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Abstract 
To explore different points in the design space of an em- 

bedded system, it is important to be able to compose a design 
from reusable design components, and then map the resulting 
system description onto several possible target architectures 
with different partitionings of functionality. Today's specifi- 
cation models support composition styles that work well for 
data communication but not for control communication be- 
tween concurrent processes to be mapped onto a distributed 
architecture. We propose a new retargetable system specifica- 
tion model that combines the best properties of process-based 
and hierarchical-FSM-based methods for modular composi- 
tion of data and control. The model lends itself to automated 
synthesis of the run-time system for coordinating tasks on 
different processors in the system. The model and synthe- 
sis method are illustrated with several examples of embedded 
systems. 

1   Introduction 
Embedded systems are increasingly being implemented 

as distributed systems with heterogeneous processors. Dis- 
tributed architectures are motivated by applications that must 
interact with multiple elements of the environment concur- 
rently. For example, typical automobiles are now controlled 
by a distributed system that coordinates everything from the 
braking system and engine to the dashboard and climate con- 
trol. These systerns also tend to be heterogeneous, so that de- 
signers have more flexibility in optimizing the design to their 
specific objectives of cost, size, power, and performance. It 
is often imperative that designers explore many points in the 
design space, but at the same time, they are given less time to 
complete their designs. To meet these conflicting goals, suc- 
cessful designers must maximi7,e design reuse and work at the 
highest possible level of abstraction. 
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Today, most designs are written in implementation lan- 
guages such as C, Ada-95 (for avionic or military applica- 
tions), or Java. These languages allow reuse through a pro- 
cedural interface, and object-oriented languages fiulher en- 
able specialization and extension through inheritance. They 
work well for a wide variety of algorithmic descriptions on a 
single processor. However, they become very difficult to man- 
age when several concurrent processes must interact with each 
other on a wide variety of target architectures. Programs that 
use threads are often very difficult to debug and do not behave 
consistently on different platforms. The run-time system also 
consumes high overhead that can be prohibitive on low-cost 
embedded processors. Furthermore, today's methodology re- 
lies heavily on legacy code and components that severely limit 
the optimizations a designer can explore. 

What makes the development of a retargetable specification 
method difficuh is the underlying dichotomy between data 
and control flow. Virtually all practical embedded systems 
contain both control and data aspects of behavior, and a good 
model for one aspect is awkward for the other. The most suc- 
cessful methods so far have taken a domain specific approach 
by fixing their assumptions about data and control. These 
models can be roughly divided into communicating processes 
and hierarchical state machines. We propose a new model that 
combines the best features of the two approaches. 

We envision a design style where the designer composes a 
behavioral specification with reusable modules, and uses auto- 
mated tools to map it onto several target architectures. These 
building blocks may be designed either in-house or be intel- 
lectual property. To adapt reusable components to the specific 
application, we propose a new way of customizing the be- 
havior by control composition, instead of modifying individ- 
ual components. By deriving a complete implementation of 
the system on the target architecture, designers would be able 
to closely evaluate not only the mix of components and their 
communication topology and protocols, but also the alloca- 
tion of system tasks to different processors. Such tools would 
support systems with arbitrary topologies that use a rich set of 
components and interfaces. 
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2 Motivating examples 
Embedded systems are very diverse. We have selected two 

examples with different features that will allow us to illustrate 
our specification model. 
2.1 Tessellator robot 

The first example is a simplified version of the space shut- 
tle's heat-shield tile tessellator robot. It can be controlled ei- 
ther manually with a joystick or automatically to inspect and 
replace tiles on the hull of the spacecraft. The mode of op- 
eration is selected by a toggle switch, and defaults to manual 
mode. For safety reasons, the robot moves only when a hu- 
man operator is present and holding the deadman switch on 
the joystick. The robot must always halt whenever the switch 
is released. The joystick controls the heading and acceleration 
of the robot. In autonomous mode, the robot uses its sonar 
and bumper sensor for maneuvering. It moves forward nor- 
mally, but if the sonar detects an obstacle, then the robot turns 
45 degrees and continues forward. If its bumper is hit then 
the robot goes in reverse until two seconds after the bumper 
has been released continuously, and then turns 45 degrees and 
moves forward in the same manner as the sonar's reaction. 
The bumper overrides the sonar, switching from auto to man- 
ual mode overrides both, and releasing the deadman button 
stops all activities. 
2.2 controller for a human-powered airplane 

