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Feedback and Transfer 

Summary 

The acquisition of complex cognitive skills raises two central research problems: The 

function of feedback during training and the cognitive mechanisms by which knowledge 

gained during training is transferred to a new task context. 

Although feedback has been a topic of research for most of the past century, many 

findings are based on studies of simple motor learning and provide little guidance for 

how to provide feedback for the acquisition of more complex skills. Several variables 

have been shown to impact the effectiveness of feedback, but there is no consensus as to 

how these variables achieve their effect. Little work to date has considered how feedback 

operates for skills that are organized hierarchically. We conducted two studies where 

feedback is given for complex letter extrapolation problems. We introduce a variable that 

we call scope. Scope refers to whether feedback is given for an individual action (local 

scope) or for a sequence of actions that serve a common goal (global scope). In our first 

study we show that scope interacts with the total amount of feedback given. In our second 

study we present an interaction between feedback scope and feedback type (positive 

feedback verses negative feedback). We claim that the interactions presented cannot be 

explained by the currently held theories of feedback and we suggest directions for further 

research that aim to clarify these effects. 

Contemporary theories of learning postulate one or at most a small number of 

different transfer mechanisms, i.e., processes by which what is learned in one context is 

projected onto, or applied to, another task context. However, people are capable of 

mastering a given task via qualitatively different learning paths. We hypothesize that the 

knowledge acquired via such altemative paths differs with respect to level of abstraction 

Technical Report, Ohlsson 



Feedback and Transfer 

and the balance between declarative and procedural knowledge, both factors that affect 

transfer. In three experiments, we investigate what is learned about patterned letter 

sequences via either direct instruction in the relevant patterns, practice in solving letter 

sequence extrapolation problems, or an incidental learning procedure. Mastery of the 

target task can be achieved either via instruction or practice, but the structure of the 

solution times reveals significant differences in cognitive processing. The findings are not 

in accord with the standard trade-off view of the distinction between declarative and 

procedural knowledge. Learning theories that claim generality should be tested against 

cross-scenario phenomena, as opposed to parametric variations of a single learning 

scenario. 
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Feedback and Transfer 

Background 

Like other types of skills, cognitive skills are learned by practicing. For practice to be 
effective, the learner must receive feedback about his or her performance. Psychological 
theories of skill acquisition are incomplete unless they explain how learners benefit from 
feedback. It is of great practical importance to understand how feedback should be crafted 
to optimize learning. However, the bulk of research on feedback has concerned motor 
skills, so there are few empirically grounded generalizations about feedback in the 
acquisition of cognitive skills. In particular, there is little evidence for the widespread belief 
that positive feedback is more effective than negative feedback. Furthermore, research on 
feedback has overlooked the fact that cognitive skills are hierarchically organized. We 
show in two experiments that organizational level interacts with rate and type of feedback 

Definition and Focus 
Broadly conceived, feedback includes any information that reaches the learner 

from the environment about the appropriateness, correctness or effectiveness of his or her 
actions. In some task environments, such information consists of the observable causal 
consequences of the relevant actions, e.g., the behavior of a device after a particular 
button has been-pressed. This form of feedback is often referred to as intrinsic feedback 
(Salmoni, Schmidt, & Walter, 1984). In learning and training environments, feedback 
typically includes instructional discourse delivered by a coach, teacher or tutor (human or 
artificial). This type of feedback is often referred to as extrinsic feedback (Schmidt. 
Young, Swinnen, & Shapiro, 1989). 

Feedback takes different forms in cognitive (Anderson, 1981; Ohlsson, 1996b) 
and motor skills (Patrick, 1992; Proctor, 1995; Salmoni et al., 1984). Although the 
distinction cannot be made perfectly sharp, we regard a skill as primarily motor when 
task performance depends on the exact physical movements by which the relevant actions 
are implemented. For example, when striking a ball in tennis, it matters exactly how the 
racket is swung, with what angle, speed, direction, etc. In contrast, a skill is primarily 
cognitive when the physical properties of the relevant actions do not matter for task 
performance. For example, it matters not for the outcome of a chess game by which 
physical movement a chess piece is moved; the move is the same, whether the piece is 
moved by hand, foot or mouth. Clearly, feedback about the trajectory of one's hand in 
moving a chess piece would not be helpful in learning to play chess. Because we focus on 
cognitive rather than motor skills, we consider only high-level conceptual feedback such 
as information about the correctness of a problem solution, as opposed to, for example, 
information about the spatial parameters (speed, location) of a movement in relation to a 
target movement (Adams, 1971; Salmoni et al, 1984; Welford, 1968), 

Background 
E. L. Thomdike was the first learning theorist to systematically consider the 

effects of what he called after-effects on learning (Thomdike, 1913a) On the basis of a 
large number of empirical studies, he claimed that the after-effects have a stronger impact 
on the learner than mere repetition. He formulated the influential Law of Effect, which in 
its initial form claimed that what Thomdike called satisfiers (rewarding after-effects) 
strengthen the connections between situations and actions, while what he called annoyers 
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(punishing after-effects) weaken such connections (Thomdike, 1913a, 1913b). As the 
terms "satisfier" and "annoyer" indicate, Thomdike did not distinguish between 
motivational and informational aspects of after-effects. Other behaviorist learning 
theorists in the first half of the 20* century discussed the effect of the environment's 
response to an organism's action in terms of reinforcement (Hilgard & Bower, 1966; 
Skinner, 1938), a concept that also failed to discriminate between information and 
motivation. In the terminology of reinforcement, "positive" meant praise or reward (e.g., 
a food pellet for an animal subject), while "negative" meant punishment (e.g., an electric 
shock). 

The term "feedback" originated in engineering work on servo-mechanisms during 
World War II (Wiener, 1948), and migrated from control theory into psychology in the 
late 1940s (Arbib, 1964; Craik, 1947, 1948; Moray, 1987; Murray, 1998). Some 
psychologists saw the concept of a feedback cu-cle as having the theoretical potential to 
replace the reflex arc as the building block of nervous systems (Miller, Galanter, & 
Pribram, 1960). The shift from reinforcement to feedback lead researchers to emphasize 
the informational rather than the motivational aspect of the environment's response to an 
action: What does that response tell the learner about his or her current task or situation, 
and how does he or she make use of that information to improve task performance? 
Consistent with this orientation, some authors have used the term "knowledge of results" 
instead of "feedback" (Bilodeau, 1966). From our point of view, there is no conceptual 
difference between feedback and knowledge of results; we prefer the shorter term. 

In engineering, the terms positive and negative feedback have technical 
definitions that for obvious reasons are devoid of any motivational implications. Briefly 
put, positive feedback is present when the output of a device is connected to its input in 
such a way that an increase in output produces further increases in output; negative 
feedback is present when the connection is such that an increase in output leads to a 
future decrease in output. Although the informational orientation survived the migration 
into psychology, these precise definitions did not (Moray, 1987). Within psychology, 
"positive feedback" have come to mean information that informs a learner that an action 
or solution is appropriate, correct or effecfive, while "negative feedback" means 
information to the effect that an action is inappropriate, incorrect or ineffective. This is 
how we use these terms in this article. 

Throughout the historical changes in conceptualization, there has been consensus 
that feedback is essential for successful skill acquisition. Given that feedback is helpful, 
one would expect the learner to benefit more, the higher the feedback rate. If each 
feedback message provides additional information, then learning should be most effective 
when the learner receives feedback after 100% of his or her actions. However, in realistic 
learning scenarios the feedback rate can be considerably lower. Surprisingly, laboratory 
experiments that systematically vary feedback rate have not consistently confirmed the 
expected effect. In some studies, increasing the feedback rate improved performance 
(Kulik & Kulik, 1988; Salmoni et al, 1984; Schmidt et al, 1989; Thomdike, 1927). In 
others, increasing the rate was found to lower performance (Boume, 1957; Bourne & 
Bunderson, 1963; Schroth, 1997). The obvious inference is that the effect of feedback 
rate is mediated by other variables. 
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Feedback Type 
In the late 1920s, Thomdike revised his Law of Effect to say that satisfiers and 

annoyers act in different ways. Thomdike (1931; 1927; 1932) claimed that " ... the 
strengthening of a connection by satisfying consequences seems, in view of our 
experiments and of certain general considerations, to be more universal, inevitable, and 
direct than the weakening of a connection by annoying consequences." Although 
satisfiers directly strengthen the connections between situations and actions, annoyers act 
primarily by prompting the learner to try other actions, which then might be strengthened 
instead. The weakening of incorrect connections is indirect. Laboratory findings 
consistent with the revised law (Thomdike, 1932), the common tendency to confound 
informational and motivational effects of feedback, and the claim of progressive 
educators that encouragement leads to better educational outcomes than punishment have 
combined to produce a widespread belief that psychological research has shown that 
positive feedback is more effective than negative feedback. 

However, the issue of how positive and negative feedback functions in the 
acquisition of cognitive skills is not, in fact, settled. First, once motivation is 
distinguished from information, the superiority for praise over punishment does not 
necessarily imply that positive feedback is more helpful than negative feedback. Second, 
the early 20* century laboratory studies cannot be regarded as decisive due to 
methodological weaknesses. For example, Thomdike often compared small groups of 
subjects without the benefit of statistical significance tests (Thomdike, 1932), and his 
choice of chance-level base line performances has been criticized (see Hilgard & Bower, 
1966). Many of the results from the reinforcement tradition were obtained with animal 
subjects, and it is not obvious that they can be generalized to the acquisition of complex 
cognitive skills by humans. Third, most studies of feedback have focused on motor skills 
(Salmoni et al, 1984), Although it is likely that there are some similarities between the 
two types of skills in how they are affected by feedback, it is also likely that there are 
some differences, so results cannot be generalized without further evidence. 

Finally, the empirical data base is small. In the period 1930-1980, the issue of 
positive versus negative feedback did not receive much attention, presumably because it 
was considered settled. There were many studies of cognitive leaming in which feedback 
was a component of the experimental procedure, but in all but a few feedback was a tool 
for establishing a desired level of learning rather than the phenomenon being 
investigated. In an extensive review, D, B. Ausubel (1968) summarized the status of the 
field as follows: 

On theoretical grounds, knowledge of results or feedback would appear to be an 
extremely important practice variable. Nevertheless, because of serious gaps and 
inadequacies in the available research evidence, we possess very little 
unequivocal information either about its actual effects on leaming or about its 
mechanism of action, (p, 315) 
Consistent with this assessment, we have been unable to locate any systematic 

body of empirical research on the functions of positive and negative feedback in the 
acquisition of multi-step cognitive skills in the period 1930-1980. 

During the 1980s, pioneers in cognitive modeling posed the challenge of 
simulating the acquisition of cognitive skill (Anderson, 1976; Andereon, 1981; Anderson, 
1982; Anzai & Simon,  1979; Newell,  1990). Researchers began to formulate 
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computational mechanisms that were hypothesized to correspond to the cognitive 
processes underlying skill acquisition (Anderson, 1981). Some of the proposed 
mechanisms operated independently of feedback. For example, Anderson (1983) 
hypothesized that units of skill knowledge called production rules become integrated on 
the basis of an internal record of their temporal succession during action. Ohlsson 
(1987b) and others (Klahr, Langley, & Neches, 1987) proposed other optimization 
mechanisms that also operated by analyzing the 'mental code' for a skill rather than 
environmental feedback. Other mechanisms did depict learning as operating with 
feedback. For example, Langley (1987) hypothesized that production rules that are 
sometimes followed by positive and sometimes by negative feedback are replaced by 
more specific rules that incorporate the conditions that differentiate between the two 
types of situations. Positive feedback was generally thought to strengthen a production 
rule, i.e., increase its probability of retrieval as stated in the first half of Thomdike's Law 
of Effect, but without any change in content (Anderson, 1983). This hypothesis enjoys 
enduring popularity. 

This flowering of theory did not lead to a renewed interest in the different 
functions of positive and negative feedback. The various learning mechanisms were not 
typically specified in those terms, and the fact that several hypothesized mechanisms did 
not rely on any type of feedback was not discussed. The number of empirical studies of 
positive and negative feedback did not increase. 

In our own work on learning from negative feedback (Ohlsson, 1987a, 1993; 
Ohlsson, Ernst, & Rees, 1992; Ohlsson & Jewett, 1997; Ohlsson & Rees, 1991) we began 
with the observation that learners often know what a correct problem solution should 
look like, how a device should behave when operating correctly, and so on. Such 
expectations can be conceptualized as constraints on correct task solutions, and negative 
feedback about an error as a signal that this or that constraint has been violated. We 
developed a computational mechanism by which the information embedded in a 
constraint violation can be translated into a revision of the violating production rule. The 
rule is thereby specialized in such a way that it does not become active in situations in 
which it causes errors, which gives other, more appropriate rules the opportunity to apply. 
This learning mechanism thus incorporated Thorndike's insight about the indirect 
operation of negative feedback. It was embedded in a computer simulation called HS 
which was capable of acquiring skills in elementary arithmetic and chemistry (Ohlsson, 
1996a, 1996b; Ohlsson et al., 1992; Ohlsson & Rees, 1991). HS remains the most 
developed model of learning from negative feedback in the cognitive modeling literature. 
It has been shown to produce negatively accelerated learning curves (Ohlsson, 1996b), 
and it has informed the design of empirically successful intelligent tutoring systems 
(Mitrovic & Ohlsson, 1999). Nevertheless, it, like other computational models of 
cognitive skill acquisition, is seriously underspecified by data, and many of its 
predictions remain untested (Ohlsson, 1996b). For present purposes, an additional 
limitation is that the model did not learn from positive feedback. 

Positive and negative information might need to be processed in qualitatively 
different ways. Positive feedback provides definitive information. If the learner receives 
information to the effect that action A in situation S is appropriate, then he or she knows 
exactly what to do in future encounters with that type of situation. The information does 
not require further interpretation or processing. However, when the learner receives 
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information to the effect that a particular action was an error, the information is 
incomplete. There remains to figure out why the action was incorrect and (hence) which 
action to perform instead. Hence, positive feedback provides more information than 
negative feedback. This argument from information content is frequently put forward as a 
statement of logic that requires no empirical validation. For example, Hilgard & Bower 
(1966) wrote: 

There is a logical difference between responding in the intelligent 
direction to Right and Wrong. The intelligent to response to Right is to do 
again what was last done. This makes possible immediate rehearsal; the 
task is clear. The intelligent response to Wrong is to do something 
different, but what to do is less clear. It is necessary both to remember 
what not to do and to form some sort of hypothesis as to what to do. (page 
32) 
The argument implies that qualitatively different cognitive processes are required 

to learn from positive and negative feedback. It also implies that positive feedback should 
be more helpful than negative feedback. 

Although the argument from information content has the appearance of a logically 
necessary argument, the implication that positive feedback is more helpful than negative 
does not, in fact, hold up under all circumstances. The empirical literature supports the 
idea that positive and negative feedback have qualitatively different effects (Taylor, 
1991), but it is once again inconsistent. Greeno (1974) did indeed find that positive 
feedback was more effective than negative feedback, but Mesch, Farh, and Podsakoff 
(1994) found that negative feedback produced better performance. 

To clarify this issue, we conducted a series of simulations using an abstract 
computer model (Ohlsson & Jewett, 1997), Abstract computer models are similar to 
mathematical models in that they only capture the quantitative aspects of a hypothesized 
process or mechanism. The advantage of abstract models is that they are simple enough 
to enable extensive simulations to be run, which in turn enables the researcher to 
systematically vary model parameters and to obtain quantitative regularities. The model 
conducted a heuristic search and it incorporated the almost universally adopted principle 
that a rule (connection) is strengthened when it was followed by positive feedback. The 
model responded to negative feedback by correcting the indicated error, i.e., it responded 
as if the HS learning mechanism (see above) was operating. We found that in this type of 
system, negative feedback had a stronger effect on the rate of learning than positive 
feedback (Ohlsson & Jewett, 1997). The reason is that the correction of an incorrect 
action cuts off the entire search tree that sprouts from the problem state created by that 
action, and thus preempts a potentially large number of possible future errors. The 
argument from information content is not valid unless augmented with particular task 
environment, a particular performance mechanism, and a specification of how feedback 
is processed. The situation becomes even more complicated when we factor in the 
organization of skill knowledge. 

Hierarchy 
The performance of complex cognitive skills seldom consists of the execution of 

single actions; it is usually necessary to carefully coordinate temporally extended 
sequences of actions. Although each individual action might be under the control of a 
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single, modular knowledge element, such as a production rule or a motor schema, the 
performance as a whole must be under the control of a larger structure. Cognitive models 
of skill typically conceptualize this larger organization as a hierarchical goal-subgoal tree 
that decomposes a task into subtasks or components. An everyday example is the 
decomposition of planning a vacation into its component tasks. Completing a trip might 
involve transportation to the destination, finding accommodation, and transportation back 
home. Each of these subtasks obviously decomposes into yet small tasks (e.g., dial the 
hotel reservation desk). The result is a hierarchical structure in which the top node 
specifies the task as a whole, the intermediate nodes represent subgoals (component 
tasks), and the terminal nodes represent actions that are so simple that they can be 
executed without further decomposition at the cognitive level (e.g., reach for the 
telephone). 

Laboratory studies strongly support the hierarchy hypothesis. Several studies 
(Anderson, 1993, chap. 6; Egan & Greeno, 1974; Greeno & Simon, 1974; Restle, 1970; 
Restle & Brown, 1970; Ruiz, 1986; Simon, 1972) have reported that inter-response times 
in the execution of complex tasks show a scalloped pattern, in which the first action after 
the retrieval of a subgoal has a longer-than average response time, but the actions 
dominated by that subgoal have shorter times; when the subgoal has been reached and the 
next subgoal is -to be retrieved, the next inter-response time is once again longer than 
average. Studies on knowledge representation also suggest a hierarchical organization. 
For example, semantic memory is organized hierarchically (Collins & Quillian, 1969; 
Miller, 1998). Finally, Simon (1962) in an oft-quoted essay, argued that complex systems 
such as skills become more probable if they are constructed in successive stages such that 
in each stage a few components are assembled into intermediate structures, which then in 
turn are combined into the complete structure. This type of process generates a 
hierarchical final product. 

Although the two concepts of feedback and hierarchy are often mentioned in the 
context of skill acquisition, they have rarely been considered together. How is feedback 
processed in the context of a goal-subgoal hierarchy? More precisely, suppose that action 
A is dominated by subgoal G„, which in turn is dominated by subgoal G„.„ and next G„.2, 
and so on, until we reach top goal GQ. If A is followed by feedback, which goal or goals 
are affected? Is only the immediately superordinate goal, G„, affected? Only the top goal. 
GO? All goals Gi in between? What are the differences between positive and negative 
feedback in this respect? Which type of feedback should be expected to be most effective 
in a hierarchical task representation? 

The argument from information content appears even stronger in the case of 
hierarchical task representations. Positive feedback is as definitive in a hierarchical 
representation as in a single-level one. To know that an entire subtask has been 
performed correctly is even more useful than to know that a single action has been done 
correctly. However, the interpretation problem associated with negative feedback is even 
more complex in a hierarchical representation. The learner has to figure out not only 
which prior action or actions were incorrect, but also which, if any, of the subgoals are 
incorrect and hence should be affected by the feedback. The simple version of the 
argument from information content predicts that the advantage of positive over negative 
feedback should be even greater for hierarchical task representations than for single-level 
representations. 
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We conducted a series of abstract computer simulations to investigate the 
interaction between hierarchy and type of feedback (Corrigan-Halpem & Ohlsson, 2001; 
Ohlsson & Halpem, 1998). We found that our model learned faster if the propagation of 
negative feedback upwards in the goal hierarchy was conservative, i.e., had most of its 
effects at the lowest levels in the hierarchy, than when the error information was allowed 
to propagate all the way to the top goal. The opposite was the case with positive 
feedback: Learning was slightly more effective when such feedback was allowed to 
propagated upwards and affect goals at all levels in the goal tree approximately equally. 
Once again, the argument from information content is at best a partial truth that ignores 
issues about how feedback is processed. Our simulations suggest that the effectiveness of 
positive and negative feedback is a function of whether the feedback is local, i.e., refers 
to the terminal nodes in the goal tree (individual actions), or global, i.e., refers to higher 
level nodes (subtasks). We refer to this variable as the scope of a feedback message, i.e., 
how large a component of the target performance does a particular message refer to? 

To summarize, information concerning the function of feedback in the acquisition 
of multi-step cognitive skills is scarce. Many of the early studies of feedback were 
conducted before modem methodological standards were developed. The majority of 
studies on feedback concern motor rather than cognitive skills. Many of the process 
hypotheses proposed in the computational modeling literature do not draw upon 
feedback, and others have not been tested against empirical data. Furthermore, feedback 
research has overlooked the fact that cognitive skills are hierarchically organized. 

The result is that we have few empirically grounded generalizations about the 
function of feedback in the acquisition of cognitive skills. In particular, we do not have a 
clear understanding of the effects of feedback rate, we do not know how feedback 
interacts with goal hierarchies, and we do not know whether positive and negative 
feedback are processed differently and, if so, how. The argument from information 
content is insufficient to settle the latter question, because it ignores how feedback is 
processed. 

We report two experiments that begin to address these issues. In Experiment 1, 
we aim to verify that the scope of a feedback message, i.e., whether it refers to a single 
action or a larger component of a task, matters for the impact of that message, and to 
determine how that impact is modulated by the rate at which feedback is delivered. In 
Experiment 2, we investigate whether positive and negative feedback are processed 
differently, and how feedback type interacts with scope. In both experiments, we 
determine the impact of the relevant variables during the learning period, on the 
subsequent performance of the target task, and on performance on a near transfer task. 

General Method 

The experimental study of feedback poses multiple methodological challenges. There is 
little principled discussion of them in the literature. The purpose of this section is to 
motivate our approach. 

Target Task 
The class of complex cognitive skills includes algebra, card games and software 

use. However, ecologically valid tasks tend to be irregular, draw upon unspecifiable parts 
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of the learner's prior knowledge, and be learned under conditions that hinder precise 
control and measurement of relevant variables. One the other hand, many laboratory tasks 
used to study feedback are either perceptual-motor tasks or reproductive memory tasks, 
and we cannot assume that findings from such tasks generalize to complex cognitive 
skills. The ideal target task shares key properties of ecological cognitive skills but enables 
data capture. 

Our target task is a version of the sequence extrapolation task studied previously 
(Kotovsky & Simon, 1973; Simon, 1972; Simon & Kotovsky, 1963; Simon & Sumner, 
1968). The learner is given a series of letters that exemplify a pattern and he or she is 
asked to continue the pattern. To solve such a problem, the subject must first identify the 
pattern in the given sequence and then use that pattern to generate the continuation of the 
sequence. 

In the original version of this task (Thurstone & Thurstone, 1941), the subject was 
asked to add a single next element to the sequence. In our version, the subject is asked to 
extrapolate the entire sequence. In addition, we asked participants to extrapolate the 
sequence from an arbitrarily chosen single letter. For example, to extrapolate the 
sequence FABFCD beginning with the letter T, the subject would produce TOPTQR. 
Although the solution to this example is obvious, sequence extrapolation problems can be 
quite difficult,- The reader might want to extrapolate MKNPPNKMNLOQQOLN 
beginning with the letter T. 

In order to track mastery, we imposed a time limit on each extrapolation attempt. 
The subject was allowed to study the given part of the sequence for 20 seconds, then 
made an attempt to generate the solution, and finally received feedback. The feedback 
was available for 45 seconds, then the next trial began. The study time was designed to be 
too short for any subject to solve any of the experimental problems in a single trial. 
Unlike the problem solving scenario studied by Kotovsky and Simon (1973) and Simon 
and Kotovsky (1963), mastery in our scenario developed over a sequence of trials, where 
each trial contained both study and extrapolation. 

