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1. INTRODUCTION 

It is well known that a satellite in sunlight can charge to substantial negative voltages, even though 
the photoelectron current (positive) is typically much larger than the ambient currents in space. This 
effect o ccurs b ecause e scaping photoelectrons c an b e b locked b y 1 ocal p otential b arriers. T he 
formation of such a barrier is a multidimensional effect, where surfaces of high negative potential 
suppress the escape of low energy electrons elsewhere on the satellite. When the outgoing flux of 
photoelectrons is reduced in this way, current balance on the sateUite can be readily achieved. In this 
report, we consider two analytic models for sunUght charging of a rapidly spinning spherical satellite, 
both of which are based on blocked photoelectron currents: 

1) The Sun is situated on the spin axis of the satellite. 
This is the monopole-dipole (MD) model. 

2) The Sun is perpendicular to the spin axis of the satellite. 
This is the monopole-quadrupole (MQ) model. 

The first model, MD, where the satelUte may be non-rotating, has been treated by Besse and Rubin 
[1980] and others [Mandell, etal, 1978; Higgins, 1979]. 

For a spacecraft, there will be approximate azimuthal symmetry if the satellite is rapidly rotating, so 
that it experiences only time-averaged photoemission. By rapid motion, we mean that the governing 
resistance/capacitance time constant is long compared to the spin period. Both models assume 
azimuthal symmetry aroimd the spin axis. 

As described in Section 2, the MD,MQ models can be specified by two parameters, K and A,A2, 
and we compare the models as a function of deviations from the A,A2 parameter lower limits. In 
Section 3, we describe some simple ideal solutions for the case where the satellite is represented by 
a thin dielectric sphere. In Section 4, we discuss the more general MD,MQ cases and compare the 
calculated ratio between the maximimi and minimum potentials on the surface to measured ratios 
for eclipse to sunlight charging obtained from the LANL geosynchronous satellites. Section 5 
contains a brief summary of the two sunlight charging models. 



2. COMPARISON OF THE MD AND MQ CHARGING MODELS 

At geosynchronous altitudes, when the ambient charge density is low, we expect the potentials 
outside the satellite to approximately satisfy the Laplace equation. If spherical coordinates are used, 
the method of separation of variables can be employed to split Laplace's equation into three ordinary 
differential equations; one for the radius r, polar angle 0, and azimuth angle (p. In the case of a 
spherical satellite with azimuthal symmetry (no <p dependence), the outside potentials can be 
expanded in the form [Schwartz, 1972]. 

(1) 

where the sum is over n and goes from zero to infinity. The a„ are constant coefficients which 
depend on the case considered, and the P„(6) are the Legendre polynomials of order n. In this 
report, we will consider only the first three terms in the expansion. 

It is convenient to factor out the monopole term so that we can write 

V{r,Q) = ^ 
r 

\     AlP^iQ)     A2 P^id)] 
1 + 

/•2 
(2) 

where K is the monopole coefficient and .47 and A2 are the strengths relative to the monopole. 

If we take r = i on the satellite surface, the potentials reduce to 

F(e) = F(l,e) = K(\+A1P^(Q)+A2PJQ)) (3) 

The MD model corresponds to A2 = 0.0 and the MQ model to Al =0.0. The models thus have two 
parameters; K and AI for MD, or A2 for MQ. In typical charging cases, K is negative and in the 
KV range. The A1/A2 parameter sets the radius and height of the potential barrier that forms outside 
the sphere. 

To find the radius of the potential barrier, we take 

-^— - 00 (4) 



which gives, using Eq. (2) 

-K 
«2 

'       2A1P,(Q)      3 A2 PJQ)] 
= 0.0 (5) 

For the MD case, we get from Eq. (5) that the radius RB of the barrier is 

RB = -2  AlP^iQ) = 2  AcosiQ) (6) 

where we define A = -Al > 0 (our notation agrees with a previous treatment [Besse and Rubin, 
1980]; if Al were > 0, then the Sun would be at 180 degrees instead of at 0). In the same way, 
for the MQ model, we get 

RB = fTA2P^) = -- A2 (3 cos(Qf - 1) (7) 

Let us now consider the barrier radius as a function of 6. We assume the Sim angle is specified by 
the point where the radial barrier extends farthest out from the sphere surface. For the MD model, 
this condition gives 6=0. The MQ model is a bit more complicated, but one can see that RB will 
be maximimi when -P^f^ is a maximum, which gives 0= 90 degrees. 

