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Abstract

Traditionally, radar signals have been analysed in either the time or the frequency
domain. Joint time-frequency representations characterize signals over a
time-frequency plane. They thus combine time-domain and frequency-domain analyses
to yield a potentially more revealing picture of the temporal localization of a signal’s
spectral components. Therefore, for air target returns with time-varying frequency
content, the joint time-frequency representations offer a powerful analysis tool. A
congcise review of time-frequency transforms is provided as background and is needed
to appreciate how time-frequency processing methods can improve conventional time
or frequency processing methods. The report then describes and illustrates the
advantages of using joint time-frequency techniques to analyze a multi-component
signal, a noisy signal, and experimental aircraft data. Finally, we use time-frequency
analysis techniques for the detection of maneuvering aircraft using HF radar in heavily
cluttered regions. We compare the ability of different time-frequency transforms to
resolve several experimental aircraft returns. The results clearly demonstrate that
time-frequency analysis techniques can significantly improve the detection
performance of the HF radar and add considerable physical insight over what can be
achieved by conventional Fourier transform methods currently used by HF radars.
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Résumé

Par le passé, les signaux radar ont été analysés soit dans le domaine temporel, soit dans
le domaine fréquentiel. Les représentations temps-fréquence mixtes montrent les
caractéristiques des signaux sur un plan temps-fréquence. Elles combinent ainsi les
analyses du domaine temporel et du domaine fréquentiel pour donner une image
potentiellement plus révélatrice de I’emplacement temporel des composantes spectrales
d’un signal. Par conséquent, les représentations temps-fréquence mixtes constituent un
outil d’analyse puissant des signaux dont le contenu fréquentiel varie dans le temps.
Nous présentons une bréve étude des transformations temps-fréquence afin de fournir la
base nécessaire pour apprécier la fagon dont les méthodes de traitement
temps-fréquence permettent d’améliorer les méthodes classiques de traitement temporel
ou fréquentiel. Ensuite, le rapport décrit et illustre les avantages de I’utilisation des
techniques temps-fréquence mixtes pour 1’analyse d’un signal & plusieurs composantes,
d’un signal perturbé par le bruit et de données expérimentales d’aéronef. Enfin, nous
utilisons les techniques d’analyse temps-fréquence pour la détection d’un aéronef
effectuant des manceuvres en ayant recours au radar HF dans des zones a niveau de
clutter élevé. Nous comparons la capacité de différentes transformations
temps-fréquence pour résoudre plusieurs signaux expérimentaux d’aéronef. Les
résultats montrent clairement que les techniques d’analyse temps-fréquence permettent
d’améliorer de fagon appréciable I’efficacité de détection du radar HF et d’acquérir
beaucoup d’autres connaissances physiques par comparaison aux méthodes a
transformation de Fourier classiques qui sont actuellement utilisées par les radars HF.
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Executive summary

One of the central problems in exploiting High Frequency (HF) radar data is the
analysis of a time series. The problem at hand is how to extract the information present
in the data and use it to its full potential. In order to address this problem we turn to the
field of signal analysis and data representations. Traditionally, radar signals have been
analysed in either the time or the frequency domain. The Fourier Transform is at the
heart of a wide range of techniques that are used in HF radar data analysis and
processing. Mapping the data into the temporal frequency domain is an effective way of
recording the data such that their global characteristics can be assessed. However, the
change of frequency content with time is one of the main features we observe in HF
radar data. Because of this change of frequency content with time, radar signals belong
to the class of non-stationary signals. The analysis of non-stationary signals requires
technique that extend the notion of a global frequency spectrum to a local frequency
description. The spectral energy density function that is obtained by means of a Fourier
Transform, the so-called power spectrum, shows the frequencies that are present in our
data, but does not reveal where changes in the frequency content occur. Consequently,
for the interpretation of radar data in terms of a changing frequency content, we need a
representation of our data as a function of both time and frequency. Only, quite
recently, the joint time-frequency representation of signals has become a major area of
research in radar signal processing.

The time-frequency representations characterize signals over a time-frequency plane.
They thus combine time-domain and frequency-domain analyses to yield a potentially
more revealing picture of the temporal localization of a signal’s spectral components.
They may also serve as a basis for signal detection, imaging, characterization, coding,
and processing. A complete and comprehensive theory for joint time-frequency
analysis does not yet exist. There is no unique time-frequency representation of a signal
that satisfies all the properties of a physically correct joint time-frequency energy
density function. However, discarding the requirement that all properties must be
satisfied in one time-frequency representation, a class of joint time-frequency
representations can be derived that serves as a model of a local power spectrum.

In this report, a concise review of time-frequency transforms is provided as background
and is needed to appreciate how time-frequency processing methods can improve
conventional time or frequency processing methods. The report then describes and
illustrates the advantages of using joint time-frequency techniques to analyze a
multi-component signal, a noisy signal, and experimental aircraft data. Finally, we use
time-frequency analysis techniques for the detection of maneuvering aircraft using HF
radar in heavily cluttered regions. We compare the ability of different time-frequency
transforms to resolve several experimental aircraft signals. The results clearly
demonstrate that time-frequency analysis techniques can significantly improve the
detection performance of the HF radar and add considerable physical insight over what
can be achieved by conventional Fourier transform methods currently used by HF
radars.
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Sommaire