Finally, to increase the difficulty of the task, we gave the subjects different 
sequences to study on every trial. Each study sequence contained different letters but they 
all exemplified the same pattern. Unlike the subjects in the serial learning studies by 
Restle (1970) and Restle and Brown (1970), our subjects could not master the target task 
via memorization. They were forced to go beyond the specific letters and look for the 
underlying pattern. However, extrapolation began with the same initial letter in every 
trial. In short, the subject was trying to construct a particular sequence of letters, but he or 
she had to extract information from multiple given sequences to figure out which 
sequence was required. 

This task has several theoretically interesting properties that make it suitable as a 
model of complex cognitive skills, in the sense in which medical researchers speak about 
animal models of human diseases, (a) Prior knowledge. Like most ecological tasks, the 
process of mastering a letter sequence extrapolation problem draws upon the subject's 
prior knowledge. However, the prior knowledge, namely the letters of the alphabet, is 
relatively circumscribed, (b) Conceptual content. Detecting the pattern in the given 
sequence is potentially facilitated by knowledge of the pattern-forming operations that 
were used to generate the given sequences (see below). The operations constitute a kind 
of theory of the relevant type of pattern, and solving a problem involves applying that 
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theory, (c) Levels of abstraction. The pattern in a particular sequence can be encoded 
either concretely, with reference to the specific letters that appear in the sequence, or 
abstractly, with reference only to the relations between the positions in the given 
sequence (Nadel, 1991; Nokes & ohlsson, 2000; Ohlsson, 1993). (d) Complexity. To 
solve a sequence extrapolation problem, the subject must generate a series of coordinated 
responses, rather than the single responses required in recognition and classification 
tasks, (e) Generativity. A sequence extrapolation problem cannot be solved by 
memorizing and recalling the given sequence, but requires complex inferences ("this 
letter corresponds to that letter over there, and that letter has such and such a relation to 
this other letter, so the letter in this position should probably have that same relation to 
this letter, and therefore it must be ..."). (f) Hierarchy. The patterns have meaningful 
components, which increases the probability that the subjects encode them hierarchicdly. 
The components arise as a side effect of the pattern forming operations used. For 
example, reflection of the subsequence XYZ produces XYZZYX which has the two 
subsequences XYZ and ZYX. Restle (1970) and Restle and Brown (1970) found strong 
evidence for hierarchical encoding in their serial learning task. The properties (a) through 
(f) circumscribe the class of learning scenarios to which one might attempt to generalize 
our findings. 

The given sequences were presented on a computer screen, and the subjects 
extrapolated them by clicking on empty boxes that symbolized the N places in the 
sequence and then typing in the letter they thought was the right one for that place (see 
below for more details). The computer was essential for the definition of both our 
independent and dependent variables. 

Independent Variables 
Feedback Type. Learning environments designed for instruction and training often 

provide feedback with rich explanatory content. Such messages are difficult to equate 
with respect to meaningfulness and utility for the learner. In the present studies, we 
provided only basic feedback about correctness. As in Thomdike's early studies, positive 
feedback consisted of the word "Correct" appearing on the computer screen in connection 
with a response and negative feedback consisted of the word "Wrong." Both types of 
messages could refer either to a single response (letter) or to a larger segment of behavior 
(see below for details). 

Feedback Probability. To separate the effects of positive and negative feedback, we 
decided to vary the total amount of the two types of feedback independently of each 
other. This approach addresses the following conceptual difficulty: In task environments 
in which every action can be classified as either correct or incorrect, the learner is able to 
make inferences from the absence as well as from the presence of feedback. If 100% 
negative feedback is provided, then the learner can infer that any response that is not 
followed by feedback is correct (and vice versa). That is, such a learning environment 
implicitly provides 100% positive feedback as well. This makes it impossible to separate 
the effects of positive and negative feedback. 

In order to vary the amount of positive and negative feedback, we provided 
feedback probabilistically. That is, we defined experimental conditions in terms of the 
probabilitv that the subject will receive feedback of a particular type, given that he or she 
produced a response for which that type of feedback is appropriate. Seventy-five percent 
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negative feedback thus means that there is a 75% probability that the subject will receive 
feedback after an erroneous response (i.e., writing a particular letter in a particular 
position in the sequence). This allows us to deliver a single type of feedback at varying 
densities. This variable can also be varied independently for each type of feedback. An 
experimental condition might hence be defined as delivering 40% negative feedback and 
90% positive feedback. We refer to a specification of this sort as a feedback regimen. 

The second component of our approach is to introduce an explicit "no feedback" 
signal. Our subjects were instructed that the appearance on the computer screen of the 
word "None" in connection with a response means that there is no feedback, i.e., that the 
response is either right or wrong; the computer system is not telling them which is the 
case. This feature was intended to lower the subjects' tendency to interpret the absence of 
feedback. 

Scope. If skills are hierarchically organized, it is likely to matter at what point in the 
hierarchy feedback is applied. The methodological problem is that the higher-level nodes 
(subgoals) in the subject's representation of the task are inside the subject's head, loosely 
speaking, and hence not available as shared referents for instructional discourse. A 
learning environment or a tutor cannot meaningfully say, "There is something wrong with 
your conception of subgoal G0023." The only shared components of a problem solution are 
the terminal nodes in the hierarchy - the individual actions - and feedback always 
arrives after some action or another. Without additional information, the learner does not 
know to which prior action or actions the feedback message refers. 

Our technique for gaining experimental control of hierarchical level utilizes the fact 
that a high level node in the task representation is likely to correspond to a meaningful 
component of the task. We use an explicit scope marker, a line that underscores a portion 
of the extrapolated sequence. This marker informs the learner which letter or letters in his 
or her extrapolation a feedback message refers to. In the applications reported here, this 
can be either a single letter (local feedback) or a set of four letters that together constitute 
a component of the relevant pattern (global feedback). Positive local feedback thus means 
"this letter is right" and negative local feedback means "this letter is wrong." In contrast, 
positive global feedback means "all four of these letter are correct" while negative global 
feedback means "at least one of the these four letters is incorrect." 

It is important to distinguish scope from delay, a variable that we do not consider in 
this article. If feedback is delivered immediately after a response, then it is immediate. It 
might seem that feedback that awaits the completion of a sequence of responses must 
necessarily be delivered later, and hence that scope and delay are necessarily confounded. 
Our approach to this problem is to wait to deliver all types of feedback until the subject 
declares himself or herself finished with an extrapolation attempt. Then all feedback 
messages are presented at once and in parallel. With this procedure, there is no relation 
between scope and delay. 

Dependent Measures. There are at least three different potential effects of feedback, 
each requiring a different evaluation. First, feedback might primarily affect the skill 
acquisition process itself. That is, the efficiency of the learning mechanisms responsible 
for skill acquisition might depending on the feedback available in the task environment. 
If the impact of a particular feedback regimen is beneficial, it ought to increase the 
learning rate. This type of effect can be evaluated by exhibiting learning curves that track 
quality or speed of solution attempts across trials. 
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Second, learners who receive a particular feedback regimen might encode their 
knowledge of the task differently. If they develop a better or more powerful 
representation, then feedback ought to affect their performance of the target task after 
training. Effects on learning and performance are logically and operationally distinct. It is 
possible that some feedback regimens speed up learning, i.e., that a learner will reach a 
given performance level in less time or fewer trials, but that two learners who have 
reached the same performance level, by whatever routes, will perform similarly after 
training. However, if feedback impacts the task representation rather than (or in addition 
to) the process by which it is acquired, then the two learners might perform differently as 
well. 

Third, if feedback regimen influences the learner's encoding of the task knowledge, 
it might affect how well or to what extent he or she can apply that knowledge to transfer 
tasks. In this case, a transfer task is a sequence extrapolation problem in which the 
subjects must extrapolate a new instantiation of the pattern, that is they must generate a 
new sequence of letters that conform to the relations given during the learning stage. The 
direction of the impact of feedback on transfer cannot be determined a priori. A more 
abstract task representation might increase the amount of transfer, but a more efficiently 
compiled representation might be more task specific and hence have the opposite effect. 

Learning,- performance and transfer are distinct dimensions of the impact of 
feedback. In the past, different studies have measured the impact of feedback in different 
ways. Studies that have used multiple measures have found that the most effective 
feedback condition as measured during learning is not always the most effective 
condition as measured during transfer (Schmidt et al, 1989; Schroth, 1997). Since there 
is no reason to favor one measure over another, our approach is to capture data on all 
three types of potential effects. 

Experiment 1 

The purpose of Experiment 1 was to determine the effects of probability and scope of 
feedback on learning in our modified version of the letter sequence extrapolation task. 
Common sense would lead us to expect that if feedback helps, then increasing the 
probability of feedback should boost either learning, performance, transfer, or, possibly, 
all three. Half the subjects in Experiment 1 received 25% feedback, i,e,, the probability of 
receiving feedback after a response was 25%, and the other half received 75% feedback. 

We did not vary feedback type. All subjects received both positive and negative 
feedback, as would be the case in most real learning scenarios. Furthermore, they 
received both types of feedback at the same probability. That is, those who received 25% 
positive feedback also received 25% negative feedback; similarly for the 75% condition. 

The second purpose of Experiment 1 was to determine whether scope affects 
behavior in our learning scenario. Scope, as distinguished from delay, has not been 
systematically studied in prior work on feedback. Half the subjects received only local 
feedback and half received only global feedback. We made no specific predictions about 
the effects of scope. 
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Method 
Participants. The subjects were 104 undergraduate students enrolled in the 

introductory psychology course at the University of Illinois at Chicago. They received 
course credit in return for their participation. There were approximately 60% females and 
40% males. No other demographic data were collected about the participants. 

Materials. There were 12 letter sequences with 16 letters each that served as the 
given strings. All 12 sequences instantiated the same pattern. The pattern is shown in 
Figure 1. The first half of the pattern consists of an initial group of four letters, followed 
by a second group that is a reflection of the first. The initial four letters are related to each 
other via repeated next relations, i.e. one can move from letter to letter by moving either 
forwards or backwards in the alphabet. The second half of the pattern repeats this two- 
group structure, but also moves it one step forward in the alphabet. The pattern thus 
consists of a three-level hierarchical structure with the top level dividing the total 
sequence into two subsequences of eight letters each. These are in turn divided at the next 
level into two shorter subsequences. The latter consist of four letters each. 

The first 12 trials were learning trials, where subjects viewed a sequence and then 
reproduced it. They were followed by two assessment trials and two transfer trials. The 
subjects' task was always to extrapolate the sequence. The first letter in the extrapolation 
was given as a-prompt and it was the letter M on the 12 learning trials and on both 
assessment trials. The subjects generated the letters for the following 15 positions. In the 
transfer trials, the initial prompt was the letter T instead. To answer a transfer task, the 
subject thus had to generate a sequence of letters that he or she had not generated before. 

Table 1 contains the 12 given strings, the prompts, and the correct 15-place 
extrapolations. There was no overlap between the given sequences and the correct 
extrapolations. That is, the extrapolations could not be constructed by memorizing the 
given sequences. 

Design. Subjects were randomly assigned to four groups, created by crossing 
feedback probability (low-probability verses high-probability) with scope (local-scope 
versus global-scope). If a subject was assigned to a low (high) rate group, then he or she 
had a 25% (75%) probability of receiving feedback after a response. The subjects in the 
local scope groups received feedback that referred to individual letters, while the subjects 
in the global scope groups received feedback that referred to groups of four letters. 
Following the structure of the pattern, the groups consisted of the letters 1-4, 5-8,9-12, or 
13-16. 

Procedure. The procedure was the same for all four experimental groups. It 
consisted of instruction, learning, assessment and transfer. The subjects sat in front of a 
desktop computer with a 15-inch monitor. All experimental materials were presented via 
the PsyScope experiment controlling software, which also recorded the subjects' 
responses and response times. 

(a) Instruction. The subjects were told about the three pattern forming operations 
that were used to construct the sequential pattern underlying the 12 letter sequences. 
First, the software described the Next operation ("One way to make a letter pattern is to 
go forward or backward in the alphabet."). They were shown two examples sequences, 
one going forwards [A B C D E] and one backwards [E D C B A]. They were then asked 
to extrapolate a simple sequence that followed the rule (in this case one going forwards). 
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They were given the prompt [P Q] and extrapolated three additional letters. The correct 
answer was thus [P Q R S T], 

Second, the subjects were instructed in the Reflect operation ("Another way to 
make a pattern is to reverse letters."). They were shown the sequence [A B C C B A] as 
an example of a reversal, and asked to extrapolate the prompt [J K L] to three places, thus 
the correct answer was [J K L L K J]. 

Finally, the subjects were instructed in the Repeat operation ("The third way to 
make a letter pattern is to repeat lettere."), and extrapolated the given sequence [A B C A 
B C] from the prompt [L M N] to form the sequence [L M N L M N], 

These exercises served the two purposes. First they provided instruction on the rules 
just described. Second, they familiarized the subjects with the study-extrapolate format of 
the subsequent trials, as well as with the idea of beginning the extrapolation from a given 
prompt or starting point. Exit interviews revealed that they were effective in both regards. 

(b) Learning. The twelve learning trials all followed the same format. The given 
letter sequence was presented on the screen with the letters in a horizontal row, for a total 
of 20 seconds. The PsyScope program sampled randomly without replacement from the 
stock of 12 given sequences (see Table 1), thus producing a different random order of 
presentation for each subject. 

After the 20 seconds of study time, the given sequence was replaced by a single 
letter followed by a sequence of 15 boxes, also in a horizontal row. This letter will be 
referred to as the prompt. The prompt showed subjects where to begin the extrapolation. 
The prompt was the same on every learning trial; hence, the correct extrapolation was the 
same sequence of letters on each learning trial. The subjects extrapolated by fdling in the 
15 empty boxes to the right of the M. A box was fdled by clicking on the box with the 
mouse and then pressing the relevant key on the keyboard. The corresponding letter 
appeared in the box. The subjects could fill in the boxes in any order. They could revise 
the content of a box by clicking on the filled box and typing a different letter; that letter 
then replaced the previous letter; the previous letter was no longer visible. The subjects 
filled in as many boxes as they could, and then clicked on the word "Done" on the screen. 
They could spend as much time as they wished on the extrapolation task. 

Once the subject clicked the "Done" button, the feedback appeared on the screen. 
The feedback consisted of the words "Correct" and "Wrong", although "Correct" was 
abbreviated to "Corr" due to space limitations on the screen. Subjects received either 
local or global feedback according to experimental condition. Colored lines were used to 
indicate scope. For example, positive local feedback was signaled by underlining the 
relevant letter with a green line under which the abbreviation "Corr" appeared in green 
font. Global negative feedback was signaled by underlining the relevant group of four 
letters with a red line, under which the word "Wrong" appeared in red type. 

In the local feedback condition, letters for which feedback was not supplied were 
underlined with a white line, under which the word "None" appeared in white font. In the 
global feedback condition, groups of four letters for which feedback was not supplied 
were underlined with a white line, under which the word "None" appeared in white 
letters. 

The feedback remained on the screen for 45 seconds. When the feedback 
disappeared, the next learning trial began with the presentation of a different given 
sequence of 16 letters. There were 12 learning trials. 
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(c) Assessment. After the twelfth learning trial, there were two assessment trials in 
which the subjects were asked to produce the target sequence without any further 
opportunity to study any example of the relevant pattern. They were not shown any study 
sequence. The program went directly to the extrapolation screen. The subjects tried to fill 
in the 15 empty boxes, starting with the prompt "M", as they had done in the learning 
trials. No feedback was given. The two assessment trials were identical and subjects 
could spend as much time as they desired on each trial. 

(d) Transfer. After the two assessment trials, there were two transfer trials. The 
subjects were not shown any study sequences. They once again produced a 15-item letter 
sequence that exemplified the same pattern as in the learning and assessment trials. 
However, instead of being asked to begin the extrapolation with the letter "M", they were 
now prompted with the letter "T". They were thus asked to generate a letter sequence that 
they had never generated before. There was no time limit on this task. No feedback was 
given during the transfer trials. The two transfer trials were identical. 

Once the subject had completed all 16 trials (12 learning, 2 assessment, and 2 
transfer), they were debriefed as to the purpose of the experiment and thanked for their 
participation. 
Results 

Verification of Hierarchical Task Representation. Response times have been used 
to reliably demonstrate that knowledge is represented hierarchically (Anderson, 1993, 
chap 1.6; Collins & Quillian, 1969; Egan & Greeno, 1974; Greeno & Simon, 1974; 
Restle, 1970; Restle & Brown, 1970; Ruiz, 1986; Simon, 1972). We computed response 
times for each position of the pattern. We analyzed the last four learning trials, so that we 
could capture subjects' final representation of its structure. We expected that by this point 
subjects would represent the pattern hierarchically. Four subjects were removed from the 
analysis because they omitted responses on one or more of the trials. Figure 2 shows the 
result. 

Subjects spent the longest times at the beginning of the pattern. The first position 
was the prompt "M", so there are no times for this letter. The next three positions "K", 
"N" and "P" correspond to the first chunk. The high latency for the first "K" probably 
reflected initial time planning to reproduce the pattern. The next four positions (5-8) 
correspond to the second chunk, "PNKM". Subjects could reproduce these letters by 
reflecting the first chunk and response times were shorter. Response times for these four 
responses approximate a horizontal line. The next chunk "NLOQ" involves the 
translation of the first chunk by one letter in the alphabet. This required more effort as 
indicated by the increase in latency from position 8 to position 9The last chunk, 
"QOLN", could also be completed by reflectionLatencies for the last chunk match those 
of the second chunk and the horizontal trend is again present. 

Learning. Performance as a function of learning trials is shown in Figure 3A 
mixed ANOVA was performed to verify that the subjects did indeed learn. All 12 
learning trials were entered as the within-subject factor. Number of letters correct per trial 
was the dependent measure. Feedback scope (local or global) and feedback probability 
(25% or 75%) were entered as between-subjects measures. Number of letters correct per 
trial was entered as the dependent measure. The learning effect was significant, F (1100, 
11) = 56.89, E < ,001, There was no main effect of feedback scope, F (100 ,1) = 0,00, p > 
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.05, There was no main effect of feedback probability, F (100 , 1) = 0.07, p > .05. Other 
than the learning effect, no effects involving the repeated measure were significant. 

There was an interaction between feedback scope and probability, F (100 , 1) = 
4.78, p < .05, This is due to the fact the 25% global and the 75% local groups 
outperformed the 25% local and the 75% global groups, F (100,1) = 4,76, p < .05. 

Assessment, A mixed within-subjects ANOVA was performed to consider how 
feedback influenced performance on the assessment trials. Both assessment trials were 
entered as within-subjects measure. Feedback scope (local or global) and feedback 
probability (25% or 75%) were entered as between-subjects measures. The dependent 
measure was the number of letters correct per trial. Figure 4 shows the effect of feedback 
during the assessment trials. There was a significant effect of trial, F (100 ,1) = 6,67, p < 
.05, as indicated by the fact that subjects performed worse on the second assessment trial 
than on the first. There was no main effect of probability, F (100 , 1) = 0,47, p > .05. 
There was no main effect of scope, F (100 ,1) = 0,04, p > .05. 

As was seen for the learning trials, the interaction between scope and probability 
was significant, F (100 , 1) = 6,70, p < ,05, This interaction was again due that the 25% 
global and the 75% local groups outperformed the 25% local and the 75% global groups, 
F(100,1) = 6,69, p<.025. 

Transfer. We evaluated the transfer of skill in two ways. First, we performed an 
ANOVA to test whether feedback influenced performance. Both transfer trials were 
entered as within-subjects measure. Feedback scope (local or global) and feedback 
probability (25% or 75%) were entered as between-subjects measure. The dependent 
measure was the number of letters correct per trial. Figure 5 shows the results for the 
transfer trials. There was no main effect of feedback probability for the transfer problems 
of the first problem, F (100 , 1) = 0.22, p > .05. There was no main effect of feedback 
scope, F (100 , 1) = 0,08, p > .05, The interaction between probability and scope was not 
significant in this case, F (100 ,1) = 1,43, p > .05, There was no effect of trial, F (100 ,1) 
= 0.44, p > ,05 and none of the other effects involving the repeated measure were 
significant, 

A second way to measure transfer is by considering whether subjects improved 
from learning to transfer. A comparison of figure 4 to figure 5 suggests that subjects 
performed as well on transfer as they did on assessment. To test this hypothesis, we 
entered stage (average performance on assessment verses average performance on 
transfer) as repeated measures in an ANOVA, Feedback probability and scope were 
entered as between groups measures. There was no main effect of problem stage, F (100 , 
1) = 2,21, There was a significant interaction between scope, probability and stage, F 
(100 , 1) = 8.46, p < ,005, This interaction is seen more easily if we examine difference 
scores, 

A difference score was computed by subtracting the average number of letters 
correct in the assessment trials from the average number of letters correct in the transfer 
trials. Figure 6 shows the results. While both the 25% global and the 75% local groups 
show a performance drop (together they complete 1,14 fewer letters correct during 
transfer), the 25% local and the 75% global groups show a performance gain (they 
complete 0,37 more letters during transfer). The difference between these means is 
significant, F (100 ,1) = 8.65, p < .005. 
Discussion 
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The same pattern of results is shown during all three stages of the experiment. 
During learning and assessment, there was a significant interaction between feedback 
scope and probability. This trend was present in the transfer trials, but did not reach 
statistical significance. This data shows that increasing the probability of feedback did 
not, on the average, increase the subjects' learning probability, their target performance, 
or their transfer performance. This result is counterintuitive but in accordance with the 
fact that conflicting effects of increased feedback rate have been reported in the literature 
performance (Kulik & Kulik, 1988; Salmoni et al., 1984; Schmidt et al., 1989; 
Thomdike, 1927). 

We also found no main effect of scope. Local feedback depended on the 
probability at which feedback was given. When feedback was local, increasing feedback 
probability did indeed increase performance. This is in accord with the common sense 
expectation that if feedback is helpful, then more feedback should be more so. 

However, increasing global feedback had the opposite effect on learning, 
suggesting that an interpretation in terms of amount of information is not sufficient. 
When feedback was global, increasing the probability of feedback led to lower 
performance. One possible explanation for this effect is that subjects had difficulty 
interpreting the global feedback. For the 75% feedback probability condition, there would 
have been an average of three feedback messages per trial. It may be that subjects in 
these groups could not process all three messages, and the attempt to do so might have 
interfered with their learning. Complex cognitive processes, such as the execution of 
problem solving strategies, can take up enough cognitive capacity to interfere with the 
acquisition of skill knowledge (Sweller, 1994; Sweller & Chandler, 1994). Analogously, 
the attempt to gain something from multiple feedback messages, each of which requires 
interpretation, might have interfered with rather than helped the acquisition of knowledge 
about the underlying pattern. 

This hypothesis is supported by the fact that subjects in the global condition 
received more negative than positive feedback. In local conditions, 57% of the feedback 
message came in the form of negative feedback. In the global conditions, 72% of the 
feedback was negative feedback. A subject received negative feedback for a given four- 
letter group if at least one of the letters in that group was incorrect. In contrast, he or she 
received positive feedback for a given group only if all four letters were correct. In the 
beginning of learning, a subject is therefore more likely to receive negative than positive 
feedback. As we pointed out in the introduction, negative feedback poses difficult 
problems of interpretation because the learner must figure out what is wrong with his or 
her response and what the right response might be. These problems are harder for global 
than for local feedback. It is possible that the observed interaction between scope and 
probability is driven by the cognitive load imposed by global negative feedback in 
conjunction with an interaction between scope and type of feedback. We explore this 
possibility in Experiment 2. 

We found the interaction between probability and scope in the assessment trials as 
well. There were no study opportunities during the assessment trials and hence no 
opportunity to acquire additional information about the relevant pattern. The persistence 
of the differences between the four feedback groups during assessment strengthens the 
conclusion that the four groups had different knowledge of the target sequence at the end 
of the learning phase. However, assessment performance does not tell us whether 
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feedback regimen influenced the learning mechanisms (e.g., their speed of operation), the 
mental representation constructed during learning, or both. 

