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Chapter 1 

Executive Summary 

This report summarizes the work on "Joint Space-Time Coded Modulation and Channel 
Coding over Fading Channels with Cochannel Interference " carried out at the NJIT from 
July 1999 to August 2002. The main contribution of this work was to develop algorithms for 
adaptive arrays for wireless communications and analyze their performance in fading channels 
with cochannel interference. The research covers several topics that are summarized below. 

We first studied the performance of coherent detection scheme for adaptive arrays over 
wireless channel. For adaptive arrays, optimum combining (OC) is an excellent processing 
technique to combat multipath fading and suppress cochannel interference. In this report 
we present new methods to derive closed-form expressions for the exact bit error probability 
(BEP) for optimum combining ([1], [2]). Our method differs from previous ones in that it 
starts from the decision metrics of OC instead of the moment generating function. This 
approach facilitates obtaining closed-form expressions. The final expression is for multiple 
interferers and multiple reception branches, with the number of interferers less than the 
number of reception branches. We assume that the modulation is binary phase shift keying 
(BPSK), and the channels are independent Rayleigh fading channels. With these expressions 
for BEP, evaluating the performance of OC is easy and accurate. 

OC is a coherent detection scheme. To implement it, the following channel information 
is required: the channel gain (including amplitude and phase) of the desired signal, the 
covariance matrix of the interference plus noise. For communication systems where channel 
phase is very difficult or impossible to recover, OC is not practical and noncoherent detection 
is necessary. We propose a noncoherent detection scheme for adaptive arrays ([3], [4]). The 
scheme is called multiple symbol differential detection (MSDD), in which the channel gain of 
the desired signal is unknown to the receiver, but the covariance matrix of the interference 
plus noise is known. The maximum likelihood decision statistic is derived for the detector 
and its performance is demonstrated by analysis and simulation. To reduce the computation 
complexity of the MSDD decision statistic, we present a sub-optimum decision feedback 
algorithm for iterative symbol detection. This sub-optimum algorithm achieves performance 
that is very close to that of optimum algorithm. A closed-form approximation to the union 
bound of pairwise error probability is shown to provide a good approximation to the bit 
error probability. We show analytically and numerically that with an increasing observation 
interval, the performance of this kind of MSDD approaches that of OC with differential 
encoding. We also develop MSDD for another kind of noncoherent detection where the only 



required channel information is the channel amplitude of the interference. It is shown that 
when the interference level is high, this MSDD technique can achieve good performance. 
This work was presented in [5]. 



Chapter 2 

Introduction 

2.1    Motivation 

In modern commercial wireless communication systems such as code division multiple access 
(CDMA) systems and time division multiple access (TDMA) systems, the cellular concept is 
widely applied to increase system capacity [6]. Under this concept, the entire service area is 
divided into small areas called cells. Several cells comprise a cell cluster. A cell cluster uses 
all the available resource. For TDMA the resource is frequency channels, while for CDMA the 
resource is codes. For TDMA systems, each cell can use a portion of the available frequency 
channels, but cells in the neighborhood use different frequency channels. The cells that use 
the same frequency channels are at least a cell away from each other. In this way the limited 
precious frequency resource could be reused, hence the system capacity can be increased 
infinitely (at least in theory), while at the same time the interference is kept to a minimum. 
What should be kept in mind is, though the interference is minimized, it still exists due to 
the same frequency channel used by different cells. Actually the interference becomes one of 
the factors that limit the performance of the wireless communication systems. 

The cellular concept is illuminated in Fig. 2.1. Aj to Gi (i =0, 1, ..., 6) are cells that 
form a cell cluster. Cells Ai for i =0, 1, ..., 6 use the same frequency channels, so do cells Bj 
to Gi. The user si,i in cells Aj (i =1, 2, ..., 6) can interfere the user s in cell AQ. 

Another factor that constraints the performance is multipath fading. In the wireless 
environment, due to reflection, diffraction and scattering, the transmitted signal may fade 
greatly and reach the receive antenna through more than one path (shown in Fig. 2.2). 
Since the locations of the transmitter, the obstacles and the reflectors are random, the 
transmit paths are random as well. The received signal from a different path may add up 
constructively, or destructively. The total effect of this summation is a random attenuation 
of the transmitted signal. When the attenuation is deep, the received signal is so weak 
that the receiver won't be able to recover the transmitted signal. To resolve this problem, 
diversity is introduced. By using diversity technique, several replicas of the same information 
signal are transmitted over independently fading channels. The probability that all the signal 
components reaching the receiver will fade simultaneously is reduced considerably. 

Three of the techniques that can achieve more than one independently fading version of 
the same information-bearing signal are [7, Chapter 14]: 
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Figure 2.1: The cellular concept.   Since cells Aj for i = 1, ..., 6 use the same frequency 
channels as cell AQ, the user si^i {i =1, 2, ..., 6) may interfere the user s in cell AQ 

Transmitter Receiver 

Figure 2.2: Multipath. The transmitted signal reaches the receiver through path 1 and path 
2. 



• Temporal diversity: the same information bearing signal is transmitted in more than 
one time slot, where the separation between successive time slots equals or exceeds the 
coherence time of the channel. 

• Frequency diversity: the same information bearing signal is transmitted on more 
than one carrier frequency, where the separation between successive carrier frequencies 
equals or exceeds the coherence bandwidth of the channel. 

• Spatial diversity: more than one transmit and/or receive antenna are employed. The 
antennas are spaced sufficiently far apart that the multipath components in the signal 
have independent fading. 

Since spatial diversity does not require expansion of the bandwidth, it is desirable for a 
bandwidth-limited system when cost and size permitted. And as pointed out in [8], spatial 
diversity could be used to cancel interference as well as to combat fading. Capacity of a 
system with spatial diversity has been proven to increase with the number of antennas [9]. 

It is for these advantages that communication systems with spatial diversity has been an 
appealing research area. Reception adversity has been implemented in base stations. For 
example, in the second generation IS-136 TDMA base station [10], two receive antennas 
are deployed. Technology has been developed for deploying 4 receive antennas at the base 
station. 

Currently most of the research on spatial diversity is focused on space-time codes ([11], 
[12], [13]), which employ transmit diversity. While space-time codes can provide some coding 
gain as well as spatial diversity, and could be the future application, this work focuses on 
a more practical problem for now: performance analysis of communication systems with 
reception diversity but without transmit diversity and coding. To more easily understand 
the topic, the following presents the basic system model used in this work. 

2.2    System Model 

We consider communication system with reception diversity but without transmit diversity. 
All the signals are baseband signals. As shown in Fig. 2.3, there is one transmit antenna, 
L reception branches and Nj interferers in the system. The sampled output of the matched 
filter for the ^-th branch at time k is expressed as 

Ni 

rk,t = y/PsCtSk + Y^ \/PiCi,iSi,k + "fc,/, ^ = 1, • • • , ■C' (2-1) 
t=i 

where the parameters in (2.1) are defined as: 
Ps : power of the desired signal. 
ce : channel gain of the £-th branch for the desired signal. 
Sk : desired transmitted symbol. 
Pi : power of the interferers. 
Ci^i : channel gain of the £-th branch for the i-ih interferer. 
Si^k '■ interference signal. 



V^^a-^N- 

Figure 2.3: Diagram for systems with L reception diversity branches. Sk is the desired signal. 
There could be more than one interfere! Si^k (only one is shown in the figure). 

Uk^i: complex white Gaussian noise. 
Sk and Si,fc could be multiple phase shift keying (M-PSK) symbols, differential multiple 

phase shift keying (M-DPSK) symbols, or Gaussian distributed signals. We will define them 
more specifically in later chapters. 

The signal model in vector notation is 

Ni 

Tk = y/PsCSk + y/Pi^CiSi^k + nk (2.2) 
t=i 

where r^ = [rk,i,rk,2,-■■ ,rk,L] , and the superscript T denotes vector transposition; c,c^ 
and Hfc are vectors that are similarly defined as r^. 

The channel gains c/ and Q/ are assumed to be independently and identically distributed 
(i.i.d.), zero-mean, circularly symmetric, complex Gaussian random variables (Rayleigh fad- 
ing), with variance Q//2 (for ct) and 1/2 (for Ci^t) per dimension. For future use, we also 
define the fading matrix for the interferers as C/ = [ci, C2, • • • ,CNJ\- 

Define the interference plus noise vector as 

Ni 

Zfc = ^/Pi Y^ CiSi^k + Hfc (2.3) 
t=i 

then (2.2) becomes 

Tfc = VPsCSk + Zk (2.4) 

In the analysis, we often treat C/ as constant vector first, then treat it as random vector. 
When we treat c/ as constant vector, the covariance matrix of z^ is 

NI 

Rz = P/ X! Cicf + diag {al al ■■■,al) (2.5) 
i=l 
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Figure 2.4: Diagram of the optimum combining detector. 

where the superscript H denotes the Hermitian transposition and {a\, c"^,- • • , cr£) is the 
power profile of the noise. 

2.3    Background 

For wireless communication systems with reception diversity, Optimum combining (OC) is 
a well-known approach to combat fading and suppress cochannel interference. Its structure 
is shown in Fig. 2.4. 

In Fig. 2.4, the received signal r^ = [rk,u rk,2, ■■■ , rk.i]^ is weighted and combined. The 
weight vector w = [101,102, •• • , WL]^ is chosen in such that the output of combiner (which 
is the input to the detector) achieves the maximum signal-to-interference-plus-noise ratio 
(SINR). The decision rule for OC is 

Sk = arg max p {Tk\sk, c, R^) (2.6) 

where p(rfc|sfc,c, R^) is the probability of rjfc conditioned on Sk,c, and R^. A simplified 
version of this decision rule will be shown in Chapter 3. 

One of our efforts is to derive closed-form expressions for bit error probability (BEP) 
for OC. Those kinds of expressions have only been obtained for some special cases. Some 
related work about OC is summarized in Chapter 3. 

OC is a coherent detection scheme. To construct the weight vector w, the following 
channel information is required: c, which is the channel gain (include amplitude and phase) 
of the desired signal and R^, the covariance matrix of the interference plus noise. For 
communication systems where channel phases are very difficult or impossible to recover, OC 
is not practical. Under this circumstance, noncoherent detection scheme must be considered. 

One kind of noncoherent detection scheme is differential detection, in which the transmit- 
ted signals are differentially encoded. For conventional differential detection, two received 
signals are used at the observation interval to make decision about the transmitted signal. 
The recovery of channel phase is not required. The decision rule for conventional differential 
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detection is 

(sfc_i,Sfc) = arg max p(rjfc_i,rfc|sA;-i,Sfc,Rz), (2-7) 
»k-li»fc 

where p{Tk-i,Tk\sk-i,Sk,'Rz) ^ the probability of Tk-i,Tk conditioned on Sk-i,Sk and R^. 
Conventional differential detection suffers performance penalty comparing to coherent de- 
tection. 

Multiple sysmbol differential detection (MSDD) achieves performance between that of 
conventional differential detection and coherent detection. In MSDD, more than two symbols 
are used in the observation interval. It was shown that with the increase of symbols in the 
observation interval, the performance of differential detection can be improved significantly. 
The decision rule for MSDD is 

Sfc = argmaxp (rj^ls^, R^), (2.8) 

where Sfc = [sk-(K-i), • • • , Sfc-i, Skf is a sequence oiK {K > 2) symbols, Tk = [vk-^K-i), • • • , r*;]' 
is a vector of all the received signal in the observation interval, and p (r^lsfc, R^) is the prob- 
ability of Tk conditioned on Sfc and Kz- Some related work about MSDD is summarized in 
Chapter 5. 

In this work, we applied MSDD to communication systems with interference. The only 
required channel information for that kind of MSDD is the covariance matrix of the interfer- 
ence plus noise R^. By simulation and analysis results, we demonstrate that MSDD could 
achieve performance close to that of OC with differential encoding. 

We also develop MSDD for another kind of noncoherent detection where the only required 
channel information is the channel amplitude of the interference. Its decision rule is 

(sjfc, S7,fc) = arg max p (r^^lsfc, S/,fc, |cj|), (2.9) 
S*)«/,t 

T IS where s^ and r^ are defined as mentioned before; Sj,fc = [s/,fc_(A-_i),-• • ,s/,fc-i,sj,fc] 
the sequence of interference symbols; |Ci| is the channel amplitude of the interference, and 
p(rfc|Sfc,S/,fc, |Ci|) is the probability of r^ conditioned on sjt, S/,/b, and |ci|. 

It is shown that when the interference level is high, this MSDD technique can achieve 
better performance than detectors using optimum combining (with differential encoding). 

2.4    Outline of the Report 

The main topics of this work are: 

• Performance analysis of OC. 

• Derivation of the decision statistic and performance analysis of MSDD. 

• Performance comparison of OC and MSDD. 

12 



In Chapter 3, We present a new method to derive the closed-form expressions for the 
exact BEP for OC. We first derive the BEP conditioned on the fading of the interference, 
then derive the unconditional BEP. The expressions are for multiple interferers and multiple 
reception branches, with the number of interferers less than that of reception branches. The 
modulation is BPSK and the channels are independent Rayleigh fading channels. 

In Chapter 4, We derive simpler asymptotic expressions for BEP of OC for M-PSK 
modulation and one interferer. 

In Chapter 5, we develop a detector exploiting MSDD technique. The channel gain of 
the desired signal are assumed unknown. M-DPSK modulation is employed. The decision 
statistic for the detector is derived based on the principle of maximum likelihood sequence 
detection (MLSD). The performance of the detector is demonstrated by simulation results 
and analysis results. 

In Chapter 6, another kind of MSDD is presented to suppress cochannel interference 
in communication systems. The channel gain of the desired signal and the channel phase 
of the interference are assume unknown, but the channel amplitude of interference is as- 
sumed known at the receiver. The interference signal is assumed to have the same M-DPSK 
modulation as the desired signal. A maximum likelihood sequence detector is developed 
for detecting both the desired signal and the interference signal. It is a kind of multiuser 
detector employing MSDD. 

Summary and future work are presented in Chapter 7. 

13 



Chapter 3 

Performance Analysis for OC with 
BPSK Modulation and Multiple 
Interferers 

3.1    Introduction 
As mentioned in Chapter 2, for wireless communication systems with reception diversity, 
optimum combining (OC) is a well-known approach to combat fading and suppress cochannel 
interference. It combines the output of the reception branches in an optimum way and 
achieves the maximum output signal-to-interference-plus-noise ratio (SINE). 

Performance analysis of OC has been an active research area. A lot of effort has been 
focused on obtaining closed-form expressions for BEP. For the case of only one interferer 
existing in the system, some work has been done and useful expressions have been derived. [8] 
and [14] gave out expressions for BEP when the interference is not fading and the modulation 
is BPSK. The non-closed-form expression for fading interference was presented in [15], and 
closed-from expression for BEP was obtained in [16]. A non-closed-from expression of BEP 
for M-PSK was shown in [17]. 

For the case where the number of interferers is equal to or greater than the number of 
reception branches and thermal noise is negligible, BEP could be expressed in closed form 
[18]. 

When there are more than one interferers and the noise is not negligible, no closed-from 
expression for the exact BEP is available until now, but the performance has been studied 
extensively through simulation [8], upper bounds[19], approximate expression [20] and non 
closed-from expressions ( [21], [22]). The related work about OC was summarized in [17]. 

The conventional way of deriving the expression for BEP is to first derive the probability 
density function of the SINR conditioned on the fading of the interference. The conditional 
BEP is expressed as a function of SINR. The unconditional BEP (which is what we want) 
is obtained by averaging the conditional BEP first over SINR, and then over the fading of 
the interference. Since it involves two steps of averaging, a closed-form expression for BEP 
is difficult to obtain. 

In this chapter, we present a new method to derive BEP. We first derive the BEP con- 
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ditioned on the fading of the interference directly, then derive the unconditional BEP by 
averaging the conditional BEP over the fading of the interference. This approach involves 
only one averaging. Though complicated, this method provides closed-form expression at 
the end. The basic configuration for our derivation is BPSK modulation, Rayleigh fading 
channel. We assume the number of interferers is less than the number of reception branches. 
We should point out that the method developed here could be applied to the case where the 
number of interferers is equal to or greater than the number of reception branches. 