The RAVEN human-powered airplane [11] includes an em- 
bedded system to control its rudder and elevators. It runs 
one of several control algorithms based on user commands 
and regularly samples sensor values. The flight data can be 
logged in a flash memory module and transfered over a se- 
rial line for analysis after landing. The logger has two tim- 
ing resolution options. The LCD-based user interface, which 
has seven command screens, is the most complex part of the 
design because it interacts with all other components in the 
system. Some commands are local to the user interface {e.g. 
changing screens, editing parameters) while others affect the 
system's modes of operation. 

3 Related work 
Existing models offer ways of composing modules to form 

a complete design. The ways existing models organize behav- 
ior can be divided into two styles: functional encapsulation 
and temporal (state) encapsulation. 
3.1   functional encapsulation 

Most systems are composed in a style we call functional 
encapsulation, as exemplified by process based models. Each 
process or module is an encapsulation of logically related 
functionality. Processes are a natural way of organizing de- 
sign components, and they can be composed by message pass- 
ing or signaling. Examples include synchronous dataflow 
(SDF) and dynamic dataflow (DDF) [6j, CSP (strictly mes- 
sage passing) [9], and many concurrent FSM variants like 
CFSM [1] and SDL [12]. For design space exploration, pro- 
cesses define the granularity for partitioning. A designer can 

experiment with different assignments of processes to proces- 
sors, and tools can help with system integration by synthesiz- 
ing interprocessor communication [10]. Process models pro- 
mote a modular design style - as long as the composition is 
limited to data. The modularity breaks down for control com- 
position. 

Data is concrete, while control is more abstract and can 
have many implementations: implicitly with the program 
counter or explicitly encoded and manipulated as data. Cur- 
rently, control must be encoded as a command or a named 
signal in order to be communicated, and the receiver must be 
ready to interpret the command and change its control flow 
accordingly. This has been done successfully for specific do- 
mains, such as the subsumption architecture [4], where pro- 
cesses in a chain either send their own commands to the lower 
level or pass commands from above when overridden. Outside 
the specific domain, though, the problems with this approach 
are that data primitives are too low level for control and con- 
trol is handled in an ad hoc manner by user code. 

Control composition inherently requires processes to make 
use of a common set of states. To be modular, each pro- 
cess must maintain its own copy of the shared states. Each 
process is burdened with the responsibility of ensuring the 
coherence of their replicated states. Existing functional en- 
capsulation models lack high-level primitives for expressing 
the state coherence requirements on the processes. Instead, 
state-coherence is handled imperatively in terms of transmit- 
ting state changes, interpreting the commands, and actually 
making those changes. Such low level code is embedded and 
scattered throughout each process and can be a major source 
of error. 
3.2   temporal encapsulation 

An alternative to functional encapsulation is to focus on 
the composition of control based on hierarchical state ma- 
chines, as exemplified by hierarchical state machine models 
like StateCharts [7] and scoped watchdogs like Esterel [2]. 
Instead of embedding states in a process (in terms of the pro- 
gram counter or in state variables), explicit states and tran- 
sitions are used to structure the behavior. Explicit states de- 
scribe the behavior of the entire system and can be related 
in several ways: as parent/child, mutually exclusive, or par- 
allel. Control composition by temporal encapsulation can be 
more modular than functional encapsulation because neither 
the preempting nor preempted state needs to know about each 
other, and different compositions do not require modifications 
to the behavior by explicitly anticipating the transition com- 
mand and interpreting it. Also, there is no state cohwence 
problem because there is only one set of states. 