L’analyse d’une série chronologique constitue 1’un des principaux problémes éprouvés
avec les données du radar haute fréquence (HF). Le probléme qui se pose consiste a
trouver un moyen pour extraire ’information contenue dans les données et pour
I’utiliser & son plein potentiel. Pour résoudre ce probléme, nous faisons appel au
domaine de 1’analyse des signaux et de la représentation des données. Par le passé, les
signaux radar ont été analysés soit dans le domaine temporel, soit dans le domaine
fréquentiel. La transformation de Fourier est au cceur d’une vaste gamme de techniques
qui sont utilisées pour I’analyse et le traitement des données du radar HF. La mise en
correspondance des données dans le domaine des fréquences temporelles constitue un
moyen efficace pour enregistrer les données de telle fagon que leurs caractéristiques
globales puissent étre évaluées. Cependant, la variation du contenu fréquentiel avec le
temps est une des principales caractéristiques que nous observons dans les données du
radar HF. En raison de cette variation du contenu fréquentiel avec le temps, les signaux
radar appartiennent a la catégorie des signaux non stationnaires. Pour I’analyse des
signaux non stationnaires, il faut avoir recours a des techniques qui élargissent la notion
d’un spectre de fréquences global a une description de fréquence locale. La fonction de
densité d’énergie spectrale obtenue au moyen d’une transformation de Fourier, et
appelée le spectre de puissance, montre quelles fréquences sont contenues dans nos
données, mais n’indique pas ou se produisent les changements du contenu fréquentiel.
Par conséquent, pour I’interprétation des données radar du point de vue d’un contenu
fréquentiel changeant, nous avons besoin d’une représentation de nos données en
fonction du temps et de la fréquence. Ce n’est que tout récemment que la représentation
temps-fréquence mixte des signaux est devenue un sujet important de recherche dans le
traitement des signaux radar.

Les représentations temps-fréquence mixtes montrent les caractéristiques des signaux
sur un plan temps-fréquence. Elles combinent ainsi les analyses du domaine temporel
et du domaine fréquentiel pour donner une image potentiellement plus révélatrice de
I’emplacement temporel des composantes spectrales d’un signal. Elles peuvent aussi
servir de base pour la détection des signaux, I’imagerie, la caractérisation, le codage et
le traitement. Il n’existe pas encore de théorie compléte et détaillée pour 1’analyse
temps-fréquence mixte. Il n’existe pas de représentation temps-fréquence unique d’un
signal qui satisfait a toutes les propriétés d’une fonction de densité d’énergie
temps-fréquence mixte correcte du point de vue physique. Cependant, si on fait
abstraction de I’exigence selon laquelle il faut satisfaire a toutes les propriétés dans une
seule représentation temps-fréquence, on peut établir une classe de représentations
temps-fréquence mixtes qui sert de modeéle pour un spectre de puissance local.

Dans ce rapport, nous présentons une bréve étude des transformations temps-fréquence
afin de fournir la base nécessaire pour apprécier la fagon dont les méthodes de
traitement temps-fréquence permettent d’améliorer les méthodes classiques de
traitement temporel ou fréquentiel. Ensuite, le rapport décrit et illustre les avantages de
I’utilisation des techniques temps-fréquence mixtes pour I’analyse d’un signal a
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plusieurs composantes, d’un signal perturbé par le bruit et de données expérimentales
d’aéronef. Enfin, nous utilisons les techniques d’analyse temps-fréquence pour la
détection d’un aéronef effectuant des manceuvres en ayant recours au radar HF dans des
zones a niveau de clutter élevé. Nous comparons la capacité de différentes
transformations temps-fréquence pour résoudre plusieurs signaux expérimentaux
d’aéronef. Les résultats montrent clairement que les techniques d’analyse
temps-fréquence permettent d’améliorer de fagon appréciable Iefficacité de détection
du radar HF et d’acquérir beaucoup d’autres connaissances physiques par comparaison
aux méthodes a transformation de Fourier classiques qui sont actuellement utilisées par
les radars HF.

T. Thayaparan , S. Kennedy. 2003. Application of Joint Time-Frequency Representations to a
Maneuvering Air Target in sea-clutter: analysis beyond FFT. DRDC Ottawa TM 2003-090. R
& D pour la defénse Canada - Ottawa.
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1. Introduction

One fundamental mathematical tool employed in radar signal processing is a transform.
When asked to multiply the Roman numerals LXIV and XXXII, only a few of us will
be able to give the correct answer right away. However, if the Roman numerals are first
translated into Arabic numerals, 64 and 32, then all of us can get 2048 immediately.
The process of converting the unfamiliar Roman numerals into common Arabic
numerals is a typical example of transforms [1]. By properly applying transforms, we
can simplify calculations or make certain attributes of the signal explicit.

One of the most popular transforms known to scientists and engineers is the Fourier
transform that converts a signal from the time-domain to the frequency-domain. In fact,
the Fourier transform is not simply a mathematical tool to make calculations easier. It
also acts as a mathematical prism to break down a signal into a group of waveforms
(different frequencies), as a prism breaks up light into a color spectrum. The Fourier
transform is so powerful that people tend to apply it everywhere without noticing one
fundamental difference between the mathematical prism and a real prism. The
spectrum produced by the prism in the morning is different from that in the evening.
We may say that the prism gives instantaneous spectra. Using a prism to examine
spectra of light, there is no need for the information about light that existed million
years ago and the light that will be there tomorrow. However, this is not the case for
Fourier transform. To compute the Fourier transform, we not only need previous
information, but also information that have not yet occurred. The spectrum computed
by the Fourier transform is the spectrum averaged over an infinitely long time before
the present to an infinitely long time after the present! [2]

The time series signals of radar targets have been traditionally analyzed in the
frequency-domain. The transformation of a time series into a frequency-domain using
the Fourier transform provides useful information regarding the target. However,
Fourier spectral analysis is not without its shortcomings. The most prominent
shortcoming of Fourier spectral analysis is its inability to properly represent frequency
contents that changes over an observation period. ‘The most widely used signal
processing tool is the FFT (fast Fourier transform); the most widely misused signal
processing tool is also the FFT” [2]. Fourier transform-based techniques are effective
as long as the frequency contents of the signal do not change with time. However, when
the frequency contents of the data samples evolve over an observation period, other
alternative methods should be considered. Joint time-frequency representations were
developed to overcome this limitation of Fourier spectral analysis [3-4].