The mental representation might have varied along several dimensions, including 
level of abstraction. A subject could succeed in the learning and assessment tasks by 
extracting the underlying pattern from the given sequences, and then attempting to 
generate the correct extrapolation by filling in the pattern on each extrapolation attempt. 
In a pure case of this strategy, the subject's representation of the target task would consist 
of an abstract representation of the pattern plus a procedure for generating an instance of 
it. We will refer to this as the relation-oriented strategy, because what is learned is 
primarily the pattern, the relations between positions in the sequence, rather than the 
letters themselves. On the other hand, a subject could succeed by generating letters via 
trial and error during extrapolation and use the feedback to decide which were wrong and 
which were correct. On each trial, he or she would vary those that were wrong and retain 
the others. In a pure case of this strategy, the subject's representation would be highly 
specific, consisting of the 15 positions, information of the correct letter for each when 
known, and lists of incorrect letters for the others. We will refer to this as the letter- 
oriented strategy, because what is learned is primarily which letter goes in which 
position. It is likely that the subjects used some mixture of these two strategies; the 
empirical question is which mixture. 

In the transfer trials, the subjects were not shown any study sequences and were not 
given any feedback, so they had no opportunity to learn more about the target pattern. In 
addition, they were supposed to generate an instance of the target pattern from a new 
prompt (T instead of M), so the transfer problem consisted of an entirely different set of 
letters. If the subjects acquired a concrete representation of the target letter sequence, 
with no representation of the underlying relational pattern, they would have found the 
transfer problems impossible to solve. This is equally true for all four feedback regimens. 
However, performance on the transfer problems was almost identical to performance on 
the assessment problems. The overall mean for the two assessment trials was 8.74 letters 
correct and for the two transfer trials was 8.44 letters, (This level of performance can be 
compared to the overall mean on the first two learning trials, which was 3.02 letters.) 
Clearly, the subjects could transfer what they had learned to the task of generating a 
instance beginning with an unfamiliar prompt. The conclusion is that they did not 
primarily use the letter-oriented strategy. 

An interesting and important question is whether feedback regimen affected the 
balance between the pattern-oriented and letter-oriented strategies. If so, there should be 
differences between the groups in their ability to perform the transfer tasks, over and 
above the differences in assessment performance. But as Figure 4 and 5 show, not only 
was the mean performance on assessment and transfer similar, but the differences 
between the groups were numerically very similar in the transfer problems as in the 
assessment problems. The differences in transfer performance appear to be accounted for 
by the differences in the effectiveness of learning. 

On the other hand, when we computed the difference between performance on the 
assessment and transfer trials, there did appear to be an effect of feedback. Figure 6 
shows that the two groups that perform best after training show a performance drop when 
given a transfer task. This finding is consistent with the guidance hypothesis {Schmidt, 
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1989 #75}, suggesting that learner may become overly reliant on feedback as they learn a 
new skill. 

Experiment 2 

In Experiment 1, all subjects received both positive and negative feedback. Both 
types of feedback were delivered with the same probability, but this does not imply that 
the subjects necessarily received equal amounts of each type. The balance between 
positive and negative feedback is necessarily a function of the subjects' own behavior. If 
a subject makes many errors, there might be little opportunity to provide positive 
feedback, and vice versa. In our computer simulations, we have seen an interaction 
between scope and type of feedback (Ohlsson & Halpem, 1998), and the argument from 
information content implies that scope should matter more for negative than for positive 
feedback. The interaction between scope and probability that we observed in Experiment 
1 might therefore be the result of an interaction between scope and type, superimposed on 
a difference in the actual amount of feedback received of either type. 

In Experiment 2, we explore this hypothesis by separating the two types of 
feedback. Subjects received either positive or negative feedback, but not both, and either 
local or global- feedback. The argument from information content predicts that there 
should be a main effect of feedback type in favor of positive feedback, because negative 
feedback provides less information and requires more interpretation. For negative 
feedback, there should also be an effect of scope in favor of local feedback, because 
global negative feedback requires more processing. The learner has to figure out which 
part or parts of a group of responses are wrong before he or she can figure out why they 
are wrong and what the correct responses are. However, neither the argument from 
information content nor the principle of cognitive load predicts any effect of scope on 
positive feedback. The information that a group of four responses is correct does not 
provide any different information, or require more processing, than four pieces of 
information that says that each of those four responses is correct. 
Method 

Participants. The subjects were 94 undergraduate students enrolled in the 
introductory psychology course at the University of Illinois at Chicago. They received 
course credit in return for their participation. The participants were 60% female and 40% 
male. No other demographic data were collected about the participants. 

Materials. The training materials and the learning, assessment and transfer problems 
for Experiment 2 were identical to the corresponding materials for Experiment 1. 

Design and Procedure. The subjects were randomly assigned to four groups, created 
by crossing type of feedback (positive or negative) with scope (local versus global). The 
subjects in the local scope groups received feedback that referred to individual letters, 
while the subjects in the global scope groups received feedback that referred to groups of 
four letters. Feedback probability was not varied. All subjects received 75% feedback of 
the relevant type. The procedure was the same as in Experiment 1. 
Results 

Verification of Hierarchical Task Representation. We computed response times 
for each position of the pattern. We analyzed the last four trials of learning, so that we 
could capture subjects' final representation of its structure. Figure 7 shows the result. The 
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inter-response times are similar to those shown for experiment 1, providing additional 
support for the hypothesis that this pattern is represented hierarchically. 

Learning. A Mixed repeated-measures ANOVA was performed to evaluate 
performance during the learning stage. All 12 learning trials were entered as a within- 
subjects factor. Feedback scope (local or global) and feedback type (positive or negative) 
were entered as between-subjects factor. The dependent measure was the number of 
letters correct per trial. There was a significant learning effect as shown in Figure 8, F 
(990,11) = 42.21, p < .001. There was no effect of feedback scope, F (90 ,1) = 1.33, p > 
.05. There was no effect of feedback type, F (90 , 1) = 0.31, p > .05. There was an 
interaction between scope and type, F (90 ,1) = 8,45, p = .005. This interaction was due 
to the fact that subjects in the local negative group and the global positive group out 
performed the other two groups, F (90 , 1) = 8.38, p < .01. It was also reflected by the 
fact that subjects receiving negative feedback performed better when that feedback was 
given locally, F (90 ,1) = 8.25, p < .01, Subjects given positive feedback performed best 
when feedback was given globally, but this did not reach statistical significance, F (90 , 
l)=L53,p>.05. 

Assessment. A mixed within-subjects ANOVA was performed for the assessment 
trials. Both trials of the assessment stage were entered as within-subjects measure. 
Feedback type-and feedback scope were entered as between-subjects measures. The 
dependent measure was the number of letters correct per trial. There was no effect of 
feedback type, F (90 , 1) = 0.10, p > .05 and no effect of feedback scope F (90 ,1) = 
3.23, p > .05. The interaction between type and scope was significant, F (90 ,1) = 7.70, p 
< ,01. This interaction was again due to the fact that subjects in the local negative group 
and the global positive group out performed the other two groups, F (90 , 1) = 7,75, p < 
.025, Figure 9 shows the results for the assessment trials. Subjects receiving negative 
feedback performed better when that feedback was given locally, F (90 , 1) = 10.45, p < 
,005. While subjects given positive feedback performed better when it was given 
globally, this trend did not reach statistical significance, F (90 ,1) = 0,48, p > ,05. 

Transfer. First, the two transfer trials were entered as a within-subjects measure in 
an ANOVA. Feedback type and scope were entered as between-subjects measures. The 
dependent measure was the number of letters correct per trial. Again, there was neither an 
effect of type nor of scope, F (90 , 1) = 0.05, F (90 ,0) = 2,15, p > .05. The interaction 
between type and scope was again significant, F (90 , 1) = 7.58, p < .01. Figure 10 shows 
the results for the transfer trials. Again, subjects in the local negative group and the 
global positive group out-performed the other two groups, F (90 , 1) = 7.61, p< .025. 
Subjects receiving negative performed better when that feedback was given locally, F (90 
, 1) = 8,91, p < .005, Subjects given positive global feedback performed better than 
subjects given local positive feedback, but this did not reach statistical significance F (90 
,l)=l,08,p>,05. 

We also compared performance during assessment to performance during 
transfer, A comparison of figure 9 and figure 10 suggest that there is little difference 
between the two stages of learning. We entered stage (average performance on 
assessment verses average performance on transfer) as a repeated measure in an 
ANOVA, Feedback probability and scope were entered as between groups measures. 
There was no main effect of problem stage, suggesting that subjects performed equally 
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well during assessment and transfer, F (100 , 1) = 1.038, p > .05. There was no 
interaction between scope, type and stage, F (100,1) = 0.08, p > .05. 
Discussion 

The results are consistent with some of our predictions, but in violation of others. 
There was no main effect of type of feedback. Contrary to the implications of the 
argument from information content and to the widespread belief in the power of positive 
feedback, positive feedback was not consistently superior to negative feedback. 

The effects of scope were partially in accord with expectations. There was no main 
effect of scope and the expected interaction appeared, but not quite in the expected form. 
The expected difference between local and global feedback was significant for negative 
feedback. Negative feedback is more helpful when given locally and less so when given 
globally. 

The results are inconsistent with the hypothesis that the effectiveness of feedback is 
solely a function of the amount of information it provides. If that were the case, then local 
negative feedback should not have been more effective than local positive feedback, and 
positive feedback should have been equally effective whether local or global. The results 
are consistent with the hypothesis that in a hierarchical representation, negative feedback 
that refers to higher level nodes is more difficult to process than negative feedback that 
refers to terminal nodes. 

The differences between the groups observed during learning persisted during the 
assessment trials. The subjects performed very similarly on the transfer trials. The overall 
mean performance on the assessment trials was 9.4 letters correct and on the transfer 
trials 9.2 letters; these compare favorably with an overall mean of 3.8 on the first two 
learning trials. Clearly, the subjects learned something about the pattern that they could 
apply to the transfer tasks. However, once again, the differences between the groups on 
the transfer problems are highly similar to the group differences on assessment. There is 
no evidence that the different feedback regimens affected the subjects' ability to transfer. 
Unlike the previous experiment, there are no differences in learning gains from learning 
to transfer. The groups acquired different amounts of knowledge, but whatever the 
subjects in a group did learn, they could transfer. 

General Discussion 

From the point of view of common sense, the role and function of feedback in the 
acquisition of cognitive skills appear simple. When the learner receives positive 
feedback, he or she consolidates the correct step or steps in memory; when he or she 
receives negative feedback, the error is corrected. In general, the more feedback, the 
better. However, it might not be helpful merely to know that an action was in error, so the 
latter type of feedback might not be effective unless it also specifies the remedy in some 
detail. 

Our findings show that this view of feedback is oversimplified to the point of 
being misleading, and contrary to fact in some respects. We found that neither the effects 
of feedback probability nor the effects of feedback type can be understood without taking 
into account the relation between the feedback and the organization of the learner's task 
knowledge. There is no average effect of either probability or type. Both variables 
interact with scope, i.e., whether the feedback refers to a single response or to a sequence 
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of responses that constitute a meaningful component of the task solution. For local 
feedback, higher probability is indeed associated with faster learning; for global 
feedback, the opposite is the case. For local feedback, negative feedback leads to faster 
learning; for global feedback, the opposite is the case. 

To understand these findings, several cognitive principles are useful. The 
argument from information content - that claim negative feedback is less effective than 
positive because it provides less information - cannot be accepted as it is usually stated 
(Hilgard & Bower, 1966), because local negative feedback turns out to be more effective 
than local positive feedback. Instead of focusing on the amount of information, we need 
to focus on amount of processing. Negative feedback requires complex processing; why 
is the action in error, and what is the remedy (Ohlsson, 1996b) In combination with the 
principle of hierarchical organization (strongly supported by the structure of our subjects' 
inter-response times; see Figures 2 and 7) and the idea that high cognitive load can 
interfere with learning (Sweller, 1994), the need for processing explains the effect of 
scope on negative feedback. The higher up in the hierarchical organization the negative 
feedback applies, the more complex is the processing required to correct the error. Hence, 
lower level (narrow scope) is preferable. For the same reason, increasing the probability 
of negative feedback only helps when scope is narrow. Increasing feedback probability 
for global negative feedback overwhelms the learner's capacity to process it and so 
interferes with learning. 

Our data suggest that positive global feedback is more effective than local 
positive feedback. Although this trend did not reach statistical significance, there are two 
reasons to consider this trend important. First, this trend held in all three stages of 
learning. It was obtained during learning, during assessment and during transfer. 

Second, positive global feedback is more efficient than local global feedback. 
Since positive global feedback is given only after a learner has completed all required 
responses correctly, it will come less often. Even if it were to turn out that positive local 
and positive global feedback were equally effective, there would still be good reason to 
chose the global feedback. In our study, a comparison of local to global positive feedback 
was done using the same probability (75%). This resulted on average 57 separate 
feedback message during learning in the local condition, as compared to 13 messages in 
the global condition. One could argue that each of these messages provides 4 separate 
messages. Multiplying 13 by 4, we find that on average subjects receive information 
concerning 42 letters in the global condition. It appears that global feedback achieves its 
effect more efficiently and using less information. 

The argument from information content then fails to accurately describe the effect 
of scope on positive feedback. From an information content point of view, saying that the 
response sequence A, B, C, D is correct is equivalent to saying that response A is conrect, 
response B is correct, and so on. Nevertheless, our data suggest that global positive 
feedback is more helpful than local. 

To understand this effect, we need to turn the argument from information content 
on its head: To produce the correct response, the learner must already know the correct 
response. Hence, local positive feedback provides no information that the learner does 
not already have, and it is therefore less helpful than local negative feedback; the latter at 
least stimulates the search for a more correct alternative. Finally, to understand the effect 
of global positive feedback, we have to consider the effect of feedback on the learner's 
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attention allocation. Feedback messages that refer to a component of the task reveal the 
components of the task and directs the learner's attention to those components. Positive 
feedback of higher than minimal scope carries two messages: it confirms correctness, but 
it also communicates task structure in way that local positive feedback does not. 

The cognitive literature contains many attempts to formally model the acquisition 
of cognitive skills (Klahr et al, 1987). A minimal requirement for such models is that 
they contain learning mechanisms that can make use of both positive and negative 
feedback from the environment. Some theories, e.g., the current version of the ACT-R 
theory developed by John R. Anderson and associates (Anderson & Lebiere, 1998), 
appear to have no mechanism for translating either positive or negative feedback 
messages into an improved skill. 

The present findings pose additional challenges for cognitive models of skill 
acquisition, over and above the minimal requirement of being able to learn from 
feedback. To be psychologically plausible, mechanisms for processing feedback must 
operate on hierarchical task representations and they must be affected by the scope of the 
feedback. Our prior work on modeling learning focused primarily on learning from local 
negative feedback (Ohlsson, 1993; Ohlsson, 1996b; Ohlsson & Rees, 1991) but did not 
consider either scope or probability, nor did we model the effects of positive feedback. 
We know of no formal model that can replicate the full set of results reported here. 

The informal explanation for our results presented above has implications for 
educational practice. First, negative feedback should be supplied locally and at a high 
probability. Interestingly, this principle is already implemented in the line of successful 
intelligent tutoring systems that use the so-called model tracing technique (Anderson, 
Corbett, Koedinger, & Pelletier, 1995; Corbett, Anderson, & O'Brien, 1995). These 
systems follow the learner's problem solution step by step, and judge each one with 
respect to correctness. The student is given feedback as soon as he or she deviates from 
what the system has been programmed to consider the correct solution path. Evaluation in 
ecologically valid contexts have confirmed that tutors that operate this way are effective 
(Koedinger, 2001); see also Mitrovic and Ohlsson (1999) for a related result. Model 
tracing tutors are sometimes criticized because they do not allow the student to flounder 
and hence, the argument goes, do not teach the students how to recover from error. The 
obvious remedy would be to program the tutoring system to delay intervention and 
provide negative feedback with a more comprehensive scope, for example by providing a 
message such as "You need to consider your approach". However, our data strongly 
imply that negative global feedback should be provided sparingly, if at all. 

Second, although educators tend to emphasize the beneficial effects of positive 
feedback, such feedback is not always helpful. Local positive feedback ("this step here is 
correct") provides the learner with almost no information. It is only helpful in confirming 
that a guess or a tentative response happens to be correct. Positive feedback should be 
designed primarily to focus the learner's attention on the meaningful components of the 
task. Applying this principle in practice requires a cognitive task analysis (Schraagen, 
Chipman, & Shalin, 2000) to identify those components. In most cases, those components 
will encompass more than a single elementary action. 

The present studies have several limitations that might affect the generalizability 
of the findings. First, the subjects in our studies were under time pressure. They had only 
45 seconds to study the feedback they received on any one attempt to extrapolate. The 
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time pressure might have enhanced the effects of cognitive load and hence affected the 
effectiveness of global negative feedback. It is possible that subjects can learn more from 
global negative feedback than the present results indicate, if they are given unlimited time 
to process the feedback. 

Second, the feedback messages were limited to "right" and "wrong". They did not 
provide any explanatory content ("this is wrong because ..."). Hence, these studies do not 
reveal what happens when such content is provided. It may seem as if richer information 
should help (McKendree, 1990), but empirical studies that compare content-poor and 
content-rich feedback regimens have not always found any differences (Corbett & 
Anderson, 1990). The principle of cognitive overload interfering with learning warns us 
to consider how much processing the extra content requires. The studies reported here 
shed no light on this issue, and it is possible that the effects or scope, probability and type 
are different in environments that provide content-rich feedback. 

To advance our understanding of the role and function of feedback in the 
acquisition of complex cognitive skills, future studies need to address the unique 
methodological problems associated with this topic. Foremost among them is the fact that 
probability and type of feedback is a function of the subjects' behavior and hence not 
fully under experimenter control, A subject who makes few errors offers the 
experimenter few opportunities to issue negative feedback messages. The question arises 
how experimenters should define their feedback conditions. To retain fidelity to real 
learning scenarios, we choose to define our conditions in terms of the probability that 
feedback of a particular type would be received, given a response for which that type of 
feedback is appropriate. An experimenter might be tempted to use the power of 
computers to manipulate the actual amount of feedback received so that subjects in a 
given condition receive, for example, exactly 10 feedback messages of a given type. One 
consequence of this technique is to confound feedback probability with individual 
differences. The reduction of the number of positive feedback messages received, as 
compared to a 100% feedback condition, would obviously be larger for a subject with 
high cognitive ability than for one with a low cognitive ability; vice versa for negative 
feedback. The relation between behavior and feedback is intrinsically circular, and there 
is no right way to define feedback conditions. Researchers need to pay attention to how 
feedback conditions have been defined when comparing results from different studies. 

A second methodological problem that has received too little attention in the past 
is the possibility that subjects interpret absence of feedback as indicating either 
correctness or error. This problem is particularly severe in conditions in which subjects 
receive only one type of feedback. We used an explicit "no feedback" signal to combat 
this problem, but we have no way of knowing how effective it was. There might be other 
techniques that work better in other task environments. 

A third methodological issue is how we should measure the effects of different 
feedback regimens. Feedback might affect the process of learning, the representation of 
what is learned, or both. The former type of effect ought to show up primarily during 
practice, the latter primarily in what the learner can do with the acquired knowledge. We 
found no strong evidence for effects of the latter kind in the present experiments, but such 
effects might appear in other task domains or for skills of a different nature. The best 
approach is for researchers to capture as much data as possible in every study. 
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The role and function of feedback are essential parts of a theory of the nature and 
growth of cognitive skills. A theory of feedback is potentially of great practical 
importance. The recent neglect of the topic is presumably rooted in the mistaken belief 
that it has been researched extensively, that the basic effects and processes are well 
understood, and that the main truth about die matter is captured in the common belief that 
positive feedback is more helpful than negative feedback. The facts are otherwise. There 
is no systematic body of empirically grounded principles about the role and function of 
feedback in the acquisition of cognitive skills. Our experiments demonstrate that there are 
many effects and complex interactions that need to be better understood before such 
principles can be formulated. 
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Table Captions 

Table 1: Twelve Exemplar Sequences that Instantiate the Same Pattern 
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Table  1. 

Twelve Exemplar Sequences that 

Instantiate the Same Pattern 

CADFFDACDBEGGEBD 

ECFHHFCEFDGIIGDF 

GEHJJHEGHFIKKIFH 

IGJLLJGIJHKMMKHJ 

OMPRRPMOPNQSSQNP 

QORTTROQRPSUUSPR 

VTWYYWTVWUXZ ZXUW 

KILNNLIKLJMOOMJL 

DBEGGEBDECFHHFCE 

FDGIIGDFGEHJJHEG 

HFIKKIFHIGJLLJGI 

JHKMMKHJKILNNLIK 
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Figure Captions 

Figure 1: Accuracy during training for all subjects for problems 1 and 2. 

Figure 2: Inter-response times for the last four learning trials of Experiment 1. 

Figure 3: Performance on 12 learning trials of Experiment 1. 

Figure 4: Accuracy on assessment trials of Experiment 1. 

Figure 5: Accuracy on transfer trials of Experiment 1. 

Figure 6: Difference between assessment and transfer trials in Experiment 1. 

Figure 7: Inter-response times for last four learning trials in Experiment 2. 

Figure 8: Performance on 12 learning trials of Experiment 2, 

Figure 9: Performance on assessment trials of Experiment 2. 

Figure 10: Performance on transfer trials of Experiment 2. 
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Part II; 

Multiple Paths to Mastery: What is Learned and Transferred? 
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BACKGROUND 

In task domains like algebra, navigation and medical diagnosis, the purpose of learning is 
to be able to solve future problems in those domains. The impact of learning on 
subsequent problem solving is mediated by knowledge structures. Learning processes 
create or alter knowledge structures and those structures are later activated, applied and 
articulated vis-a-vis a current situation to generate behavior. The question of what is 
learned in a particular task environment is to be answered by specifying the relevant 
knowledge structures. 

This seemingly straightforward view of the relation between learning and 
subsequent problem solving grows more complex when we consider the fact that people 
can master a task in different ways. For example, a person can learn how to assemble a 
lawn chair by studying written instructions that come with the chair; by being tutored by 
someone who already knows how to do it; by observing someone else do it; by practicing 
on other, similar but simpler contraptions; or by attacking the task via trial and error 
across multiple trials. Each of these learning scenarios provides different information to 
the learner and if a piece of information is presented in two of these scenarios, it is 
typically presented in different ways. The scenarios constitute alternative paths to 
mastery and their differences cannot be reduced to parametric variations (number of 
training trials, amount of feedback, etc.). 

How does the principle that knowledge structures mediate between learning and 
problem solving account for the existence of multiple paths to mastery? One might argue 
that successful performance on a given target task requires a well-defined set of 
knowledge structures. All learning scenarios that produce successfiil performance on that 
task must therefore prompt the learner to create precisely those structures. According to 
this view, all effective scenarios lead to the same final state of knowledge. 

This view is implausible for two reasons. First, there is no a priori reason to expect 
information received along different channels to be represented in one and the same way. 
For example, why should what is learned about the layout of a city by walking around 
become represented in memory in the same way as what can be learned by studying a 
map? Why should we expect a learner who is tutored in a task to acquire the same task 
knowledge as someone who attacks the task via trial and error, and why would the 
knowledge be represented in the same way in the two cases? 

Second, a given behavior - a task solution - can be generated from multiple 
knowledge representations. For example, a person can decide how to walk from place A 
to place B in an unfamiliar city either on the basis of a memorized route (walk X Avenue 
north for two blocks, turn left, etc.) or on the basis of a mental map. Different cognitive 
processes are needed to generate the target behavior from these two representations, but 
the behavior itself, the act of walking, is the same. The fact that two learners behave in 
the same way does not imply that their behavior is based on the same knowledge 
structures. 