3.2 System Model 
The system model used in this chapter is the same as that mentioned in Section 2.2, which 
is represented by the following expression: 

Ni 

rk,t = y/PsCtSk + Y^ y/Pici,eSi,k + nk,e, ^ = 1, • • • , L (3.1) 
i=l 

where the parameters are defined in Section 2.2. We assume the number of independent re- 
ception branches L is greater than the number of interferers Nj. Sk is the desired transmitted 
BPSK symbol. The interference signal Si,k is assumed to be Gaussian distributed, with zero 
mean and unit variance. 

The channel gains Q of the desired signal and d^t of the interference are assumed to be 
independently and identically distributed (i.i.d.), zero-mean, circularly symmetric, complex 
Gaussian random variables (Rayleigh fading), with variance 1/2 per dimension. 

As mentioned in Section 2.2, the signal model in vector notation is 

Ni 

Tk = \/PsCSk + y/Pi^CiSi^k + n/fc. (3.2) 

3.3 Derivation of Conditional BEP 

As shown in Fig. 2.4, for OC detector, the received signal Vk are weighted and combined to 
get an output signal. The weighted vector that yields the largest SINK is [8] 

W = R;^C. (3.3) 

The output of the combiner is w^r^. For BPSK modulation, the decision rule of the detector 
is: if Re(w'^rfc) ^ 0, the decision is made that 1 is transmitted; otherwise the decision is 
made that —1 is transmitted. 

Prom now on, we assume the transmitted symbol is s^ = 1, then from (3.2), the received 
signal is 

Tk = VPsC+VPiJ2ciSi,k + nk. (3.4) 
t=i 

15 



Define random variable 

D = 2Re (w^Ffc) = w^rfc + (w^rt)*. (3.5) 

Note that D is random due to that channels c and C/, interference Si^k and noise n^ are 
random. According to the decision rule, when D < 0, the decision is made that —1 is 
transmitted and an error occurs. Therefore the BEP is Pg = Pr(I> < 0). Our purpose is to 
expression Pg as a closed-from function of the SNR, SIR, number of reception branches L 
and number of interferers Nj. 

It is very difficult to derive the expression for p. directly. We derive it in two steps. In 
this section, we treat the fading of the interference C/ as constant (which is actually random). 
More specifically, in this section, c/ = [ci, Cg, • • • , CNJ] is considered as non-random, r^ (and 
consequently D) is random only due to the randomness of c, Si^k and n^. Based on this 
assumption, we derive the conditional BEP P(e|c/) = Pr(£) < 0|c/). In the next section, 
we will consider the random effect of C/ and derive the unconditional BEP Pg by averaging 
the conditional BEP P(e|c/) over C/. 

When the fading of the interference C/ is treated as constant, the covariance matrix of 
the interference plus noise z^ is 

Ii, = PiJ2cicf + aHi, (3.6) 
i=l 

where the superscript H denotes the Hermitian transposition, a^ is the power of the noise 
and II is an identity matrix of rank L. 

Let ^D{J^) be the characteristic function of D conditioned on C/. Using similar procedure 
as in [7, Appendix B], it can be shown that the conditional BEP is 

P(e|cr)   =   Pr(D<0|cj) 

^°°+^'^$zp(ja;). 

ca+je        ^ 

lm(um)>0 

(3.7) 

where e is a small positive number; Res ^PC?"") • ^^ denotes the residue of function ^siM 

at pole cjm- The summation is taken over the poles in the upper half of the complex plane. 
The task at hand is to evaluate the characteristic function ^D{J^)- To that end, we try 

to express D in (3.5) as a quadratic form of complex-valued Gaussian random variables and 
apply the results in [7, Appendix B]. 

Substitute (3.3) into (3.5), 

£> = c^R;ir,+ (c^R;^rfc)*. (3.8) 

Diagonalize R^ as R^ = U^A^Uf, where A^ = diag (Ai,--- ,XL), XI,---,\L are the 
eigenvalues of R^, and Uz is the unitary matrix whose columns are the eigenvectors of R2. 
According to [22], we can assume that the L eigenvalues of Rz satisfy: Ai ^ A2 ^ • • • ^ 
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XNI ^ 0-2 and A^ = cr^ for m = A^/ + 1, A'/ + 2, • • • , L. Define the vector of the non-zero 
eigenvalues as A = (Ai, • • • , AATJ . 

Prom R^ = U^A^Uf we have 

-ITTH R;^ = u,A;^ui (3.9) 

Substitute the above expression into (3.8), 

D   =   c'^UA-^Ufr, + (c^UA-'Ufr,)* 

=   (Ufc)^A;^ (Ufr,) + [(Ufc)^ A- (Ufr.)]*. (3.10) 

Define the whitened interference-plus-noise vector x = [xi,X2,--- ,XLV ^^'^ modified 
channel vector g = [51,52, • • • , 5t]^ as 

X   =   Ufr, 
g   =   Ufc. 

Note that since \Jz is unitary, the vectors g and c have the same distribution. 
Substitute (3.11) and (3.12) in (3.10), 

(3.11) 
(3.12) 

D   =   gX-'x+(gX-ix)* 
L 

(3.13) 
m=l 

In (3.13), D is a quadratic form of complex-valued random vectors x and g. Applying the 
results in [7, Appendix B] to (3.13) (see Appendix A in this report for details), we obtain 
the characteristic function of D as 

2L ^ 

^oiju}) = n 1 7 
m=l 

where 

Am y  Am Am 

Nj 

/J'OO 

Atoi 

m= I,--- ,Ni 

m = Ni + l,--- ,2Ni 

m = 2Ni + {L-Ni) + l,--- ,2L 

(3.14) 

(3.15) 

and 

^00   — 

A^oi   = 
y/Ps 

+ + ^ cr^ 

a^ -\ ^ + 

(3.16) 

(3.17) 
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Notice that with regard to the fading of the interference C/, JUQO and /XQI are constants. They 
only change with Ps and CT^. Define the signal to noise ratio (SNR) 7 as 

7 

Then /xoo and /ioi in (3.16) and (3.17) could be written as 

A*oo   =    JP^ (7 + \/7^ + 7) 

1 
/ioi =   7P= (7 - \/7^ + 7) • 

(3.18) 

(3.19) 

(3.20) 

Using (3.15) and (3.14), we have 

u 

2Ni 

n 
LTn=l 

(1 - J>mW) (1 - jnoou)      ' (1 - JMoiw) 
L-Ni ' (3.21) 

Since Aim < 0 (m = AT/ + 1, ATj + 2, • • • , 2Ni) and /XQI < 0, for $D(ja;)/a; in (3.21), the 
poles -j/fim {m = Ni + l,Ni + 2,--- , 2A//) and pole -j/noi are in the upper half of the 
complex plane. Therefore (3.7) becomes 

2Ni 

p(e|c/) = -   ^   Res 
m=Ni+l 

^DU^) 
UJ 

.   1 
-3 — 

A*m, 
— Res 

$D(JW)      . 1 
 ;-j— 

UJ /ioi 
(3.22) 

Substituting (3.21) into (3.22), and carrying out the calculation of the residues (Appendix 
B), we get the conditional BEP as 

P(e|c,) 
2Ni 

= - E 
m=N:+l 

1 

/m-l 

"jf-' n ^J{ A«n - fir, 

1 

2Ni 

n Mn-Mn 

(MOO - A^m)^   ^^ (A^OI - Mm)^   '^^ 

1 1 

\n^mt-'''i.L-Nj-\)\ 
(_^)L-yv.-i^"^"'(i_-iV, + ^-l)! 

/=0 
^! 

/■ \L-Ni-t /..-i ^ 
(AinMOl) '>^^.    ,   / TT 1 

(MooMoi)^-^'^' 

n 1 

Mt -Mn 

(/xoo-/ioi)^-^^+^' 
(3.23) 

P (e|c/) is a function oiHm{m = \,2,-■ ■ , 2Ni). Since ^^'s (m = 1,2, • • • , 2A^/) are functions 
of eigenvalues A,„'s (m = 1,2, • • • , Nr), P (e|c/) is a function of A = (Ai, • • • , XNJ) , which is 
related to the fading of interference Cj. 
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Special case: no interference 
We can use the method detailed above to derive the BEP for the case where there is no 
interference. In this case, OC becomes maximum ratio combining. Since the power of 
interference P/ = 0, from (3.6) we have the covariance matrix R^^ = aHi- The eigenvalues 
of R^ would be A„, = a^ for m = 1,2, • • • , L. Referring to (3.15), (3.16) and (3.17), we have 
Hm = /xoo for m = 1,2, • • • ,TV/ ; /im = m ioi m = Ni+ l,Ni+ 2,-■■ ,2Ni. (3.21) becomes 

"^^(J"^) = 1 I - I j.. (3.24) 
W W (1 - jfiooUj)   (1 - j>oiw) 

Substitute the above expression in (3.7), we get the BEP as 

P« = -Res (3.25) 

Since there is no interference, the BEP is unconditional BEP. After carrying out the calcu- 
lation of the residues, we get 

(-A^oi)^ 
(jwoo - tM)i)^{L - 1)! 

't-i 

.1=0 

{L-l+£)\ Moo 
£\ (/Zoo - f^oiY 

(3.26) 

(3.26) is the expression of BEP for without interference.  We can express it in a more 
convenient form. 

Substitute (3.19) and (3.20) in (3.26), we have 

P.= 

Define 

2^     VI + TJJ    (-t'-l)!|S ^! L2l^'^Vl + 7J 

fi = 7 
1 + 7 

(3.27) 

(3.28) 

Then (3.27) becomes 

Pe = 

TL 

-,(i-ri [tr.'%"*4]' (3.29) 

which is the same as Eq. (14-4-15) in [7]. We derive (3.29) without the need of integration. 
In [7], (3.29) was obtained by integration. 

When SNR 7 > 1, /i = (l -t- i)   ^ ful--^. (3.29) could be approximated as 

L-l 

e     '~ 
1  y; /L -1 + A 

1    /2L - 1\ 

4VV    L    )' 
(3.30) 
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3.4    Derivation of Unconditional BEP 

The unconditional BEP Pe is obtained by averaging the conditional BEP P (e|cj) over the 
fading of the interference Cj. Since P (e|cj) is a function of the vector of eigenvalues A, and 
A depends on Cj, averaging P (e|c/) over cj is equivalent to averaging it over A. Hence 

Pe = Jp{e\ci)px{X)dX (3.31) 

where px{X) is the joint probability density function of A given out in [22] as 

PA(A)   =   Kc pN, n-(-^)(^) 
.l<i<j<Ni 

where 

Kr^ = 
mr{L-i)\UZiNr-iy. 

(3.32) 

(3.33) 

In (3.23), the conditional BEP P(e|c/) is a function of /x^'s- As shown in (3.15), /x^'s 
are irrational functions of eigenvalues A^'s. Since integration of irrational function is very 
difficult to carry out, we try to convert the conditional BEP P (e|cj) into a rational function 
of some other variables and then averaging it over those variables. For this purpose, we 
define constant (with respect to C/) 77 as 

77 
'^'. 

(3.34) 

and variables y^ as 

ym = + 1,  m = l,2,--- ,Ni. (3.35) 

Also define vector y = [yi, 2/2, • • • , VNJ] ■ Since A = (Ai, • • • , XNI) is a random vector, so is y. 
Prom (3.34) and (3.35) we have 

a'   =   Ps{v'-i) 
Xm   =   Psiyl-l)   m = l,2,---,Nr. 

Using (3.34), (3.16) and (3.17), we get 

IJ-oo 

A*oi   = (1-^) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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From (3.35) and (3.15), we have 

fJ'm 

Am 

(1 + Vm) 

(1 - Vm) 

(3.40) 

(3.41) 

form= 1,2,--- ,Ni. 
Substituting (3.38), (3.39), (3.40) and (3.41) into (3.23), after some straightforward ma- 

nipulations, we get the conditional BEP as a function of the variables y^'s, 

Nr , 
L-Ni-1 

m=l 
L-Ni-1 

E {L-Ni + £-1)1 
Ni 

1 + Yl 9m,i (y) 
m=l 

(1-^) 
L-Ni-e 

(2^) L-Ni+e ■s 
(3.42) 

where 

/m(y) 
2ym   hjl-rff-''' (BSllli^!   »» 

and 

9mAy) = i-if-'''-' 

FL-NI-I 

(1 + nf-""'-' 

with 

Ft-Nj-t {ym) = - (1 + ym) {V - J/m)^"""^"' + (1 " J/m) (V + ym)^"''^"' - 

(3.44) 

(3.45) 

Obviously, conditional BEP P (e|y) is a rational function of the random variables j/^'s. 
The joint probability density function of y is 

Py{y)    =   PA(A)-7- 
dyi      dxjNj A=y 

= K, jnexp [-P (yf - n')] {yl - v')'-"] 

.2\2 
n   i^-yj) 

.l<i<j<Nj-l 

yij/2 ■•■yNi (3.46) 
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for yi ^ y2 ^ • • • ^ VNI ^ f], where 

P = Ps/Pi 

is the signal to interference ratio (SIR) and 

Kr = 
[n£ {L - i)!] [n£i {Nr - i)!] 

:,LNi 

(3.47) 

(3.48) 

The unconditional BEP Pg is obtained by averaging the conditional P (e|y) over the 
random vector y, 

Pe  =  Jp{e\y)Pyiy)dy 

E / /. {y)Pyiy)dy - T^TI^ ("D""^" 
m- 

L-Ni-l 

E 
£=0 

(L-JVj + ^-1)! 

(-;)■ 

1 + J2j 9m,e{y)Py{y)dy 
Tn=l 

(1-^) 
L-Ni-e 

(2r7) L-Ni+t (3.49) 

In order to carry out the averaging of gjn,t (y), we need to express it in a more convenient 
way. Specifically, for easy to integrate, we express the function FL-NI-I {Vm) in gm,t (y) 
(shown in (3.44) and (3.45)) as a sum of (y^ - 77^) to integer power. From Appendix C, we 
have 

[{L-Ni-l)l2] 

FL-Nj-liVm) = '^Vm ^ (^L-Nj-t,t{yl,-rj^)   , (3.50) 
t=0 

where [(L - Nj - £) /2] denotes the largest integer that is equal to or less than (L - TV/ - £) /2, 
and aL-Nj-t,t is evaluated as: 

O'L-Nj 
\(L-Ni-i-\-t\,^       . (L-Nj-i-\-t\ 

(3.51) 

When calculating at-Nj-i^u we assume (^) = 0 for m < n orn < 0. 
The first sum of multiple-fold integrals Em=i //"»(y)Py(y)'^y in (3.49) is evaluated in 

Appendix D. The final results is: 

i: f fm{y)Py(y)dy =   (-i) 
m=l •' \      ' / 

KB -^JL\ 
7P V 2^9+V 

L-Ni Ni-1 Ni-l 

p=0    g=0 

P' V+Q (3.52) 
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where Bg {q = 0,1,2,- ■ ■) is a, series that could be evaluated as follows: 

Bo   =   J|exp (/?,') Q(V/2;8,) 

[(9.n-U J 
B„    = (2? - 1) _ ^2 

2/3 
B„-x +  -Q ^ ^9-2 > 

(3.53) 

(3.54) 

(3.55) 

and when Nj = 1, H {p, q) = TLZIY/I when Ni > 1, 

n£(i-*)!][n,l',('v,-o!] 
E E detW, (3.56) 

"ii+mjH l-mL_i=L-l-p ni+n2H hni-i=L-l-g 
mi €{0,1} nie{0,l} 

where det W is the determinant of a {Nj — 1) x {Nj — 1) matrix whose element on the i-th 
row, j-th column is 

Wi,j = {nij + nj + L-Ni + i + j- 2)!. (3.57) 

The summations in (3.56) are taken over all sets of indices meeting the stated conditions. 
H {p,q) depends on L, Nj, p and q, and is independent of SNR 7 and SIR p. Therefore we 
can calculate it for once and then use it for all value of SNR and SIR. 

