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1.   Introduction 

Despite the purported cost effectiveness of workstation clusters, scientists and engineers continue 
to run large-scale, computationally intensive applications on high-end multiprocessor 
architectures. Shared memory architectures are preferred due to the relative ease of the 
sequential-to-parallel transformation, increasing scalability of these architectures, and their fast 
interprocessor communication. Scientists and engineers have been taking on the challenge of 
converting their applications into explicitly parallel programs to obtain the coarse-grain 
parallelism they desire. They rely on the compiler to hopefully identify and exploit the 
uniprocessor performance gains for each node processor and also to maintain a "correct" 
program execution based on their expectations of the shared memory behavior similar to that of a 
uniprocessor undertaking concurrent execution of multiple tasks. Unfortunately, potential 
performance gains are typically sacrificed, with much of the degradation due to the memory 
consistency model and the compiler's interactions with the hardware memory consistency model. 
Although optimized sequential code can outperform unoptimized compiled code by as much as 
the performance difference between two generations of processor hardware (Sarkar, 1997), 
classical compiler analysis and optimizations (Aho et al., 1986; Muchnick, 1997) were 
developed in the context of sequential programs designed to run on uniprocessors. These 
techniques do not account for updates to shared variables in threads other than the thread being 
analyzed. Thus, these compiler optimizations are typically turned off in order to avoid 
generating a program that does not behave as the user expects, given the underlying hardware 
memory consistency model. Unfortunately, performance degradation by turning off 
optimizations can be significant. 

In this report, a novel software technique is presented that provides the capability to guarantee a 
different memory consistency model for different variables within the same shared memory 
parallel program. The key insight is that programmers are cognizant of which variables can 
tolerate old values and which variables need to be accessed in a way that all processors always 
see the most recentiy stored value. The first set of variables is referred to as nonsecure and the 
second set as secure. The set of secure variables typically does not include the entire variable 
set of an application. 

In this approach, programmers add simple secure and nonsecure annotations to shared variable 
declarations to indicate tiieir expectations, which are automatically propagated to the statements 
manipulating shared variables. A relaxed concurrent static single assignment (SSA) form of the 
program (Lee and Padua, 2000) is constructed so existing compiler optimization techniques for 
expUcitiy parallel, shared memory programs can be applied without modification. Sequential 
consistency is enforced selectively by the placement of fence instiuctions to ensure that the most 
recent value of a secure variable is always read. In other cases, the default is location 



consistency (LC), which is based on the partial order execution semantics of parallel programs 
(Gao and Sarkar, 1994). The selective enforcement of sequential or location consistency (LC) is 
complicated by the interaction between the manipulation of secure and nonsecure variables 
throughout the program. The concept of program slicing is applied for parallel programs to 
identify and address these interactions. 

To date, this is the first software technique to enable multiple memory consistency models to be 
applied within the same program. Previous research advocated the use of a single model for a 
given compiler/architecture combination. Parallel programmers should have the option to 
specify whether they want the semantics of a particular consistency model for different parts of a 
program based on their knowledge of their algorithm and data structures. The benefit is relieving 
the programmer of understanding memory consistency models, limiting the overhead of 
sequential consistency to those parts of the program related to the programmer's expectations of 
sequential consistency, and tailoring memory consistency modeling to individual programs 
automatically. Allowing this flexibility could significantly improve performance at run time. 

The remainder of the report is organized as follows: Section 2 provides background on 
characteristics of applications and their parallelization, shared memory architectures, and 
memory consistency issues. Section 3 illustrates the uniprocessor optimization problem within a 
parallel programming environment and overviews previous work on this problem. Section 4 
presents the technique for a programmer-controlled memory consistency model. Section 5 
summarizes conclusions and future work. 

2.   Background 

2.1    Characteristics of Parallel Applications 

This research focuses on the loop-level and single program, multiple data (SPMD) shared 
memory parallel programming paradigms specifically targeted by OpenMP. For many shared 
memory programs, ehminating races on shared data accesses is necessary to produce correct 
repeatable results. These programs use some form of implied or explicit synchronization to 
avoid data races. If a data race does occur, it is usually considered a programming error. 
However, some algorithms rely on intentional data races as a natural part of their algorithm. An 
example is the set of iterative algorithms based on chaotic relaxation such as the parallel 
successive-over-relaxation (SOR) method. These algorithms can tolerate unsynchronized 
memory operations. 