We propose instead that knowledge structures created in qualitatively different 
learning scenarios differ with respect to which information they contain and how that 
information is represented. Different scenarios can lead to the same level of mastery, 
because correct, effective or successful behavior vis-a-vis a task can be generated from 
those different knowledge structures. According to this view, it is reasonable to ask: How 
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do the knowledge structures created in scenario X differ from those created in scenario 
Y? A general theory of human learning should be able to predict, for a given learning 
scenario, which knowledge structures will be created, and, for any pair of such scenarios, 
how the resulting knowledge structures will differ. 

Contemporary work on learning follows a research strategy that does little to move 
the field towards this goal, A typical cognitive learning theory describes a single learning 
mechanism (e.g., analogy). To provide empirical support for its psychological reality, the 
researcher studies a learning scenario for which that mechanism has a high degree of face 
validity (e.g., to verify that people learn via analogy, give subjects analogues to a target 
problem and verify that performance improves). Further support for the hypothesized 
learning mechanism is accumulated by showing that it can explain the behavioral effects 
of various parametric variations of that scenario (e.g,, number of prior analogues). 
However, unless the theoretician is willing to claim that his or her proposed learning 
mechanism is responsible for all learning (a claim that in most cases could be quickly and 
decisively falsified), the question how people learn in situations in which the mechanism 
is not applicable or plausible is left unanswered (e, g., how do people learn when they 
have no useful analogue in memory?). 

A useful complementary research strategy is to compare qualitatively different 
learning scenarios with respect to what is learned. In educational research, alternative 
learning scenarios are often compared with respect to their effectiveness. That is, with 
respect to how well students perform after spending comparable amounts of time in two 
different scenarios. This type of study addresses different questions than those that are 
most germane to a cognitive psychologist. We are interested in the differences between 
the knowledge structures acquired by learners who perform at the same level but who 
arrived at that performance level along different routes. Empirically documented 
differences between the knowledge structures acquired in different but effective scenarios 
constitute phenomena that a general learning theory ought to be able to explain. 

There are two broad classes of learning scenarios which, taken together, account for 
a significant proportion of human learning in both formal and informal contexts. One 
class contains situations in which the learner is presented with oral or written discourse 
that explicitly expresses the target knowledge that he or she is supposed to acquire. 
Lectures and textbooks exemplify this type of instruction. The learning that goes on in 
this type of scenario is sometimes described as learning by being told. We will refer to 
this type of scenario as direct instruction, or just instruction when the context prevents 
ambiguity. The key defining characteristic of direct instruction is that the instructing 
agent - person or machine - communicates the target knowledge in explicit form, usually 
via discourse. 

A second important class of learning scenarios contains situations in which the 
learner engages in some activity that approximates the desired target performance. The 
learning that goes on in this type of scenario is usually called learning by doing. 
Scenarios of this type differ with respect to the variability of the practice problems. When 
there is minimal variability so that the learner is asked to perform the same task over and 
over again, it is often referred to as drill. When the variability is so great that the task of 
figuring out the connections between one practice task and the next is itself an intellectual 
challenge, it is called analogical learning. The term practice is typically used to refer to 
series of problems that are intermediate in variability between these two extremes. The 
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exercises at the end of a textbook chapter in algebra is one example. The common feature 
of this class of learning scenarios is that the instruction is indirect; tiie target knowledge 
is not communicated explicitly. Instead, the learning activities - the practice tasks - are 
designed in such a way that by attempting to perform them, the learner is prompted to 
construct the target knowledge. In this article, we restrict the term "practice" to situations 
in which the learner is aware of the target performance that he or she is trying to achieve. 

Learning by being told and learning by doing contrast with a third type of learning 
scenario that is variously called incidental learning and implicit learning (Postman, 1964; 
Reber, 1967, 1989; Richardson-Klavehn & Bjork, 1988; Seger, 1994; Schacter, 1987; 
Wattenmaker, 1999). In this type of scenario, the relation between the activities that the 
learner is asked to perform and the target task is even more indirect than in the case of 
learning by doing. The learner is not told what the target task is; indeed, he or she is not 
told that there is a target task. In educational contexts, instruction in arithmetic for young 
children with so-called manipulates exemplify this type of learning scenario. In this 
approach, instructors fashion material objects (blocks, bundles with sticks, etc.) in such a 
way that they follow the rules of the number system. They then invite children to engage 
in various activities with respect to these objects, e.g., trade them. The hope is that the 
children will extract important concepts about quantity and number in the course of these 
activities (Dienes, 1963; Skemp, 1971; but see Friedman, 1978, and Sowell, 1989, for 
some negative evidence). 

The training materials used in laboratory studies of incidental learning tend to be 
very different form those used in educational contexts. For example, in the training phase 
of the standard artificial grammar learning scenario (Reber, 1967, 1989, 1993), the 
participants memorize symbol sequences (usually letter sequences). The sequences have 
been generated by an artificial grammar and hence share some properties, but the 
participants are not informed of this fact. In the test phase, the participants encounter new 
symbol sequences that are also derivable from the relevant grammar, mixed with 
distractors that are not. Their task is to decide whether the test sequences are of the same 
type as - i.e., derived from the same grammar as - the strings seen during the training 
phase. A large body of evidence (Berry, 1997; Reber, 1993; Stadler & Frensch, 1998) 
shows that people perform better than chance on this task. The key features of incidental 
learning scenarios as we use this term in this article are that the learning task does not 
approximate the target task and that the learner does not know at the time of learning 
what the target task is, or even that there is a target task. 

These three classes of scenarios are obviously different and the differences cannot 
be reduced to parametric variations. If three learners master one and the same task in 
these three ways, it is plausible that they will acquire different knowledge structures. In 
what terms are those differences to be described? Cognirive science provides a 
vocabulary of useful concepts for discussing knowledge structures (Markman, 2000). We 
focus on two dimensions that are central to understanding the relation between learning 
and problem solving. 
Dimensions of Knowledge Structures 

Declarative versus procedural knowledge. Declarative knowledge is knowledge 
about the way the world is; it is descriptive in character and it can be evaluated with 
respect to veridicality (Ohlsson, 1994). Common facts such as the winter is cold in 
Minnesota are prototypical examples. Declarative knowledge is task-independent, e.g., it 
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is not encoded in memory in the context of particular goals or actions. When applied to a 
task, it has to be interpreted with respect to its consequences for action. For example, the 
declarative principle that three congruent sides makes two triangles congruent implies 
that two triangles can be proven congruent by proving that their sides are congruent 
(Neves & Anderson, 1981). The process of deriving the action consequences of 
declarative knowledge is called proceduralization or knowledge compilation (Anderson, 
1983; Ohlsson, 1996). 

Procedural knowledge is knowledge about how to perform tasks and, more 
generally, about how to achieve particular types of results in certain types of situations 
(Ohlsson, 1994), Everyday skills like driving and cooking are prototypical examples. 
Procedural knowledge is task-specific, so its application is quick and efficient. It can be 
evaluated with respect to appropriateness and effectiveness. 

Although artificial intelligence researchers abandoned the declarative-procedural 
distinction in the 70s (Winograd, 1975), the distinction has turned out to be useful for 
psychology. Not only is it easy to point to intuitively clear examples of declarative and 
procedural knowledge - maps versus routes, theorems versus proof procedures - but 
there is also strong support from neuropsychology (Squire, 1987). People with particular 
types of brain damage can learn new skills - acquire new procedural knowledge - even 
though they might not be able to remember everyday events or acquire other types of 
declarative information. 

John R. Anderson has argued for the centrality of this distinction in human 
cognition: 

"It seems that certain knowledge can be best represented declaratively 
and other knowledge can be best represented procedurally. It is much 
more economical to represent declaratively that knowledge which is 
subject to multiple, different uses and that knowledge whose [sic] eventual 
use is uncertain. ... On the other hand, knowledge that is used over and 
over again in the same way ... would seem to be better represented in a 
procedural format in which it can be applied more rapidly. ... procedural 
knowledge is specific to the circumstances where it is intended to apply ... 
."(Anderson, 1976, p. 118) 

A person's knowledge about a task can be either declarative, procedural or some 
mixture of the two. The two types of knowledge trade off applicability and efficiency in 
opposite ways: Declarative knowledge is widely applicable but to derive its consequences 
for action is a slow and complex process. Procedural knowledge applies only in a narrow 
task context but the application is fast and efficient. For any learning scenario we can ask 
whether it generates declarative or procedural knowledge, or some mixture of the two. 

Abstract versus specific. A second key property of knowledge structures is their 
level of abstraction. The two terms "abstraction" and "generality" are used 
interchangeably both in ordinary speech and in cognitive discourse. However, we suggest 
that the informal terms cover two distinct concepts. In our view, the generality of a 
representation is a function of the number of instances in the world that match that 
representation. The concept dog has more instances than the concept poodle, so the 
former is more general. Generality admits of degrees, because a representation can have 
0, 1,2,..., N instances. 
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In contrast, abstraction is not a relation between a knowledge structure and the 
world but a property of the knowledge structure itself. A mental representation is abstract 
to the extent that it encodes relational information but leaves out information about the 
identity and the specific attributes of objects and events (Ohlsson, 1993; Ohlsson & 
Lehtinen, 1997). The opposite of abstract is specific. 

The distinction between abstraction and generality is necessary because it is 
possible for a knowledge structure to be abstract and yet not have any instances. The 
concept perfect justice might qualify as an example. Mathematics and science provide 
many others. There are mathematical theories that have found no application to the 
physical world; they have no instances at all and their generality is therefore minimal. 
This does not make those theories less abstract than those mathematical theories that have 
found multiple applications, such as calculus. On the other side of the coin, two 
representations need not have different levels of abstraction in order to differ in 
generality. For example, there a good many more beetles in the world than there are 
mammals, but we do not think of the concept beetle as more abstract than mammal Some 
fully specified concepts have no generality (e.g., unicorn) while some abstract concepts 
have many instances (e.g., non-linear functional relation). 

Abstraction is of central concern in studies of learning, because people are able to 
transfer what they learn in one context to other contexts. However, in systematic studies 
of learning, such transfer does not always come easily to the participants (Cormier & 
Hagman, 1987; Detterman & Stemberg, 1993; McKeough, Lupart & Marini, 1995; 
Perkins & Salomon, 1989; Salomon & Perkins, 1989; Royer, 1979). It is thus of 
particular interest to study under which circumstances abstract knowledge representations 
emerge. 

Abstraction is not continuously graded but we can distinguish between two levels 
(Ohlsson, 1993). We refer to a knowledge structure as being of intermediate abstraction 
when it leaves objects and events unspecified but encodes relations as specifically as the 
context allows. When the relations themselves are encoded with minimal semantic 
feanires, we say that the knowledge structure is of higher-level abstraction. For example, 
suppose that P stands for some person and O for some wooden object and that P carved 
O. This proposition is of intermediate abstraction because the person and the object are 
left unspecified but the relation, carved, is rather precisely specified. P produced O is 
more abstract, because the manner in which P produced O has been left unspecified. 
Similarly, the relation related to is more abstract than specific kinship relations like 
cousin of, child of, etc.; the relation next element (in some sequence) is more abstract than 
either next letter (in the alphabet) or next number (among the natural numbers); and so 
on. The question is whether particular learning scenarios differ in whether the knowledge 
structures they generate are specific, of intermediate abstraction, or of higher-level 
abstraction. 
Application to Three Learning Scenarios 

How do the knowledge structures created by direct instruction, practice, and 
incidental learning differ on the two dimensions of declarative versus procedural and 
abstract versus specific? 

Type of knowledge. The obvious expectation is that learning by being told generates 
declarative knowledge. Without any opportunity to practice, the learners should not 
acquire procedural knowledge. Hence, we would expect the application of the knowledge 
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to a target task to be slow because the learner has to proceduralize the knowledge on the 
run, as it were. An everyday example is to translate spatial relations extracted from a city 
map into a route for getting to a target location, a task that many find difficult. 

A second expectation is that learning by practicing generates procedural knowledge. 
The application of this type of knowledge should be faster, because proceduralization has 
already been carried out during prior learning. However, working on a task is likely to 
also generate declarative knowledge about that task. For example, practice in using a 
camcorder generates the appropriate procedures for inserting and removing the tape, 
starting and stopping the recording function, and so on, but it also presents the learner 
with declarative information about the camera, e.g., it is lightweight, it is silent, and so 
on. Practice is likely to generate both declarative and procedural knowledge. 

Finally, which type of knowledge is constructed in incidental learning scenarios? 
To the extent that learners in this type of learning scenario are engaged in a particular 
type of activity, we must suppose that they acquire procedural knowledge relevant to that 
activity. However, the intent of those who create such scenarios, either in the classroom 
or in the laboratory, is that the learners unintentionally acquire knowledge about the task 
materials. Indeed, the operational definition of incidental learning is that engaging in 
activity A creates knowledge that, without intent on the part of the learner, affects 
performance on the designated but unmentioned target task B. In most instances, this 
transfer effect could only plausibly be mediated by declarative knowledge. From this 
point of view, we should expect the knowledge structures created by direct instruction 
and by implicit learning to be similar. 

Level of abstraction. Although abstraction has been a topic of inquiry since 
antiquity, we do not know under which conditions individuals create knowledge 
structures at any particular level of abstraction. An additional weakness in prior research 
for present purposes is that discussions of abstraction have not consistently distinguished 
between declarative and procedural knowledge. However, the three levels of abstraction 
distinguished above - specific, intermediate, higher-level - apply to both types of 
knowledge. Assertions and descriptions can certainly vary in abstraction level, but so can 
procedures. Hence, the question of abstraction must be considered separately for the two 
types of knowledge. 

Beginning with direct instruction, what abstraction level would we expect for the 
resulting declarative knowledge? In a previous study, we found evidence that our 
participants encoded declarative task knowledge at the intermediate but not at the higher 
level of abstraction (Nokes & Ohlsson, 2000). That is, they abstracted over particular 
objects, but we found no evidence that they spontaneously encoded relations at any level 
of abstraction higher than the one in which the task materials were presented. Although 
far from decisive, that smdy leads us to predict that learning scenarios that produce more 
declarative than procedural knowledge - i.e., direct instruction scenarios - will lead to 
knowledge structures of intermediate abstraction. The implication is that they should 
transfer their declarative knowledge easily to a target task that differs in specific details 
but share the same relational structure, but not so easily to a task that also differs in 
relational structure. 

For practice scenarios, our expectations are different. In prior work on learning by 
doing (Ohlsson, 1996; Ohlsson, Ernst, & Rees, 1992; Ohlsson 8c Rees, 1991), we have 
proposed a specialization principle: Errors are unlearned during practice primarily by 
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gradually constraining (specializing) the procedural knowledge until each component 
(production rule) becomes active only in those circumstances in which it leads to the 
correct action. Contrary to the widespread idea that knowledge is concrete at the outset 
and becomes abstract later, the specialization principle claims that procedural knowledge 
starts out as instances of abstract procedures, and becomes more and more specific as 
those initial procedures are adapted to the specifics of the particular task being practiced. 
The specialization principle thus predicts that indirect instruction should produce 
procedural knowledge that is specific rather than abstract. However, this expectation is 
moderated by the variability of the practice sequence: The more variable the sequence, 
the stronger the prompt towards an abstract representation (Salomon & Perkins, 1989). 

With respect to incidental learning scenarios, there is a debate in the literature about 
the level of abstraction that is required to explain the relevant empkical findings. Servan- 
Schreiber and Anderson (1990) and Perruchet and Gallego (1997) have attempted to 
explain artificial grammar learning in terms of specific surface features of the training 
sequences. In particular, they propose that the participants in implicit learning 
experiments learn the relative fi-equencies of particular substrings (e.g., letter pairs). This 
type of statistical information about the surface features of the strings might be sufficient 
to bias the judgments during the test phase towards the right choices. In response, Manza 
and Reber (19-97) reported a series of six experiments in which the sequences 
encountered during the test phase were expressed in different letters than the sequences 
encountered in the training phase. In this situation, knowledge about the relative 
frequencies of particular letter combinations does not help during the test phase. 
Nevertheless, people perform better than chance in this condition also. In addition, 
Altmann, Dienes, and Goode (1995) have shown that the acquired grammatical pattern 
transfers from sequences of tones to sequences of letters. In short, there is evidence that 
what is acquired in incidental learning scenarios is abstract, but the level of abstraction is 
under debate. 

To turn these arguments into behavioral predictions, we need to apply them to a 
particular task environment, 

TASK ENVIRONMENT 

To investigate these issues empirically, we need to apply the arguments in the 
preceding section to a particular task. The class of suitable tasks includes algebra, card 
games and software use. However, ecologically valid tasks tend to be irregular, draw 
upon unspecifiable parts of the learner's prior knowledge, and be learned under 
conditions that hinder precise control and assessment of relevant variables. The ideal 
target task shares key properties of ecological cognitive skills but enables experimental 
control and data capture. 

Our target task is a version of the letter sequence extrapolation task studied by 
Greeno and Simon (1974), Klahr and Wallace (1970), Restle (1970), Restle and Brown 
(1970), Simon (1972), Simon and Kotovsky (1963), and others. The learner is given a 
sequence of letters that exemplify a pattern and he or she is asked to continue the 
sequence in such a way that the continuation also fits that pattern. In the original version 
of this task (Thurstone & Thurstone, 1941), the participant was asked to add a single next 
element to the sequence. In the version we use, the participant is asked to extrapolate the 
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sequence to N places. For example, to extrapolate the sequence MABMCDM to six 
places, the participant would produce EFMGHM. Altiiough the solution to this example 
is obvious, sequence extrapolation problem can be quite difficult. The reader might want 
to extrapolate EFDGCOFGEHDP to 8 places. 

To solve such a problem, the participant must first identify the pattern in the given 
sequence and then use that pattern to generate the continuation of the sequence. The first 
part, pattern detection, consists of studying the given part of the sequence to identify 
relations between the letters. The relations can be of various kinds: a letter can be 
identical to another letter, follow another letter in the alphabet, precede another letter, be 
two steps removed from another letter in the alphabet, and so on. Groups of letters can 
relate to each other in additional ways: A group of letters can be like another group in 
that the same relations hold between the letters (e.g., MCD is like MAB in this sense), a 
group of letters can be the reverse of another group (e.g., ABC and CB A), and so on. A 
pattern can have a periodic structure. In this type of pattern, the sequence is divided into 
periods, subsequences that are similar in the sense defined above. All the patterns used in 
the studies reported in this article are periodic. The pattern underlying a particular 
sequence can be said to have been understood when every letter in the sequence is seen as 
related to the other letters in some specified way. Understanding the pattern is a 
prerequisite for successful performance of the task. 

The second part, sequence extrapolation, requires inferences, one for each position 
extrapolated. In periodic patterns, an extrapolation inference is based on an analogy 
between periods. For example, to decide that "E" is the correct next letter in the sequence 
MABMCDM, the problem solver has to realize that MAB and MCD are the two periods 
and that the first position to the right of the third M is analogous to the two positions to 
the right the first and second M. The latter two are occupied by A and C, which are 
related by the fact that C is two steps forward in the alphabet from A. Hence, the letter to 
the right of the third M should be two steps forward in the alphabet from C, which is E. 
In this representation of the pattern, the letter M serves as 2L period marker, and the 
identification of the periodicity of the pattern is crucial for correct extrapolation. Each 
position in the extrapolated portion of the sequence requires an inference of this sort. 

The letter sequence extrapolation task has several properties that make it a 
suitable model of complex cognitive skills, (a) Prior knowledge. Like ecological tasks, 
the process of mastering a letter sequence extrapolation problem draws upon the 
participant's prior knowledge. However, that knowledge is relatively circumscribed, 
namely the alphabet, (b) Conceptual content. Detecting the pattern in the given sequence 
is potentially facilitated by knowledge of the pattem-foraiing operations that were used to 
generate the given sequences, (c) Types of knowledge. Knowledge of a pattern is a good 
example of declarative knowledge, while the skill of extrapolation is a good example of 
procedural knowledge. Both are equally important for successful performance in this 
task, (d) Levels of abstraction. The pattern in a particular sequence can be encoded 
without abstraction, in terms of the specific letters that appear in the sequence. It can also 
be encoded at an intermediate level of abstraction that ignores the specific letters but 
encodes the relational structure of the underlying pattern (Nokes & Ohlsson, 2000; 
Ohlsson, 1993). Finally, it can be encoded at a higher level of abstraction by noting 
which positions in the sequence are related, without specifying the relations, (e) 
Complexity and generativity. A sequence extrapolation problem cannot be solved by 
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memorizing and recalling the given sequence, but requires that the participant generates a 
novel sequence of coordinated responses. 

Most important for our current purpose, the correct extrapolation of a sequence is 
facilitated if the person has learned the underlying pattern ahead of time. Prior declarative 
knowledge of the pattern ought to facilitate pattern detection. That is, it should be easier 
to recognize a familiar pattern in a letter sequence than it is to identify an unfamiliar 
pattern. Similarly, practice in carrying out extrapolation inferences should generate 
procedural knowledge that makes future inferences easier. Both patterns and 
extrapolation skills should transfer to related problems if they are encoded at some level 
of abstraction. Sequence extrapolation tasks are thus well suited as instruments with 
which to study the learning outcomes produced by a variety of learning scenarios. 

OVERVIEW OF STUDIES 

The purpose of the three studies reported in this article was to compare what is 
learned when a letter sequence extrapolation task is mastered via three contrasting 
learning scenarios. Specifically, we compare learning by being told, learning by doing 
and incidental learning with respect to their effects on subsequent problem solving. If the 
knowledge structures acquired during the three different training procedures are the same, 
the participants' behavior on a target problem should be similar. On the other hand, if the 
knowledge structures differ with respect to either type of knowledge (declarative vs. 
procedural) or level of abstraction (specific, intermediate, or higher-order), then we 
expect to see differences in behavior. 

Declarative knowledge requires proceduralization and hence should be slower in 
application than procedural knowledge. We therefore predict that direct instruction will 
produce longer solution times than practice, even for participants who perform at 
comparable levels of accuracy. On the other hand, the standard trade-off argument for the 
existence of two types of knowledge (Anderson, 1976, 1983; Winograd, 1975) implies 
that declarative knowledge, by virtue of not being indexed under particular goals or tasks, 
has a higher generality and transferability than task-specific procedural knowledge. 
Hence, we expect a relative advantage for declarative over procedural knowledge, and 
hence for direct instruction over practice, on a transfer task. Because variable practice is 
widely believed to generate more abstract knowledge than uniform drill, the relative 
advantage for instruction over practice should be greater when compared to low 
variability practice and lesser with respect to high variability practice. 

Incidental learning should produce declarative but not procedural knowledge. The 
behavioral pattern should thus be similar to that of the direct instruction participants. 
However, this prediction assumes that participants in this scenario can access what they 
learned during the incidental training procedure and use it to support deliberate problem 
solving. In past work (Nokes & Ohlsson, 2000) we found a very limited ability to do so. 
Hence, we predict overall lower performance for the incidental training procedure on 
both target and transfer problems. 

The plan of the rest of the article is as follows. We report three experiments that 
recorded participants' performance in four qualitatively different training scenarios: no 
prior training, direct instruction, practice, and incidental training. The latter three 
scenarios were implemented in two parametric variants each: direct instruction was either 
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short or long; the practice sequence was of either low or high variability; and the 
incidental training sequence was either short or long. For each experiment, we report 
accuracy and solution time results. We also report the quantitative amount of transfer, 
using two of the transfer formulas reviewed by Singley and Anderson (1989). In a 
separate section, we analyze the structure of the solution times in detail in order to arrive 
at a processing account of our findings. 