Similarly as in Appendix D, we can get the second sum of multiple-fold integrals in (3.49) 
as: 

E/w(y)py(y)dy = (-1)^-^-^(1 + 7,)^-^-^^-^^+^ 
m=l'^ 

Ni-e)/2] ^ [{L-Ni-ty2] 

t=Q 

Ni-1 Nr-1 

p=0    9=0 (f)' (3.58) 

(3.49) is the expression for the exact BEP of OC for BPSK over Rayleigh fading channels. 
FVom it and other related expressions we can calculate BEP for any given number of branches 
L , number of interferers Nj (with Nj < L), SNR 7 = Ps/a^ and SIR ^ = Ps/Pj. 

Based on (3.49), we can derive simpler asymptotic expression for the special case SNR 
7 > 1 and SIR ;5 < 1. 

23 



Special case: SIR ^ < 1 and SNR 7 > 1 
Notice that (3.52) and (3.58) all contain the term p^-^'+K Since ^ < 1 and L > Ni, p^-^'+^ c 
0. We conclude that 

Y,   fm{y)Py{y)dy « 0 (3.59) 

J2 [ 9mAy)pyiy)dy ~ o- (^-^o) 

Prom (3.49) we have 

Since 7 » l,from (3.34), 

'' = ^'-'^W ''•'" 
Substitute (3.62) in (3.61), 

^^   ~      (L-iV,-l)!^   '^ 

^ v^"' (L-iVz+^-1)! / 1V r^i 
f- i^ V   7;      (2)^- 

- ^L-NrjL-Ni (^L - Ni - 1)1     ^ ^! 

- 1 (2{L-Ni)-1\ (3 63) 
- 4i-iV;^L-iV/\^    (L-Ni)    )' 

Comparing (3.63) with (3.30), we can see that the performance of a system with L 
branches and Nj large interferers is equivalent to that of a system with (L - Ni) branches 
but without interference. 

3.5    Numerical Results 
As mentioned in the introduction section, the performance of OC has been evaluated in 
several papers (without using closed-form expressions). We don't want to repeat that. We 
only use numerical results to show that the analysis results from the closed-form expressions 
match the simulation results.. 

Fig. 3.1 to Fig. 3.4 show BEP versus SNR for different SIR. Fig. 3.1, 3.2 and 3.3 are for 
L = 4 branches, and Nj = 1,2,3 interferers, respectively. Fig. 3.4 is for L = 8 and Ni = 5. 

In all the figures, the analysis results are very close to the simulation results. That proves 
the validity of the analytical expression for BEP. 

24 



Figure 3.1: BEP versus SNR for L = 4 branches, Nr = 1 interfere!. 

Figure 3.2: BEP versus SNR for L = 4 branches, Ni = 2 interferers. 
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Figure 3.3: BEP versus SNR for L = 4 branches, Ni = S interferers. 
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Figure 3.4: BEP versus SNR for L = 8 branches, iVj = 5 interferers. 

26 



Chapter 4 

Asymptotic BEP for OC with M-PSK 
Modulation and One Interferer 

4.1 Introduction 

In Chapter 3, we derived closed-form expressions of BEP for OC. The expressions were 
for BPSK modulation, Rayleigh fading channels, multiple interferers with the number of 
interferers less than the number of reception branches. 

An expression was given out for the BEP with M-PSK modulation and one interferer in 
[17]. It involved integration. In this chapter, we will derive closed-form expressions of BEP 
for asymptotically high SNR. The asymptotic expressions give intuitive inside of OC and are 
easy to calculate. We need these expressions to compare the performance of OC with that 
of MSDD later. 

Expressions were given out for the BEP of OC with M-PSK and multiple interferers in 
[22]. Future work needs to be done to get asjonptotic expressions from that. 

4.2 Existing Expressions 

For M-PSK signals, the conditional symbol error probability (SEP) for OC is [17, Eq. 10.29] 
(some notations have been changed to agree with this report) 

1   /•( 
TT Jo 

»(M-l)7r/M 

"s.M-PSK^'^'^ M-ytlXi (g)L_    siffi(^/M) 
sin'' 9 

de, (4.1) 

where function My^lXl{s) is the moment generating function of SINR 7t conditioned on Ai, 
the largest eigenvalue of the interference plus noise covariance matrix R^, and integer M is 
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the number of symbols in M-PSK modulation. FYom [17, Eq. 10.11], we have 

sin? 6 

(   sin^(7r/M)\ 

_    ( '^"^ V"7 '^"^ ] (4 2) 
~   Vsin^^ + sin2(7r/M)7y       \sm''6 + sin^ir/M) ^J ' 

The unconditional SEP PS,M-PSK is obtained by averaging the conditional SEP over the 
random eigenvalue Ai, 

Ps,M-PSK=/      Ps,M-PSK(£^|AiK(Ai)dAi, (4.3) 

where PAI(AI) is the probability density function of Ai. Prom (3.32) in Chapter 3, for where 
there is only one interferer (i.e., N[ = 1), we have 

For Gray coding and large SNR, the relation between SEP PS,M-PSK and BEP Pb,M-PSK is 

Prom (4.5), (4.3) and (4.1), the BEP is 

n),M-PSK \og2MTrJ,2    Jo ^'^'\       smH    ) 
PA,(Ai)dAi.        (4.6) 

(4.6) is the expression for the general cases. The approximation is due to the transfor- 
mation from SEP to BEP. 

Next we derive the asymptotic BEP of M-PSK for high SNR 7 > 1, for the cases of no 
interference and SIR <C 1- 

4.3    Asymptotic Expression for No Interference 

When there is no interference. Pi = 0. The OC is equivalent to maximum ratio combining 
(MRC). In this case, Ai is a constant, Ai = a^. Substitute it into (4.2), 

/   sin^(7r/M)\ _ ( sin^g \' . 
"^'I^' V        sin^e     ) ~ Uin'e + sin2(7r/M)7/   " 

(4.6) becomes 

1     1   /-(A^-iWA^ /   sin2(7r/M)\    . ,. ., 
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For high SNR 7 » 1, 

^TttA. ' - 

sm' i^/M)\ 
sin^e     J      7^sin2^(7r/M) 

sin-'^e. 

Substitute (4.9) into (4.8), 

1 1 1 MM-l)ir/M 
L_l i  / sin^^^d^. 
',2M IT 7^ sin^^ (TT/M) JO 

/'b.M-PSK ~ j^g^ 

The above integration is treated separately for M = 2 and M ^ 4 

4.3.1    BPSK, M = 2 

Using Eq. (2.513) in [23], we have 

if..^«=^(-). 
Since 

Ct) - (2L)! 
L\L\ 
2L (2L - 1)! 

"    L (L - 1)!L! 

-/     .in-...= ^(^_J. 

Substituting (4.13) into (4.10), we get the BEP for BPSK as 

'2L - 1\    1 
b,BPSK <rO 4^7 L" 

4.3.2    M-PSK, M ^ 4 
When M = 4 (QPSK), define a function p (L) such that 

The relation between p (L) and L is shown in Fig. 4.1 and the following table. 

L 2 3 4 5 6 10 20 80 

P{L) 1.92 1.97 1.99 1.99 2.00 2.00 2.00 2.00 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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0 10 20 30 40 50 60 70 

Figure 4.1: p{L) versus L. 

The table above and Fig. 4.1 show that /9(L) « 2 for L > 2. Then (4.15) becomes 

T^Jo 22i V ^ - 1 / 

When M ^ 4, since -^ ^ ^——^ < TT and sin^^ ^ > 0, 
4 M 

j     MM-1)TT/M 

- /       sin^^^d^ ^ - / sin^^^rf^ < - /   "^-^L sm^^edB. 

Since 

- / sin^^^ri^   =   - f     sm''''ede + 
^ Jo TT Jo 

1 r^' 
TT Jo 

1 ri"^ 

1 /''^ 
- /   sin^^ede 

1 r/'^ 1 /*° 
''^ Jo TT J_„/2 

1     /■''/^ =   2i/ 
TTJo 

sin^^ Ode, 

using (4.13), we have 

irsin-.d. = 2i,r-lY 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

It follows that in (4.17), i/^J*' ^^"'^ sm^^ OdO, for M ^ 4, is 'sandwiched' between two 
quantities approximately equal to "^^i^L-i)^ hence 

j     /.(M-l)7r/M 

TT Jo 

1   /2L-1 

sin'^^^^^VU -/)■ 

(4.20) 
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Substitute (4.20) into (4.10), we get the BEP for M ^ 4 as 

1 1 1 /2L-r 
/'b.M-PSK   ~   iog2M7^sin2^(7r/M)  22^ 

=   _2_/2L-l\ 1  (4 21) 
logaM V i - 1 y 4^7^ sin^-^ (TT/M) 

In the numerical section, it is proved that for high SNR 7 > 1, the approximate BEP 
expressions in (4.14) and (4.21) are very close to the BEP yielded by (4.8). 

4.4    Asymptotic Expressions for SIR <C 1 

In [17, Chapter 10], it is shown that the unconditional SEP in (4.6) can be very closely 
approximated as 

P.,M«K » P.,M-PSK(B|A,)L,.,, = i / M,.,5. [—^) de, (4.22) 

where Ai is the expectation value of Ai, Ai = LPi + a^. Substitute Ai into M^,|AI(-) (from 
(4.2)), 

L-l 
(   sin^(7r/M)\ _ / sin^g \    [ sin^f \ 

^T"!^^ V        sin^ Q     ) ~~ \%xx? e + sin^ (TT/M) ^)       ^^sin^ 9 + sin^ (TT/M) ^^j " 
(4.23) 

For SIR < 1, P, <C P/, hence P, < LP/ + a^. Applying this to (4.23), we obtain 

/_sin^(^/M)\ 1    sin2(^-i) e. (4.24) 
^'I^^V        sin^e     ;      7^-1 sin2(^-^) (TT/M) 

The difference between the MGF M^^|Xi(-) for the case of SIR < 1 in (4.24) and the 
MGF without interference in (4.9) is the loss of a diversity degree of freedom in (4.24). We 
conclude that the BEP for this case is obtained by replacing L in (4.14) and (4.21) with 
L-l. Therefore for optimum combining in the presence of an interference source, when 
SNR » 1 and SIR < 1, 

"b.BPSK 

and 

/2(L-1)-A       1 foj.BpsK (4.25) 
V (L -1) -1 y 4^-17^-1 

b,M-PSK ~ j^g 
2_/2(L-l)-l\ 1^   forM-PSK. (4.26) 
l2M\{L-l)-l ) AL-ir^L-i sin2(^-i) (TT/M) 
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Figure 4.2: Comparison of asymptotic results and exact results, no interference, L = 4. 

4.5    Numerical Results 

In this section we provide some numerical results to show how close the asymptotic expres- 
sions are to the non-asjmaptotic expressions (which we call 'exact' expressions). 

Since the BEP for QPSK is very close to that of BPSK, we only show BEP for BPSK 
and 8-PSK. All the results are for L = 4 reception branches. 

Fig. (4.2) show that when there is no interference, the asymptotic results yielded by 
(4.14) (for BPSK) and (4.21) (for 8-PSK) are very close to the exact results yielded by (4.8) 
for SNR > 15 dB. 

Fig. 4.3 and (4.4) show the results for the case with interference. The asymptotic results 
are yielded by (4.25) (for BPSK) and (4.26) (for 8-PSK). The 'exact' results are yielded by 
(4.22) ^ For SIR = 0 dB and BPSK in Fig. 4.3, the asymptotic results are not very close to 
the exact results since SIR is not much less than 1. For all other cases shown, the asymptotic 
results are very good approximation to exact results for SNR > 15 dB. 

^The difference between (4.22) and (4.6) is so small that it could be neglected. Hence in here we call 
results from (4.22) exact results. 
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Chapter 5 

Multiple-Symbol Differential 
Detection with Known Covariance 
Matrix of Interference Plus Noise 

5.1    Introduction 

In the previous two chapters, we analyzed the performance of OC. OC is a coherent detection 
technique which requires the channel phase of the desired signal. In this and the next chap- 
ter, we present a noncoherent detection scheme which is called multiple symbol differential 
detection (MSDD). 

MSDD was first proposed for detecting M-PSK signals transmitted over an additive 
white Gaussian noise (AWGN) channel [24]. The main advantage of MSDD is that it does 
not require a coherent phase reference at the receiver (it does require however, the ability to 
measure relative phase difference). 

MSDD performs maximum likeUhood detection of a sequence of information symbols 
based on a finite observation interval. The method was presented as a bridge of the gap 
between the performance of coherent detection of M-PSK and conventional differential de- 
tection of M-ary differential phase shift keying (M-DPSK). The channel phase was assumed 
to be constant over multiple symbol intervals and was unknown to the receiver. In [24] it 
was shown that for a long observation interval, the performance (in terms of the required 
SNR for a given BEP) of MSDD approached that of coherent detection (with differential 
encoding at the transmitter). 

MSDD was extended to trellis coded M-PSK in [25]. MSDD for the fading channel was 
analyzed in [26] and for correlated fading in [27]. MSDD application to multiuser CDMA 
was considered in [28]. Performance of MSDD with narrow-band interference over nonfading 
channel was discussed in [29]. A system with MSDD and reception diversity was formulated 
in [30] and [31], while [32] considered MSDD with transmit diversity. 

In this chapter, we derive an extension to MSDD for communication in the presence of a 
single interference source. The channel of the desired signal is a diversity Rayleigh channel 
with multiple outputs. The channel realizations at each output are mutually independent, 
constant over the observation interval and unknown to the receiver. The Gaussian assump- 
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tion is made with respect to the aggregate of interference plus noise. The covariance matrix 
of the interference plus noise is assumed known. The MSDD decision statistic is derived 
based on the principle of maximum likelihood sequence detection (MLSD). A closed-form 
expression for the pairwise error probability (PEP) is derived. A closed-form expression for 
the BEP is intractable, however one is obtained for an approximation to the union bound. 
The approximation utilizes only dominant terms in the union bound and it is shown to be 
a good approximation of the BEP. We show that with an increasing number of symbols in 
the observation interval, the performance of MSDD approaches that of OC (with differential 
encoding at the transmitter). 

In the course of designing simulations for evaluating MSDD, we realized that there was 
no efficient MSDD algorithm available for MSDD with diversity. The computational com- 
plexity of direct computation of the decision statistic grows exponentially with the number 
of symbols in the observation interval. For single channel MSDD, an optimum algorithm 
was proposed in [33]. Sub-optimal decision feedback algorithms for the single channel case 
were suggested in [34], [35], and [36]. In this chapter, we modify the sub-optimal decision 
feedback algorithm in [36] for application to MSDD with diversity. The main improvement 
over published algorithms is the introduction of iterations for symbol detection. 

5.2    System Model 
For convenience, we repeat the system model which was initially described in Section 2.2, 
since there are some difference and some additional assumptions for MSDD. 

Consider a wireless communications system operating over L independent reception 
branches, the sampled output of the matched filter corresponding to time k and the ^th 
branch is 

rh,i=\/PsCtSk + Zk,e,   £ = 1,2,---,L, (5.1) 

where P, is the power of the desired signal, Q is the channel gain of the ^th branch, Sk is 
the transmitted M-DPSK symbol, and Zk,i is Gaussian correlated noise. 

The transmitted signals can be expressed as Sfc = e^**, 9k = 27r (z^ - 1)/M, ik - 
1,2, • • • , M. The transmitted symbols are differentially encoded, i.e.. Ok = Ok-i + ^^k, where 
A6k is the phase representing the transmitted information at time k. 

The signal model in vector notation is 

Tk = y/PsCSk + Zk, (5-2) 

where r^ = [r^.i, • • • , rk,Lf, c and Zk are vectors defined similar to r*;. 
The channel gains cis are assumed to be independent and identically distributed (i.i.d.), 

zero-mean, circularly symmetric, complex Gaussian random variables (Rayleigh fading), with 
variance Q//2 per dimension. The correlated noise term z^ is the aggregate of an interference 
source and AWGN and it is assumed to be complex-valued, zero-mean, circularly symmetric, 
and governed by a Gaussian distribution with covariance matrix R^ = £^ [z^zf ]. For a single 
interference source and AWGN, the covariance matrix can be expressed as 

K, = E [zfczf ] = P/Cjcf + diag {al al---,al), (5.3) 
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where P/ is the interference power, C/ is the interference channel vector, and (cr?, af, • • • , cr|,) 
is the power profile of the AWGN. 

