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4. INTRODUCTION 

Temporal change of mass lesions overtime is a key piece of infonnation in computer-aided 
diagnosis of breast cancer and treatment monitoring, the purpose of the project is to develop an automatic 
change detection method to quantitatively extract the clinically important changes of suspicious lesions, 
upgrade the existing CAD system, and thus improve the clinical diagnosis of breast cancer. We will build 
a site model for each individual patient for monitoring the breast tissue changes and extend our current 
research on image registration and change detection to the early detection of breast cancer. Specific aims 
include:  1) registration and segmentation of deformable breast tissue structures across a series of 
mammograms; 2) construction of a site model of the mammogram for individual patients showing the 
locations of regions of interest and associated diagnostic information; 3) identification of clinically 
significant changes in both global and local mass areas within the breast; and 4) integration and evaluation 
of the developed techniques with existing CAD prototype.  At conclusion of this project, we anticipate 
achieving the following: 1) establish a reliable technique of monitoring breast tissue "changes associated 
with cancerous masses; 2) deliver a CAD prototype that can incorporate tissue change information from 
additional mammograms; 3) evaluate the merit of combining change detection and CAD for improved 
clinical diagnosis using multiple mammograms; and 4) acquire the experience necessary to explore 
multimodality imaging for unified detection, diagnosis and treatment assessment of breast cancer. 



5. BODY-Final Summary 

5.1 Statement of Work 

This project aims to develop and integrate site-model based change detection with an improved 
CAD system for the purpose of clinical use. Our technical emphasis will be in the combined methods 
of using spatial and temporal data of the marmnographic images and based on pattern recognition power 
of the site model based change detection and defined features as those indicated by ACR BI-RADS 
lexicons. Specific tasks and time line of this project are listed as follows: 

Months 1-45: 

Months 1-6: 

Months 7-12: 

Months 13-18: 

Months 19-24: 

Months 25-30: 

Months 31-36: 

Months 37-42: 

Months 43-48: 

Development of mammography database: (a) collection of cases, (b) estabhshment of 
patient record, (c) digitization of mammograms, and (d) and computer archival for 
the digitized mammograms. 

(a) Morphological studies for the background reduction and mass enhancement. 
(b) Analysis o f the mass features which c an b e used for differentiation from false 

masses. 

(a) Image registration and site model construction for individual patients. 
(b) Extraction of suspected mass areas using region growing and valley blocking 

techniques. 
(c) Annual report. 

(a) Continuous work on extraction of suspected mass areas using region growing 
and valley blocking techniques. 

(b) Development of multilayer perceptron neural network (MLPNN). 
(c) Development of convolution neural network (CNN) as computerized vision system 

for mass detection. 

(a) Development of the dual target convolution neural network (DTCNN). 
(b) Annual report. 

(a) Initial laboratory test of the MLPNN. 
(b) Initial laboratory test of the DTCNN. 
(c) Development of the combined neural network system based on the results of the 
initial tests. 

(a) Evaluation of initial results fi-om the MLPNN and DTCNN. 
(b) Laboratory test of the combined neural network system. The combined system 
can be trained by: 

(a. 1) Combining the results fi-om the MLPNN and DTCNN. 
(a.2) Performing fiuther training with the trained MLPNN and DTCNN. 
(a.3) Performing fiuther training from scratch. 

(c) Aimual report. 

(a) Development of CAD system that can quantify the lesion changes over time. 
(b) FROC study for laboratory test of the system. 

(a) Performing a simulated clinical study with a small scale ROC study.  Comparing 
the results with and without the assistance from developed CAD. 

(b) Analysis of the studies. 



, (c) Final report. 

5.2 Detailed Report 

The detection and tracking of masses from mammograms taken from different views and over a 
period of time and determination of the changes in shape and size of lesions can provide vital clues for 
diagnosis and treatment assessment. This requires accurate fiision of mammograms taken over a period of 
time and emphasizing on the change of masses over the time. The unchanged masses represent a group 
with much lower potential of being cancer. The longer they have been unchanged, the greater the 
likelihood that they are benign. Three groups of suspicious masses will be tracked and highlighted for 
closer clinical inspection and for further CAD analysis. Based on a series of mammograms, the suspicious 
masses detected within the common overlapping area will be identified and the one-to-one 
correspondence of each pair will be established. The unchanged masses among them represent a group 
with possible less clinical potential in developing breast cancer. The masses observed in non-overlapping 
areas will be carefiiUy analyzed to determine if they are the new lesions or the missed masses in some of 
these mammograms. Finally, the changed masses including new lesions will be quantitatively 
characterized to provide accurate input to the radiologists or the follow-on components of CAD 
procedure, since they are the clinically significant signs of breast cancer. 

5.2.1 Data Acquisition 

The acquired database consists of three data sets of breast cancer images, hi the first data set, we 
collected 200 mammograms from the MIAS database and the BAMC database. Of the 200 mammograms, 
50 mammograms are normal, and each of the remaining 150 mammograms contains at least one mass of 
varying size, subtlety, and location. Both the cranio-caudal (CC) and medio-lateral oblique (MLO) 
projection views were used. The films were digitized with a computer format of 2048x2500x12 bits (for 
an 8"xl0" area where each pixel represents 100 um square). (See attached papers #1-4 for more detail 
description.) 

The second data set consists of sequential mammograms of 6 patients taken over a period of time 
between 1996 and 1999. Both the CC and MLO projection views were used. The films were digitized 
with a computer format of 2048x2500x 12 bits. (See attached paper #6 for more detail description.) 

The third data set contains three-dimensional (3D) sequential breast images obtained by dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI) of both patients and rats. Each image plane is 
512x512x12 bits. 

We have estabhshed in-house computer archival for all three data sets that also includes the 
corresponding r elated c linical r ecord. T he d atabase i s c omprised o f c ases s elected u sing t he following 
criteria: (a) the database should include all types of breasts, such as fatty, dense, and moderate tissue 
breasts, (b) the database should include various sizes of masses, (c) the database should cover all types of 
masses such as round, oval, lobulated, irregular, etc., (d) at least 20% of masses in the database should be 
malignant, (e) the database should equally include cases both with and without masses, and (f) the cases 
composing the database should be selected without regard to race. At GUMC, the race population of 
patients with access to breast imaging is approximately 28% Black, 56% White, 10% Asian, and 6% 
Hispanic women. Each case consists of 4 old and 4 new mammograms. The determination of old and 
new mammograms is based on the date of examinations. 

5.2.2. Imase Background Correction and Mass Lesion Enhancement 

One of the main difficulties in automatic mass-detection is that mammographic masses are often 
overlapped with breast tissues. In such cases, it is necessary to remove bright backgroimd caused by breast 
tissues but to keep mass-signals. For this piupose, background correction is an indispensable technique for 
mass detection. 



The theory of mathematical morphology is powerful in analyzing and describing geometrical 
relations. Essentially it is a formalization of intuitive concepts such as size or shape. The two basic 
morphological operations are "erosion" and "dilation," which are consistently defined for binary and gray- 
scale images. Using these two basic operations, two other basic and important operators, "opening" and 
"closing", can be defined as follows: 

opening: 

closing: 

X^=(XQ B)@B, 

X" ^{X®B)QB, 

(1) 

(2) 

where X indicates the original image, B represents the structuring element, and 0 and 9 indicate the 
operations "dilation" and "erosion," respectively. Based on the "opening" operation, we have developed 
an operation for background correction. The operation is represented by 

X -x,=x- ■(Xe B)®B. (3) 

This equation represents the subtraction of the image processed by the operator "opening" from the 
original image. 

Figure 1 shows the effect of the operation represented by equation (3): (A) illusti-ates a structiiring 
element, (B) shows the original signal (gray line) and the processed signal (black line) by "opening", and 
(C) denotes the final output signal of the morphological operation. The final profile in (C) was obtained 
by subti-acting the black profile signal firom the gray profile signals in (B). Note that the detected peak 
signals were not affected by the operation. Hence the mass signals detected by the operation retain their 
original shapes. 

As can be seen in this graph, the size of the detected peak significantiy depends on the size of the 
structuring element. All peaks, which are smaller than the stiiicturing element, can be detected. In our 
mass detection process, a 52 pixel-diameter stiiicturing element will be used to detect masses whose sizes 
are less than 52 pixels in diameter. An object with a diameter of 52 pixels in a 512^^625 pixel reduced 
image occupies 250 pixels in its original digitized image, and its real size is expected to be about 2.5 cm. 

ii 

(A) 

^n ,- 
(C) 

Figure 1. An example of the morphological operation: (A) stinctiiring element, (B) original signal (gray 
line) and signal after opening (black line), and (C) output signal of the morphological filtering. 

See attached paper #2, Section II and Figure 2, and paper # 4, Section El-A, for more detail 
descriptions. 

5.2.3 Discriminatory Feature Extraction 

Most commonly, breast cancer presents as a mass. The same lesion shows a somewhat different 
picture from o ne p roj ection t o t he o ther. D ifficulties i n m ass d etection also v ary with t he u nderlying 
breast parenchyma. In the fatty breast, masses are generally easy to detect. With the dense breast, mass 
detection is more difficult and auxiliary signs aid this detection. Breasts can contain one, several, or many 
masses. When there is one mass, the decision process is based on its size, shape, and margins. The larger 
the mass is and the less well-defined its margins, the greater the chance of cancer. When there are several 
masses, one looks at each, tiying to determine whether any has features to suggest cancer (poorly defined. 



•spiculate, unusually radiodense for size) and one also looks to see whether any mass is different in 
appearance from the others. Multiple small, well-defined, similar masses presenting bilaterally are all 
likely to be benign. The greater the asymmetry, size, lack of circularity, edge unsharpness, and 
radiodensity, the more suspicious, hi this study, we used several computational features highly associated 
with four major features of breast masses routinely used in clinical reading: 

Density - Malignant lesions tend to have greater radiographic density due to high attenuation 
and less compressibility of cancer than normal tissue. Radiolucent lesions are typically benign and the 
diagnosis can be made from the mammogram. 

Size - If the lesion has morphological features suggesting malignancy, it should be considered 
suspicious regardless of the size. Isolated masses with non-cystic densities greater than 8 mm in diameter 
can be malignant, hi general, the larger a lesion, the more suspicious it is. 

Shape - The more irregular the shape of a lesion, the more likely the possibility of 
malignancy. Lesions tend to be round, ovoid and/or lobulated. Small and frequent lobulations are 
suspicious. Lesions in the lateral aspect of the breast near the edge of the parenchyma with a reniform 
shape and a hilar indentation or notch usually represent a benign intramammary lymph node. Breast 
carcinoma hidden in the dense tissues can cause parenchymal retraction, which possess different shapes. 

Margins - The margins of the lesion should be carefully evaluated for areas of spiculation, 
stellate patterns or ill-defined regions. Most breast cancers have ill-defined margins secondary to tumor 
infiltration and associated fibrosis. The appearance of spiculations and a more diffuse stellate pattern are 
almost pathognomonic for cancer. Lesions with sharply defined margins have a high likelihood of being 
benign; however, up to 7% of malignant lesions can be well circumscribed. 

These are known cUnical features and have been adapted in "Breast hnaging - Reporting and Data 
System" (BI-RAD) of the American College of Radiology (ACR). 

Feature extraction methods have played essential roles in many pattern recognition tasks. Once 
the features associated with an image pattern are extracted 
accurately, they can be used to distinguish one class of 
patterns from the others. Recently, many investigators have 
found that the multilayer perceptron neural network using the 
error back propagation training technique is a very powerfiil 
tool to serve as an analyzer (or classifier). Recently, the back 
propagation neural network (BPNN) for classification of 
features has widely been used in the field of computer-aided 
diagnosis. 

The success of using an analyzer for a pattern 
recognition task would rely on two issues: (a) selected 
features that could describe discrepancy between patterns and 
(b) a ccuracy of t he feature c omputation. S hould e ither o ne 
fail, no analyzer or classifier would be able to achieve the 
expected performance. By analyzing many clinical samples 
of various sizes of masses, we found that the peripheral 
portion of the mass plays an important role for 
mammographers to make a diagnosis. The mammographer 
usually evaluates the surrounding background of a radiodense 
area when breast cancer is suspected. 

We, therefore, performed boundary detection of the 
suspected masses on the morphologically enhanced mammogram. A region growing with valley blocking 
technique was employed to delineate all the suspected areas. Then, the boundary was divided into 36 
sectors (i.e., 10 ° per sector) using 36 equi-angle dividers radiated from the center of suspicious area. The 
following features were computed within each 10 ° sector of the area: 
(a) "1" - the length from the center of mass to the shortest boundary segment. 
(b) "a" - the normal angle of the boundary segment (or the value of cos(a)). 
(c) "g" - the average gradient of gray value on the segment along the radial direction. 

(a) (b) (c) 

Figure 2. Mammogram segmentation (Up: global). 
Lesion site segmentation (Down: local). 



•Technically speaking, this set of gradient values may also serve as a fuzzy system for the input 
layer in the neural network to be described. 
(d) "c" - the gray value difference (i.e., contrast) along the radial direction.  Averaged gray value 
(hi) calculated from the mass area located at "l"/3 inside the boundary and the average background value 
(bo) calculated from the peripheral area near "l"/3 outside of the suspicious area). 
Hence, a total of 144 computed features (4 features/sector for 36 sectors) can be used as input values for 
the analysis of suspicious areas. The relationship between the computed features and BI-RADS 
descriptors are discussed below: 
(1) Mass Size - The 36 "1" values would 

provide sufficient data for the neural 
network to determine the size. 

(2) Mass Shape (round, oval, lobulated, or 
irregular) -The 36 "1" and 36 "a" values 
could approximate the shape of a mass. 

(3) Mass Margin (circumscribed, 
microlobulated, obscured, ill-defined, or 
spiculate) - 

The 36 "g" and 36 "1" values should be able to describe the characteristics of the mass margin. 
(4) Mass Density (fat-containing, low density, isodense, or highly dense) - 

The 36 "c" and 36 "g" values would be able to describe the density of the mass. 
In short, the selected features are greatly associated with the main mass descriptors indicated in the BI- 
RADS. The reason for using 36 values for each nominated feature is four-fold: (a) mass boundary varies, 
it is difficult to describe an image pattern using a single value; (b) due to the general shape of the masses, 
the features of masses can be easily analyzed by the polar coordinate system; (c) in case some features are 
inaccurately computed in several directions due to the structure noises, such as the breast slender lines, 
there may still exist a sufficient number of correct features; (d) generally more accurate results can be 
produced by using subdivided parameters rather than using global parameters in a pattern recognition 
task. Other computational features (e.g., difference entropy and other higher order features) are eligible 
but require further investigation. 

See attached papers #3 Section II and Table 1, #4 Section III-A, for detail descriptions. 

5.2.4 Lesion Site Selection by Imase Segmentation 

We have analyzed mammograms that contain multiple anatomical objects through direct 2-D 
and/or 3-D tissue quantification and region segmentation. In particular, the tissue quantification is 
performed b ased o n t he s tandard finite n ormal mixture (SFNM) m odeling o f p ixel i mage d istiibution, 
AIC and MDL guided model selection, and EM maximum likelihood model estimation. The region 
segmentation (e.g., the mass sites from the mammograms) is achieved based on inhomogeneous MRF 
modeling of context images and relaxation labeling of pixel memberships. Figure 2 shows a typical 
example. We have developed a new algorithm to perform lesion site segmentation as well as whole image 
segmentation. We have implemented the computer codes and pilot tested its effective applications to the 
digital phantoms, mammograms, and DEC-MRI images. The algorithm includes dual morphological 
filtering for signal enhancement and statistical model based tissue quantification and lesion segmentation. 
Our results have indicated that all the suspected lesion sites were successfully detected and the areas were 
accurately segmented. 

See attached paper #2 for detail descriptions. 

5.2.5. Site Model Based Hybrid Imase Resistmtion 

Based image analysis results and all available clinical diagnostic information, we pilot constructed 
a patient specific site model. This model is a mathematical formulation of multimedia scene information, 



.mainly including object geometry (e.g., object location), reference labels (e.g., control points and/or 
objects), and expert's knowledge (e.g., lesion index, diagnostic comments, etc.). 

Construction of a patient specific model (i.e., the site model) based on the outcome of image 
analysis includes objects, surface, and boundaries, of the normal tissues and detected/suspected lesions. 
This will provide a framework for (1) high accuracy change monitoring considering the patient variation 
and (2) effective data fusion incorporating prior/domain specific information. 

Development of a multiple step algorithm for 2-D and 3-D image registration of image sequence 
data sets and multimodality image data sets. It consists of three major components: (1) principle axes 
registration (PAR), (2) site model support control feature alignment with localized PAR, namely mPAR, 
and (3) raw data matching via neural network based non-rigid warping between the two images, namely 
multilayer perceptron (MLP) and thin-plate spline (TPS). Figure 3 shows a result of local matching. 

We have implemented a new hybrid registration algorithm aimed at the registration of non-rigic 
objects with minimal a prior knowledge, in which we have developed a 
methodology to combine multiple transforms together to determine a 
statistically composite geometric transform. The purposed algorithm 
combines rigid and non-rigid techniques to accomplish the registration 
tasks. The algorithm consists of two steps an initial step (rigid 
transform) which performs multi-object PAR registration where object 
correspondence is assumed known, and a final step (non-rigid 
transform) that uses thin-plate spline (TPS) based mapping where 
control point correspondence is determined via a detection and 
correspondence algorithm. The combination of these two steps is new 
and provides many advantages over existing methods. The first 
advantage is no requirement for point correspondence in the initial 
step. Only object correspondence is required which is usually much 
easier computationally to determine. True point correspondence is 
required at some point in the processing, but performing the determination after the image has been 
preliminarily aligned should allow for a more focused or narrow control point search windows because 
potential control points should now be closer spatially. The second advantage is the ability to model non- 
rigid transforms by considering each rigid transform as a piece wise component of a total non-rigid 
transform similar to modeling a non-Hnear function by 
linear pieces. This approach is a departure from 
traditionally registration approaches which usually 
follow either rigid or non-rigid fransforms. In particular, 
we apply the combination method to multiple PAR 
transforms, but the method is generic and can be 
applied to any type of transform along as each cluster 
confrol point meets the particular requirement of the 
registration method in question. For example, to use an 
elastic r egistration m ethod i t i s a ssumed w e k now t he 
point correspondence of control points. In this 
algorithm, the image is assumed to contain several 
clustered control points, which follow a normal 
distribution, for which cluster correspondence is known 
(i.e. objects). The resulting fransform now enables rigid transform methods to handle non-rigid fransform 
assuming the clusters are sufficiently distributed through out image. 

The registration process is supported by the concept of a site model and site model operations. The 
site model is a mathematical representation of a scene under analysis. A basic site model contains a 
geometric description of a scenes objects (area, size, and other attributes), raw data, and simple user input 
(previous tumor locations). The environment interacts with the site model through the site model 
operations: construction, image-to-site registration and model parameter update. The site model is 
constructed by thoroughly processing the first image in the sequence to obtain the parameters. The site 
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Figure 6. Control point matching over time. 

•model supports registration in three main ways. First, the site model forms the reference frame (reference 
image) for all subsequent images, thus allowing all of the images in the sequence to be alignment to a 
common coordinate system. Second, the model stores registration parameters Uke object contours, control 
points, and user identified regions. This effectively integrates both manual and automatic control objects 
in a single place. Third, the model stores previously detected change, this enables the current registration 
process to exclude the previously detected 
changed portion from the current analysis 
which improves algorithm robustness. In this 
research, we focus on the rigid, affine, and 
polynomial based registration methods to 
register the sequence of mammograms of the 
same patient. Image-to-site model registration 
is performed by a multi-step algorithm 
consisting of an initial and final phase. The 
initial phase registers the images using the 
principle axis of the skin line in conjunction 
with segmented internal objects to form a multi- 
object global rigid spatial-coordinate fransform 
followed by a simple look up table for the intensity transform. The final registration phase consists of a 
global thin-plate spline 
transform derived from the 
control points of the 
interior breast tissue. 

Figure 4 shows the 
result of confrol points 
exfraction using our 
method. Figure 5 shows 
the corresponding control 
points in two similar breast 
phantoms. It can be seen that most control points are well matched using our PAR based initial 
registration. Figure 6 shows shows the corresponding control points in two real mammogram sequence. 
After our initial registration, stable control points are matched for fiirther registration effort. 

We have developed a neural computation based non-rigid registration methodology using multiple 
rigid fransforms, in a piece-wise fashion, to model the registration process between images in a sequence. 
The registration methodology is a hybrid approach that combines registration without exact point 
correspondence via multi-object principal axes, and registration with point correspondence via polynomial 
transform. Neural computation is used, for the first, to combine the derived individual principal axes 
solutions for each object in 
a committee machine 
formulation, and to obtain 
the polynomial fransform 
based on exfracted confrol 
points using a multilayer 
perceptron (MLP). 

In our method, we 
present a neural 
computation based non- 
rigid registration using 
piece-wise rigid 
fransformation. The novel feature is to align two point sets without needing to establish explicit point 
correspondences, where the d erivation i s r ealized b y m inimizing t he r elative e nfropy b etween t he t wo 
point distributions resulting in a maximum likelihood estimate of the fransformation matrix. A committee 

11 

Figure 7. Demonstration of mPAR method with simulated data set. The performance 
metric is mean square error (MSE) of the non-control object. Several runs of this 
example were conducted to average out randomness of the data points. The results 
show a MSE of 7.6% between the final image and original. 

Figure 8. Demonstration of mPAR method with real prostate data set which contains a 
precise probabilistic map of prostate tumor distribution and the corresponding anatomic 
structure of a prostate. 



jnachine approach is used for recovering the transformational geometry of the non-rigid structures. That is 
rather than using a single transformation matrix which gives rise to a large registration error, we attempt 
to interpolatively apply a mixture o f transformations. B y further generalizing P AR to a finite mixture 
registration (mPAR) scheme, with a soft partitioning of the data set, the mixture is fit using expectation- 
maximization (EM) algorithm. We then 
applied a probabilistic adaptive principal 
components extraction (PAPEX) algorithm, 
to estimate the transformational of the 
orthogonal set of eigenvalues and 
eigenvectors of the auto-covariance matrix. 
By applying a committee machine to a non- 
rigid registration, using FMR as the experts 
and PAPEX as a gating function, we can 
acquire the registration based on a mixture 
of piece-wise transformations of the data 
set. Then the correspondences control 
points are obtained. As a final step, the 
warped image is obtaining using the neural 
network based non-Unear mapping, to 
obtain the polynomial transform based on 
extracted control points using MLP. 

Three examples are presented to 
demonstrate the techniques involved in the 
process, see Figures 7, 8, and 9. The first 
example uses four Gaussian clusters and 
focuses on the combination of the multiple 
transforms into a composite transform using finite mixture modeling techniques. The next examples 
present the complete process for prostate cancer registration and breast sequence analysis respectively. To 
verify performance, the results are compared to non-neural based implementations and other existing 
registration methods. 
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Figure 9. Difference images (lower row) after MLP and TPS 
image warping (up row). 

Object - Skin line 

Nipple 

Potential 

Control points 

5.2.6. Site Model Based Chanse Detection 

We have developed a patient specific site model concept 
to image-guided lesion m onitoring. The site model was 
developed to monitor a site fi"om a sequence of aerial 
images. In medical imaging, the site model idea was 
modified  to   accomplish  application   such   as   lesion 
monitoring, and disease detection. In addition, through 
update   procedures   the   site   model   allows   for   the 
examination of the entire sequence together, to show 
region progression or to further highlight small changes. 
The main modification to the site model idea was the 
creation   of another   variable   to   store   changes.   In 
traditional site model formulations, new objects are 
added back into the image, but in the medical environment the site image is untouched. The changes are 
stored in the change map. The site image is untouched because it forms the base frame for comparison so 
any modification could alter results. Figure 10 shows a typical layout of the site model. 

Change detection not only highlights existence of possible changed regions, but when combined 
with the site model provides a patient history by showing site progression. One of the key components of 
change detection is image registration. In this project, we applied our multi-step registration algorithm to 
mammogram sequences. Acceptable registration and change detection were obtained. Improvement in 

Figure 10. Patient specific site model. 
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.control-object selection and control point extraction would go along way to improving the overall results. 
The key to registration is landmarks between the images. In this research, we use objects and points as 
landmarks. Current methods of object and point selection are image dependent and ad hoc, hicorrec 
assignment of control points/objects could cause 
erroneous transformation. This change detection is 
not  exact,  but  would  be   sufficient  to   flag  a 
radiologist to review the area. The main results of 
this study consisted of the automatic alignment of 
mammograms,   detection  of change  in  a  local 
window, and implementation of a mechanism to 
store and build up patient information via the site 
model. 

Figures 11 and 12 show the results of 
automatic detection of local changes that could lead 
to the selection of new lesions. 

This complete change detection algorithm 
was simulated with phantom images and real 
mammograms. The benefits of two steps in 
registration are apparent by looking at the mean 
square pixel error between no registration, single object PAR, and multi-PAR/TPS registration where the 
MSE drops almost 84% compared to only 70% with PAR alone. The change metric Qoint global relative 
entropy (GRE)) was compared to two existing 
video sequence methods chi square and histogram 
difference. Joint GRE performed better as it was 
able to detect intensity changes, shift changes and 
shift/intensity changes. The quantification process 
estimated on average within 15%) of the true objects 
size for the studies under considerations. 

See attached papers #5 and #6 for more 
detail description. 

Figure 11. Detection of local changes in real 
mammograms over time. 

5.2.7. Development of Neural Network Classifiers 
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Figure 12 Change detection from real mammograms. 