The joint time-frequency analysis has been a topic of much interest in the signal
processing community in the past decade . Over the past ten years, radar researchers
have also investigated time-frequency transforms as a unique tool for radar-specific
signal analysis and image processing applications [2,5-9]. Both traditional
time-frequency techniques, as well as the new tools developed in the signal processing
community, have been applied to various radar problems. Like the developments in
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other fields, such as underwater acoustics and speech processing, it was found that
time-frequency transforms provide additional insight into the analysis, interpretation,
and processing of radar signals that is sometimes superior to what is achievable in the
traditional time or frequency domain alone. The specific applications where
time-frequency transforms have been used include signal analysis and feature
extraction, motion compensation and image formation, signal denoising, imaging of
moving targets, and detection of moving targets [2,5-9].

Joint time-frequency representations transform a one-dimensional time signal into
two-dimensional representation in the time-frequency plane. In this representation,
time varying frequency can be easily displayed and studied. An important advantage of
time-frequency representations is the ease of identifying target signals. A waveform
with multiple signals or noise can become too complicated for visual analysis of its
waveform. Even the Fourier spectral analysis can become garbled beyond recognition.
Since time-frequency representations display time-varying frequencies, the signals are
distinguishable from the noise. The nature of each signal can be easily seen.

This report demonstrates the usefulness and effectiveness of time-frequency
representations and compares various time-frequency transforms. Three cases are
examined to show the usefulness of time-frequency representations. The first case
involves chirp signals that cannot be identified using Fourier spectral analysis. The
second case involves a signal with noise. The data in these cases are simulated with
complex values to be similar to real data. The third case shows the overall effectiveness
of time-frequency representations in signal analysis. This case uses real aircraft data.

There are many different time-frequency representations available in the literature for
analysis [2,5-10]. Each transform offers advantages and disadvantages. Certain
transforms provide excellent resolution, but are slow to calculate. Others provide poor
resolution, but are quick to calculate. Some transforms provide a good balance of speed
and resolution, but have interference cross-terms. Although there are many different
transforms available, we compare the ability of only twelve transforms to resolve
several real aircraft signals. The main objective of this report is to demonstrate the
effectiveness of time-frequency transforms for detecting maneuvering air targets in
heavily cluttered environment. Twelve transforms that are considered for comparison
and evaluation are the adaptive energy distribution, Born-Jordan distribution, binomial
distribution, Choi-Williams distribution, Gabor representation, Margenau-Hill
spectrogram, smoothed Wigner-Ville distribution, spectrogram distribution,
Zhao-Atlas-Marks distribution, reassigned Gabor representation, reassigned Morlet
scalogram, and the reassigned spectrogram distribution. Other time-frequency
transforms that are available in the literature will be evaluated and compared in a future
report. These twelve transforms are compared with experimental radar data. There are
several examples of target returns with varying behavior to test the transforms in
different situations. Each transform is then evaluated individually and against the group.
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Advantages of Time-Frequency Representations

21

Time-frequency representations can drastically simplify the interpretation of signals.
These representations provide a much clearer image of the signals due to their ability to
display frequency that changes over time. To show this advantage more clearly, we will
examine three cases. The first case consists of multiple chirp signals. The second case
consists of a signal present in noise. These cases use simulated data with complex
values. The third case uses experimental aircraft data to show the usefulness of
time-frequency representations for signal analysis.

Detecting Multiple Signals

Real Part of Signal in Time
3 T T ¥ T T T T T T T

Magnitude
(=]
——r—

. L L L . . ) L L L
0o 50 100 150 200 250 300 350 400 450 500
Time

Figure 1: Time series of multi-component signal

There are multiple chirps present in the signal whose time series is displayed in Figure
1. The spectrum of the signal can be found using the Fourier transform. The signal as it
appears in the frequency-domain is displayed in Figure 2. From the spectrum, it is
difficult to identify the number of signals, and extremely difficult to determine their
nature. Only an experienced signal analyzer may be able to determine these. A
time-frequency representation makes signal analysis almost instantaneous. The
Margenau-Hill spectrogram (see Section 3.2) of the signal is displayed in Figure 3.
From the time-frequency representation it is immediately evident that there are three
chirp signals. The nature of the chirps is easily determined as well. All three chirps
have linear frequency modulation. Two chirps have decreasing frequency, one from
0.45 to 0.05 Hz and the other from 0.35 to -0.05 Hz. The third chirp has increasing
frequency from —0.5 to 0.5 Hz. The time-frequency representation can easily be
interpreted by someone with little signal analyzing experience.
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Figure 2: The spectrum of the multi-component signal

Margenau-Hill Spectrogram Distribution
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Figure 3: The Margenau-Hill spectrogram of the muiti-component signal
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2.2 Extracting a Signal from Noise

Due to the non-ideal conditions in collecting real data, signals will usually be noisy.
Detecting the signal through the noise is a very important procedure. Figure 4 shows a
signal hidden among complex white Gaussian noise. The signal was created by adding
noise to a generated chirp signal.

Real Part of Signal in Time

15} P

0.5

Megnitude
o
L b —

-0.5}

1.5+ 1

Figure 4: Time series of a signal in white Gaussian noise

From the time series it is difficult to detect the signal and nearly impossible to
determine its nature. The spectrum of the signal, shown in Figure 5, is difficult to read.
The target signal is indistinguishable from the noise.

Looking at a time-frequency representation of the signal in noise, it is clear that the
signal is a single chirp. In Figure 6, the signal can be seen arching across the
time-frequency plane. The spectrum of the signal does not provide an accurate method
of analyzing the signal. In order to properly identify the noisy target signal, a
time-frequency representation is needed.

Once the signal is identified, the noise can be filtered out. In this case, the transform is
run through a high pass filter. The filtered signal can then be time-averaged to convert
the signal to its one-dimensional frequency-domain representation. To convert this
frequency-domain signal back to the time-domain, the inverse Fourier transform is
taken. The filtered time-frequency representation and the recovered signal are shown in
Figure 7. The recovered signal is black and the original signal before noise was added
is grey. Using more accurately matched filters will increase the quality of the recovered

signal.
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Spectral Analysis

50 T T 7 —— T T T T

a5l .