Temporal encapsulation can be difficult to partition for 
mapping onto a distributed architecture. It breaks process 
modularity because logically related functionality must be 
scattered in different states. Also, these models rely on the 
perfect synchrony hypothesis for control composition, but it 
is impractical for many distributed systems.   As a result, 

89 



languages that support temporal encapsulation also support 
process-like, parallel composition style using choice and sig- 
naling statements that use asynchronous composition at the 
system level, such as CRP [3] and ModuleCharts [8]. How- 
ever, these are effectively processes without control modular- 
ity. 

4   The modal process model 
We propose a model that provides primitives for compos- 

ing control independently of the communication semantics. 
The unit of composition is a modal process. It encapsulates 
functionality and defines the granularity of partitioning. Its 
behavior is organized into modes. Modes can be viewed as 
states of an incompletely specified state machine and serve as 
the interface for modular control composition. A distinguish- 
ing feature is that modes are managed by the run-time system 
code that we synthesize, according to the coherence require- 
ments on the modes specified explicitly, rather than being em- 
bedded in user code and tied to the message passing seman- 
tics. By separating the specific synchronization requirements 
of the application from reusable behavior, this approach not 
only helps eliminating a whole class of bookkeeping errors 
related to state coherence, but also enhance module reusabil- 
ity in different applications and over different architectures. 

4.1    modal processes 
In our terminology, a process is a container of event handler 

routines. It may be derived from another model that assumes 
shared memory, message passing, event-driven, time-driven, 
dataflow, etc. In general, events may include I/O, interprocess 
communication, timing, dataflow, and mode transitions. We 
assume nonblocking communication, but the synchrony can 
be parameterized. 

A modal process is a process with several modes, where 
a mode is, informally, a way of handling events. Each mode 
defines a collection of handlers to use while the mode is ac- 
tive. Different modes may pick different handlers to handle 
an event or ignore it. Modes allow a modal process to have 
several possible behaviors. 

Although modes are similar to states, there are several dif- 
ferences. A traditional FSM has a transition function 5 that 
maps a state g,- 6 Q to the next state qt+i, or S : Q x I ^ Q. 
The state space of a modal process is a subset of the power- 
set of its modes, that is, Q C 2^. When a handler finishes 
execution, it may return its transition request {A,D). where 
A C M is a set of modes to activate and D C M is a set 
to deactivate, and An D — 9. The requests firom different 
handlers are merged. 

For syntactic convenience, designer do not need to actually 
specify all of the modes to activate and deactivate on every 
transition, but they can rely on mode constraints to automat- 
ically activate or deactivate a set of modes. In fact, hierar- 
chical state machines are a special case where two states can 
be mutually exclusive or related as parent and child. Mutual 
exclusion is an automatic deactivation of the current mode on 
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Figure 1: Control composition of the robot specification. 

activating the new mode. A parent is automatically activated 
on activating a child, and a child is automatically deactivated 
on deactivating its parent. Unlike a state machine, a modal 
process is incompletely specified: it defines the maximum al- 
lowed state space and the minimum transition space. In fact, 
it may define no transitions at all. Control composition will 
restrict the state space and expand the transition space, as de- 
scribed in the next subsection. 

Robot example 

The robot has five processes: Joystick, Pilot, Bumper, Sonar, 
and Wheels (Fig. 1). Joystick has two modes, D for dead- 
man and E for enabled. The Pilot process has two modes: M 
for manual and A for auto pilot. The Sonar process has two 
modes: Ping to pulse the sonar every two seconds and Turn 
for turning after obstacle detection. The Bumper process has 
four modes: off, on when the bumper is hit, wait when waiting 
for two more seconds, and turn like the Sonar. The Wheels 
process has modes for going forward, reverse, turning, and 
halt, but it does not define any transitions of its own. 