In the clinical course of detecting masses, mammographers usually evaluate the surrounding 
background of a radiodense when breast cancer is suspected. In this study, we adapted this fundamental 
concept and computed features of the suspicious region in radial sections. These features were then 
arranged by circular convolution processes within a neural network, which led to an improvement in 
detecting mammographic masses. 
In this study, randomly selected mammograms were processed by morphological enhancement 
techniques. Radiodense areas were isolated and delineated using a region growing algorithm with a 
valley blocking technique. The boundary of each region of interest was then divided into 36 sectors using 
36 equi-angle dividers radiated from the center of the area. Four features at each section were computed: 
(1) the radius, (2) the normal angle of the boundary, (3) the average gradient along the radial direction, 
and (4) the gray value difference (i.e., contrast) along the radial direction. Hence, 144 computed features 
(i.e., 4 features per sector for 36 sectors) were used as input values for the newly invented multiple 
circular path neural network (MCPNN). The neural network is constructed to emphasize on the 
correlation information associated with the feature interactions within the angle and between adjacent 
angles. 

We have tested this approach on our research database consisting of 91 mammograms. The over- 
all performance in the detection of masses was 0.78-0.80 for the areas (Az) under the ROC curves using 
the conventional neural network. Later, the performance was improved to Az values of 0.84-0.89 using 
the multiple circular path neural networks. 

13 



.(A) Mu-ltiple paths with circular networking to instruct the neural network in analyzing sector features 
We designed several neural network connections between the input and the first hidden layers as 

shown in Figure 13. Figure 13 (A), (B), and (C) illustrate the full connection, a self correlation (SC) 
networking, and a neighborhood correlation (NC) networking, respectively. Note that the input and 
hidden nodes should be completely matched when combining more than one path in the study. In this 
case, the correlation layers only function as branch connections between input and hidden layers. When 
using NC paths, networking engagement within multiple sectors (e.g., 20°, 30°, 40°, and 50° of the 
neighborhood correlation) can be grouped. The method of using the multiple correlation connections was 
motivated by our two-dimensional convolution neural network (2-D CNN) research experience where we 
found that more than 10 multiple convolution kernels were necessary to archive an outstanding neural 
network performance in the detection of lung nodules and microcalcifications. 

Compared to 2-D CNN systems, the required computation using 1-D input features (i.e., 144) is 
relatively small. The combination of the networking paths described earlier for MCPNN was 
implemented using C programming language. The internal computation algorithm used in the MCPNN 
shares the same convolution process as that in the 2-D CNN. One additional training method using 
flipping invariance for 1-D convolution kernels was employed and is described in the section 3.3.(B). 

The fully connected neural network is a standard back propagation neural network. The signals of 
the fully connected neural network join the other two network processes (SC and NC paths) at the single 
node of the output layer. The signal received at the output node is scaled between 0 and 1. During the 
training, 0 and 1 were assigned at the output node to perform back propagation computation for a non- 
mass and a mass, respectively. The back propagation was computed in such a way that the computed 
incremental errors (see equations (9) and (10) were retraced into three independent network paths (full- 
connected, SC, and NC p aths). Besides the output layer, the SC and NC signals were independently 
arranged and are processed through two one-dimensional convolution processes in the forward 
propagation. The learning algorithms for all three paths were based on the backpropagation training 
method. 

Let l^in, s) represents input signal at the node n and sector s. The signal received at each node on 
the first hidden layer of the SC path is 

Nl(s) = \Y,N\n,s) X Wjn)] + bjs), (4) 

where bsc(s) represents the bias in sth sector. The signal gets into each node on the first hidden layer of 
the NC path is 

KM = {flZ^\n,s)xWjn,s)\ + b„,(s), (5) 
VS=-J1   « / 

where b(s) represents the bias in sth sector and si is 2 to cover -20 degree to 20 degrees of the fan. The 
signals in other hidden layers in each path are processed the same as the standard fully coimected neural 
network. The output signal was collected from the last hidden layer and is given by, 

0 = SiN'^{n)-W;,{n)), (   6 ) 

where / denotes the hidden layer,/* denotes the path, and S(z) is a sigmoid function given by 

1 + expl^- z) 
The sigmoid function would produce modulated values ranging from 0 to 1. 

Let the ^th change of the weight be AWp(n) and the ^th change of the bias be Ab^pit). The error 

function is defined as 

E = ^{T-Oy (8) 

where T and O denote the desired output value and the actual output value, respectively when the input 
nodes iV°(n,5), are entered in the network. Li this model, the error back propagation algorithm, which 
updates the kernel weights, was given below: 
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AW'[t + l] = Tj(^S';\n,s)-0'^(n,s))+aAW;,[t] (9) 

Sl{n,s) = Ni{n,sis';\n,s)-W;,(n,s)) (11) 

where s = 0 when 1^0. In the case of the last layer, 
S'^=siN'^(n)XT-0) (12) 

where S\z), rj, a, and T denote the derivative of S(z), the learning rate, the weighting factor contributed 
by the momentum term, and the desired output image, respectively. 

During the training, we added an isotropic constraint to the weights in the 1-D convolution 
kernels and so that 

WOJn,-s)=WOJn,s) (13) 
where p is not the fully connected path. These additional constraints were used to induce the kernels 
functioning as correlation processing filters and could facilitate the algorithm in searching for an 
appropriate linear filter. 

(B) Training methods and the utilization of characteristics of flipping invariance of the features 
Because we used the circular paths, there were no starting and ending sectors. The forward and 

back propagation computation can be started from any sector. Since the mass characteristics of the flipped 
patch remained the same, we flipped each patch in the training set and kept the same numerical value for 
the target output. 

Since we designed a 10° increment for each rotation, each SC or NC networking would need to 
process through 36 times for the computed feature set for each image patch. To simplify this network 
computation, we shifted one small set (4 nodes) on the input layer a time to conduct the circular 
convolution process with the SC and NC kernels. By reversing the sequence of the sector, we can train the 
flipped version of the suspicious masses. Hence, the characteristics of flipping invariance literally increase 
the number of the training set by a factor of 2. 

Self correlation 
nodes 

Neighborhood 
correlation 
nodes 

(A) (B) '        (C) 
Figure 3. Three types of network paths connecting the input and the hidden layers: 

(A) Full connection. 
(B) A self correlation (SC) path; each node on the layer connects to a single set of the features (l,a,g,c) for the fan-in and fully 

connects to the hidden nodes for fan-out. 
(C) A neighborhood correlation (NC) path; each node on the layer connects to five adjacent sets of the 

features for the fan-in and fully connects to the hidden nodes for fan-out. 
Note that the fan-in nets emphasizing self correlation in (B) and neighborhood correlation in (C) 
represent convolution weights (i.e., the same type of sectors possess the same set of weighting 
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'.    factors). 
We have described our approach on the feature extraction, the design of MCPNN, and its 

corresponding t raining method. F igure 14 s hows a flow d iagram o f t he p roposed m ethod. S ince t he 
MCPNN only alters the input data connection from the input to the first hidden layer, any learning 
algorithm can be applied within the neural network. For simplicity, we used the back propagation 
algorithm for both the conventional and proposed neural network systems in the following experiments. 

^i" Submit features to 

^■^Um^ /.'training or testing 

Segmentation 
of the mass 

Compute 
l,a,g,c values Rotate all sets off 

the features for / 
tfieNN training!  <p. 

Output 
nodes 

Figure 14. A schematic diagram, showing the MCPNN and sector features of masses, was used in the following study. 

See attached papers #1, #3, and #4, for more extended descriptions. 

5.2.8. Pre-Clinical Evaluation ofUperaded CAD System and New Work on DCE-MRI 

■ We selected 91 mammograms and digitized each mammogram with a computer format of 2048^ 
2500^12 bits (for an 8"^H" area where each image pixel represents 100 ^m square). No two 
mammograms were selected from the same patient film jacket. All the digitized mammograms were 
miniaturized to 512'^625>'12 bits using AH pixel averaging and were processed by the above methods to 
perform mass detection. Based on the corresponding biopsy reports, one experienced radiologist read all 
91 mammograms and identified 75 areas containing masses. (Note that the reports recorded the 
malignancy of the biopsy specimens. The radiologist only used them as reference for the identification of 
masses.) Through the pre-process and the first step screen based on the circularity test, a total of 125 
suspicious areas were extracted from the 91 digitized mammograms. 

Experiment 1 
We randomly selected 54 computer-segmented areas where 30 patches were matched with the 

radiologist's identification and 24 were not. This database was used to train two neural network systems: 
(1) a conventional 3-layer BP neural network (with 125 nodes in the hidden layer) and (2) the proposed 
MCPNN training method using the same neural network learning algorithm.    The structure of the 

MCPNN was described earlier. However, we used one fully connected path, four SC paths, four 20° NC 

paths, four 30° NC paths, three 40° NC paths, and two 50° NC paths in the first step network connection 
for the MCPNN. All paths in the neural network have their hidden layers. Only one hidden layer per 
path was used. Both neural network systems were trained by the error back propagation algorithm by 
feeding the features from the input layer and registering the corresponding target value at the output side. 
Once the training of the neural networks was complete, we then used the remaining 71 computer 
segmented areas for the testing. None of the images and their corresponding patients in the testing set 
could be found in the training set. The neural network output values were fed into the LABROC program 
for the performance evaluation. The results indicated that the areas (Az) under the receiving operator 
characteristic (ROC) curves were 0.781 and 0.844 using the conventional BPNN and the MCPNN, 
respectively. The ROC curves of these two neural network training methods are shown in Figure 15 (A). 

16 



•We also invited another senior mammographer to conduct an ROC observer study. The mammographer 
was asked to rate each p atch using a numerical scale ranging 0-10 for its likelihood of being a mass. 
These 71 numbers were also fed into the LABROC program. The mammographer's performance in Az 
on this set of test cases was 0.909. The corresponding ROC curve is also shown in Figure 15(A). 

Experiment 2 
We also conducted a leave-one-case-out experiment using the same database, hi this experiment, 

we used those patches extracted from 90 mammograms for the training and used the patches (most of 
them are single) extracted from the remaining one mammogram as test objects. The procedure was 
repeated 91 times to allow every suspicious patch from each mammogram to be tested in the experiment. 
For each individual suspicious area, the computed features were identical to those used in Experiment 1. 
Again, both neural network systems were independently evaluated with the same procedure. The results 
indicated that the Az values were 0.799 and 0.887 using the conventional back propagation neural 
network and the MCPNN, respectively. Figure 15(B) shows the ROC curves of these two neural network 
systems using the leave-one-of-out procedure in the experiment. 

1.0 

ROC Curves of The Mammographer and 
Two Different Neural Network Training 

Methods in Experiment 1. 

ROC Curves of The Two Different 
Training Methods in Experiment 2. 
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Figure 5. The ROC curves obtained from corresponding experiments. 
(A) The left figure shows that the performance of MCPNN fraining method is superior to that of the 

conventional  input  method.      The  highest  curve  is  the  ROC  performance  of the   senior 
mammographer. 

(B)The right figure shows the ROC results with higher performance using the leave-one-case-out 
procedure as described in Experiment 2. 

Through this study, we found that the selected features are somewhat effective in the detection of 
masses. These features were "computationally translated" from the qualitative descriptors of BI-RAD. 
Another uniqueness of this study was on the test of our newly developed MCPNN training method. In 
Experiment 1, we found that the performances of both neural network systems were increased. This 
might be due to the increased number of cases (from 54 to 124) in the training set. In Experiment 2, the 
Az value was improved by 0.043 using the MCPNN training method that was higher than Az difference 

17 



Registered pre-contrast 
image by PAR 

Post-contrast image False regions of tlie extracted 
glandular tissue by PAR 

Fig. 16. Initial global registration of MRI images by PAR. 

jo,f 0.018 obtained by the conventional training method.   The results implied that the MCPNN learned 
more effectively than the conventional BP when the number of training cases was increased. 

It is known in the field of 
artificial intelligence that the key 
factors in pattern recognition are: (1) 
effective methods in the extraction 
of features and (2) analytic methods 
(e.g., back propagation neural 
network) for the extracted features. 
In this study, we showed that the 
training method designed to guide 
the analyzer is also an important 
factor to a success of a pattern recognition task. Though this finding is not new, the research of 
developing training methods for various pattern recognition tasks has not established in the field of 
medical imaging. In this work, we demonstrated that organized features with proper network connection 
and task-oriented guidance would assist the neural network in performing the task. 

As far as the research in recognition of masses is concerned, we believe that main concept of using 
sectors is an effective approach. Note that any features arranged in the polar coordinate system can be 
trained by the MCPNN method. 
Since the MCPNN only coordinates 
the input data, the internal neural 
network learning algorithm can be 
changed to other learning 
algorithms. We believe that 
integration of effective feature and 
texture values computed at small 
sectors will be the research trend in 

detection.       Current   work mass 

Pre-contrast image Post-contrast image 

^f€y- ' ^''- \ ^sHl 
Fig. 17. Refined registration of MRI images by mPAR (left) and matching of 
extracted control point pairs for further warping (right). 

focuses on neural network design and arrangement of features for effective pattern recognition of masses 
in medical imaging. 

5.2.9. Extended       Work       on 
Static/Dynamic   Contrast-Enhanced 

Registered pre-contrast 
image by mPAR+MLP 

Post-contrast image Extracted glandular tissue 

Fig. 18. The result of hybrid registration shows almost perfect warping. 

MRI 

We have also extended our 
work to image registration of 3D 
sequential static/dynamic contrast- 
enhanced MRI breast images. The 
purpose is beyond mass detection and aims at quantitative assessment of breast cancer triggered local 
vascularization as a result of angiogenesis, as well as assessment of the responses to chemoprevention. 

For 3D MRI breast image registration, PAR method has been initially used to register post- 
contrast image to pre-contrast image. The extracted skinline is used as control objects. The difference 
image shows the false regions of enhanced area of glandular tissue due to the misalignment. Figures 16 
and 17 show the examples of such work. Based on initial registration by PAR and mPAR, we once again 
used a neural network MLP to refine the deformable warping. Figure 18 shows such work. 

We have further developed blind source separation (BSS) method to characterize flow patterns 
associated with microvessel densities of breast cancers. Our method is based on newly developed 
partially-independent component analysis (PICA). Figure 19 illustrates the framework. Figure 20 shows 
the well-separated fast and slow flow patterns from dynamic contrast-enhanced MRI. 
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,5.2.10.-Future Work 

An integrated change detection and mass detection is a challenging task. There are three ways to 
incorporate change detection into CAD system. First, by comparing sequential images of same patient in 
screening, change detection can help detecting previously unrecognized/missed lesions. Second, in 
follow-up lesions, change detection can help to reduce false positive rate. Third, when change-related 
features can be accurately extracted, a modular classifier can be designed to combine change-derived 
diagnosis and shape/texture-derived diagnosis thus improve the specificity of mass detection. Such 
preliminary effort will also lead to multimodality CAD systems. 

Another important area for fiature 
effort is image-based assessment of the 
responses to therapies. Our effort on 
using static contrast-enhanced MRI to 
assess the efficacy of chemoprevention 
to breast cancer has been promising. 
6. KEY RESEARCH 
ACCOMPLISHMENTS 
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Figure 19. Blind separation of different vascular patterns of breast 

We have proposed and developed 
effective methods to identify lesion 
sites automatically. 
We have proposed and developed an 
accurate and effective hybrid non- 
rigid image registration method to 
recover the deformations between 
images taken over a period of time. 
We have proposed and developed a patient-specific site model based method for quantitative change 
detection. 
We have proposed and developed a 
systematic method to extract 
discriminatory imagery features for 
mass detection using CAD 
methodology. 
We have proposed and developed 
various neural network based 
classifiers for mass detection after 
initial lesion candidates are identified 
and related features are extracted. 
We have tested our detection system 
using receiver operating characteristics 
(ROC) analysis. Our preliminary 
experiment has shown that new system 
outperform existing popular methods. 
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Fig. 20. BSS-PICA blind separation of tumor vascular patterns. 
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8. CONCLUSIONS 
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Technically, we have: 1) established a reliable technique of monitoring breast tissue changes associated 
with cancerous masses; 2) delivered a CAD prototype that can incorporate tissue change information from 
additional mammograms; 3) evaluated the merit of combining change detection and CAD for improved 
clinical diagnosis using multiple mammograms; and 4) acquired the experience necessary to explore 
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treatment assessment of breast cancer. 
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Data Mapping by Probabilistic Modular 
Networks and Information-Theoretic Criteria 

Yue Wang, Shang-Hung Lin, Huai Li, and Sun-Yuan Kung, Fellow, IEEE 

Abstract—The quantitative mapping of a database that repre- 
sents a finite set of classified and/or unclassified data points may 
be decomposed into three distinctive learning tasks: 

1) detection of the structure of each class model with locally 
mixture clusters; 

2) estimation of the data distributions for each induced cluster 
inside each class; 

3) classification of the data into classes that realizes the data 
memberships. 

The mapping function accomplished by the probabilistic modular 
networks may then be constructed as the optimal estimator 
with respect to information theory, and each of the three tasks 
can be interpreted as an independent objective in real-world 
applications. We adapt a model fitting scheme that determines 
both the number and kernel of local clusters using information- 
theoretic criteria. The class distribution functions are then ob- 
tained by learning generalized Gaussian mixtures, where a soft 
classification of the data is performed by an efficient incremental 
algorithm. Further classification of the data is treated as a 
hard Bayesian detection problem, in particular, the decision 
boundaries between the classes are fine tuned by a reinforce 
or antireinforce supervised learning scheme. Examples of the 
application of this framework to medical image quantification, 
automated face recognition, and featured database analysis, are 
presented as well. 

I. INTRODUCTION 

THIS PAPER addresses the problem of mapping a data- 
base, given a finite set of data points (examples). The 

mapping function can therefore be interpreted as a quantitative 
representation of the contents (knowledge) contained in the 
database [1], [3], [4]. The data set may be a classified set, 
as in general clustering problems [2], [22], [25], it may be 
unclassified, as in unsupervised distribution learning [1], [12], 
[18], or it may be a partially classified set, as in pattern 
classification applications [5]-[7]. Instead of mapping the 
whole data set using a single complex network, in many 
applications, it is more practical to design a set of simple 
class subnets with locally mixture clusters, each one of which 
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represents a specific region of the knowledge space. This is 
indeed the case, and in particular, inspired by the principle of 
divide-and-conquer in applied statistics, probabilistic modular 
neural networks have become increasingly popular in the 
machine learning research [1], [4]-[7], [17], [36]. In this 
paper, we present a particular application of the probabilistic 
modular networks to the problem of mapping from databases. 
We describe a constructive criterion for designing the network 
architecture and the learning algorithm, both of which are 
governed by information theory [37]. The motivation of this 
work comes fi-om following considerations. First, the database 
(available knowledge) and the network (learning capability) 
have been traditionally treated as two separate components in 
neural system design, where the relationship between them is 
not explicit [36]. It is desirable to have a network mapping 
a database, thus allowing an efficient information represen- 
tation [25]. Second, since the complex cluster patterns and 
distributions intrinsically exhibited in a database are generally 
not transparent to the user, it will be difficult to interpret the 
output of system, to analyze the course of error, and to evaluate 
the process of performance [4]. A high-resolution divide- 
and-conquer architecture, i.e., hierarchy, may be required. 
Finally, in many practical applications, data mapping means 
either supervised (with objective of data classification) [2], 
unsupervised (with objective of data quantification) [12], [22], 
or the combined learning [5]. A flexible but unified scheme 
should be explored. 

The quantitative mapping of a database may be decomposed 
into three distinctive learning tasks: 

1) detection of the structure of each class model with 
locally mixture clusters; 

2) estimation of the data distributions for each induced 
cluster inside each class; 

3) classification of the data into classes that realizes the 
data memberships. 

Although many previously proposed approaches have led to 
quite impressive results, several fundamental issues remain 
unresolved in the application domain. For example, the finite 
mixture model has very appealing properties to class distri- 
bution learning; the number of local clusters and the kernel 
shapes of cluster distributions are often assumed to be known, 
which is far fi-om being realized in most appUcations [2], [9], 
[13], [17], [22]. The data mapping will be, in general, difficult 
to interpret since imposing a simple parametric model for the 
class may prevent the correct identification of the data structure 
[25] and the accurate estimation of the class boimdaries [1], 
[26]. If the local models are to map the structure of the class 
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and the class boundaries, model selection must be taken into 
consideration on the goodness of fit [4], [7]. Furthermore, 
once the correct model is determined, we may formulate 
parameter learning as problem of maximum likelihood (ML) 
estimation [1], [2], [10]. The most popular algorithm in this 
domain is expectation-maximization (EM) algorithm [3], [19]. 
However, the EM algorithm has the reputation of being a slow 
algorithm since its batch training has a first-order convergence 
in which new information acquired in the expectation step is 
not used immediately [19], [21], [22]. In order to balance the 
tradeoff between efficiency and accuracy, on-line algorithms 
are proposed for large-scale sequential learning [3], [11] and 
are extended to supervised learning [6], [17]. The price to 
be paid is then a greatly increased memory requirements 
[20]. In addition, since data quantification (inside each class) 
and data classification (between the classes) may be the 
two independent objectives in applications, the optimality 
criteria for them are indeed different. However, the relation- 
ship between these two objectives, as well as how the error 
interferes each other, have not been fiilly understood [23], [26]. 
Moreover, empirical results indicate that many neural network 
classifiers, whose structure and learning rule were designed to 
directly approximate the class posterior probabilities, may be 
urmecessarily complex since the coupled training scheme has 
to adapt and update simultaneously both the class likelihood 
and the class prior probabilities [6], [25], [39]. 

The objective of this work is to propose a unified learning 
strategy for mapping a database: The main idea is to find, 
in a first place, a set of local mixture models that efficiently 
represent the data, together with a model selection procedure 
in which the optimal number and shape of the local clusters 
are found by the information-theoretic criteria. A partition 
of the data set into classes that indicate the membership of 
each data point may then be realized in a second phase, 
where the decision boundaries will be determined according to 
a supervised error-correction training. The major differences 
between our work and the previous work [1], [9], [15], [17], 
[20], [22], [25] are as follows. 

1) We impose a model selection procedure to determine 
both the number and kernel shape of local clusters in- 
side each class using information-theoretic criteria. This 
allows us to analyze how the result in model selection 
affects the performances of both data quantification and 
classification. 

2) We apply a fiilly adaptive incremental algorithm to the 
unsupervised learning of the class distribution functions. 
It involves a soft classification of the data under the 
principle of least relative entropy, thus leading to an 
efficient and unbiased estimation. 

3) We add a fine-tuning phase for learning decision like- 
lihood boundaries using a reinforce or antireinforce 
supervision approach in which the class prior is adjusted 
in a separate phase. 

This decoupled training scheme permits the use of high- 
capacity classifiers while maintaining a reasonable compu- 
tational complexity for the further classification of the data 
into the classes. In addition, we have analyzed the pair- 

wise relationships between quantification and classification, 
between soft and hard classification, and between unsupervised 
and supervised learning. The insights provide the guidance for 
the correct use of various methods in real-world applications. 

The remainder of the paper proceeds as follows. Section II 
presents the problem formulation regarding the statistical 
modeling, unsupervised data quantification, and supervised 
data classification. This is followed by detailed description 
of the methods and algorithms that, in practice, appears 
to be the most complete of the approaches that we have 
studied. In Section III, three application examples in different 
domains are presented that illustrate the performance of the 
proposed techniques in various aspects. Major conclusions and 
discussions are summarized in the final section. 

II. METHODS AND ALGORITHMS 

A. Statistical Modeling 

Recently, there has been considerable success in using finite 
mixture distributions and probabilistic modular networks for 
data quantification and classification [1], [3], [10], [17], [18], 
[34]. In order to validate the suitable stochastic models for 
data mapping with specified objectives, over the past few 
years, we have conducted an investigation into data statistics 
and derived several useful theorems [4], [12]. Assume that 
the data points Xi in a database come from M classes 
{a;i, •■■, Ur, ■ ■ •, U)M}, and each class contains Kr clusters 
{^i> •••! Ok, ■••, ^/f,}, where w,- is the model parameter 
vector of class r, and 9k is the kernel parameter vector of 
cluster k within class r. Further assume that in our training 
data set (which should be a representative subset of the whole 
database), each data point has a one-to-one correspondence to 
one of the classes denoted by its class label 1*^, defining a 
supervised learning task, but the true memberships of the data 
to the local clusters are imknown, defining an unsupervised 
learning task. 

For the model of local class distribution, since the true 
cluster membership for each data point is unknown, we can 
treat cluster labels of the data as random variables denoted by 
lik [23]. By introducing a probability measure of a multinomial 
distribution with an unknown parameter ^k to reflect the 
distribution of the number of data points in each cluster, the 
relevant (sufficient) statistics are the conditional statistics for 
each cluster and the number of data points in each cluster. 
The class conditional probability measure for any data point 
inside the class r, i.e., the standard finite mixture distribution 
(SFMD), can be obtained by writing down the joint probability 
density of the Xi and kk and then, summing it over all possible 
outcomes of kk, as a sum of the general form 

K,. 

f{u\wr) - ^ T^k9{u\0k) (1) 
fc=i 

where irk = PiOkl'^r) with a summation equal to one, and 
g{u\9k) is the kernel function of the local cluster distribution. 
Several observations are worth reiteration. 

1) All data points in a class are identically distributed fi-om 
a mixture distribution. 
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2) The SFMD model uses the probability measure of data 
memberships to the clusters in the formulation instead 
of realizing the true cluster label for each data point. 

3) Since the calculation of the data histogram /x^ from a 
class relies on the same mechanism as in (1), its values 
can be considered to be a sampled version of the true 
class distribution /*. 

For the model of global class distributions, we denote the 
Bayesian prior for each class by P{wr). Then, the sufficient 
statistics for mapping a database, i.e., the conditional finite 
mixture distribution (CFMD), is the pair of {P{wr), /(wlwr)}. 
According to the Bayes' rule, the posterior probability 
P{u}r\xi) given a particular observation Xi can be obtained by 

PiuJr)f{Xi\uJr) 

Theorem 1: Consider a sequence of random variables 
xi, ■■■ ,XN^ in 7?.^'^. Assume that the sequence {xi} 
is independent and identically distributed (i.i.d.) by the 
distribution /r. Then, the joint likelihood fimction Cr{0) is 
determined only by the histogram of data /x, and is given by 

CM = exp(-JV,[ff(/xJ + I?(/xJ|/r)]) (4) 

P{u)r\Xi) = 
Vi^i) 

(2) 

where p{xi) = Y^r=\^i.'^r-)S{xi\oJr)- Again, several obser- 
vations are worth reiteration: 

1) In order to classify the data points into classes, (2) is a 
candidate as a discriminant function. 

