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INTRODUCTION

Prostate Cancer is a horrendous affliction in men. In 2002 over 200,000 cases were diagnosed and
nearly 39,000 patients died. Death is due to skeletal metastases, bone pain and bone fractures. A
majority of prostate cancers metastasize to bone, especially pelvis and spine and causes pain and
factors due to osteosclerosis. Bone morphogenetic proteins (BMPs) are signals to initiate new bone
formation. Our research explores the BMPs, BMP antagonists and BMP receptors in Prostate Cancer.
We set out to investigate BMP expression and BMP antagonist DAN in this Idea Development Award.

The accrued knowledge will permit rational new approaches to treat bone pain and pathological

fractures.
BODY
WORK ACCOMPLISHED
YEAR 1.
Task 1. Identify and characterize the expression of BMP 6 in human prostate cancer cells. ‘
Task 2. Investigate and characterize expression of BMP antagonist DAN and BMP receptors
YEAR 2.
Task 3. BMP 6 Expression and Regulation

1. BMP6 Is Highly Expressed In Human Prostate: The human genome has at least 16

members of the BMP family, each with the ability to cause ectopic bone formation, and a growing
number of BMP antagonists are being described. The goal of the studies presented here was to identify
which BMP and BMP antagonist may most likely be involved in the pathology of prostate cancer
metastatic foci. Real-time quantitative RT-PCR (reverse-transcription followed by polymerase chain
reaction) using the TagMan system was performed on total RNA (ribonucleic acids) isolated from
human prostate biopsies obtained from the UCDMC (University of California at Davis Medical Center)

urology department, and human prostate cancer cell lines. BMPs 2,3,4,6,7,8 were examined. The
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results were normalized to the levels of the housekeeping GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) mRNA (messenger RNA). BMP6 was found to be highly expressed in prostate.

2. Androgens Up-regulate BMP6 mRNA: Our hypothesis was that BMP6 may affect its own
expression in cultured human prostate cancer cells in an autocrine manner, and that this may be
androgen dependent. To test this hypothesis, recombinant human BMP6 (thBMP6) was added to the
culture medium of LNCaP cells, and the BMP6 mRNA levels assayed by quantitative RT-PCR. Results
were always normalized to the levels of GAPDH mRNA. Recombinant BMP6 added to hormone-free
culture medium increased BMP6 mRNA levels 3 to 6 fold. In the presence of 100nM
dihydrotestosterone (DHT), the same amount of recombinant BMP6 caused the LNCaP cells to
increase BMP6 mRNA production 10- to 20-fold. The results of these experiments show that in
cultured LNCaP cells, BMP6 can up-regulate its own expression, and that this up-regulation can be
synergistically increased by the combined presence of BMP6 and the androgen dihydrotestosterone in

the medium.

3. BMP7 and Androgens Up-regulates BMP6 mRNA: Previously work from our laboratory

(Thomas et al 1998) has shown that BMP7 mRNA levels were significantly reduced in castrated versus
intact mice, and that injections of androgens could restore the BMP7 mRNA levels in castrated mice.
We tested the hypothesis that recombinant human BMP7 may also increase the level of BMP6 mRNA'
when added to the media of cultured LNCaP cells. Real-time quantitative RT-PCR (using TagMan
chemistry) was performed on total RNA isolated from cultured LNCaP cells, and results from each
culture condition were normalized to the levels of the housekeeping GAPDH mRNA. We found that
added BMP7 increased BMP6 mRNA expression about 7-fold, and that in the presence of 100nM
dihdrotestosterone, the same amount of added BMP7 caused a 20- to 30-fold synergistic increase in
BMP6 mRNA production. An essentially identical experiment was performed with the osteosarcoma
cell line Sa0S-2. Unlike the LNCaP cells, the SaOS-2 osteosarcoma cells expression of BMP6 mRNA
was not stimulated by androgens. However, BMP7 treatment increased the BMP6 mRNA expression

as in LNCaP cells. This demonstrates the cell specificity of the androgen response.

4. BMP-Antagonist DAN is Expressed in Prostate Cells: The ability of BMP to bind to its

receptors and initiate signal transduction pathways is regulated by BMP antagonists. These proteins
bind to BMPs in the extracellular matrix thereby preventing BMP-receptor interactions. To identify

which BMP antagonist may most likely be involved in prostate cancer, real-time quantitative RT-PCR
5




(using the TagMan system) was performed on total RNA isolated from human prostate surgical
specimens, and the LNCaP human prostate cancer cell line. BMP antagonists cerberus, chordin, DAN,
gremlin and noggin were examined, and the results normalized to the levels of the housekeeping
GAPDH mRNA. DAN was found to be expressed both in biposies and cancer cell lines. Furthermore,
the addition of recombinant BMP6 to LNCaP cell culture decreased DAN mRNA expression. The
other BMP antagonists tested did not show this inverse regulation by the addition of BMP6 protein to

the cell culture medium.

5. DAN Antibodies and Recombinant Protein: The expression of DAN by prostate cancer cells,

and its down-regulation by BMP6 in prostate cancer cells, are novel findings. Combined with the fact
that DAN was originally identified as a tumor suppressor, this raises the intriguing possibility that an
exogenous BMP antagonist, such as DAN, can be used to inhibit the bone-forming ability of BMP6.
Perhaps this may lead to ways to lessen the severity of prostate cancer bony metastases. We have
produced recombinant human DAN protein in a Pichia Pastoris yeast expression system (Invitrogen)
in quantities sufficient for use in both in vitro BMP binding assays, and in vivo bioassays for BMP
activity. To accomplish this, the ¢cDNA coding for human DAN was cloned into the pPICZaA
expression vector (Invitrogen), and subsequently introduced by homologous recombination into the
genome of Pichia Pastoris at the methanol-oxidase locus. These yeast secreted substantial quantities of
recombinant human DAN protein as a fusion protein with a myc epitope (useful for
immunolocalization using commercially available anti-myc antibodies) and a 6-histidine tag (useful for
purification of the protein due to its nickel binding properties). We have prepared two rabbit polyclonal
antibodies raised against synthetic peptides, one corresponding to the amino-terminus of human DAN
protein (peptide sequence KLALFPDKSAWCEAK), and one to the carboxy-terminus of human DAN
protein (peptide sequence CGKEPSHEGLSVYVQGED). These antibodies cross-reacted with
recombinant human DAN produced in yeast expression system. Thus, we have generated critical

reagents for our work on BMP antagonists.

KEY RESEARCH ACCOMPLISHMENTS
e BMP 6 is highly expressed in human prostate cells
e Androgens increase BMP 6 messenger RNA

e BMP 7 increases BMP 6 messenger RNA




e BMP antagonist DAN is expressed in prostate cancer cells

e Antibodies to DAN was elicited and characterized. Recombinant DAN protein was expressed in
yeast.

REPORTABLE OUTCOMES

1. Our research was presented at the UC Davis Cancer Research Conference
2. Dominik Haudenschild has received his Ph.D. degree.
3. Mr. Haudenschild was supported by the DoD grant during his training for Ph.D. degree.

CONCLUSIONS

The research demonstrates BMP 6 expression by prostate cancer cells. BMP 6 induces new bone
formation as in osteosclerosis. Therefore, BMP antagonists such as DAN may ameliorate bone pain and

fractures due to BMP 6 and may improve the quality of life for patients.

APPENDICES

Publications:

1. 2003 Reddi, A.H., Roodman, D., Freeman, C., and Mohla, S. Mechanisms of Tumor
Metastasis to the Bone: Challenges and Opportunities. J. Bone and Mineral Research, 18:190-
194.

2. 2003 Moseley, T.A., Haudenschild, D.R., Rose, L., Reddi, A.H. Interleukin-17 Family and
IL-17 Receptors. Cytokine & Growth Factor Reviews 14:155-174.
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Mechanisms of Tumor Metastasis to the Bone:
Challenges and Opportunities™*

A HARI REDDL! DAVID ROODMAN,?> COLETTE FREEMAN,? and SURESH MOHLA?