Nondeterministic parallel programs with data races are the most challenging for compiler 
analysis and optinaization. However, one approach is to use a weaker memory consistency 
model, like LC. This weaker model does not consider data races to be errors, but instead gives 
them different semantics that allow the same flexibility in reordering data accesses as for parallel 



programs that are deterministic or nondeterministic data-race-free. In this work, consideration is 
given to techniques to handle both deterministic and nondeterministic explicitly parallel shared 
memory programs. In particular, this work is motivated by the fact that very large applications 
can have both secure and nonsecure variables used in ways that whole subroutines could obtain 
higher performance from the LC model while other parts of the program are guaranteed to abide 
by the sequential consistency model to reflect programmer expectations. 

2.2   Shared Memory Architectures and Memory Consistency 

Regardless of implementation, the term "shared memory architecture" refers to a parallel 
computer where the address space is shared among multiple processors, and multiple processors 
are allowed to read and write the same memory locations. For correctness, a memory model is 
required that specifies the semantics of these potentially simultaneous memory operations. 
Sequential consistency is the simplest and most intuitive model to programmers. Many current 
multiprocessors support relaxed consistency models in hardware (Gharachorloo, 1995). 
However, these models may not be enough to guarantee correct execution of explicitly parallel 
programs for some hardware optimizations. Thus, these optimizations are typically turned off 
under relaxed consistency models so as to guarantee correct execution to explicitly parallel 
programs. In Lee's (1999) dissertation, he proposes to perform these optimizations at compile 
time. His proposed optimizing compiler does this by providing a sequentially consistent view of 
the underlying relaxed memory consistency model to programmers. He guarantees correct 
optimization under data races and the relaxed memory consistency model, while providing room 
for hardware-level optimizations. 

It has been argued (Gao and Sarkar, 1994) that memory consistency models are too rigidly 
constrained by the memory coherence assumption and that this assumption should be discarded. 
Furthermore, an end-to-end view of memory consistency that can be understood at all levels of 
software and hardware is needed. As an alternative to sequential consistency and related 
memory models, an LC model has been proposed for this purpose. Instead of assimaing that all 
writes to the same memory location are serialized according to some total order, the state of a 
memory location is modeled as a partially ordered multiset (pomset) of write and 
synchronization operations. There is no requirement for all processors to observe the same 
ordering of concurrent write operations. 

As a result, the LC model provides a simple contract between the programmer (or compiler) and 
the hardware. Memory operations need not be serialized, only the partial order (the order of 
writes on a single processor with respect to that processor) defined by the program must be 
preserved. The LC model should be easier to implement because it relaxes the constraints 
imposed by sequential consistency models, and more performance optimizations should be 
possible. Finally, the LC model is applicable to asynchronous concurrent programs (e.g., SOR) 
that have intentional data races. Although no published implementations of the LC model in a 



compiler have been reported, ongoing research is being conducted for the Java language using 
the Jalapeno research compiler infrastructure (Gao and Castelo, 2000). 

3.   Uniprocessor Optimization of Shared Memory Programs 

Midkiff and Padua (1990) demonstrated that straightforward application of sequential 
optimization techniques within compilers for explicitly parallel shared memory programming fail 
to maintain correctness. Data races and synchronization issues make it impossible to apply 
classical methods directly to explicitly parallel programs. 

As an example of an incorrect application of a classical optimization technique, consider the 
OpenMP program in Figure 1 when executed on two processors. In the code, the PARALLEL 
SECTIONS construct is a noniterative work-sharing construct that specifies that the enclosed 
sections of code are to be divided among the threads in the team. Each section is executed once 
by a thread in the team. The SHARED construct indicates that the variables listed on the parallel 
section are globally available to all threads for the duration of the enclosing parallel construct. 
The value of variable B at T = T + B should be 7 due to the assignment B = 7 by the second 
processor and the busy-waiting synchronization implied by the do while loops. K classical 
constant propagation is applied without considering the parallel execution of the two sections of 
code, variable B in the assignment T = T + B gets the value 9, due to the initial definition of B in 
processor I's parallel section and no intervening redefinition before its use in the same section of 
code. Thus, by ignoring interactions between concurrent sections, the value 9 is incorrectly 
propagated to the use of B in T = T + B. 