2) Since defining a supervised learning requires informa- 
tion of l^^, the Bayesian prior P(w,-) is an intrinsi- 
cally known parameter and can be easily estimated by 

3) The only uncertainty comes from class likelihood fimc- 
tion f{u\u}r) that should be the key issue in the follow- 
on learning process. 

For simplicity, in the following context we will omit class 
index r in our discussion when only single class distribution 
model is concerned and use 6 to denote the parameter vector 
of regional parameter set {{vk, Ok)}. 

B. Data Quantification via Unsupervised Learning 

The problem of data quantification addresses the combined 
estimation of regional parameters (TTfc, 6k) and detection of 
the structural parameter Kr and the kernel shape of g{-) in 
(1) based on the observations x^. One natural criterion used 
for leammg the optimal parameter values is to minimize the 
distance between the SFMD, which is denoted by fr{y), 
and the class data histogram, which is denoted by /x,(w) 
[3]. In this work, we use relative entropy (Kullback-Leibler 
distance), which was suggested by information theory [37], as 
the distance measure [for simplicity, we use /,-(«) to denote 
f{u\wr) in our formulation] given by 

Wxj|/.) = E/-(«)i°s7gS- (3) 

Note that the new cost fimction overcomes the problems of 
using squared error by weighting errors more heavily when 
probabilities are near zero and one and diverging in the case 
of convergence at the wrong extreme [2], [11]. Furthermore, 
we have previously shown that when relative entropy is used 
as a distance measure, the distance minimization method is 
equivalent to the soft-split classification-based method under 
the criterion of maximum likelihood (ML) [12], [32]. The 
conclusion is summarized by the following theorem (see the 
proof in the Appendix): 

where H denotes the entropy with base e, and the maximiza- 
tion of joint likelihood fimction £,^{6) is equivalent to the 
minimization of relative entropy i?(/x^||/r)- 

Thus, data quantification is formulated as a distribution 
learning problem, and the actual optimality is achieved when 
this cost fimction reaches its minimum. However, statistical 
dependence between data points is one of some fimdamental 
concerns in the problem formulation since the calculation 
of the data histogram assumes that all the data points are 
independent random variables. In order to validate the correct 
use of the (3) in data quantification, we prove the following 
theorem to show that the data histogram /x,.(w) converges 
to the true distribution f*{u) for all u with probability 
one as Nr —» oo. Thus, when Nr is sufficiently large, 
minimization of the relative entropy between fr and /* can 
be well approximated by the minimization of the relative 
entropy between /x,. and fr. This fitting procedure can be 
practically implemented by maximizing the joint likelihood 
fimction under the independence approximation of the data 
(see proof in Appendix) [4]. 

Theorem 2: Consider a sequence of random variables 
xi, •••,XNr in Ti^'. Assume that the sequence {xj} is 
asymptotically independent [40] and identically distributed by 
the finite normal mixture distribution /*. For a closed convex 
set EC.Fr and distribution /x^ ^ E, let /r € E be the 
distribution that achieves the minimum distance to /x^, i.e., 

/r = arg  min £)(/xJ|Jv). (5) 
:F,€E 

Then, when Nr approaches infinity, we have 

Urn   Z?(M|/;) = 0 (6) 

with probability one, i.e., the estimated distribution of Xr, 
given that fr achieves the minimum of D{fx^\\fr) is close 
to f* for large iV,.. 

Another important issue concerning imsupervised distribu- 
tion learning is the detection of the structural parameters of the 
class distribution known as model selection [1]. The objective 
here is to propose a systematic strategy for determining the 
optimal number and kernel shape of local clusters when the 
prior knowledge is not available. The motivations are driven 
by various objectives and requirements in the real applications. 
For example, the prior knowledge on the true structure of a 
database is generally unknown, i.e., the number and the kernel 
shape of the local clusters are not available beforehand, and 
model selection is required in the data mapping procedure. 
This is indeed the case that is particularly critical in real 
clinical applications, where the structure of the disease patterns 
for a particular patient or for a particular type of cancer 
may be arbitrarily complex; therefore, correct identification 
and quantification of the information is very important [4], 
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[7]. Thus, it will be desirable to have a neural network 
structure that is adaptive in the sense that the number and 
kernel shape of local clusters are not fixed beforehand. One 
conventional approach for doing this is to use a sequence 
of hypothesis tests [3], [36]. The problem in this approach, 
however, is the subjective judgment in the selection of the 
threshold for different tests. Recently, there has been a great 
deal of interest in using information theoretic criteria, such as 
Akaike information criterion (AIC) [27], [34] and minimum 
description length (MDL) [28], [30], to solve this problem. 
The major thrust of this approach has been the formulation 
of a model fitting procedure in which an optimal model is 
selected from the several competing candidates such that the 
selected model best fits the observed data. For example, AIC 
will select the model that gives the minimum defined by 

AIC{Ka) = -2 log(Z:(lML)) + 2Ka (7) 

where C{6UL) is the likelihood of ^ML, and Ka is the 
number of fi'ce adjustable parameters in the model. From a 
quite different point of view, MDL reformulates the problem 
explicitly as an information coding problem in which the best 
model fit is measured such that it assigns high probabilities 
to the observed data, while at the same time, the model itself 
is not too complex to describe [28]. A model is selected by 
minimizing the total description length defined by 

MDL{Ka) = - log{C{eML)) + 0.5Ka log Nr (8) 

Note that, different from AIC, the penalty term in MDL 
takes into account the number of observations. However, the 
justifications for the optimality of these two criteria with 
respect to data quantification or classification are somewhat 
indirect and remain unresolved [3], [27], [32], and none of 
these approaches have directly addressed the problem of kernel 
shape learning [7]. 

In this work, we derive a new formulation of the information 
theoretic criterion [the minimum conditional bias/variance 
(MCBV) criterion] to solve model selection problem. Nev- 
ertheless, it was Akaike/Rissanen's work that was the inspi- 
rational source to this work, but some new interpretations are 
presented and justified with the information-theoretic means 
[32]. Our approach has a simple optimal appeal in that it selects 
a minimum conditional bias and variance model, i.e., if two 
models are about equally likely, MCBV selects the one whose 
parameters can be estimated with the smallest variance. 

The new formulation is based on the fimdamental argument 
that the value of the structural parameter can not be arbitrary 
or infinite because such an estimate might be said to have low 
"bias," but the price to be paid is high "variance" [31]. From 
Jaynes' principle, which is stated as "theparameters in a model 
which determine the value of the maximum entropy should be 
assigned values which minimize the maximum entropy^ [29], 
let joint entropy of x and 6 be if (x, 0) = H{-x.\e) + H0), 
following the Bayes' law, a very neat interpretation states that 
the maximum of conditional entropy H{^\6) is precisely the 
negative of the logarithm of the likelihood function C{-x.\6) 
corresponding to the entropy-maximizing distribution of x 

[28], [30]. Thus, we have 

max/f(x|6l) = - Iog(£(x|6'))| ̂ «=n.i''i/"(^')- (9) 

Note that the uniformly randomization in the SFMD modeling 
corresponds to the maximum uncertainty [23], [37]. Further- 
more, maximizing the entropy of the parameter estimates H{0) 
results in 

^« fc=i 

(10) 

where when the variance of the parameter estimate is de- 
termined by the corresponding sample estimate, normal and 
independent distribution P§ gives the maximum entropy [37], 
[38]. 

Since the joint maximum entropy is a function of Ka and 
9, by taking the advantage of the fact that model estimation is 
separable in components and structure, we define the MCBV 
criterion as 

MCBV(iir) = - log (/:(X|(9ML)) + £ Hihut)      (11) 
fc=i 

^Ka where — log {C{K\9)) is the conditional bias, and X)fc=i H{6k) 
is the conditional variance of the model. As both terms 
represent natural estimation errors about their true models and 
should be treated on an equal basis, a minimization leads to 
the characterization of the optimum estimation as 

ilTo = arg I      min      MCBV(iir) j. 
\^<K<Ku Ayi J 

(12) 

That is, if the cost of model variance is defined as the entropy 
of parameter estimates, the cost of adding new parameters to 
the model must be balanced by the reduction they permit in 
the ideal code length for the reconstruction error. A practical 
MCBV formulation with code-length expression is further 
given by 

MCBV(iir) = -log(£(x|eML)) 

-I- ^ i log 27reVar(4ML).        (13) 
fc=i 

However, the calculation of H{6kML) requires the true values 
of the model parameters that are to be estimated. It has been 
shown that if the number of observations exceeds the minimal 
value, the accuracy of the ML estimation tends quickly to the 
best possible accuracy determined by the Cramer-Rao lower 
bounds (CRLB's), as has been well studied theoretically in 
[1] and [38]. Thus, the CRLB's of the parameter estimates 
are used in the actual calculation representing the "condi- 
tional" bias and variance [33]. We have found that the new 
formulation for determining the value of KQ exhibits a very 
good experimental performance that is consistent with both 
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AIC and MDL. It should be noted, however, that it is not 
the only plausible one; other criteria, such as cross validation 
techniques, may also be useful in this case. 

The performance of model selection for two frequently used 
methods, i.e., the AIC and MDL, and the proposed criterion 
(MCBV) were first tested and compared in the simulation 
study. The computer-generated data was made up of four 
overlapping normal components. Each component represents 
one local cluster. The value for each component were set 
to a constant value, and the noise of normal distribution 
was then added to this simulation digital phantom. Three 
noise levels with different variance were set to keep the 
same signal-to-noise ratio (SNR), where SNR is defined as 
10 logio (A/i)^/(T^, with A^ being the mean difference be- 
tween clusters, and a^ is the noise power. The original data 
for the simulation study are given in Fig. 1(a). The AIC, 
MDL, and MCBV curves, as functions of the number of 
local clusters K, are plotted in the same figure. According to 
the information-theoretic criteria, the minima of these curves 
indicate the correct number of the local cluster. From this 
experimental figure, it is clear that the number of local clusters 
suggested by these criteria are all correct. For larger noise 
level, the model selection based on the MCBV criterion 
provides a more differentiable result than the other two criteria. 
More application of the MCBV to the identification of real data 
structures will be presented in the next section. 

As the counterpart for adaptive model selection, there are 
many numerical techniques to perform ML estimation of 
cluster parameters [3]. For example, EM algorithm first calcu- 
lates the posterior Bayesian probabilities of the data through 
the observations and the current parameter estimates (E- 
step) and then updates parameter estimates using generalized 
mean ergodic theorems (M-step). The procedure cycles back 
and forth between these two steps. The successive iterations 
increase the likelihood of the model parameters. In order 
to obviate the need to store all the incoming observations 
and change the parameters immediately after each data point 
allowing for high data rates, we developed a probabilistic self- 
organizing mixture (PSOM) algorithm to solve the problem. 
This is a fully incremental and stochastic learning algorithm 
and is a generalized adaptive version of the similar algorithm 
we presented in [12]. The scheme provides winner-takes-in 
probability (Bayesian "soft") splits of the data, hence, allowing 
the data to contribute simultaneously to multiple clusters. 
For the sake of simplicity, we assume the kernel shape of 
local cluster to be a Gaussian with mean /ifc and variance 
a\ in the following derivation. By differentiating D(/x,||/r) 
given in (3) (here, the index of cluster r is omitted) with 
respect to the unconstrained parameters ^jt and a\, we obtain 
the standard gradient descent learning rule for the mean and 
variance parameter vectors (fc = 1, • • •, ii") 

„(*+i) _ „(<) 
N 

(14) 

Zfu 

-r'' = '^T + ^ E K-^ - ^ff - <^^3^ ('5) 

where A is the learning rate, and z\j^ is the posterior Bayesian 
probability defined by 

'■fc'^5(a;i|Mfc*\ 
2(t) ) 

nxi\e) (16) 

By adopting a stochastic gradient descent scheme for mini- 
mizing D{f^^\\fr) [22], the corresponding on-line formulation 
is obtained by simply dropping the stimmation sign and 
updating the parameters after each stimulus presentation; this 
is equivalent to approximating, at each step, the sum on the 
right side of (14) and (15) with just one term randomly drawn 
from the N terms. Furthermore, we employ a learning rate 
adaptation to increase the rate of convergence through the 
adaptive stochastic gradient descent algorithm (A; = 1, ■■■,K) 
[35] as in 

(17) ,,(t+l) _ ,,(t)   ,   „(f\(^ „(*)^rW 

2(t+l)_    2(t)       ./.sr, (t)s2 2(t)i   (t) ,,o. 
'^k -^k      +'>W[{^t+l - IJ'k   )    -'^k     \^(t+l)k   U») 

where the variance factors are incorporated into the learning 
rates, while the posterior Bayesian probabilities are kept, and 
a{t) and b{t) are introduced as the learning rates, two se- 
quences converging to zero, ensuring unbiased estimates after 
convergence. The idea behind this update rale is motivated 
by the principle that every weight of a network should be 
given its own learning rate and that these learning rates should 
be allowed to vary over time [35]. Based on generalized 
mean ergodic theorem [37], updates can also be obtained for 
the constrained regularization parameters TT^ in the SFMD 
model. For simplicity, given an asymptotically convergent 
sequence, the corresponding mean ergodic theorem, i.e., the 
recursive version of the sample mean calculation, should hold 
asymptotically [3]. From the M-step of EM algorithm, we 
define the interim estimate of Wfc by 

,(t+i) 
i + 1 

.(*) + .(*) 
f + l"(t+i)fc- (19) 

Hence, the updates given by (17)-(19) provide the incremental 
procedure for computing the SFMD component parameters. 
Their practical use, however, requires a strong mixing condi- 
tion (data randomization) and a decaying annealing procedure 
(learning rate decay) [40]. These two steps are currently 
controlled by user-defined parameters that may not be opti- 
mized for a specific case. Therefore, algorithm initialization 
must be chosen carefully and appropriately [12], [32]. An 
overall convergence dynamics of the PSOM is similar to 
the competitive learning (CL) algorithm in that a solution is 
obtained by "resonating" between input data and an internal 
representation [36]. Such a mechanism can be considered 
to be a more realistic learning tool than the EM algorithm. 
In addition, the data distribution for each class can also be 
modeled by a finite generalized Gaussian mixture (FGGM) 
given by [34], where g{xi\6k) is the generalized Gaussian 
kernel representing the fcth local cluster's pdf, which is defined 
by 

2al 9{xi\6k) = 
apk 

2r(l/a) 
exp[-\f3kixi-iJ,kT],   a>0   (20) 
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Original test image (A'o = 4, SNR = 10 dB) and the AIC/MDL/MCBV curves in model selection (left to right: a = 3,30,300). 

where 
fik mean; 
r() Gamma function; 
0k parameter related to the variance ak by 

13k = - 
r(3/«) 

becomes sharp. Therefore, the generalized Gaussian model is a 
suitable model for those data in which statistical properties are 
unknown, and the kernel shape can be controlled by selecting 
different a values. 

/•Tj-v    C. Data Classification via Supervised Learning 

The objective of data classification is to realize the class Lr(i/«)J 
It has been shown that when a = 2.0, we have the Gaussian membership kr for all data points based on the observation Xi 
pdf; when a = 1.0, we have the Laplacian pdf. When a > 1, and the class statistics {P{u}r), /(w|wr)}. It is well known that 
the distribution tends to a uniform pdf; when a < 1, the pdf the optimal data classifier is the Bayes classifier since it can 
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achieve the minimum rate of classification error [38]. Measur- 
ing the average classification error by the mean squared error 
E, many previous researchers have shown that minimizing E 
by adjusting the parameters of class statistics is equivalent to 
directly approximating the posterior class probabilities when 
dealing with the two-class problem [2], [38]. In general, for the 
multiple class problem, the optimal Bayes classifier (minimum 
average error) classifies input patterns based on their posterior 
probabilities: Input Xj is classified to class cjr if 

P{0Jr\Xi) > Pi^>Jj\Xi) (22) 

for all j 7^ r. It should be noted that in the formulation of 
classifier design, the optimal criterion used for the future data 
classification has been intuitively and directly applied to the 
learning of class statistics fi-om the training data set. 

Following this philosophy, great effort has been made in 
designing the network as an estimator of the posterior class 
probability [36]. By closely investigating the global class 
distribution modeling discussed in the previous section, we 
found that the classifier design for data classification can be 
dramatically simplified at the learning stage. Revisiting (2), 
since the class prior probability F(u;,.) is a known parameter 
when a supervised learning is applied, the posterior class 
probabiUty P{wr\xi) can be obtained without any fiirther 
effort. Thus, by conditioning P{u>r), the problem is formulated 
as a supervised classification learning of the class conditional 
likelihood density f{u\uir). It is very important that the 
learning process has been treated in a different way fi-om the 
testing process while maintaining a consistency between the 
objective and the criterion. Moreover, when the ultimate goal 
of the learning is data classification, the question that may be 
asked is the following: Learning class likelihoods or decision 
botmdaries? Since, in fact, only the decision boundaries are of 
the interests, the problem can be reformulated as the learning 
of the class boundaries (much more efficient) rather than 
the class likelihoods (generally time consuming). Thus, an 
efficient supervised algorithm to learn the class conditional 
likelihood densities called the "decision-based learning" [5] is 
adopted in this paper. The decision-based learning algorithm 
uses the misclassified data to adjust the density flmctions 
f{u\uir), which are initially obtained using the unsupervised 
learning scheme described previously so that the minimum 
classification error can be achieved. The algorithm is summa- 
rized as follows. 

Define the rth-class discriminant function <^,-(xi, w) to 
be P{i^r)f{xi\ijJr). Given a set of training patterns X = 
{xi\i —1,2, ■■■, M}. The set X is further divided into the 
"positive training set" X+ = {xi; Xi € Wr, * = Ij 2, • • •, iV} 
and the "negative training set" X~ = {xf, Xi ^ w,., j = 
N +1, N + 2, •••, M}. Define an energy function 

M 

E = '£Kdii)) 
1=1 

where 

Mi\-lT-<j)r{Xi,-w), 
^''"Ur(^i,w)-r, 

if Xi 6 X+ 
if Xi € X~ 

(23) 

(24) 

and where T — max^j^ri'Pjixi, W)). The penalty Junction I 
can be either a piecewise linear function 

l{d) = { 
Cd,   if d > 0 
0,     if d < 0 

where C is a positive constant or a sigmoidal function 

1 
l{d) = - 

-I- exp-''^ ■ 

(25) 

(26) 

Notice that 1) energy function E is always large or equal 
to zero and 2) only misclassified training patterns contribute 
to the energy function. Therefore, the misclassification is 
minimized if E goes to the minimum. 

The reinforced and antireinforced learning rules are used to 
update the network 

Reinforced 

Learning:   w^^+i^ = w^^'^ + ■nl'{dit))V<f>(x{t), w) 

Antireinforced 

Learning:   w(^+^^ = w'-'^ - r]l'{dit))V4>{xit), w).  (27) 

If the misclassified training pattern is from a positive training 
set, reinforced learning will be applied. If the training pattern 
belongs to the negative training set, we antireinforce the 
learning, i.e., pull the kernels away from the problematic 
regions. 

A probabilistic decision-based neural network (PDBNN) [6] 
is a probabilistic modular network designed especially for 
data classification where a Bayesian decomposition of the 
learning process provides a unique opportunity to optimize 
the structure of training scheme [4], [6], [25]. Since the 
information about class population is, in general, physically 
uncorrelated with the conditional features about the individual 
class, a decoupled two-step training, in terms of both network 
structure and learning rule, makes much more sense than that 
in the conventional posterior-typed neural networks, i.e., the 
conditional likelihood of each class and the class Bayesian 
prior should be adjusted separately in the classification spaces. 
In theory, when the cost function in fiiture classification is 
defined as the average Bayes' risk (with a discrete version of 
squared or mean squared classification error) [2], a sufficient 
measure field, which is determined by the average likelihood 
risk, can be applied in the supervised learning [6]. 

Thus, PDBNN divides its network resources into M dif- 
ferent pieces, and each piece is designated to one data class 
only, i.e., the subnet outputs of the PDBNN are designed to 
model the likelihood functions (likelihood-typed network). As 
illustrated in Fig. 2, the structure of the PDBNN consists of 
several disjoint subnets and a winner-take-all network, where 
the class likelihood functions are first estimated from equally 
presented class samples, and the final decision boundaries 
are determined simply weighting the likelihood by the class 
populations. Clearly, by taking the advantage of availability 
of class prior in supervised training, the cost function can be 
redefined, the sample set can be reorganized, and both the 
network structure and learning process can be dramatically 
simplified [4]. For a M-classification problem, PDBNN con- 
tains M different class subnets, each of which represents one 
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Fig. 2.   PDBNN network structure. Each class subnet is designated to recognize one class. All the network weightings are in probabilistic format. 

data class in the database. Within each subnet, several neurons 
(or clusters) are applied in order to handle problems that have 
complicated decision boundaries. The outputs of class subnets 
are fed into a winner-take-all network. The winner-take-all 
network categorizes the input pattern to the data class whose 
subnet produces the highest output value. Recall our problem 
formulation in Section II-C; it becomes clear that each piece 
of the PDBNN is exactly a PSOM subnet. Thus, when the 
ultimate goal is data classification, all of the network parame- 
ters can now be initialized by the quantification (unsupervised 
learning) step before supervised training. This initialization, 
together with the fact that the number of hidden units in each 
PSOM is relatively small compared with that of the PDBNN, 
makes PDBNN achieve a faster convergence rate and, often, 
better classification accuracy. 

The training scheme of the PDBNN is based on the so-called 
locally unsupervised globally supervised (LUGS) learning. 
There are two phases in this scheme: During the locally 
unsupervised (LU) phase, each subnet is trained individually. 

and no mutual information across the classes may be utilized. 
Unsupervised algorithms such as the PSOM described in the 
previous section can be applied in this phase. 

After the LU phase is completed, the traming enters the 
globally supervised (GS) phase. In the GS phase, teacher 
information is introduced to reinforce or antireinforce the 
decision boundaries obtained during LU phase. There are three 
main aspects of this training phase. 

1) When to update: A selective training scheme can be 
adopted, e.g., weight updating only when misclassifi- 
cation. 

2) What to update: The learning rule is distributive and 
localized. It appUes reinforced learning to the subnet 
corresponding to the correct class and antireinforced 
learning to the (imduly) wirming subnet. 

3) How to update: Adjust the boundary by updating the 
weight vector w either in the direction of the gradient of 
the discriminant fimction (i.e., reinforced learning) or the 
opposite of that direction (i.e., antireinforced learning). 
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Since only misclassified data points will be used for fine tun- 
ing of the decision boundaries, possible bias in the estimation 
of class distributions should be addressed. However, the key 
point we want to make is that this approach is very efficient, 
and although the global class description may be biased 
because of selective training, the decision boundaries will be 
more accurate. In fact, our intensive experiments indicate that 
only the data closed to the decision boundaries provide useful 
information in the boundary estimation. In particular, when 
the class distribution is formulated by a SFMD, the data far 
fi-om the decision boundaries make little impact on the final 
classification results [6]. 

The discriminant functions in all clusters will be trained by 
the two-phase learning. A common model for the PDBNN 
to approximate the likelihood function is the mixture of 
Gaussians. The PDBNN designer can choose either hyperbasis 
function (HyperBF) or elliptical basis function (EBF) for 
the neurons to approximate full-rank or diagonal covariance 
matrices, respectively [6]. For the sake of simplicity, in this 
paper, we demonstrate the GS learning algorithm by using 
EBF only. 

Suppose input pattern Xj is a X)-dimensional vector Xi = 
[x}, x^, ■■■, xf]^. Its EBF for cluster 6k in class w,. is 

D 

tpiXi, U)r, Ok) = -5 53 ^'•fc<'(^i' ~ Wrkd)'' + Ork        (28) 

where Crk = -(r'/2)(ln 27r - "£^=1 ^ Prkd)- The initial 
values of the cluster parameters, i.e., P and w, can be obtained 
by PSOM. The discriminant function <l>r{xi, w) for class r 
(see Section II-C) becomes 

4>r{Xi, W) = P{(jJr) X) '^f' exp{l/j{Xi, Wr, Ok))-        (29) 
k=l 

By applying reinforced and antireinforced learning rules in 
(29), (3 and w can further be updated. The gradient vectors for 
EBF at iteration j are computed as 

dM^iy w) 
dWrkd 

d(f>{xi, w) 

= A.O) qU) 0) 

60, 'rkd 

v=vfO) 

w=wO') 

h'^i-(3Zi^f-w)'k'd) 
0) 

"•irk — 

^irk ( _J: („d _     0) X2 

w^^ e^{i>^\xi,ur,ek)) 

527rPexp(^«(xi,u;„e,))' 

(30) 

(31) 

The cluster prior probabilities ivk can also be updated by 

JVr 

^t'^ = {l/Nr)Y,h. 0) 
irk' (32) 

i=l 

III. APPLICATION EXAMPLES AND DISCUSSIONS 

A. Medical Image Quantification 

In this section, we present the results using the information 
theoretic criteria to determine the appropriate number and/or 
kernel shape of tissue types (with a correspondence to the local 

clusters) in the real MR brain images and digital mammo- 
grams as well as the results using the proposed quantification 
technique (e.g., the PSOM) to estimate the tissue quantities 
from these images. A fully automatic thresholding method, 
adaptive Lloyd-Max histogram quantization (ALMHQ) that 
we introduced recently in [12] is used to initialize the quan- 
tification, and the tissue parameters are then finalized by 
the PSOM. For the validation of the tissue quantification 
using the proposed algorithms, the global relative entropy 
(GRE) value is used as an objective measure to evaluate the 
accuracy of the data quantification, which is consistent with 
our problem formulation in Section II-B. The objective of 
the experiment is to illustrate the algorithm performance on 
real-world applications. 