RAVEN example 

This system has five processes. The logger is capable of log- 
ging fast LF, slow LS, uploading data UL, or being off. The 
altimeter can measure air altitude or perform calibration. The 
control algorithm process has two modes for manual (M) or 
autopilot (A). The user interface process has two sets of mutu- 
ally exclusive modes. One set is for setting the logging modes, 
and the other set for plane operations: manual, autopilot, up- 
load logger data, calibrate, analog diagnostics, and digital di- 
agnostics. The ground sensor detects whether the plane is in 
the air or on the ground. 

4.2   system-level states 
Control composition is done by binding modes to common 

states that can be organized hierarchically. A system-level 
control state, or simply state for short, is a boolean variable. 
When one process requests to activate a mode, it also causes 
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Figure 2: Control composition of the RAVEN human powered 
airplane controller. 

other processes to activate their modes that are bound to the 
same state. A transition consists of an exit phase followed by 
an entry phase. A process may choose to be notified of the 
transition with a special internal mode-exit event to give it a 
chance to clean up, or a mode-entry event to set up. 

Robot example 

(Fig. 1) The system's state hierarchy has two states at the 
top level for deadman and enabled. In enabled, we have 
two nested states manual and auto. The auto state has three 
nested states: fonward, turning, and reverse. The reverse 
state has two modes for bumped and wait. Note that Bumper 
and Wheels processes do not fully specify the transitions be- 
tween their own modes; instead, they acquire some transitions 
through binding. By binding Bumper's turn mode to the same 
state as Sonar's turn mode, Bumper effectively reuses Sonar's 
behavior, which will take it back to off mode when Sonar re- 
turns to ping. The Wheels process has four behaviors but does 
not decide when to transition between them. 

The binding between states and modes is many-to-many 
and may be asymmetric. A state activates all modes that are 
bound to it. On the other hand, a mode can be bound to several 
states, and any of them can activate the mode. 

4.3   synchrony 
Synchrony is the characterization of their relative progress 

or correlation to the events in the system. Different semantics 
can be obtained by changing the synchronization behavior. 

Trnnsition-synchronotis .semantics means that all parallel 
state machines make progress in lock-step, such as Esterel. 
Event-synchronous semantics, used by discrete event sys- 
tems, means that all parallel state machines see the same set 
of events simultaneously, but it makes no restrictions on how 

many transitions each state machine can make within a time 
step. It is possible to combine the two. Synchronous composi- 
tion can yield deterministic and predictable implementations, 
though they may be impractical for distributed architectures. 

In asynchronous composition, each process can make ar- 
bitrary amount of progress asynchronously to other processes. 
Mode transitions are asynchronous to the communication. 
A special case is communication synchronous, where pro- 
cesses make progress asynchronously until they need to com- 
municate. Asynchronous semantics is more realistic for dis- 
tributed systems, and in fact synchronous models have come 
to rely on asynchronous compositions at the system level. For 
example, CRP [3] is essentially a set of locally-synchronous 
Esterel components that are composed asynchronously as 
CSP processes at the system level. StateMate [8] offers sim- 
ilar composition: locally-synchronous StateCharts compo- 
nents are connected together asynchronously in the Module- 
Charts. 

Mode synchronous semantics requires different processes 
to synchronize on a mode change if their modes are affected, 
so that the composed system behaves in a coherent man- 
ner. This is particularly useful for distributed systems be- 
cause most of the time the systems make independent but co- 
herent progress by running in the same mode context with- 
out synchronization. The occasional synchronizations en- 
sure that the entire system {or subsystem) is in a coherent 
new context before it is allowed to make further progress. 
In data-synchronous semantics, mode changes happen syn- 
chronously to dataflow. It allows the system to operate in a 
logically coherent manner by pipeHning mode changes along 
dataflow, thereby relaxing the instantaneous state-coherence 
requirement and eliminating the need for additional synchro- 
nization. 