ABSTRACT

In human cancers, bone is a common site for metastasis. It is well known that metastasis is the cause of
morbidity and mortality in patients with cancer. Both breast and prostate carcinomas have a propensity to
metastasize to bone. In general, metastatic breast cancers result in osteolytic lesions. On the other hand,
prostate cancer metastases are osteoblastic and result in osteosclerosis. Thus, bone formation and bone
resorption are at the crux of the cancer metastasis problem. For example, in the prostate, there is a vicious
cycle of metastasis to bone (Fig. 1). Metastases to bone causes excruciating bone pain, pathological fractures,
and eventually death, and therefore is a serious challenge to both bone biologists and cancer cell biologists. The
stromal-epithelial interactions in breast and prostate are critical in initiation of carcinogenesis and the
progression of the metastatic cascade to bone (Fig. 2). Over a hundred years ago, Stephen Paget enunciated
the seed and soil hypothesis in which seeds of metastatic cancer cells of breast preferentially settle in the soil
of bone matrix. Thus, the prostate/breast cancer bone interface and continuum has continuously presented
challenges and opportunities and were discussed at a recent workshop. (J Bone Miner Res 2003;18:190-194)

Key words: prostate, breast, myeloma, bone morphogenetic proteins, parathyroid hormone

INTRODUCTION 1, 2000. The aim of the workshop was to encourage collab-
orations between bone cell biologists and clinical investi-
gators and oncologists with expertise in cancer metastasis to
the bone. Scientists from various disciplines of bone biol-
ogy, including the bone microenvironment, extracellular
matrix, and signal transduction, and from the field of tumor
metastases, were invited. The goals of the workshop were to
assess (1) the current state-of-the-science on the available

experimental models to study bone microenvironment in

THE TumMoR BI0LOGY and Metastasis Branch, Division of
Cancer Biology of the National Cancer Institute, Na-
tional Institutes of Health sponsored a workshop on “Mech-
anisms of Tumor Metastasis to the Bone: Challenges and
Opportunities,” in Bethesda, MD, November 29 -December

*Participants: Regis Bataille, Tatiana Byzova, Michael Cher,

John Chirgwin, Leland Chung, Denis Clohisy, William Dalton,
Caroline Damsky, Rick Derynck, Patricia Ducy, Joshua Epstein,
Colette Freeman, Michael Freeman, Carol Gay, Robert Getzen-
berg, Joan Goldberg, David Goltzman, Jeffrey Green, Theresa
Guise, Hynda Kleinman, Beatrice Kundsen, Paul Kostenuik, Allan
Lipton, Andrea Mastro, Suresh Mohla, Kenneth Pienta, Hari
Reddi, Pamela Gehron Robey, David Roodman, Thomas Rosol,
Neeraja Sathyamoorthy, Dinah Singer, Frederick Singer, Gary
Stein, Gordan Strewler, Steven Teitelbaum, Erik Thompson, Gabri
van der Pluijm, Matt Van Eman, Charlene Waldman, Katherine
Weilbaecher, Toshiyuki Yoneda, Bruce Zetter, and Haiyen Zhau.
The authors have no conflict of interest.

metastasis. (2) What is currently known about molecular
mechanisms of tumor-bone stroma interaction? (3) What are
some of the critical unresolved issues in tumor metastasis to
the bone that should be emphasized by new investigations?
The scientific interactions were intended to foster progress
in reducing the morbidity and ultimate mortality that result
from tumor metastases to bone. This article presents the
background and highlights of the meeting to a wider audi-
ence of bone biologists and it is anticipated it might provide
an impetus for further research on tumor metastases to bone.

! Center for Tissue Regeneration and Repair, University of California, School of Medicine, Sacramento, California, USA.
2 University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA.
3 Division of Cancer Biology, National Cancer Institute, NTH, Bethesda, Maryland, USA.
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The Vicious Cycle of Metastasis
In Prostate Cancer

Prostate Cancer
Initial Metastasis to Bone
Release of BMPs from Bone Matrix
Increased Bone Formation
Releaye of BMPs from Prestate Metastasis
Osteosclerosis
Additional Metastasis

BONE PAIN, FRACTURES, DEATH

FIG. 1. The vicious cycle of metastasis cascade in prostate cancer,
with special reference to increased bone formation and osteosclerosis.
It is well known that BMPs are the primordial signals for new bone
formation.

MODELS OF METASTASIS

The interdisciplinary nature of the workshop necessitated
overview talks on bone biology, development and morpho-
genesis, bone metastasis, and experimental models of bone
metastasis by Roodman, Goltzman, and Yoneda,
respectively.

The second session, devoted to models of bone metasta-
sis, included breast cancer, prostate cancer, and myeloma.
Guise and Greene presented experimental models to study
breast cancer.® Chung and Cher presented models to study
prostate cancer bone metastasis.”* Epstein, Bataille, and
Dalton discussed models of multiple myeloma.®%"*? Key
issues covered by these speakers included the role of an-
giogenesis, molecular mechanisms of bone metastasis, and
the role of bone stroma.

The next session focused on understanding bone metas-
tasis. Key issues discussed in this session included mecha-
nisms of osteoclastic bone metastasis, discussed by Teitel-
baum and Kostenuik,"**® and the mechanisms of
osteoblastic metastasis, discussed by Strewler and
Clohisy.®'7 Speakers focused on the role of tumor-
derived factors that stimulate osteoblastic and/or osteoclas-
tic activity, the dynamic and reciprocal interactions between
tumor cells and bone, and the potential for using the result-
ing information for therapeutics. It was also realized that the
progressive bone resorption and formation occurring with
tamors can be monitored by bone markers and can be
ameliorated with drugs including bisphosphonates.

THE BONE MICROENVIRONMENT AND
EXTRACELLULAR MATRIX

Damsky‘”’ presented a detailed discussion on adhesion
molecules and cell signaling, in particular, those associated
with tumor cells and matrix interactions. Integrin signaling
affects bone cell function and osteoclast recruitment, and

Damsky raised the interesting question, “does adhesion
molecule mimicry play a role in tumor cell homing?” She
suggested that tumor invasion might be similar to tropho-
blast invasion in pregnancy, which is also dependent on
angiogenesis and adhesive cell interactions. She empha-
sized that the trophoblast may be an appropriate model for
studying the mechanism of tumor metastasis. Robey™®
discussed the composition of the bone marrow microenvi-
ronment and suggested that it is really a colloidal suspen-
sion with little extracellular matrix. She noted that there
were many differences between the in vivo and in vitro
microenvironment. She raised the important issue regarding
the cell types in the bone microenvironment that are asso-
ciated with tumor cells, and provided data showing that
cancers with a propensity to metastasize to bone express
bone sialoprotein and osteopontin. She suggested that bone
sialoprotein production by tumor cells may “shield” the
tumors from the immune system.

From the pioneering work of Huggins, it is well known
that prostate cancers metastasize to bone and result in os-
teoblastic and osteoclerotic lesions. Implantation of
mineral-free extracellular matrix of bone®® in ectopic sites
resulted in new bone formation. A family of bone morpho-
genetic proteins (BMPs) have been identified, isolated, and
cloned® from bone matrix. Reddi®® discussed the poten-
tial role of prostate-derived BMPs in osteosclerosis during
prostate cancer metastases to bone.

Kleinman® explored the question as to why breast and
prostate cancer metastasize to bone and suggested that spe-
cific homing factors in bone facilitate growth of cancer in
bone. She provided data that osteonectin may be responsible
for chemotaxis of tumor cells to bone. Freeman®? sug-
gested that the EGF receptor might be important in medi-
ating tumor cell progression in prostate cancer. He pre-
sented data to show that the transcription factor BAG-1 may
have an important role in prostate cancer metastasis.
Derynck@ provided evidence that TGF-f has a dual effect
in bone when produced by tumor cells, by increasing both
osteoblast proliferation and osteoclast activity, while de-
creasing the expression of bone-specific transcription factor
Cbfal. Zetter®® discussed the observation that the prostate
is the only organ that secretes polyamines. The polyamine,
spermine, inhibits the growth of prostate cancer cells. Or-
nithine decarboxylase (ODC) is a key enzyme in polyamine
biosynthesis, and ODC degradation is mediated by associ-
ation with antizyme. High polyamine levels induce anti-
zZyme in spermine sensitive cells but not in spermine-
resistant prostate cancer cells. These data suggest that
induction of ODC antizyme may be a novel therapeutic
approach in prostate cancer. Overall, the session explored
the current understanding of how the bone microenviron-
ment enhanced tumor cell growth, the important role of
bone-tumor interaction in producing bone metastasis, and
why bone may act as a sanctuary for tumors. The results
suggested several potential therapeutic approaches and targets.