Fig. 3(a) and (b) show the original data consisting of 
two adjacent, Tl-weighted images parallel to the anterior 
commissural-posterior commisural (AC-PC) line and the cor- 
responding image histograms (c) and (d). This data were 
acquired with a General Electric (GE) Sigma 1.5 Tesla system. 
The imaging parameters are TR 35, TE 5, flip angle 45°, 1.5- 
mm effective slice thickness, 0 gap, 124 slices with in plane 
192 X 256 matrix, and a 24-cm field of view. Since the skull, 
scalp, and fat in the original brain images do not contribute to 
the brain tissue, we edit the MR images to exclude nonbrain 
structures prior to tissue quantification [24]. Experience indi- 
cates that this procedure helps to achieve better quantification 
of brain tissues by delineation of the other tissue tj^jes that 
are not clinically interesting [9]. It can be clearly seen that the 
histograms have different shapes from slice to slice and that 
the tissue types are highly overlapped. This situation presents 
a great challenge to any computerized technique, even though 
it has been successful in the simulation study. In this study, 
in addition to the "gold standard" evaluation performed by 
neuroradiologists [8], we use the GRE value to reflect the 
quality of tissue quantification. 

Based on pre-edited MR brain image, the procedure for 
quantifying the tissue types in one slice is summarized as 
follows. 

1) For each value ofK (number of tissue types), ML tissue 
quantification is performed by the PSOM algorithm. 

2) Scan the values of ii" = ifmm, • • •, K^SK, and use the 
information-theoretic criteria to determine the suitable 
number of tissue types. 

3) Select the result of tissue quantification corresponding 
to the value of Ko determined in Step 2). 

4) Evaluate the performance of tissue quantification in 
terms of the GRE value, convergence rate, and com- 
putational complexity. 

In our experiment, since the number of tissue types is 
unknown, we first show that the number of tissue types varies 
fi-om slice to slice. Let Kj^in = 2 and K^ax = 9, and calculate 
AIC{K),MDL(iir),andMCBV(iir) (K = K^i^, ■■■, K^^). 
We obtained the results shown in Fig. 4, which suggested 
that the two brain images contain six and eight tissue types, 
respectively. According to the model fitting procedure in 
designing the optimal structure of the modular networks we 
discussed before, the minima of these criteria also determines 
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Fig. 3.   Pure brain tissues extracted from (a) and (b) original MR images and (c) and (d) the corresponding histograms. 

the most appropriate number of mixture components in the 
corresponding PSOM. These figures show that the overall 
performance of the three information-theoretic criteria is fairly 
consistent when applied to the real MR brain images. Our 
experience indicates, however, that AIC tends to overestimate 
while MDL tends to underestimate the number of tissue types, 
and MCBV provides the solution between those of AIC and 
MDL, which is believed to be more reasonable especially in 
terms of providing a balance between the bias and variance of 
the parameter estimates. As discussed in the literature, brain 
material is generally composed of three principal tissue types, 
i.e., WM, GM, CSF, and their pair-wise combinations known 
as the partial volume effect. Previous studies have proposed 
a six-tissue model representing the primary tissue types, and 
the mixture tissue types were defined as CSF-white (CW), 
CSF-gray (CG), and gray-white (GW). In this work, we also 

consider the triple mixture tissue, which is defined by CSF- 
white-gray (CWG). More importantly, since the MRI scans 
clearly show the distinctive intensities at the local brain areas, 
the fiinctional tissue types need to be considered. In particular, 
caudate nucleus and putamen are the two important local brain 
fiinctional areas. 

For each fixed K, the PSOM algorithm is iteratively used to 
quantify the different tissue types, where the learning is fully 
data-driven [12]. For slice 2, the results of final tissue quantifi- 
cation with Ko = 7, 8, 9 are shown in Fig. 5. Corresponding 
to jFfo = 8, a GRE value of 0.02-0.04 nats in quantification 
is achieved. It was found that most of the variance parameters 
are different, which suggests that assuming the same variance 
for each tissue type with distinct image-intensity distribution 
may not be realistic. These quantified tissue types agreed with 
that of a physician's quaUtative analysis results. 
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Fig. 4.   Results of model selection for slice 1-2 (A'o = 6 and 8, left to right). 

We then present a comparison of the performance of PSOM 
with that of the EM [3], [19], [21] and the CL [6], [22] 
algorithms on MR brain tissue quantification. The task is 
to evaluate the computational accuracy and efficiency of the 
algorithm in the standard finite normal mixture distribution 
learning. To be able to make fair comparisons with the other 
two methods, we applied all the methods to the same example 
and used the GRE value between the image histogram and 
the estimated SFNM distribution as the goodness criterion to 
evaluate the quantification error. The left side of Fig. 6 shows 
learning curves of the PSOM and competitive learning (CL) 
averaged over five independent runs. As observed in the figure, 
PSOM outperforms CL learning by faster convergence rate and 
lower quantification error, where the final GRE value is about 
0.04 nats. The right side of Fig. 6 presents the comparison of 
PSOM with that of the EM algorithm for 25 epochs. From the 
learning curves, again note that the PSOM algorithm shows 
superior estimation performance. The final quantification error 
is about 0.02 nats while preserving the faster convergence rate. 

We have also applied the same procedure to the digital mam- 
mograms given in Fig. 7, where we show that if the number 
of cluster K is known, the kernel shape of local clusters will 
affect the accuracy of the histogram quantification for real 
mammographic images. Since, in this case, we do not assume 
a fixed kernel shape, FGGM is used, and three information 
criteria (AIC, MDL, and MBVC) were used to determine both 
the number and kernel shape of the regions in the digital 
mammograms. Twenty real mammograms with masses were 
chosen as testing images. The selected mammograms were 
digitized with an image resolution of 100 iira x 100 ycm. per 
pixel by the laser film digitizer (Model Lumiscan 150). The 
image sizes are 1792 x 2560 x 12 b/pixel. We found that, 
although with different a, all three criteria achieved minimum 
when A" = 8. It indicates that these information criteria are 
relatively insensitive to the change of a, as also claimed 

in [34]. With this observation, we can further decouple the 
relation between K and a and choose the appropriate value 
of one while fixing the value of another. It is interesting to 
note that the result of model selection here is very consistent 
with the conclusion in some previous studies: according to the 
work in [41], the most appropriate region number {K) is eight 
for most digital mammograms. We fixed K = %, and changed 
the values of a for estimating the FGGM model parameters 
using the PSOM/EM algorithm. The GRE value between the 
histogram and the estimated FGGM distribution is used as a 
measure of the estimation bias. We found that GRE achieved a 
minimum value when a = 3.0 as shown in Fig. 8. Compared 
with the conventional finite normal mixture model (a = 2.0), 
which has been mostly chosen by many previous researchers, 
this experiment indicates that the FGGM model provides more 
fi'eedom, thus allowing its correct uses to the situation when 
the true statistical properties of the digital mammograms are 
not available. 

B. Face Recognition Experiment 

A PDBNN-based face recognition system [6] is being 
developed under a collaboration between Siemens Corporate 
Research, Princeton, NJ, and Princeton University, Princeton, 
NJ. The total system diagram is depicted in Fig. 9. All four 
main modules—face detector, eye localizer, feature extractor, 
and face recognizer—are implemented on a SUN Sparc 10 
workstation. An RS-170 format camera with 16 mm, F1.6 
lens is used to acquire image sequences. The SIV digitizer 
board digitizes the incoming image stream into 640 x 480 8- 
bit gray-scale images and stores them into the fi'ame buffer. 
The image acquisition rate is on the order of 4-6 fi-ames/s. 
The acquired images are then down sized to 320 x 240 for the 
following processing. 

As shown in Fig. 9, the processing modules are executed 
sequentially. A module will be activated only when the in- 
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Fig. 5.   Histogram learning for slice 2. (a) Ko = 7. (b) Ka = 8. (c) Ko = 9. 

coming pattern passes the preceding module (with an agreeable 
confidence). After a scene is obtained by the image acquisition 
system, a quick detection algorithm based on binary template 
matching is applied to detect the presence of a proper sized 
moving object. A PDBNN face detector is then activated to 
determine whether there is a human face. If positive, a PDBNN 
eye localizer is activated to locate both eyes. A subimage 
(w 140 X 100) corresponding to the face region will then be 
extracted. Finally, the feature vector is fed into a PDBNN face 
recognizer for recognition and subsequent verification. 

The system built on the proposed one has been demonstrated 
to be applicable under reasonable variations of orientation 
and/or lighting and with the possibility of eyeglasses. This 
method has been shown to be very robust against large varia- 

tion of face features, eye shapes, and cluttered background [6]. 
The algorithm takes only 200 ms to find htiman faces in an 
image with 320 x 240 pixels on a SUN Sparc!0 workstation. 
For a facial image with 320 x 240 pixels, the algorithm takes 
500 ms to locate two eyes. In the face recognition stage, 
the computation time is linearly proportional to the number 
of persons in the database. For a 200-person database, it 
takes less than 100 ms to recognize a face. Furthermore, 
because of the inherent parallel and distributed processing 
nature of PDBNN, the technique can be easily implemented 
via specialized hardware for real-time performance. 

We conduct an experiment on the face database from the 
Olivetti Research Laboratory, Cambridge, U.K. (the ORL 
database). There are ten different images of 40 different 
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Fig. 6.   Comparison of the learning curves of (left) PSOM and CL and (right) EM. 
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Fig. 7.   Typical image of an original digital mammogram. 

people. There are variations in facial expression (open/close 
eyes, smiling/nonsmiling), facial details (glasses/no glasses), 
scale (up to 10%), and orientation (up to 20°). A HMM- 
based approach is applied to this database and achieves 13% 
error rate [13]. The popular eigenface algorithm [16] reports 
the error rate around 10% [13], [14]. In [15], a pseudo 2- 
D HMM method is used and achieves 5% at the expense 
of long computation time (4 m/pattem on Sun Sparc II). In 
[14], Lawrence et al. use the same training and test set size 
as Samaria did as well as a combined neural network (self 
organizing map and convolutional neural network) to do the 

TABLE I 
PERFORMANCE OF DIFFERENT FACE RECOGNIZERS ON THE ORL DATABASE 

PART OF THIS TABLE IS ADAPTED FROM S. LAWRENCE et al, 
"FACE RECOGNITION: A CONVOLUTIONAL NEURAL NETWORK 

APPROACH," TECHNICAL REPORT, NEC RESEARCH INSTITUTE, 1995 

System Error rate Classification time   
Training Time 

PDBNN 4% < 0.1 seconds 20 minutes 

SOM + CN 3.8% < 0.5 seconds 4 hours 

Pseudo 2D-HMM 5% 240 seconds n/a 

Eigenface 10% n/a n/a 

HMM 13% n/a n/a 

recognition. This scheme spent 4 hr to train the network and 
less than 1 s to recognize one facial image. The error rate 
for the ORL database is 3.8%. Our PDBNN-based system 
reaches similar performance (4%) but has much faster training 
and recognition speed (20 m for training and less than 0.1 s 
for recognition). Both approaches run on SGI Indy. Table I 
summarizes the performance numbers on the ORL database. 

We have also applied the PDBNN method to the so-called 
"M + 1 classes" problem in which the pattern under testing 
could be either from one of the M classes or from some other 
unknown class (the "unknown" class or the "intruder" class). 
Note that the unknown class probability is often very hard to 
estimate, and for some applications, it is almost impossible 
to obtain enough training samples for the unknown class (for 
example, in the face recognition problem, the unknown class 
includes the faces all over the world). In our experiment, 
PDBNN uses a different decision rule from that of the "M 
class" problem: Pattern Xi belongs to class r if both of the 
following conditions are true: a) <j){u)r, Xi) > 0(wj, Xi), V j / 
r, and b) (/>(w,., Xi) >T,T is a threshold obtained by decision- 
based learning. Otherwise, pattern Xi belongs to the unknown 
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Fig. 11.   Typical mass appearances in mammograms. (a) Well-defined masses, (b) Ill-defined masses, (c) Spiculated masses. 

a test accuracy of 71.5% (1430/2000). After the GS phase, 
we improved the performance to a training accuracy of 98.9% 
(49495/50000) and a test accuracy of 96.2% (1924/2000). 
Nevertheless, when we have the luxury of knowing the object 
probability model in advance, the fine-tuning process may not 
be necessary. It is reasonable to acknowledge that the face 
recognition result from our experiment is valid since the ORL 
database is a widely used public database like the FERET 
database. With a comparison with the recognition rate of the 
eigenface method on an early FERET database (smaller size), 
we found that the performance of the proposed method is 
comparable and/or superior to the eigenface approach. 

C. Featured Database Analysis 

As we have discussed in Sections I and 11, model selection 
is the first and a very important learning task in mapping 
a database, and the objective of the procedure is to deter- 
mine both the number and kernel shape of local clusters in 
each class. The inaccuracy in model selection will affect the 
performances of both data quantification and classification. 
Using the proposed learning scheme, the structure of the 
probabilistic modular networks will be optimized following 
the model selection and PSOM [7], [32]. When all the class 
distributions are learned accurately, further data classification 
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Fig. 12.   Two-dimensional feature space in classification example 1 where "o" denotes true mass cases; "*" denotes false mass cases, 
two clusters, (b) Decision boundary teaming with four cross porats. 

(a) Class 2 contains 

(a) 

Fig 13    Two-dimensional feature space in classification example 2, where 
contains one cluster, (b) Decision boundary learning with two cross pomts 

will be achieved simply following Bayesian rule [38]. In this 
subsection, these objectives and the related conclusions are 
further illustrated by two examples in the computed-aided 
diagnosis (CAD) for breast cancer detection [7]. The objective 
is to detect masses in digital mammography since masses 
are the important signs leading to early breast cancer [7]. 
For the purpose of improving the performance of CAD for 
detection of early breast cancer in mammography, a crucial 
step in any strategic solution is to quantitatively analyze the 
featured database (with the cases of normal and cancer tissues), 
i.e., to create a map of the feature distributions regarding the 
disease patterns [4], [7]. Since the featured database in CAD 
is constructed from the preprocessed suspected regions, model 
selection is very important in providing useful diagnostic 
suggestions. Furthermore, based on the feedback after all 
possible lesions are detected and their features are quantified, 

•o" denotes true mass cases, and "*" denotes false mass cases, (a) Class 2 

database quality and learning capabiUty of the CAD system 
design can also be analyzed by the model selection, comparing 
different feature extraction and database construction schemes 
[4]. The framework of the proposed method for mass detection 
is illustrated in Fig. 10. 

Some typical mass cluster appearances on mammograms are 
displayed in Fig. 11. With a preprocessing step, all suspected 
mass regions, as well as some normal dense tissues with 
brighter intensities, are located. The latter should be eliminated 
from the true masses through feature discrimination. On the 
clinical site, masses are evaluated based on the location, 
density, size, shape, margins, and the presence of associated 
calcifications. 

In the first example, we show that the inappropriate de- 
termination of the number of clusters inside each class will 
affect the performance of data classification. Since a classi- 
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Fig. 14.   Classification results, -o- denotes trae mass cases; 
using compactness definition 2. 

CompactnMt 

(b) 

*- denotes false mass cases, (a) Classification using compactness definition 1. (b) Classification 

fication based on feature space is commonly used in many 
pattern analysis applications, including mammographic mass 
detection, typical intensity, geometric, and texture features are 
extracted and investigated from the segmented regions. These 
features usually possess clinical significance and are widely 
used in most CAD systems. A detailed description of feature 
extraction can be found in [7]. Suppose we extract two major 
features that characterize the two targeted classes (mass and 
nonmass), as it shown in Fig. 12. In this example, class 1 
contains one cluster, and class 2 contains two clusters. The 
2-D histogram pairs of these features extracted from trae and 
false mass regions are investigated, and the features that can 
better separate the true and false mass regions are selected for 
fiirther study. In this study, area, compactness (circularity), and 
difference entropy were found to have better discrimination 
and reliability properties. Therefore, we chose them to perform 
the classification. 

Two PDBNN-like modular networks are trained to classify 
these two classes. The classification results are shown in 
Figs. 12 and 13. The result in Fig. 12 is with the right cluster 
number in Class 2. The result in Fig. 13 is with the wrong 
cluster number in Class 2. In this simple experiment, it is 
clearly shown that comparing the results in Fig. 12 with 
those in Fig. 13, the classification boundary with the right 
cluster number may be much more accurate than that with 
the heuristically determined cluster number since the decision 
boundary between classes 1 and 2 will be determined by four 
cross points in the first case, whereas in the second case, 
the decision boundary will be determined by only two cross 
points. From this example, we can show that the error of data 
classification is controlled by the accuracy in estimating the 
decision boundaries between classes, and the quality of the 
boundary estimates is indeed dependent on both the bias and 
variance of the class likelihood estimates. It can be seen that 
the bias may be lower in case 1 than in case 2, but the variance 
will be higher in case 1 than case 2. A similar example is the 
curve fitting from noisy data [31]. 

In the second example, we use the proposed classifier 
to distinguish trae masses from false masses based on the 

feattires extt-acted from the suspected regions. The objective 
is to reduce the number of suspicious regions and identify 
the trae masses. We selected 150 mammograms from the 
mammographic database. Each mammogram contained at least 
one mass case of varying size and location. The areas of 
suspicious masses were identified by an expert radiologist 
based on visual criteria and biopsy-proven results. We selected 
50 mammograms with biopsy-proven masses from the data 
set for training. The mammogram set used for testing con- 
tained 46 single-view mammograms: 23 normal cases and 23 
with biopsy-proven masses. The feattire vector contained two 
feattires: compacttiess and difference entt-opy. According to 
our investigation, these two feattires have the better separation 
(discrimination) between the ttiie and false mass classes. These 
feattires are also not correlated with each other. According to 
our experience, the values of compactoess with definition 1 
are more reliable than those of compacttiess with [7, Def 2]. 
A training feature vector set was constracted from 50 tme- 
mass ROI's and 50 false-mass ROI's. The tt-aining set was 
used to tt-ain two modular probabilistic decision-based neural 
networks separately. Fig. 14(a) shows the classification of two 
classes with compacttiess definition 1. Fig. 14(b) shows the 
classification of two classes with compactaess definition 2. 

In our evaluation sttidy, six to 15 suspected masses per 
mammogram were detected and required fiuther evaluation. 
The receiver operating characteristic (ROC) method is used 
to evaluate the detection performance of our method [38]. In 
the ROC analysis, the disttibution of the positive and negative 
cases can be represented by certain probability disttibutions. 
When the two disttibutions overiap on the decision axis, a 
cutoff point can be made at an arbittary decision threshold. 
The corresponding ttiie-positive fraction (TPF) versus false- 
positive fraction (FPF) for each threshold can be drawn on a 
plane. By indicating several points on the plot, curve fitting 
can be employed to consttiict an ROC curve. The area under 
the curve, which is referred to as Az, can be used as a 
performance index of the system. In general, the higher the 
Az, the better the performance. In addition, two other indexes 
[sensitivify (TPF) and specificity (1-FPF)] are usually used to 
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evaluate the system performance on the specified point of the 
ROC curve. In this study, a computer program (LABROC) 
is employed for the evaluation analysis. We found that the 
proposed classifier can reduce the number of suspicious masses 
with a sensitivity of 84% at a specificity of 82% (1.6 false 
positive findings per mammogram) based on the database 
containing 46 mammograms (23 of them have biopsy-proven 
masses). In conclusion, when compared with the conventional 
neural networks, the probabilistic modular networks can lead 
to more efficient learning and provide better understanding in 
the analysis of the distribution patterns of multiple features 
extracted fi-om the suspicious masses. 

IV. CONCLUSIONS AND DISCUSSIONS 

We have presented a strategy for mapping a database 
by probabilistic modular networks and information-theoretic 
criteria. Local class distribution is modeled by a standard 
finite mixture. Information-theoretic criteria are applied to 
detect the number and shape of local clusters, thus allowing 
the corresponding neural network to adaptively evolve its 
structure to the best representation of the local data. The 
PSOM algorithm is used to quantify the parameters of the 
local clusters, leading to an ML estimation. The decision 
boundaries in the data classification are then fine tuned by a 
global supervised learning. The results obtained by using the 
simulated data and the real databases demonstrate the promise 
and effectiveness of the proposed technique. 

Our main contribution is the complete proposal of a de- 
tripled learning strategy for the determination of both modular 
and components of the network. In this approach, the network 
structures (in terms of which statistical model is more suitable) 
are justified in a first step and followed by a soft classification 
of the data (in terms of each data point supports all local 
clusters simultaneously). The associated probabilistic class 
labels are then realized in a third step as the competitive 
learning of this induced hard classification task. To summarize, 
the results of the experiments we have performed indicate the 
plausibility of this approach for database mapping and show 
that it can be applied to practical and clinical problems such 
as those encountered in face recognition and computer-aided 
diagnosis. 

Model selection for the first time explicitly incorporates 
the bias/variance dilemma in finite data training, and when 
tested with synthetic and actual data, the results show that 
the number of hidden nodes should be adjusted for both data 
quantification and data classification, thus leading to a unified 
framework. At issue is how the model selection affects the 
estimation error and how the error in the estimation of class 
likelihoods fiirther affects the classification error when the 
estimates are used in a classification rule. However, none of 
previously developed methods has directly addressed a goal of 
minimizing classification errors, which is a central objective 
of data classification. It is necessary, therefore, to develop 
methods that are more directly related to the minimization 
of classification errors. On the other hand, many previous 
researchers have shown that one of the most fimdamental 
problems in detection and estimation is the bias/variance 

dilemma [25], [26], [30], [31]. It has been reported that 
the bias and variance components of the estimation error 
combine to influence classification in a very different way than 
with squared error on the likelihoods themselves [1], [25], 
[26]. Their results also suggested that the bias and variance 
components may not be treated in an equal base for further 
improving the classifier's performance [26], and a minimum 
entropy approach was proposed for model selection aiming at 
maximizing the class separability [1]. However, these methods 
may be found to be problematic when the accuracy of both 
data quantification and classification is required. 

Further comparison of the data quantification to the data 
classification calls for the following pair-wise relationships 
in the learning paradigm (supervised and unsupervised) and 
in the implementing scheme {soft and hard). In fact, when 
data quantification is the objective, unsupervised learning 
is preferred where only a soft classification of the data is 
required [23]. More precisely, since maximum likelihood is the 
criterion, local cluster parameters can be learned without hard 
data classification [1], [12], [22], [24]. If this unsupervised 
process involves a hard classification of a sample into the 
cluster for which the posterior probability is maximum, such 
as in the fc-means algorithm [22], the quantities obtained 
by the sample averages after data classification may not 
be consistent with the previous quantification result since a 
perfect classification may not be possible when the distri- 
butions of local clusters are highly overlapping [23]. The 
quantification result, in general, will be biased. On the other 
hand, in order to perform data classification for the testing 
set where the objective is to minimize the average Bayes' 
risk, supervision is needed at a first place and can be re- 
alized by simply dividing the training set (e.g., a subset of 
the testing set) into the groups for the estimation of each 
local class likelihood (e.g., unsupervised learning of local 
clusters), whereas the global class Bayesian prior can be 
picked up immediately as the by-product of the dividing 
process. In this research, we deal with data quantification 
for local clusters and data classification between classes as 
two separate problems and use different optimality criteria. 
However, it is worth reiteration that in order to efficiently 
determine the decision boundaries between classes in data 
classification, supervised and unsupervised training may be 
jointly performed. 

APPENDIX 

COLLECTED PROOFS OF THE THEOREMS 

Proof of Theorem 1: Since the multiplication over i in joint 
likelihood is not affected by the data order, we regroup 
them in an increasing order of the gray levels ui such that 
wi < M2, • • • I < «i- Hence, we write 

Cr{e) = flfr{Xi) = t[(l[    Mxi)]. (33) 
i=l J=l     \Xi=Ul 

By the definition of data histogram (i.e., the type) in [37], the 
number of data with gray level ui equals NrUriui); thus, we 
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have 
obtuse, which implies (36). Consequently, since £){/x, ||/;) 
0, it follows that 

1=1 
L 

= n exp(^r/x.(MO log /r(«0) 
1=1 
L 

= JJexp(Ar,[/x^(«,) log/,-(«;) 
j=i 

-/x.(Ml)log/x.(«0 

+ /x.(w01og/x,W]) 
L 

/X.(MJ) log = exp    -Nr 53 
J=l 

/x.(wj) 

+/X.(MI) log 
/x.(wO 
/r{Mj) 

= exp(-iV.[H(/xJ + I?(/xJI/r)]). a 

Proof of Theorem 2: For each data value «j, we apply indi- 
cator fimction /(■, «/) to data sequence x^. By the definition 
of histogram, we have the relationship between the histogram 
UXn) and the sample average of the indicator fiinctions 
l(xi, ui). Smce sequence x is asymptotically independent 
and identically distributed by the finite normal mixture dis- 
tribution, they are ergodic processes. In addition, since the 
indicator function is a deterministic measurable fiinction, by 
the Birkhoff-Khinchin theorem [40] 

Pr f Um   4- £ ^(^i' «') = -^[^(=^- "')!) = ^-   ^^"^^ \Nr^CO AT,  ^ J 

Since, by the fiondamental theorem of expectation, we have 

E[I{xi, ui)] = Yl ^i^i = "' «')/;(«) = /r*(«0     (35) 

we can substitute (3) and (9) into (8) to obtain 

Prf lira   /x.(«i) = /r*(«0) =1 

which implies that the distance of D(/xJ|/;) goes to 0 as 
Nr   -♦   OO. 

We now show that the estimated distribution /r is close 
to /; for large Nr in relative entropy. By the "Pythagorean" 
theorem ([37, Th. 12.6.1]) 

DiUWfr) + DifrW/:.) < DiUM) (36) 

which in turn implies that 

DifrW) <D{U\rr) (37) 

since I>(/xJ|/r) > 0. Note that the relative entropy 
■0(/xJ|/r) behaves like the square of the Euclidean distance 
[37]. From the conditions given by the theorem, the angle 
between the distances I>(/xJ|/r) and £>(/r||/;) must be 

Um   Z?(M|/;) = 0 
Nr—^OO 

as Nr—* OO with probability one. 