E-Y
=
U

Il

123
O
T

I

«w
=]
T

|

N
k=
:

Energy Spectral Density
N
O

-
hd
=

i

-
=]

0 L L L . L L ) s .
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

Frequency (Mz)

Figure 5: The spectrum of a signal in white Gaussian noise

Gabor Representation

Time

Figure 6: A time-frequency representation of a signal in white Gaussian noise
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Fittered Gabor Representation
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Figure 7: Filtered time-frequency transform and time signals
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2.3

One of the applications of the time-frequency analysis is the detection of
noise-corrupted signals. In general, random noise tends to spread evenly across the
time and frequency domains. However, the signal usually concentrates in a relatively
short period or a narrow frequency band. If one converts the noise-corrupted signal to
the joint time-frequency domain, one can substantially improve the local or regional
Signal-to-Noise (SNR).

Signal Analysis

This section will show the usefulness of time-frequency analysis in analyzing real
aircraft data. The data had been collected by Pulse Doppler High Frequency Surface
Wave Radar, which used a 10-element linear receiving antenna array. The data had
been collected during the known presence of a target. The radar carrier frequency is
5.672 MHz and the pulse repetition frequency is 9.17762 Hz. The Fourier spectrum of
this signal is shown in Figure 8. The central portion of the spectrum, which comprises
two strong spectral spikes, is occupied by the sea-clutter. From the spectrum, it appears
that the target is present between 0.3 and 0.4 Hz. The spread of its spectrum tells us
very little about the target’s behavior.

The time-frequency representation immediately provides more information. Figure 9
shows the Gabor representation of the signal. From Figure 9, the target signal can be
seen increasing from slightly below 0.3 Hz to 0.4 Hz. The increase is non-uniform and
occurs between time bins 150 and 225. This signifies that the target is accelerating
moderately.

The original target signal can easily be recovered from the time-frequency
representation. First the transform is filtered to obtain only the target signal. The
filtered transform is then averaged over time to obtain the target signal in the
frequency-domain. The frequency of the signal is then converted to the time-domain by
an inverse Fourier transform. The filtered transform can be seen in Figure 10. The
recovered signal compared to the original sampled data can be seen in Figure 11. The
recovered signal is black and the original signal is grey.

Through the use of time-frequency representation, the analysis of the signal is greatly
simplified. The image of the transform allows for quick, visual analysis of the target
signal. Through the use of a filter, the original target signal can be easily recovered for
further signature and detection analysis. When the SNR is very low, as with many radar
signals, the joint time-frequency analysis might offer the only opportunity to detect the
signal of interest.
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Spectral Analysis
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Figure 8: Spectrum of noisy aircraft data

Gabor Representation
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Figure 9: The Gabor representation of the aircraft data
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Figure 10: Filtered Gabor representation
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Figure 11: Recovered target signal
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Comparison of Time-Frequency Distributions

There are many time-frequency distributions that have been developed. The transforms
we will be examining include linear, bilinear, adaptive, and averaged transforms. All
the time-frequency representations can be obtained from

Ce(t,v; f) = ///expj2”§(s‘t) f&,Nx(s+7/2)z*(s—7/2) exp %™V dedsdr
(1

where 7 is the signal, ¢ is the time, v is the frequeny and 7 is the running time. f(§,7)
is a two-dimensional function called the parameterization function or the kernel defined
along the £-axis and 7-axis. This class of distribution is known as the Cohen’s class
[5-6,11-12], which can be written as

@ Calt, v TI) = / / (s — t,€ — ) Wi(s, €)dsde
where
3 11t,) = [ [ £6m)exp 20540 dtay

is a two-dimensional Fourier transform of the kernel function f and Wy (s, €) is the
Wigner-Ville distribution. This class is significantly important since it includes a large
number of the existing time-frequency energy distributions. Moreover, this general
class can be used to facilitate the design of new time-frequency transform. There are a
number of alternative ways of writing the general class of time-frequency distributions
that are convenient and add considerable physical insight into the process. The
properties of a distribution are reflected by simple constraints on the kernel, by
examining the kernel, one can readily ascertain the properties of the distribution. This
allows one to pick and choose those kemnels that produce distributions with prescribed,
desirable properties. Moreover, the Wigner-Ville distribution is the element of the
Cohen’s class for which the function II is a double Dirac: II(t,v) = 6(t)6(v), i.e.,
f(&,7) = 1. For the Wigner-Ville distribution the kernel is one.

In this section we will begin with background information on the twelve transforms that
are being evaluated. This background provides a short description of each
time-frequency transform. Detailed descriptions, properties and derivations of the
transforms can be found from the references, particularly from [5-7,12-14].

The performance of the twelve transforms will then be compared through five
experimental radar data sets. These sets will range from returns with constant
frequency to returns with non-uniform frequency modulation. Each transform will then
be evaluated for its effectiveness in various situations.
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Gabor Representation

The Gabor representation performs an expansion on a time signal. The expansion is
represented as a finite set of time-shifted and frequency modulated signals. These
signals are localized in a time-frequency plane. The Gabor expansion can be calculated
with:

4 Gz[n,m;h] = i z[k]h* [k ~ n] exp~ 297k

k=-—00

where z is the signal, A is the synthesis window, m is the number of Gabor coefficients
in frequency and n is the number of Gabor coefficients in time. The Gabor
representation is a linear time-frequency representation [15-16].

Margenau-Hill Spectrogram

The Margenau-Hill spectrogram is defined as:

(5) MHSm(taV) ZR{K&LIFa:(ta V;Q)F::(taV; h)}

where Ko, = [ h(u)g*(u)du and Fy.(t,v; g) is the short-time Fourier transform of z.
h and g are the analysis windows. The Margenau-Hill spectrogram is a bilinear
time-frequency representation [17-18].

| Born-Jordan Distribution

The Born-Jordan distribution is a shift-invariant, kernel smoothed Wigner-Ville
distribution. The kernel function defined for equation (3) is

sin(wér)
TET

(6) [, =

which defines the Born-Jordan distribution as:

o0 1 t+|7'|/2

(7)  BJu(t,v) = / z(s +7/2)a*(s — 7/2)ds. exp™I™T dr

) _|;:|- t—|rl/2

where ¢ is the time, v is the frequency, z is the signal, and 7 is the running time. The
conjugation of z is *. The Born-Jordan distribution is a bilinear time-frequency
representation [11].
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3.4 Binomial Distribution

The binomial distribution is a shift-invariant, reduced interference distribution with a
kemel based on the binomial coefficients. The binomial distribution is defined as:

I7]

(o e]
— 1 1 QITI+1 * —j4
RIBNb) = 2 HU_Z_MW( R
(®

The binomial distribution is a bilinear time-frequency representation [19].