T = 0,B = 0,C = 0,D = 0 
!$OMP PARALLEL SECTIONS 

// initialization 

!$OMP& SHARED (T, B, C, D) 
B = 9 
C = 4 

//  processor 1 executes this code 
//  variables shared by proc 1 and 2 

// initial definition of b 

do while (D = 0) 
end do 
T = T + B // use of b, end of processor 1 work 

!$OMP SECTION 

do while (C = 0) 
end do 

//  processor 2 executes this code once 
//   (in parallel with processor 1 work) 

B = 7 
D=l 

//redefinition of b 

// end of processor 2 work 
!$OMP END PARAI ,1 ,F,L SECTIONS 

Figure 1. Incorrect constant propagation. 



In order to incorporate uniprocessor optimizations into a compiler for explicitly parallel 
programs, one must design an appropriate intermediate program representation and algorithms 
for analyzing when it is both safe and profitable to apply the various desired uniprocessor 
optimizations in the parallel program. The intermediate representation plays an important role in 
optimization, as it determines the ease with which analysis is performed and correct 
optimizations are identified. One intermediate representation that has been shown to enable 
efficient data flow analysis in sequential programs is the combination of a control flow graph 
(CFG) (Aho et al., 1986) with the SSA framework (Cytron et al., 1991). 

Compilation techniques for expUcitly parallel programs have not been aggressively researched. 
Some of the earliest papers on the analysis and optimization of explicitly parallel programs on 
shared memory computers explored the minimal set of delays that enforce sequentially consistent 
execution of concurrent processes (Krishnamurthy and Yelick, 1996; Midkiff et al., 1990; 
Shasha and Snir, 1988). In order to extend optimizations such as constant propagation to work 
correctly in a parallel programming enviroimient, concurrent forms of the control flow graph 
(CFG) and the SSA framework were proposed by previous researchers (Grunwald and 
Srinivasan, 1993; Lee, 1999; Sarkar, 1997; Srinivasan et al., 1993). In particular, intermediate 
representations for parallel programs include the following: the parallel program graph (Sarkar, 
1997), the parallel flow graph (Grunwald and Srinivasan, 1993), and the parallel precedence 
graph with SSA form (Srinivasan, et al., 1993). Lee (1999), Lee and Padua (2000), and Lee, et 
al. (1999) developed a concurrent static single assignment form (CSSA) based on the concurrent 
control flow graph (CCFG). Novillo (2000) and Novillo et al. (1998) extended the concurrent 
CFG and the CSSA form for programs with lock/unlock synchronization. Knoop and Steffen 
(1999) introduced efficient and optimal bit-vector analyses for parallel programs using the CFG. 

In summary, previous research for explicitly parallel codes has focused on developing 
correctness criteria, intermediate program representations, and extending and applying classical 
data flow analysis and optimization techniques. However, much of the analysis is restricted to a 
subset of parallel programs and does not deal with all types of explicit synchronization. In 
addition, there has been a lack of consensus on an acceptable memory consistency model for 
developing correctness criteria (Gao and Sarkar, 1994). Furthermore, very few realistic 
implementations of the analysis and optimizations have been constructed. 

4.   Programmer-Controlled Memory Consistency 

The overall goal is to give the programmer control and flexibility in memory consistency 
modeling via simple program annotations and to develop automatic techniques that translate the 
programmer's requests into modifications to the intermediate program representation in such a 
way that optimization and analysis algorithms require few changes. In this report, an approach 



to programmer-controlled memory consistency is presented that is based on the data flow of the 
program. 

In this approach, shared variables that need to satisfy the memory coherence assumption are 
annotated by the programmer as secure. Shared variables that do not need to satisfy the memory 
coherence assumption should be annotated as or be indicated by default to be nonsecure. The 
annotations are placed on the shared variable declaration statements indicated by the !$OMP 
SHARED construct (Figure 2). The scope of the annotation is the same as the scope of the 
shared variable (i.e., the parallel region associated with the parallel directive). 

si: T=... 
S2: B=... 
S3: C=... 
S4: D=... 
S5: E=... 
S6: Z=... 
S7: Y=... 
S8: !$0MPPARAI,T,F,L SECTIONS 
S9; !$OMP SHARED        !$OMP SHARED (T.B.C.Y) SECURE 

(T,B,C,D,E, Z,Y)      !$OMP SHARED (D,E,Z) NONSECURE 
SIO IF(T>0)THEN 
sn T = -T 
S12 B = C+D 
S13 Z = D 
S14 ELSE 
S15 B = C + D 
S16 ENDIF 
S17 !$OMP SECTION 
S18 DOY=l,4 
S19 B=C + D 
S20 C = Z 
S21 ENDO 
S22: !$OMP END PARALLEL SECTIONS 

(a)                                           (b) 

Figure 2. (a) example OpenMP (b) annotated Stmts. 