EXPERIMENT 1: BASELINE 

The purpose of experiment 1 was to determine how participants solve the target 
problems in the absence of any prior training. In this no-training condition participants 
were given the letter sequence extrapolation in problem solving mode. That is, they were 
given the minimum of task instructions needed in order to be able to attack the problems, 
but no information regarding the nature of the particular patterns hidden in the letter 
sequences. This base line measure is needed to (a) estabUsh that we do not have floor or 
ceiling effects that could artificially restrict the possible effects of training procedures 
explored in experiments 2 and 3, and (b) to serve as a comparison group when analyzing 
the data from experiments 2 and 3. 

Method 

Participants 
Thirty undergraduate students from the University of Illinois at Chicago 

participated in return for course credit. 
Materials 

The target tasks were two letter sequence extrapolation problems. Problem 1 had 
a periodicity of 6 items and problem 2 a periodicity of 7 items; see Table 1. To enable the 
participants to detect the embedded pattern, the given segment was 12 items long for 
problem 1 and 14 items long for problem 2. That is, the given segments covered two 
complete periods of the patterns. These problems were created specifically for this 
experiment but are similar in character to the problems used by Kotovsky and Simon 
(1973). 

Each target problem was associated with a transfer problem. The patterns 
embedded in the transfer problems were related, but not identical, to the patterns in the 
target problems. For problem 1, the corresponding transfer problem was generated by 
quantitatively 'stretching' the relations between the letters. For example, "forward 1 in the 
alphabet" was 'stretched' to "forward 2 steps", "backwards 1" was 'stretched' to 
"backwards 2", and so on; see Figure 1 for a detailed example. The second transfer 
problem was generated in the same way from target problem 2. This method of 
generating transfer problems preserves the qualitative structure of the target pattern (i,e,, 
which positions are related and the dkection of each relation) but changes the quantitative 
aspect of each relation. 
Design and Procedure 

All participants were assigned to a single condition. 
They were tested in groups of 1-4 people. Each participant sat in front of a 

Macintosh computer with a 17' color monitor, standard keyboard and mouse. All stimuli 
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were presented in black 30 pt font in the center of the screen; see Figure 2 for screen 
layout. The experiment was designed and presented using PsyScope software. 

The procedure consisted of two cycles. Each cycle was composed of one target 
and one transfer problem. Participants were first given general instructions on how to 
solve sequence extrapolation problems. They were told that they would be given a 
sequence of letters containing a pattern and that their task would be to find the pattern 
and fill in the next 8 letters in such a way that the letters also followed the pattern. 

Participants were given an example problem and solution; "ABMCDM continue 
the sequence ... the next 8 letters of the solution are EFMGHMIJ". They were told that 
the given letters of a problem would be presented on the left side of the screen and that 
there would be an empty box for each of the 8 letters they were to extrapolate. To fill in a 
box they were told to click the mouse on the box they wanted to fill in after which a 
question mark would appear and they could press the appropriate letter; see Figure 2 for 
an example. The participants could fill in the positions in any order they choose. After all 
8 letters were filled in participants were told to click the mouse on the "Finished" field. 

After reading through the general instructions participants were presented the first 
target problem. Participants extrapolated each problem to eight positions; thus for 
problem 1 participants extrapolated one complete iteration (i.e., 6 positions) plus 2 
positions of the-next iteration. For problem 2 they extrapolated one complete iteration 
(i.e., 7 positions) plus 1 position of the next iteration. They were given 6 minutes to solve 
the problem. Next, they were given the transfer problem. Again they were given 6 
minutes to solve the problem. The second cycle proceeded in the same way. Problem 1 
and problem 2 were counter-balanced across all participants. The entire procedure took 
approximately 40 minutes. 

Results 

Because the task instructions directed the participants to extrapolate correctiy but 
did not mention speed, accuracy is our basic performance measure. The problem solving 
score was determined by the number of letters correctly extrapolated in each problem 
solving task. Because participants were asked to extrapolate each problem to eight 
positions their problem solving scores varied from 0 to 8, Mean problem solving scores 
were 3.73 (SD = 3.32) on target 1,3.20 {SD = 3.22) on transfer 1,3,43 {SD = 2,81) on 
target 2, and 3,00 {SD = 3,02) on the transfer 2. Alpha was set to ,05 for all subsequent 
tests. 

Although Figure 3 shows slightiy lower performance on the two transfer problems 
than on the two target problems, a one-way repeated measures analysis of variance 
(ANOVA) revealed a non-significant difference of problem (target 1 vs. transfer 1 vs. 
target 2 vs. transfer 2), F (3, 87) = 1,05, MSE = 2,82, ns, indicating tiiat participants 
problem solving performance did not differ across problems. Participants correctly 
extrapolated an average of 3.34 positions. 

Throughout we use the solution time, i.e., the total number of seconds the 
participant worked on each problem, as an indicator of amount of cognitive processing. 
Because participants were given a maximum of 360 seconds (6 minutes) to work on a 
given problem their time scores varied between 0 and 360, Mean solution times were 
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248.4 (SD = 85.8) for target problem 1,253.2 (SD = 92.4) for transfer problem 1,246 
(SD = 99) for target problem 2, and 250.2 (SD = 95.4) for transfer problem 2. 

Although Figure 4 shows that the participants solved the target problems slightly 
faster than the transfer problems, a one-way repeated measures ANOVA revealed a non- 
significant difference for solution times across problems (target 1 vs. transfer 1 vs. target 
2 vs. transfer 2), F (3, 87) = .06, MSE = 1.50, ns. Solution time scores were similar to 
accuracy scores in that performance did not differ across problems. 

Discussion 

The two target problems turned out to be of approximately similar levels of 
difficulty. The participants correctly extrapolated less than half of the 8 positions and it 
took them more than four minutes to do so, so these are relatively difficult problems for 
our population of participants. However, they are not so difficult that the participants 
cannot make any progress. In short, we found neither floor nor ceiling effects. In 
addition, the fact that performance on the transfer problems was no better than on the 
target problems indicates that transfer of training is not straightforward in this task 
domain and that the transfer problems were not intrinsically more difficult than the target 
problems. 

EXPERIMENT 2: PRACTICE VS. DIRECT INSTRUCTION 

A large percentage of formal learning situations put the student in either a direct 
instruction scenario or in a practice scenario. On the assumption that direct instruction 
primarily prompts the construction of declarative knowledge, while practice primarily 
prompts the construction of procedural knowledge, these two scenarios, when applied to 
the same task environment, should generate different behaviors. The purpose of 
experiment 2 was to gather data that would allow us to evaluate this prediction. The 
general approach was to provide either instruction or practice before the participants 
encountered the target and transfer problems we explored in experiment 1. Performance 
on the target and transfer problems thus served as tools for assessing the effects of the 
prior training. We refer to the target and transfer problems collectively as the test 
problems. To what extent could the participants utilize either type of training to improve 
their performance on the test problems, as compared to the no-training group from 
experiment 1? If they could, were their task behaviors similar or different? If the latter, 
how did they differ? 

Direct instruction consisted in this case of a written description of the pattern 
underlying the letter sequence in the target problem. The description used a graphical 
representation of the relational structure of the pattern (see below for further details). The 
learners studied the relations and recalled them. This scenario was implemented in two 
parametric variants, called short instruction and long instruction. The participants in the 
short variant studied a booklet that was 12 pages long. The participants in the long variant 
studied an additional 2 pages. Those two pages described the process of extrapolating a 
patterned sequence (see below). 

Practice consisted in this case of three practice trials, with only minimal task 
instructions. On each trial, the participant solved a letter sequence extrapolation problem 
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that embodied the same pattern as the target problem. This scenario was also 
implemented in two parametric variants. The participants in the low-variability practice 
variant solved exactly the same practice problem (same pattern, same letters) three times. 
The participants in the high-variability practice variant solved three practice problems 
that all used the same pattern, but instantiated it in different letters. The low-variability 
participants had no reason to create abstract knowledge before encountering the target 
task, but the high-variability participants did. The practice problems used the same 
pattern as the target problem, but there was no overlap with the target problem with 
respect to the letters used to instantiate the pattern. 

Methods 

Participants 
One hundred and nineteen undergraduate students from the University of Illinois 

at Chicago participated in return for course credit. 
Materials 

The target and transfer problems were the same as in experiment 1; see Table 1. 
In addition, there were a total of three practice problems for each target problem. The 
three training problems followed the same pattern as the target problem; see Table 2. The 
training problems were constructed in such a way that they did not overlap (i.e., did not 
share surface features) with each other or the target problem. The low variability practice 
group was trained on the first of the three training problems and the high variability 
practice group was trained on all three. 

In addition, there were two sequence extrapolation tutorial booklets, one for short 
instruction (12 pages) and one for long instruction (14 pages). Both tutorials consisted of 
general instructions on how to find pattern sequences as well as detailed descriptions of 
the component relations of patterns (e.g., forward, backward, repeat, and identity 
relations). 

The long instruction tutorial had two additional pages of general instruction 
describing how to extrapolate patterns. Two example problems were worked through in 
detail, extrapolating one letter at a time. Participants were told that in order to extrapolate 
a pattern, they must first find the relations that make up the pattern, and then use those 
relations to continue it. For example, to extrapolate the first letter of the pattern below 
participants were instructed as follows: 

ABMCDM.... -»EFM 
"So first we need to decide on the 1^' letter of the third period. The 1*' 
letter in the second period, C, is one forward fi-om the 2"** letter of the first 
period. So the letter we are looking for should be the one forward fi-om the 
2"'' letter of the second period, which is D. So the letter we are looking for 
is E." 

The rest of the extrapolation was described in a similar way. Participants were 
then given step-by-step extrapolation instructions for a more difficult problem. These 
instructions were intended to focus the learner on the procedure of extrapolating a 
pattern. 
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Both instruction groups also received a general tutorial test that consisted of four 
recall questions and one comprehension question for the short instmction group and two 
comprehension questions for the long instruction group. An example of a recall question 
was to write a brief description of the repeat letter relation. An example of a 
comprehension question was to describe what a period is and give an example of a 
periodic sequence. In addition, there were two diagrammatic illustrations of the 
underlying pattern relations for each of the target problems as well as two blank 
diagrammatic recall sheets (see Figure 5 for an example of a diagrammatic pattern 
illustration). There were also two distractor tasks that consisted of three multiplication 
problems each. 

Test problems and training problems were presented via the same PsyScope 
computer system that was used in experiment 1. Direct instruction training materials were 
presented in booklet form. 

Problem 1 and problem 2 and associated training stimuli were counter-balanced 
across all conditions. 
Design 

The participants were randomly assigned to one of four groups: low variability 
practice (n = 30), high variability practice (w = 31), short instruction (n = 28), and long 
instruction (n =■ 30). In addition, the no-training group (n = 30) from experiment 1 was 
included in the data analysis as a comparison group. 

In both of the practice groups, participants solved letter sequence extrapolation 
problems that conformed to the same patterns as those used in the target problems. The 
low variability practice group solved one and the same training problem three times and 
the high variability practice group solved three training problems, each having different 
surface features (letters). 

In the instruction training conditions participants first read general tutorials, then 
memorized and recalled the abstract patterns for each target problem. The only difference 
between the short and long instruction training was that the long instruction participants 
were given two additional pages in the tutorial that provided specific step by step 
instructions for how to extrapolate a problem; see Materials section. 
Procedure 

Participants were tested in groups of 1-4 people. The procedure consisted of two 
cycles, each encompassing a training phase and a test phase. 

Procedure for practice groups. Participants were first given general instructions 
on how to solve sequence extrapolation problems. They were then given the first 
sequence extrapolation training problem. Participants were instructed to extrapolate each 
of the eight positions by clicking the mouse on any given position and typing in the 
answer; see Figure 2 for an example. They were given 6 minutes to solve each problem. 
After participants finished solving a problem or 6 minutes time elapsed, they continued to 
the next problem by pressing the space bar. 

After participants solved all three training problems they were given the target 
problem instructions. Target problem instructions were the same as the training 
instructions except that they included the hint that if participants noticed a pattern on any 
of the prior problems it would help them solve the next problem. Participants were then 
given 6 minutes to solve the target problem. Finally, they were given the transfer problem 
and were instructed to solve it in the same manner as the target problem. 
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The second cycle proceeded in the same way. The entire procedure took 60-80 
minutes. 

Procedure for direct instruction groups. Before the training phase all participants 
were given the general tutorial text to read (maximum time allowed 18 minutes) after 
which they were given the tutorial test (maximum time 6 minutes). At the beginning of 
the training cycle participants were given 3 minutes to memorize the first diagrammatic 
pattern illustration. Next, participants were presented with the diagrammatic blank recall 
sheet and instructed to recall and write down the relations of the pattern (maximum time 
3 minutes). Participants were then given the distractor task to prevent memory rehearsal 
strategies of the rules (maximum time 3 minutes). Next, participants were presented with 
the general instructions for the test problems. They were then given 6 minutes to solve 
the target problem. Finally, they were given the transfer problem and were instructed to 
solve it in the same manner as the target problem. The second cycle proceeded in the 
same way. The entire procedure took 70-90 minutes. 

Results 

The two primary questions are whether participants acquired knowledge of the 
target pattern from the training procedures, and whether that knowledge facilitated 
performance on the subsequent test problems (target and transfer). The question of the 
nature of the differences in what was learned is discussed in more detail after the report 
of experiment 3. 

Alpha was set to .05 for all statistical tests and effect sizes (eta squared, r] ^) were 
calculated for main effects, interactions and main comparisons. Cohen (1988; see also 
Olejnik & Algina, 2000) has suggested that effects be regarded as small when ri ^ < .06, 
as medium when .06 < rj ^ < .14 and as large when tj ^ > .14. 

Training Performance 
Training Time 

The average time spent on training was calculated for each training group. The 
low variability practice group spent 1,117 seconds (-19 minutes; SD = 412) on solving 
the practice problems whereas the high variability practice group spent 1,163 seconds 
(SD = 352). In contrast, the short instruction group spent 1,572 seconds (~26 minutes; SD 
= 197) and the long instruction group 1,624 seconds (SD = 150) on training (i.e., tutorial, 
test, memorization and recall of the abstract pattern). These data show that the instruction 
groups spent considerably more time than the practice groups with the training materials. 
If time on task is a major determinant of learning outcomes, we should therefore expect 
the instruction groups to perform better than the practice groups. 
Practice 

The first question is whether problem solving performance increased across 
practice trials. If participants extracted knowledge of the pattern from the initial problem 
it should facilitate performance on subsequent training problems. The low variability 
group should show a positive linear increase across training trials, because they solved 
the exact same problem on each occasion. The high variability group should show the 
same pattern of results if the knowledge gained from the initial problem was abstract and 
accessible for transfer across training problems. 
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The practice training score was determined in the same manner as the problem 
solving scores from experiment 1 as the number of correct extrapolations varying from 0- 
8. An initial one-way ANOVA was conducted to investigate the effect of problem 
(problem 1 vs. problem 2) on problem solving performance. The ANOVA revealed no 
effect of problem, F (l, 60) = 2,83, MSB = 3.41, ns, indicating that the type of pattern had 
no significant effect on problem solving performance. 

Figure 6 shows the mean problem solving scores for the low and high variability 
groups on the three training problems collapsed across problem. A 2 (group: low 
variability vs. high variability) by 3 (trial: 1 vs. 2 vs. 3) mixed ANOVA was conducted to 
examine the effect of type of training across problem solving trials. The ANOVA 
revealed a large main effect of trial, F (2, 118) = 31.83, MSE = 1.45, p < .05, rj ^ = .35, 
indicating that performance increased significantly with training. There was no effect of 
group, F (1, 59) = .87, MSE = 20.85, ns, indicating that participants in the low variability 
condition performed at the same level as participants in the high variability condition. 
There was also no interaction of group by trial, F (1, 118) = .87, MSE = 1.45, ns, 
indicating that performance did not significantly differ across training trials as a function 
of group. 

To follow up the effect of trial a linear ANOVA was conducted on training trials 
1-3. The ANOVA revealed a significant positive linear trend across training trials, F (1, 
59) = 42.69, MSE = 1.82, p < .05, rj ^ = .42, indicating performance improvements across 
all three trials collapsed across training groups. 

Direct Instruction 
Two training measures were taken: participant ratings of how well they 

understood the general tutorial and pattern recall. Participants were asked to rate how 
well they understood each page of the general tutorial. Ratings were made on a 1-5 Likert 
scale; from 1 ( / don't understand at alt) to 5 (/ understand completely). Mean self-rating 
scores were 4.68 {SD = ,48) for the short instruction group and 4.79 {SD = .43) for the 
long instruction group. 

A one-way ANOVA comparing short instruction ratings to long instruction 
ratings was not significant, F (1, 57) = .75, MSE = .20, ns, indicating instruction groups 
were equally likely to report that they understood the general tutorial. 

The second measure was the number of relations correctly recalled from the 
diagrammatic pattern descriptions. The pattern recall score was based on the number of 
relations embedded in a given pattern; hence, scores varied from 0-7 for pattern 1 and 0-8 
for pattern 2. Figure 7 shows the proportion of correctly recalled pattern relations for 
short and long instruction groups for both patterns. 

A 2 (group: short instruction vs. long instruction) by 2 (pattern: pattern 1 vs. 
pattern 2) mixed ANOVA revealed a large main effect for pattern, F (1, 56) = 39.05, 
MSE = .004, p < .05, rj^ = .41, indicating that participants recalled significantly more 
relations for pattern 1 than for pattern 2, There was no effect of group, F (1, 56) = .03, 
MSE = .11, ns, indicating that the two direct instruction groups did not differ in recall 
performance. However, there was a marginally significant interaction of group by pattern, 
F (1, 56) = 3.54, MSE = ,004, p = .064, T| ^ = .06, indicating that group recall 
performance differed as a function of pattern. Inspection of the means show that the short 
instruction group recalled slightly more relations than the long instruction group on 
pattern 1 (6,25 vs. 5.67) and the opposite trend was observed on pattern 2 (4.64 vs. 5.13), 
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We have no explanation for this unexpected finding. The effect was small,»] ^ = .03 for 
pattern 1 and r]^ = .009 for pattern 2. 

In sum, the two direct instruction groups scored high on the comprehension and 
recall tasks, indicating that they learned something about the relevant pattern. In addition, 
the two groups performed almost identically on both measures. 

Test Performance 
Accuracy 

Participants were instructed that their task was to extrapolate the letters correctly. 
They were not instructed to work as fast as possible. Therefore, accuracy is the 
appropriate measure of task performance. The problem solving score was determined in 
the same manner as in experiment 1 (i.e., scores varied between 0-8). 

An one-way repeated measures ANOVA was conducted to investigate effect of 
problem (1 vs. 2) on problem solving performance. The ANOVA revealed no effect of 
problem, F (1, 148) = .08, MSB = 2.14, ns, indicating that the type of pattern had no 
significant effects on problem solving performance. Columns 2 and 4 in Table 3 show the 
mean problem solving scores and standard deviations for the practice, direct instruction, 
and no-training groups on target and transfer problems collapsed across problem. 

A 5 (training: low variability practice vs. high variability practice vs. short 
instruction vs. long instruction vs. no-training) by 2 (test problem: target vs. transfer) 
mixed ANOVA revealed a medium-sized main effect of training, F (4, 144) = 4.75, MSB 
= 14.49, p < .05, r] ^ = .12, indicating that problem solving performance significantly 
differed across training groups. There was also a large main effect of test problem, F (1, 
144) = 23.65, MSB = 1.50, p < .05, »? ^ = .14, showing that participants performed 
significantly better on the target problem than on the transfer problem. There was no 
interaction of training by test problem, F (4, 144) = .67, MSB = 14.49, ns, indicating that 
the difference in problem solving performance between target and transfer problems did 
not vary as a function of training. 

Follow up comparisons for training revealed that the low variability practice 
group performed significantly better than the short instruction group on problem solving 
performance, F (1, 144) = 9.32, MSB = 14.49, p < .05, rj ^ = .06. Planned comparisons 
also revealed that the low variability practice group did not differ significantly from 
either the high variability practice group or the long instruction group, F (1, 144) = .52, 
MSB = 14.49, ns, and F (1, 144) =1.21, MSB = 14.49, ns. The high variability practice 
group also did not significantly differ from the long instruction group, F (1, 144) = .09, 
MSB = 14.49, ns. The long instruction group also performed significantly better than the 
short instruction group, F (1, 144) = 4.20, MSB = 14.49, p < .05, r} ^ = .03. In addition, 
the short instruction group did not significantly differ from the no-training group, F (1, 
144) = .17, MSB = 14.49, ns. All comparisons that were significant for the entire 
participant group were also significant in the upper 2/3 analysis but with stronger effects. 

We repeated the above analyses on the scores of those participants who received 
the top two-thirds of the scores on the training measures (see Table 3, columns 3 and 5). 
We refer to this as the upper 2/3 analysis. The reason for the upper 2/3 analysis is that the 
participants differed in their ability to learn from the various training procedures, 
presumably due to differences in cognitive ability, differences in motivation, and perhaps 
other factors. For the purpose of the present study we are concerned with the effects of 
training on subsequent problem solving when training is successful. Hence, participants 
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who failed to learn during training, regardless of reason, dilute the effects we are 
interested in. The effect of restricting our attention to the upper 2/3 of the participants 
(based on the training measures, not test performance) ought to accentuate those effects 
that are due to differences between the types of training. The upper 2/3 analysis should 
therefore show the same pattern of effects as the analysis of the entire sample but with 
larger effects. As colunms 3 and 5 in Table 3 show, this was indeed the case. For example 
the main effect of training increased from 17 ^ = ,12 to TJ ^ = .32, similarly the effect of the 
low variability group over the short instruction group increased from tj ^ = .06 to rj^ = 
.12 and the long instruction group over the short instruction group increased from r]^ = 
.03 to »| ^ = .07, Any statistical test that was significant in the entire sample was also 
significant in the upper 2/3 analysis. 

In addition, we were interested in whether or not problem solving performance 
differed across experiment cycles (cycle 1 vs. cycle 2). It is possible that participants 
became aware of the connection between the training and test phase after finishing cycle 
1 and deliberately changed their approach to the training materials on cycle 2 thus leading 
to performance differences across cycles as a function of training type. A 4 (group: low 
variability practice vs. high variability practice vs. short instruction vs. long instruction) 
by 2 (cycle: 1 vs. 2) mixed ANOVA revealed an overall improvement across cycles for 
all training groups (F (1, 115) = 7.84, MSE = .2.01, p < .05, rj ^ = .06). However, there 
was no interaction of training by cycle, indicating that improvement across cycles did not 
change as a function of training (F (3, 115) = .78, MSE = .2.01, ns). Performance 
improved uniformly across cycles for all training groups, suggesting that the participants 
benefited in some general way from their familiarity with the task domain but that they 
did not change their training strategies for cycle 2 in such a way as to interact with 
training type. 

In sum, the accuracy results show that participants in the two analogy groups and 
the long instruction group performed better than the participants in the short instruction 
and no-training groups on both target and transfer problems. The long direct instruction 
and the practice groups did not differ from each other, thus constituting alternative paths 
to the same level of mastery. In addition, all groups performed better on the target than on 
the transfer problems. 
Time Measures 

We defined solution time as the total amount of time (in seconds) it took the 
participants to solve the problem. Following a long-standing tradition in cognitive 
psychology, we interpret a solution time as an estimate of the amount of cognitive 
processing the participant engaged in to produce his or her problem solution. A detailed 
analysis of solution times is presented after experiment 3. The purpose of the analysis 
reported here is to determine whether those participants who had higher accuracy scores 
engaged in more processing. 

Table 4 shows the mean solution times and standard deviations for the practice, 
direct instruction, and no-training groups on target and transfer problems; see columns 2 
and 4, As with accuracy, we also report the corresponding measures for those participants 
who received the upper 2/3 of the scores on the training measures; see columns 3 and 5. 
The same logic applies: Effects that are due to the training procedures ought to be 
accentuated when we restrict the analysis to the upper 2/3 of the participants. 
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A 5 (training: low variability practice vs. high variability practice vs. short 
instruction vs. long instraction vs. no-training) by 2 (test problem: target vs. transfer) 
mixed ANOVA revealed a large main effect of training, F (4,144) = 20.15, MSE = 2.^, 
p < .05, r| ^ = .36, indicating that solution time differed significantly across training 
groups. There was also a medium-sized effect of test problem, F (1,144) = 15.01, MSE = 
.66, p < .05, rj ^ = .09, showing that participants solved the target problem significantly 
faster than the transfer problem. In addition, there was a medium-sized interaction of 
training by test problem, F (4,144) = 3.43, MSE = .66, p < .05, rj ^ = .09, indicating that 
the solution time differed across test problems as a function of group. 