T=—00

3.5 Choi-Williams Distribution

The Choi-Williams distribution was developed as a method of finding the Wigner-Ville
distribution with the minimum amount of cross-term interference. The Choi-Williams
distribution is a shift-invariant transform. Essentially, the distribution is a smoothed
version of the Wigner-Ville distribution through a kemel function defined by

©) £(€7) = exp [— (’;iﬂ

The Choi-Williams distribution is then defined as

2 * o ~202(s—t)2 /72 Ty % T —i2muT
CWe(t,v) =4/— — exp z(s+=)x*(s—=)exp ™7™ dsdr
s —oo |71 2 2
(10)

The smoothing of the distribution is controlled by the constant 0. As ¢ — oo, the
Choi-Williams distribution will simplify converge to the Wigner-Ville distribution, as
the kernel goes to 1. The cross-terms are reduced with smaller values of 0. The
Choi-Williams distribution is a bilinear time-frequency representation [20].

3.6 Smoothed Wigner-Ville Distribution

The smoothed pseudo Wigner-Ville distribution is given as

SPWVy(t,v;g,h) = /°° h(T) /OO g(s—t)z(s+7/2)z*(s—7/2)ds exp™I2™7 dr
(11) - —

DRDC Ottawa TM 2003-090 13




3.7

3.8

3.9
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where h is the frequency smoothing window and g is the time smoothing window. The
smoothed Wigner-Ville distribution considered in this analysis is Gaussian “smoothed”.
Smoothing the Wigner-Ville distribution causes a loss of phase information but it can
eliminate to a certain degree the cross-term interference. The smoothed Wigner-Ville
distribution is a bilinear time-frequency representation [13-14].

Spectrogram Distribution

The spectrogram distribution is the square of the short-time Fourier transform. It is also
known as the energy density spectrum. An advantage of the spectrogram distribution is
that it yields all positive values. The spectrogram is given as

2
(12) SP.(t,v) = ‘/w(u)h*(u —t)exp I du

where h is the frequency smoothing window and A being normalized so as to be of unit
energy. The spectrogram distribution is a bilinear time-frequency representation
[6,13-14].

Zhao-Atlas-Marks Distribution

If we smooth the Born-Jordan distribution (section 3.3) along the frequency axis, we
obtain the Zaao-Atlas-Marks distribution. The distribution is defined as

fore] t+|‘r]/2 i

(13) ZAML(t,v) = / ’:h('r) z(s + 7/2)x*(s — 7/2)ds | exp~I¥™7 dr
—00 t—|r}/2

It is also known as the Cone-Shaped kemel distribution. The Zhao-Atlas-Marks

distribution is a bilinear time-frequency distribution [21].

Reassigned Gabor Representation

The reassigned time-frequency representation performs an averaging method upon their
base transform [13]. The average values are shifted to the center of gravity of the
energy contributions. Through the averaging and shifting, bilinearity of the transform is
lost. Time and frequency shift invariance is preserved and the energy reassignment
obeys the conservation of energy requirement. The reassigned Gabor representation at
point (', 1) is given by the following expression

(14) Sg)(t',lx’; h) = //Sm(t, v R)6(t — iz t,0))8(v — p(xst, v))didy
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where S, is the spectrogram time-frequency distribution. The analysis window h used
in this spectrogram is a Gassian window. The reassignment method moves each value
of the spectrogram computed at any point (¢, ~) to another point (t', "), which is the
center of gravity of the signal energy distribution around (¢, v). #(z; ¢, v) and D(z;t, v)
are defined as;

R =
and
w0 s (SR

As well, Tp(t) =t h(t) and Dp(t) = %(t). The windows T}, and Dy, defined above are
colinear in this case.

Reassigned Morlet Scalogram

The Morlet scalogram is the square of the wavelet transform using Morlet wavelets
[13]. The wavelet transform uses a windowing process different to the sliding window
used in the short-time Fourier transform. The wavelet transform uses narrow windows
at high frequencies and wide windows at low frequencies. The reassigned Morlet
scalogram can be calculated as:

a7 SO a5 = [ [ a250utams(e - ies )i’ - alast, ) g

where
A To(t, a; Th) T3 (t, a3 h)
8 tzit,a) =1 - ;
(18) (z3¢,0) §R{a |Ta(t, a; h)[?
and
sota) = 20 =0 o [Talt.ai Dr)T5 (L aih)
(19) D(z;t,a) = a(r;t,a)  a \S{ 2ma| Ty (¢, a; h)|?

with T, (t) = t h(t) and Dyp(t) = %(t), where h(t) is a Gassian window. SCz(t,a;h)
is the scalogram and T (¢, a; h) is the wavelet transform:
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3.12
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)ds

@ stk = Ttan) = | [
Reassigned Spectrogram Distribution

The reassigned spectrogram distribution performs an averaging and shifting method
upon the spectrogram distribution [13]. The reassigned spectrogram is defined as:

21 Sg,.r)(t',ul; h) = //Sz(t,u; h)§(t — E(z;t,v))8( — p(x;t,v))dtdy

where
) Fo(t,v; Tp) Fx(t,v; h)
-t =t —
(22) t(z;t,v) =t §R{ [Fu(t, v; b)|2
and
) Fy(t,v; DR)F(t,v; h)
. — Cx
(23) b(x;t,v) —‘V'*"g{ 2| Fp(t,v; h)[2

Sz(t,v; k) is the spectrogram distribution and Tx(t) = t h(t) and Dy (t) = 42(t).