Consider a sequence of K symbols running from time k — {K - 1) to k. Assume the 
channel is static over the duration of this sequence. Using vector notation, 

Tj,= y/P,HSk + Zk, (5-4) 

where rj^ = [Tk-{K-i),••-,'**:] , s* = [sk-(K-i),■•■ ,Sk] and z^ is a vector defined similar 
as Fjt, and H = IR- ® c is the channel matrix for the signal of interest, where ® denotes the 
Kronecker product, and IK is the identity matrix of rank K. 

5.3    Decision Statistic 

We formulate the decision statistic for a symbol sequence Sk = [sk-{K-i), ••■ , Sfc] based on 
an observation interval consisting of length K as embodied in the vector r^.. Assume covari- 
ance matrix of the interference plus noise R^ is known, the maximum likelihood detector for 
the sequence Sfc is given by 

Sfc = argmaxp(rfc|sfc,R^), (5.5) 
Sfc 

where p{T^.\sk,'R.z) is the likelihood of the observed data r^ given the transmitted symbol 
sequence Sjt and the covariance matrix R^. Under the Gaussian assumption for the aggregate 
of interference and noise, the observation Tf. conditioned on the transmitted sequence s^, 
the covariance matrix Rz and channel c has a multivariate Gaussian distribution. The 
conditional probability p{T^.\sk,'B.z,c) can then be expressed as 

p(rjt|sfc,R„c) = 7r-^^|R,|-^exp J - f^{Tk-i - ^/PsCSk-i)''Ii;'iTk-i - VPsCSk-t) \ 

(5.6) 

Diagonalize the interference plus noise covariance matrix R^ as R^ = UzA^Uf, where 
Az = diag (Ai, • • • , A^), Ai,- • • ,\L are the eigenvalues of R^, and U^ is a unitary matrix 
whose columns are the eigenvectors of R^. It follows that (5.6) can be written as 

p(rfc|sfc,R„g) = 7r-^^|R,r^exp I - ^{y-k-i - y/PsgSk-if Aj^Xk-i - VPsgSk-i) \ , 

(5.7) 

where 

x,_,   =   Ufr,_, (5.8) 
g   =   Ufc. (5.9) 

Xfc_i is the whitened received signal vector and g is the modified channel vector. Note that 
since U^ is unitary, the modified channel vector g has the same distribution as the original 
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channel vector c. Let the components of the modified channel vector g be expressed as 
gi = aie^'^', £=1,... ,L. Likewise, let the £th component of x^.j be Xk-i,t. Expanding the 
exponent in (5.7) and grouping terms that do not depend on g or Sk-i, we obtain 

p(rjt|s,,R„g)   =   7r-^^|R,|-^exp{-Co} 

f[exp \^-KPsXj^a''t + 2y^A^' \yi (sfc)| aicos {(f>e - Ot (sk))} , 

(5.10) 

where 

K-l   L 

Co = EEVi^*-^i' (5-11) 

and 

t=0 «=i 

\i=0 / 

=   \ye{sk)\e^''^'''l (5.12) 

Note that yi (s^) is a function of both the transmitted sequence Sfc and the observed sequence 

I*- 
Recalling that the components of the modified channel vector g have the same distribution 

as the components of the channel vector c, it follows that «/ is Rayleigh with E [aj] = Qi and 
^e is uniformly distributed in the interval [0, 27r). To average the conditional distribution 
p(rjt|sjt, Rz, g) over the modified channel g, we need to evaluate the integral 

piu\s^,Ii,)= I p{Tj^\s^,K„g)pgie)dg (5.13) 

where pg (g) is the probability density function of g. Assume the channels are independent 
to each other, then 

L 

where Patioii) and p,i>i{(l>t) are the probability density functions of ai and <^f respectively. For 
Rayleigh fading channels, 

PaAc^t)   =   ^«^P(-^)   0<«,<oo (5.15) 

PfM   =   ^ 0< (l>t <2Tr. (5.16) 
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Substitute (5.10), (5.14), (5.15) and (5.16) into (5.13), and separate the integrations, 

p(r,|s„R.)   =   7r-^^|R.l-^exp{-Co}n|^^°°exp|-(i^P,A7^ + j^)a^}Ma, 

i- rexp{2^sX7'\ydSk)\aicos{(t>e-ei)]d(l>tY (5.17) 

After the averaging over the uniform distribution of (pi is carried out, 

p(rfe|Sfc,R,)   =   7r-^^|R,|-^exp{-Co} 

Jo(2x/^A7^ \yt {Sk)\at)aidat, (5.19) 

where /o(a;) is the zeroth order modified Bessel function of the first kind. Using the integra- 
tion expression of Bessel function IQ (X) in Appendix F, we obtain, 

p(r,|s„R.)   =   7r-^^|R.|-^exp{-Co} (^H j^p^^,'+ AJ 

exp{p.|:,i|^|^ (5.0) 

In (5.20), only the argument of the exponential function is dependent on the transmitted 
sequence s^ since only the terms ye (sjt)'s are functions of Sfc. Due to the monotonicity of the 
exponential function, maximizing p(rjt|sfc) with respect to Sjt is equivalent to maximizing the 
following decision statistic: 

/   \     v^     ^e\ye{sk)f /con 

From (5.5), the corresponding MSDD decision rule is 

Sfc = arg max 77(Sfc). (5.22) 

The detector searches through sequences Sfc and chooses the sequence that has the largest 
decision metric T]{Sk). A diagram of the MSDD receiver is shown in Fig. 5.1. 

From the previous relation, it follows that the optimum multiple symbol differential 
detector for multiple channel branches and in the presence of interference, is a weighted sum 
of correlations of whitened observations and hypothesis symbols. Note that this decision 
statistic does not require knowledge of the signal channel vector. 
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Figure 5.1: The diagram of multiple symbol differential detector.   For M-DPSK with M 
symbols, the number of symbol sequences that need to be tried is Mi = M^"\ 

The decision statistic in (5.21) provides multiple symbol differential detection for a M- 
DPSK sequence transmitted over multiple, independent fading channels in the presence of 
correlated Gaussian noise. 

The decision statistic is ambiguous with respect to an arbitrary phase 6'. Indeed, let 
s'k = e^^'sk, then 

\yM\ = \yi{e'''sk)\ 

.=0 
(5.23) =  |y^(sfc)l- 

Differential encoding at the transmitter is required to resolve this ambiguity. 

5.3.1    Iterative Decision Feedback Algorithm 
The complexity of MSDD for M-DPSK with a K symbols observation interval increases 
with M^'^. For large K, this makes simulations impractical. To overcome this difficulty, a 
practical sub-optimal algorithm that uses decisions feedback was implemented. The basic 
idea of the algorithm is to make symbol by symbol decisions rather than testing the full 
sequence of symbols simultaneously. The algorithm proceeds from symbol to symbol along 
the sequence of K symbols; at symbol i it maximizes a decision statistic assuming that the 
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Figure 5.2: Comparison of optimum algorithm and iterative decision feedback algorithm for 
L = 4 branches, DPSK modulation, SIR = -6 dB. 

other {K — 1) symbols have been detected and are known. Several iterations can be carried 
out to improve performance. The algorithm was implemented as the following procedure: 

1. Initialization: 

(a) Initialize iteration index, m = 0. 

(b) Initialize sj;") ^ [l>4-U-2)'4-(if-3)'' 

(c) Initialize time index i = K — 2. 

2. Increase iteration index m + 1 —^ m. 

3. For i = {K-2) to 0, 

Evaluate sK = arg max r) I 
(m) \ 

End loop i. 

1    ("») 
^1 ^k-(K-2)' 

>«fe 
(m) ]^ = [i,o,o,---,op 

(m)     (m-1) 
>Sfc 

(m-1) 

> 

4. If m is not equal to the required iteration number (which is determined empirically), 
go back to step 2. 

5. Differentially decode s^"*' to get the final output. 
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To demonstrate the performance of this sub-optimal decisions feedback algorithm, Fig. 
5.2 compares the sub-optimal and optimal (based on (5.22)) algorithms. The comparison 
is for the case of L = 4 diversity branches, DPSK modulation, and SIR = -6 dB. For an 
observation interval oi K = 12 symbols, with just 2 iterations, the performance of the sub- 
optimal decisions feedback algorithm is within just 0.2 dB of that of the optimum algorithm. 
The advantage of the sub-optimal decisions feedback algorithm is, of course, that it takes 
much less time to run than the optimum algorithm. From the figure, it can also be observed 
that iterations are beneficial to the performance of decisions feedback. The second iteration 
provides about 0.5 dB gain relative to that of without iteration (iteration 1). Additional 
iterations do not seem to improve the performance. 

5.3.2    Special Case 
Some special cases provide insights into the operation of MSDD. For a channel with a flat 
gain profile fi/ = 1, and a flat AWGN profile a| = (T^ for ^ = 1,2,-• • ,L, (5.21) can be 
expressed as 

We further specialize (5.24) to the following special cases. 

No Interference 

For this case, P/ = 0, the noise covariance matrix R^ = CT^IL, eigenvalues A^ = a"^, i = 
1,2, • • • , L, and U^ = II- Then (5.12) simplifies to 

1=0 

The decision statistic in (5.24) becomes 

Since the term outside the sum is independent of s^, the above decision statistic is equivalent 
to 

2 

1=1 /=i 

K-l 

^ rk-i,isl_i 
i=0 

(5.27) 

This decision statistic is the same as that in [31, equation (8)]. Indeed (5.21) is the general- 
ization of [31, equation (8)] to MSDD in the presence of interference. 
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Interference » Noise 

For a uniform AWGN power profile, the eigenvalues of the interference plus noise covariance 
matrix (5.3) are Ai = P/ ELI |c/,<|^+<T^ A2 = ... = AL = a^. For a high interference to noise 
ratio, Ai > A/, ^ 7^ 1. It follows that the decision statistic in (5.24) can be approximated by 
the expression 

The interpretation of this result is that for a strong interference source, the decision 
statistic is similar to that of MSDD without interference and one fewer degree of freedom. 
This result will be further demonstrated in the ensuing error probability analysis. 

5.4    Error Probability Analysis 
An exact expression for the BEP for differential detection can be obtained only for DPSK 
modulation and K = 2 symbols. The exact error analysis is intractable for the general 
case of MSDD with M-DPSK modulation over diversity channels and in the presence of 
interference. The alternative approach is to obtain an analytical approximate upper bound. 
In this section, we first derive an exact expression for the PEP. Then, using this expression, 
we derive the union bound of the BEP. From the union bound an approximate upper bound 
is derived. The approximate upper bound consists of relatively simple algebraic expressions. 
Even simpler expressions are obtained for the asymptotically large SNR and small signal to 
interference ratio (SIR). In the numerical results section, it is shown that the approximate 
upper bound is very close to the BEP obtained by simulation. 

5.4.1    PEP Analysis 
In the derivation of the PEP, we assume a uniform flat power profile for the desired signal 
channel, Qt = 1, and a flat AWGN profile with a| = a^ for £ = 1,2, • • • , L. The PEP is 
developed for correlated noise characterized by the covariance matrix in (5.3). 

In general, the interference source is subject to effects of the fading channel (similar 
to the desired source). It follows that analysis using the covariance matrix B.^ in (5.3) is 
conditional on the interference random channel C/. Results obtained from such analysis need 
to be averaged over the distribution of c/. Fortunately, this complication can be avoided 
recognizing that when the detector acts to suppress the interference, there is only a small 
penalty in using in the analysis the average value of the interference power PrE [cf Cj] in 
lieu of the instantaneous power P/cf C/ (see [15]). Assuming that the interference channel 
C/ is complex-valued, zero mean and with variance fi/,</2 = 1/2 per dimension, it follows 
that the average eigenvalues of R^ are 

Ai   =   PiE [cf c/] + (7^ 
=   LPi + o'^ (5.29) 
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and A/ = cr^ for £ = 2,3, •• • , L. 
Let Sk and s'^. denote two sequences each containing K M-DPSK symbols. The PEP that 

Sfc is transmitted but s'^. is detected {s^ ^ SoSfc, where SQ is an arbitrary M-PSK symbol) is 
denoted as P (Sfc -)• s'^). An error event occurs when r]{sk) < T]{S[). Define random variable 
D, 

D = v{sk)-V{s'k). (5-30) 

Note that D is random due to both the random noise and the random channels. We seek to 
evaluate the probability that D < 0. 

Using steps similar to [7, Appendix B], it can be shown that 

roo+je i^Mrf^ 1  f° 

(5.31) 

-oo+je        ^ 

=   -    ^   Res 
Im(w/)>0 

where e is a small positive number; $D O'W) is the characteristic function of D; Res [^ "^-'"s uJt 

denotes the residue of ^^^ at pole ojt; the summation is taken over the poles in the upper 
half of the complex plane. 

In Appendix G, the following expression is derived for the characteristic function of the 
random variable D: 

^^^^''^^ = (1 - mu:) (1 - mu.) (1 - jf,,ur^ (1 - j^.,ur^' ^^'^'^ 

where 

/Xi = 
iftf UPS ± VCP^ + 4{KPs + Ai) CAi^      i = l,2 

bl UPs ± y/CP^ + 4{KP, + Aa) CA2)      i = 3,4 U2 
(5.33) 

and 

  (5.35) 
A2 {KPs + A2) 

C   =   K'-\v{sk,s',)\\ (5.36) 

In (5.33), the plus sign is taken for i = 1 and 3, while the minus sign is taken for i = 2 and 
4. In (5.36), v(sfc,s;t) = sfsk is the correlation coeflicient between the transmitted sequence 
Sfc and the detected sequence s'^. Note that 0 < v(sfc,s;t) < K, with equality on the right 
hand side when sjj. = Sfc. 
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Substituting (5.32) into (5.31), the PEP is obtained as 

^(Sfc^s'fc) 

=   -   ^   Res 
Ini(a)/)>0 

1 

W (1 - jfliUj) (1 - J>2W) (1 - jfl^u)^   ^ (1 - J>4W)^   ^ 
z^;<^i 

(5.37) 

Since fjLi, H3> 0 and /xz, A*4 < 0, only the poles -j//X2 and -j/^i are in the upper half of 
the complex plane. Eq. (5.37) becomes 

^     ^1 1 
—Res 

—Res 

1 1 

W (1 - JUiu) (1 - J>2W) (1 - J>3W)^ ^ (1 - J>4W) 

111 1 1 

^-^'     ^/X2 

w (1 - j>ia;) (1 - j>2w) (1 - j>3w)^ ^ (1 - i/i4w)^ ^ 
ZT;-J- 

/X4 

(5.38) 

After some cumbersome, but straightforward manipulations (which are similar to the 
manipulations shown in Appendix B), it can be shown that the PEP is 

PiSk^s',) 

if^) 21,-1 \L ,,1,-1 (-l)V^^ 1 
L-2 

\L-l 
{Hl - IJL2) (IJLZ - M2) (/^4 - /^2) 

Ml )«f~^"'' . M2 

Mf-^ -5^!^ i^-^y-to 
{L-2 + k)\ 

k\ 

1- 
(/Xl - /^2) (/lii - fJii) 

L-l-k + f^t'-' 
(//I - /^2) (/X2 - At4)^   ' 

-1-fc 
l^t'^' 

(/^3 - M4) 
L-l+fc ' 

(5.39) 

The former expression is the exact PEP of MSDD with diversity branches and a rank one 
interference source. The PEP is conditioned on the transmitted sequence s^ and is a function 
of the detected sequence s'^. Note that the expression in (5.39) already incorporates statistical 
information on the channel and interference. This form of the PEP is quite complicated and 
does not afford much insight. It is of interest to obtain simpler expressions for special cases. 
In the ensuing analysis, the symbol signal to noise ratio SNR is 7 = Ps/(r'^, and signal to 
interference ratio is SIR = Ps/Pi- 

No Interference 

For this case P/ = 0, Ai = A2 = cr^. Prom (5.33) we have: 

1 

Mi 
2P. (K-r+i) 

2P, (K7+I) 

H C + A /r + i 0' Cz]    i = l,3 

(c-yC^ + 4[ir + i]c^)    i = 2,4 
(5.40) 
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Since pi = /X3, and //2 = A*4, it follows that the PEP in (5.38) can be rewritten as 

P {sk -> sjfe) = -Res t' -J — lu} (1 - jfi^uy (1 - jAiaw)"^       Ai2j 
(5.41) 

It is not too difficult to show that this results in the following expression for the PEP: 

Pisk-^s',) = i-^Y 
(/ii-/X2)^(L-l)! 