MECHANISMS OF OSTEOCLASTIC AND
OSTEOBLASTIC METASTASES

Teitelbaum™® reviewed the physiology of osteoclast
function and the contribution of bone lysis to metastasis. He
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Prostate / Breast Cancer Metastasis
To Bone: Regula'rory Networks .

T(rl"B Osteobl'm(s :
BMPs 4
IGF é i

S,-tromal Cells | i

FIG. 2. The breast/prostate cancer metastasis to bone. In general, metastatic breast cancers are osteolytic and prostate cancers are osteosclerotic.
The dynamic regulatory networks at the interface of breast/prostate carcinoma metastases and bone are indicated in a simplified form. The
interactions between stromal cells and epithelial cells are critical for tumor progression and metastasis in both breast and prostate. The carcinoma
cells secrete morphogens and growth factors such as BMPs, IGF, and TGF3, which act on cells in bone. In response to PTH and PTHirp, osteoblasts
and stromal cells secrete RANKL, which binds to RANK on osteoclast precursors to differentiate into functional multinucleate osteoclasts. The
bioavailability of RANKL to its receptor RANK is determined by the activity and affinity of a soluble decoy receptor osteoprotegerin (OPG) to
RANKL. Interleukins 1 and 17, TNF, and the cognate signaling system have a role in osteoclastogenesis. The degradation of bone matrix by
multinucleate osteoclasts releases growth factors and morphogens from the extracellular matrix such as BMPs, IGF, and TGF3 family members.

The regulatory networks in the breast/prostate cancer metastasis to bone are reciprocal and dynamic as illustrated by the secretion of BMPs, IGF,

and TGFp family of ligands, cognate receptors and antagonists, and binding proteins for the growth factors and morphogens. The binding proteins

include IGF BPs, latent TGFf binding proteins, and BMP antagonists—Gremlin, Cereberus, and DAN.

stressed that understanding the function of these cells would
allow for development of new drugs directed at specific
targets in the cell, which would inhibit osteoclast activity in
clinical diseases such as bone metastases. A demonstration
of the success of this approach was described in a mouse
model of osteoporosis. Because of the observation that
integrin 83 knockout mice produce osteoclasts with im-
paired ability to resorb bone, a RGD mimetic agent was
synthesized and tested in ovariectomized mice. Administra-
tion of the drug-inhibited bone loss usually seen with the
loss of estrogen.

Kostenuik®® reviewed osteoclast function with emphasis
on osteoprotegerin and RANK as the dominant influence on
osteoclast function (Fig. 2). He discussed the evidence that
bone resorption induced by bone metastases could increase
skeletal tumor burden by release of growth factors from the
bone matrix. It was emphasized that histology of the skel-
eton is critical in assessing the efficacy of drug treatment
than skeletal radiographs. He presented data that osteopro-
tegerin (OPG) could decrease skeletal tumor burden in a
colon cancer animal model, although the underlying mech-
anisms remains to be defined. A final issue, which was
raised, was the possibility that tumor cells might directly
degrade bone, and if this is significant, osteoclast suppres-
sion alone might not be maximally effective.

Strewler presented his unpublished data on the develop-
ment of a mouse model of prostate cancer bone metastases.
He modified a clone of the parental cell line, LNCaP, by
overexpressing Her2/neu and prostate specific antigen
(PSA). After direct injection of cells into mouse femora, an

excellent osteoblastic metastasis response was produced.
The skeletal lesions were evaluated by three-dimensional
computed tomography (CT) scan and histomorphometry.
He is currently using a mouse calvarial bone formation
assay to purify and identify a soluble mediator of bone
formation produced by the tumor cells. Clohisy®>'® dis-
cussed bone metastases from a clinical viewpoint, indicat-
ing three stages of progression: tumor growth, bone pain,
and fracture. Many prostate cancer patients have bone mar-
row micrometastases at the time of initial diagnosis. These
may progress to an asymptomatic stage in which the bone
scan is positive. Finally, further growth is associated with
pain and fractures. He stressed that the goal should be to kill
the tumor in the microscopic state and proposed designing
studies directed toward determining how bone marrow cells
could be used to kill micrometastases.

BONE MARKERS AND STRATEGIES FOR
TARGETING BONE

The last session was dedicated to approaches that can be
used to target the bone cells once metastasis has already
occurred. The presentations emphasized that the knowledge
acquired by bone biologists in understanding both the ge-
netic program specific to bone cells and the pathways that
can be targeted to treat metabolic bone diseases such as
osteoporosis can also be used in the particular setting of
treating bone metastases. Ducy®® presented a general over-
view of the genetic opportunities available to target bone
cells using cell-specific promoters. Particular emphasis was
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given to the possibility of using osteoblast-specific promot-
ers such as osteocalcin®® or osteoclast-specific markers
(e.g., tartrate resistant alkaline phosphatase) to overexpress
endogenous factors or express exogenous factors in the
bone microenvironment. Such factors might decrease the
bone cell response to signals produced by metastatic cells or
induce apoptosis of the cancer cells. Stein®” presented the
results that his laboratory obtained in specific targeting of
osteoblastic cells using a transgenic construct containing the
rat osteocalcin promoter driving the CAT reporter gene. He
demonstrated that bone marrow stem cells transfected ex
vivo with such constructs show expression in bone once
they are reintroduced into the animal. He also presented his
findings regarding the interaction between cell-specific tran-
scription factors and chromatin structure. This part of his
presentation emphasized the possibility of manipulating
gene expression by targeting another level of genetic regu-
lation. Chung® showed that once localized in the bone
microenvironment, prostate cancer cells undergo a modifi-
cation of their genetic program toward an osteoblastic phe-
notype. He showed that these cells progressively express
typical markers of osteoblasts, including osteocalcin. This
genetic “transdifferentiation” of prostate cancer cells was
used to target the metastatic cells by a genetic approach.
Tumor metastasis was inhibited in animals treated with an
adenoviral-osteocalcin promoter-thymidine kinase suicide
construct.

The final presentations by van der Pluijm and David
Roodman focused on the biology and use of bisphospho-
nates.®*® This class of molecules was developed to treat
osteoporosis, specifically targeting bone by their ability to
be integrated in the mineralized bone matrix and to act
locally on osteoclasts to block bone resorption. Recent work
has demonstrated that bisphosphonates also have a direct
effect on cancer cells by inhibiting their attachment to the
bone matrix, inhibiting the actions of the matrix resorbing
metalloproteinases, and promoting apoptosis of the tumor
cells. The efficacy of treating patients with bone metastasis
by bisphosphonates was also demonstrated.

KEY ISSUES AND RESEARCH
OPPORTUNITIES

A wide-ranging general discussion among the partici-
pants at the workshops raised additional new questions.
What are the unique features of bone that encourage me-
tastases of tumors? What are the benefits and limitations of
our current models? What is the role of angiogenesis in
experimental models? What are the characteristics of breast
and prostate cancers that promote metastasis to bone? Why
does myeloma lead to bone destruction? Are there “hom-
ing” sites in bone microenvironment? Do chemokines play
a role in homing? What is the role of bone in providing a
“chemoresistant sanctuary” to tumor cells?

The following issues were raised during the discussion. It
is unlikely that a single experimental model will mimic the
whole process of in vivo tumor metastases. Thus, each
animal model is useful to examine certain key steps or
phases of the metastatic cascade. Also, while there may be
differences among metastatic breast, prostate, and myeloma
cells, the similarities may have critical translational impli-
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cations for treatment and prevention of cancer-induced skel-
etal fractures. The interface between bone cell biology and
tumor epithelial-stromal interactions including extracellular
matrix is critical for understanding bone metastases. Devel-
opment of transgenic animal models with tissue and cell-
specific promoters to overexpress dominant negative mutant
receptors may shed new insights into the metastatic process.
Although cell cultures are of use in studies on metastasis,
the lack of three-dimensional tissue organization afforded
by aggregate cultures or organotypic models has to be borne
in mind.

Other challenges and issues, which remain elusive, are as
follows. Do metastatic tumor cells need the extracellular
matrix of bone for adhesion and survival? When and how do
metastatic tumor cells become autonomous? Is there cell
and tissue mimicry by tumor cells to imitate the bone
microenvironment? What is the role of fibronectin and its
integrin receptors in both normal and metastatic bone for-
mation?