Examples 

Although both the robot and RAVEN are control oriented and 
have similar auto-pilot and manual modes, they have different 
synchronization requirements. The robot can be implemented 
correctly with asynchronous composition, while the RAVEN 
needs to be at least data-synchronous. On the robot, the sonar 
and bumper processes are not synchronized with each other 
or with the joystick, but the only requirement is respose time. 
The RAVEN, however, operates on streams of sensor/actuator 
values from the user interface to the control algorithm and 
the logger, similar to SDF. Theoretically the mode can change 
every iteration, but an implementation only needs to ensure 
that each process operates on the data in consistent modes. A 
rendezvous type of synchronization would be unnecessarily 
costly and even preclude pipelined implementations. 
4.4   timing constraints 

Another use of modes is to scope timing constraints. A 
system may have different sets of timing requirements de- 
pending on what mode it is in.   Event detection may im- 
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pose polling constraints in one mode, but in other modes, the 
event may be ignored and therefore need not be dispatched 
at all. Event sensitivity information can be extracted from 
the specification at compile time and is used by the real-time 
scheduler to determine the work load for each mode config- 
uration. Handlers may be constrained by rate or related by 
precedence, with minimum or maximum separation require- 
ments between the times of two observable events. Our modal 
process model is not tied to any particular scheduling model, 
and most types of timing constraints can be specified, as long 
as the available schedulers support them. These include both 
priority-driven schedulers, such as EDF and rate monotonic, 
and static scheduling techniques that can meet more complex 
intramodal and intermodal constraints [5]. 

5   Synthesis 
We implement the modal process abstraction with a mix of 

compile-time transformations and synthesized run-time sup- 
port. The first step partitions the hierarchical states of the sys- 
tem onto the processors and determines interprocessor com- 
munication needed for mode transitions. We also synthesize 
mode managers as run-time support for maintaining state co- 
herence among modal processes that can reside on different 
processors. 
5.1 representation 

The system states are represented as a graph H = (S, E, r). 
5 is the set of vertices that represent states. E C C x S x S 
is the set of edges that constrain the activation. C is the set of 
activation relations {AA, AD, DA, DD}; (AA, a, b) requires 
that when a is activated (denoted a t), b must be activated, too 
(i.e., a t=i> b t), while (AD, a, b) requires b to be deactivated 
instead, namely a "f"^ b J,. Similarly, (DA, a, b) means a |=> 
6 t and (DD, a, 6) is a \.=>- b 4-- Finally, r £ S is the root 
(initial) state. 

A modal process Wj € IT is (M,-,Tj), where Mi is the set 
of modes and Ti C M,- x M,- is the set of transitions between 
modes. We define M = Mi U M2 U .. .M\xi\. The binding 
between the modes and the states is a set of relations B C 
Sx MUM X S. 

A partitioning is a function that maps a process to its pro- 
cessor number [l,n]. Because a mode is contained by a pro- 
cess, we overload the function P to map a mode to its proces- 
sor ID, without ambiguities, namely P : M —^[l,n]. 

5.2 state partitioning 
State partitioning involves projecting the system states onto 

the individual processors. Some replication may be required, 
although it is not always necessary to duplicate those states 
that have no binding to any of the modes on the given proces- 
sor except those required structurally. In addition to projecting 
the states, this procedure also returns Ec, the interprocessor 
communication edges for mode transitions. The algorithm is 
shown in Fig. 3. 

We make a copy of a state if one of the modes on the proces- 
sor has a binding to that state or its descendent. The resulting 

PartitionState(// = (5, E,r),P:M-^ [1, n], 
BCS xMVM xS){ 

II copy states and edges for processor i 
for (z = 1 to n) { 

II project states onto processor i 
S-:={s'|V(s,m,),(mi,s)e5} 
E' :={{€,s\f)\{c,s,t)e E} 

} 
// edges for interprocessor mode transitions 
Ec := {} 
for (i = 1 to n, j = 1 to n, j 9^ i) { 

Ec :=EcU{{c',s\iP)\{c,s\t') e T', where 
s ^ u and t) -> < are the shortest paths 
andc = c" ■ c',(c",s,u) 