Adaptive Energy Distribution

Adaptive energy distribution (AED) is a window-matched spectrogram, in which the
window matching is done with the use of generalized instantaneous parameters (GIP’s).
The GIP’s that are used for Gaussian window matching are the instantaneous time
variance (ITV), the instantaneous frequency variance (IFV), and the instantaneous
time-frequency (ITF) covariance [22].

8n?

828, (t,v) 1 8S:(t,v) 1 \?
v Sx(t,u)_< v Sz(t,v))

24) ITVia(t,v) = - [

(25) IFVi(t,v) = ——sR

s 828t v) 1 _<8Sz(t,u) 1 )2]

9t S,(t,v) Bt Sa(t,v)

DRDC Ottawa TM 2003-090



1 |88 (ty) 1 8S,(t,v) 8S4(t,v) 1 \?
TEat) = —e5® | 300 S ov o <Sz(t, u)>
(26)

where S;(t, v) specifies the spectrogram of the signal z(t) formed using the window
h(t). The subscript zh in equations (24)-(26) denotes that the signal z() has been
multiplied by the window h(t). The parameters for an optimal window are found by
matching the GIP’s of the signal-window spectrogram to those of the window-window
spectrogram. The optimal window parameters are updated iteratively until the desired
level of matching. At the n*® iteration they are calculated from

(87)2(ITF,p, (t, V) I FVy, (t,v)

@7) ont1(h V) = A T o, (G0)? 4 1
and

_ (8m)UTFo, (t,V)[F Vo, (t,v)
(28) Bri1(t,v) = (8m)2(ITFyp, (t,v))% +1

or if ITVp, (t,v) > IFV, (t,v) then

1
(29) ons1(t,v) = 8 - ITV,p, (t,v)
and
1
30 by)=
(30) B (t,v) (8m)2ITV,h,, (t, V)T Fy, (t,v)

where o and 8 are the parameters of the Gaussian window h(t) = exp~™(@~38)",
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Comparison of Transforms
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Comparison Signals

The signals in the following comparisons are experimental aircraft data. These signals
were collected by a High Frequency Pulse Doppler Surface Wave Radar, which used a
10-element linear receiving antenna array. The data was collected with a target present.
The radar carrier frequency is 5.672 MHz and the pulse repetition frequency is 9.17762
Hz. There are 5 trials and each trial corresponds to a block of 256 pulses. The detailed
description of the radar is given by [23,24].
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Figure 12: Spectrums of the five comparison signals

The Fourier spectrums of the five signals can be seen in Figure 12. In general, the
background against which targets must be detected by a radar is clutter and noise
(thermal and atmospheric). In the case of High Frequency Surface Wave Radar
(HFSWR) used over the ocean, the clutter is due to Bragg scattering from the surface of
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the ocean and is known as sea-clutter [23,24]. The sea-clutter components are
concentrated around zero-Doppler with two large spectral spikes around zero-Doppler
known as the Bragg lines. The spectral peak on the left hand side of Figure 12 is called
the receding Bragg line. The one on the right hand side is called the advancing Bragg
line. The Bragg lines appear as two very large targets. Nornally high speed aircraft
appears in the flat portion of the Doppler spectrum. However, when the aircraft travels
in a direction tangential to the radar beam, as in the cases of signals 2 and 3 in Figure
12, the aircraft target can appear in the velocity spectrum close to the zero value.

In Signal 1, the target is seen in the spectrum. The target is a spike at around —0.25 Hz.
In Signal 2, the target is difficult to detect. It is near the clutter, but it is spread and
difficult to distinguish from the clutter. In Signal 3, the target is spread widely from
approximately —0.3 to 0.2 Hz. Whether the frequency has been increasing, decreasing,
or oscillating is undeterminable. In Signal 4, the target is spread between —0.4 to -0.25
Hz. Whether the frequency has been increasing, decreasing, or oscillating is again
undeterminable. In Signal 5, the target is spread from 0.35 Hz to the clutter. Whether
the frequency has been increasing, decreasing, or oscillating is undeterminable.

These five signals were used to test the performance of 12 time-frequency transforms.
The parameters, such as smoothing length or kemel spread, of each time-frequency
representation were chosen to provide the best resolution of the target.

Constant Frequency

The first signal is a chirp with constant frequency modulation. This signal tests the
ability of the transforms to resolve constant frequency modulation. The transforms are
shown in Figure 13.

The target signal is perfectly resolved with the reassigned Gabor representation and the
reassigned Morlet scalogram. The target signal is nearly perfectly resolved in time and
frequency with all of the other transforms. Of these, the Choi-Williams distribution and
the binomial distribution provide the sharpest response. The reassigned spectrogram’s
image of the target is very grainy. The adaptive energy distribution and the Zhao-Atlas-
Marks distribution are slightly grainy when compared with the other transforms.

The smoothed Wigner-Ville distribution is the “noisiest" transform. The signal is very
faint compared to the clutter and the interference cross-term. The Choi-Williams
distribution is the second noisiest transform. While the interference cross-term is
reduced, it is still quite visible. The binomial distribution and the Born-Jordan
distribution have small smears between the signal and the clutter as the only remnants
of the cross-term. The remaining transforms are relatively noiseless.
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Non-Uniform Chirp near Clutter

The second signal is a chirp with non-uniform frequency modulation at normalized
frequencies close to 0 Hz. This signal tests the ability of the transforms to detect a
target signal close to the clutter. The transforms are shown in Figure 14.

The Born-Jordan distribution and the Zhao-Atlas-Marks distribution are unable to
clearly display the signal close to the clutter. The target signal is broken up and joined
with the clutter in various places.

The binomial distribution, the Choi-Williams distribution, and the smoothed Wigner-
Ville distribution display the target signal, but it is nearly indistinguishable from the
clutter.