Finally, some topics on the subject of metastatic cancer to
bone may be topics for a follow-up workshops in future. For
example, (1) the role of angiogenesis and vascular invasion
in tumor-bone metastases; (2) the entire issue of bone pain:
causes and therapeutic approaches, and the role of cyclo-
oxygenase 2 inhibitors; (3) role of matrix metalloprotein-
ases and their cognate inhibitors such as tissue inhibitors of
metalloproteinases in tumor metastases to bone; (4) why is
bone a specific sanctuary for prostate and breast cancers; (5)
are there bone-derived growth factors, cytokines, chemo-
kines, and BMPs, which locally modify and amplify meta-
static microfoci to metastases and cause pathological bone
fractures; (6) do bone matrix components and BMPs confer
selective advantage to tumor cells in terms of chemotaxis,
mitosis, and differentiation: what is the role of stromal and
immunomodulatory cells; (7) do the sinusoidal endothelial
cells play a role in the micro-metastatic foci: how do vas-
cular endothelial growth factors and their cognate receptors
regulate initial seeding and metastatic growth?

RECOMMENDATIONS AND CONCLUSIONS

The key areas recommended for further investigation
include the following: molecular cell biology of transcrip-
tional and translational control of bone formation and re-
sorption in metastatic foci; molecular markers of bone for-
mation and resorption; genomics and proteomics of the
sequential cascade of metastasis to bone; influence of
stromal-epithelial interactions on growth, differentiation
and metastases of cancers to bone; signaling systems during
metastasis to bone; dynamic regulatory networks of cyto-
kines, chemokines, growth factors, and morphogenetic pro-
teins and cognate receptors in the interface of metastatic
tumors and bone; novel animal models based on transgenic
mice and conditional knockouts; real-time imaging of tumor
metastatic cascade and interaction with compartments of
bone; and use of the advances in molecular cell biology and
imaging of metastases to bone in molecular therapeutics
targeted to disruption of the metastatic code.

In conclusion, this timely workshop was an exciting fo-
rum for insights into the intricacies of tumor metastasis to
bone. Cancer research based on genetics, genomics, mi-
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croarrays, and proteomics has made giant strides. However,
the tumor metastases to bone and the interface has lagged
and requires renewed scientific vigor and therefore addi-
tional support. The recent advances in molecular cell biol-
ogy of bone formation resorption and remodeling augers
well for the future investigations into tumor metastases to
bone.
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Abstract

Interleukin-17 (IL-17) is a pro-inflammatory cytokine secreted by activated T-cells. Recently discovered related molecules are forming
a family of cytokines, the IL-17 family. The prototype member of the family has been designated IL-17A. Due to recent advances in the
human genome sequencing and proteomics five additional members have been identified and cloned: IL-17B, IL-17C, IL-17D, IL-17E
and IL-17F. The cognate receptors for the IL-17 family identified thus far are: IL-17R, IL-17RH1, IL-17RL (receptor like), IL-17RD and
IL-17RE. However, the ligand specificities of many of these receptors have not been established. The IL-17 signaling system is operative in
disparate tissues such as articular cartilage, bone, meniscus, brain, hematopoietic tissue, kidney, lung, skin and intestine. Thus, the evolving
IL-17 family of ligands and receptors may play an important role in the homeostasis of tissues in health and disease beyond the immune
system. This survey reviews the biological actions of IL-17 signaling in cancers, musculoskeletal tissues, the immune system and other

tissues.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interleukin-17 (IL-17A) is a cytokine secreted exclusively
by activated T-cells. IL-17 cDNA has been isolated and
cloned from the murine hybridomas (cytotoxic T lymphocyte
antigen 8 (CTLA-8)) [1,2] and has homology to open read-
ing frame 13 from the T lymphotropic Herpesvirus saimiri.
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Room 2000, Research Building 1, 4635 2nd Avenue, Sacramento, CA
95817, USA. Tel.: +1-916-734-3311; fax: +1-916-734-5750.

E-mail address: ahreddi@ucdavis.edu (A.H. Reddi).

1 TAM and DRH share first authorship.

The human IL-17A gene product is a protein of 150 amino
acids with a molecular weight of 15kDa, and is secreted
as a disulfide linked homodimer of 30-35kDa glycoprotein
[3].

Five related cytokines were identified, through database
searches and degenerative RT-PCR, that share 20-50% ho-
mology to IL-17. IL-17 has been designated IL-17A to
indicate that it is the founding member of the IL-17 cy-
tokine family. The shared features of the IL-17 cytokine
family include conserved cysteines which, in IL-17F [4],
have been shown to exhibit the features of a classic cystine
knot structural motif found in bone morphogenetic proteins

1359-6101/03/$ — see front matter © 2003 Elsevier Science Ltd. All rights reserved.
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(BMPs), transforming growth factor beta (TGF-B), nerve
growth factor (NGF) and platelet-derived growth factor BB
(PDGF-BB) [5]. IL-17F, like IL-17A, is produced primarily
in activated T-cells. In contrast, IL-17B, IL-17C, IL-17D,
and IL-17E are expressed in a wide assortment of tissues.
Their functions partially overlap those of IL-17A, although
they have not been as thoroughly investigated.

The receptor for IL-17A (IL-17R) is a single-pass trans-
membrane protein of approximately 130kDa. While the
IL-17A cytokine is expressed only by T-cells, its receptor is
expressed in all tissues examined to date. The activation of
the receptor by IL-17A generally results in the induction of
other pro-inflammatory cytokines, through the activation of
NF-kB.

Four additional receptors have been identified, through
database searches, which share partial sequence homology
to IL-17R. Of these, only IL-17RH]1 (also called IL-17B re-

TA. Moseley et al./Cytokine & Growth Factor Reviews 14 (2003) 155-174

ceptor) has been shown to bind to IL-17 cytokines, namely
IL-17B and IL-17E [7,36]. IL-17 receptor-like protein (also
called IL-17RL or IL-17RC), IL-17RD (also called SEF or
IL-17RLM) and IL-17RE have only been identified by se-
quence similarity to IL-17R. Many of these receptors exist
as alternatively spliced isoforms, some of which may not
contain transmembrane or cytoplasmic domains, and thereby
may be acting as soluble decoy receptors. They exhibit a
broad tissue distribution, and not much is known about their
functions or signal transduction pathways.

With the newly identified family of IL-17 cytokines and
receptors, and their expression in disparate tissues, the scope
of IL-17 cytokine activity and expression extends beyond
the T-cell immune system mediated inflammatory response.
IL-17 cytokines and their receptors thus may play an impor-
tant role in the homeostasis of tissues and the progression
of disease.
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Fig. 1. IL-17 cytokine family alignment: alignment of human IL-17 cytokine family members shows their common features. Darker shading and boldfaced
type represent sequence identity. The conserved cysteins are in red which may be involved in intra- and inter-chain disulfide bonds. The dendrogram

shows how these cytokines are evolutionarily related.
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2. IL-17 family overview

Proteins with significant homology to IL-17 have been
identified recently with the continuing advances and accu-
mulating information in expressed sequence tags (ESTs), ge-
nomics and proteomics databases. Some of these cytokines
have alternative names as they were originally identified in
other systems. These related proteins have been grouped and
designated IL-17A-F. Fig. 1 shows an alignment of human
I1.-17 cytokines, with identical residues darkly shaded and
boldface. There are five highly conserved cysteines high-
lighted in red, four of which have been shown to form a cys-
tine knot in the crystal structure of IL-17F {6]. This cystine
knot is similar to a common structural motif found in growth
factors such as BMPs, TGF-Bs, NGF and PDGF-BB, except
that in these other growth factors the cystine knot is formed
with six cysteines rather than four. Similar to many growth
factors, members of IL-17 family of ligands are expressed as
tightly associated dimers (IL-17B) [7] or disulfide-bonded
homodimers (IL-17F) [6].

The dendrogram shown in Fig. 1 depicts the interrela-
tionships and the degree of similarity amongst the members
of the IL-17 cytokine family. IL-17A and IL-17F share the
highest degree of homology, being 50% identical to each
other. It is interesting to note that these also map to the same
chromosomal location, 6p12. IL-17B through E are less re-
lated, sharing only 16-30% identity at the primary sequence
level, and they each map to a different chromosome. The
accession numbers, chromosomal locations in the human
genome, and alternative names are presented in Table 1.
These cytokines are well conserved in the mouse, with
62-88% similarity between the human and mouse homologs.