} 
retam H\ .. H", Ec 

} 

Figure 3: State partitioning algorithm. 

ffgaij-iEaMi 
QS3^ l'.1iSl:CII3^ 

Bumper 

Figure 4: Control communication of the robot as partitioned 
onto three processors 

graph is necessarily connected as a tree. The edges E' arc ex- 
actly those needed to connect the replicated states locally. The 
second part of the procedure builds the set of edges Ec for in- 
terprocessor mode transitions. It projects the local transition 
path (c, s',f) to a remote host j to obtain (c', u^,v^). If the 
projected path is empty then the mode change has no effect 
on that processor, and therefore no communication is neces- 
sary. The projection can be obtained by taking the transitive 
closiu-es of the paths. The activation operators can compose 
as follows: 

AA AD DA DD 
AA AA AD 0 0 
AD 0 0 AA AD 
DA DA DD 0 0 
DD 0 0 DA DD 
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Robot example 

Consider partitioning the Robot onto three processors. To 
project the (manual, enabled, auto) path on the bumper's pro- 
cessor, we add the edges (manual\ auto^) and (manual\ 
auto^) since they are the terminal vertices. On the other hand, 
the path (auto, enabled, manual) terminates at enabled on 
processors 2 and 3, because they do not have the replicated 
manual state. Paths like (wait, reverse, bump) yield empty 
projections on processor 1 and therefore no edges are added 
from processor 2 to 1. 
5.3   mode manager 

The mode manager is synthesized as part of the run-time 
support for modal processes. It maintains the state hierarchy 
on its own processor and services the mode change requests. 
When an event is dispatched, the mode manager calls those 
handlers that are mapped by the local processes' modes. The 
order in which these handlers are called can be defined stati- 
cally by the user or by the scheduling algorithm. It is possible 
that one or more handlers can request a mode transition, and 
they are serviced and resolved after all pending handlers are 
called. Local transitions can be implemented with either static 
path enumeration or dynamic path generation. The tradeoffs 
are determinism vs. code size. 

By default, interprocess mode transitions assume mode- 
synchronous semantics, which is implemented with a three- 
phase synchronization. After the sender communicates the 
mode change, all receivers must acknowledge the completion 
of the exit phase. A receiver may also have a pending tran- 
sition, and may need to either override the sender's request 
with a NACK or nullify its own transition and ACK. Transi- 
tion conflicts can be resolved in a number of ways, and we 
currently support static priorities. For example, for a control- 
synchronous version of the robot, suppose the sonar tries to 
transition from pong to ping at the same time the bumper 
wants to go to bumped. This can be statically resolved in favor 
of the bumper. 

If a sender receives a NACK or decides to nullify its pend- 
ing transition, it continues collecting ACKs and sends a con- 
solidated ACK to the receiver. If a sender receives all of the 
ACKs (statically determined count) then it sends out a "go- 
ahead" event that tells all receivers to proceed with the entry 
phase of the transition. This may be very strict but it can be 
used to implement the semantics of Esterel and StateCharts. 

6   Conclusions 
We propose the modal process model for capturing control 

and data behavior with real-time constraints by composing 
modal processes and automatically synthesizing run-time sup- 
port software. Modes provide not only an interface for control 
composition between processes, but also a way of systemat- 
ically scoping timing constraints. By enforcing a separation 
between system states and process modes, this model com- 
bines the data modularity of processes with the control modu- 
larity of hierarchical state machines. The decoupling between 

control and data enhances reuse and allows us to automate the 
most error prone aspects of distributed systems implementa- 
tion, namely, synchronization and real-time. We believe that 
this approach will lead to a higher level of retargetability for 
distributed embedded systems by enabling the designer to bet- 
ter explore the design space. We are currently developing 
analysis tools to help the designer determine the best choice 
of synchronization mechanism and integrate hardware com- 
ponents into the modal process model. 
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