets of Targets performing high-speed maneuvers. Each scenario was 

partitioned into 3 zones. Zones 1 and 3 are the ones in which the Targets are moving in a 

straight line and at a large distance from the sensors. Zone -2 is the area in which the 

Targets are maneuvering but close to the sensors. 
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Figure 4.7 Generic Trajectories for the Maneuvering Targets Scenarios 
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In table 4.3 we present the Average Position Error and Standard Deviation of Position 

Error for Truth Entity-1 for each of the scenarios as estimated by different PE Nodes. 

Scenario Mean Position Error Standard Deviation 
of Position Error 

Switch Window No Switch Switch Window No Switch 
Low Spacing 229.58 251.16 287.39 160.12 164.55 184.87 
Medium Spacing 219.37 224.24 264.40 144.70 146.28 176.70 
Large Spacing 212.58 230.83 231.25 155.41 156.82 162.87 

Table 4.3 Error trends across the maneuvering targets scenarios 

Following trends appear from Table 4.3 

■ In all the three scenarios the Switching Node gives the lowest estimate of Mean 

Position Error and the Standard Deviation for the Position Error is also the lowest. 

This is obvious since the Switching Node always optimizes locally (i.e. for given 

time instance) unlike the other two Nodes. 

■ The Window Node (or the Restricted Switching Node) generates estimates better 

than the No Switch Node but worse than Switching Node. This is because the 

Window Node attempts to reduce switching and in doing so it does not always 

achieve local optimum. 

■ The estimates from the 3 PE Nodes appear to be converging across the three 

scenarios. In other words the difference between the estimates from the three 

Nodes is very high in the Low spacing scenario, the difference lowers in the 

Medium Spacing scenario and in the Large Spacing scenario the difference is the 

lowest. This because of decrease in Association ambiguities with increase in 
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Inter-Target spacing. This can also be concluded from the Table 4.4 that shows 

the Switching trends across the three scenarios. One can see that the number of 

switches reduces for both the Switch and the Window Node. In short the Track- 

Truth Association result from the Switch Node and the Window Node tends to be 

the same as that from the No Switch Node with reduction in Association 

Ambiguities. 

Scenario Number of Switches per 
scenario run 

Switch Window 
Low Spacing 122 85 
Medium Spacing 72 52 
Large Spacing 18 13 

Table 4.4 Switching trends across the maneuvering targets scenarios 

Now let us compare the performance of the three PE Nodes in each of the three zones 

across the scenario set. Tables 4.5, 4.6, and 4.7 display the Average Position Error for 

each of the three zones. 

Scenario Average Position Error 
Switch Window No Switch 

Low Spacing 123.23 162.49 180.92 
Medium Spacing 119.1 152.70 177.23 
Large Spacing 118.85 131.02 151.22 

Table 4.5 Error trends across the maneuvering targets scenarios - Zone 1 

Scenario Average Position Error 
Switch Window No Switch 

Low Spacing 67.17 77.76 83.06 
Medium Spacing 63.64 66.703 80.22 
Large Spacing 70.92 94.60 116.04 

Table 4.6 Error trends across the maneuvering targets scenarios - Zone 2 
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Scenario Average Position Error 
Switch Window No Switch 

Low Spacing 329.06 333.27 444.93 
Medium Spacing 28L67 299.206 322.30 
Large Spacing 312.33 318.25 320.25 

Table 4.7 Error trends across the maneuvering targets scenarios - Zone 3 

Looking at Table 4.5 and 4.6 one can find no deviation fi-om the above conclusions. 

However the results in Table 4.7 appear to be somewhat deviating. If one observes only 

the Switch and the No Switch column then one can easily say that the above results still 

hold good. It is only the Window Node data that appears to be "hazy". In the low spacing 

zone the Window Node estimates are quite close to the Switch Node estimates. While in 

the medium spacing zone the Window Node estimates are distant from the Switch Node 

estimates and in the large spacing zone the Window Node estimates are actually close to 

the from the No Switch Node estimates -why so? The reason behind this behavior of the 

Window Node is that it tries to minimize the effect of random jumps in the data sets. But 

if there are no such jumps in the data set then the results of Window Node tend to be 

same as that of the Switching Node. 
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4.4 SUT Performance Analysis 

Now let us see how one would go about analyzing the perfonnance of the SUT using this 

PE System. Figures 4.7 - 4.13 display the plot of Position Error for Truth Entity-1 for 

each of the scenarios for each of the PE Nodes. 