X-l 

E 
.e=o 

{L-i + ey. Mf 
ei (Ml - M2) 

(5.42) 

It could be shown numerically that (5.42) is equivalent to the PEP developed in [31]. How- 
ever, (5.42) has the advantage that it provides the PEP in closed form without the need of 
integration. 

The case of no interference can be further simplified for large signal to noise ratio 7 >^ 1. 
In this case, (5.40) simplifies to 

^( iC/KPs    i = l,3 
^^~t -yps i=2,4 ■ (5.43) 

Substituting these results in (5.42) and noticing that fii ^ ^2, we have 

(1/P,)^ ^(L-l + ^)! 
Pisk^s',) _1M 2^ e\ {jC/KP^nL-iYt, 

f2L - l\     1 

This expression clearly exhibits the L-order diversity of the system. 

(5.44) 

SIR < 1, SNR » 1 

By assumption Pi "> Ps :$> a"^, therefore Ai » P^ » a^. FVom (5.34), we have 61 « 1/Ai. 
After some simple manipulations, it follows from (5.33), 

Ml,2 
Ai 

(5.45) 

To evaluate /X3 and /X4, we approximate 62 ~ l/\/KP^ and substitute in (5.33) to obtain 
A*3 ^ C/ {Kcr"^) and /X4 « —l/Pj- Substituting these approximate values into (5.39) and 
keeping only the dominant term, after some manipulations, we have 

^(-^^)K^V:,"Ori^- (5.46) 

Comparing (5.46) with (5.44), we can see the PEP for systems with diversity L and a large 
interference is equal to the PEP for systems with diversity (L — 1) and without interference. 
This result is well known for interference suppression using OC. This analysis proves that 
the loss of degree of freedom due to interference suppression carries over to MSDD over a 
diversity Rayleigh channel. 
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5.4.2    BEP Approximate Upper Bound 

The sequence s^ of M-DPSK symbols corresponds to {K - 1) logs ^ information bits (with 
differential encoding, the first symbol is known). Let Ufc be the sequence of {K - 1) logs ^ 
information bits encoded as s^, and let u'^ be the sequence of information bits which results 
from the detection of s'^. The pairwise BEP associated with transmitting a sequence ujt and 
detecting another sequence u'^ is given by 

Pb (Sfc ->■ Sfc) {K-l)\og^M 
hiuk, n[)P {Sk -^ s'k), (5.47) 

where h{uk,n'^) denotes the Hamming distance between Ufe and uj^,. 
The BEP that Sjfc is transmitted, but an error sequence (any error sequence) is detected, 

is upper bounded by the union of all pairwise bit error events. Since Sfc can be any input 
sequence (e.g., the null sequence Sfe = [1,0,0, • • • , 0]^), we drop the dependency on s^ from 
the notation. The union bound on the BEP can then be written as 

Pb < Yl ^"^^^ -^ "'*=) 

1 

(^-i)i°g^^4^u. 
^   h{Uk,u'k)P {Sk -^ s'k), (5.48) 

where the summation is taken over all the sequences u'^'s which are different from the trans- 
mitted sequence of information bits Ujt. 

Direct application of (5.48) does not shed light on the mechanisms affecting MSDD 
performance. A clearer picture is obtained by developing an approximation to the union 
bound. Note that the union bound in (5.48) is a function of the PEP's, which in turn are 
determined by Hi, H2, Hi and H^ (see (5.39)). Prom (5.33), /ii, H2,1^3 and /i4 are functions of 
the quantity |i;(sfc, s'k)f through the relation C = K^ - H^k,s'JI^. In [24], it is shown that 
on the AWGN channel, for large SNR, the dominant terms in the BEP occur for sequences 
for which the quantity |t;(sfc,s'fc)|^ is maximum. Carrying over the same approach to the 
fading channel, keeping only the dominant terms and noticing that P (s^ -4 sjj.) is constant 
if \v {Sk, Sfc)! is constant, we obtain the following approximation to the union bound 

A   = 
(i^-l)log2M E 

|«(sfc,s;)|=|«(sfc,s5,)|_^ 

h{nk, u'fc) 

[i'(s.->S;)||„(3^,,,)|^|„(,^,3,)|J. 

The maximum value of |t;(sfc,s'j.)| was shown in [24, Eq. (38)] to be 

1^ (s., 4)Lax = ^{K-l)' + 2iK-l){l-2sin'^) + 1. 

(5.49) 

(5.50) 
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Also from [24, Appendix B], for sequences such that |v(Sfc,s;i.)| = |v (s*,s'fc)|^^, the accu- 
mulated Hamming distances are 

E ^("^'<) = {2(K-l), 
K = 2 
K>2 

(5.51) 

|«(sfc,8i)| = |t)(8fc,8Jt)| 

for binary modulation, M = 2 and 

E       ''(u.uy = {,,/:^)_   '^;l (5.52) 

for multilevel modulation, M ^ 4. 
Strictly speaking, (5.49) is not an upper bound of the BEP. Numerical results, however, 

show that it is very close to or larger than the BEP obtained by simulation. Therefore we 
will use (5.49) to study the performance of MSDD in the presence of interference. 

Next, we evaluate the approximate upper bound for differential binary PSK (DPSK) and 
M-DPSK (M > 4) modulations. 

DPSK (M = 2) 

For this case, from (5.50) we have 

\v{s,A)U = K-2. (5.53) 

For conventional differential detection, the observation interval isK = 2 symbols, \v (sfc, sjt)|„ax 
0. In this case, there is only one error sequence, therefore the PEP is also the BEP, 

n=P(Sfc->s',)||„(3^_,,)|=o- (5-54) 

Substituting P (s^ ->• s'^) from (5.42) into (5.54), we obtain the exact BEP for DPSK 
over L diversity fading channels without interference. For high SNR > 1, using (5.44), we 
get 

a,oPSK«(^VO(^- (^•"' 
This expression is the same as the one in [7, Eq. (14-4-28)], and it demonstrates that familiar 
expressions for differential detection can be obtained as a special case of the general case 
treated in this report. 

For a longer observation interval K > 2, substitute (5.53) and (5.51) into (5.49) to obtain 

^DPSK = 2 P (Sfc -^ Sfe)l|„(8„s'j|=if-2 • (5-56) 

This expression is for the approximate BEP upper bound for DPSK over slow-fading Rayleigh 
diversity channels with interference. Next, we compute some special cases ior K > 2 and 
SNR 7 » 1, which result in simplified expressions. 
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No Interference, SNR > 1   Using (5.44) in (5.56), the approximate upper bound is 

(2L - l\     1 
:iy |«(8fe,8i)|=if-2 

=   2p^-^) '- ,. (5.57) 

SIR< 1, SNR > 1   Substituting (5.46) in (5.56) we obtain a result similar to (5.57), 
except L is substituted with (L — 1), 

M-DPSK (M ^ 4) 

For M-DPSK, substitute (5.52) and (5.50) into (5.49), we obtain the following approximate 
upper bound: 

2 

iov K = 2 symbols and 

^^-°^'^ " bi^M ^ ^^' ^ ^^)l|«(s„si)|=y(if-l)^+2(if-l)(l-2sin=^)+l (^-^^^ 

for observation intervals of size K >2. 
Simplified expressions for special cases are computed below. 

No Interference, SNR > 1   Using (5.44), we obtain from (5.59) and (5.60) the approxi- 
mate upper bound 

^^-°^^^=^birM(    L    )2Vsin^^(7r/M) ^^"^^^ 

ioT K = 2 and 

4     (2L- l\ 1  ,5g2) 
AM-DPSK-j^g^^l^    L    y4Vsin^^(VM)(l-:^)'' 

for K>2. 
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SIR < 1, SNR > 1   Substituting (5.46) in (5.59) and (5.60) we obtain a result similar to 
(5.61) and (5.62), except that L is substituted with (L - 1), 

2     /2 (L - 1) - 1\ 1  /. goN 
^^-^^^^-b^V     L-1      ;2^-V-^sin2(^-^)(7r/M) ^'' 

ioT K = 2 and 

. __^_/2(L-l)-l\ 1  (5.64) 
^M-DPSK-^^g^^l^      L-1      >'4^-V-isin2(^-^)(7r/M)(l-i)^-' 

for ii: > 2. 

5.5    Comparison with OC 
In this section, we compare the BEP of MSDD with that of OC analytically. Since the expres- 
sions of the BEP for general cases are very complex, we can only compare the performance 
analytically for the cases of small SIR (relative large interference) and no interference. Since 
both cases yield similar results, we only do that for the case of small SIR. In next section, 
we will compare the performance of MSDD and OC numerically. 

Prom (4.25) and (4.26) in Chapter 4, for SNR 7 » 1 and SIR < 1, the BEP for OC is 
approximated by the expressions 

p ^   /2(L-1)-1\       1 (5 65) 

and 

4     (2(L-1) - 1\ 1  (5 66) 
^"'^-^^^ ^ ki^ V (L - 1) - 1 y 4^-17^-1 sin2(^-i) (^/j^^) • 

The above two equations are for OC with M-PSK modulation. Since MSDD uses M-DPSK 
modulation. We want to compare them on the same basis. 

For OC, the exact expression of the BEP for M-DPSK is very difficult to obtain. But 
judging from Eq. (4.200) in [37], the BEP for M-DPSK is about twice that of M-PSK 
except for very small SNR. That can be demonstrated by simulation. Therefore, the BEP 
for M-DPSK is 

Pb,M-DPSK « 2Pb,M-PSK. (5-67) 

Substitute (5.65) and (5.66) in (5.67), we obtain the BEP for OC using M-DPSK as 

Pb,DPSK « 2 f('/Ti)'."/) Jir^irr (5-68) 

and 

4     f 2 (L-1) - 1\ 1 . (5.69) 
logaM \{L-1)-1 ) 4^-17^-1 sin2(^-i) (^/j^^) 1),M-DPSK 
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The ratio of the BEP of OC and the approximate upper bound of MSDD (for K > 2) is 
given by the ratios of (5.68) to (5.58) and (5.69) to (5.64), respectively 

^b.DPSK _ -Pb,M-DPSK _ ( i L | f5 70) 

-^DPSK -^M-DPSK \ KJ 

The ratio approaches 1 as K ^ oo. We conclude that in the presence of interference, when 
the observation interval of MSDD increases to infinity, i.e., K -^ oo, the performance of 
MSDD approaches that of OC with differential encoding. 

According to (5.67), the BEP of OC with differential encoding is about twice that of OC 
without differential encoding. Therefore for MSDD of large K, the BEP is only about twice 
that of OC without differential encoding. 

5.6    Numerical Results 

Numerical results presented in this section include Monte Carlo simulation results and anal- 
ysis results. In all cases, the channel branches and noise power profiles are assumed to be 
uniform, i.e., Qt = 1 and aj = (T^ for £ = 1,2, • • • , L. The bit SNR is (Ps/log^iM)) /a^. For 
comparison purposes, we also provide BEP curves for OC with differential encoding. All the 
figures are for L = 4 diversity branches. 

Fig. 5.3 shows the BEP versus SNR for DPSK at SIR = -6 dB. Curves labeled 'Sim- 
ulation' represent simulation results, while curves labeled 'Analysis' show analytical results 
as yielded by the approximate upper bounds (5.54) (for K = 2) and (5.56) (for K > 2). In 
all cases, PEP's were exact as computed by (5.39). The interference plus noise term was 
generated such that its covariance matrix followed (5.3). The OC curve was generated by 
simulation. It can be observed that analysis results are very close to simulation results. It 
is also observed that the performance of MSDD approaches that of OC with differential en- 
coding as K, the number of symbols in observation interval increases. For example, at BEP 
= 2 X 10-^, when K = 2, the SNR difference between MSDD and OC is about 2.2 dB. When 
K = 7, the difference is about 1.0 dB. At i(' = 40, the difference becomes an insignificant 
0.2 dB. 

Fig. 5.4 and Fig. 5.5 are for DQPSK and 8-DPSK respectively. The curves in these 
figures follow the same trends as in Fig. 5.3. 

The results shown in Fig. 5.6 to 5.8 are all analytical results. In these figures, bit error 
probabilities are represented by their approximate upper bounds. The approximate upper 
bound is computed based on the exact PEP expression in (5.39) except for Fig. 5.8. 

Fig. 5.6 shows the BEP of MSDD as a function of the number of symbols in the obser- 
vation interval, K. It is evident that for both DPSK (binary modulation) and for 8-DPSK 
(M = 8), the performance of MSDD approaches that of OC as the observation interval 
increases. 

Fig. 5.7 shows the BEP versus SIR, for bit SNR = 10 dB, and for the cases of K = 2 
and K = 40 symbols. It is observed that when K = 40, MSDD achieves performance close 
to that of OC with differential encoding regardless of the SIR. 

Fig. 5.8 is intended to verify the asymptotic large SNR approximation to the PEP. The 
signal modulation is DQPSK. Curves labeled 'asymp' represent asymptotic results computed 
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by applying (5.63) (for K = 2) and (5.64) (for K = 40); curves labeled 'exact' represent 
exact results from (5.59) (for K = 2) and (5.60) (for K = 40). It is observed that for most 
SNR of interest (SNR > 10), the approximate upper bound based on asymptotic PEP is 
very close to the approximate upper bound based on the exact PEP. 
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Figure 5.3: BEP versus SNR for L = 4 branches, DPSK modulation, SIR = -6 dB. 

— MSDD: K=2 (Analysis) 
^   MSDD: K=2 (Simulation) 

— - MSDD: K=7 (Analysis) 
A   MSDD: K-7 (Simulation) 

— ■ MSDD: K=40 (Analysis) 
O   MSDD: KMO (Simulation) 
-*- OC (Simulation)  

6 
Bit SNR (dB) 

Figure 5.4: BEP versus SNR for L = 4 branches, DQPSK modulation, SIR = -6 dB. 
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4 6 
Bit SNR (dB) 

Figure 5.5: BEP versus SNR for L = 4 branches, 8-DPSK modulation, SIR = -6 dB. 
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Figure 5.6:  BEP versus the number of symbols in the observation interval K for L 
branches, SIR = —6 dB. 
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Figure 5.7: BEP versus SIR for L = 4 branches, DQPSK modulation, bit SNR = 10 dB. 
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Figure 5.8: Comparison of asymptotic results and exact results for L = 4 branches, DQPSK 
modulation, SIR = — 6 dB. 
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Chapter 6 

Multipe-Symbol Differential 
Detection with Known Channel 
Information of Interference 

6.1    Introduction 
Until now, we have discussed two kinds of detectors for communication systems with recep- 
tion diversity in the presence of white Gaussian noise and interference source. In Chapter 
3, we discussed detector using OC. To implement OC, the channel gain of the desired signal 
and the covariance matrix of the interference plus noise must be available to the receiver. 
In Chapter 5, we discussed MSDD for the case where the channel gain of the desired signal 
was assumed to be unknown, but the covariance matrix of the interference plus noise was 
assumed to be known. Both detectors show the ability to suppress interference. 

It would be desirable to be able to suppress the interference without requiring any infor- 
mation of the interference. Unfortunately that is impossible. In Chapter 3, the interference 
plus noise is modeled as 

Ni 

Zfc = \/Pl'^CiSi,k + Hfc (6.1) 
j=l 

If we don't have any information about Cj (which is assumed to be Gaussian distributed), 
the interference term \/^Z)i2i CiSi^k would be the same as Gaussian noise and could not be 
distinguished from the white Gaussian noise n^. Therefore at least some information about 
the interference is required. 