Proteins with significant homology to the IL-17 receptor
have been identified using sequence similarity searches of
genome databases. These proteins share only limited simi-
larity with each other, and do not contain conserved domains

present in other proteins. All are single-pass transmembrane
proteins with an extracellular amino-terminus. The acces-
sion numbers, chromosomal locations in the human genome,
and alternative names are presented in Table 1. These re-
ceptors are well conserved in the mouse, with 68-90% sim-
ilarity at the protein level between the human and mouse
homologs. IL-17RH1 and IL-17RD are both mapped to the
same chromosomal location, 3p21.1, as are IL-17RL and
IL-17RE which both map to 3p25.3.

The genomic structure of the IL-17 receptor family of
proteins is shown in Fig. 2. All receptors are transcribed
from multiple exons, ranging from 11 in IL-17RHI1 to
19 in IL-17RL. With the notable exception of IL-17R,
there is extensive evidence of alternative splicing of these
receptors, which is diagrammed by lines connecting ad-
jacent exons in splice variants in Fig. 2. The alternative
splicing of IL-17RH1 and IL-17RL has been shown to
create frame-shifts and introduce stop codons which result
in secreted soluble proteins [8,9]. These soluble proteins
presumably retain their ligand-binding properties, yet lack
signal transduction capability thereby acting as soluble de-
coy receptors. There is also evidence of alternative splicing
of IL-17RE in the EST database, although the effects on
the protein have not been documented. Alternative tran-
scription start sites are evident in the various isoforms of
IL-17RD, which produce proteins named IL-17RLM long
and IL-17RLM short, and there are reports of an alternative
translational start site in this gene which produce a protein
named SEF [10,11].

3. IL-17 family in cartilage and arthritis
To provide a suitable context for understanding the actions

of IL-17 cytokines in cartilage and arthritis, we provide a
brief overview of cartilage function and tissue homeostasis.

Table 1
Identification of IL-17 family
Name Alternate Alternate Chromosome Human protein Human mRNA  Mouse protein Mouse mRNA  Homolgy to
name 1 name 2 location accession accession accession accession human (%)
number number number number
Ligands
IL-17A CTLA-8 6p12 NP_034682 NM_010552 NP_034682 NM_010552 62
IL-17B CX1 NERF 5932 NP_055258 NM.014443 NP_062381 NM_019508 88
IL-17C CX2 16924 NP_037410 NM_013278 NP_665833 NM._145834 83
IL-17D IL-27 IL-27A 13q11 NP_612141 NM_138284 NP_665836 NM_145837 78
IL-17E IL-25 14q11.1 NP_073626 NM._022789 NP_542767 NM_080729 81
IL-17F ML-1 6p12 NP_443104 NM_052872 NP_665855 NM_145856 77
Receptors
IL-17R IL-17AR 22q11.1 NP_055154 NM_014339 NP_032385 NM_008359 68
IL-17RH1  IL-17BR Evi27 3p21.1 QINRM6 NM_014339 Q9JIP3 NM.019583 82
IL-17RL IL-17RC 3p25.3 NP_116121 NM_032732 NP_598920 NM_134159 71
IL-17RD SEF IL-17RLM 3p21.1 AAMT77571 AF458067 NP_602319 NM_134437 90
IL-17RE 3p25.3 NP_653241 NM_144640 NP_665825 NM_145826 82

A list of known IL-17 family ligands and receptors with their alternate names. The National Center for Biotechnology Information (NCBI) accession
numbers for human protein and mRNA as well as their mouse counterpart. The percent homology is based upon human and mouse protein sequence

similarity.
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Fig. 2. IL-17 receptor family genomic structure: a schematic representation of the sizes of exons (open boxes) and introns. Shaded areas correspond to
the predicted transmembrane domains. Lines connect exons that were joined in sequences from the EST database which represent alternative splicing
events. Exons with (') or (") have multiple splice donor or acceptor sites evident from sequences in the EST database.

Articular cartilage is a critical component of diarthroidal
Joints, providing a low-friction surface for articulation. The
major components of cartilage matrix include aggrecan,
hyaluronic acid, and type II collagen. Aggrecan is a proteo-
glycan with many negatively charged glycosaminoglycan
(GAG) side chains, which functions to retain water and pro-
vide resistance to the compressive forces encountered in the
joint. Type II collagen provides resistance to tensile forces
and helps maintain tissue stability during articulation.

Arthritis is a degenerative disease of articular cartilage
causing gradual permanent compromise of joint function.
Although the incidence of arthritis increases with advanced
age, it can affect people of any age. It already affects more
than 42 million Americans in its chronic form, and by the
year 2020 the United States Center for Disease Control esti-
mates that it will affect more than 60 million, with 12 million
disabled by the disease. Osteoarthritis is a non-inflammatory
disease thought to be caused by the “wear and tear” of
life, perhaps accelerated by physical damage to the joint.
Rheumatoid arthritis is considered an autoimmune disease
marked by increased joint inflammation, T-cell infiltration
of the synovium, and the involvement of many catabolic
cytokines.

Progressive destruction of articular cartilage and bone
along with chronic inflammation of the synovium are
well documented in rheumatoid arthritis. The infiltration
of T-cells into the synovium and the resultant pathology
involves a dynamic interaction between the subintimal en-
dothelial cells and the synovium. Activated T-cells secrete
detectable amounts of interleukin-17A into the synovial
fluid [12]. These increased levels of IL-17A induce a mul-
titude of factors contributing to the degradation of the
articular cartilage and erosion of the underlying bone.

3.1. Ex vivo modeling systems help elucidate IL-17s role
in joint destruction

Interleukin-17A consistently up-regulates IL-6 [13-20]
in both explant cultures and cell cultures of cartilage, syn-
ovium, and bone tissues. Interleukin-6, a potent mediator
of inflammation in joints, is known to contribute to the
overall degradation of cartilage in rheumatoid arthritis.
Interleukin-17A has been shown to up-regulate nitric oxide
(NO) production and also to increase the mRNA levels of
inducible nitric oxide synthase (iNOS) in osteoarthritic car-
tilage, fetal bone, and meniscus explant cultures, as well as




TA. Moseley et al./Cytokine & Growth Factor Reviews 14 (2003) 155;1 74 159

in cultured osteoblasts and chondrocytes from both normal
and osteoarthritic cartilage [13,21-25]. Increased NO levels
lead to destruction of the extracellular matrix and chondro-
cyte damage, contributing to the overall reduction in joint
function [26,27].

The enzymatic degradation of cartilage proteoglycans and
collagen is mediated through the release of matrix metallo-
proteinases (MMPs) and plays an important role in arthritis
[17,28]. IL-17A has been shown to enhance matrix degrada-
tion by inducing the release of cartilage proteoglycan GAGs
and collagen fragments, and at the same time inhibit the syn-
thesis of new proteoglycans and collagens [17,18,22,29-31]
The anti-inflammatory cytokine IL-4 has been shown to
overcome the IL-17A-induced inhibition of proteoglycan
synthesis by chondrocytes [26,27].

Interleukin-17A has been shown to synergistically or ad-
ditively augment many of the destructive effects of IL-1 and
tumor necrosis factor alpha (TNF-a) in cartilage, synovium,
and meniscus [14,18,19,23]. These cytokines have both been
shown to promote arthritic disease, and inhibition of their
activity by function-blocking antibodies and soluble recep-
tors or antagonists are currently being evaluated clinically
for the treatment of arthritis. While synergy between the
IL-17A and IL-1p pathways has been documented, studies
in IL-1B knockout mice have shown that IL-17A also pro-
motes arthritis in an IL-1f independent manner [32].

The increased levels of IL-17A in the synovial tissues and
fluid of rheumatoid arthritis patients can be a stimulator of
osteoclastogenesis through the up-regulation of osteoclast

Extracellular Matrix

differentiation factor (ODF, osteoprotegerin) [33]. Since 0s-
teoclasts function to resorb bone, their increased numbers
and prolonged survival may be contributing factors to the
bone erosion that is common in arthritis (reviewed in [109]).

The direct catabolic actions of IL-17A on cartilage
renders it a potential target in therapeutics for arthritis
[18,22,30,32,34]. Studies using a soluble IL-17 receptor
have shown that blocking IL-17A activity can inactivate
many of its negative effects in animal models of arthritis
and in cell culture experiments.