(38) 

D 
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Computerized Radiographic Mass Detection—Part I: 
Lesion Site Selection by Morphological Enhancement 

and Contextual Segmentation 
Huai Li, Yue Wang, K. J. Ray Liu*, Shih-Cliung B. Lo, and Matthew T. Freedman 

Abstract—This paper presents a statistical model supported 
approacli for enhanced segmentation and extraction of suspicious 
mass areas from mammographic images. With an appropriate 
statistical description of various discriminate characteristics 
of both true and false candidates from the localized areas, an 
improved mass detection may be achieved in computer-assisted 
diagnosis (CAD). In this study, one type of morphological oper- 
ation is derived to enhance disease patterns of suspected masses 
by cleaning up unrelated background clutters, and a model-based 
image segmentation is performed to localize the suspected mass 
areas using stochastic relaxation labeling scheme. We discuss the 
importance of model selection when a finite generalized Gaussian 
mixture is employed, and use the information theoretic criteria to 
determine the optimal model structure and parameters. Examples 
are presented to shovf the effectiveness of the proposed methods 
on mass lesion enhancement and segmentation when applied to 
mammographical images. Experimental results demonstrate that 
the proposed method achieves a very satisfactory performance as 
a preprocessing procedure for mass detection in CAD. 

Index Terms—^Finite mixture, image enhancement, image seg- 
mentation, information criterion, morphological filtering, relax- 
ation labeling. 

I. INTRODUCTION 

IN RECENT years, several computer-assisted diagnosis 
(CAD) schemes for mass detection and classification 

have been developed [1]-[13]. Though it may be difficult to 
compare the relative performance of these methods, because 
the reported performance strongly depends on the degree of 
subtlety of masses in the selected database, accurate selection 
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of suspected masses is considered a critical and first step due 
to the variability of normal breast tissue and the lower contrast 
and ill-defined margins of masses [3], [6], and since no subtle 
masses should be missed before any further analysis. 

A number of image processing techniques have been pro- 
posed to perform suspicious mass site selection. Kobatake et al. 
[1] proposed using a iris filter to detect tumors as suspicious re- 
gions with very weak contrast to their background. Sameti et al. 
[7] used fiizzy sets to partition the mammographic image data. 
Lau and Yin et al. independently proposed using bilateral-sub- 
traction to determine possible mass locations [9], [13]. Some 
other investigators proposed using pixel-based feature segmen- 
tation of spiculated masses [4], [8]. Kegelmeyer has reported 
promising results for detecting spiculated tumors based on local 
edge characteristics and Laws texture features [8]. Karssemeijer 
et al. [4] proposed to identify stellate distortions by using the 
orientation map of line-like structures. Recently, Patrick et al. 
[6] proposed a two-stage adaptive density-weighted contrast en- 
hancement filtering technique along with edge detection and 
morphological feature classification for automatic segmentation 
of potential masses. Kupinski and Giger [3] presented a radial 
gradient index-based algorithm and a probabilistic algorithm for 
seeded lesion segmentation. 

Nevertheless, to our best knowledge, few work has been ded- 
icated to improve the task of lesion site selection although it is 
indeed a very crucial step in CAD. Especially, few studies have 
used and justified model-based image processing techniques for 
unsupervised lesion site selection [11]. Zwiggelaar et a/.devel- 
oped a statistical model to describe and detect the abnormal pat- 
tern of linear structures of spiculated lesions [2]. In their work, 
the probability density function of the observation vectors for 
each class is assumed to be normal, we have experienced that 
the "normal" distribution for each class is nor true. Li et al. pro- 
posed using a Markov random field model to extract suspicious 
masses for mass detection [11]. In their study, most of model 
parameters were chosen empirically, and the mammogram was 
segmented into three regions (background, fat, andparenchymal 
or tumors). 

Stochastic model-based image segmentation is a technique 
for partitioning an image into distinctive meaningful regions 
based on the statistical properties of both gray level and context 
images. A good segmentation result would depend on suitable 
model selection for a specific image modality [16], [17] where 
model selection refers to the determination of both the number 
of image regions and the local statistical distributions of each 
region. Furthermore, a segmentation result would be improved 

0278-0062/01$ 10.00 © 2001 IEEE 
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Fig. 1.   Major components in CAD. 

with preenhanced pattern of interest being segmented. The only 
assumption for suspected mass site selection is that suspected 
mass areas should be brighter than the surrounding breast tissues 
which is valid for most of the real cases. When some masses 
lie either within an inhomogeneous pattern of fibroglandular 
tissue or are partially or completely surrounded by fibroglan- 
dular tissue, enhancement of mass-related signals is important. 

Fig. 1 shows a general block diagram of CAD systems. This 
paper focuses on "image processing" block, to just automati- 
cally pick up all possible lesion sites. We aim on two essential 
issues in the stochastic model-based image segmentation: en- 
hancement and model selection. Based on the differential geo- 
metric characteristics of masses against the background tissues, 
we propose one type of morphological operation to enhance the 
mass patterns on mammograms. Then we employ a finite gen- 
eralized Gaussian mixture (FGGM) distribution to model the 
histogram of the mammograms where the statistical properties 
of the pixel images are largely unknown and are to be incor- 
porated. We incorporate the EM algorithm with two informa- 
tion theoretic criteria to determine the optimal number of image 
regions and the kernel shape in the FGGM model. Finally, we 
apply a contextual Bayesian relaxation labeling (CBRL) tech- 
nique to perform the selection of suspected masses. The major 
differences of our work fi-om the previous work [ 1 ]-[6], [8]-[ 13] 
are as follows. 

1) We present a new algorithm of morphological filtering 
for image enhancement in which the combined operations 
are applied to the original gray tone image and the higher 
sensitive lesion site selection of the enhanced images are 
observed. 

2) We justify and pilot test the FGGM distribution in mod- 
eling mammographic pixel images together with a model 
selection procedure based on the two information theo- 
retic criteria. This allows an automatic identification of 
both the number (K) and kernel shape (a) of the distri- 
butions of tissue types. 

3) We develop a new algorithm (CBRL) for segmenting 
mass areas where the comparable results are achieved 
as those using Markov random field model-based 
approaches while with much less computational com- 
plexity. 

The presentation of this paper is organized as follows. In Sec- 
tion II, the proposed dual morphological operation enhancement 
technique is described in detail. The theory and algorithm on 

FGGM modeling, model selection, and parameter estimation 
are presented in Section III. This is followed by a discussion 
on the selection of suspicious masses using the CBRL approach. 
Evaluation results are given and discussed in Section IV. Finally, 
the paper is concluded by Section V. 

II. MORPHOLOGICAL ENHANCEMENT 

One of the main difficulties in suspicious mass segmentation 
is that mammographic masses are often overlapped with dense 
breast tissues. Therefore, it is necessary to remove bright back- 
groimd caused by dense breast tissues while preserving the fea- 
tures and patterns related to the masses. For this purpose, back- 
ground correction is an important step for mass segmentation. 
We propose a mass pattern-dependent background removal ap- 
proach using morphological operations. 

A. Morphological Filtering Theory 

Morphological operations can be employed for many image 
processing purposes, including edge detection, region segmen- 
tation, and image enhancement. The beauty and simplicity of 
mathematical morphology approach come fi-om the fact that a 
large class of filters can be represented as the combination of 
two simple operations: erosion and dilation. Let Z denote the 
set of integers and /(?, j) denote a discrete image signal, where 
the domain set is given by {i, j} e Ni x N2, Ni x N2 C Z'^ 
and the range set by {/} eNs, N^c Z.A structuring element 
S is a subset in Z^ with a simple geometrical shape and size. 
Denote S' — {-b : b e B} as the symmetric set of JB and 
5t^,t2 as the translation of S by {h, ^2), where (*i, t2) e Z^. 
The erosion f Q B" and dilation f ® B" can be expressed as 
[19] 

UQB'){i,j)=      min    (/(ti,t2)) (1) 

U®B'){i,j)=    max    (m,«2)). (2) 

On the other hand, opening / o5 and closing f^Bsxc defined 
as [19] 

{foB){i,3)={{feB')®B){i,j) (3) 

{f*B){i,j)^{{f®B^)eB){i,3). (4) 

A gray value image can be viewed as a two-dimensional sur- 
face in a three-dimensional space. Given an image, the opening 
operation removes the objects, which have size smaller than the 
structuring element, with positive intensity. Thus, with the spec- 
ified structuring element, one can extract different image con- 
texts by taking the difference between the original and opening 
processed image, which is known as "tophat" operation [19]. 

B. Morphological Enhancement Algorithms 

Based on the properties of morphological filters, we designed 
one type of mass pattern-dependent enhancement approaches. 
The algorithm is implemented by dual morphological tophat op- 
erations following by a subtraction which is described as fol- 
lows. 
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Step 1) The textures without the pattern information of in- 
terest are extracted by a tophat operation 

7-1 (i, j) = max(0, [fii, j) - (/ o Br){i, j)])        (5) 

where /(i, j) is the original image, and ri{i, j) is 
the residue image between the original image and the 
opening of the original image by a specified struc- 
turing element Bi. The size of Si should be chosen 
smaller than the size of masses. 

Step 2) Let 7-2(«, j) be the mass pattern enhanced image by 
background correction, i.e., by the second tophat op- 
eration on /(«, j) 

7-2(i, j) = max(0, [/(i, j) - if o B2){i, j)])        (6) 

where B2 is a specified structuring element which 
has a larger size than masses. 

Step 3) The enhanced image /i(i, j) can be derived as 

/i(j, j) = max(0, [r2{i, j) - n{i, j)]). (7) 

This operation is called "dual morphological operation." It 
can remove the background noise and the structure noise inside 
the suspected mass patterns. Fig. 2 shows the mass patch and 
the enhanced results of each step using the dual morphological 
operation. As we can see fi'om Fig. 2, both background correc- 
tion [Fig. 2(c)] and dual morphological operation [Fig. 2(d)] en- 
hanced the mass pattern, but dual morphological operation re- 
moved more structural noise inside the mass region which in 
turn would improve the mass segmentation results. 

III. MODEL-BASED SEGMENTATION 

A. Statistical Modeling 

Given a digital image consisting ofNi x N2 pixels, assume 
this image contains K regions. By randomly reordering all 
pixels in the underlying probability space, one can treat pixel 
labels as random variables and introduce a prior probability 
measure TTfc. Then the FGGM probability density fimction (pdf) 
of gray level of each pixel is given by [17] 

K 

V{xi) - 53 '^kPk{3;i),        1 = 1,..., A^iiV2, 
fc=i 

Xi = 0, 1, ..., L - 1 (8) 

where Xi is the gray level of pixel i, and L is the number of gray 
levels. Pfc(a;t)s are conditional region pdfs with the weighting 
factor TTfc, satisfying TTfc > 0, and ^^=1 "■& = !. The general- 
ized Gaussian pdf given region k is defined by 

Pk{Xi) - 
2r(l/a) exp[- \Pk{xi - Mfc)r],        a > 0, 

0k ^ 
CTk 

r(3/a) nl/2 

r(i/«) 
(9) 

where fik is the mean, r(-) is the Gamma fimction. 0k is a pa- 
rameter related to the variance u/t. It can be shown that when 

Fig. 2. Original and enhancement result of the mass patch using 
dual-morphological operation, (a) Original image block /(i, j). (b) 
Textures ri(i, j). (c) Background correction result r2(t, j). (d) Enhanced 
resuh/i(i, j). 

a = 2.0, one has the Gaussian pdf; when a — 1.0, one has the 
Laplacian pdf When a » 1, the distribution tends to a uniform 
pdf; when a <1, the pdf becomes sharp. Therefore, the gener- 
alized Gaussian model is a suitable model to fit the histogram 
distribution of those images whose statistical properties are un- 
known since the kernel shape can be controlled by selecting dif- 
ferent a values. 

The whole image can be well approximated by an in- 
dependent and identically distributed random field X. The 
corresponding joint pdf is 

K Ni.N2 

^w= n ii^kPkixi) (10) 
i=l    fc=l 

where x — [xi, X2, ■ ■ ■, XN^Ni]^ and x 6 X. pk{xi) is given 
in (9). Based on the joint probability measure of pixel images, 
the likelihood fimction under FGGM modeling can be expressed 
as £(r) = nSr^' Priori) where r : {K, a, -Kk, Hk, crk, k = 
1, ..., K} denotes the model parameter set. 

B. Model Identification 

With an appropriate system likelihood fiinction, the objective 
of model identification is to estimate the model parameters by 
maximizing the likelihood function, or equivalently minimizing 
the relative entropy between the image histogram p^{u) and 
the estimated pdf pr(w), where u is the gray level. Based on 
the FGGM model, the EM algorithm is applied to estimate the 
model parameters. The EM algorithm is an iterative technique 
for maximum-likelihood (ML) estimation [20]. Recently, it has 
been used in many medical imaging applications [15]. Instead 
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of evaluating directly the value of ML, we use the global rel- 
ative entropy (GRE) between the histogram and the estimated 
FGGM distribution to measure the performance of parameter 
estimation, given by 

(11) 

Motivated by the same spirit of conventional EM algorithm 
for finite normal mixtures (FNMs), we formulated the EM al- 
gorithm to estimate the parameter values of the FGGM. The al- 
gorithm is summarized as follows. 

EM Algorithm: 

1)  For a = aniin, • ■ • , "max 
' m — 0, given initialized r^*^^ 
• E-step: for j  =  1, • • •, ^iA^2, k =  I, ..■,K, 

compute the probabilistic membership 

("0, (m) n   'Pk{Xi) 
'■ik K 

k=l 

(12) 

• M-step: for fc = 1, 
parameter estimates 

K, compute the updated 

J'"+i) _ 
N1N2 

NiN2 

Mfc — 
^liV24"'"^'^ 

2(m+l) _ 

Hk 

N1N2 

(m) 
ik   ^i 

iViiV27rf+') 
E^ifi-^-'^'r'-'') +1)\2 

t=l 
(13) 

• When |GRE("')(px||Pr) - GRE^'^+^'CpxHPr)! < e 
is satisfied, go to Step 2 Otherwise, m = m + l and 
go to E-Step. 

2) Compute GRE, and go to Step 1. 
3) Choose the optimal r which corresponds to the minimum 

GRE. 
As we mentioned in Section I, the two important parameters 

in model selection are K and a. Determination of the region 
parameter K directly affects the quality of the resulting model 
parameter estimation and in turn, affects the result of segmen- 
tation. In this paper we propose an approach to determine the 
value of iT based on two popular information theoretic criteria 
introduced by Akaike [23] and by Rissanen [24]. Akaike pro- 
posed to select the model that gives the minimum Akaike infor- 
mation criterion (AIC), defined by 

AIC(i!:) = -2log(>C(fA^L)) + 2K' (14) 

where f ML is the ML estimate of the model parameter set r, 
and K' is the number of firee adjustable parameters in the model 
[15], [23]. AIC criterion will select the correct number of the 
image regions KQ when 

Ko = arg< (      rain       AlCml. (15) 
(_ l</f </CMAX J 

Rissanen addressed the problem fi-om a quite different point 
of view. Rissanen reformulated the problem explicitly as an in- 
formation coding problem in which the best model fitness is 
measured such that it assigns high probabilities to the observed 
data while at the same time the model itself is not too complex to 
describe [24]. The model is selected by minimizing the total de- 
scription length defined by minimum description length (MDL) 

MDLiK) = - Iog(/:(fML)) + 0.5K' log{NiN2).     (16) 

Similarly, the correct number of the distinctive image regions 
Ko will be estimated when 

Ko = argi      min       MDLiK) \ . 
°\l<K<Kuxyi J 

(17) 

C. Bayesian Relaxation Labeling 

Once the FGGM model is given, a segmentation problem is 
the assignment of labels to each pixel in the image. A straight- 
forward way is to label pixels into different regions by maxi- 
mizing the individual likelihood fiinction Pk{x). This approach 
is called ML classifier, which is equivalent to a multiple thresh- 
olding method. Usually, this method may not achieve a good 
performance since there is lack of local neighborhood informa- 
tion to be included to make a good decision. CBRL algorithm 
[25] is one of the approaches, which can incorporate the local 
neighborhood information into labeling procedure and thus im- 
prove the segmentation performance. In this study, we devel- 
oped the CBRL algorithm to perform/refine pixel labeling based 
on the localized FGGM model, which is defined as follows. 

Let di be the neighborhood of pixel i with an m x m template 
centered at pixel i. An indicator fiinction is used to represent the 
local neighborhood constraints Rijih, Ij) — I{li, Ij), where U 
and Ij are labels of pixels i and j, respectively. Note that pairs 
of labels are now either compatible or incompatible. Similar to 
reference [25], one can compute the fi-equency of neighbors of 
pixel i which has the same label values k as at pixel i 

Tfc'' =p{k = k\hi) - 
TW' 

E   i^^^h)    (18) 
363i, i^i 

where Igj denotes the labels of the neighbors of pixel i. Since 
ir^ is a conditional probability of a region, the localized FGGM 
pdf of gray level xi at pixel i is given by 

K 

V{xi\i^ai) = J2 4 Pfc(^i) (19) 

*;=! 

where pfc(a;i) is given in (9). Assuming gray values of the image 
are conditional independent, the joint pdf of x, given the context 
labels 1, is 

N1N2    K 

j^(xii)= n E4v(^i) (20) 
i=l    k=l 

where I ^ {h : i = 1, ..., N1N2). 
It is known that CBRL algorithm can obtain a consistent la- 

beling solution based on the localized FGGM model (19). Since 
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TABLE  I 
DISTRIBUTION OF THE EFFECTIVE SIZE OF THE 186 MASSES USED IN THIS STUDY. THE EFFECTIVE SIZE IS DEFINED AS THE SQUARE ROOT OF 

THE PRODUCT OF THE MAXIMUM AND MINIMUM DIAMETERS OF THE MASS 

I 0 - bmm I 6 - lOmm | 11 - 15mm | 16 - 20mm 

# 55 78 29 
21 - 25mm | 26 - 30mm" 

17 

1 represents the labeled image, it is consistent if 5i(/i) > Si{k) 
for all fc = 1, ..., is: and for i = 1, ..., N1N2 [25], where 

Si{k)=irfvf,{xi). 

Now we can define 
N^N2 

i=X 
^(1) = E E ^('^' ^)^^(^) 

(21) 

(22) 

as the average measure of local consistency, and 

LCi = ^ I{li, k)Si{k),       1 = 1,..., N1N2      (23) 
k 

represents the local consistency based on 1. The goal is to find 
a consistent labeling 1 which can maximize (22). In the real 
application, each local consistency measure LCi can be max- 
imized independently. In [25], it has been shown that when 
Rijih, Ij) = Rjiih, h), if ^(1) attains a local maximum at 
I, then 1 is a consistent labeling. 

Based on the localized FGGM model, if^ can be initialized 
by ML classifier 

if^ = argj maxPk{xi) \ ,        k = l, ..., K. (24) 

Then, the order of pixels is randomly permutated and each label 
li is updated to maximize LCi, i-e., classify pixel i into fcth 
region if 

li = axgj max Tr^^'pkixi) > ,        k - 1, ..., K (25) 

where Pk{xi) is given in (9), n^^ is given in (18). By consid- 
ering (24) and (25),we developed a modified CBRL algorithm 
as follows. 

CBRL Algorithm: 
1) Given l^o^m =0 
2) Update pixel labels 

• Randomly visit each pixel for i :=1,..., iViiV2 
• Update its label k according to 

3) When 

I  ' = axgj max TT^      'pkixi) > . 

^(I(m+l)®l(n0) 
^^^^——^^-^^———  ^ 1 A), 

N1N2 - 

stop; otherwise, m = m + 1, and repeat Step 2. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we present the results of using the morpho- 
logical filtering and model-based segmentation approach we 
have introduced for enhancement and segmentation of suspi- 

cious masses in mammographic images. In addition to the qual- 
itative assessment by the radiologists, we introduce several ob- 
jective measures to assess the performance of the algorithms we 
have proposed for enhancement and segmentation. 

A testing data set of 200 mammograms and two simulated 
tone images were used to test and evaluate the performance of 
the algorithms in this study. The mammograms were selected 
from the Mammographic Image Analysis Society (MIAS) data- 
base and the Brook Army Medical Center (BAMC) database 
created by the Department of Radiology at Georgetown Uni- 
versity Medical Center. Of the 200 mammograms, 50 mammo- 
grams are normal, and each of the 150 abnormal mammograms 
contains at least one mass case of varying size, subtlety, and 
location. The areas of suspicious masses were identified by an 
expert radiologist based on visual criteria and biopsy proven 
results. The total data set includes 113 benign and 73 malig- 
nant masses. The distribution of the masses in terms of size 
is shown in Table I. The BAMC films were digitized with a 
laser film digitizer (Lumiscan 150) at a pixel size of 100 fimx 
100 /xm and 4096 gray levels (12 bits). Before the method was 
applied the digital mammograms were smoothed by averaging 
4x4 pixels into one pixel. According to radiologists, the size 
of small masses is 3-15 mm in effective diameter. A 3-mm 
object in an original mammogram occupies 30 pixels in a 
digitized image with a lOO-^m resolution. After reducing the 
image size by four times, the object will occupy the range of 
about seven to eight pixels. The object with the size of seven 
pixels is expected to be detectable by any computer algorithm. 
Therefore, the shrinking step is applicable for mass cases and 
can save computation time. 

Experimental Evaluation of Morphological Enhance- 
ment: In order to justify the suitability of morphological 
structural elements, the geometric properties of the contexts 
and textures in mammograms were studied. The basic idea 
is to keep all mass-like objects within certain size range and 
remove all others by using the proposed morphological filters 
with specific structural elements. At the resolution of 400 
Hm, a disk with a diameter of seven pixels was chosen as the 
morphological structuring elements Bi to extract textures in 
mammograms. Since the smallest masses have seven pixels in 
diameter with the resolution of 400 fim, this procedure would 
not destroy mass information. For the purpose of background 
correction, a disk with a diameter of 75 pixels was used as 
the morphological structuring element B2. An object with a 
diameter of 75 pixels corresponds to 30 mm in the original 
mammogram. This indicates that all masses with sizes up to 
30 mm can be enhanced by background correction. Masses 
larger than 30 mm are rare cases in the clinical setting. In the 
last stage of our approach, we applied morphological opening 
and closing filtering using a disk with a diameter of five to 
eliminate small objects which also contribute to texture noise. 
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Fig. 3.   (a) Original simulated test image for model selection (fco = 4, SNR = 10 dB) and (b) the AIC/MDL curves in model selection {<J = 30). 

All testing mammograms were processed using the proposed 
enhancement approach with the suggested structuring element 
Bx and B^. Fig. 5 shows processed mammogram examples 
using the morphological enhancement. Compared the enhanced 
results [Fig. 5(b) and (d)] with the original mammograms 
[Fig. 5(a) and (c)], the proposed method not only enhanced all 
suspected mass patterns and reduced the texture noise, but also 
removed the background noise. In summary, the proposed mor- 
phological enhancement approach can enhance mass patterns 
and remove texture structure noises. For dense mammograms, 
such as the second example in Fig. 5(c) and (d), the mass 
is obscured by dense fibroglandular tissues, our experience 
shows applying the dual morphological operation to remove 
the fibroglandular tissue background is usefiil. In addition 
to the visual evaluation by the radiologist, we performed the 
segmentation to assess the effectiveness of the morphological 
filtering, based on the enhanced mammograms and the original 
mammograms. 

Simulated Evaluation of Segmentation Algorithms: The 
performance of model selection using two frequently used 
methods, i.e., the AIC and MDL [22], were first tested and 
compared in the simulation study. The computer-generated data 
was made up of four overlapping normal components. Each 
component represents one local region. The value for each 
component were set to a constant value, the noise of normal 
distribution was then added to this simulation digital phantom. 
Three noise levels with different variance were set to keep the 
same signal-to-noise ratio (SNR), where SNR is defined by 

SNR=101ogio^^ 

Fig. 4. Image segmentation by CBRL on simulated image (with initialization 
by ML classification), (a) ML initialization, (b) First iteration in CBRL. (c) 
Second iteration in CBRL. (d) Third iteration in CBRL. 

TABLE H 
COMPARISON OF CBRL, ICM, AND MICM ALGORITHM: SIMULATED DATA 

Item 

(26)       Classification Error I     0.7935% 

I CBRL Result | ICM Result | MICM Result 

0.7508% 0.3113% 

where A^ is the mean difference between regions, and (P' is 
the noise power. The original data for the simulation study are 

given in Fig. 3(a). The AIC and MDL curves, as functions of the 
number of local clusters K, are plotted in Fig. 3(b). According 
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(a) (b) (c) (d) 

Fig. 5.   Examples of mass enhancement, (a) Original mammogram. (b) Enhanced mammogram. (c) and (d) Another original mammogram and its enhanced result. 

to the information theoretic criteria, the minima of these curves 
indicate the correct number of the local regions. From this ex- 
perimental figure, it is clear that the number of local regions 
suggested by these criteria are all correct. 