In this Chapter, we develop detector for the case where the only required channel in- 
formation is the amplitude of the channels of the interference. The scenario is similar to 
that in chapter 5. But in addition to assuming that the channel gain of the desired signal 
is unknown, the phase of the channel of the interference is assumed to be unknown as well. 
The channel ampUtude of the interference is assumed known. Moreover, the interference is 
assumed to have the same MDPSK modulation as the desired signal. A maximum likelihood 
sequence detector (MLSD) is formulated for the joint detection of the desired signal and the 
interference. Simulation is performed for DPSK modulation. Simulation results in terms of 
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BEP versus SNR are given out and compared with the results obtained by other detection 
schemes. 

It is shown that when the interference level is high, this MSDD technique can achieve 
better performance than detectors using OC (with differential encoding). 

6.2    System Model 

The system model used in this chapter is similar to that mentioned in Section 2.2, except 
that now we assume there is only one interferer. The output of the match filter is 

rk,i = y/PsCeSk + y/PiCi^tSi,k + nk,e, ^ = 1,2, ■ • • , L. (6.2) 

The definitions of the variables are in Section 2.2.   Both the desired signal Sk and the 
interference source s/,^ are assumed to be M-DPSK symbols. 

The signals in vector notation are 

r* = y/PsCSk + \/PiCiSi^k + n*. (6.3) 

We assume both a and c/,^ are zero-mean complex Gaussian random variables (Rayleigh 
fading), and they are mutual independent.  For convenience, we define a = a^e^-^^c/^ = 
cci,te^'^'-', vectors a = [ai,Q!i,-• • ,0;^]. And similarly as a, define vector <f>, aj and^/- In 
this paper, a/ is assumed to be known, but a, (j) and (j)i are assumed to be unknown. 

Assume the covariance matrix of n^ is 

R„ = £? [iiA^nf] = diag [al, al • • • , af], (6.4) 

where <r| (^ = 1, •••, L) is the power of the noise on the ^-th branch. 
Consider a sequence of K symbols running from time k - {K - I) to k.  Assume the 

channels are static within the duration of this sequence. Using vector notation, 

U = \/^Hsjt + y/FjUiSi^k + njfc, (6.5) 

where r^ = [rfc_(^_i), Tk-(ic_2), • • • , r*] . The channel matrix H = 1K®C, where ® denotes 
the Kronecker product, and IK is the identity matrix of rank K. H/ = IK^CJ, Sk = 
[sk-iK-i), ■■■ ,Sk]   , si,k = [s/,fc-(if_i), • • • , si,kf, njfe = [nk-^ic-i), ■■■ , nkf. 

Some other assumptions of the signals and channels will be given out in the derivation 
of the decision statistic. 

6.3    Decision Statistic 

In this section, we derive the decision statistic for MSDD with known channel amplitude 
of the interference aj. MSDD is a form of MLSD. The decision is made after K symbols 
are transmitted and received. Conditioned on the channels c and C/, the coherent decision 
criterion for sequence detection is given by 

(sfc,Sj,A:) = arg max p(Tf,\s^,Sj,fc,c,c^). (6.6) 
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Note that we perform detection of both the desired and the interference symbols. The pair 
(Sfc, s/,fc) that maximizes piul^k, S/,fc, c, Cj) is chosen as the detected symbols. When the only 
known channel information is «/, the decision rule for MLSD would be 

(sfc,s/,fc) = arg max pfels^^'S/,fc,a/)- (6-7) 
S|t.S/,fc 

Next we try to find the expression for P{TJ,\S^.,S/,^,aj). 
At time k, the probability of Tk conditioned on Sk, S/,fc, c, and C/ is 

p(rfc|sfc,s/,fc,c,Cjr) 

=   7r"^|R„r^ exp ] - (rjt - V^csfc - v^c/S/.fcj   R;;^^ 

(rfc - V^csfc - s/PiCrSr,k) ] (6-8) 

-!_, -— 

|2 

=   .-^|R.|-^exp^V r'M-x/fic.^^;V^c/.^^^.^l   K (6.9) 
al 

Assume SA;,S/,A; and Ufc are independent in the time domain, the conditional probability of 
all the received signal r^ would be 

P(rjt|Sfc,sj,fc,c,C7) 
k 

=  n p(riisi,s/,i,c,cj) 
i=k-{K-l) 

=   7r-^^|R„|-'*^exp< 

L 

t=fc-(K'-l) «=1 
a,^ 

Denoting the exponent in (6.10) as A, and expanding it, 

\ri,e-\/P'sCeSi - y/Pici,tSi,i\ ^ * -  E E 
i=fc-(K"-l) <=1 

=   -Ei     E     \r,ef-j:}-^[KPiah-^ryhci,- 

1=1   ^ 

[y/P^iy*ci,e - s/PsVe) c}\, (6.11) 
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where 

k 

i=k-{K-\) 

i=fc-(i<r-i) 

Note that yi,yi,i and y are functions of s^ and/or s/,fc. 
Define 

^0 = Ei  E  i^^^i' (6-15) 
t=\     ^ i=k-(K-l) 

Ce   =   \\KPial,-y/PiyliCi,t-VPm,ic*J (6.16) 

x,   =   \xe\e''^^ = s/P^jycli-^syh (6.17) 

then (6.11) becomes 

L L     ^ 

A = -Co-y^Ce-y2-^ i^PsOcj + 2\xt\ at cos (<^^ + ^f)] 

exp 

where 

(6.18) 

Substitute it into (6.10), then 

p(rA|Sfc,s/,fc,c,Cj) (6.19) 

=   Ciexpj-EC^I (6-20) 

I - E ^ [^P,a' + 2 |x^| a^ cos {<l>i + V'^)] i , (6.21) 

Ci = 7r-^^|R,|-^exp{-Co}. (6.22) 

As mentioned above, the channel c is assumed unknown. We eliminate c in p{Tf. |sj., S/,*;, c, C/) 
by integrating over it, 

p(rfc|s^,s/,fe,c/) 

=    / P(rfc|Sfc, S7,fc, c, Cj)pc (c) dc 

=    /     p{u\s^,si,k,c,Cj)pa{oc)p<i,{(f))dad(l), (6.23) 
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where pc (c), Pa (a) and p^ ((^) are the probability density functions of c, a and (j) respectively. 
Since the channels are independent to each other, 

£=1 

where Pa^ (oit) and p^,^ {<j)i) are the probability density functions of ai and ^t respectively. 
For Rayleigh fading channels, 

..M   =   ^exp(-l)   0<«.<oo (6.25) 

P<i>Mt)   =   ^ 0<(?i,<27r, (6.26) 

where D.t = E [a^] is the mean square of the amplitude of the ^th channel. 
Substitute (6.24), (6.25) and (6.26) into (6.23), after some straightforward manipulations, 

Klfc|Sfc,S/,fc,Cj) 

Expanding the exponent in (6.27) and collecting the terms that contain a/,; and ^/,^ 

o   I     |2 i^k \xt\ ^ 

al {KPMt + erf)       ' 

=   £>f,i - ^a/.f + Difla]^i + 2 |^,3! a/,^cos ((^/.^ - (p^), (6.28) 

where 

n,,    _ "^^^l^<l  (6.29) 

o ,   _        ^tPsPi \y? (6.30) 

_    {KP.Q,^aj)VP: JltPs^i (6.31) 

Substitute (6.28) into (6.27), 

P(rjfe|Sfc,Sj,fc,C/) 

exp |L»£,I - ^a?,^ + ^^,2«?,f + 2 li^^.sl a/,^ cos (.^z,^ - V^)} • (6-32) 
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In (6.32), the probability of rj^ is dependent on (l)i,t i£=l,--- ,L) (which is included in C/). 
We can cancel this dependence by integration, 

piuK,s/,fc,a/) = fpiulh^ s/,fc,Cj)p^, ih) d(f>i, (6.33) 

where p^, {(f>i) is the probability density function of (^/.  For independent Rayleigh fading 

channels, 

p^, ih) = (JA     0 < </./,!, • • • , h,L < 27r (6.34) 

Substitute (6.32) and (6.34) into (6.33) and carry out the integration, we have 

p(Sfc|Sfc,s/,fc,a/) 

where 
L 

msDD (sfc, s,,fc) = n^'^P {^^-1 + ^^-2"'.^} ^0 (2 PASI o^i,i) > (6-36) 

and IQ{X) is the zeroth order modified Bessel function of the first kind. Note that rjMSDD (sfc, Sj_fc) 

is a function of s^ and s/,fc. 
In (6.35), only TJMSDD (sfc,Sj,fc) is dependent on (sfc,Sj_fc). Maximizing p(rfc|sj(.,s/,fc, a/) 

with respect to (sfc, Sj k) is equivalent to maximizingT/A/SDO (sfc, Sj <.). Therefore riMSDO (sfc, Sj j.) 
can be used as decision statistic for the MSDD detector. The corresponding decision rule is 

(Sfc,sj,fe) = arg max VMSOD (sfc.Sj^^) . (6.37) 
8fc)S/,fc 

The MSDD detector searches through all possible {sk,Si^k) and chooses the pair that has 

the largest T]MSDD {sk, S/,fc) as the detected output. 
To complete this section, we briefly review maximum likeUhood (ML) detector. It is 

used in the simulation results section for comparison with MSDD. ML detector is a kind of 
coherent detection technique that requires the channel gain of both the desired signal and 
interference. It makes symbol-by-symbol detection instead of sequence detection for MSDD. 

The ML decision rule is given by 

{sk,si,k) = arg max p{Tk\sk,s/,fc,c,Cj). (6.38) 
Sfc,S/,jt 

Prom (6.38) and p(rfc|sfc,s/,fc,c,Cj) shown in (6.9), we can get the equivalent ML decision 

rule as 

(sfc, si,k) = arg max rjuL {sk, S/,fc), (6-39) 

where the decision statistic 

/          N     V^ \rk,t-\^sCeSk - \/PiCi,tSi,k\ ,^ .^-^ 
VML [sk, si,k) = y, -2 • y^-^^> 

Of 
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6.4    Simulation Results 

The communication systems simulated had 4 diversity branches. DPSK modulation was 
employed. The channels of both the desired signal and the interference were assumed to be 
uniform, i.e., Qi = l, E [ajd = 1 and a| = cr^ for ^ = 1,2, • • • , L. 

In the figures, SNR is the signal to noise ratio defined as SNR = PS/(T^, while SIR is the 
signal to interference ratio defined as SIR = Ps/Pi- Fig. 6.1 and Fig. 6.2 were generated for 
SIR = 10 dB and SIR = -10 dB, respectively. 

The curves labeled "MSDD(A: = 2)" and "MSDD(/i: = 7)" are the results for the MSDD 
detector developed in this chapter. It is observed that the performance improves with the 
increase in K, which is the number of symbols in the observation interval. For example, in 
Fig. 6.2, at BEP = 2 x 10-^ the required SNR for /f = 2 is about 8.5 dB; ioTK = 7 it is 5.5 
dB. That means increasing the observation interval from K = 2 to K = 7 symbols results 
in a 3 dB SNR improvement. 

The curves labeled "OC" are the results for OC. The curves labeled "MSDD(known cov, 
K = 13)" are for the MSDD detector discussed in Chapter 5, which was developed for 
known covariance matrix of the interference plus noise. MSDD {K = 7) has about the same 
computation complexity as MSDD (known cov, K = 13). 

In Fig. 6.1, the BEP of MSDD {K = 7) is larger than that of MSDD (known cov, K = 13) 
and OC. In, Fig. 6.2, the BEP of MSDD {K = 7) is less than that of MSDD (known cov, 
K = 13) and OC. We conclude that at high interference level, MSDD {K = 7) has better 
performance than MSDD (known cov, K = 13) and OC. That can be explained as following. 
MSDD {K = 7) detects the interference signal s/,fe as well as the desired signal s^, but the 
MSDD (known cov, K = 13) and the OC detector only detect the desired signal. MSDD 
developed in this chapter is a kind of multiuser detection that gets better performance with 
the increase in interference power. These results are reflected in Fig. 6.3, which shows the 
difference of the required SNR of MSDD and OC at BEP= 10"^ 

In both Fig. 6.1 and Fig. 6.2, the performance of MSDD {K = 7) is not as good as 
that of maximum likeUhood detector (curves labeled "ML"). But the difference is small for 
a high interference level. In Fig. 6.2, at BEP = 2 x 10-^ the difference of the required 
SNR is about 1.6 dB. These results are reflected in Fig. 6.4, which shows the difference of 
the required SNR of MSDD and ML at BEP= 10"^ We can expect that this difference will 
decrease with the increase of K. 
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Figure 6.1: BEP versus SNR for MSDD, OC and ML. For L = 4 branches, SIR = 10 dB. 
'MSDD {K = 2)' and 'MSDD {K = 7)' are BEP for the MSDD developed in this chapter, 
while 'MSDD (known cov, JFT = 13)' is for MSDD derived in Chapter 5 

-♦- MSDD (K=2) 
-0- MSDD (K=7) 
-O- MSDD (known cov, K=13) 
-a- OC 
-Ar ML  

4      5 
SNR (dB) 

Figure 6.2: BEP versus SNR for MSDD, OC and ML. For L = 4 branches, SIR = -10 dB. 
'MSDD (K = 2)' and 'MSDD {K = 7)' are BEP for the MSDD developed in this chapter, 
while 'MSDD (known cov, K = 13)' is for MSDD derived in Chapter 5 
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Figure 6.3: The difference of the required SNR (at BEP= IQ-^) of MSDD and OC versus 
SIR 
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Figure 6.4: The difference of the required SNR (at BEP= IQ-^) of MSDD and ML versus 
SIR 
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Chapter 7 

Summary and future work 

7.1 Summary 

In this report, we present the following work we have done: 

• Obtained closed-form expressions of the exact BEP of OC for BPSK, multiple inter- 
ferers, with the number of interferers less than the number of reception branches. 

• Formulated simpler asymptotic expressions of BEP of OC for M-PSK, one interferer. 

• Developed the decision statistic of MSDD for communication system with one inter- 
ferer. The performance of this detection scheme was analyzed. Through analysis 
results and simulation results, we proved that with an increasing observation interval, 
the performance of MSDD approached that of OC with differential encoding. 

• Evaluated the performance of MSDD for the case when the channel information of the 
interference was known. 

7.2 Future Work 

Some future work includes: 

• Derive the closed-form expression of the exact BEP of OC for BPSK, multiple inter- 
ferers, with the number of interferers is equal to or greater than that of the reception 
branches. 

• Try to derive closed-form expressions of the exact BEP of OC for M-PSK, multiple 
interferers. 

• Derive simpler approximate expressions of BEP for OC. 

• Apply the above MSDD scheme (for known covariance matrix of interference-plus-noise 
matrix) to multiple interferers. Analyze and compare its performance with that of OC. 
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Appendix A 

Derivation of the Characteristic 
Function for OC 

In this appendix, we derive the expression (3.14) for the characteristic function <E>DO''*^) of 
the test statistic D. 