4.1   Definitions 

Sequential consistency has been historically defined in terms of the total program order for a 
sequential program or partial orderings for parallel programs. For this research, the definition of 
sequential consistency is extended for parallel programs to be defined in terms of a single 
variable with respect to a given point in a program. The definitions of sequentially consistent, 
secure, and nonsecure shared variables are given as follows: 

• Definition 4.1, Sequentially Consistent Shared Variable—A sequentially consistent shared 
variable with respect to a given point P in a program requires that all updates to the shared 
variable that could affect the value of the variable at point P be immediately visible to other 
threads (i.e., abide by the memory coherence assumption). 

• Definition 4.2, Secure Variable—^A secure variable is a shared variable that is referenced 
by different threads that might execute concurrently in an explicitly parallel program and 



needs to adhere to the memory coherence assumption at all program points P, and is 
therefore accessed according to the constraints imposed by sequential consistency. 

•    Definition 4.3, Nonsecure Variable—^A nonsecure variable is a shared variable that is 
referenced by different threads that might execute concurrently in an explicitly parallel 
program and does not need to adhere to the memory coherence assumption, and therefore 
can be accessed according to the constraint imposed by LC (i.e., that each processor 
sequentially executes its node program). 

Because the LC memory consistency model is used as the default model, secure variables that 
are involved in data races must be made to satisfy the memory coherence assumption. This can 
be accomplished by inserting constructs (by the programmer or by the compiler) to synchronize 
shared variable references or by the compiler automatically switching to a sequential consistency 
memory model to guarantee correctness. In this research, the approach is taken of automatically 
switching to a sequential consistency memory model within the software. Therefore, all shared 
variables that are annotated to be secure will be guaranteed to be sequentially consistent shared 
variables. All shared variables that are annotated to be nonsecure can default to LC whenever 
possible. 

4.2   Base Intermediate Representation 

The pioneering research of Lee (1999), Lee and Padua (2000), Lee et al. (1999), and Novillo 
(2000) and Novillo et al. (1998) has served as a starting point for this research. Their 
intermediate representations summarize control flow and information about the interaction 
between threads in a parallel program, thus enabling further exploration of explicitly parallel 
shared memory program optimization and analysis. 

In particular, this approach is based on the CCFG program representation (Lee, 1999; Lee et al., 
1999). The CCFG is a directed graph G = <N, E, Entryc, Exitc) such that N is the set of nodes in 
the graph (with each node corresponding to a basic block), E is the set of control flow edges, 
conflict edges, and synchronization edges, and Entryc, Exito are the unique entry and exit points 
of the program. A conflict edge is a bidirectional edge in the CCFG that joins any two basic 
blocks that can be executed concurrently (i.e., are located in separate threads of a. parallel section 
OT parallel do), reference the same shared variable, and one of the references is a write reference. 
There are two kinds of conflict edges: def-use and def-def. 

A separate CCFG is generated for each procedure. Thus, a basic form of interprocedural 
analysis information can be gathered. At each procedure call, shared variables referenced and 
mutex bodies defined by the called procedure are propagated to the call site. This allows conflict 
and synchronization analysis to treat function calls almost as if they were inlined (Lee, 1999). 
Figure 3 presents an example CCFG with conflict edges for the sample code shown in 
Figure 2a. The one thread in this example contains an if-then-else construct, while the other 
thread contains a sequential do loop. The solid edges in the CCFG are control flow edges, while 
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Figure 3. Example CCFG with conflicting edges. 

conflict edges are represented by dashed edges. For example, there is a def-def edge linking the 
two assignments to variable B in the two different threads. A def-use edge for variable Z 
indicates the def-use relationship between the two threads created by the statements involving 
variable Z. 