For the validation of image segmentation using CBRL, we 
apply the algorithm first to a simulated image. We use ML clas- 
sifier to initialize image segmentation, i.e., to initialize the quan- 
tified image by selecting the pixel label with largest likelihood 
at each node. The classification error after initialization is uni- 
formly distributed over the spatial domain as shown in Fig. 4(a). 
Our experience suggested this to be a very suitable starting point 
for contextual relaxation labeling [21]. The CBRL is then per- 
formed to fine tune the image segmentation. It should be em- 
phasized that the ground truth is knovra in this simulated ex- 
periment, the percentage of total classification error is used as 
the criterion for evaluating the performance of segmentation 
technique. In Fig. 4(a)-{d)> the initial segmentation by the ML 
classification and the stepwise results of three iterations in the 
CBRL are presented. In this experiment, algorithm initializa- 
tion results in an average classification error of 30%. It can 
be clearly seen that a dramatic improvement is obtained after 
several iterations of the CBRL by using local constraints de- 
termined by the context information. In addition, the conver- 
gence is fast as one can see, after the first iteration most of 
the misclassification are removed. We have also implemented 
two other independent and popular algorithms, namely, the it- 
erated conditional mode (ICM) and the modified iterated con- 
ditional mode (MICM) algorithms, so as to assess the compar- 
ative performance of the segmentation results among different 
approaches [21], [22]. The only assumption being made by these 
three methods is the Markovian property of the context images 
which can be well justified by the underlying cell oncology 
and pathology. We have applied these three algorithms to the 
same testing image and the corresponding classification errors 
are presented in Table II. The final percentage of classification 
errors for Fig. 4(d) is 0.7935%. From this experimental compar- 
ison, it can be concluded that three algorithms achieved com- 

TABLE in 
COMPUTED AICS FOR THE FGGM MODEL WITH DIFFERENT a 

K a = 1.0 a = 2.0 a = 3.0 a = 4.0 

2 651250 650570 650600 650630 

3 646220 644770 645280 646200 

4 645760 644720 645260 646060 

5 645760 644700 645120 646040 

6 645740 644670 645110 645990 

7 645640 644600 645090 645900 

8 645550(min) 64,4570(min] 645030(min) 645850(min) 

9 645580 644590 645080 645880 

10 645620 644600 645100 645910 

COMPUTED MDL 

TABLE 
SFORTHEFGGN 

IV 
I MODEL WITH D IFFERENT a 

K a = 1.0 a = 2.0 a = 3.0 a = 4.0 

2 651270 650590 650630 650660 

3 646260 644810 645360 646350 

4 645860 644770 645280 646150 

5 645850 644770 645280 646100 

6 645790 644750 645150 646090 

7 645720 644700 645120 645930 

8 6456S0(min) 644690(min) 645100(min) 645900(min) 

9 645710 644710 645140 645930 

10 645790 644750 645180 645960 

parable segmentation accuracy and the result produced by the 
MICM algorithm is most superior, though in terms of computa- 
tional complexity the CBRL algorithm is the least. It should be 
noticed that since in MICM algorithm an inhomogeneous con- 
figuration of the Markov random field is used, its superior per- 
formance is reasonable. 

On Model-Based Segmentation—Real Case Study: In the 
real case study, we used two information criteria (AIC and 
MDL) to determine K. Tables III and IV shows the AIC and 
MDL values with different K and a of the FGGM model based 
on one original mammogram. As it can be seen from Tables III 
and IV, although with different a, all AIC and MDL values 
achieve the minimum when K = 8. It indicates that AIC and 
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Fig. 6.   AIC and MDL curves with different number of region K. (a) Result based on the original mammogram, the optimal K = S. (b) Result based on the 
enhanced mammogram, the optimal K = 4. 

MDL are relatively insensitive to the change of a. With this 
observation, we can decouple the relation between K and a 
and choose the appropriate value of one while fixing the value 
of another. Fig. 6(a) and (b) are two examples of AIC and MDL 
curves with different K and fixed a = 3.0. Fig. 6(a) is based on 
the original mammogram and Fig. 6(b) is based on the enhanced 
mammogram. As we can see in Fig. 6(a), both criteria achieved 
the minimum when K = S.lt should be noticed that though no 
ground truth is available in this case, our extensive numerical 
experiments have shovra a very consistent performance of 
the model selection procedure and all the conclusions were 
strongly supported by the previous independent work reported 
by [14]. Fig. 6(b) indicates that K = 4is the appropriate 
choice for the mammogram enhanced by dual morphological 
operation. This is believed to be reasonable since the number 
of regions decrease after background correction. 

We fixed K -S, and changed the value of a for estimating 
the FGGM model parameters using the proposed EM algorithm 
with the original mammogram The GRE value between the his- 
togram and the estimated FGGM distribution was used as a mea- 
sure of the estimation bias. We found that GRE achieved a min- 
imum distance when the FGGM parameter a = 3.0 as shown in 
Fig. 7. The similar result was shown when we applied the EM 
algorithm to the enhanced mammogram with K = 4. This in- 
dicated that the FGGM model might be better than the FNM 
model (a = 2.0) in modeling mammographic images when 
the true statistical properties of mammograms are generally un- 
known, though the FNM has been most often chosen in many 
previous work [15]. 

After the determination of all model parameters, every pixel 
of the image was labeled to a different region (fi-om 1 to K) 
based on the CBRL algorithm. We then selected the brightest re- 

TABLE V 
COMPARISON OF SEGMANTATION ERROR RESULTING FROM NONCONTEXTUAL 

AND CONTEXTUAL METHODS 

Method    1 Soft Classification | Bayesian Classification    CBRL 

GRE Value |          0.0067          |              0.4406                0.1578 

gion, which corresponding to label K, plus a criterion of closed 
isolated area, as the candidate region of suspicious masses. Ac- 
cording to the visual inspections by the radiologists, when we 
useK-1 instead of isT, the results are over-segmented. For the 
case of using ii' + 1, the results are under-segmented. In order 
to quantify the performance differences between the different 
segmentation methods, several groups have suggested that the 
segmentation results may be compared against radiologists' out- 
lines of the lesions [3]. Though the proposed comparison mea- 
sures are quantitative, the performance measures are still quali- 
tative, since the reference base (e.g., gold standard by the radi- 
ologists) is qualitative, subjective, and imperfect. Therefore, in 
this model-supported approach, in addition to the visual inspec- 
tions by the radiologists, we have also introduced an objective 
measure, the GRE between the histogram of the pixel images 
PX(M) and the FGGM of the segmented image Px,\{u) to assess 
the performance of the segmentation, defined by 

GRE(px(w)||Px,i(w)) = Yl P''('^)loS 
PX(M) 

Px,i(w)) 
(27) 

where 1 is the context image estimated by the segmentation al- 
gorithm. Considering that the ergodic theorem is the most fim- 
damental principle in the detection and estimation theory, it is 
believed that when a good segmentation is achieved, the dis- 
tance between the px{u) and px, I(M) should be minimized and 
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240 

240 

Fig. 7.   Comparison of learning curves and histogram of the original mammogram with different a, fc = 8. The optimal a — 3.0. (a) a = 1.0, GRE = 0.0783. 
(b) (a) Q = 2.0, GRE = 0.0369. (c) a = 3.0, GRE = 0.0251. (d) a = 4.0, GRE = 0.0282. 

Fig. 8.   Suspected mass segmentation results based on the original mammogram. (b) Result based on the enhanced mammogram, if = 4, Q = 3.0. (c) and (d) 
Results based on another original mammogram and its enhanced image. 
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Fig. 9.   Examples of normal mixed fatty and glandular mammogram. (a) Original mammogram. (b) Segmentation result based on the original mammogram. (c) 
Enhanced mammogram. (d) Result based on the enhanced mammogram, k =A,a = 3.0. 

Fig. 10.   Examples of normal dense mammogram. (a) Original mammogram. (b) Segmentation result based on the original mammogram. (c) Enhanced 
mammogram. (d) Result based on the enhanced mammogram, fc = 4, a = 3.0. 

this measure links the image text and its sample averages. Our 
experience has suggested that this post-segmentation measure 
may be a suitable objective criterion for evaluating the quality 
of image segmentation in a fully unsupervised situation [22], 
[26]-[28]. Table V shows our evaluation data from three dif- 
ferent segmentation methods when applied to the real images. 

Performance of Combined Morphological Filtering and 
Model-Based Segmentation using a Larger Database: The 
proposed segmentation method was used to extract suspicious 
mass regions from the 200 testing mammograms. Without en- 
hancement, a total of 1142 potential mass regions were isolated 
including 114 of the 186 true masses. With enhancement, a total 
of 3143 potential mass regions were extracted including 181 of 
the 186 true masses. The results demonstrated that more true 
masses were picked up after enhancement although more false 
cases were also included. The undetected areas mainly occurred 
at the lower intensity side of the shaded objects or obscured by 
fibroglandular tissues that, however, were extracted on morpho- 

logical enhanced mammograms. In addition, when the margins 
of masses are ill defined, only parts of suspicious masses were 
extracted from the original mammograms. For the purpose of 
"lesion site selection," we believe that the sensitivity should be 
the sole criterion for the performance evaluation of the method. 
We have 181/186 versus 114/186. Our method is unsupervised 
and automatic and does not involve any detection effort at this 
moment. To our best knowledge, there is no objective criterion 
available for the evaluation of image enhancement performance 
before a detection effort is involved. We only claimed that the 
enhancement step is important and effective with respect to the 
purpose of "lesion site selection." 

Fig. 8 demonstrates some segmentation results based on the 
original and enhanced mammograms. We compared the seg- 
mentation results based on the enhanced mammogram {K = 
4, and a = 3.0) with those based on the original mammogram 
{K = 8, and a = 3.0) as shown in Fig. 8. Comparing the re- 
sults in Fig. 8(b) with those in Fig. 8(a), we can see that after 
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Fig. 11.   Comparison results of segmantation based on the enhanced mammograms. Black outHnes denote the computer-segmented result. White outlines denote 
ther radiologist-segmanted results. 

enhancement, a more accurate region was detected for the sus- 
pected mass which has ill-defined margin. Getting an accurate 
suspected region is a crucial issue since geometric features are 
extracted based on suspected regions and these features are very 
important for fiirther true mass detection. In addition, we ob- 
served that one suspected mass was missed in Fig. 8(a) but was 
detected in Fig. 8(b). As we have mentioned in Section I, none of 
the suspected masses should be missed in the segmentation step. 
Fig. 8(c) and (d) demonstrate the segmentation of a suspected 

mass that lies in dense breast tissue. As shovra in Fig. 8(c), the 
whole fibroglandular tissue area was segmented when based on 
the original mammogram. After enhancement, the suspected re- 
gion was segmented exactly as shown in Fig. 8(d). 

We have also included the segmentation results on the normal 
mammograms. Fig. 9 demonstrate the segmentation results 
based on the original and enhanced mixed fatty and glandular 
mammograms. Fig. 10 demonstrate the segmentation results 
based on the original and enhanced dense mammograms. We 
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would like to emphasize that the objective of this paper is 
to provide a segmentation technique which can enhance and 
extract potential mass site from the background so that the 
characterization of the related mass pattern can be accurately 
extracted in terms of focused feature selection and analysis. 
The method of course will produce many mass-like areas, but 
it will be a plausible outcome since the accurate description of 
nonmass cases characterized by mass-like sites will benefit the 
follow-on detection step where the performance of the classifier 
depends on an accurate separation of mass and nonmass in the 
featured spaces. The details will be described in [29]. 

For the purpose of evaluating the performance of the segmen- 
tation method, we used both simulated studies and expert visual 
inspection to validate the methods and results. The radiologist 
has concluded that the lesion characteristics after the proposed 
enhancement have been better displayed and all possible lesion 
areas have been successfully identified. In addition to the vi- 
sual inspection, we have measured the overlap between the com- 
puter-segmented and the radiologist segmented mass regions to 
evaluate our method. Fig. 11 shows the comparison results of 
segmentation based on the enhanced mammograms. Fig. 11 in- 
cludes 60 benign and malignant mass patches which were cut 
from the whole mammograms after the segmentation. The white 
outline was drawn by the radiologist while the black outline was 
produced by the computer and was superimposed upon the orig- 
inal image. As we can see from Fig. 11, for most of cases, the 
ratio of mutual overlap area of the radiologist segmented mass 
region and the computer-segmented mass region to the radiol- 
ogist segmented mass area is large than 50%. In addition, even 
the poorest result picked the true lesion in the correct location 
and depicted the characteristics of the mass reasonably. It is un- 
portant to understand that "lesion area segmentation" is not our 
objective, so there is no "best" or "worst" segmentation results. 
Our objective is "lesion site selection" with a possible highest 
sensitivity through a global unsupervised enhancement and seg- 
mentation scheme. 

V. CONCLUSION 

In this paper, we propose a combined method of using mor- 
phological operations, a FGGM modeling, and a CBRL to en- 
hance and segment various breast tissue textures and suspicious 
mass lesions from mammographic images. This phase is a cru- 
cial step in mass detection for an improved CAD. We empha- 
sized the importance of model selection which includes the se- 
lection of the number of image regions K and the selection of 
FGGM kernel shape controlled by a. The experimental results 
indicate that the suspected masse sites selection can be affected 
by different K and a. We proposed the EM algorithm together 
with the information theoretic criteria to determine the optimal 
Kanda. With optimal K and a, the segmentation results can be 
significantly improved. We also showed that with the proposed 
pattern-dependent enhancement algorithm using morphological 
operations, the subtle masses can be segmented more accurately 
than those when the original image is used for extraction without 
enhancement. To summarize, the morphological filtering en- 
hancement combined with the stochastic model-based segmen- 
tation is an effective way to extract mammographic suspicious 

patterns of interest, and thereby may facilitate the overall per- 
formance of mammographic CAD of breast cancer. 
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Computerized Radiographic Mass Detection—Part II: 
Decision Support by Featured Database Visualization 

and Modular Neural Networks 
Huai Li, Yue Wang, K. J. Ray Liu*, Shih-Chung B. Lo, and Matthew T. Freedman 

Abstract—Based on the enhanced segmentation of suspicious 
mass areas, further development of computer-assisted mass detec- 
tion may be decomposed into three distinctive machine learning 
tasks: 1) construction of the featured Iinowledge database; 2) map- 
ping of the classified and/or unclassified data points in the data- 
base; and 3) development of an intelligent user interface. A decision 
support system may then be constructed as a complementary ma- 
chine observer that should enhance the radiologists performance in 
mass detection. We adopt a mathematical feature extraction pro- 
cedure to construct the featured knowledge database from all the 
suspicious mass sites localized by the enhanced segmentation. The 
optimal mapping of the data points is then obtained by learning the 
generalized normal mixtures and decision boundaries, where a is 
developed to carry out both soft and hard clustering. A visual ex- 
planation of the decision making is further invented as a decision 
support, based on an interactive visualization hierarchy through 
the probabilistic principal component projections of the knowledge 
database and the localized optimal displays of the retrieved raw 
data. A prototype system is developed and pilot tested to demon- 
strate the applicability of this framework to mammographic mass 
detection. 

Index Terms—Feature extraction, knowledge database, mass de- 
tection, neural network, visual explanation. 

I. INTRODUCTION 

IN ORDER to improve mass lesion detection and classifi- 
cation in clinical screening and/or diagnosis of breast can- 

cers, many sophisticated computer-assisted diagnosis (CAD) 
systems have been recently developed [1]-[10]. Although the 
clinical roles of the CAD systems may still be debatable, the 
fiindamental role should be complementary to the radiologists' 
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Fig. 1.   Major components in CAD. 

clinical duties, where the pathways of achieving ultimate perfor- 
mance enhancement taken by the machine observer and human 
observer may not necessarily be close. For example, CAD sys- 
tems may attack the tasks that the radiologists cannot perform 
well or find difficult to perform. Because of generally larger size 
and complex appearance of masses, especially the existence of 
spicules in malignant lesions, as compared with microcalcifi- 
cations, feature-based approaches are largely adopted in many 
CAD systems [1H4], [6], [7]. Kegelmeyer has first reported 
promising results for detecting spiculated tumors based on local 
edge characteristics and Laws texture features [7]. Zwiggelaar 
et a/, developed a statistical model to describe and detect the 
abnormal pattern of linear structures of spiculated lesions [1]. 
Karssemeijer et al [2] proposed to identify stellate distortions 
by using the orientation map of line-like structures. Petrick et 
al presented to reduce the false positive detection by combining 
the breast tissue composition information [4]. Zhang et al. used 
the Hough spectrum to detect spiculated lesions [6]. 

Although many previously proposed approaches have led 
to impressive resuhs [l]-[5], [7], several fundamental issues 
remain unresolved in the application of CAD systems. Fig. 1 
shows a general block diagram of CAD systems. Previous 
research has demonstrated that: 1) breast cancer is missed on 
mammograms in part because the optical density and contrast 
of the cancer is not optimal for human observer; 2) com- 
puter-based detection appears to be more affected by different 
criteria than human perception; 3) the challenges and pathways 
to the human or machine observers may be quite different, and 
4) decision making by the CAD systems are largely not trans- 
parent to the user. For example, the training cases contributing 
to the database are often selected by the human observer 
while the featured knowledge database is constructed through 
mathematical pathways of feature extraction. The mismatch 
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between the human supervised case selection in training and 
the machine dominant mass candidates selection in testing 
may exist. Second, the featured knowledge database is often 
high-dimensional with complex internal structures. Imposing 
a heuristically designed neural network for learning from the 
training data set may prevent a correct identification of the 
intrinsic data structure and an accurate estimation of the class 
boundaries. There may also exist the mismatch between the 
data structure and classifier architecture or between the class 
boundaries and decision boundaries. Furthermore, since the 
machine observer and hviman observer may not detect the same 
set of masses, the "black box" nature of most CAD systems to 
the clinical users will prevent a natural on-line integration of 
human intelligence and further upgrade of a CAD system. An 
interactive user interface should be considered to leverage the 
complementary roles of the CAD in the clinical practice. 

As a step toward improving the performance of a CAD 
system, we have put considerable efforts to conduct various 
studies and develop reliable image enhancement and lesion se- 
lection techniques. The methods and results have been reported 
in [24], where the purposes of the research were to localize the 
potential mass sites and help accurate feature extraction. This 
paper addresses the further development of computer-assisted 
mass detection based on the 1) construction of the featured 
knowledge database; 2) mapping of the classified and/or un- 
classified data points in the database; and 3) development of an 
intelligent user interface (lUI). The clinical goal is to eliminate 
the false positive sites that correspond to normal dense tissues 
with mass-like appearances through featured discrimination. 
We adopt a mathematical feature extraction procedure to con- 
struct the featured knowledge database from all the suspicious 
mass sites localized by the enhanced segmentation. The optimal 
mapping of the data points is then obtained by learning the 
generalized normal mixtures and decision boundaries, where a 
probabilistic modular neural network (PMNN) is developed to 
carry out both soft and hard clustering. A visual explanation of 
the decision making is further invented as a decision support 
tool, based on an interactive visualization hierarchy through the 
probabilistic principal component projections of the knowledge 
database and the localized optimal displays of the retrieved raw 
data. The motivation of this work comes from the following 
considerations. First, though both human and machine ob- 
servers use the same set of raw data in the diagnostic stage, the 
construction of the knowledge database for training machine 
classifiers and that accomplished by human brains are indeed 
different. Thus, the knowledge database should be established 
with both machine and expert organized representative cases. 
Second, a quantitative understanding of the knowledge database 
used by the machine observer should be acquired to logically 
compare and/or predict the performance of CAD systems with 
respect to the human observers without possible under- or 
over-estimation, and to optimize the feature extraction and 
design of the machine learner for best final performance. 
Finally, since the human and machine observers indeed take 
different learning and intelligence pathways, an lUI should be 
developed to visually (e.g., transparently) explain the entire 
internal decision making process of the CAD system to the 
human observer to enhance the clinical decision when facing 
either consistent or conflicting opinions. 

The major differences between our work and the previous 
work [IHIO] are as follows. 

1) We construct a knowledge database by combining both 
expert and machine selected cases where the assignment 
of class memberships (e.g., mass and nonmass classes) is 
supervised by the radiologists or pathological report after 
all the cases are collected. 

2) We impose a model identification procedure to determine 
the optimal number and kernel shape of the local clus- 
ters within each of the two classes in a high-dimensional 
feature space. The model is then estimated using the ex- 
pectation-maximization (EM) algorithm and information 
theory. 

3) We develop a PMNN, which is considered as a nonlinear 
classifier, to carry out the mapping function of the knowl- 
edge database. In the knowledge database, the decision 
likelihood boundaries and the class prior probabilities are 
determined in a separate fashion, and the structure of 
PMNN is optimized by adapting to the database structure. 

4) We derive a probabilistic principal component projection 
scheme to reduce the dimensionality of the feature space 
for natural human perception. The scheme leads to a hi- 
erarchical visualization algorithm allowing the complete 
data set to be analyzed at the top level, with best separated 
clusters and subclusters of data points analyzed at deeper 
levels. 

The framework of the proposed method for mass detection is 
illustrated in Fig. 2. A detailed description of this paper is orga- 
nized as follows. In Section II, the procedure of the knowledge 
database construction is described. The data mapping process 
for decision making is presented in Section III. Section IV 
presents the design of the lUI for the CAD systems. Finally, 
major results and discussions are summarized in Section V. 

II. KNOWLEDGE DATABASE CONSTRUCTION 

Given the available information contained in the raw data of 
mass sites and in order to establish machine intelligence carried 
out by various machine observers, a knowledge database may 
be constructed in a multidimensional feature space. It should be 
emphasized however that the knowledge acquired by the human 
brain uses much more sophisticated processes than the artificial 
systems. Though feature extraction has been a key step in most 
pattern analysis tasks, the mathematical procedures are often 
done intuitively and heuristically. The general guidelines are: 

1) Discrimination: Features of patterns in different classes 
should have significantly different values. 

2) Reliability: Features should have similar values for the 
patterns of the same class. 

3) Independence: Features should not be strongly correlated 
to each other. 

4) Optimality: Some redundant features should be deleted. 
A small number of features is preferred for reducing the 
complexity of the classifier. 

Many usefiil image features have been suggested previously 
by both image processing and pattern analysis communities 
[11]-[13]. These features can be divided into three categories, 
namely, intensity features, geometric features, and texture 
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Fig. 2.   The flow diagram of mass detection in digital mammograms. 

features, whose values are calculated from the pixel matrices 
of the regions of interest (ROIs). Though these features are 
mathematically well defined, they may not be complete since 
they cannot capture all of the capable aspects of human per- 
ception nature. Thus, in this study, we have included several 
additional expert-suggested features to reflect the radiologists' 
experience. The typical features are summarized in Table I, 
where Fig. 3 shows the raw image of corresponding featured 
sites. 

The joint histogram of the feature point distribution extracted 
from true and false mass regions are investigated, and the fea- 
tures that can better separate the true and false mass regions 
are selected for further study. Our experience has suggested that 
three features, i.e., the site area, two measured compactness (cir- 
cularity), and difference entropy, were having better discrimi- 
nation and reliability properties. Their definitions are given as 
follows. 

TABLE I 
THE SUMMARY OF MATHEMATICAL FEATURES 

Feature Sub-Space Features 
A. Intensity Features 1. contrast measure of ROIs; 

2. standard derivation inside ROIs; 
■i. mean gradient of ROIs boundary 

B. Gfiometric Features 1. area measiure; 
2. circularity measure; 
■i. deviation of the normalized radial length; 
'1. boundary roughness; 

C. Texture Features 1. energy measure; 
2. correlation of co-occurrence matrix; 
3. inertia of co-occurrence matrix; 
4. entropy of co-occurrence matrix; 
5. inverse difference moment; 
6. sum average; 
7. sum entropy; 
S. difference entropy; 
9. fractal dimension of surface of ROI; 

1) Compactness 1 

Ci- (1) 

where A is the area of the actual suspected region, and 
A\ is the area of the overlapped region of A and the ef- 
fective circle A^, which is defined as the circle whose area 
is equal to A and is centered about the corresponding cen- 
troid of A. 

2) Compactness 2 

3) Difference Entropy 

L 

DHd, 9 = - X^ Px-y{k) logPx-j,(fc) (3) 

where 

L-l 

fc=0 

C2 
47rA 

(2) 

where P is the boundary perimeter, and A is the area of 
region. 

L-l L-l 

p^-y{k) = X) E P'^'^^^' ^^'    I* ~ ■^l ^ ^-        ^"^^ 
i=0  j=0 

Several important observations are worth reiteration: 
1) The knowledge database that will be used by the CAD 

system are constructed from the cases selected by both 
lesion localization procedure and human expert's experi- 
ence. This joint set provides more complete knowledge to 
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Fig. 3.   One example of mass segmentarion and boundary extraction, (a) Mass 
patch; (b) segmentation; (c) boundary extraction. 

the machine observer. In particular, during the interactive 
decision making, CAD system can still provide opinion 
when the cases are missed by the localization procedure 
but presented to the system by the radiologists. 

2) The knowledge database is defined quantitatively in a 
high dimensional feature space. It provides not only the 
knowledge for training the machine observer, but also an 
objective base for evaluating the quality of feature extrac- 
tion or network's learning capability, and the on-line vi- 
sual explanation possibility. 

3) The assignment of the cases' class memberships (e.g., 
mass and nonmass classes) is supervised by the radiolo- 
gists or pathological reports. A complete knowledge data- 
base includes three subsets: raw data of mass-like sites, 
corresponding feature points, and class membership la- 
bels. 

III. DATA MAPPING FOR DECISION MAKING 

The decision making support by a CAD system addresses the 
problem of mapping a knowledge database, given a finite set 
of data examples. The mapping fimction can therefore be inter- 
preted as a quantitative representation of the knowledge about 
the mass lesions contained in the database [14]. Instead of map- 
ping the whole data set using a single complex network, it is 
more practical to design a set of simple class subnets with local 
mixture clusters, each one of which represents a specific region 
of the knowledge space. Inspired by the principle of divide-and- 
conquer in applied statistics, PMNN has become increasingly 
popular in machine learning research [14], [15], [19]-[22]. In 
this section, we present its applications to the problem of map- 
ping from databases in mass detection, with a constructive cri- 
terion for designing the network architecture and the learning 
algorithm that are governed by information theory [25]. 