Follow up comparisons revealed that the low variability practice group solved the 
target and transfer problems faster than both the short and long instruction groups, F (1, 
144) = 14.37, MSE = 2.40, p < .05, ?7' = .09 and F (1,144) = 29.93, MSE = 2A0,p < .05, 
tj ^ = .14 respectively. Planned comparisons also revealed that the low variability practice 
group did not significantly differ from the high variability practice group, F (1, 144) = 
3.30, MSE = 2.40, ns. In addition, the short and long instruction groups did not 
significantly differ from the no-training group, F (1, 144) = 1.89, MSE = 2.40, ns and F 
(1, 144) = .13, MSE = 2.40, ns. 

Follow up comparisons for the interaction of training by test problem revealed 
that both practice groups and the long instruction group solved the target problems faster 
than the transfer problems, F (1, 144) = 5.93, MSE = .66, p < .05, rj ^ = .04, F (1,144) = 
13.36, MSE = .66, p < .05, rj' = .08, and F (1,144) = 9.54, MSE = .66, p < .05, rj' = .06. 
In contrast, the short instruction and no-training groups solved both target and transfer 
problems equally fast, F (1, 144) = .60, MSE = .66, ns and F (1, 144) = .15, MSE = .66, 
ns. 

All statistical tests that are significant for the entire sample are also significant 
when the analysis is restricted to the upper 2/3 of the participants. As expected, the 
effects are accentuated; see Table 4, columns 3 and 5. For example, the main effect of 
training increased from 17 ^ = .36 to 1]^ = .43, similarly the effect of the low variability 
practice group over the short and long instruction groups increased from rj ^ = .09 to rj^ 
= .11 and 7]"^ = .14 tor] ^ = .11 respectively. 

In sum, the results show that the practice groups solved the target and transfer 
problems faster than both of the direct instruction and no-training groups. Although the 
long instruction group performed at the same level as the practice groups as measured by 
accuracy, they did not show an advantage over the short instruction and no-training 
groups with respect to solution time. In addition, both the practice and long instruction 
groups showed a significant slow down on the transfer problem. 

Discussion 

Direct instruction and practice can both facilitate performance on sequence 
extrapolation problems, as shown by the fact that performance on the target problem was 
more accurate for both the long instruction and the two practice groups than for the no- 
training group. This result was not self-evident, because not every training procedure 
produces higher accuracy in this domain: The short direct instruction group did not 
perform significantly better than the no-training group. The higher accuracy of the better 
groups was not due to time on task, because time spent on training was more for 
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instruction than for practice, and the mean solution time on the target task was shorter for 
the groups with the higher accuracy. We infer that a person can master letter sequence 
extrapolation problems via either instruction or practice, but that what is learned differs in 
the two scenarios. 

Type of knowledge. The fact that the two instruction groups took longer to 
complete the problems than the two practice groups is consistent with the expectation that 
the instruction scenario prompts the construction of more declarative than procedural 
knowledge, while the opposite is true for the practice scenario. Declarative knowledge 
needs to be proceduralized or compiled in order to guide the solving of an unfamiliar 
problem, a cognitive process that is complex and likely to take time. Practice, on the 
other hand, generates procedural knowledge and its application to a new problem is fast; 
hence the shorter solution times. (After the presentation of experiment 3, we show that 
this difference in time holds at each level of accuracy, but only for one component of the 
solution process.) 

There was a clear difference between the short and long instruction groups in 
favor of the latter. The only difference in training between those two groups was the 
inclusion of two extra pages describing the type of inferences one needs to carry out to 
extrapolate a letter sequence. Because this information was procedural in nature, one 
might expect it to facilitate the generation of procedural knowledge. However, the lack of 
effect on the solution time is inconsistent with this prediction. Nevertheless, the 
difference in accuracy and solution time between the two groups demonstrate that the 
long instruction group benefited from the extra instruction in some way. It is possible that 
the two extra pages resulted in a declarative representation of the required inference type, 
but it is not clear why this representation would require as much cognitive processing to 
proceduralize (as shown by the long solution times) and nevertheless be less error prone 
(as shown by the high accuracy scores). We return to this issue in a later section. 

Abstraction. The fact that the training facilitates performance on the target 
problem shows that what is learned during training is not completely specific. Although 
the target problem used the same pattern as the participants encountered during training, 
that pattern was instantiated in different letters. What was learned must therefore have 
been of at least intermediate abstraction in order to apply to the target problem. The fact 
that all groups took longer to solve the transfer problem shows that the abstraction level 
nevertheless was limited. Additional cognitive processing was needed to apply what had 
been learned to the transfer problem. (The longer solution times on the transfer problem 
are unlikely to be due to any difference in difficulty between the problems themselves, 
because the performance of the no training group revealed no such differences in 
difficulty; see experiment 1.) 

The fact that there was no difference between the high and low variability groups 
with respect to solution time on either test problem is surprising in the light of prior 
research that claimed that variability in practice problems prompts abstraction. Recall that 
the low variability group solved exactly the same practice problem three times before 
encountering the target problem, while the high variability group solved three different 
problems. One would expect faster solution times for the high variability group on the 
target problem and less of a performance decrement on the transfer problem, but the high 
group shows no such advantages with respect to the low group. Because this lack of 
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difference between the low and high variability groups is at variance with prior research, 
we replicate it in experiment 3. 

Our confidence in the above conclusions is strengthened by the upper 2/3 
analysis. Each of the effects mentioned above recurs in that analysis, but with a larger 
effect size. For example the main effect for training increased from r^ ^ = .12 to rj ^ = .32 
for accuracy mdr}^ = 36to T]^ = .43 for solution time. This is what one would expect if 
the effects are due to differences between the training conditions. After reporting 
experiment 3, we outline a processing account of our key findings. 

EXPERIMENT 3: PRACTICE VS. INCIDENTAL TRAINING 

Although direct instruction and practice are typical of formal learning situations, 
one often hears the statement that people learn best from 'experience.' What is meant by 
this is approximately that people extract information from situations they participate in, 
even in the absence of any intention to learn. In educational contexts, the belief in such 
experiential, unintentional learning implies instructional tactics that put students in 
situations that in some sense 'embodies' the target subject matter (manipulatives, 
microworlds). The hope is that they will extract the relevant knowledge from their 
interactions with those situations. In laboratory contexts, this idea has been researched 
under the two labels incidental learning and implicit learning. The main purpose of the 
laboratory studies have been to document the existence of this type of learning and they 
have succeeded in doing so (Berry, 1997; Reber, 1989; Stadler, 1998; Wattemmaker, 
1999). 

However, the literature lacks detailed comparisons between what is learned imder 
incidental training conditions and what is learned from more deliberate forms of training. 
The first purpose of experiment 3 was to compare incidental training with the practice 
scenario from experiment 2. In the incidental condition, the participants memorized letter 
sequences that instantiated one and the same pattern, without being told of this fact and 
without being told that the sequences were relevant for a subsequent problem solving 
task. Following the same strategy as in experiment 2, we implemented two parametric 
variants of the incidental training scenario, called short and long. They differed only with 
respect to the number of instances memorized (6 vs. 18). 

The second purpose of experiment 3 was to replicate the unexpected lack of 
differences between the high and low variability practice conditions in experiment 2. 
Participants in the two practice groups received the exact same training as in experiment 
2. 

Method 

Participants 
Ninety-four undergraduate students from the University of Illinois at Chicago 

participated in return for course credit. 

Materials 
The test problems and the practice problems were the same as those used in 

experiment 2; see Tables 1 and 2. In addition, there were a total of 36 training strings 
consisting of 12 letters for problem 1 and 14 letters for problem 2, 18 strings for each 
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target problem. The 18 strings associated with each target problem followed the same 
pattern as the given sequence for that problem; see the Appendix for examples. The short 
incidental group was trained on 6 strings per problem. The long incidental group was 
trained on 18 strings per problem. All participants received the two target and the two 
transfer problems. Target and transfer problems and their associated training stimuli were 
counter-balanced across all conditions. 
Design 

The participants were randomly assigned to one of four training groups: low 
variability practice (n = 26), high variability practice (n = 23), short incidental (n ^ 25), 
and long incidental (n = 23). In addition, the no-training group (n = 30) from experiment 
1 was included in the statistical analyses as a comparison group. 

In both of the practice groups, participants solved letter sequence extrapolation 
problems that conformed to the same patterns as those used in the target problems. As in 
experiment 2, the low variability practice group solved one and the same training 
problem three times and the high variability practice group solved three training 
problems, each having different surface features (letters). In both of the incidental 
learning groups, participants memorized letter strings that conformed to the same patterns 
as those used in the target extrapolation problems. The short incidental group memorized 
and recalled 6 training strings and the long incidental group memorized and recalled 18 
training strings. 
Procedure 

Participants were tested in groups of 1-4 people. Each participant was tested on a 
Macintosh computer with a 17" color monitor, standard keyboard and mouse. All stimuli 
were presented in black 30 pt font in the center of the screen. The experiment was 
designed and presented with the PsyScope software. 

The procedure consisted of two cycles. Each cycle was composed of training 
followed by solving one target and one transfer problem. 

Procedure for practice groups. The procedure was exactly the same as in 
experiment 2, 

Procedure for incidental learning groups. Participants were first instructed to 
memorize and recall each letter string one by one (6 strings for the short incidental group 
and 18 strings for the long incidental group). They were given 45 seconds to memorize 
each string and 30 seconds to recall and type in the string. After they finished recalling 
the string or 30 seconds time elapsed participants were presented the next string. This 
procedure was continued through all of the training strings. Participants were then 
instructed to describe the pattern in the memorization strings as best they could. 

Next, participants were given instructions on how to solve the sequence 
extrapolation problems. Instructions included the hint that if the participants noticed a 
pattern from the training strings it would help them solve the sequence extrapolation 
problem. They were then presented with the target problem. They were given 6 minutes 
to solve the problem. Finally, they were given the transfer problem and were instructed to 
solve it in the same manner as the target problem. 

To investigate how aware the participants were of the knowledge they acquired 
during training, they were asked at the end of each training cycle whether or not they 
noticed a pattern in the training strings. If they noticed a pattern they were asked to write 
down a description of it. 
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The second cycle proceeded in the same way. The entire procedure took 70-90 
minutes. 

Results 

Two key questions are whether participants acquired knowledge of the target 
pattern from the training procedures and whether that knowledge facilitated performance 
on the subsequent test problems. 

Training Performance 
Training Time 

The average time spent on training was calculated for each training group. The 
low variability practice group spent 1,202 seconds (~20 minutes; SD = 382) on solving 
the practice problems whereas the high variability practice group spent 1,366 seconds 
(SD = 419). In contrast, the short incidental group spent ~ 900 seconds (-15 minutes) and 
the incidental long group spent -2,160 seconds (-36 minutes). These data show that the 
low and high variability practice groups spent approximately the same amount of time on 
training whereas the short incidental group spent a shorter amount of time and the 
incidental long spent considerably more time with the training materials. If time on task 
is a major determinant of the learning outcomes, we should therefore expect the long 
incidental group to exhibit superior performance. 
Practice 

Did training performance increase across practice trials? Because we used the 
same training procedure in this experiment as in experiment 2, we expected to find 
positive linear trends across trials but no effect of group. The practice training score was 
determined in the same manner as the problem solving scores from experiments 1 and 2, 
Because participants were asked to extrapolate each problem to eight positions their 
scores varied from 0 to 8. 

An initial repeated measures one-way ANOVA was conducted to investigate the 
effect of problem (problem 1 vs. problem 2) on problem solving performance. The 
ANOVA revealed no effect of problem, F (1, 48) = 1.98, MSE = 4.34, ns, indicating that 
the type of pattern had no effect on analogy training performance. Figure 8 shows the 
mean problem solving scores for the low variability and high variability practice groups 
on the three training trials collapsed across problem, 

A 2 (group: low variability vs. high variability) by 3 (trial: 1 vs. 2 vs. 3) mixed 
ANOVA was conducted to examine the effect of training group across problem solving 
trials. The ANOVA revealed a large main effect of trial, F (2, 94) = 15.35, MSE = 1.76, p 
< .05,1] ^ = ,25, indicating that performance significantly differed across problems. There 
was no effect of group, F (1, 47) = .02, MSE = 18.39, ns, indicating that participants in 
the low variability group performed at the same level as the participants in the high 
variability group in experiment 2. There was also no interaction of group by trial, F (2, 
94) = .442, MSE = 1.76, ns, indicating that performance did not significantly differ across 
training trials as function of group. 

To follow up the effect of trial a linear ANOVA was conducted on training trials 
1-3. The ANOVA revealed a significant positive linear trend across training trials, F (1, 
47) = 24.70, MSE = 2.16, p < .05, r] ^ = .35, indicating performance improvements across 
all three trials collapsed across training groups. Similar to experiment 2, these results 
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show that both the low and high variabiUty training groups constructed knowledge of the 
pattern thus facilitating performance on the second and third problem trials. 
Incidental Training 

The first question of interest is whether the participants acquired any knowledge 
of the pattern by memorizing the training sequences. Knowledge of the pattern can be 
used to reconstruct the letter sequence and should thus improve recall performance. If 
pattern knowledge is gradually acquired via memorization participants should perform 
better on later trials than on earlier trials'. 

The incidental training score was determined by the number of letters correctly 
recalled in the memorization task. Because there were 12 letters to memorize for pattern 
1 and 14 letters to memorize for pattern 2, the memory scores varied from 0 to 12 and 0 
to 14 respectively. Mean memory scores for both short and long training groups on 
patterns 1 and 2 are presented in Figure 9. 

To investigate whether or not participants recall scores' increased across trials 
linear ANOVAs were conducted on trials 1-6 for the short incidental group and trials 1- 
18 for the long incidental group for both patterns 1 and 2. The short incidental group 
showed a positive linear trend for pattern 1 but not for pattern 2, F (1, 24) = 5.94, MSE = 
10.85, p < .05, rj^ = .20 and F (1,24) = .16, MSE = 10.23, ns respectively. This result 
indicates that participants in the short incidental training group acquired some knowledge 
of the pattern sequence for pattern 1 but not for pattern 2. In contrast, the long incidental 
group showed large positive linear trends for both patterns 1 and 2, F (1, 22) = 39.42, 
MSE = 10.85, p < .05, »7' = .64 and F (1,22) = 22.30, MSE = 10.61, p < .05, rj' = .50. 
These results indicate that participants in the long incidental training group acquired 
knowledge of both patterns from the memorization training. 

In addition, a 2 (group: short incidental vs. long incidental) by 2 (pattern: pattern 
1 vs. pattern 2) mixed ANOVA was conducted to investigate whether pattern knowledge 
increased as a function of amount of training. The ANOVA revealed a large main effect 
of training group, F (1,46) = 7.91, MSE = .003, p < .05, r]^ = .l5, indicating that the long 
incidental group performed significantly better than the short incidental group. There was 
no effect of pattern, F (1,46) = 1.65, MSE = .002, ns, and no interaction of training group 
by pattern, F (1, 46) = .41, MSE = .002, ns. These results show that the long incidental 
group recalled significantly more letters than the short incidental group on both patterns 1 
and 2. 

To investigate how aware the participants were of the knowledge they acquired 
during training, the participants' written pattern descriptions were coded by two 
independent coders with a reliability of 85%. All disagreements were arbitrated by the 
first author. The pattern descriptions were coded using both a strict and loose coding 
scheme. 

The strict coding scheme was based on the number of specific relations the 
participants identified in the pattern; see Figure 1. Hence, the strict coding score varied 
from 0-7 relations for pattern 1 and 0-8 relations for pattern 2. The loose coding scheme 
was based upon demonstration of general pattern concepts such as forward relations, 
backward relations, repeat, and period. 

' In a previous study (Nokes & Ohlsson, 2000) we showed that participants who memorized and recalled 
random symbol sequences did not show benefits in performance across trials. 
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Figure 10a shows the proportion of pattern relations identified (i.e., strict coding) 
by the short and long incidental groups for both patterns. A 2 (group: short incidental vs. 
long incidental) by 2 (pattern: pattern 1 vs. pattern 2) mixed ANOVA revealed no effects 
for group or pattern, F (1,46) = 1.49, MSB = .044, ns and F (1,46) = 1.45, MSB = .06, ns 
respectively. In addition, there was no interaction of group by pattern, F (1, 46) = .13, 
MSB = .044, ns. These results indicate that short and long incidental groups did not differ 
in their identification of the relations for either pattern. Overall, pattern identification was 
quite poor showing that both groups identified not more than approximately 12% of the 
specific pattern relations. 

Furthermore, an analysis of the pattern descriptions for general concepts revealed 
no effect of training group, F (1,46) = 1.45, MSB = .06, p = .074, indicating that the long 
and short incidental groups performed similarly on pattern concept descriptions. Figure 
10b shows the proportion of general concepts correctly identified for both groups on each 
pattern. 

These results suggest that overall incidental training participants had very limited 
explicit knowledge of the patterns embodied in the memorization strings. 

Test Performance 
Did the knowledge gained from training facilitate performance on the target and 

transfer problems? Was the behavior of the incidental group similar to that of the practice 
groups, the direct instruction groups, or different from both? 
Accuracy 

The problem solving score was determined in the same manner as experiment 1 
and 2 (i.e., scores varied between 0-8). An initial one-way repeated measures ANOVA 
was conducted to investigate effect of problem (1 vs. 2) on problem solving performance. 
The ANOVA revealed no effect of problem, F (1,126) = 2.41, MSB = 2.95, ns, indicating 
that the type of pattern had no significant effects on problem solving performance. Table 
6 shows the mean problem solving scores for the practice, incidental, and no-training 
groups on target and transfer problems collapsed across problem. 

A 5 (training: low variability practice vs. high variability practice vs. short 
incidental vs. long incidental vs. no-training) by 2 (test problem: target vs. transfer) 
mixed ANOVA revealed a medium-sized main effect of training, F (4, 122) = 4.10, MSB 
= 13.09, p < .05, t]^ = A2, indicating that problem solving performance significantly 
differed across training groups. There was also a medium-sized main effect of test 
problem, F (1, 122) = 16.06, MSB = 1.88, p < .05, rj' = .12, showing that participants 
performed significantly better on the target problem than on the transfer problem. In 
addition, there was no interaction of training by test problem, F (4, 122) = .49, MSB = 
1.88, ns, indicating that problem solving performance did not differ across training 
groups as a function of test problem. 

Follow up comparisons for training revealed that the low variability practice 
group performed significantly better than the long incidental group on problem solving 
performance, F (1, 122) = 4.08, MSB = 13.09, p < .05, r]' = .03. Planned comparisons 
also revealed that the low variability practice group did not significantly differ from the 
high variability practice group, F (1, 122) = .03, MSB = 13.09, ns, and the long incidental 
group did not significantly differ from the short incidental or no-training groups, F (1, 
122) = .77, MSB = 13.09, ns and F (1,122) = .13, MSB = 13.09, ns respectively. 

Technical Report, Ohlsson 



Feedback and Transfer 73 

To address the question as to whether or not participants became aware of the 
connection between training and test we compared test performance on cycle 1 to test 
performance on cycle 2. A 4 (group: low variability practice vs. high variability practice 
vs. short incidental vs. long incidental) by 2 (cycle: 1 vs. 2) mixed ANOVA revealed an 
overall improvement across cycles for all training groups (F (1,93) = 10.00, MSE = 3.01, 
p < .05, rj^ = .09). However, there was no interaction of training by cycle indicating that 
improvement across cycles did not change as a function of training type (F (3, 93) = .56, 
MSE = 3.01, ns). In sum, these results indicate that training strategies did not change for 
cycle 2. 

In sum, the accuracy results show that the two practice groups performed 
significantly better than the two incidental and the no-training groups on target and 
transfer problems. Participants also performed better on the target than on transfer 
problems. 
Solution Time 

As in experiments 1 and 2, the solution time was the total amount of time (in 
seconds) it took the participant to solve the problem. Table 7 shows the mean solution 
times and standard deviations for the practice, incidental, and no-training groups on target 
and transfer problems. 

A 5 (training: low variability practice vs. high practice vs. short incidental vs. 
long incidental vs. no-training) by 2 (test problem: target vs. transfer) mixed ANOVA 
revealed a large main effect of training, F (4,122) = 9.90, MSE = 2.70, p < .05, rj ^ = .25, 
indicating that solution times differed significantly across training groups. There was also 
a medium-sized main effect of test problem, F(l, 122)= 14.09, MSF = .69, p < .05, r]^ = 
.10, showing that participants solved the target problem significantly faster than the 
transfer problem. In addition, there was no interaction of training by test problem, F (4, 
122) = 1.40, MSE = .69, ns, indicating that solution times did not differ across training 
groups as a function of test problem. 

Follow up comparisons for training revealed that the low variability practice 
group solved the test problems faster than the long incidental group, F (1, 122) = 8.10, 
MSE = 2.70, p < .05, r] ^ = .06. Planned comparisons also revealed that the low variability 
practice group did not significantly differ from the high variability practice group, F (1, 
122) = ,92, MSE = 2.70, ns, and the long incidental group did not significantly differ from 
the short incidental group, F (1, 122) = 1.14, MSE = 2.70, ns. However, the long 
incidental group solved problems faster than no-training group, F (1, 122) = 5.87, MSE = 
2.70, p < .05, rj ^ = .05, whereas short incidental condition did not, F (1,122) = 1.80, 
MSE =2.70, MS. 

In sum, the solution time results show that the practice groups solved the target 
and transfer problems faster than the incidental and no-training groups. The long 
incidental group was faster than the no-training group. The participants solved the target 
problems faster than the transfer problems. 

Discussion 

What did the incidental training groups learn? The participants in the incidental 
training scenario had the opportunity to extract knowledge of the relevant patterns, but no 
opportunity to practice extrapolation inferences. One might therefore expect them to exit 
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the training with knowledge structures similar to those of the direct instruction groups 
from experiment 2: Declarative knowledge of the pattern, but no relevant procedural 
knowledge. This should generate higher accuracy scores than the no-training group, 
combined with long solution times. 

This is not the pattern we observed. The accuracy scores provide no evidence that 
the incidental training groups could draw upon their knowledge of the pattern to improve 
their problem solving performance. In fact, the only evidence that the incidental training 
participants benefited from the training is the fact that the long incidental group had 
shorter mean solution time than the no-training group. In light of the fact that the solution 
time for the long incidental group increased rather than decreased when we restricted the 
analysis to the upper 2/3 of the participants (see Table 7), we are inclined to discount that 
single significance test and conclude that the test performance of the incidental training 
groups did not benefit from the training. 

This conclusion does not imply that the incidental training participants did not 
learn anything. The fact that both incidental groups improved their recall scores across 
training trials, with stronger effect for the long group, is evidence that they gradually 
extracted the relevant pattern from the training sequences. The conclusion is not that they 
did not learn during training, but that they learned something that they could not use in 
subsequent problem solving. This conclusion is consistent with our previous findings 
(Nokes & Ohlsson, 2000). 

A plausible interpretation of this outcome is that the incidental training 
participants acquired knowledge without any associated retrieval structure. That is, a 
relational structure that captured the regularities in the memorization sequences was 
gradually forming in memory, but the participants had no way of retrieving that schema 
for use in any other task than the memorization task for which it was created in the first 
place. 

Due to the lack of effects on test performance, we cannot pursue the questions of 
what type of knowledge this was and at what level of abstraction it might have been 
encoded. 