Define 

dm = K^9*m^m + K!:9mX*m, (A.l) 

then from (3.13) we have 

L 

D = Y.dm- (A.2) 
m=l 

Prom the signal model in Section 3.2, the definition of the whitened interference-plus- 
noise vector X and modified channel vector g in (3.11) and (3.12), after some algebra, the 
covariance matrix of x and g can be evaluated as 

It,,   =   £;[xx^]=PJz,-FA, (A.3) 

R-S9   =   II (A-4) 

Rxs   =   R-9X = \/^Iz- (A-5) 

To use the results in [7, Appendix B], we identify the following quantities using the 
notation in the reference: X^ = x^, Ym = 9m- Then from (A.3) to (A.5), we have in the 
notation of the reference 

Xm    =    Ym = 0 (A.6) 

/^.x,m    =     \{Ps + ><m) (A.7) 

f^yy,m    =    2 ^^-^^ 

Mxy.m    =    tJ'yx,m = g V^" ^^'^^ 
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Substitute the above equations into Eq. (B-6) and Eq. (B-5) in [7, Appendix B], together 
with Am = Bm = 0 and Cm = A~K After some straightforward manipulations, we get the 
characteristic function of dm as 

</>dm O'w) = 

(l-^''-li)(l+^''-lt)' 
where 

'^i.m   —    V-p! + A,7i — yPs 

vi,m   =    \/P7+KI + \/Ps- 

It follows that the characteristic function of D is 

L 

= n ^'^-^ ^^^^ 
1 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 
m=l 

L 

= n 
m=l 

L 

(i-:*"i)(i+J"ir) 

= n (A.15) 

For ease to manipulate later, we define //^ as ( notice that A^^i = iVo for m = AT/ +1, AT/ + 
,L) 

/^= s 

ylE + J^ + A 
Am y   Ayji An 

-j i  

A^oo 
Atoi 

m = 1, • • • , A'/ 

m = Ni + l,--- ,2Ni 

m = 2Ni + l,--- ,2Ni + {L- Nj) 
m = 2Ni + {L-Ni) + l,--- ,2L 

(A.16) 

where 

^    x/^       /P,       1 

Moi 
iVo 

(A.17) 

(A.18) 

Then ^D{J^) in (A.15) could be expressed as 

2L ^ 

^Dijuj) = n r^T 
m=l ■'' JfJ-ml^ 

(A.19) 
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Appendix B 

Evaluation of the Residues for OC 

In this appendix, we evaluate the residue in (3.22). 
According to the complex variables theory [38], if a function / (w) has a pole WQ of order 

A^, the residue of / (w) at UQ is 

a»=(«;o 

(B.l) 1      d^    ' r AT      1 
Res [/ (a;); uo] = (^ _ i), ^^(^-i) [i^ " '^o)   / {u^)\ 

*°'*^^^"^ in (3.21) can be expressed as 

- (n   ^ ■ 1 I 7 a;=:iv77 rL=iv7-        (^-^^ 
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B.l    Evaluate the residues at poles u = -j— (m = Nr + l'-- , 27V 
Ihn 

For Nr + l<m< 2Ni, the poles uj = -j-^ are of order 1. 

Res $z?(jw)      . 1 
 ;-j— 

UJ 
IJ'mJ 

^oijoj) 
bJ w——j-^ 

H) 
2Ni 

n 
n=m+l 

=^('^+^'i) 

L-AT/ 

2/V/ 

n 
After some simplification, we have 

L-Nj- 

Res 
$DOW)      . 1 
 ',-J — 

<m-l 2Ar/ 

1 1 

(B.3) 

(B.4) 
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B.2    Evaluate the residue at pole cj = -j-^ 
)"01 

Since the pole w = -j^ is of order (L - Nj), 

Res 
U} /ioij 

1      d^-^/-^ 
(L-Ni- 1)! dw^-^^- '{h(-^i) 

L-iV/ ^DlseO'w) 
U 

oj=-3 
MOl 

("if^n^/^". 
^L-Af,-1 1 

{f^ool^orf-'^'iL-Nr-iy. 

Define /XQ = oo, then 

n 
"'("+^i)J ('^+Ji) 

L-Ni 

a;=-j- 

1 

LS(<-4)J 
A 

n(„+,x) S(.+,;t) 
where 

n—1 ^ ^^'i 1 

n-1 2N/ 

For n = 0, 

fi(/^i-Mn),i„i,(/Xi-/x„)" 

2Nj 2Ni 

A,=i-if' n r^^^=(-1)''^ n^n («^^^« ^=°°) 
t=l 

n-1 

For 1 < n < 2Ni, 

2Ar/       n-1 . 2.M ^ 

2iV/ 

f=r"fi(/^-^n)>i(^-/^")' 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
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Using (B.6) and the derivation expressions 

d"  ^fn\dr-^f{oj)d^g{u) 
dui 

we get the derivation in (B.5) as 

^L-N,-l     I   1     2^ 

= (-1) 
cP 1 „(m + n-l)! 1 

(m-1)!    (u; + a)'"+"' 

(B.IO) 

(B.ll) 

L-Ni-l   , 

<=0       ^ 

('^+Ji) 
L-JV/ 

An L-Ni-1\ dp-Ni-i-t   2Ni 
d' 

dujU L ■ 1 ^ 
L-AT/ 

L-Af/-1 

= ¥('""■"'){'-' 
\ - A»oo 

2JV/ 

1 

(1-1)! 

^(L-iVj + ^-1)! 
{L-Ni- 1)! 

After some simple algebra, 

2JVj 

n 

= (-1) 

("+^i) 
L-iV/ 

._.,_,"-^-^(L-iV, + ^-l)!   '^' 

e=o £\ L-Ni-i 

(B.12) 

(B.13) 
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Substitute (B.13) into (B.5), 

Res ■,-J — 

i)"""  Vn=l ^V   (/^OOMOl {-3 

''~^-'{L-Nr +£-1)1 

1=0 

 1  
(-J-L. + j-L.)L-Ni+i 
V    •' uni        ■' Moo ' 

^L-Nj i^L-Ni- 1)! 

2Ni 

E 

(-1) 
L-Ni-l 

„=o (-J-1-+J-L] 
L-Ni-t 

Moi       ■' Moo 

which can be simplified to 

Res 

(/iooMoi)"-^^ (^ - ^/ - 1)! 
2Nj      I      _      \L-Ni-l 

Moi 

(_^^L-i..-l'"^"^lI--iV/ + ^-l)'- 

1=0 
i\ 

I \L,—ni-i I zUl        1 

^ (Atn - MOl) v«=l 
Mi-)"n 

2Ni 

n 1 

IXi- lln 

(Moo-m)^-^^+'' 

(B.14) 

(B.15) 

(B.16) 
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Appendix C 

Express Fj_]\^j_j^ {ym) as a Summation 
of (2/^ — 7y^) to Integer Power 

In this appendix, we derive (3.50), which expresses the function Fk {ym) in (3.45) as a sum- 
mation of {yl^ — Tf') to integer power. 

For simplicity, define 

Ffc = - (1 + Vm) (r? - Vmf + (1 - Vm) {V + Vrnf ■ (Cl) 

Then 

Fo   =   -2ym (C.2) 
Fi   =   2{l-ri)ym. (C.3) 

By substituting in Fk-i and F1.-2, it could be easily proved that 

Ffc=2r?Ffc_i + (y^-r?2)Ffc_2. (C.4) 

To simplify the notations, define mathematical symbols P = 2r],Q =^y^—Tf. Then (C.4) 
becomes 

Fk = PFk-i + QFk-2. (C.5) 

We try to find the relation between Fk and Fo,Fi. First we express F^ as a function of 
Fk-2 and Fks- From (C.5), 

Fk   =   PFk-i + QFk-2 

=   P{PFk-2 + QFk-3)+QFk-2 
=   {P^ + Q)Fk-2 + PQFk-z (C.6) 

Continue on in this way, we have 

Ffc   =   (p3 + 2PQ)Ffc_3 + (P'Q + Q')Ffc_4 (C.7) 

Fk   =   lp' + 2P''Q + P^Q + Q'')Fk-i+{P^Q + 2PQ'')Fk-5. (C.8) 

Judging from (C.5) to (C.8), we guess that the relation between Fk and Fk-i,Fk-i-i (/ 
is any positive integer) is: 
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• when / is odd, 
Oi 

ti^-y-Q' Fk-i + 
Oi 
^(/    1    t|pr_2t-i^,+i 

t=o 
^k-J-\- (C.9) 

where Oi = {I - 1) /2. 

• when / is even, 

F.= ?Cr)^'"''^'   F.-7+   E(^    J    ^^p/-2t-iQm Ffc_,_i.   (CIO) 

where 0/ = 1/2. 

(C.5) to (C.8) have shown that (C.9) and (CIO) are valid for / = 1,2,3,4. The validity 
of (C.9) and (CIO) for any positive integer / could be proved easily by the method of 
mathematical induction. 

From (C.9) and (CIO), we can get the relation between Fk and Fi,Fo as follow: 

• When k is even 

Let I = k — 1 and substitute it into (C.9), 

F.= ^ (^ ~ t ~ 0 ^'"'"'*^* ^1 + E (^ ~ \ ^ ^) p'-'-^'-'Q'^' Fo.   (C.ll) 

Define T = k/2. since / = 20/ + 1, 

^2 2 2 
Substituting (C.12) into (C.ll), we get the relation between Fk and Fi,Fo as 

(C.12) 

F.= 
t=o ^ ' J Lt=o ^ ' 

Fo.   (C.13) 

• When fc is odd 

Similarly, we can get 
T 

Fk = EP"J  V"'"'*^* ^1+ Ef 
t=o V       ^       / J Lt=o ^ 

^k-2-t :,k-2-2trit+l Q' (C.14) 

where T = {k - 1) /2. 
Finally, substituting P = 2r],Q = y^- 77^ Fo = -2y^, and Fi = 2 (1 - 77) y^ in (C.13) 

and (C.14), after some manipulations, we have 

[k/2] 

Fk iVm) = 2ym E «fc>* (y'm " v'Y (C.15) 
t=0 

where [k/2] denotes the largest integer that is less than k/2, and ak,t is calculated diiferently 
for when k is even or odd as follow: 
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• When k is even, 

-1 t = [k/2] 
(C.16) 

• When k is odd, 

_ / (277)'=-^ (1 - rj) i = 0 
^-i-^*   l<t<[k/2]   • 

(C.17) 

If we assume (^) = 0 for m < n orn < 0, we can express (C.16) and (C.17) as a single 
expression: 

Ofc.t (-rO'-^'-^C-r) (2^) 
k-l-2t 

for 0 < i < [fc/2]. 
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Appendix D 

Evaluation of the Sum of Integrals 

In this appendix, we evaluate the sum of integrals / /„ {y)Py{y)dy. The basic steps are: 
1. Combine the sum of A^j integrals (each integral is a iV/-fold integral) into one Nj-iold 

integral. 
2. Change the integration limits of some variables from finite to semi-infinite. 
3. For Ni> 1, separate the Alj-fold integration into Nj independent integrations. 

D.l    Combine the sum of Nj integrals 

By expressing the integrals into a slightly different form, we can convert the sum of Nj 
integrals into one integral. We first consider the integrals J fm {y)Py{y)dy for 1 < m < Nj, 
then for m = 1 and m = Nj. 

For 1< m < Nj, J fm {y)Py{y)dy is an A^/-fold integral. We first carry out the integra- 
tion over ym, then over J/ATJ, next yNi-i, at last over j/i. Since oo > j/i ^ ^2 ^ • • • ^ y^/ > ^, 
f fm {y)Py{y)dy can be expressed as 

/ /m(y)Py(y)^y 
TOO (   ryi        f   rym-2  f   rvm-i        (   ryN,-i  (   rVm-i ^ '] 

= / {/ ■ ■{/   {/   ■■•{/   iL f-^y^'^^-^'y-M 
•■•dym+i}dym-i}---dy2}dyi, (D-1) 

with the inner integrations being carried out before the outer integrations. 
Prom (3.43) and (3.46), 

fm{y)Py{y) -    2^^ iyi-rj^r-'\l\yl-ylj\jl,yl-ylj 

K^\f[exp[-Hy^-v')]{yl-v'y 

yiy2---yNi- (D.2) 

Ni 

exp [-P \yi - 7/ ;j yyi - // 
i=l 

2\2 
n (^.-^i) 

.i<t<j<Ar/-i 
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Convert the variables from y to i as: 

yi -> tl, 1/2 -^ *2 • • • , Vm-l ->• im-1, J/m+1 -> <m, " " ' > J/AT/ ^ *iVj-l, 2/m ->• *iVj- (D.3) 

Then (D.l) becomes 

/ fm{y)Py{y)dy 

/•OO   f    rh (    rtm-i   (    rtm-l (    rtNj-2   (    ftm-l 1 'j 

= / {/ ■{/ {/ • •{/ il /™('"'^('"*-}*-} 
■■■dtm}dtm-i}---dt2}dtu (D.4) 

and (D.2) becomes 

1-tr,,   (1-7?^)' 
2\L-Ni      f/V/ 

/m(y)py(y)  = 

■Ni 

^^-1    1-/21 

„=1   ^AT,       T^n) 

K, 2       ^2M (+2       J2\'^-^I 

Lt=i 

*2       .2\2 n ('?-*?) 
Li<t<j<Ar/-i 

which could be changed to (by re-arranging the terms) 

/m(y)Py(y) 

hh- --tNi, (D.5) 

(Nj-l 

n («?-'?)' 
Li<«<i<JV/-i                J 
rATj-i                1 

n (''»',-« 
.n=l 

• 

(l-t^,)exp[-;9(4-r?2)] 

(D.6) 

fOO     fh rtNr-2 

Substitute (D.6) in (D.4), 

I fm{y)Pyiy)dy 

^ Jr)     Jr} Jr\ 

(Ni-l "j 

I n (1 - Q e-p [-^ (*n - ^^)] (i^ - v^r"' tn I 
'Afj-1 

(l-iAr,)exp[-^(4-77')] 

dtffj-i • ■ -dt^dti. 
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n=l 

r*m-i 

.l<i<j<Ni-l 

Ln=l 

di Ni 1 
(D.7) 



The above equation is for 1 < m< AT/. Similarly, for Nr = 1 and Ni, we have 

//i(y)py(y)^y 

(Ni-l 

\lli^-'l)^^P[-Htl-v')]{tl-v'f-'"tn 
n=l 

fOO 

ll<i<j<Ni-l 

{l-tr,,)exv[-P{t%-v')] 
Hi 

dtffj-i • • ■ dt^dti 

Ni-l 

n   (*'-.-*n) 
n=l 

dt Ni 

(D.8) 

and 

l>00       /•*! /•tjVr-2 

/ fNi{y)Py{y)dy 

^ Jn   JTI        JT) 

( n' (1 - tl) exp [-P [tl - rf)] [tl - n't-"" in} 
n=l 

n c?-'?)' 
X<i<j<N,-l 

(l-t;,,,)exp[-;8(4,-772)] 
AT/-! 

n(4-*^) 
n=l 

dt NI 1 
dt Nj-i • ■ ■ dt^dti (D.9) 

Notice that the integrands in (D.7), (D.8) and (D.9) are the same. The integration limits 
for tiVj-i, • • • , *2, *i are the same as well. Therefore we can write the sum of the Nj integrals 
as 

NI 

Yl I fm{y)Py{y)dy 

^ Jn    Jt] ''v 
"Ni-l 

n=l 

l[{l-tl)e.p[-Htl-v')]{tl-rir-^'t. 

E 
m=2 

dtffj > dtffj-i • ■ ■ dt-^dti 

■1 n w-«?)' 
\J.<i<3<Ni-l 

'    +E/       +/ ]{l-tNi)exv[-ntli-v')] 

) . n=l 

(D.IO) 
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Since 

/ +E /   +/    =/ ' 

Nr      - 

jn' (1 - 4) «p [-^ « - r,')] (tl - rff-"' <„| 
,l<t<i<iV/-l 

(l-iA,,)exp[-;9(4-7?2)] 
Ni-l 

n(4-« 
n=l 

dt AT/ 

(D.ll) 

which consists only one N/—fold integral. 
To simplify the notations, we convert variables as: (tl-rf) -^ ZnioTn = 1,2,-■■ ,Nj-l, 

and define 

zo = l-r] , (D.12) 

then (D.ll) becomes 

Nj 

X) / /m(y)Py(y)c^y 

^^-»""'i / ■■■/ 2^, 
(Ni-l 

n (^0 - Zn) exp (-;92;„) z^ L-Ni 

n=l 

»oo 

(l-t^Jexp[-^(4-r?2)] 

n     (^» ~ ^j)^ 

"ATj-l 

n=l 

dt iVj 

dzNi-1 ■ • ■dz2dzi. (D.13) 

D.2    Change the integration limits of some variables 

Consider the integrations in (D.13). The integration area for ZNJ-I,-■ • ,Z2,zi is oo > zi ^ 
Z2 '^ zz '^ ■ • ■ '^ Zffj-i ^ 0. There are other similar areas such as: 

oo    >    ^1 ^ Z3 ^ 212 ^ • • • ^ Zffj-i ^ 0, 

CO    >    Z2^ Zi^ Zs^ ■■■^ ZNJ-\ ^ 0, 
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etc. There are {Nj - 1)! such areas in the region: oo > zi,Z2,z^,--- ,z^j-i ^ 0. Since the 
integrand is symmetric to zi, Z2, • • • , ZNI-\, the integration over these {Nr - 1)! areas must 
be equal. Therefore the integration over one such area is 1/{Nj-1)1 of the integration over 
the region: oo > Zi,Z2,z^,--- ,ZNJ-I > 0. Therefore 

Ylj fm{y)Py{y)dy 
m=l ' 

1   1 Kz^-^' r r...f 
(iV7^1)!2^^^'°       Jo    Jo Jo 

■Ni-1 

Yl  (-^O - Zn) exp i-pZn) Z^ L-Ni 

n=l 

roo 

(l-t^,)ew[-P{tl,-rf)] 

n (^^ - ^i)' 
'Nr-1 

n=l 

dtffj 

dzffj-i ■ ■ •dz2dzi. 