A. Statistical Modeling 

The quantitative mapping of a database may be decomposed 
into three distinctive learning tasks: the detection of the struc- 
ture of each class model with local mixture clusters; the estima- 
tion of the data distributions for each induced cluster inside each 
class; and the classification of the data into classes that realizes 
the data memberships. Recently, there has been considerable 
success in using finite mixture distributions data mapping [15], 
[17], [18], [20]. Assume that the data points f »in a multidimen- 
sional database come fi-om M classes {wi, ..., w^ • • • > ^M}. 

and each class contains Kr clusters {9i, ...,9k, ■■■j^ ^K^}, 
where ujr is the model parameter vector of class r, and 9k is the 
kernel parameter vector of cluster k within class r. The class 
conditional probability measure for any data point inside the 
class r, i.e., the standard finite mixture distribution (SFMD), can 
be obtained as a sum of the following general form: 

Kr 

f{u\Qr) - ^ 7rfcC?(u|^fc) (5) 
fc=i 

where TT^ = P{9k\'^r) with a summation equal to one, and 
g{u\9it) is the kernel fimction of the local cluster distribution. 
For the model of global class distributions, we denote the 
Bayesian prior for each class by P{wr)- Then the suflFicient sta- 
tistics according to the Bayes' rule, are the posterior probability 
P{ijJr\xi) given a particular observation Xi 

P{uJr)f{xi\uJr) 
P{C3r\Xi) 

p{Xi) 
(6) 

where p(xi) = Er=i ^('*''-)/(^t|wr)- 

B. Class Distribution Learning 

Class distribution learning addresses the combined estima- 
tion of regional parameters {-Kk, H) and detection of the struc- 
tural parameter Kr and the kernel shape ofg{-) in (5) based on 
the observations x^. One natural criterion used for learning the 
optimal parameter values is to minimize the distance between 
the SFMD, denoted by fr{u), and the class data histogram, de- 
noted by /xr(w) [17]. In this paper, we use relative entropy 
(KuUback-Leibler distance), suggested by information theory 
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[25], as the distance measure (for simplicity we use fr{u) to 
denote /(w|w,.) in our formulation), given by 

^(/xJ|/.) = E/-(«)l0g^ 
f{u\Qr) ' 

(7) 

We have previously shown that when relative entropy is used as 
a distance measure, the distance minimization method is equiv- 
alent to the soft-split classification-based method under the cri- 
terion of maximum likelihood (ML) [23]. 

Another important issue concerning unsupervised distribu- 
tion learning is the detection of the structural parameters of 
the class distribution, called model selection [15]. The objec- 
tive here is to propose a systematic strategy for determining the 
optimal number and kernel shape of local clusters, when the 
prior knowledge is not available. This is indeed the case when 
the structure of the mass lesion patterns for a particular type of 
cancer may be arbitrarily complex, so correct identification of 
the database structure is very important. Thus, it will be desir- 
able to have a neural network structure that is adaptive, in the 
sense that the number and kernel shape of local clusters are not 
fixed beforehand. In this paper, we applied two popular infor- 
mation theoretic criteria, i.e., the Akaike information criterion 
and minimum description length to guide the model selection 
procedure [24]. 

As the counterpart for adaptive model selection, there are 
many numerical techniques to perform ML estimation of cluster 
parameters [17]. For example, EM algorithm first calculates the 
posterior Bayesian probabilities of the data through the observa- 
tions and the current parameter estimates (S-step) and then up- 
dates parameter estimates using generalized mean ergodic the- 
orems (M-step). The procedure cycles back and forth between 
these two steps. The successive iterations increase the likelihood 
of the model parameters. The scheme provides winner-takes-in 
probability (Bayesian "soft") splits of the data, hence allowing 
the data to contribute simultaneously to multiple clusters. For 
the sake of simplicity, we assume the kernel shape of local clus- 
ters to be a multidimensional Gaussian with mean pikr and vari- 
ance Ffcr- We summarize the EM algorithm as follows. 

1) E-Step: for training sample f^*\ * = 1, • • •, N, compute 
the probabilistic membership 

(t) = 

2) M-Step: compute the updated parameter estimates 

-t^^'-^t^tM 

(8) 

(9) 
t=\ 

N 

Mir^^Tr^E/'i"'^-^'^ (10) 
NTT: kr t=l 

N 

kr f=l 

x[f(')_4^+i)]^ 

C. Decision Boundary Learning 

The objective of data classification is to realize the class 
membership hr for each data points based on the observation 
Xi and the class statistics {P(w,.), f{u\ujr)}- It is well known 
that the optimal data classifier is the Bayes classifier since 
it can achieve the minimum rate of classification error [26]. 
Measuring the average classification error by the mean squared 
error E, many previous researchers have shown that minimizing 
E by adjusting the parameters of class statistics is equivalent to 
directly approximating the posterior class probabilities when 
dealing with the two class problem [13], [26]. In general, for the 
multiple class problem the optimal Bayes classifier (minimum 
average error) classifies input patterns based on their posterior 
probabilities: input Xi is classified to class Wr if 

P{Qr\Xi) > P{i3j\Xi (12) 

(11) 

for all j ^ r. It should be noted that in the formulation of classi- 
fier design, the optimal criterion used for the fiiture data classi- 
fication has been intuitively and directly applied to the learning 
of class statistics fi-om the training data set. 

Direct learning of posterior probability is a complex task. 
Great effort has been made in designing the classifier as an 
estimator of the posterior class probability [19]. By closely in- 
vestigating the global class distribution modeling, we found that 
the classifier design for data classification can be dramatically 
simplified at the learning stage. Revisit (6), since the class prior 
probability /'(wr) is a known parameter when a supervised 
learning is applied, the posterior class probability P{iJJr \xi) can 
be obtained without any fiirther effort. Thus, by conditioning 
PiiSr), the problem is formulated as a supervised classification 
learning of the class conditional likelihood density f{u\ijr)- 
Thus, an efficient supervised algorithm to learn the class 
conditional likelihood densities called the "decision-based 
learning" [21] is adopted in this paper. The decision-based 
learning algorithm uses the misclassified data to adjust the den- 
sity fimctions /(«|wr), which are initially obtained using the 
imsupervised learning scheme described previously, so that the 
minimum classification error can be achieved. Define the rth 
class discriminant fimction 4'r{xi, w) to be P(wr)/(^i|wr)- 
Given a set of training patterns X = {£,; i = 1, 2, ..., M}. 
The set X is fiirther divided into the "positive training set" 
X+ = {xi\ Xi € CJr, i — Ij 2, ..., N} and the "negative 
training set" X- - {xi\ xt ^Wr,i = iV-M, N+ 2, ..., M}. 
If the misclassified training pattern is fi-om positive training 
set, reinforced learning will be applied. If the training pattern 
belongs to the negative training set, we anti-reinforce the 
learning, i.e., pull the kernels away fi^om the problematic 
regions. The boundary refinement is summarized as follows: 

Reinforced 

Learning: w^+^^ = w(>) + r)l'id{t))V<l>{x{t), w) 

Antireinforced 

Learning: w^+^'> = w^^^ - Til'{d{t))V<p{x{t), w) 
(13) 

PMNN is a probabilistic modular network designed espe- 
cially for data classification where a Bayesian decomposition of 
the learning process provides a unique opportunity to optimize 
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Fig. 4.   The structure of the PMNN. 

the Structure of training scheme [14], [22]. Since the information 
about class population is, in general, physically uncorrelated 
with the conditional features about the individual class, a decou- 
pled two-step training, in terms of both network structure and 
learning rule, makes much more sense than that in the conven- 
tional posterior-type neural networks, i.e., the conditional like- 
lihood of each class and the class Bayesian prior should be ad- 
justed separately in the classification spaces. Thus, PMNN con- 
sists of several disjoint subnets and a winner-takes-all network. 
The subnet outputs of the PMNN are designed to model the like- 
lihood functions (likelihood-type network) which are first esti- 
mated fi-om equally presented class samples, and the final de- 
cision boundaries are determined simply weighting the likeli- 
hood by the class populations. For a M-classification problem, 
PMNN contains M different class subnets, each of which rep- 
resents one data class in the database. Within each subnet, sev- 
eral neurons (or clusters) are applied in order to handle prob- 
lems which have complicated decision boundaries. The outputs 
of class subnets are fed into a winner-take-all network. The 
winner-take-all network categorizes the input pattern to the data 
class whose subnet produces the highest output value. 

The structure of the PMNN used in this study is shown in 
Fig. 4. The PMNN consists of two subnets. Within each subnet, 
there are several neurons (or clusters). The outputs of class sub- 
nets are fed into a probability winner processor, which catego- 
rizes the input pattern to the data class whose subnet produces 
the highest probability value. The training scheme of the PMNN 
is based on the unsupervised learning. Each subnet is trained 
individually, and no mutual information across the classes may 
be utilized. In our study, one modular expert is trained to de- 
tect true masses, and the other is trained to detect false masses. 
After training, the feature vectors extracted fi-om ROIsub are 
entered to this network to classify true or false masses. In both 
training and testing processes, we assume that the feature vec- 
tors Xi in class r (r = 1, ..., M) is a mixture of multidimen- 
sional Gaussian distributions, i.e., 

f{Xi\Qr) = Yl T^krPkiXiluJr) (14) 
k=l 

where ^fl^ iTkr = 1 and Pfc(wr) - N{ilkr, ^kr) is a multi- 
dimensional Gaussian distribution within cluster k of class r. 

IV. INTERACTIVE VISUAL EXPLANATION 

In order to improve the utility of the CAD systems in clinical 
practice, an lUI is highly desired. Different fi-om many previ- 
ously proposed approaches, we have organized our database 
fi-om both mathematical-localized and radiologist-selected 
mass-like cases, and formed the featured knowledge database 
based on both mathematical-based and radiologist-selected 
image features. This off-line effort should enhance the per- 
formance of the machine observer through better quality of 
training set and optimal design of neural network architecture. 
Our experience has suggested, however, that fiirther improve- 
ment of CAD systems requires on-line natural integration of 
human intelligence with the computer' output, since human 
perception has and can play an important role in the clinical 
decision making. In this research, we have pilot developed an 
lUI where the major fiinctions include: 1) interactive visual 
explanation of the CAD decision making process; 2) on-line 
retrieval of the optimally displayed raw data and/or similar 
cases; and 3) supervised upgrade of the knowledge database by 
radiologist-driven input of the "unseen" and/or "typical" cases. 
Our preliminary studies have shown that the visual presentation 
of both raw data and CAD resuhs to radiologists may provide 
visual cues for improved decision making. 

As a step toward understanding the complex information 
from data and relationships, structural and discriminative 
knowledge reveals insight that may prove usefiil in data 
mining. Hierarchical minimax entropy modeling and proba- 
bilistic principal component projection are proposed for data 
explanation, which is both statistically principled and visually 
effective at revealing all of the interesting aspects of the data 
set. The methods involve multiple use of standard finite normal 
mixture models and probabilistic principal component projec- 
tions. The strategy is that the top-level model and projection 
should explain the entire data set, best revealing the presence 
of clusters and relationships, while lower-level models and 
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projections should display internal structure within individual 
clusters, such as the presence of subclusters and attribute trends, 
which might not be apparent in the higher-level models and 
projections. With many complementary mixture models and 
visualization projections, each level will be relatively simple 
while the complete hierarchy maintains overall flexibility yet 
still conveys considerable structural information. In particular, 
a probabilistic principal component neural network is devel- 
oped to generate optimal projections, leading to a hierarchical 
visualization algorithm. This algorithm allows the complete 
data set to be analyzed at the top level, with best separated 
subclusters of data points analyzed at deeper levels. 

Research evidence suggests that for analysis of complex and 
high-dimensional data sets, structure decomposition and dimen- 
sionality reduction are the natural strategies in which the model- 
based approach and visual explanation have proven to be pow- 
erfial and widely-applicable [27]. However, there is a trade-off 
between maximizing (structure decomposition) and minimizing 
(dimensionality reduction) the entropy of the system. In this 
research, a minimax entropy approach is adopted through the 
use of progressive model identification and principal compo- 
nent projection. The complete visual explanation hierarchy is 
generated by performing principal projection (dimensionality 
reduction) and model identification (structure decomposition) 
in two iterative steps using information theoretic criteria, EM al- 
gorithm, and probabilistic principal component analysis (PCA). 
Hierarchical probabilistic principal component visualization in- 
volves: 1) evaluation of posterior probabilities for mixture data 
set; 2) estimation of multiple principal component axes fi-om 
probabilistic data set; and 3) generation of a complete hierarchy 
of visual projections. 

Suppose the data space is rf-dimensional with coordinates 
j/i, ..., yd and the data set consists of a set of d-dimensional 
vectors {t,} where i = 1, ..., N. Now consider a three-di- 
mensional (3-D) latent space :x. = [xi, X2, xs)^ together with 
a linear function which maps the latent space to the data space by 
y — Wx+b where W is a rfx 3 matrix and b is a rf-dimensional 
mean vector. If we introduce a probability distribution p(x) over 
the latent space given by a Gaussian estimated from the latent 
variables {xj}, then a similar fiiU-dimensional Gaussian distri- 
bution in data space can be defined by convolving this distri- 
bution with a general diagonal Gaussian conditional probability 
distributionp(t|x, A^) in data space where A^ is the covariance 
matrix, resulting in a final form of 

p(t) = y"p(t|x)p(x)rf> (15) 

where the log likelihood function for this model is given by L = 
J^^ logp(ti). Suppose W is determined by the PCA, ML can be 
used to fit the model to the data and hence determine values for 
the parameters b and Ad [27]. Using a soft clustering of the data 
set and multiple PCAsub corresponding to the clusters, a mix- 
ture of latent models takes the form of p(t) = J2k=i ^^kPiMk) 
where KQ is the number of components in the mixture, and the 
parameters itk are the prior probabilities corresponding to the 
components p{t\k). Each component is an independent latent 
model with PCA projection W/t and parameters bj, and A^k- 
This procedure can be further extended to a hierarchical mix- 
ture model formulated by p(t) — J2k=i ^k Si ''■j|fcp(t|fc, j) 

Fig. 5.   The hierarchical view of computed features for mass and nonmass 
samples (Database A, see Table II). 

where 23(t|fc, j) again represent independent latent models [27]. 
With a soft partitioning of the data set via EM algorithm, data 
points will effectively belong to more than one cluster at any 
given level. This step is automatically available in our approach 
since the estimation of parent latent model involves the calcula- 
tion of posterior probabilities denoted by Zik. Thus, the effective 
input values are ZifcXj for an independent visualization space 
k, corresponding to the visualization space k in the hierarchy. 
It should be emphasized that probabilistic means both neural 
network based learning and posterior probability weighted in- 
puts. Further projections can again be performed by using the 
effective input values ZikZjikU for the visualization subspace 
j. Fig. 5 shows the hierarchical view of computed features for 
mass and nonmass samples. In Fig. 5, a hierarchical visualiza- 
tion view of a high dimensional feature data set was gener- 
ated using hierarchical data visualization algorithm. One hun- 
dred and 25 real cases were involved, among them 75 are mass 
sites, 50 are nonmass sites. Nine features were computed on 125 
cases. The dimension of the resulted feature data set became 125 
X 9 (Database A, see Table II). Hierarchical visualization tool 
enables the visualization of high dimensional data set through 
dimension reduction and data modeling so that data distribution 
features of the data set can be well recognized. For instance, the 
clusters and subclusters of mass and nonmass data points and the 
boundaries of the clusters can be revealed for fiirther research 
purpose. 

In the use of a hierarchical minimax entropy mixture model, 
an interactive visualization environment is required to enable a 
flexible computerized experiment such that a human-database 
interaction can be performed effectively. We have developed an 
interactive environment for visualizing five-dimensional (5-D) 
data sets, based on state-of-the-art computer graphics toolkits 
such as object-oriented OpenGL and Openlnventor. With a 
sophisticated set of various kinds of simulated lights, color 
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TABLE  II 
THE SUMMARY OF EXPERIMENTAL DATABASES 

Database Descriptions 

A Nine features extracted from 75 mass sites and 50 non-mass sites. Used for 
visualizing hierarchically projected high dimensional feature space. 
Result is presented in Figure 5. 

B A simulated two-dimensional feature space. Used to show the eflfect of 
model selection on decision boundary estimation. Result is shown in Figure 6. 

C ORL standard database. Used to show the improvement of PMNN with 
decision-based learning. Result is discussed in the text. 

D The training data set consisting of 50 mammograms, with 50 true mass sites 
and 50 false mass sites. Three most discriminatory features are extracted. Used 
for both PMNN training and visuaUzation. Result is given in Figure 7. 

E The testing data set consisting of 46 mammograms, with 23 normal cases 
and 23 biopsy proven mass cases with each of them having at le.ist one 
true mass site. Three most discriminatory features, the same 
as database D, are extracted. Used to test the overall performance of 
our CAD system prototype where the mass candidates were selected using 
the method reported in Part I, automatically. Result 
is shown in Figure 8 and also discussed in the text. 

texturing editors, and 3-D manipulator and viewers (we have 
integrated 3-D mouse and stereo glass units into our existing 
system), our system allows one to examine the volumetric 
data sets with any viewpoint and dynamically walk through its 
internal structures to better understand the spatial relationships 
among clusters and decision surfaces present. One of the most 
important features in our approach is to attach the decision sur- 
face to the 3-D probability cloud in support of decision making, 
and to link each data point in the visualization space to its raw 
data so that the user can on-line retrieve the corresponding raw 
data such as an original image for interim decision making. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, we present the experimental results using the 
information theoretic criteria and PMNNs to generate the map- 
ping function of the featured database, and the preliminary re- 
sults using the hierarchical minimax entropy projections to con- 
duct visual explanation of the decision making. For the valida- 
tion of the database mapping using the proposed algorithms, 
global relative entropy (GRE) value between the (SFMD)and 
the joint histogram is used as an objective measure to evaluate 
the fitness of the mapping function. A summary of the databases 
we used in our study is presented in Table II. 

As we have discussed in Sections III and IV, model selection 
is the first and a very important learning task in mapping a 
database and the objective of the procedure is to determine 
both the number and the kernel shape of local clusters in each 
class. This procedure is used not only in the data mapping for 
decision making but also in the structure decomposition for 
hierarchical visual explanation. Our experience has suggested 
that an incorrect model selection will affect the performance 
of data-classification based decision making. For the sake of 
simplicity, we discuss this conclusion in the following 2-D 
example. Let us form a simulated featured database with two 
major features that well characterize the two targeted classes, 
as it shown in Fig. 6 (Database B, see Table II). The ground 
truth is that class 1 contains only one local cluster while class 2 
contains two local clusters. With a model selection procedure 

using the proposed criteria, the intrinsic data structure was 
correctly identified. According to the principle of designing the 
optimal structure of PMNN and visual explanation hierarchy, 
the result of these criteria also determines the most appropriate 
number of mixture components in the corresponding PMNN 
and projected cluster decomposition. Two PMNN with different 
architecture orders were designed and trained to determine 
the classification boundaries between the two classes. The 
classification results are shown in Fig. 6(a) and (b). The result 
in Fig. 6(a) is with the right cluster number in Class 2, while 
the result in Fig. 6(b) is with the vreong cluster number in 
Class 2. From this simple experiment, we have shown that 
the decision boundary with the right cluster number may be 
much more accurate than that with heuristically determined 
cluster number, since the decision boundary between class 1 
and class 2 will be determined by four cross points in the first 
case while in the second case the decision boundary will be 
determined by only two cross points. It should be emphasized 
that the error of data classification is theoretically controlled 
by the accuracy in estimating the decision boundaries between 
classes, and the quality of the boundary estimates is indeed 
dependent upon the correct structure of the class likelihood 
function. 

As we have discussed before, although the knowledge 
database contains both machine-localized and human-selected 
cases, in clinical settings "unseen" and/or subtle cases con- 
tribute the major false positives. We have also pilot tested the 
PMNN method to the so-called "M -|- 1 classes" problem, 
in which the disease pattern under testing could be either 
from one of the M classes, or from some other unknown 
classes (the "unknown" class or the "intruder" class). Note that 
the unknown class probability is often very hard to estimate 
because of the lack of sufficient training samples (for example, 
in the mass detection problem, the unknown classes include the 
ROIsub over the normal tissues). In our experiment, PMNN 
uses different decision rule fi-om that of the "M classes" 
problem: pattern fj belongs to class r if both of the following 
conditions are true: a) <A(wr, ^i) > 4>{'JJj, ^i), Vj ^ r, and b) 
cf>{wr, Xi) > r. r is a threshold obtained by decision-based 
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Fig. 6.   The classification examples witli a two-dimensional (2-D) simulated database (Dabase B, see Table II). (a) Class 2 contains two local clusters, (b) Class 
2 contains one local cluster. 

learning. Otherwise pattern Xi belongs to the unknown class. 
We observed consistent and significant improvement in classifi- 
cation results compared with the pure Bayesian decision. Using 
the ORL (Olivetti Research Laboratory, Cambridge, U.K.) 
standard database (Database C, see Table II), our experience 
has shown an increase of correct detection rate from 70% to 
90% [14]. 

In the third experiment, we use the proposed classifier to dis- 
tinguish true masses from false masses based on the features 
extracted from the suspected regions. The objective is to reduce 
the number of suspicious regions and identify the true masses. 
150 mammograms, each of them contains at least one mass 
case of varying size and location, were selected in our study. 
The areas of suspicious masses were identified following the 
proposed procedure with biopsy proven results. Fifty mammo- 
grams with biopsy proven masses were selected from the 150 
mammograms for training (Database D, see Table II). The mam- 
mogram set used for testing contained 46 single-view mam- 
mograms: 23 normal cases and 23 with biopsy proven masses 
(Database E, see Table II) which were also selected from the 150 
mammograms. All mammograms were digitized with an image 
resolution of 100 ixmx 100 /iim/pixel by the laser film digitizer 
(Model: Lumiscan 150). The image sizes are 1792 x 2560 x 
12 bpp. For this study, we shrunk the digital mammograms with 
the resolution of 400 iJ,m by averaging 4x4 pixels into one 
pixel. According to radiologists, the size of the small masses is 
3-15 mm. The middle size of masses is 15-30 mm. The large 
size of masses is 30-50 mm, which are rare in mammograms. 
A 3-mm object in an original mammogram occupies 30 pixels 
in a digitized image with a 100-/^m resolution. After reducing 
the image size by four times, the object will occupy the range 
of about seven to eight pixels. The object with the size of seven 
pixels is expected to be detectable by any computer algorithm. 

Therefore, the shrinking step is applicable for mass cases and 
can save computation time. 

After the segmentation, the area index feature was first used 
to eliminate the nonmass regions. In our study, we set Ai = 
7x7 pixels and A2 = 75 x 75 pixels as the thresholds. Ai 
corresponds to the smallest size of masses (3 mm), and an ob- 
ject with a area of 75 x 75 pixels corresponds to 30 mm in the 
original mammogram. This indicates that the scheme can de- 
tect all masses with sizes up to 30 mm. Masses larger than 30 
mm are rare cases in the clinical setting. When the segmented 
region satisfied the condition Ay < A < A2, the region was 
considered to be suspicious for mass. For the purpose of repre- 
sentative demonstration, we have selected a 3-D feature space 
consisting of compactness I, compactness II, and difference en- 
tropy. Accordmg to our investigation, these three features have 
the better separation (discrimination) between the true and false 
mass classes. It should be noticed that the feature vector can 
easily extend to higher dimensionality. A training feature vector 
set was constructed from 50 true mass ROIsub and 50 false mass 
ROIsub (Database D, see Table II). The training set was used to 
train two modular probabilistic decision-based neural networks 
separately. In addition to the decision boundaries recommended 
by the computer algorithms, a visual explanation interface has 
also been integrated with 3-D to 2-D hierarchical projections. 
Fig. 7(a) shows the database map projection with compactness 
definition I and difference entropy. Fig. 7(b) shows the data- 
base map projection with compactness definition II and differ- 
ence entropy. Our experience has suggested that the recogni- 
tion rate with compactness I are more reliable than that with 
compactness II. In order to have more accurate texture informa- 
tion, the computation of the second-order joint probability ma- 
trix pd, e{i, j) is only based on the segmented region of the orig- 
inal mammogram. For the shrunk mammograms, we found that 
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Fig. 8.   One example of the mass detection using the proposed approach (Database E, see Table II). 

the difference entropy had better discrimination with d = l. The 
difference entropy used in this study was the average of values 
at e =0°, 45°, 90°, and 135°. 

We have conducted a preliminary study to evaluate the per- 
formance of the algorithms in real case detection, in which 6-15 
suspected masses/mammogram were detected and required fur- 
ther clinical decision making. We found that the proposed clas- 
sifier can reduce the number of suspicious masses with a sensi- 
tivity of 84% at 1.6 false positive findings/mammogram based 
on the testing data set containing 46 mammograms (23 of them 

have biopsy proven masses) (Database E, see Table II). Fig. 8 
shows a representative mass detection result on one mammo- 
gram with a stellate mass. After the enhancement, ten regions 
with brightest intensity were segmented. Using the area crite- 
rion, too large and too small regions were eliminated first and 
the rest regions were submitted to the PMNN for further eval- 
uation. The results indicated that the stellate mass lesion was 
correctly detected. 

For further evaluation, receiver operating characteristic 
(ROC) method may be employed. However, we do not feel 
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ROC analysis will provide really a better evaluation but an 
alternative method to this case. First, most ROC analysis 
reported by others were based on different database thus are 
not comparable since ROC results are highly data-dependent. 
Second, ROC analysis only indicate an "overall" performance 
with limitations at least in twofold: it is for multithreshold thus 
the corresponding system may not be optimal to a particular 
application where only one threshold is needed; and it cannot 
provide a mathematically traceable feedback to improve the 
performance of the system or the one component in the system. 
Third, currently used FROC analysis package imposes several 
assumptions on the distributions of the cases which are invalid 
in most applications and particularly untrue in our situation. For 
example, our assumptions about the data distributions is SFNM 
that is clearly different from the restricted conditions imposed 
by the application of existing FROC analysis algorithm. In our 
approach, a quantitative mapping of the knowledge database 
is performed with hierarchical SFMD modeling and should 
be perfectly (at least in the theoretical sense) carried out by 
the corresponding PMNN classifier. In other words, optimal 
decision making should have already been achieved according 
to the Bayesian rule. It is reasonable to acknowledge that 
in order to compare the overall performance with the other 
systems, an ROC study may be further conducted. We are 
currently working on developing a new generation of FROC 
analysis package with a caution to remove the forementioned 
problems. 