The reassigned transforms provide perfect time and frequency resolution. The Gabor
representation, the spectrogram, and the adaptive energy distribution provide nearly
perfectly resolved signals in time and frequency, which are easily distinguishable from
the clutter. The Margenau-Hill spectrogram provides very good frequency resolution,
but its time resolution is not as good as the other transforms. The reassigned
spectrogram and the adaptive energy distribution are grainy compared to the other
transforms.

Chirp Through Clutter

The third signal contains a chirp with approximately linear frequency modulation. This
chirp passes directly “through" the clutter. This signal tests the ability of the transform
to resolve weak signals that pass through strong noisy clutter. The transforms are
shown in Figure 15.

The target signal is visible within all of the transforms. With the Zhao-Atlas Marks
distribution, the target is seen only as a disruption in the clutter. For the Born-Jordan
distribution, the target signal is broken up and smeared with the clutter.

The reassigned Gabor representation and the reassigned Morlet scalogram perfectly
resolve the target signal in time and frequency. The clutter has minimal effect on
displaying the target signal. The smoothed Wigner-Ville, the binomial distribution, the
Choi-Williams distribution, and the reassigned spectrogram also provide excellent
signal resolution in time and frequency. The cross-term interference is significant with
the binomial distribution, Choi-Williams distribution and the smoothed Wigner-Ville
distribution. Some parts of the target signal have been slightly masked by the
interference. The remaining transforms provide decent frequency resolution. The target
is smeared in the frequency-domain for these transforms, but it is visible and does not
suffer from interference. The Gabor representation and the spectrogram distribution
provide the best image of the target signal of these remaining transforms.
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4.5 Changing Signal

4.6

The fourth signal is a chirp that changes from a linear frequency modulation to a
constant modulation. This signal tests the ability to display a target signal that changes
its characteristic behavior. The transforms are shown in Figure 16.

The target return is perfectly resolved in time and frequency with the reassigned Gabor
representation and the reassigned Morlet scalogram. The constant portion of the signal
is faint, but is still visible for both transforms. The smoothed Wigner-Ville distribution,
the binomial distribution, the Choi-Williams distribution and the reassigned
spectrogram distribution provide a nearly perfectly resolved target signal in time and
frequency. The constant portion of the signal is faint with the reassigned spectrogram,
The Choi- Williams distribution and the smoothed Wigner-Ville distribution have
significant cross-term interference. The binomial distribution has a small cross-term
remaining.

The Zhao-Atlas-Marks distribution does not resolve the target clearly. The target is
smeared and grainy. The clutter with this distribution appears much larger than with the
other distributions.

The remaining transforms are a mix of decent and good resolution. For the linear
frequency modulation, the target signal is well resolved in time and frequency. The
constant portion is much sharper. The Gabor representation, the Margenau-Hill
spectrogram and the adaptive energy distribution provide the best images of the target
of these remaining transforms. The Bom-Jordan distribution has cross-term
interference approximately equal in magnitude to the target signal.

Small Frequency Modulation

The final signal contains a target signal with nearly linear frequency modulation. The
modulation begins by increasing non-uniformly. It then remains constant for a period,
and then increases again. This signal tests the ability to detect minor changes in the
behavior of a signal. The transforms are shown in Figure 17.

The reassigned Gabor representation and the reassigned Morlet scalogram display a
perfectly resolved target signal in both time and frequency. All three portions of the
target signal are clearly visible. The smoothed Wigner-Ville, the binomial, and the
Choi-Williams distributions provide nearly perfectly resolved target signals in time and
frequency. A strong interference cross-term is present with the smoothed Wigner-Ville
distribution. A smeared cross-term is still visible with the binomial distribution. A
strong, smeared cross-term is visible with the Choi-Williams distribution. These
distributions show the three portions of the signal clearly.

The Zhao-Atlas-Marks distribution displays a grainy target with poor frequency
resolution. The clutter appears strongest with this transform.
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The remaining transforms provide similar resolution of the target signal. While the
three portions of the signal are visible in all of the transforms, certain transforms do not
display them very well. The curves of the target signal are less pronounced with the
Gabor representation, the Margenau-Hill spectrogram, and the adaptive energy
distribution, which make the target return appear to be a linear chirp. The Born-Jordan
distribution displays the nature of the signal well, but it is grainy and smeared along the
frequency axis. The spectrogram and the reassigned spectrogram provide good time
and frequency resolution, but the reassigned spectrogram is very grainy.
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Figure 13: Time-frequency representations of a signal with constant frequency.
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Gabor Margenau-Hil Bom-Jordan

Binomial Choi-Williams Smoothed WV

Spectrogram Zhao-Atlas-Marks R. Gabor

R. Spectrogram Adaptive Energy Distr.
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Time Time Time

Figure 14: Time-frequency representations of a signal near clutter.
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Figure 15: Time-frequency representations of a signal through clutter.
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Gabor Margenau-Hill Bom-Jordan
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Figure 16: Time-frequency representations of the changing signal.
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» Figure 17: Time-frequency representation of a signal with small frequency modulation.
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Gabor Representation

The Gabor representation provides excellent resolution in time and frequency for all
signals except those with a large chirp. Signals close to the clutter are not affected by
the clutter. No cross-term interference is present in the Gabor representation. The
Gabor representation has difficulty in sharply resolving chirp signals. The signal is
smeared for large frequency changes. For cases where frequency changes are small, the
Gabor representation is a good transform.

Margenau-Hill Spectrogram

The Margenau-Hill spectrogram provides good resolution in time and frequency for all
signals except the chirp through the clutter. For signals close to the clutter, the
transform loose some time resolution. This transform has no cross-term interference.
For cases where frequency changes are small, the Margenau-Hill spectrogram is a good
transform.

Born-Jordan Distribution

The Born-Jordan distribution performs well for signals with constant frequency. The
signal is warped and broken up for signals close to the clutter. The distribution displays
smeared cross-term interference, although it is generally weaker than the signal. For
signals with frequency modulation, the Born-Jordan distribution does not provide a
smooth target image. This transform is not ideal due to its inability to resolve targets
near clutter and its poor resolution with chirp signals.