The above integration is treated differently for Nj = 1 and iV/ > 1. 

(D.14) 

D.3    Nj = 1 

From (3.48) we have 

(D.14) simplifies to 

i^i = (L-1) :P' 

f^ f fm{y)Py{y)dy 
Tn=l"' 

dh. 

Since rj = y^l, 

1        2 1 
^0 = 1-^' = --- 

Using the above equation and the result in Appendix E, we have 
Ni      , -, /     1 \ L-l ^'   r 1 /   l\      /       11 

m=l 

where 
/•oo 

Bo   =    /    (l-ti)exp[-y9(<?-772)] dti 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

(D.19) 
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D.4    Nj > 1 

For this case, we first try to separate the multiple integration over z^i-i, ••■ ,Z2,zi. Accord- 
ing to [39, Chapter 3], for any bounded function / (•), 

Ni-l /•oo     roo /-oo "'    ^ 

/ / •■•/ n/(-n) ^0    Jo Jo     „^i 

/•oo    /•oo /-oo "J    '■ 

Jo    Jo Jo     „_i 

n (^^ - -i)' dZNi-\ • • dzidzi 

1         Z2      ••• 

zi        zl 

^Ni-2 

^ATj-l 

1 

Zl             Z2 
-1 2JV/-4 

dzffj-i •■■dzidzi (D.20) 

where |-| is the determinant of a matrix. The element on the zth row, j-th column of the 
matrix in (D.21) is z^^^'"^. Notice that all the elements on the j-th column of the matrix 
depend only on variable Zj. 

Therefore (D.14) is equivalent to 

^ I fm{y)Py{y)dy 

2Ni KxZ^O 
.L-Ni 

/•oo    /•oo /•o 

Jo    Jo Jo 

{Ni-1 

n 
n=l 

(^0 - Zn) exp (-^z, n)^„^-^^} 
1 
Zl 

Z2 
-2 
^2 

{l-tMr)exv[-p{t%-r]'')] 

Ni-2       Ni-l     . . . 
Zl ^2 

■W/-1 

n   (4-^'-^n) 
.n=l 

^Ni-2 

•^Ni-l 

^2Nj-i 
-Ni-l 

dtrfj } 
dzNi-i • ■ ■ dz^dzi. (D.21) 

Next we try to expand the products IlSi ^ (•^o - Zn) and nS7^ (*Arj -ri^ - Zn) • Obvi- 
ously, 

i{{zo-Zr.)=Y^{-ir^zl    Y.    ^" 
p=0 

,mi (D.22) 
n=l mi=0,l 

mi=l—p 

n (zo-^n) = E (-!)'"'^0 E        ^r ,T711 jm2 

n=l p=0 mi,m2=0,l 
mi+Tn2=2—p 

(D.23) 
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In (D.23), the second summation is taken over all the sets of (mi,7712) which satisfy the 
two restrictions: (1) each mj {i = 1,2) must be 0 or 1; (2) The summation of all mi's must 
be equal to 2 — p. 

Similarly, we have 

Nr-l Nj-l 

n=l p=0 

E Zi    Z2 Zffj_i 

Nj-l 

mi+m2+—+mNj-i=Ni-l-p 
mie{0,l} 

Ni-1 

Ui'^-^'-^r.) = E(-i)'^^""'(4-^^r 
n=l 9=0 

E _ni   n2 . . .   "''/-I 
H   ^2 ^ATj-l 

ni+naH i-riNj-i^Nj-l-q 
nie{0,l} 

Substitute (D.24) and (D.25) in (D.21), 

Ni 

Nj-l 

Y^ / /m(y)py(y)rfy 
m=l"' 

p=0 9=0 

E E 
ie{o, 

/•OO     /"OO /-oo 

/       /       •••/      '" JQ    JO JO 

Ni-l 

l[exp{-Pzn)zt''' 

mi+m2+-+mNj-i=Ni-l-p ni+n2+-+nNj-i=ffi-l-Q 
m(6{0,l} n.e{0,l} 

00      /"OO /-OO 
,mi+ni„m2+n2 mjv^-i+n/v^-i 

^2 ■ ■ ■ ZNI-1 

n=l 

1 2^2 

zi zl 

Ni-2     ^Ni-1 J2Ni-4 
Z, ' Z. 1 ^2 'iV/-! 

{t\,-rf)]dt^}^ 

(D.24) 

(D.25) 

(D.26) 

After combining z;j*"+""exp(-/9zn) 4"^^ (fo'^ n = 1,2, • • • , A?'/ - 1) into the n-th column 
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of matrix, (D.26) becomes 

Ni 

J2   fm{y)Py{y)dy 
m=l'' 

Ni-l 

E 
9=0 

E 
mi+m2H y-rriNj-i^Ni-l-p ni+n2+-+n;v^-i=Ar/-l-g 

mie{0,l} niG{0,l} 

/•OO      /-OO /"OO 

JO     Vo ^0 

t^2,l f^2,2 

UNI-1,1     UNI-1,2     ■■•      UN,-1,NI-1 

[f (1 - tN,) {t% - ^^)'exp [-P (4 - rj^)] dt^,^ 

dzffj-i ■ ■ -dzidzi. 

where 

Ui,j = exp {-Pzj) z^ 
mj+rij+L-Nj+i+j-l 

(D.27) 

(D.28) 

Since the elements on the j-th column of the matrix only depend on variable Zj, we could 
put the integration over Zj into the matrix and obtain 

r 
J2   fm{y)Py{y)dy 
m=l"' 

, N,-l 

= ^K,zt'"T.(-^f'~"''''oE(-^f'~" 
Ni-1 

detV E E 
mt+mi+—+mNj-i=Ni-l-p ni+n2+—+n;v^_i=AA/-l-? 

mie{0,l} n<6{0,l} 

{fil- tNr) {t% - V'Y exp [-/5 {t%^ - v')] dt^,} (D.29) 

where 

detV = 
^2,1 V2,2 V2,Ar;-l 

Vjv^-1,1     yAf/-l,2     •••     VNJ-I^NI-\ 

(D.30) 
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and 
/•OO 

Jo 

+nj+L-Ni+i+j-2 
dzj 

-   ("•^j + nj + L-Ni + i + j-2)\ 
~ 0mj+nj+L-Ni+i+j-2+l 

Substituting (D.31) in (D.30) and taking out the terms with P, we have 
1 

(D.31) 

detV 
^Ef=T'{mi+nj+L-W/+j-2+l)+E!2i ' • 

W2,l 

Wi,2 

W2,2 W2,Ni-l 

where 

Since 

W^f^-l,!    WNI-1,2    ■■■     W'N,-1,N,-1 

Wij = {rrij + nj + L-Ni + i + j- 2)!. 

(D.32) 

(D.33) 

Ni-l Ni-1 

Y^ {mj + rij + L-Ni + j-2 + 1)+ ^i 

Ni-l Ni-1 Nj-l Nj-i. 

t=l i=i i=i i=i 
=   Ni-l-p + Ni-l-q + {L-Ni)(Ni-l) 

iL + l){Nr-l)-p-q, 

detV detW. 

Next let's evaluate the final integration in (D.29). Separating the first term, then 
/•OO 

/    (1 - tN,) (4. - ^')' exp [-P {t% - v')] dt^, 

/•OO 

=    /     {t%-r}'y^M-nilr-ri')]dtN, 
JT] 

/•OO 

- / t^, (4 - ^"Y exp H (4 - ^')] ^^A^. 
/•OO 

-^ / (*'^^ - ''"y^'^p t-^ (*'^^ - ^')i ^ (*'^^ - ^') 

(D.34) 

(D.35) 

(D.36) 
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where 
/•oo 

B,=        {t% - v'Ye^V [-P {t% - V')] dtM,, (D.37) 

which can be calculated recurrently as discussed in Appendix E. 
Substituting (3.48), (D.35) and (D.36) in (D.29), we get 

X^ / fm{y)pyiy)dy 

1  ^^^^4-^^ 
[n^iiL-iy][u^ANi-iy] 
Ni-l                                JV/-1 /             1     «l    \ 

E (-i)'"-'-'4E (-1)"' ' B«-5i« 
p=0                                    9=0 \                 A^       / 

E E 

Define 

mi+m2+—+m/ir^_i=A/'/-l-p ni+n2+—+nAr/-i=^7-l-9 
mie{0,l} njG{0,l} 

 I detW. (D.38) 

^(P,9) 
1 

[n£i(j^-0!][n£i(iVz-i)!] 
^ X detW. (D.39) 

mi,m2,— ,mNj-i=0,l ni,n2,— ,njv^-i=0,l 
mi+m2+—+TnNj-i=Ni-l-pni+n2+-+nNi-i=Nr-l-q 

Substituting in ZQ =-- and after some manipulations, we can simply the expression in 
(D.38) as 

Ni 

f;//m(y)Py(y)dy 

"^ ' p=o  9=0 

lfR_i_^^5P+« (D.40) 

which is the expression we want to get. 
If we assume if (p,?) = (^ for TV/ = 1, then by setting iV/ = 1, (D.40) is equal to 

(D.18). That means (D.40) could be used for any AT/. 
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Appendix E 

Derivation of Series Bq 

In this appendix, we derive the method to calculate the series J5, (g = 0,1,2, • • •), which is 
defined as 

/•oo 

B,= I    exp {-P it' - v')) {t' - rfy dt. (E.l) 

In the following, we first derive the expressions for BQ and Bi. Then we will show that 
for q>2,Bg could be evaluated by B,_i and Bg-2. 

E.l    q = 0 

/•oo TOO 

Bo= I    exp {-^ [f - v')) dt = exp (^T?^) /    exp (-^t^) dt. (E.2) 

Define \z^ = ^i^ then x = -^z, z = y/2^t, and 

/oo /"OO /      1       \        1 
exp {-pf) dt = exp [prf) j ^   exp y-l^^'^j -^^z 

=   y|exp (« Q (v^^) . (E-3) 

E.2    q=l 

/•oo 

B,   =    /    exp(-^(t^-7?^))(t^-77^) dt 

=   exp{pv^) 
/•oo /•oo 

/    ^xY>{-pe)t'dt-rf I    exi>{-pt'')dt (E.4) 
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Define ^^^ = pf^ then t = ^z, z = v/2^t, and 

d^ 

1 

12^ 

exp {^ri^) 

—zexp i-l^) 
oo 

+ /"°°   exp (-^^') dz   - jf^Q [sMn] \ 

=   ;^exp (^,^) {-l^exp (-^,^) + v^ [^ - .] Q (v/2^.) } 
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E.3    q>2 

In this case, we express S, as a function of JB,_i and B,_2. The details are as follows: 

/•OO 

Jri 
roo 

=    /    exp{-P{t''-rj')){t'-r,y-'t'dt 
/•OO 

Jri 
/OO 1 

_      (+2       „2\<1 -1      1 

1   r°° r 
+ 2^0 I   exp (-^ (t^ - v')) [iQ - 1) (i^ - vy-' 2t' + {t' - rj^''] dt - v'B,., 

1   r°° r 
dt 

-v%- 9-1 
OO 1   r°° r 

-rfB^_^ 

^   [{2q - 1) B,_i + 2 (9 - 1) T?^^,,^] - T?^^,.! 
2P 
(2g-l)      „2 

2,9 ' S„-i +  fl ^ ^9-2- 

Therefore S, can be obtained from B<,_i and B, 

dt 

(E.6) 

9-2- 
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Appendix F 

Integration of IQ 

In this appendix, we prove the following integration of zeroth order modified Bessel function: 

r°°                             1   B 
(F.l) 

Eq. (6.614.3) in [23] is 

/e-"'/.(2V^)..= ;;^,\^/^^)M_,„(f) (F.2) 

Let 1/ = 0, 

1   e-^h{2^^x)dx = ^M_i,o(^) 

Using equation of M_^_i^^{x) in [40, P. 432 ], 

r°°            j—        65" ,B,i li    1 I (F.3) 

Let X = t^. 

f   e-"%(2y^a;)dx = /   2te-'''" h{2^t)dt = -e" 
JQ                                  JO                                     " 

(F.4) 

It follows 

rte-°*'/o(2v/^i)dt = ^ef (F.5) 
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Appendix G 

Derivation of the Characteristic 
Function for MSDD 

In this appendix, we derive the expression (5.32) for the characteristic function ^oiji^) of 
the MSDD test statistic D. To that end, using (5.24) and (5.30), we express the test statistic 
D in quadratic form: 

D = J2^l{\ye{s,)f-\yeis',)f), (G-1) 

where 

for£ = l,2,--- ,L. Define 

dt = A\[Us,)\'-Ms',)f), (G.3) 

then 

D = Y,dt. (G.4) 
t=\ 

Also define vector y (sfc) = [yi (s^), 2/2 (Sfc), • • • , 2/L {^k)f, then from (5.12) and (5.8), we 
have 

y(sfc)   =    fX^Xfc_i4_ij 
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Prom the signal model in Section II, E [y (sfc)] = E[y (s^)] = 0. After some algebra, the 
covariance matrix of y (s^) can be evaluated as 

^[y(sfc)y(sfcf]  = E uf('E^.-.4-i)(E'-^-'^^-^)  u. 

=   K^PSIL + KA,. 

Similarly, we have the following results: 

E[y{s',)yis',f] = \v{s,,s',)f PSIL +KA, 

E[y{s,)y{s',f] = v* {s„ s',) (KP,It + A,) 

E[y{s[)y{skf]   =   i;(s,,s;) (XPJL + A.), 

(G.6) 

(G.7) 

(G.8) 

(G.9) 

where v(sfc,s'fe) =sjfsfc. 
To use the results in [7, Appendix B], we identify the following quantities using the 

notation in the reference: Xt = yi{sk), Ye = yeis'^). Then from (G.6) to (G.9), we have in 
the notation of the reference 

Xt   =   F^ = 0 

Mxy,/   =   -v*{Sk,s[){KP, + Xe) 

f^yx,i   =   ■^visk,s'k){KP, + Xe). 

(G.IO) 

(G.ll) 

(G.12) 

(G.13) 

(G.14) 

Substitute the above equations into Eq. (B-6) and Eq. (B-5) in [7, Appendix B], together 
with A = Af,B = -Aj, and C/ = 0. After some straightforward manipulations, we get the 
characteristic function of df as 

<f>di (jw) = 
6i,e ^2,t 

(w + jOi^e) {uj - j92,e)' 

where 

di,e   = 
1 

[y/C^P^ + A[KPs + Xt]Xi(: - CPs 

and 

2[KP, + Xt]XeCbj 

^V   =   2lKP.!xe]Xt0M'''^'^'''^^''^'''^''^ 

C = K'-\v{sk,s[)\"- 

(G.15) 

(G.16) 

(G.17) 

(G.18) 
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It follows that the characteristic function of D is 

1=1 /=i h 

For a system with a single interference source, the eigenvalues of the interference plus 
noise covariance matrix are A^ = <7^ for ^ = 2,3, • • • , L. It follows that 9i^t = Oi^ and 
62,1 = ^2,2 for ^ = 2,3, • • • , L. Hence the characteristic function can be expressed as 

*^(^''^) = (1 - mu) (1 - j^u) (1 - j^^ujr^ (1 -,>,a;)-^' ^^-'^^ 

where (ii = l/^i,i, fJa = -l/^2,i) Ms = 1/^1,2, and //4 = -1/^2,2- 
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