Table 2 shows a survey of the biological activities of IL.-17
cytokines in musculoskeletal tissues with references to the
primary literature. Fig. 3 is a diagrammatical representation
of a chondrocyte highlighting the various matrix compo-
nents and how they are influenced by the anabolic growth
factors and catabolic cytokines. It illustrates the complex re-
lationships between these many factors.

Interleukin-17A has been the primary IL-17 family mem-
ber studied in arthritis. IL-17F and IL-17E have a similar ef-
fect on cartilage proteoglycan release and inhibition of ma-
trix synthesis [6,24,35]. The source of IL-17A and IL-17F
are the activated T-cells, and it was unclear whether carti-
lage itself could produce IL-17 cytokines.

3.2. Identification of IL-17B in articular cartilage extract

We hypothesized that there were anabolic factors and
inhibitors in articular cartilage that were yet to be identified
and used a protein chemistry approach to examine an extract

Anabolic Cytokines
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Fig. 3. Cartilage metabolism: a graphical representation of articular cartilage showing the complex relationship between anabolic growth factors and

catabolic cytokines involved in extracellular matrix maintenance.




SISoYuAS

VLI-11 + amno juedxg

181'L1l VLI=T1-hue Aq penqiyuj 0-ANLL Yim wsidiouds 10D 1 ‘uonepesdop j-10D ‘9-| 4
OF-I 3o 19942 ou
el ‘g1 yum wsiBiouds oN €1-71 ‘v11 Aq panquyu] D-INL Y wsidiouds uidgod ‘YNYw 0g-dIN ¢ VLI-T + oy 13D
YANL A1 uadefjoo 1 2dKy
lig'zed dAqnjos im aAnIppe DE-dIN ‘9-T1 Jo spndadoid-) “0¢-dIN ‘'9-11 T ULI-TI 29N10s + umind 3D  wnlAouks projewnayy
wniAoukg
Jonqiyui ad-IN ursKjowons VLIl + s3aikooipuoyd
let) 8¢d *auoseyiawexap Aq pauquyu]  ‘ged INT ‘71 M¥F ySnowys sjeudis  'Z-X0D ‘SON! ‘9T ‘gl-TI "ON ¢ feuniou s3essed 15] Jo Arewug sajhoospuoy)
wwasaid sIoNqIyul V)Id Yim 0-g¥] ‘8¢d ‘9/g-NNN
- 112]  Auo MNI/MdVS ut a8uey) ‘Tobd “U1-MEW uoneandy |
S stouquyul Z/1-M9n dI7 Yyum TIMdVAdVIN
o4 l1e] g1-T1 yum £313uks oN ‘g¥-dAN '8¢d *OMd ‘'Vid SAIPPE ‘O-ANL Yim wsIIaudg Jo uoneande ‘SON! ‘ON + VLI-TI + saikdoipuoyd padesseq a3ejiued vO
< YLI-TI 31qnIos jo wnowe Suiseasour P IAGS|
) Leg] Yim shuyue jo QGASS T SIqNos + SNUYWE PIdnpul-lueAnipyY
m uoissaidxa apou ydwkj i -1
W\ 49} g-401 w a8uryd oN TU T CANAL GNL VLI Shuyue paosnpui-luean{py shiuyue jey
-~
& OWEd
& Ul YNYW vLI1-T1 1038 10u upkwouot + VINd ‘-1 ‘S1-TI sianed
& [ct]  op 911 ‘8-T1 *©-dNL *Sd1 £q DNgd W VNYW VLI 4 VO tou 1nq WY Ut G- L1-T 4 S12A3] unjoIkd piny [eIAOULS suuyuY
g J1BI SISOYIUAS uonBWIWRY UL $9auy asnow
m fog] ues[Soa101d uo 1932 oN 1 “uaoo uedkiSoslord afeum) 1 ot suondsfui vz -1 9dump
” uonewiwIRgUl 3|qeIdAP saauy
= log] J0 uonen[yur AL503N3] oN WU uesk[oatoud aejre) t asnow ot uwondafur .- S[Suls
£ skemyied yieap a1£01puoyd VLI-T A+
© i1sl g/01-11 Jo 1wspuadapuy Aaads suuyue ‘gl-11 “IINVY ¢ Shuyue pasnput-jj uadejjo)
3 aseajas ualde)jod
w Lozl DdO uo 1343 oN “19d0 9 ‘T ‘VLISTL T - + shuyue paonput-j] usdejjo)
M Kemyied
< lzel ¢1-11 Jo wapuadapuy shuyue sHqiyul v.o1-11 Subpolg uonangsap utof siswsne v -] YNAW VLTI 4 stilyue paonpui-if uodejjo) Shuyue asnopy
W aseajas ueoA[Soaroud
s is1] 0-INL Yim wsidisulg 4 ‘sisaqiuks ueakjSostang 1 VLI-T1 + aupnd edxs aejjaed sueldxa ae|ue)
< v6-94 ‘1-dLL *1-40]
< lez] ‘19401 “€1-1 ‘v11 £Q PaNQIYUL  ©-INLL “INSO 0= Ynm wsiS1ouks aseajas uase|o) |
= 34! aseajar uedk[Foajong | VL1-T1 + wejdxa afejiues [eseN
< VLI=TI + wweidxs
& [sz]  suoseyiawexap jo 1ways oN SIONQIYUL GX-dN ‘IPIWIXYO|ILD) ON | a3e[IdeD JRjNOILE DLUYURO3ISO
VNYW A-Nidl *$-T1 SISaYIuAs L0 VLI- L+
(74 ‘P11 ‘T-11 ui a8ueyd oN utuounde JJ1-nue Aq panqiyu] 0171 Yum anppy  wesf[Soajoxd 1 *ON ‘eseuedasSly | juedxa a8ejiued Jenoiuy
diT-nue sisayiuds ueok|3oarosd 401 Ve +
los*s¢] ‘duosByIawexap Aq panqujuj V1-T] Yum sAnppy T ‘umopjeaiq xinew ‘ON | weldxs afepiued Jenowy
stsayiuks ueokj3oaroad
9] T 971 ‘oseajar xmep {  42{-7] + uejdxs a3epiues Jepnoy siepdxa adejiue)
asejae)
ELETETEN uoneNpow oN uonenpow anesSaN SUOIIRIAIU] JANISOY s1aga [eardojorg walshs [apoy anssi],

160

SINSS [ID[SYSO[NISNUL UL SIUOIAD /-] JO MIIATY

[ACLA R




161

TA. Moseley et al./Cytokine & Growth Factor Reviews 14 (2003) 155-174

‘SONSSI} [BIO[ONSONOSNW PAje[al Uy Ajrwey ouryolko L1-I1 9 JO seniAnoe [eoiSo[olq sy Jo Aoamns € syuosaider siyy,

[ez]

[81]

[zzl

{651

[z2]

[oz]

legl
(85}

lo1]

[Lg]

[9¢]
(i41]
VA1)

[ss]
frsl

[61]

[s1]

WNACUAS
VO Ul YNJW 9-TI 1995¢
jou pip YLI-II Slqnjos

asedjal 8D uo g1-T1

PUe VLI-TL JO 39359 ON
iAnanoe

VLI-T1 Juepusdoput-gy-IN
‘Dd0O 01 2ARISUasU]

eseun] VAL
rdrpd 3o wreansumoq

9-TI Y wsiSouks oN
selpoqnue SUIZIfRINou
VLI-TI-0ue £Q paNqIyui 10N

WLI-TI UO SUIDBYISWOPUL JO
auyiyxojuad Jo 30919 ON

uorssaidxe
1-dNLL UO 19950 ON

uononpoid y.1~TI
uo j00h° ou pey OI-TI

AL1-TI d1qnjos £q payoo[q Ajjenred

@-AN
Supjoolq Aq pomquur Affened

T-X0D
JO SIONqUUI ‘V.LI-TI-0Ue ‘DJO
g%-IN Suryoo[q 4q panqryuy

vsD £q panqiyui 19359

T-X0D 3upjoojq £q panqryug
soseurny QUISOIA) pue

O31d ‘8¢d Sunjoo[q Aq penqiyup

41T Jo uononpoxd
paNquul ¢1-11 pue -1

uoponposd panquut €1-1 Pue $~TI

1-711 30 ANL

gJ1-T1 pue ©-ANL Pim wsiSIouls s zg uipueSessoxd | ‘ON |

SISOUIUAS
10D 1 ‘uonepesdep 10D ‘9 4

uadeyjod
1 2d4y jo epndedoid-) ‘9-r 1

VLI-TI yim osesfar e) |

2seala1 8D ‘ON

9m 4

7dOd ‘dvidl
0-INL Wia LU0 ZSON ‘ON +

sise[qoaiso £q 9-1 4

7daod (9do =) 4100 ¥
QuOSBYIOWEXP :