Binomial Distribution

The binomial distribution provides good resolution in time and frequency for signals of
all types. The signal is still visible close to clutter, although cross-term interference
impedes easy signal detection. Smeared cross-term interference is present in the
binomial distribution. Its magnitude ranges from weaker than the signal to stronger
than the signal depending on the proximity of the signal to the clutter. For cases where
the cross-term interference is not important and the target is not close to the clutter, the
binomial distribution is a good transform.

Choi-Williams Distribution

The Choi-Williams distribution provides excellent resolution in time and frequency for
signals of all types. Signals close to clutter are difficult to detect due to interference.
Smeared cross-term interference is present in the Choi-Williams distribution, with a
magnitude ranging from slightly less to greater than the magnitude of the signal. For
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cases where the cross-term interference is not important and the target is not close to
the clutter, the Choi-Williams distribution is a good transform.

Smoothed Wigner-Ville Distribution

The smoothed Wigner-Ville distribution provides excellent time and frequency
resolution in all cases. Signals close to the clutter are visible but cross-term interference
makes detection difficult. The cross-term interference is prominent in all signals, with
large cross-terms with magnitudes greater than the signal. For signals that are not close
to the clutter and cross-terms are not important, the smoothed Wigner-Ville distribution
1s an excellent transform.

Spectrogram Distribution

The spectrogram distribution provides good resolution in cases of constant frequency
and small frequency changes. Signals close to the clutter show no interference. There is
no cross-term interference present in this transform. For signals that have small
frequency changes, the spectrogram distribution is a good transform.

Zhao-Atlas-Marks Distribution

The Zhao-Atlas-Marks distribution provides good resolution in the case of a constant
frequency. Signals close to the clutter are broken up and combined with the clutter in
some places. Smeared cross-term interference is visible with this transform. For signals
with changing frequency, the Zhao-Atlas-Marks distribution displays ghosting around
the signal. The ghosting increases when the rate of frequency change increases. The
Zhao-Atlas-Marks is not an ideal transform due to its poor performance with signals
close to the clutter and signals with changing frequency.

Reassigned Gabor Representation

The reassigned Gabor representation provides excellent time and frequency resolution
in all cases. The signal crossing the clutter is not affected by the clutter. Signals close to
the clutter are broken up and joined with the clutter in some places. There is no
cross-term interference in this transform. For signals that are not close to the clutter, the’
reassigned Gabor representation is an excellent transform.

5.10 Reassigned Morlet Scalogram

The reassigned Morlet scalogram provides excellent time and frequency resolution in
all cases. Signals close to the clutter are not affected by the clutter. There is no
cross-term interference in this transform. The reassigned Morlet scalogram is an
excellent transform.
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5.11 Reassigned Spectrogram Distribution

The reassigned spectrogram distribution provides very good time and frequency
resolution in all cases. Signals close to the clutter are not affected by the clutter. There
is no cross-term interference in this transform. The image produced by the reassigned
spectrogram distribution is not smooth. The reassigned spectrogram distribution is a
very good transform.

5.12 Adaptive Energy Distribution

The adaptive energy distribution performs quite well for signals with constant
frequency and small frequency changes. It avoids interference when the target signal is
close to or passing through clutter. The adaptive energy distribution also does not
display any cross-term interference. The transform has poor frequency resolution for
signals with larger frequency changes. For cases with small or no frequency
modulation, the adaptive energy distribution is a good transform.
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6. Overall Evaluation

For the best possible resolution, the reassigned transforms should be used. The
averaging algorithm guarantees signals perfectly localized in frequency. The only
downside to these transforms is the time involved for their calculation. Before
reassignment, the base transform must be performed. The reassignment can increase
the total time for calculation by a factor of two or more.

In cases where resolution is not the main concern, the Gabor representation, the
Margenau-Hill spectrogram, and the spectrogram distribution are good transforms to
use. They are relatively quick compared to the other transforms. While they do not
provide great resolution in cases of large frequency modulation, they accurately display
the signal.

The binomial distribution, the Choi-Williams distribution, and the smoothed Wigner-
Ville distribution provide very good resolution and good speed at the expense of some
interference cross-terms. For target signals away from the clutter, the target and the
cross-term are easy to identify. If the target is close to the clutter, the cross-terms make
detection of the signal difficult.
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Joint time-frequency representations provide excellent ways of analyzing
non-stationary signals. Their ability to display frequencies that change in time is an
improvement over Fourier analysis of signals. This study also shows that
time-frequency transforms provide additional insight into the analysis, interpretation,
and processing of radar signals that are sometimes superior to what is achievable in the
traditional time or frequency domain alone.

With the Fourier spectrum, multi-component signals were difficult to detect, much less
analyze. With time-frequency representations, the components of a signal were
immediately visible due to the ability to show time-varying frequency.

Noise in signals greatly hampered the Fourier spectrum’s ability to detect and analyze
signals. While noise affected target detection with the time-frequency analysis, its
effect was much less. The noise could be filtered out relatively easily, which allowed
for the recovery of the target signal.

The ability of time-frequency analysis to analyze signals is demonstrated using a real
signal from HF radar. The process from identification to recovery of the target signal
was shown.

Several time-frequency transforms have been compared and evaluated using
experimental HF radar data for detecting maneuvering air targets in sea-clutter
environment. Each set of data tested the ability of the transforms to resolve different
types of signals. While each transform had their own strengths and weaknesses, several
transforms stood out for their flexibility and target image resolution.

From the data used in this report, the reassigned transforms provided the best signal
resolution at the expense of computational time. The Gabor representation, the
Margenau-Hill spectrogram and spectrogram distribution provided a quick alternative
for simple analysis at the expense of resolution. The binomial distribution, the
Choi-Williams distribution, and the smoothed Wigner-Ville provided a good balance of
speed and resolution at the expense of some cross-term interference. These results
demonstrated that joint time-frequency analysis techniques provide an effective method
of detecting maneuvering air targets in heavily cluttered regions.
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