Replication of practice results. The two practice groups in this experiment 
behaved similarly to the corresponding groups in experiment 2. They exhibited both high 
accuracy and fast solution times. In particular, the low and high variability variants did 
not differ from each other on either target or transfer problems. The expected effect of 
variable practice on the level of abstraction once again failed to appear. 

Our confidence in these conclusions are once again strengthened by the upper 2/3 
analysis. All effects that are significant in the entire sample are also significant in the 
upper 2/3 analysis, but the effects are larger (with the exception noted above). For 
example, the main effect of training increased from »7 ^ = .12 to  tj ^ = .29 for accuracy 
and rj ^ = .25 to »^ ^ = .29 for solution time. In addition, the effects of the low variability 
practice group over long incidental group increased from ?) ^ = .03 to    r]^ = .09 for 
accuracy and t] ^ = .06 to ij ^ = ,08 for solution time. 

MEASURES OF TRANSFER 

Up to this point, we have used performance on the transfer problem as our 
indicator of how well the participants could apply what they had learned to a novel 
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problem. However, transfer is traditionally quantified in terms of the relative advantage 
of a training group over a control group (Singley & Anderson, 1989). That is, how 
much better does a training group perform than a no-training control group? The purpose 
of this section is to report relative advantage measures for all learning scenarios studied 
in Experiments 2 and 3. 

In order to quantify the amount of transfer observed from the training tasks to the 
test tasks we calculated two measures of transfer, adapted from Singley and Anderson 
(1989), for both the target and the transfer problems; see Table 7 for a summary of 
transfer effects based on accuracy performance and Table 8 for a summary of transfer 
effects based on solution times. 

The first transfer measure quantifies the amount of improvement of the 
experimental group (training group) over the control group (no-training group) 
normalized by control group performance, T^tap,ov.me„. = (E - C / C) x 100; see concept 1 
in Table 3 and 4. This transfer measure revealed large amounts of transfer for the practice 
and long instruction groups on accuracy performance revealing ~50% improvement on 
the target and ~60% improvement on the transfer problems. In contrast, the incidental 
and short instruction groups showed small to nil transfer effects for both target and 
transfer problems (less than 13% improvement). 

We also calculated this measure for the upper two-thirds of training participants 
and found even larger effects for practice and long instruction groups showing -98% and 
-70% improvement respectively on the target task and ~98% and -96% improvement on 
the transfer task. Similarly the upper two-thirds of incidental and short instruction groups 
also showed increased transfer effects revealing -19% and -20% improvements 
respectively on both target and transfer. However, these effects still remain considerably 
smaller than that of the practice and long instruction groups. 

The second transfer measure quantifies the amount of transfer given the total 
amount of learning possible; T^To,a, Learning = (E - C / p,^„,„ ,,„,, - C) x 100; see concept 2 in 
table 7 and 8, If one knows maximum performance possible on the target task (in this 
case 8 correct extrapolations for accuracy) you can calculate the total amount of transfer 
possible (i.e., the performance limit minus control performance). This measure revealed 
large amounts of transfer for the practice and the long instruction groups on accuracy 
performance showing -49% improvement on target and -36% improvement on transfer 
problems. In contrast, the incidental and short instruction groups showed small transfer 
effects for both on target and transfer problems (less than 11% improvement). 

We also calculated this measure for the upper two-thirds of training participants 
and found even larger effects for practice and long instruction groups showing -80% and 
-57% improvement respectively on the target task and -62% and -60% improvement on 
the transfer task. Similarly the upper two-thirds of long incidental and short instruction 
groups also showed increased transfer effects revealing -14% and -15% improvements 
respectively on both target and transfer, however these effects still remain considerably 
smaller than that of the practice and long instruction groups. 

In short, the relative advantage measure of transfer supports the conclusions 
reached through the previous analyses. In both experiment 2 and 3, the practice groups 
showed large amounts of transfer on both target and transfer problem while neither the 
instruction groups in experiment 2 nor the incidental training groups in experiment 3 did. 
This analysis also added to the evidence that the outcome was split for the two instruction 
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groups. The long instruction group exhibited almost as much transfer as the practice 
groups, but the short instruction group was far behind. In the next section, we move 
towards an explanation of these findings by considering in detail how much processing 
was required in each group. 

TOWARDS A PROCESSING ACCOUNT 

The descriptive analyses presented in the previous sections reveal that there is 
non-trivial structure in the outcomes. There are indeed multiple paths to mastery in the 
letter sequence extrapolation domain. Data from the training phase support the conclusion 
that ali three scenarios produced knowledge about the pattern in the target problem. The 
instruction groups could recall a high percentage of the relations in the patterns, 
particulariy for pattern 1 (see Figure 7); the practice groups improved in accuracy across 
their three practice problems (see Figures 6 and 8); and the incidental training groups 
showed an increase in accuracy across their memorization trials (see Figure 9). (This 
trend is only strongly supported for the long incidental group.) In short, the participants in 
all three scenarios learned something about the target pattern. 

The long instruction group and the two practice groups could utilize their 
knowledge about the pattern to perform better than the control group, as measured by 
mean accuracy on the target problem. Recall that these two scenarios were quite 
different. The long instruction group engaged in deliberate study of the target pattern. 
They acquired some lexical concepts to help them think about the relations in the pattern, 
saw a graphical display of the pattern, and attempted to recall the individual relations in 
the pattern. They did not engage in any activity that required extracting an unfamiliar 
pattern from a novel letter sequence, nor did they attempt to carry out any extrapolation 
inferences. The situation for the two practice groups was the opposite. After minimal 
instruction in the nature of the task, the participants in the practice groups solved three 
sequence extrapolation problems. They did not study any graphical or verbal 
representation of the pattern, nor did they engage in any discourse about patterns. These 
two learning scenarios differ qualitatively in terms of what information was available to 
the learners and how that information was presented. Yet, the participants in the long 
instruction group performed at approximately the same level as the participants in the two 
practice groups, as measured by mean accuracy on the target problem. 

This outcome was not self-evident. Not all groups performed the target task at the 
same level of accuracy. Neither of the two incidental training groups performed better 
than the control group (see Table 5). With respect to direct instruction, the results were 
mixed. Although the long instruction group performed better than the control group, the 
short instruction group did not. The fact that different types of instruction can result in 
different levels of post-instruction performance is neither novel nor surprising. Such 
differences are traditionally explained by claiming that the learners in the different 
scenarios acquired different amounts of knowledge. One group performs less well than 
another because the members learned a subset of what another group learned. 

An explanation in terms of amount of knowledge for those groups that performed 
differently would commit us to the belief that the groups that performed similariy 
acquired exactly the same knowledge. Given the qualitative differences between the 
instruction and practice scenarios, this is implausible. The purpose of this section is to 
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formulate an account of what happened in our experiments in terms of what was learned 
- which type of knowledge and which level of abstraction - and in terms of the cognitive 
processing that the knowledge required in each learning scenario. Although we rely 
primarily on the accuracy measures in the previous sections, in this section we rely on the 
solution times, interpreted as measures of amount of cognitive processing. 

Closer scrutiny of the solution times show that the three scenarios we studied 
differed in ways that cut across similarities and differences in mean accuracy. For this 
analysis, we divided the solution time into two additive parts, the deliberation time, the 
time until the participant typed in their first letter, and the extrapolation time, the time it 
took him or her to complete the problem. If we allow ourselves the reasonable 
assumption that the participants tried to figure out the pattern before they attempted to 
extrapolate it, then the deliberation time is an estimate of how long it took the participant 
to identify the pattern in the given sequence. The extrapolation time is an estimate of how 
long it took him or her to carry out the extrapolation inferences. We focus on those 
participants who performed in the upper two-thirds on the training task of their 
instructional condition. Table 8 shows the deliberation and extrapolation times for the 
control group and for each group in Experiments 2 and 3. In the following analysis, we 
focus on the long instruction group, the high variability practice group, and the long 
incidental training group, using the results from the parametric variants of these scenarios 
as auxiliary evidence. The purpose is to propose a story about what knowledge each 
group acquired that is consistent with the pattern of findings. 

Interpretation: Direct instruction. During training, the long instruction participants 
learned to recall the relations in the pattern to a high degree of accuracy, so they must 
have acquired some representation of the target pattern. These participants had no 
opportunity to practice, so it is plausible that their knowledge consisted of a schema or 
some other type of declarative representation. This representation was applicable to a 
novel letter sequence, because the deliberation time for the target problem was shorter for 
the instruction group than for the control group {t (48) = 4,48, p < ,05). Hence, it must 
have been of at least first-order abstraction. Presumably, the deliberation time for this 
group was spent matching their schema to the given sequence in the target problem. 

The data suggest that their schema was also applicable to the transfer problem with 
little further cognitive work. The time to the first extrapolation was no longer for the 
transfer problem than for the target problem; instead, it was 9 seconds shorter (see Table 
8; / (19) = .909, ns), a clear case of declarative transfer. Presumably, the facilitation 
occurred because the new pattern had the same structure, i.e., the important relations held 
between the same positions in the target and transfer patterns, and because the particular 
relations in the transfer pattern were generated from the relations in the target pattern via 
a systematic transformation (i,e,, stretching; see Method section for Experiment 1). In 
sum, the data suggest that the deliberate study of the target pattern generated an abstract, 
easily transferable representation of the target pattern. 

The extrapolation time for the direct instruction participants presents a contrasting 
picture. Because they had had no prior opportunity to practice extrapolation inferences 
during the training phase, the instruction participants - especially those who performed at 
a high level of accuracy - must have constructed the necessary procedural knowledge in 
the course of performing the target problem. Consistent with this, the time for 
extrapolation on the target problem was considerably longer in the long instruction group 
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than in the practice groups; see below (t (39) = -1.23,p < .05 and t (38) = -5.l5,p< .05, 
for high and low variabiHty). 

One might expect the procedural knowledge generated from the declarative schema 
to be at the same level of abstraction as the schema itself and hence easily transferable, 
but the data suggest that this was not the case. The extrapolation time for the target 
problem was 156 seconds, and for the transfer problem 214 seconds; see Table 8 (t (19) = 
-3.80,p < .05). This 37% increase contrasts with the slight decrease in the corresponding 
deliberation times. This observation is supported by the relative advantage measure of 
transfer, as applied to the solution times; see Table 9. As that table shows, the relative 
advantage of the long instruction group on the transfer task was close to zero, even 
slightly negative. The short instruction group had a slightly higher advantage, but not as 
high as the practice groups. This result should be considered in the context of short 
transfer distance from the target to the transfer problem. It appears that the amount of 
cognitive work required for extrapolation on the transfer problem (at which point the 
participants had some relevant procedural knowledge, constructed in the course of 
solving the target problem) was greater than the work needed for extrapolation on the 
target problem (for which the participants had no prior procedural knowledge). The 
participants either invested cognitive work into generalizing the rules created in the 
course of solving the target problem, or else they started over and created brand new rules 
for the transfer problem. Under either interpretation, we infer that the procedural 
knowledge constructed in the course of solving the target problem was not transferable. 

This point deserves elaboration, because it is both counterintuitive and novel with 
respect to the literature on the interaction between declarative and procedural knowledge. 
The simulation models of knowledge compilation proposed by Anderson (1983) and 
Ohlsson (1996) implicitly assume that knowledge compilation preserves abstraction 
level. Briefly put, the resulting production rules have variables where the declarative 
structures they are derived from have variables. But in our experiments, the compilation 
of the abstract declarative schema into procedural knowledge appears to have produced 
less abstract knowledge. Although the deliberate understanding of the target schema 
helped the participants identify the pattern in the transfer task, the procedural knowledge 
of how to carry out the relevant extrapolation inferences in the target problem was not 
equally helpful in carrying out the corresponding inferences in the transfer problem. The 
knowledge compilation process began with an abstract, transferable schema but ended 
with a specific, non-transferable skill. We discuss this conclusion further below. 

The short instruction group exhibited the same pattern of results as the long 
instruction group with respect to the deliberation and extrapolation times. The 
deliberation time on the target problem was shorter than that of the control group (t (47) = 
4.02, p < .05) and comparable to that of the long instruction group. The extrapolation 
time was longer than for the high and low practice groups (/ (38) = -7.14, p <.05 and t 
(37) = -5,19, p <,05), and again comparable to that of the long instruction group. Finally, 
the short instruction group showed the same pattern of a small decrease in deliberation 
time on the transfer problem, coupled with an extrapolation time that was as long as that 
for the target problem. Surprisingly, the short instruction group had slightly higher 
relative advantage than the long instruction group; see Table 9. We have a no explanation 
for this unexpected finding. Although the short instruction group did not perform as well 
as the long instruction group as measured by mean accuracy, the replication of the 
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Structure of deliberation and extrapolation times indicate that the processing was similar 
and that the knowledge this group acquired was of the same type and level of abstraction. 

Interpretation: Practice. The high variability practice group improved its 
performance across the three practice problems. Because the practice participants were 
not shown the underlying pattern but had to work it out for themselves, this improvement 
most likely signals the acquisition of a mixture of declarative knowledge about the target 
pattern and procedural knowledge about how to detect patterns. This representation was 
more useful than the one learned by the instruction groups, because the deliberation time 
for the high variability practice group on the target problem was shorter than the 
corresponding times for either the long or the short instruction group; see Table 8, t (39) 
= -2.56,p < ,05 and t (38) = -3.25,p < ,05, 

What was the level of abstraction attained by this group? The practice group 
exhibited an increase in time to first extrapolation from 32 seconds on the target problem 
to 48 seconds on the transfer problem, in contrast to the small decrease in deliberation 
time exhibited by both instruction groups. Hence, what the high-variability group learned 
about the pattern cannot have been so abstract that it applied to the transfer problem 
without modification. As one would expect, their knowledge was characterized by first- 
order abstraction. 

Over the course of attempting three different extrapolation problems during the 
training phase of the experiment, the high variability practice group must have created the 
procedural knowledge needed to carry out the relevant extrapolation inferences. Because 
these participants saw three different letter sequences that all followed the same pattern, 
they had an incentive and opportunity to create abstract rules to carry out the 
extrapolation inferences. The data bear this out. The practice group exhibited a shorter 
extrapolation time on the target problem than the instruction group (59 versus 156 
seconds; t (39) = -7,23, p < ,05), indicating that they could apply the procedural 
knowledge they had already constructed rather than starting from scratch. Once again, 
this observation is supported by the relative advantage measure. The practice groups 
exhibited almost 50% transfer on this measure; see Table 9, The value was even higher 
for the upper 2/3 of the participants. They could achieve this in the span of only four prior 
problems (three practice, one target) because the distance between target and the transfer 
patterns was short. 

If those rules were of intermediate abstraction, they needed to be revised and 
adjusted to apply to the transfer problem but the adjustment would be minor. Again, the 
data bear out this expectation. For the high variability practice group, the extrapolation 
time for the transfer problem was 43 seconds longer than the time for the target problem 
(/(20) = -8.10,p<,05). 

There was reason to expect a different pattern to hold in the low variability practice 
group. Because they saw exactly the same problem (the same given letter sequence) three 
times before encountering the target problem, they had an opportunity to specialize their 
procedural knowledge to that particular sequence. If this had happened, we would expect 
to see evidence that they had to invest more cognitive work into adapting their pattern 
knowledge to the target problem (which for them exhibited a novel letter sequence) than 
the high variability group. This is what the data show. Time to the first extrapolation on 
the target problem was indeed longer for the low variability than for the high variability 
group, 56 seconds versus 32 seconds {t (39) = 2.23,/? < .05). The same argument would 
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predict that the time to compute the extrapolation inferences would also be longer. Once 
again, this is the case, 75 seconds versus 59 seconds for the high variability group. Once 
they abstracted their knowledge to fit the target problem, the low variability group should 
be at a smaller disadvantage on the transfer problem. This was indeed the case; the 
deliberation time on the transfer problem was still somewhat longer (66 seconds versus 
48, but the extrapolation time was virtually the same as for the high variability group (96 
seconds compared to 102). 

This structure was replicated to a high level of detail in experiment 2. Once again, 
the low variability group exhibited slightly longer deliberation time than the high 
variability group on both the target and transfer problems, but the extrapolation times 
were virtually identical on both problems (60 versus 63 seconds for target, and 104 
versus 102 seconds for transfer). In short, although the low variability group incurred an 
initial cognitive cost of the kind one would expect - they had to put more cognitive work 
into adapting their knowledge to the unfamiliar tasks than the high variability group - this 
initial disadvantage was overcome as soon as they had had an opportunity to abstract 
their procedural knowledge. 

Comparing instruction and practice. The deliberation times for instruction and 
practice were comparable, but the extrapolation time was significantly shorter for the 
practice groups.- This is entirely consistent with the idea that the latter had an opportunity 
to construct procedural knowledge while the former did not. 

However, the magnitude of the extrapolation times for the transfer problems allows 
a further inference. If the instruction groups constructed procedural knowledge while 
solving the target problem, they then needed to transfer that knowledge to the transfer 
problem. But so did the practice groups. There is thus no obvious reason why the 
extrapolation times on the transfer pattern should differ between the two scenarios. In 
fact, the extrapolation time for the transfer problem was twice as long for the long 
instruction group as for the high variability practice group, 214 seconds as compared to 
102 seconds (t (39) = -7.54, p< .05). The results from the short instruction group and the 
low variability practice group are in accord with this pattern; see Table 8. Further support 
comes from the relative advantage measure. The instruction groups showed no more 
relative advantage than the incidental learning group, but the practice groups were 
superior to both on this measure; see Table 9. 

These results support the conclusion already reached previously that after carrying 
out the extrapolation inferences for the target problem, the instruction groups had to carry 
out significant cognitive work to transfer the resulting procedural knowledge to the 
transfer task. The implication is that whatever procedural knowledge they generated in 
the course of solving the target task was not abstract. This conclusion holds up even if we 
measure transfer as relative advantage vis-a-vis the control group; see Table 8. The two 
practice groups showed a consistently high relative advantage. The measure for the long 
instruction group is comparable, but for the short instruction group considerable lower. 

Results separated by accuracy. The interpretation suggested above could be 
critiqued on the grounds that the deliberation and extrapolation times are likely to be 
imprecise estimates of the time needed to identify the pattern and to carry out the 
extrapolation inferences. In particular, participants might have oscillated between pattern 
detection and pattern extrapolation to a greater extent than our analysis presupposes. In 
particular, one could argue that the tendency to oscillate in this manner is a fimction of 
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how well the person understands the relevant pattern, so that what looks like differences 
between the groups with respect to deliberation time and extrapolation time is in actuality 
nothing but a side effect of differences in performance level as measured by mean 
accuracy. 

This argument is contradicted by Table 10. This table shows that the pattern of 
findings described above recurs at each level of accuracy. For this analysis, we divided 
the participants into three levels based on their accuracy on the target problem. The top 
level included participants who performed perfectly with 8 correct extrapolations, the 
second level those with 5-7 correct extrapolations, and the bottom level with 0-4 correct. 
To facilitate the comparison between accuracy levels, we limit Table 10 to the long 
instruction and high variability practice groups, the two groups for which our claim of 
alternative paths to mastery is strongest. 

As Table 10 shows, those features of the data on which we based our interpretation 
recur at each level of accuracy. The deliberation times for the practice groups are 
comparable (with a slight advantage for practice in the top and bottom levels); the 
deliberation times for transfer are longer than target for practice but not for the instruction 
in the top and bottom levels; the extrapolation times for instruction are more than twice 
as long for practice on the target problem; and the instruction group does not catch up 
with the practice group on the target problem. At each of the three levels of accuracy, the 
extrapolation time for instruction is longer on the transfer than on the target problem. 
More importantly, at each level of accuracy, the extrapolation time is more than 100 
seconds longer for instruction than for practice. 

The recurrence of this pattern at each level of accuracy shows that the pattern is not 
a side effect of the overall differences in accuracy. In particular, those instruction 
participants who solved the target problem perfectly obviously did not have any serious 
deficiency in their knowledge and understanding of the relevant patterns nor any lack of 
relevant cognitive ability, but they still exhibited radically longer extrapolation times on 
both transfer and target than the practice groups. This indicates, first, that they had to 
invest cognitive work into compiling the required procedural knowledge, and, second, 
that the resulting procedural knowledge was not abstract. We discuss the implications of 
this further below. 

Interpretation: Incidental training. The data from the long incidental training 
group shows that there was a significant increase in performance across the 18 
memorization trials (see Figure 9). Thus, these participants learned something about the 
pattern. (In past studies, we have found that people do not improve when they are given 
random sequences to memorize; Nokes & Ohlsson, 2000.) Nevertheless, the incidental 
training scenario produced a pattern of results that does not conform to the pattern for 
either the instruction or the practice scenario. 

Could the acquired representation be used to support performance on the 
subsequent target and transfer problems? The time to the first extrapolation for the long 
incidental group is more than two to three times as long on the target problem as the 
corresponding times for the long instruction and high variability practice groups, and 
comparable to the time for the no-training group. The time to the first extrapolation on 
the transfer problem is again longer than for the other groups. Recall also that the mean 
accuracy for the long incidental training group was not statistically different from the 
mean of the control group. In short, although studies of incidental and implicit learning 
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have verified the existence of automatic pattern extraction during memorization (e.g., 
Reber, 1989), there is no evidence that the subjects in our incidental training scenario 
acquired a representation that they could utilize to support their problem solving 
performance. 

Because the incidental training participants had no opportunity to practice sequence 
extrapolation, we predicted that they would came out of the training phase without any 
relevant procedural knowledge. Unexpectedly, their extrapolation time on the target 
problem is shorter than the time for the long instruction group, albeit longer than for the 
practice groups. On the transfer problem, the time for extrapolation is shorter for the long 
incidental group than for either the direct instruction group or either of the two high 
variability practice groups (from Experiments 1 and 2, respectively). We infer that the 
memorization condition produced procedural knowledge that was helpful with respect to 
the extrapolation steps. The effect on the extrapolation time for the transfer problem 
shows that this knowledge was transferable. 

Given the difference between recalling a sequence and generating it by 
extrapolating a pattern, there is a question as to what the nature of this knowledge might 
be. A possible hypothesis is that the participants acquired a goal structure that helped 
them organize the recall of the memorized strings, and that this goal structure could be 
recruited to organize the extrapolation effort as well. However, it is not clear why this 
goal structure would be as usefiil as, or even more useful than, the procedural knowledge 
acquired by the participants in the practice groups; the latter presumably included a goal 
structure. 

A more plausible possibility is that a subset of the incidental training participants 
discovered that the memorization sequences were patterned, and that they used the 
pattern as a mnemonic device. Given knowledge of the underlying pattern, one can derive 
some letters of the sequence from others via inferences that are of the same type as the 
inferences required to extrapolate a pattern. If some participants engaged in this type of 
reconstructive recall, they might have acquired some of the same procedural knowledge 
as the participants in the practice groups. Because each memorization sequence consisted 
of different letters, they had opportunity and incentive to make this knowledge abstract. 
In fact, with 18 trials, as opposed to the 3 trials of the practice groups, those incidental 
training participants who discovered the pattern had more opportunity to construct 
abstract procedural knowledge than the practice participants. Once again, we see a case 
of procedural knowledge that was acquired via practice and that transferred from training 
to problem solving. 

GENERAL DISCUSSION 

We formulate a set of general learning principles that are consistent with our 
findings. We also reflect on the limitations and the broader lessons of our work. 
Theoretical Implications 

The pattern of findings described in the previous section is consistent with the 
following principles of learning: 

Principle 1. Direct instruction via discourse generates declarative knowledge. 
Principle 2. Declarative knowledge tends to be expressed at a high level of 

abstraction and is easy to transfer to a new situation. 
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Principle 3. Procedural knowledge generated by compiling a declarative structure 
does not necessarily preserve abstraction level. Instead, knowledge compilation tends to 
generate task specific procedural knowledge that requires cognitive work to transfer to a 
new situation. 