Initially, a CCFG representation of a program, which includes all conflict edges that would have 
to be enforced assuming a sequential consistency model for the whole program, is used. The 
software technique produces a relaxed CCFG in which conflict edges have been removed 
according to the programmer's annotations on shared variables. 

4.3   Modeling Interactions of Variables 

In order to ensure that all reads of a given secure variable indeed see the most recent value 
according to sequential memory consistency, sequential consistency is enforced for any value on 
which these reads depend, either directly or indirectly. In terms of the CCFG, the programmer is 
presented with sequential consistency, and the underlying relaxed consistency model of the 
hardware is hidden by inserting def-def and def-use conflict edges for each shared variable def- 
def or def-use dependency between different threads and by inserting fence instructions to ensure 
that the conflict edges are enforced. 

In general, both def-def and def-use conflict edges for shared variables annotated as nonsecure 
could be removed and still maintain sequential consistency for all secure variables, as long as 



nonsecure variables were manipulated completely in isolation of secure variables. However, 
programmers create dependencies among secure and nonsecure variables, which prevent the 
compiler from blindly removing all conflict edges for nonsecure variables. 

The dependencies among reads and writes of secure and nonsecure variables can be specified in 
terms of four relations where LHS and RHS represent the left-hand side and right-hand side of a 

program statement, respectively. 

(1) S: LHSsecure = /(RHSQ, RHSi,...), where LHSsecure is the definition of a secure variable as 

a function of a set of variables. 

(a) Each secure RHS variable in S represents a use of a secure variable within a statement 
defining another secure variable, LHSsecure- Any conflict edges leading into S due to 
these uses must be maintained for two reasons: (1) to ensure that the read of the RHS 
variable in S is the most recent value and (2) to ensure that the def of the secure 
variable in the LHS also maintains sequential consistency for later reads of LHSsecure- 

(b) Each nonsecure RHS variable in S represents a use of a nonsecure variable within a 
statement defining a secure variable. This case represents one way in which the 
manipulation of secure and nonsecure variables can interact. This case is discussed in 

more depth below. 

(2) T: LHSnonsecure = /(RHSo, RHSi,...), whcrc LHSnonsecure is the definition of a nonsecure 
variable as a function of a set of variables. 

(a) Each nonsecure RHS variable in T represents a use of a nonsecure variable 
LHSnonsecure- Becausc we default to the LC model for nonsecure variables, any 
conflict edges leading into T due to the nonsecure RHS variable can be removed as 
long as the value of LHSnonsecure is not used later in a computation defining a secure 
variable. The def of the nonsecure RHS variable in this statement need not be 
performed prior to this read of the RHS variable. 

(b) Each secure RHS variable in T represents a use of a secure variable within a statement 
defining a nonsecure variable. This is the second case where secure and nonsecure 
variable manipulations interact. 

In case 1(b), sequential consistency for LHSsecure implies that for all variable uses, RHSj (in the 
computation of LHSsecure), all conflict edges leading to statement S for RHSi, must be maintained 
in order to ensure that LHSsecure is kept secure for future reads. Thus, any RHSi, that is 
nonsecure (call it RHSnonsecure) must be treated as a secure variable for this particular use at S. 
Due to the requirement to treat RHSnonsecure as secure at this statement, conflict edges leading 
into S for RHSnonsecure must be maintained, and furthermore, any reaching def of RHSnonsecure at 
S must also be analyzed for dependencies on nonsecure variables. 



For case 2(b), because the LHS is nonsecure, LC will be used for its def, and thus, typically any 
conflict edges leading into this statement for any of its RHS variables (which this statement 
reads) can be safely removed to reflect the more relaxed consistency model. However, the 
programmer has indicated that the most recent value of secure variables be read. A secure RHS 
variable in T would correspond to one of these reads. Thus, the conflict edges leading into T for 
any secure variables in the RHS must remain, regardless of the nonsecure status of the LHS. 

The programmer annotated the shared variable declarations, but the dependencies between 
s^ure and nonsecure variables suggests that the compiler needs to determine additional 
locations where nonsecure variables need to be treated like secure variables in order to 
determine which conflict edges can be removed. This does not imply that all occurrences of the 
nonsecure variable need to be treated like a secure variable, only those manipulations on which 
a secure variable depends, either directly or indirectly. This leads to the following question: 

How do we extend current correctness criteria, intermediate program representations, and 
optimization algorithms to handle both secure and nonsecure variables and their interactions 
and implementation as different memory consistency models simultaneously? 