‘ajexonoyiow ‘ul0dsojoko
Yim 9SBaIdUL S[AAS] JYLI-TI g-010 ‘v-010 ‘g-11 |

g1-T wim wsiSrouks AT ‘9°T 4

111 P 2amppy T-dINN ¥

19g59 Hfoqees
0} soje[e1I00 uoIssardxd vL1-1I 4
VLI-TI Y wsiSouks THHd ‘81 ‘9T 4
1030

[enuenbas “0-INL pia wsiSiouks  wojord 9~ | Jeteasd ‘YW 911 |

9~TI ‘VLI-T1 9onpoxd suejdxg

VLI-TL + 2mymno jue[dxd Snosmua|y

VLI1-H + swedxe auog

MLIVTI 2qnjos + siuejdxo suog

0-INL
pue VL[~1[ + 21mmo yepdxg

0-INL

pue VL1~ + exmjno jueidxg
07AD 10 T-UieyIopus

QM yLI-TL -+ [mano 1)
VLI-TI + S[[90 moirews

QUOQ YilM SISE[QORISO AM[NI-0])
VLI-TL + [1mpuo [[3)

S[[90-], PajeAnoE

puE S$ISE[QOS)SO JO AUM[NS-0D)

VLIV + 23no fi3)

VLI-TL + 25ymd [18D

VLI + [Imnd 33

VLI-T + 23mmo |3

jueq

[199-1 Sunsar yim umno-0d [[2)
S[199-L Sunsal PIM AIM[MI-09 [[2D

VLI + 21m[md {[3)

aim[no epdxg

10STUSW ONLIYMEBOS)ISO
SOSHIAIN

(vy) swejdxo suog

auoq [e1eg

158[q0215Q
auog

$I5B[QOIqQY [RIAOUAS




162 TA. Moseley et al./Cytokine & Growth Factor Reviews 14 (2003) 155174

of 2kg of bovine articular cartilage. Cartilage proteins
were extracted in guanidine, fractionated on cation ex-
change and reverse-phase HPLC columns, then run on 2D
SDS-PAGE. One protein identified using this technique was
the then-unknown IL-17B, and based on the intensity of the
Coomassie-stain we estimate that it is present at a concen-
tration of about 50 ng/g of bovine articular cartilage. The
presence of IL-17B mRNA in chondrocytes was confirmed
using northern blot and RT-PCR. Fig. 4 shows the expres-
sion of IL-17B by immunohistochemistry of chondrocytes
in three zones of normal bovine articular cartilage. While
the surface chondrocytes show little reactivity, the mid and
deep zones are IL-17B positive. The polyclonal antibody

to IL-17B shows no cross-reactivity to IL-17A, although it
has not been tested against the remaining IL-17 cytokines.

The presence of IL-17B in cartilage and its synthesis by
chondrocytes led us to search for the presence of additional
IL-17 receptors in cartilage. Immunoblot of cartilage ex-
tracts show the presence of both the long and short forms
of IL-17RH]1. The long form of IL-17RH! is a transmem-
brane receptor which has been shown to bind to IL-17B and
IL-17E and cause activation of NF-kB [36]. Alternatively
spliced variants of this protein are secreted as soluble pro-
teins since they lack the transmembrane domain.

We have identified and cloned a third receptor sharing
~22% identity and 34% similarity with IL-17R and named it

Surface
Chondrocytes

Mid-Zone
Chondrocytes

Deep Zone
Chondrocytes

Fig. 4. Chondrocytes in bovine articular cartilage highly express 1L-17B: immunohistochemistry of articular chondrocyte cell surface shows IL-17B
expression in mid and deep zones but less in surface zone. This figure is a compilation of three separate images taken on a Zeiss LSM 510 confocal
microscope. Staining of IL-17B was done using IL-17B specific rabbit antibody (anti-N-terminal-IL-17B) followed by FITC labeled anti-rabbit IeG

secondary antibody. Nuclear staining was done by propidium iodide.
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Fig. 5. Interleukin-17 receptor-like molecule (IL-17RL) is expressed in
human articular chondrocytes: immunohistochemistry of chondrocytes
in mid- and deep-zone articular cartilage show surface expression of
IL-17RL. Image was taken on a Zeiss LSM 510 confocal microscope.
Staining of IL-17RL was done using IL-17RL specific rabbit antibody
(anti-N-terminal-IL-17RL) followed by FITC labeled anti-rabbit IgG sec-
ondary antibody. Nuclear staining was done by propidium iodide.

IL-17 receptor-like (IL-17RL) [9]. The cytoplasmic domains
of these proteins are even more conserved, sharing 25%
identity and 41% similarity across their membrane domains.
Fig. 5 shows that IL-17RL is produced by chondrocytes in
the mid- and deep-zone human articular cartilage. As with
IL-17RH], alternatively spliced variants of this protein are
also secreted since they lack the transmembrane domain. The
antibody used for histochemistry in Fig. 5 recognizes the
extracellular domain and thus cannot distinguish between
soluble and transmembrane isoforms.

During development, cartilage is formed by the actions
of anabolic growth factors including bone morphogenetic
proteins (BMPs), cartilage derived morphogenetic proteins
(CDMPs), and growth and differentiation factors (GDFs).
In diseases such as arthritis, cartilage is destroyed through
the actions of catabolic cytokines including IL-17, IL-1,
and TNF-a.. During the homeostasis of healthy tissues, it is
likely that there is a balance between anabolic and catabolic
factors. The exact composition of factors contributing to this
balance may affect a tissue’s potential for repair and regen-
eration. Although bone and articular cartilage are adjacent
tissues there is a profound difference in their potential for
regeneration and repair; articular cartilage is recalcitrant to
repair while bone has immense potential for regeneration.

The differences in innate regeneration potential may be
due to concentration of morphogens and associated binding
proteins such as noggin chordin and DAN family [37]. For
example, in partial thickness defects confined to articular

cartilage there is no attempt to initiate repair. However, in
full thickness defects, when the subchondral bone is pen-
etrated, there is initiation of repair of articular cartilage
implying a role for subchondral bone. The bone matrix is a
repository of bone morphogenetic involved in cartilage and
bone morphogenesis. Thus, the difference between bone and
articular cartilage may be due endogenous growth factors
and morphogenetic proteins and associated binding proteins
and catabolic cytokines. Other factors that may influence
the lack of repair of damaged cartilage are that cartilage
is a tissue comprised of immobile cells fixed in a tightly
cross-linked extracellular matrix. Also, unlike in bone, in
cartilage there is no population of mesenchymal progenitor
cells. The initiation of cartilage morphogenesis is governed
by BMPs. The newly formed articular cartilage is maintained
by insulin-like growth factor-1 (IGF-1) and platelet-derived
growth factors (PDGFs). The homeostasis of articular carti-
lage is the function and balance of anabolic morphogenetic
proteins, and catabolic cytokines such as interleukin-1
(IL-1), interleukin-17 (IL-17), tumor necrosis factor alpha
(TNF-a). Therefore at steady state the articular cartilage is
maintained by an interplay between cartilage morphogens,
cognate antagonists and catabolic cytokines (Fig. 3).

4. 1L-17 in cancers

The mis-regulation of growth factor pathways is a com-
mon feature of many cancers. Although there are no pub-
lished reports describing genetic linkage of either IL-17
cytokines or receptors directly to cancers, there is evidence
that IL-17s are active in cancers. IL-17A has been shown to
promote angiogenesis in tumor models and correlates well
with the numbers of blood vessels in human ovarian cancers
[38]. IL-17A promotes tumorgenicity of human cervical tu-
mors in nude mice and is associated with an increased level
of IL-6 expression at the tumor sites [39]. Increased levels
of IL-6 correlate well with the invasiveness of cervical tu-
mors [40]. These reports indicate a role of IL-17 cytokines
in promoting tumor. However, other lines of evidence
indicate that IL-17A may protect against tumors by pro-
moting immune system-mediated tumor rejection [41-43].
Table 3 is a survey of the biological activities of IL-17s in
cancers.