The condition that the barrier lie outside of the sphere at the model Sun angle leads to lower limits 
on the A/A2 parameter. Hence, imposing the condition RB> 1 for the MD model at ^ = 0 yields 
A> 1/2, and imposing it for the MQ model at 6=90 gives A2 > 2/3. 

The barrier radius RB at the model Sun angle is shown in Figure 1. Here, in order to facilitate 
comparison of the two models, we have introduced the variable A, with range (0, 1/2 ), which 
represents the deviation of either A or A2 from its lower limit, i.e. 

for the MD model, A= A-1/2, with A range ( 1/2, 1 ), 
for the MQ model, A=A2- 2/3, with A2 range (2/3, 7/6). 
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Figure 1. Barrier Radius Versus A. 

From the plot, we see that the MQ model barriers form relatively closer to the sphere surface than 
for the MD model. 

The actual height, VB, of the barrier can be obtained from 

VB = V(RB,Q)-V(\,e) (8) 

where 6 is the angular location of the barrier. The barrier height at the model Sun angle, normalized 
to K, is plotted in Figure 2 against the deviation A. It can be seen that, asVB/K goes to zero, the 
parameters A and A2 approach their lower limits. 
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Figure 2. Barrier Potential/K Versus A. 

The maximum angular half width of the barrier, with respect to the Sun angle, can be obtained from 
the models by using the condition RB = 1, and this is shown in Figure 3. The barriers are confined 
to relatively smaller angular regions for the MQ model. 
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Figure 3. Maximum Barrier Angle Versus A. 

The maximum and minimum surface potentials in the models are, from Eq. (3), simple Unear 
functions of the parameters. In the MD model, the highest surface potential is on the shade side and 
the lowest on the sunlit side 

^max  =   F(180)=^(l+^) (9) 

^r^ = V(0) =K(l-A) (10) 

whereas with the MQ model the high potentials are at the poles of the sphere and the low at the 
belly-band 

^max  =   ^(0)  =  V(m)  =Ki\-^A2) (11) 



v^in = vm =K 
A2) 

(12) 

The high and low potentials for the models, normalized to K, are shown in Figure 4. 
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Figure 4. High and Low Potentials Versus A. 

A quantity of further interest, for comparison with measurements, is the ratio V^^ / F„,„, which is 
shown in Figure 5. The minimum ratio for the MD model occurs at the lower limit for A 



ratio = O^A) _ 
(I-A) 

= — = 3.0 (13) 

and for the MQ model it is at the lower limit for A2 

ratio _   (1+A2) 

1- Al 
2j 

= — = 2.5 (14) 
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Figure 5. High/Low Ratios Versus A. 



It is evident that the ratios are sUghtly larger for the MD model at low A, and the difference increases 
with A. For comparison, in the MD model, the lower limit ratio between the maximum potential to 
that on the belly-band (equal toK)is 1 +A = 1.5. 

Color contour plots for the two models, at A = 0.1, are shown in Figures 6 and 7. The variable 
plotted is the model potential, normahzed to K. In the figures, the angle 6=0 points to the top. 
One can see from the plots how a potential barrier arises due to encroaching high fields from 
elsewhere on the surface. In the MD model, the high fields come from the shade side (bottom) and 
make a barrier on the sunlit side (top). In the MQ case, the high fields come from the top and 
bottom, and combine to make a barrier at the belly-band. 
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Figure 6. The Monopole-Dipole Model. 
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Figure 7. The Monopole-Quadrupole Model. 
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We summarize the main differences between the MD and MQ models: 
the Sun direction differs by 90 degrees, 
the lower limits for the A and A2 parameters are not the same. 
in the MD model the potential barrier forms at the pole (sunlit side), whereas m the MQ 
model it occurs at the belly-band. 
in the MD model the maximum potential occurs at the back (shade side), while in the MQ 
model the maximimis occur at the poles, 
the ratios of maximum to minimum surface potential are slightly different. 