Low Spacing Scenario: Switching Node: Position Error for Truth-1 

13   121   126   131   135   141   148   151 

Figure 4.8 Low Spacing Scenario Switching Node Results 

Low Spacing Scenario:Window Node: Position Error for Truth-1 

Figure 4.9 Low Spacing Scenario Window Node Results 
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Low Spacing Scenario:No Switch Node: Position Error for Truth-1 
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Figure 4.10 Low Spacing Scenario No Switch Node Results 

Medium Spacing Scenario: Switching Node: Position Error for Truth 1 

101        106       111       116 

Figure 4.11 Medium Spacing Scenario - Switching Node Results 
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Medium Spacing Scenario: Window Node: Position Error for Truth 1 
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Figure 4.12 Medium Spacing Scenario - Window Node Results 

Medium Spacing Scenario:No Switch Node: Position Error for Truth 1 
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Figure 4.13 Medium Spacing Scenario - Switching Node Results 
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Large Spacing Scenario: Switching Node: Position Error for Truth 1 
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Figure 4.14 Large Spacing Scenario - Switching Node Results 

Large Spacing Scenario: Window Node: Position Error for Truth 1 
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Figure 4.15 Large Spacing Scenario - Window Node Results 
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Large Spacing Scenario: No Switch Node: Position Error for Truth 1 

Time in Seconds 

Figure 4.16 Large Spacing Scenario - No Switch Node Results 

We choose to display the results for the individual target rather than the average over all 

the targets because that would hide away some of the trends. Looking at the above plots 

we observe that the error is generally very high in zone-3 while it is the lowest in zone-2. 

This is same as the trends observed in the Tables 4.5,4.6 and 4.7. Low estimation errors 

in zone-2 make perfect sense since this zone is very close to the sensor platform. 

However the positioning of zone-1 and zone-3 with reference to the sensor platform is 

very much similar. Then the question arises - why such a huge disparity in the estimation 

errors in the two zones? This question is further aggravated by the fact that in zone-3 the 

average distance between the targets was more than that in zone-1. This means that in 

zone -3 the main source of errors should be the sensing process and not the association 

process. Keeping this in mind we tried to tweak the SUT to find the reason behind this 
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behavior. After several different simulations and analysis we still were unable to fix that 

error. 

However this was a good example of how to use the PE System. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

Hitherto not much work has been done in the field of Performance Evaluation of Multi 

Target Tracking Systems. In this thesis we presented a Frame Work for Performance 

Evaluation System Design. As a part of this Frame Work we also discussed the 

fundamental issues encountered during the evaluation process and the solution 

approaches to these issues. This was followed by a Case Study implementation of the 

Frame Work. Through this Case Study we successfully demonstrated the following 

■ A proof on concept for the Framework. 

■ Use of advance scoring techniques (for PE), which are now finding their way into 

real operational Data Fusion-based tracking. 

■ Through the "Feigned Crossing Target Scenario" we presented a simple proof for 

the argument that "the No-Switch policy is not necessarily the best way to judge a 

Tracking System" 

'Approved for public release; distribution is unlimited." 125 



Solution approaches to the Track-Truth Association problem. 

We observed that inter target spacing creates ambiguities in the Data Association 

process which are subsequently inherited by the Track-Truth Association process. 

The Switching policy and the Window policy yield better estimates of 

performance metrics when the inter target spacing is low. As the inter target 

spacing increases the estimates of the Switching policy and the Window converge 

towards the estimates of the No-Switch policy. These results are in full agreement 

with our expectations. 

In short the Performance Evaluation System Design Frame Work provides excellent 

guidelines for evaluating, comparing and analyzing Tracking Systems and their 

components. Through this Frame Work we have laid the foundation for formalizing the 

field of Performance Evaluation in the Tracking community. 
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5.2 Recommendations 

This thesis has given us insight into the Performance Evaluation problem and some of the 

solution approaches. However much work needs to be done before this field matures. The 

future work should concentrate on the areas: 

Understanding the interdependencies between the Track-Truth Association policy 

and the sophistication of the MTTS is the key to achieving confidence in the 

evaluation process. 

■    Impact of PE Tree Design on the Track-Truth Association and subsequent process 

of metric estimation needs to be studied. 

• In the current Case Study the hypothesis score computation process used basic 

kinematics information only. Use of Attribute information and Identity 

information for hypothesis scoring needs to be explored. 
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