4.1. IL-17 in prostate cancer

Prostate cancers generally metastasize to bones such as
the spine and the pelvis. Prostate metastases lead to both
osteoblastic and osteolytic lesions in bone. The dynamic
regulatory networks at the interface of prostate carcinoma
metastases and bone are indicated in a simplified form in
Fig. 6. The interactions between stromal cells and epithe-
lial cells are critical for tumor progression and metastasis
in prostate. The carcinoma cells secrete morphogens and
growth factors such as BMPs, IGF and TGF-§ which act on
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Table 3

Review of IL-17 cytokines in cancer

Tissue Model system Biological effects Positive Negative No modulation Reference

interactions  modulation
Prostate carcinoma  Biopsy Altered IL-17RL distribution [9]
in grades of cancer

Fibrosarcoma IL-17A overexpression, 1 Rejection of IL-17A T-cell Anti-CD4,  Anti-asialo GM1 [41]
rejection model expressing tumor cells dependent CD8, CD%

CHO cells IL-17A overexpression, 1 Matrigel invasion, lung No effect on proliferation, [42]
nude mice mets, NK activity sq tumor growth
Cell culture + IL-17B No effect on IL-6, IL-8, [71

TNF-a, IFN-y, IL-3,
G-CSF

Leukemic monocyte THP-1 cell culture 1 TNF-q, IL-1B No effect on IL-6, IL-la,  [60]
+ IL-17B IFN-y, G-CSF
THP-1 cell culture t TNF-a, IL-18 No effect on IL-6, IL-1a,  [60]
+ IL-17C IFN-y, G-CSF

Murine leukemia Viral integration site 1 Evi27 in murine myeloid {8]
analysis leukemias

Cervical tumors Cervical tumor cells 1 IL-6, IL-8 mRNA, protein No effect on in vitro [39,40}
+IL-17A proliferation
IL-17A overexpression, 4 Tumor size, macrophage 39]
nude mice recruitment, IL-6

Hematopoietic IL-17A overexpression, | Tumor size in No effect on tumor size in  [43]
mice immunocompetent mice nude mice

Ovarian cancer Ovarian cancer biopsy + Correlation between No correlation to tumor [38]

IL-17A and angiogenesis

stage, survival

This represents a survey of the biological activities of the IL-17 cytokine family in cancer.

CARCINOMA

Fig. 6. Cancer metastasis to bone: a graphical representation of the authors views of how the

ry

NORMAL
EPITHELIUM

Osteoblasts

-~
TGFp
BMPs
%
PTH
PTHrp

Stromal Cells

32‘53,%'2?& Osteoclasts

can lead to the progression of osteosclerosis as well as osteolysis.

progression of a metastatic tissue such as prostate cancer




TA. Moseley et al./Cytokine & Growth Factor Reviews 14 (2003) 155-174 165

Normal
Prostate
Tissue

Prostate
Carcinoma

Gleason Grade 3 Gleason Grade 9 Gleason Grade 9

Fig. 7. Interleukin-17 receptor-like molecule (IL-17RL) is expressed in human prostate: immunohistochemistry of normal prostate and increasing Gleason
grades of prostate cancer show surface expression of IL-17RL. The cancerous tissues show some evidence of a shift from epithelial expression to stromat
expression as the cancer becomes more severe. Image was taken on a Zeiss LSM 510 confocal microscope. Staining of IL-17RL was done using IL-17RL
specific rabbit antibody (anti-N-terminal-IL-17RL) followed by FITC labeled anti-rabbit TgG secondary antibody. Nuclear staining was done by propidium
jodide (image used with permission of the author, D.R. Haudenschild and publisher).

cells in the bone. In response to PTH and PTHrp osteoblasts cleate osteoclasts. The bioavailability of RANKL to its
and stromal cells secrete RANK ligand (RANKL) which receptor RANK is determined by the activity and affin-

binds to receptor activator of NF-kB (RANK) on osteo- ity of a soluble decoy receptor osteoprotegerin (OPG)
clast precursors to differentiate into functional multinu- to RANKL. Interleukin-1, interleukin-17, tumor necrosis
IL-6, IL-8 and

Other Response
Genes

¢
**IL-HC

IL-17RL
Decoy Receptor

8o,
IL-17E
®

blLdg

+
ILA7A A ( I§-17F + +IL-1 7D

Fig. 8. Cellular signaling of IL-17 cytokines: a graphical representation of the known IL-17 cytokines and ligands. The transmembrane receptors as
well as their soluble decoy receptor versions are shown. Some of the signal transduction pathways are represented with question mark in the place of
unknown pathways. There are no known receptors for IL-17C, IL-17D and IL-17F. There are no known ligands for IL-17RL, IL-17RD or IL-17RE.
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factor (TNF) and their cognate signaling systems have a role
in osteoclastogenesis. The degradation of bone matrix by
multinucleate osteoclasts releases growth factors and mor-
phogens from the extracellular matrix. The regulatory net-
works in the breast/prostate cancer metastasis to bone are
reciprocal and dynamic as illustrated by the secretion of
BMPs, IGF and TGF-$ family of ligands, cognate receptors
and antagonists and binding proteins for the growth factors
and morphogens. The binding proteins include IGF-binding
proteins, latent TGF-B binding proteins and BMP antago-
nists Noggin, Chordin, Gremlin, Cereberus and DAN. The
interleukin-17 family of cytokines may thus play a role in
bone resorption and lead up to osteolytic fractures.

IL-17A is expressed only in T-cells. We therefore
searched for the expression of other IL-17 cytokines in
normal and cancerous prostate to gain insight into their
possible roles in this tissue. Current versions of the EST
database indicate that IL-17B, IL-17C and IL-17E cy-
tokines are expressed in the prostate. We have shown that
IL-17RL is expressed in human prostate by immunohisto-
chemistry and RT-PCR [9]. It is noteworthy that in prostate
carcinoma the immunoreactivity to extracellular domain
shifted to the stroma with advancing Gleason grades, and
that there is a progressive loss of staining in the epithelium
(Fig. 7). We have quantitative RT-PCR (TagMan) evidence
that exon usage is tissue specific which implies that there
are regulatory factors that control the RNA splicing of
IL-17RL.

The presence of soluble IL-17RHI1 and IL-17RL decoy
receptors, and the tissue-specific regulation of IL-17RL
mRNA splicing to generate different receptor isoforms, hint
that the regulation of IL-17 pathways is complex and tightly
regulated.

5. IL-17 signaling pathways

The emerging knowledge about the IL-17 family and
IL-17 receptors has set the stage for investigation of signal-
ing pathways. IL-17 Receptor (IL-17R) activates extracellu-
lar signal-regulated protein kinase (ERK), c-jun N-terminal
kinase (JNK) and p38 MAP kinase pathways [13,21,44,45].
These signaling pathways result in up-regulation of IL-6,
IL-1 and NF-«B [46]. The current status of the signaling
pathways is presented diagrammatically in Fig. 8, and in
Table 4. The emerging novel receptors include IL-17RL
(also designated IL-17RC), IL-17RD and IL-17RE. The fact
that IL-17 family of ligands unexpectedly revealed a cystine
knot similar to the BMP/TGF-, PDGF and NGF indicate
the potential for cross-talk with other morphogen signal-
ing pathways. The potential for IL-17RL and IL-17RH1
to exist as both soluble decoy receptors and signaling
transmembrane receptors presents an additional level of
control. The soluble decoy receptors may bind to the IL-17
family of ligands selectively and reduce or eliminate their
bioavailability.

6. IL-17 biological activity in other tissues

Interleukin-17 cytokines have been studied in a variety of
other tissues and diseases. A large body of evidence shows
that IL-17A and IL-17F (ML-1) are involved in asthma.
Asthma is marked by the recruitment of neutrophilic leuko-
cytes into the airway, a process thought to be regulated by
T-cells through pro-inflammatory cytokines such as IL-6 and
TNF-a. IL-17A and IL-17F expression are increased in asth-
matic versus normal patients, and both cytokines have been
shown to induce IL-6 and IL-8 expression [7,29,34,35,103].
This topic is nicely reviewed in [47-49]. Tables 5 and 6
present a survey of the biological activities in the immune
system and various other tissues not discussed individually
within this text.
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