Principle 4. Practice generates procedural knowledge. 
Principle 5. Procedural knowledge generated via practice is of a high level of 

abstraction and easy to transfer to a new situation. 
Principle 6. The transferability of practice-generated procedural knowledge is 

higher if the practice problems are varied than if they are similar. 
Principle 7. Incidental training does generate relevant knowledge, but the learner 

might not be able to draw upon it to support deliberate problem solving. 
Principles 1, 2, 4 and 6 are in accord with prior research and common sense. 

However, prior research did not provide any reason to expect Principles 3, 5 and 7. 
Together, they say that there are different sources for procedural knowledge, and that 
properties such as abstraction level vary with the source. If true, this conjecture has 
important consequences. 

First, consider the idea that the compilation of declarative knowledge does not 
preserve abstraction level but tends to generate highly specific procedural knowledge. 
This principle has the potential to explain a large number of negative results in the 
literature. Our direct instruction scenario was designed to share key features with a 
typical textbook chapter in a problem solving topic such as physics or statistics: Teach 
the 'theory' of the topic first, and require independent problem solving afterwards. The 
expectation is that a good understanding of the theoretical (declarative) part, in 
combination with problem solving practice, will generate a flexible and general problem 
solving competence. The failure to realize this expectation is the constant frustration of 
teachers. The frustration is typically interpreted to mean that the students did not 
correctly assimilate or understand the declarative part of the instruction; if they had done 
so, they would know what to do on the problem solving exercises. Numerous studies that 
document failure to achieve conceptual understanding can be cited in apparent support of 
this interpretation. The natural response is to search for better ways of teaching for 
understanding. 

That this response is not self-evident is shown by the occasional study that 
documents poor performance in the present of correct conceptual understanding (Resnick 
& Omansson, 1987). If our interpretation of our results is accurate, we can understand 
how those situations arise. The compilation of the declarative understanding does not 
result in general and applicable procedural knowledge. The radical implication is that this 
effect is to be expected regardless of the level of conceptual understanding. Improving 
the students' understanding does not help, because the problem resides in the knowledge 
compilation process, not in deficiencies in the declarative representation. The compilation 
process does not preserve abstraction level and so does not support transfer of the 
procedural knowledge it produces, regardless of depth or completion of the declarative 
knowledge. 

On the other side of the coin, the above principles imply that the advantages of 
practice are even stronger than we have previously understood. If procedural knowledge 
created during practice is specific to the practice problems encountered, it is apparently 
also easy to generalize so as to fit a new situation. The transfer step in our experiments 
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was admittedly short and simple, but it is nevertheless conspicuous how easily it was 
negotiated even by the low-variability group. In addition, it appears that even the 
seemingly different task of memorizing letter sequences can generate procedural 
knowledge that transfers to sequence extrapolation. These results indicate that transfer of 
procedural knowledge generated via practice is not as limited as one would expect from 
the traditional view of procedural knowledge as context-bound. 

In summary, our results call into question the received view of the relation between 
declarative and procedural knowledge. The supposed advantages of declarative 
knowledge as abstract and context-independence are real, but only as long as we are 
talking about declarative transfer. A person can transfer a pattern readily enough, and 
hence see a new situation in the light of a previously learned pattern. However, this 
ability is of limited value and may or may not be expressed in overt behavior, because it 
does not bring with it an equally powerfiil and flexible ability to decide what to do in the 
new situation. The obstacle resides in the process of articulating the action implications 
of the declarative knowledge, not necessarily in the declarative knowledge itself. In 
contrast, procedural knowledge generated via practice, supposedly context independent, 
was here shown to be easier to transfer. Consequently, we have to call into question the 
usual trade-off explanation for why people have these two types of knowledge 
(Anderson, 19&3; Winograd, 1975). Our findings also call into question the tendency in 
pedagogical contexts to seek methods to improve students' conceptual xmderstanding for 
the purpose of, and in the hope of, producing better and more flexible problem solving 
performance. 
Limitations 

The present studies have several limitations. The most obvious one is that the 
training phase was short. The experimental procedure took less than 90 minutes. It is not 
obvious which effects observed in this time band replicate at the time band in which 
realistic learning occurs, usually months or even years. We note that academic instruction 
- which resembles the scenario for direction instruction in experiment 1 - is precisely the 
context in which it is often claimed that instruction is ineffective, in the sense that 
students cannot apply what they have learned to solve problems flexibly, so there is at 
least a thematic similarity between the performance of our instruction groups and 
classroom observations. Nevertheless, generalizability across time bands is a matter of 
concern, 

A second limitation is the nature of our transfer test. The pattern underlying the 
transfer problem was a simple transformation of the target pattern. We do not know how 
the different groups would fare if they attempted a problem based on a completely 
different pattern. With increased transfer distance, perhaps a relative advantage will 
appear for the instruction group. There is no evidence for this in our data, but only fresh 
data can tell, 

A third limitation is the fact that our outcome measures were not probing enough. 
We need to know more about the state of knowledge of the learner at the end of training. 
The traditional notion of a probing what has been learned with transfer problems is useful 
but does not go far enough. At the very least, we need to provide multiple transfer 
problems, each differing from the target problem in a different way. However, we can go 
further and specify a series of tasks that are not extrapolation problems, but that might 
involve the same knowledge and reveal how that knowledge is encoded with respect to 
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type and level of abstraction. In short, future studies need to use a multi-dimensional 
approach to the assessment of what is learned in the alternative scenarios. 
Broader View 

The observation that cognitive tasks can be mastered in different ways is not as 
trivial as it might appear at first glance. Direct instruction, practice, and incidental 
learning differ radically with respect to what information they make available to the 
learner, how that information is presented, and which cognitive processes are required to 
make use of it. Direct instruction requires, at the very least, discourse comprehension, but 
also compilation of the presented information. Because the relevant information is stated 
explicitly, the learner's attention is directed to it. In a practice scenario, on the other hand, 
the learner's spontaneous attention allocation might make all the difference; does he or 
she notice the critical features of the task environment? Practice scenarios present 
information in the context of the relevant goals, a type of information not necessarily 
present in a direct instruction scenario. Incidental learning scenarios require that learners 
automatically encode patterns in the environment even when they are working on a task 
that does not require them to do so, and that they can retrieve those patterns later for a 
novel purpose. Learning by observing someone else perform a task differs in yet other 
ways from all three scenarios explored here. The fact that people can master some tasks 
via more than one of these scenarios is a phenomenon in its own right. 

The methodology we adopted for studying this phenomenon does not follow the 
standard experimental canon of varying only a single, well-specified, quantitative 
parameter of the experimental situation in order to be able to make strong inferences 
about causal relations. Attempting to describe the differences between the three learning 
scenarios in terms of values on multiple independent variables does not seem a useful 
exercise. However, if the differences cannot be reduced to parametric differences in any 
meaningful way, then the dictum that one is to vary one variable at a time excludes 
comparisons between different learning scenarios from study. But the existence of 
multiple paths to mastery is a fact, and cognitive research on learning can only loose by 
refusing to investigate this fact. 

In the present studies, we combined qualitatively defined scenarios with parametric 
variations. We implemented each type of scenario twice, with a parametric difference 
between the variants (long or short instruction; variable or identical practice problems; 6 
versus 18 memorization strings). In general, the results show that the differences between 
the parametric variants were of smaller magnitude than the differences between the 
scenarios. The fact that the within-scenario variants replicated the same qualitative 
pattern in the solution times, while the between-scenario comparisons revealed different 
patterns of findings increases our confidence that the results indicate theorefically 
meaningful differences in cognitive processing. 

The differences between the scenarios constitute a set of phenomena that a general 
learning theory ought to be able to account for. That is, a learning theory should be able 
to predict, for a given path to mastery, what knowledge is acquired along that path and 
how that knowledge is encoded with respect type, abstraction level, and other properties, 
and to predict the pattern of differences in a set of outcome measures applied to several 
paths. It is possible that our particular findings will not replicate in a different task 
domain, but for every task domain there is some pattern of such differences, and that 
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pattern is a phenomenon against which we can test any learning theory that claims 
generality. 

In particular, a computational model that claims generality must be able to simulate 
the attainment of mastery of a given task in any scenario in which people can master that 
task. This is a sufficiency criterion (Newell & Simon, 1972) that current models of 
learning do not pass. For example, a model of leaming from instruction might be build on 
top of the sophisticated models of discourse comprehension proposed by Kintsch (1998) 
and others. Although those models are informative, they do not explain what information 
a learner extracts from practice. This is not a criticism of comprehension models as 
models of comprehension. Conversely, computational models of leaming by doing have 
been very successful in modeling practice effects such as the power law of leaming 
(Anderson, 1982), but the leaming mechanisms they postulate cannot explain how a 
person might leam from instraction (but see Ohlsson, Ernst, & Rees, 1991 for an attempt 
in this direction). Again, this is not a critique of such theories as theories of practice 
effects, only a statement about a boundary of application. Theories of incidental and 
implicit leaming have focused on specifying the inductive processes that are presumably 
operating during training, but those processes do not explain how a leamer benefits from 
either instraction or deliberate practice. To highlight the boundaries of the application of 
these theories is not to critique them for the purpose for which they were designed. Our 
point is that neither theories of discourse comprehension, practice or incidental induction 
are candidates for general theories of leaming, because people can leam from discourse 
and practice and incidental induction and in yet other ways. 

This situation should not be viewed as problematic. Science progresses by building 
local theories for particular domains and then attempting to unify them under more 
fundamental principles. The fact that local theories of leaming have reached a certain 
level of theoretical sophistication holds out the promise that unification has arrived at the 
threshold of the possible. Unified theories of leaming must be tested against phenomena 
with wider scope than the effects of parametric variations within narrowly defined 
leaming scenarios. The pattem of cross-scenario comparisons reported in this article 
constitute one example of such a phenomenon. 
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Appendix A 

Incidental Learning Materials 

Problem 1 

1) WXVYUGXYWZVH 

2) FGEHDPGHFIEQ 

3) KLJMIULMKNJV 

4) RSQTPBSTRUQC 

5) MNLOKWNOMPLX 

6) IJHKGSJKILHT 

7) CDBEAMDECFBN 

8) QRPSOARSQTPB 

9) LMKNJVMNLOKW 

10) UVTWSEVWUXTF 

11) NOMPLXOPNQMY 

12) VWUXTFWXVYUG 

13) TUSVRDUVTWSE 

14) JKILHTKLJMIU 

15) OPNQMYPQORNZ 

16) STRUQCTUSVRD 

17) DECFBNEFDGCO 

18) HIGJFRIJHKGS 
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Problem 2 

1) BDYECXXEGWHFVV 

2) GITJHSSJLRMKQQ 

3) TVGWUFFWYEZXDD 

4) NPMQOLLQSKTRJJ 

5) DFWGEVVGIUJHTT 

6) RTIUSHHUWGXVFF 

7) JLQMKPPMOOPNNN 

8) PRKSQJJSUIVTHH 

9) CEXFDWWFHVIGUU 

10) FHUIGTTIKSLJRR 

11) OQLRPKKRTJUSII 

12) KMPNLOONPNQOMM 

13) SUHVTGGVXFYWEE 

14) EGVHFUUHJTKISS 

15) QSJTRIITVHWUGG 

16) HJSKIRRKMQNLPP 

17) MONPNMMPRLSQKK 

18) IKRLJQQLNPOMOO 
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Table Captions 

Table 1. Two sequence extrapolation problems and their associated transfer problems. 

Table 2. Three practice problems for each problem type. 

Table 3. Mean problem solving accuracy scores and standard deviations for the practice, 

direct instruction, and no-training groups on target and transfer problems. 

Table 4. Mean solution times (seconds) and standard deviations for the practice, direct 

instruction and no-training groups on target and transfer problems. 

Table 5. Mean problem solving accuracy scores and standard deviations for the practice, 

implicit learning, and no-training groups on target and transfer problems. 

Table 6. Mean solution times (seconds) and standard deviations for the practice, implicit 

learning and no-training groups on target and transfer problems. 

Table 7. Measures of transfer based on accuracy performance for all training groups on 

both target and transfer problems. 

Table 8. Deliberation and extrapolation times for the control group and each training 

group in experiments 2 and 3. 

Table 9. Measures of transfer based on solution times for all training groups on both 

target and transfer problems. 

Table 10. Mean solution times and standard deviations for the high variability practice 

and long direct instruction groups on target and transfer problems. 

Technical Report, Ohlsson 



Feedback and Transfer 93 

Table 1 

Two Sequence Extrapolation Problems and Their Associated Transfer Problems 

Problem-Type Given letter/ number sequence Correct 8-step 
extrapolation 

Problem 1 

Target EFDGCOFGEHDP GHFIEQHI 

Transfer EGDICOGIFKEP IKHMGQKM 

Problem 2 

Target ACZDBYYDFXGEWW GIVJHUUJ 

Transfer AEZGCXXGKVMITT MQRSOPPS 
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Table 2 

Three Practice Problems for each Problem-Type 

Problem-Type          Given letter/ number sequence Correct 8-step 
extrapolation 

Problem 1 

1 IJHKGSJKILHT KLJMIULM 

2 RSQTPBSTRUQC TUSVRDUV 

3 MNLOKWNOMPLX OPNQMYPQ 

Problem 2 

1 GITJHSSJLRMKQQ MOPPNOOP 

2 RTIUSHHUWGXVFF XZEAYDDU 

3 NPMQOLLQSKTRJJ TVIWUHHW 
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Table 3 

Mean Problem Solving Accuracy Scores and Standard Deviations for the Practice, Direct Instruction, and 

No-training Groups on Target and Transfer Problems 

Target Problem Transfer Problem 

Training Group        All Participants      *Upper2/3 All Participants    *Upper2/3 

No-training 3.58 (2.86) ^^^ 3.10 (2.84) ^^ 
Short Instruction        4.04(3.01) 4.37(2.92) 3.23(2.92) 3.71 
(3.07) 
Long Instruction        5.28(2.63) 6.10(2.56) 4.88(2.69) 6.08 
(2.21) 
Practice Low 6.32(2.47) 7.25(1.63) 5.27(2.85) 6.38 
(2.10) 
Practice High 5.65(3.01) 7.33(1.10) 4.94(2.95) 6.52 
(1.72) 

*Note. Upper 2/3 refers to the top two-thirds of participants who were most successful on 
the training task. 
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Table 4 

Mean Solution Times (seconds) and Standard Deviations for the Practice, Direct Instruction and No- 

training Groups on Target and Transfer Problems 

Target Problem Transfer Problem 

Training Group        All Participants      *Upper2/3 All Participants    *Upper2/3 

No-training 247.2 (82.2) ~- 252.0 (73.8) ^^ 
Short Instruction        231.0(76.2) 219.6(66.0) 220.8(76.8) 211.2 
(72.6) 
Long Instruction        223.8(70.8)        210.1(69.6) 262.8(72.0) 259.2 
(63.6) 
Practice Low 144.6(83.4) 131.4(75.6) 175.8(88.2) 162.6 
(79.8) 
Practice High 106.8 (50.4) 91.2 (39.0) 152.4 (64.8) 150.6 
(48.0) 

*Note. Upper 2/3 refers to the top two-thirds of participants who were most successful on 
the training task. 
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Table 5 

Mean Problem Solving Accuracy Scores and Standard Deviations for the Practice, Incidental Learning 

and No-training Croups on Target and Transfer Problems 

Target Problem Transfer Problem 

Training Group All Participants ♦Upper 2/3 All Participants *Upper2/3 

No-training 3.58 (2.86) — 3.10(2.84) — 

Incidental Short 3.34 (2.67) 3.09 (2.95) 2.56 (2.68) 2.59 
(2.59) 
Incidental Long 3.87 (2.58) 4.22 (2.26) 3.33 (2.53) 3.75 
(2.40) 
Practice Low 5.56(3.13) 7.03 (1.89) 4.60 (2.59) 5.69 
(2.02) 
Practice High 5.54 (2.64) 6.69(2.10) 4.85 (2.67) 5.90 
(2.39) 

*Note. Upper 2/3 refers to the top two-thirds of participants who were most successful on 
the training task. 
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Table 6 

Mean Solution Times (seconds) and Standard Deviations for the Practice, Incidental Learning and No- 

training Groups on Target and Transfer Problems 

Target Problem Transfer ■ Problem 

Training Group All Participants ♦Upper 2/3 All Participants *Upper2/3 

No-training 247.2 (82.2) — 252.0 (73.8) — 

Incidental Short 217.7 (89.6) 209.1 (103.3) 230.5 (96.0) 218.5 
(109.8) 
Incidental Long 191.9 (66.4) 194.9 (66.7) 213.2 (92.3) 223.7 
(94.0) 
Practice Low 129.7 (43.8) 118.1(41.1) 161.9(61.2) 161.7 
(65.8) 
Practice High 141.5 (88.5) 118.9(64.4) 188.4 (76.5) 183.0 
(63.1) 

*Note. Upper 2/3 refers to the top two-thirds of participants who were most successful on 
the training task. 
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Table 7 

Measures of Transfer based on Accuracy for all Training Groups on both Target and 
Transfer Problems 

Concept 1 Formula 1 
transfer improvement ~~~~~~~ 
normalized by control T^ taproveme„, = (E - C / C) x 100 
performance 

Group All Participants Upper 2/3 

Transfer 
Target Transfer Target 

Incidental Short -6.7% -14.5% -13.8% 
16.5% 
Incidental Long 8.1% 7.1% 17.7% 
21.0% 
Practice Low 66.4% 60.0% 99.3% 
95.2% 
Practice High 56.4% 58.0% 96.9% 
101.8% 
Short Instruction 12.8% 4.2% 21.9% 
19.7% 
Long Instruction 47.5% 57.4% 70,2% 
96.0% 

Cont'd 
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Table 7, Cont'd 

Concept 2 Formula 2 

Percent of transfer 
improvement of total 
learning possible 

Group 

A % Total Learning ~ V^i      *-' ' Perform limit ~ C) X iUU 

All Participants Upper 2/3 

Target Transfer 
Transfer 

-5.5% -11.0% Incidental Short -11.2% 
10.4% 
Incidental Long 6.5% 4.6% 14.4% 
13.3% 
Practice Low 53.9% 37.9% 80.6% 
60.3% 
Practice High 45.7% 36.7% 78.6% 
64.4% 
Short Instruction 10.2% 2.7% 17.8% 
12.5% 
Long Instruction 38.5% 36.4% 57.0% 
60.7% 

Notes: Upper 2/3 refers to the top two-thirds of participants who were most successful on 
the training task. 
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Table 8 

Deliberation and Extrapolation Times for the Control Group and Each Training Group in Experiments 2 

and 3 

Experiment 2: Upper Two Thirds Analysis, n = ~20 

Deliberation Time Extrapolation Time 

Training Group Target (SD) Transfer (SD) Target (SD) 
Transfer (SD) 

No-training 122(61) 126 (73) 125 (63) 126 
(57) 
Short Instruction 60 (35) 50 (33) 159 (58) 161 
(57) 
Long Instruction 54(35) 45 (28) 156 (55) 214 
(56) 
Practice Low 56 (47) 66 (53) 75(44) 
96 (43) 
Practice High 32(18) 48 (22) 59 (27) 
102 (38) 

Cont'd 
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Table 8, Cont'd 

Experiment 3: Upper Two Thirds Analysis, n = ~17 

Deliberation Time Extrapolation Time 

Training Group Target (SD) Transfer (SD) Target (SD) 
Transfer (SD) 

No-training 122 (61) 126 (73) 125(63) 126 
(57) 
Incidental Short 107 (56) 109 (72) 102 (66) 109 
(76) 
Incidental Long 97 (46) 85 (51) 98 (47) 
138(79) 
Practice Low 47 (29) 48(31) 71(24) 114 
(52) 
Practice High 44(43) 66 (59) 75 (36) 117 
(45) 

Technical Report, Ohlsson 



Feedback and Transfer 103 

Table 9 

Measures of Transfer based on Solution Times for all Training Groups on both Target 
and Transfer Problems 

Concept 1 Formula 1 

transfer improvement ~~~ 
normalized by control T» taprovema„t = (C - E / C) x 100 
performance 

Group All Participants Upper 2/3 

Transfer 

Incidental Short 
13.2% 
Incidental Long 
11.2% 
Practice Low 
35.6% 
Practice High 
34.7% 
Short Instruction 
16.2% 
Long Instruction 
3.0% 

Cont'd 

Target Transfer 

11.9% 8.5% 15.4?o 

22.3 % 15.3% 21.0% 

44.2% 32.8% 49.3% 

50.7% 33.4% 58.2% 

6.6% 12.6% 11.2% 

9.4% -4.3% 14.7% 
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Table 9, Cont'd 

Concept 2 Formula 2 

Percent of transfer 
improvement of total 
learning possible 

*■% Total Learning ~ '^      B/ C - Perform limit) X lUU 

Group All Participants Upper 2/3 

Transfer 

Incidental Short 
19.6% 
Incidental Long. 
16.5% 
Practice Low 
52.7% 
Practice High 
51.3% 
Short Instruction 
24.0% 
Long Instruction 
4.4% 

Target Transfer 

14.3% 12.5% 18.5% 

26.9% 22.7% 25.4% 

53.3% 48.5% 59.4% 

61.1% 49.5% 70.2% 

8.0% 18.3% 13.5% 

11.3% -6.4% 17.8% 

Notes: Upper 2/3 refers to the top two-thirds of participants who were most successful on 
the training task. 
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Table 10 

Mean Solution Times (seconds) and Standard Deviations for the High Variability Practice and Long Direct 

Instruction Groups on Target and Transfer Problems 

Deliberation Time Extrapolation 

Time 

Training Group Target (SD)      Transfer (SD) Target (SD) 
Transfer (SD) 

High-level Accuracy (8 correct extrapolations) 

Long Instruction (n = 9)       43(28) 42(24) 128(34) 211 
(59) 
Practice High (n = 14) 34(29) 53(34) 46(32) 94 
(33) 

Mid-level Accuracy (5-7 correct extrapolations) 

Long Instruction (n = 8)      51(22) 60(34) 174(79) 227 
(52) 
Practice High (n = 8) 50(24) 64(39) 71(28) 117 
(42) 

Low-level Accuracy (0-4 correct extrapolations) 

Long Instruction (« = 13)     82 (12)               62 (38) 
(67) 
Practice High (n = 9)          52 (34)               61 (63) 
(63) 

178 (66) 

85 (45) 

191 

73 
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Figure Captions 

Figure 1. Example target and transfer problem with the relations identified. 

Figure 2. Example problem as it was presented on the computer. 

Figure 3. Mean problem solving scores for the no-training group on target and transfer 

problems for both problem types. 

Figure 4. Mean solving time scores for the no-training group on target and transfer 

problems for both problem types. 

Figure 5. Diagrammatic pattern illustration. 

Figure 6. Mean-problem solving scores for the low and high variability practice groups 

on the three training problems. 

Figure 7. The proportion of correctly recalled pattern relations for short and long 

instruction groups for both problem types. 

Figure 8. Mean problem solving scores for the low and high practice groups on the three 

training problems. 

Figure 9. Mean memory scores for both low and high incidental training groups on 

patterns 1 and 2. 

Figure 10. The proportion of specific pattern relations and general concepts identified by 

incidental groups for each pattern. 
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Figure 1 

Problem Type Identified Relations 

Problem 1 

Target 

forward 1 

forward 1 forward 1 

forward 1 

EFDGCOFGEHDP 

Transfer 

forward 2 forward 2 

backward 1 

forward 1 

backward 1 
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Figure 2 

EFDGCOFGEHDP   . 
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Figure 3 

c o 

*^ 
X m 
Q 

t o 
U 
o 
S-c 
CD 

g 

Target 1 Transfer 1  Target 2  Transfer 2 

Problem-type 

Technical Report, Ohlsson 



Feedback and Transfer 110 

Figure 4 

360 

Target-1 Transfer-1   Target-2 Transfer-2 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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