These elementary models provide an intuitive look at the physics of sunlight charging, which is often 
absent in complex computer simulations. 
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3. IDEAL MODELS: CHARGING OF A DIELECTRIC SPHERE 

It is possible to investigate these models further by considering the simple case where the sphere is 
covered by a thin dielectric layer connected to ground. Here, we divide a unit sphere of area S=4n 
into azimuthal sectors with areas 

dS = lTzsm{Q)dQ (15) 

A lumped circuit model can be configured and we can write for each sector surface element 

(V{Q) -Vg)-^dS = m = J(0) dS (16) 
d 

where o is the material conductivity, d is the thickness, and Vg is the ground potential underlying 
the dielectric. 1(6^} is the net current through the material, including secondaries and backscatter, and 
J(0) is the net current density. 

If we have current balance to the sphere, then we can write 

Tm = TJ^dS = 0.0 (17) 

where the sum is over the sectors. Using the current balance condition, we get from Eq. (16) 

Vg = E nQ)f (18) 

i.e., the groimd potential is given by the area weighted average over the sectors.  If the surface 
potentials are specified by the MD or MQ models, we can substitute Eq. (3) in Eq. (18) to get 

Vg = '£K(\ ^Al P,(e) ^A2 P,(d)) ^ (19) 

and replacing the sum by an integral, vahd as the number of sectors becomes large, we find 

11 



Here we have used a result for the Legendre polynomials that the integral over the total surface is 
zero when n> 0 (see Appendix). 

The actual numerical values of the net current density to the sectors would depend, from Eq. (16), 
on the model parameters plus the dielectric properties 

m = (A1 P,iQ)^A2P,(e))K^ (21) 

and the net currents 1(6) would further depend on the sector areas. The ideal net current density J(0) 
for the MD case, would be proportional to P,(0) = cos(d) (taking A I,K negative). Thus, positive J 
would appear at the north pole (0=0) , and negative at the south pole (6=180), with zero Jat the 
belly-band. Interpreting the negative Jas net incoming electrons, we see that there would be electron 
flow through the sphere from south to north. For the MQ case, the ideal net current density would 
be proportional to -P/^ (again /: is taken negative). This function is symmetric about 6= 90, with 
negative J appearing at the poles, and positive J at the belly-band. This could be interpreted as due 
to electrons entering at the poles and exiting at the belly-band. In both models, the current balance 
is achieved by electrical flow through the satellite. This is a prototypical situation which occurs also 
in the non-ideal charging cases when dark and sunlit surfaces are conducting and connected. 

We see that for these ideal models, the current balance is due to the Legendre terms, and is therefore 
independent of A1/A2. Hence, we don't need a potential barrier to help create the current balance, 
and we can replace A1/A2 by the model lower limit. We note that the current balance would hold 
for any number of Legendre polynomial terms (n > 0). 

12 



4. NON-IDEAL CHARGING AND COMPARISON WITH LANL DATA. 

In a real charging case, the spacecraft body probably would not be a sphere, there would not be exact 
azimuthal symmetry, and the surface materials and underlying electrical connections could be 
anything. In the above analysis, only the current balance condition would hold rigorously. But we 
might still expect that the potentials outside the satellite would be approximately Laplacian and that 
a p otential b arrier w ould form t o s uppress p hotoemission. C omputer s imulations w ith m ore 
complex satellite models have indicated the occurrence of this effect [Mandell, et al, 1978; Rubin, 
etal, 1979]. 