The key insight is that the relevant dependencies that need to be uncovered in order to implement 
different consistency models in different parts of a program based on data flow can be identified 
by program slicing. A program slice detects the parts of a program that statically may affect the 
values computed at some point (Weiser, 1984). A slice on a particular variable at a given 
program point will reveal the dependencies between secure and nonsecure variables on which 
this variable's value depends. For example, by slicing on an RHS variable at statement S, we 
can relabel its use at S and the variable defs and uses at statements that directly or indirectly 
afi'ect it to be marked as secure when the LHS variable must be secure at S. Thus, for case 1(a), 
we need to slice on each nonsecure RHS, relabeling the RHS use as well as any variable 
manipulations that potentially affect it to be secure. 

An algorithm for the static slicing of threaded programs based on CFGs and program dependence 
graphs has been developed by Krinke (1998). This algorithm is leveraged for use in this work. 
The input required for this slicing algorithm is a threaded program dependence graph (tPDG) and 
the slicing criterion (i.e., a node of the tPDG and the variable[s] to slice on). The output of the 
algorithm is the slice, which consists of a set of nodes of the tPDG. 

The tPDG is similar to a CCFG; however, it includes control or parallel flow edges, direct 
control dependence edges, data dependence edges, and interference edges. The tPDG can be 
derived from the CCFG by the addition of the direct control and data dependence edges. 
Interference edges are identical to conflict edges. The slicing algorithm is referred to as function 
"paralleLslice" in Figure 4, which presents the pseudocode for our algorithm to implement 
programmer-controlled memory consistency. 

10 



Algorithm Construct_Relaxed_CCFG. 

Input: Sequentially consistent CCFG G = <N, E, Entryc. Exito > that includes all conflict edges as if all variables are secure in 
CSSA form, with added control and data dependence edges for slicing. 

Output: A CCFG in CSSA form with conflict edges eliminated for nonsecure variables that can be handled using location 
consistency. 

1: // Initialize flags on every def or use of shared variables 
2: foreach shared variable 5, do 
3: Initialize annotatejlag to secure or nonsecure to reflect annotation 
4: end for 
5: foreach shared variable Si in node «, e N do 
6: labelJlag = annotatejlag 
7: end for 
8: // Perform backwards slicing to relabel nonsecure uses and defs*/ 
9:   foreach node 7i,eN with LHS, label Jlag = secure do 
10: foreach RHS; with label Jlag = nonsecure do 
11: // return slice w, a worklist containing nodes that affect RHS,- 
12: worklist w = parallel_slice (RHSj, n-,) 
13: foreach node n,e w do 
14: foreach shared variable 5, in node n,- do 
15: label Jlag = secure 
16: end for 
17: end for 
18: endfor 
19: endfor 
20: /* Test for case 2a and eliminate conflict edges 
21:  foreach node n ,€ N do 
22: if LHS 5j label Jlag = nonsecure ihea 
23: delete all def-def conflict edges to LHS variable of 5,- 
24: delete all def-use conflict edges to nonsecure RHS variables of S; 
25: endif 
26: endfor 

Figure 4. Algorithm for constructing relaxed CCFG. 

4.4   Algorithm for BuUding Relaxed CCFG 

There are three phases in the construction of a relaxed CCFG. First, an initialization phase is 
performed to build a sequentially consistent CCFG in CSSA form (which includes all conflict 
edges as if all variables are secure), extended to include control and data dependence edges. The 
algorithm takes this extended CCFG representation as input. In the algorithm, it is assumed that 
each node of the CCFG is an individual statement. Because nonsecure variables can be 
determined to require secure treatment at selected statements, the secure and nonsecure 
annotations on OpenMP shared variable declarations are propagated as flags on every def and 
use of the shared variables in the CCFG. In this way, programmers need only add annotations on 
variable declarations, but their expectations are propagated automatically to all defs and uses of 
the shared variables. 

In the second phase, backward slicing is performed on each case 1(b) in the CCFG. During the 
backward slicing, any nonsecure variable reference found in the slice, including the original 
RHS variable, is relabeled to be secure. No conflict edges are removed during this phase. 
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Finally, the third phase eliminates conflict edges by a single pass over the CCFG using the final 
secure and nonsecure flags to identify all case 2(a) instances. Figure 4 presents pseudocode for 
our algorithm, which results in a relaxed CCFG. 

In Figure 5, it is assumed that variables T, B, C, and Y are initially annotated by the programmer 
as secure, while variables D, E, and Z are annotated as nonsecure (as indicated in Figure 3b). 
The implications of these annotations are the removal of the def-use (Z) conflict edge and the 
relabeling of variable D to be secure in the two statements with C + D expressions because B is 
a secure variable being defined at those statements (case l[b]). The algorithm for programmer- 
controlled memory consistency would slice from the statements B = C + D on variable D and 
relabel all nonsecure references in the program slice for D to become secure, in response to the 
secure annotation on B. Because variable Z is annotated to be nonsecure, variable Z in the 
statement Z = D can be location consistent, and the conflict edge to this LHS variable can be 
eliminated (case 2[b]). 

ENTRY 

T=._, B=l, 0=..., D=.., E=.», Z=._, Y=_. 

PARALLEL SECTIONS J 

ir(T>0) 

B3:C + D 
-DDOO. 

DOY4A1 

DD(B)  .,*. B=>C-fD 

E = Z 

Z = D 
END DO 

ENDIF 

END PARALLEL 
SECTIONS 

EXIT 

. conOkt edges 

'  control flow 

'  ilIcconS13(Flg.3B) 

Figure 5. Relaxed CCFG with slicing. 
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The CCFG is built using a slightly modified version of a standard algorithm to build CFGs (Aho 
et al., 1986). The CSSAME form of the CCFG can be built in 0(i^) time, where r is the 
maximum of the number of nodes, number of control edges, number of assignments, and number 
of variable references in the program (Novillo, 2000). The sUcing algorithm takes the same time 
and space complexity as unthreaded slicing, with additional time complexity that could be 
exponential in the number of conflict edges in the worst case; however, much more reasonable 
times are expected for real programs given the characteristics of conflict edges that we have 
observed and that Krinke (1998) has observed. Slicing is performed once for each variable use 
labeled nonsecure in each statement with an LHS variable that is originally labeled as secure. 
Slicing is not repeatedly applied as relabeling occurs. The pass that eUminates the conflict edges 
requires 0(N) time, where N is the number of nodes in the CCFG. 

5.   Conclusions and Future Work 

The major contribution of this research is a technique for programmer-controlled memory 
consistency for explicitly parallel programs in which different models of consistency prevail in 
different parts of the program. Sequential consistency overhead is limited to where programmers 
want to ensure that most recent values are seen, while programmers are reUeved of having to 
understand memory consistency models. Compiler optimizations can be tailored to different 
memory consistency models for different programs and for different parts of the program. 

A software analysis tool is being designed based on this approach to perform program analysis 
and optimization for real scientific OpenMP programs (OpenMP Standard Board, 1997). An 
existing research compiler infrastructure, Odyssey, is being extended to incorporate the 
technique described in this research. Odyssey is an optimizing compiler for exphcitly parallel 
programs with mutual exclusion synchronization incorporated into its data flow framework 
(Novillo, 2000). A set of scientific OpenMP benchmarks and sample programs have been 
gathered for testing. Among the codes most similar to real applications are irreg, jacobi, and md. 
Irreg simulates an unstructured computational fluid dynamics code, jacobi uses a SOR iterative 
algorithm to discretize the Helmholtz equation, and md simulates a molecular dynamics program. 
Experimentation, data collection, and analysis will be performed to determine improved 
performance in terms of cost, precision, and/or scalability in response to the new analysis and 
optimization techniques for OpenMP. Numerical output from the optimized and unoptimized 
programs will be compared for accuracy and precision. Metrics to be collected and/or computed 
include the following: optimized/unoptimized run-times, relative speedup, number of conflict 
edges eliminated, number of optimizations performed, and optimized/unoptimized size of the 
CCFG in nodes. 

The approach to programmer-controlled memory consistency presented in this research is based 
on annotating shared variables and using data flow to partition the program's consistency 
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modeling. An alternate way of providing programmer-controlled memory consistency with the 
goal of allowing multiple models to be in effect during optimization based on the program and 
programmer's expectations using control structures is also a possibility for future investigation. 
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