For a spherical satellite that was approximately azimuthally symmetric, the net surface current 
density, which would be a complicated fimction of the enviromnent, the surface potentials, and the 
materials properties, could be expanded in terms of the Legendre polynomials 

Ji^)   =  EjnP„(Q) (22) 

where the sum is over n, the /„ are fit coefficients, and ^is again the polar angle. Because of the 
properties of the Legendre polynomials, only then = 0 term in the expansion would contribute to 
the total spacecraft current, integrated over all sectors, i.e.. 

fm = Y.Jn fP„(Q)dS = 4nJ, (23) 

We expect that a potential barrier would be set up, such that Jg goes to zero. Photoemission would 
occxir at all sectors that were exposed to the Sun, with intensity proportional to the cosine of the Sun 
to sector angle. The emitted photoelectrons would fall to the sunlit pole (MD model) or to the 
belly-band (MQ model) and experience the radial barrier. A small fi-action would escape the barrier 
and balance the net current to other parts of the satellite. The fraction of photoelectron flux escaping 
a linear barrier of height VB is given by 

/= exp 
-VB 
Tp Tp) 

(24) 

where Tp is the photoemission temperature (~2eV). Because the photoelectron flux is typically 
much larger than the electron or ion-induced current densities at geosynchronous orbits, the barrier 
potential VB would rise to a few times Tp. But if VB is small compared to other potentials in the 
problem {VB would be typically less than 10 Volts and K can be in the KV range), the model 
parameters A,A2 would not depart much from their lower limits, as is shown in Figure 2. Thus, 
the ratio r„„ / V„i„ would remain fairly close to its value at the lower limits (-3.0), as shown in 
Figure 5. 

13 



With the MD and MQ models in mind, we have looked at the Los Alamos National Laboratory 
(LANL) geosynchronous satellite charging data, obtained from their network site 
[cdaweb.gsfc. nasa.gov, 2002]. We did not expect to see front to back or top to belly-band potential 
variations in the LANL data because their detectors are located at the middle of the satellites. The 
fact that the charging potential in sunlight was largely independent of the spin phase [Private 
communication, S. Lai, 2002] suggests that the satellites were in a rapid rotation state (the spin 
period was ~10 seconds). The spin axis on the satellites was constrained to point at the Earth center. 
Thus, at the equinoxes, when the spacecraft passed into eclipse, it would probably be near to the MD 
model. In general, depending on the time, it would be somewhere between the two models. 

To improve their statistics, the LANL charging data was determined based on the spin-averaged 
energy spectra for ions and electrons. The LANL charging potential could be identified from the 
channel occupied by low-energy ambient ions that were accelerated through the sheath. When there 
was a valid ion line (sometimes it was absent and an iterative scheme was used to identify the 
charging) the spacecraft potential was estimated from minus the ion line energy. This procedure 
leads to quantized charging levels, making the comparison with analysis less direct. 

The LANL database has files composed in the National Space Science Data Center (NSSDC) 
common data format (CDF). CDF utilities [nssdcftp.gsfc.nasa.gov, 2002] were used to convert the 
files from CDF into ASCII text, and UNIX scripts were run to extract selected data from the spring 
and fall equinox periods. The selected LANL data is shown in Figures 8 to 17, and includes both 
eclipse and sunlight charging Voltages for March and September periods, and for five different 
satellites. In the plots, the upper data is due to eclipse charging, and the lower data represents 
sunlight charging. The horizontal axis is the electron temperature in eV. 

Note that when the actual ratios observed are eclipse to sunlight charging, the values would be 
somewhat larger than the calculated V„„ / V„i„ ratio because the eclipse charging potentials should 
be equal or greater than the V„^ from the models. On the other hand, the calculated ratio of the 
maximum potentials to those on the belly-band are less than three at the lower limits of the models. 
For comparison with experiment, we use a ratio of three. 

The curves shown in the plots were generated as follows: 
first a fit was made to the sunlight-charging data, using the LANL 97-A satellite data for 
September. 
this fit curve was included in the other plots (lower curve) 
a second curve, at three times the background fit, was added to the plots (upper curve). 

It is observed that the upper curve falls within the span of the measured quantized potential levels 
in all ten cases. This suggests a connection with the above models, where a ratio of about three is 
a characteristic value. A more detailed comparison with LANL data would require knowledge of 
the satellite body geometry, the surface material properties, and the electrical configuration. 

14 
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LANL-1997A: Mar 13 to 27,1998-1999 
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Figure 9. LANL Eclipse and Sunlight Charging. 
LANL-1997A: Sep 14 to 28, 1997-2001 
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Figure 10. LANL Eclipse and Sunlight Charging. 
LANL-1994-084: Mar 13 to 28, 1996-2001 
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Figure 11. LANL Eclipse and Sunlight Charging. 
LANL-1994-084: Sep 14 to 29, 1996-2001 
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Figure 12. LANL Eclipse and Sunlight Charging. 
LANL-1991-80: Mar 13 to 28, 1994-2001 
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Figure 13. LANL Eclipse and Sunlight Charging. 
LANL-1991-80: Sep 14 to 29, 1994-2001 
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Figure 14. LANL Eclipse and Sunlight Charging. 
LANL-1990-095: Mar 12 to 27, 1993-2000 
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Figure 15. LANL Eclipse and Sunlight Charging. 
LANL-1990-095: Sep 14 to 29, 1993-2001 
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Figure 16. LANL Eclipse and Sunlight Charging. 
LANL-1989-046: Mar 13 to 28, 1993-2001 
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Figure 17. LANL Eclipse and Sunlight Charging. 
LANL-1989-046: Sep 13 to 28, 1993-2000 
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5. SUMMARY 

The potentials exterior to a spacecraft in geosynchronous orbit would be approximate solutions to 
the Laplace equation when the ambient charge density is low. A rapidly spinning satellite would have 
approximate azimuthal symmetry around the spin axis, due to revolution time averaging, hi spherical 
coordinates, an azimuthally symmetric spherical object will have a Laplace solution for exterior 
potentials given by a product expansion over inverse powers of the radius times a Legendre 
polynomial. The lowest order Legendre polynomial corresponds to the monopole term, the next term 
represents a dipole, and the third gives the quadrupole. The monopole-dipole combination represents 
a satellite with the spin axis pointed at the Sun, and the monopole-quadrupole solution corresponds 
to a satellite with the Sun at right angles to the spin axis. Both of the models set up a potential 
barrier to suppress escaping photoelectrons at the sunht surfaces, so that current balance to the 
satellite can be achieved, hi the case of the monopole-dipole model, the barrier forms at the sunlit 
side pole, and for the monopole-quadrupole model, it forms at the belly-band. When the barrier 
potential is much less than the charging potentials, the model parameters A,A2 should be near to their 
lower lunits. For both models, at these lower limits, the ratio of the highest to the lowest potential 
on the satellite surface is about three. An inspection of the measured eclipse to sunlight charging 
potentials on the LANL geosynchronous satellites shows a ratio that is compatible with three. 
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APPENDIX.   A NOTE ON THE LEGENDRE POLYNOMIALS 

The solution of Laplace's equation in spherical coordinates can be treated by the method of 
separation of variables. If the problem has azimuthal symmetry, the polar angle part is solved by the 
Legendre polynomials P„(d) where ^is the polar angle and n is the order of the polynomial. The 
lowest order polynomials are 

Po(6) -1 monopole 

PjiO) - cos(e) dipole 

P/(9;= 1(3 cos (0)2-1) quadrupole 

The Legendre polynomials are orthogonal functions which satisfy 

rP„(e) P„(e) sin(e) fi?e = O.O      ifn*m (Al) 

2 .. =        ifn=m 
(2« + l) 

where the integral goes from 0 to 180. Putting m = 0,Po = 1.0 into this equation we get 

rP„(e) sin(0)£/0 = 0.0      ifn*Q) (A2) 

= 2.0      z/w = 0 

Thus, the integral over the spherical surface is 

fpjiQ)ds = 2Tifpjie)sm(e)de 
(A3) 

which is zero when n> 0, and 4JT when n = 0. 
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