Another important consideration with the present approach 
is the measure of quality in visual explanation [29]. This is not 
a glamorous area, but progress in this area is eminently critical 
to the future success of visual exploration [28]. What is the cor- 
rect matrix for a direct projection of a particular multimodal data 
set? How effective was a particular visualization tool? Did the 
user come to the correct conclusion? It may be agreeable that 
the benchmark criteria in visual exploration are very different 
and difficult [28]. As shared by Bishop and Tipping [27], we 
believe that in data visualization there is no objective measure 
of quality, and so it is difficult to quantify the merit of a partic- 
ular data visualization technique, and the effectiveness of such 
a techniques is often highly data-dependent. The possible alter- 
native is to perform a rigorous psychological evaluation using 
simple and controlled environment, or to invite domain experts 
to direct evaluate the efficacy of the algorithm for a specified 
task. For example, we can compare the domain expert's perfor- 
mances with and without the system aid. In that case, the ROC 
method may be used to evaluate the performance of our algo- 
rithm when used by the radiologists. While the optimality of 
these new techniques is often highly data-dependent, we would 
expect the hierarchical visualization model to be a very effective 
tool for the data visualization and exploration in many applica- 
tions. 

In summary, we employed a mathematical feature extraction 
procedure to construct the featured knowledge database from 
all the suspicious mass sites localized by the enhanced segmen- 
tation. The optimal mapping of the data points was then ob- 
tained by learning the generalized normal mixtures and decision 
boundaries. A visual explanation of the decision making was 
further invented as a decision support, based on an interactive 

visualization hierarchy through the probabilistic principal com- 
ponent projections of the knowledge database and the localized 
optimal displays of the retrieved raw data. A prototype system 
was developed and pilot tested to demonstrate the applicability 
of this framework to mammographic mass detection. 
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Abstract—A. multiple circular path convolution neural network 
(MCPCNN) architecture specifically designed for the analysis of 
tumor and tumor-like structures has been constructed. We first 
divided each suspected tumor area into sectors and computed the 
defined mass features for each sector independently. These sector 
features were used on the input layer and were coordinated by con- 
volution kernels of different sizes that propagated signals to the 
second layer in the neural network system. The convolution ker- 
nels were trained, as required, by presenting the training cases to 
the neural network. 

In this study, randomly selected mammograms were processed 
by a dual morphological enhancement technique. Radiodense 
areas were isolated and were delineated using a region growing al- 
gorithm. The boundary of each region of interest was then divided 
into 36 sectors using 36 equi-angular dividers radiated from the 
center of the region. A total of 144 Breast Imaging—Reporting 
and Data System-based features (i.e., four features per sector for 
36 sectors) were computed as input values for the evaluation of this 
newly invented neural network system. The overall performance 
was 0.78-0.80 for the areas (A,) under the receiver operating 
characteristic curves using the conventional feed-forward neural 
network in the detection of mammographic masses. The perfor- 
mance was markedly improved with A^ values ranging from 0.84 
to 0.89 using the MCPCNN. This paper does not intend to claim 
the best mass detection system. Instead it reports a potentially 
better neural network structure for analyzing a set of the mass 
features defined by an investigator. 
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I.  INTRODUCTION 

IT IS KNOWN that effective treatment of breast cancer calls 
for early detection of cancerous lesions (e.g., clustered mi- 

crocalcifications and masses associated with malignant cellular 
processes) [l]-[3]. Breast masses appear as areas of increased 
density on mammograms. It is particularly difficult for radi- 
ologists to detect and analyze a suspected area where a mass 
is overlapped with dense breast tissue. These masses are more 
readily seen as time progresses, but the further the tumor has 
progressed, the lower the possibility of a successful treatment. 
Therefore, increasing the chances of early breast cancer detec- 
tion in improving today's clinical system is of vital importance 
in breast cancer diagnosis. 

Several research groups have developed computer algorithms 
for automated detection of mammographic masses [4]-[8]. 
Some of these methods involved in classification of masses and 
normal dense breast tissues [7], [8]. Investigators also attempted 
to classify the malignant or benign nature of the detected tu- 
mors [9]-[l 1]. It is conceivable that correct segmentation of the 
masses [12] plays an important processing step prior to fiirther 
mass analysis. In short, the results of these detection programs 
indicate that a high true-positive (TP) rate can be obtained 
at the expense of two or three false-positive (FP) detections 
per mammogram. Mammographically, a multiplicity (more 
than two) of similar benign-appearing breast lesions argues 
strongly for benignity [13]-[16] and, indeed, the more masses 
that are identified, the less chance that they represent cancer 
[17]. If the computer indicates multiple suspicious locations 
on a mammogram, the radiologist has to seek out one mass 
that possesses mammographic features, which are different 
from the others. The significant lesion may be missed due to 
the multiplicity of possible lesions. We, therefore, beheve that 
a more useful and fundamental approach to computer-aided 
diagnosis (CAD) of masses is to devise computer programs to 
analyze features of a suspected area [18], [19] and to provide 
feature measures and estimates of the likelihood of malignancy 
by making comparisons within a digital mammographic 
database. The computer, therefore, serves as a second opinion 
and also provides a reproducible and an objective evaluation 
of the mass. With this aid, the radiologist may also increase 
his/her sensitivity by lowering the threshold of suspicion, while 
maintaining the overall specificity and reading efficiency. 

0278-0062/02$17.00 © 2002 IEEE 
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II. CLINICAL BACKGROUND OF BREAST LESIONS AND 

TECHNICAL APPROACH IN MASS DETECTION 

A. Description of Clinical Background 

Most commonly, breast cancer presents itself as a mass. The 
same lesion shows a somewhat different picture from one pro- 
jection to the other. Difficulties in masses also vary with the 
underlying breast parenchyma. In the fatty breast, masses are 
generally easy to detect. In the dense breast, mass detection 
is more difficult and auxiliary signs aid this detection. When 
the breast contains one mass, the decision process is based on 
its size, shape, and margins. When there are several masses, 
one looks at each, trying to determine whether any has fea- 
tures to suggest cancer. Furthermore, one looks to see if any 
mass is different in appearance from the others. Multiple small, 
well-defined, similar masses that present themselves bilaterally 
are all likely to be benign. Large, poorly defined, spiculated 
and unusually radiodense masses are extremely likely to be ma- 
lignant. In this study, we used several computational features 
(see Section III-B) highly associated with four major features 
of breast masses routinely used in clinical reading: 

Density:      Malignant lesions tend to have greater radio- 
graphic density due to high attenuation and less 
compressibility of cancer than normal tissue. 
Radiolucent lesions are typically benign and the 
diagnosis can be made from the mammogram. 

Size: If the lesion has morphological features sug- 
gesting malignancy, it should be considered 
suspicious   regardless   of the   size.   Isolated 
masses with noncystic densities greater than 
8 mm in diameter can be malignant. In general, 
the larger a lesion, the more suspicious it is. 

Shape:        The more irregular the shape of a lesion, the 
more likely the possibility of malignancy. Le- 
sions tend to be round, ovoid and/or lobulated. 
Small and frequent lobulations are suspicious. 
Lesions in the lateral aspect of the breast near the 
edge of the parenchyma with a reniform shape 
and a hilar indentation or notch usually repre- 
sent a benign intramammary lymph node. Breast 
carcinoma hidden in the dense tissues can cause 
parenchymal retraction, which possess different 
shapes. 

Margins:    The margins of the lesion should be careftilly 
evaluated for areas of spiculation, stellate pat- 
terns or ill-defined regions. Most breast cancers 
have ill-defined margins secondary to tumor in- 
filtration and associated fibrosis. The appearance 
of spiculations and a more diffuse stellate pat- 
tern are almost pathognomonic for cancer. Le- 
sions with sharply defined margins have a high 
likelihood of being benign; however, up to 7% of 
malignant lesions can be well circumscribed. 

These are known clinical features and have been adapted in 
"Breast Imaging—Reporting and Data System" (BI—RAD) 
[20] of the American College of Radiology. Fig. 1(a) and (b) 
shows two breast images containing masses. In Fig. 1(a), a 
malignant mass is superimposed on the dense glandular tissue. 

Fig. I.   (a) Dense breast containing a malignant mass, (b) Fatty and glandular 
breast containing a malignant mass. 

However, its spiculated nature makes it easily identifiable. 
In Fig. 1(b), another malignant mass is located on the fatty 
background but is associated with a large body of glandular 
tissue. This mass is not easily detectable by the computer 
because its density is lower than the neighboring glandular 
tissue. Furthermore, one end of the mass is fiilly connected 
with this tissue. 

B. Technical Approach for Detection of Mammographic 
Masses 

In this study, our goal was to detect clinically suspicious le- 
sions. The differentiation of benign and malignant status of the 
mammographic masses can be extended from this study model 
and will be reported in our future work. The study was con- 
ducted with the following steps: 1) use background correction 
method and morphological operations to extract radio-opaque 
areas; 2) delineate the boundary of the areas; 3) compute the fea- 
tures and texture of the masses with emphasis on the boundary; 
and 4) design training strategy using neural networks as classi- 
fiers for the recognition of mass features. The overall detection 
scheme of the study framework is shown in Fig. 2. 

III. DEVELOPMENT OF TECHNICAL METHODS 

A. Preprocessing and Extraction of Suspicious Masses 

In automatic mass detection, accurate selection of suspected 
masses is considered a critical first step due to the variability 
of normal breast tissue and the lower contrast and ill-defined 
margins of masses. In our previous study [18], we aimed to im- 
prove the task of lesion site selection using model-based image 
processing techniques for unsupervised lesion site selection. We 
focused on two essential issues in the stochastic model-based 
image segmentation: enhancement and model selection. Based 
on the differential geometric characteristics of masses against 
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Fig. 2.   A system flow chart for the detection of masses in this study. 

the background tissues, we proposed one type of morpholog- 
ical operation to enhance the mass patterns on mammograms 
by removing high intensity background caused by breast tis- 
sues while maintaining mass-signals [18]. Then we employed 
a finite generalized Gaussian mixture (FGGM) distribution to 
model the histogram of the mammograms where the statistical 
properties of the pixel images are largely vmknown and are to 
be incorporated. We incorporate the expectation-maximization 
algorithm with two information theoretic criteria to determine 
the optimal number of image regions and the kernel shape in 
the FGGM model. Finally, we applied a contextual Bayesian 
relaxation labeling (CBRL) technique to perform the selection 
of suspected masses. 

We consistently processed the mammograms using this 
prescreening segmentation method. In the previous study [18], 
the FGGM method isolated 1142 potential masses including 
114 of the 186 true masses in 200 mammograms. The mammo- 
grams were collected from the Mammographic Image Analysis 
Society (MIAS) database [21] and Brook Army Medical Center 
(BAMC) database. After morphological enhancement, 3143 
potential masses were extracted using the FGGM technique. 
Of them, 181 were masses; however, five masses were not 
extracted. The results demonstrated that more true masses were 
picked up after enhancement although more false cases were 
also included. The undetected areas mainly occurred at the 
lower intensity side of the shaded objects or more obscured 
by fibroglandular tissues that, however, were extracted on 
morphological enhanced mammograms. Additionally, when 
the margins of masses are ill defined, only parts of suspicious 
masses were extracted from the original mammograms. We, 
therefore, decided to use the proposed morphological operation 
as a preprocessing step for the image enhancement prior to a 
segmentation method for the extraction of potential masses on 
the mammograms. 

Based on the CBRL segmented region of interest (ROI), we 
employed a region growing method using a four-neighbors con- 
nection method assisted with a template masking operation to 
fill unconnected holes in the ROI 

IF f{x-a,y-b)>Vand f{x, y) € S, 

then f{x-a, y-b)eS   (1) 

IF f{x -d,y-d)eS, then f{x-t,y-s)eS 

for i < d and s < d (2) 

where V denotes the threshold value of the originally CBRL 
segmented ROI, S represents the set of growing region, and 
[a, b] is a set of four conditions (i.e., [1, 0], [—1,0], [0,1], and 
[0, — 1]) for the four neighboring pixels. In (2), d is the size of 
template. In practice, we found that d should be set at five pixels 
to fill the holes without disrupting the boundary. 

B. Feature Extraction of the Masses 

Feature extraction methods play an essential role in many 
pattern recognition tasks. Once the features associated with an 
image pattern are extracted accurately, they can be used to dis- 
tinguish one class of patterns from the others. Recently, many 
investigators have found that the multilayer perceptron (MLP) 
neural network using the error backpropagation training tech- 
nique is a very powerfiil tool to serve as a classifier [22], [23]. 
In fact, the use of MLP neural network system for classification 
of disease patterns has been widely applied in the field of CAD 
[24]-[28]. 

The success of using a classifier for a pattern recognition task 
would rely on two factors: 1) selected features that could de- 
scribe a discrepancy between image patterns and 2) accuracy of 
the feature computation. Should either one fail, no analyzer or 
classifier would be able to achieve an expected performance. By 
analyzing many clinical samples of various sizes of masses, we 
found that the peripheral portion of the mass plays an important 
role for mammographers to make a diagnosis. The mammogra- 
pher usually evaluates the surrounding background of a radio- 
dense area when a region is suspected. 

We used the CBRL segmented ROI to compute the center. 
Since the segmented ROIs were somewhat smaller than the 
mammographer's delineation and on the denser region of the 
suspected patch, the computed centers were quite close to the 
visual center. We then divided the boundary of the ROI into 
36 sectors (i.e., 10° per sector) using 36 equi-angular dividers 
radiated fi-om the center of the ROI. The following features 
were computed within each 10° sector of the region. 

a) "l"—^the length from the center of the ROI to the boundary 
segment of the sector. 

b) "a"—the cos(^) (where 9 is the normal angle of the 
boxmdary). 

c) "g"—the average gradient of gray value on the segment 
along the radial direction (i.e., g = J2i=i{9i/^}) where 
JV is the number of pixels of i along the radial direction 
from 1/3 inside the boundary to the boundary (see the left 
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Fig. 3. A suspicious mass is delineated and shown as the shaded region. 
Contrast is computed by subtracting the average background pixel value 
(i.e., 6„, o = 1, 2, ...P) from the average foreground value (i.e., hi, 
i = 1, 2, ...P). 

i/3 line segment, Fig. 3). Technically speaking, this set 
of gradient values may also serve as a fiizzy system on 
the input layer in the neural network (to be described in 
Section III-C). 

d) "c"—the    gray    value    difference    (i.e.,    contrast) 
along   the   radial   direction.    Specifically,   c       = 
Htd^^i/P}   -   llLii^o/P}   where   h   (or   K) 
represents a pixel value along the radial direction. The 
position Z/3 inside the boimdary is the center of pixels 
hi {i   =   1, 2, 3, ...F) and position l/Z outside the 
boundary is the center of pixels 6o (o = 1, 2, 3, .. .P), 
and P is the number of pixels equivalent to a segment of 
l/Q and was used for averaging (see Fig. 3). 

Hence, a total of 144 computed features (four features/sector 
for 36 sectors) were used as input values for the classification 
of the ROI. The relationship between the computed features and 
BI—RADS descriptors are discussed below. 

i) ROI Size—The size of ROI is provided by the 36 'T 
values, 

ii) ROI Shape (round, oval, lobulated, or irregular)—^The 36 
"/" and 36 "a" values can describe the shape of the ROI. 

iii) ROI Margin (circumscribed, microlobulated, obscured, 
ill- defined, or spiculate)—The 36 "g" and 36 'T values 
can describe the ROI margin, 

iv) ROI Density (fat-containing, low density, isodense, or 
highly dense)—The 36 "c" and 36 "g" values can be used 
to describe the density distribution of the ROI. 

In short, the selected features are greatly associated with the 
main mass descriptors indicated in the BI—RADS. The reason 
for using 36 values for each nominated feature is four-fold: 
1) mass boundary varies, it is difficult to describe an image pat- 
tern using a single value; 2) due to the general shape of the 
masses, the features of masses can be easily analyzed by the 
polar coordinate system; 3) in case some features are inaccu- 
rately computed in several directions due to the structure noises, 
such as the breast slender lines, there may still exist a suffi- 
cient number of correct features; and 4) generally more accu- 
rate results can be produced by using subdivided parameters 
rather than using global parameters in a pattern recognition task 
when the parameters are barely discemable and sample sizes are 
sufficiently large. Other computational features (e.g., difference 

entropy [19] and other higher order features) are eligible but re- 
quire fiirther investigation. 

C. The Neural Network Structure Specifically Designed for the 
Extracted Boundary Features 

1) Multiple Paths With Circular Networking to Instruct the 
Neural Network in Analyzing Sector Features: This paper 
focuses on neural network design and arrangement of features 
for effective pattern recognition of ROIs. We designed several 
neural network connections between the input and the first 
hidden layers as shown in Fig. 4. In this neural network system, 
the first layer also fiinctions as a correlation layer that trans- 
forms and encodes the signals fi-om input nodes into correlation 
features for fiirther neural network process. Fig. 4(a)-(c) illus- 
trates the fiill connection (FC), a self correlation (SC) network, 
and a neighborhood correlation (NC) network, respectively. 
Network connections with multiple sectors (i.e., 20°, 30°, 40°, 
and 50° of the NC) are grouped separately as independent NC 
paths. In the following study, we used four SC paths for a single 
sector and thirteen NC paths for four types of multisectors. 
The method of using the multiple correlation connections 
was motivated by our research experience in two-dimensional 
(2-D) convolution neural network (CNN) [(2-D CNN)] where 
we found that more than ten multiple convolution kernels in 
the CNN were necessary in the detection of lung nodules and 
microcalcifications [25]. 

Compared with 2-D CNN systems, the computation required 
in the one-dimensional (1-D) CNN (e.g., 144 input features) 
is relatively small. The combination of the networking paths 
described earlier for multiple circular path convolution neural 
network (MCPCNN) was implemented using C programming 
language. The internal computation algorithm used in the 
MCPCNN shares the same convolution process as that in the 
2-D CNN [25]. Rotation invariance and flip invariance for 
training the 1-D convolution kernels in the MCPCNN were 
employed. 

The fiilly connected neural network is a conventional feed- 
forward MLP neural network. The signals of the fiilly connected 
neural network join the other network processes (i.e., SC paths 
and NC paths) at the single node of the output layer. The signal 
received at the output node is scaled between zero and one. 
During the training, zero and one were assigned at the output 
node to perform backpropagation computation for a nonmass 
and a mass, respectively. The backpropagation is computed in 
such a way that the computed incremental errors [see equations 
(9) and (10)] are retraced into every independent network path. 
Excluding the output layer, the SC and NC signals are indepen- 
dently arranged and are processed through the 1-D convolution 
process in the forward propagation. The learning algorithms for 
all three types of circular network paths are based on the back- 
propagation training method. 

Let V°(n', s') represents an input signal at the node n' and 
sector s'. The signal processed through an NC path and to be 
received at each node, n, on the first hidden layer is 

X^53nn',5')-W^i[NC](n',s';n) +bVci(")   (3) 
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Fig. 4. Three types of network paths connecting the input and the hidden layers in the MCPCNN. (a) FC path, (b) SC path. Eeach node on the layer connects 
to a single set of the features (1, a, g, c) for the fan-in and fiilly connects to the hidden nodes for fan-out. (c) A NC path. Each node on the layer connects to the 
input nodes of adjacent sectors for the fan-in and fully connects to the hidden nodes for fan-out. The fan-in nets emphasizing SC in (b) and NC in (c) represent 
convolution weights (i.e., the same type of sectors possess the same set of weighting factors). 

where &irjvc](") represents the bias term and Wj[^'c]{n', s'; n) 
is an array associated the 2-D nets that fan-in to a given receiving 
node, n. Each element of Wji^'c]("',«'; n) is the weight factor 
connected to node n from node n' sector s' through a NC path, 
j, and s' covers a range of neighborhood sectors corresponding 
to each type of NC path. Note that multiplications between the 
input nodes and connecting weights are computed first followed 
by taking the sum of the products for those nodes and sectors in- 
volved. The operation is repeated by shifting the weights from 
one set of sectors to the next. The procedure involving array 
multiplication passing through every sector is referred as the 
1-D convolution operation that takes place in the sector dimen- 
sion. The signal processed through an SC path and to be received 
at a node, n, on the first hidden layer is a special case of an NC 
path when s' only covers one sector 

^/[SC](«) = '£V°{n',s')-Wnsc]{n';n) + %c]W 

(4) 
where Wi[sc]in';n) is the weight factor connected to n from 
node n' through a SC path, i, regardless of the sectors. A total 
of 18 paths (1 FC, 4 SC paths, and 13 NC paths for four types 
of multisectors) were used in our experiment described later. 
Nevertheless, the signals processed through a path and to be 
received at each node, n, on the first hidden layer is 

V^in) = S {N},{n)) 

where p is one of the network paths and S{z) is a sigmoid func- 
tion given by 

Siz) = 
1 + exp {-z) 

(6) 

The sigmoid function would produce modulated values ranging 
from zero to one. The signals on other hidden layers in each path 
are processed the same as a conventional fiiUy connected neural 
network. Other than the first hidden layer, the receiving signals 
at a hidden layer, I, collected from the previous hidden layer, I 
to one, are merged from the nodes in the last layer and are given 
by 

V^'(n) = S {N'{n)) 

= 5 (^ V'-^{n') ■ W'-\n';n) + b'-^n)]     (7) 

where n' and n denote the nodes at layers I — 1 and I, 
respectively. 

Let the tth change of the weight be AVF^(n', s'; n) and the 
fth change of the bias be N}\t). The error fiinction is defined 
as 

E=\{T-Of (8) 

(5) 
where T and O denote the target output value and the actual 
output value, respectively when the input values V^(n',s'), are 
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Fig. 5.   A schematic diagram, showing the MCPCNN and sector features of masses, that was used in the following study. 

entered in the network. In this model, the error backpropagation 
algorithm, which updates the kernel weights, is given below 

^wlit + i] 

\ n      a / 

+ aAVF;M (9) 

A6j,[t +1] = 7/53 E ^p^' ("'' *'!"' ^) + "^^pM      (^0) 
n      a 

= 5' (AT^K, .')) (EEC'(". *) • W^P^H", «)) • 
\  n      a / 

(11) 

In the case of the last layer 

S^(n) - S' {N^{n)) {T{n) - 0{n)) (12) 

where S'{z), r), a, and T denote the derivative of S{z), 
the learning rate, the weighting factor contributed by the 
momentum term, and the desired output image, respectively. 
Furthermore, s or s' = 1 and p — 1 when I / 0. 

During the training, we added an isotropic constraint to the 
weights of the 1-D convolution kernels so that 

W°{n, -s) = W^in, s) (13) 

where q is not the fully connected path. These additional con- 
straints are used to induce the kernels functioning as correlation 
processing filters and could facilitate the algorithm in searching 
for an appropriate filter. 

2) Resampling the Training Set Through Utilization of Rota- 
tion and Flip Invariance of the Features: In this neural network 
model, there are no starting and ending sectors. The forward and 
backpropagation computation can start from any sector. Consid- 
ering a flipped patch, the characteristics of mass feature should 
remain the same. To take advantage of this flip invariance, the 
same numerical target value can be assigned at the output node 

for the flipped image patch in order to double the amount of 
cases during training. 

Since we designed a 10° increment for each rotation, every 
SC or NC path would process through 36 times using the de- 
fined features for each image patch. To simplify this network 
computation, we shifted one small sector (four nodes) on the 
input layer at a time to conduct the circular convolution process 
with the SC and NC kernels in the following experiments. By 
reversing the sequence of the sector, one can train the flipped 
version of the suspicious masses. Hence, using the properties 
of the rotation invariance and flip invariance for the neural net- 
work training literally increases the nimiber of the training set 
by a factor of 72. 

In summary, we have developed a complete detection pro- 
cedure for the automatic recognition of mammographic masses 
including background adjustment, contrast enhancement, ROI 
segmentation, feature extraction, and MCPCNN system with a 
training method. Fig. 5 shows a flow diagram for the essential 
sections of the computational procedures. 

IV. EXPERIMENTS AND RESULTS 

As described in Section III-A, the 200 mammograms were se- 
lected from the MIAS database and the BAMC database for the 
study. Of the 200 mammograms, 50 mammograms are normal, 
and each of the 150 abnormal mammograms contains at least 
one mass case of varying size, subtlety, and location. Both the 
cranio-caudal (CC) and medio-lateral oblique (MLO) projec- 
tion views were used. The films were digitized with a com- 
puter format of 2048 x 2500 xl2 bits (for an 8" x 10" area 
where each image pixel represents 100 /xm square). Ninety-one 
mammograms, either a CC or an MLO view film, were selected 
from 91 patient film jackets. No two mammograms were se- 
lected from the same patient. All the digitized mammograms 
were miniaturized to 512 x 625 x 12 bits using 4x4 pixel av- 
eraging before the method was applied. According to radiolo- 
gists, the size of small masses is 3-15 mm in effective diameter. 
A 3-mm object in an original mammogram occupies 30 pixels 
in a digitized image with a 100-^m resolution. After reducing 
the image size by four times, the object will occupy the range 
of about 7-8 pixels. The object with the size of seven pixels 
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is expected to be detectable by any computer algorithm. After 
preprocessing and an object screening based on the circularity 
test and the size test (between 3 and 30 mm), a total of 125 sus- 
picious areas were selected from the testing mammograms (91 
cases) for this study. Specifically, the screening procedure of re- 
ducing FPs involves two steps: 1) image patches with circularity 
less than 0.25 or diameter greater than 30 mm were eliminated 
and 2) ) using probability modular neural network to rule out 
the majority of FPs. Of the 125 suspicious areas, 75 ROIs con- 
tained masses based on corresponding biopsy reports with one 
experienced radiologist reading. Of 75 masses, 39 were malig- 
nant and 36 were benign. This set of ROIs was used in [19] and 
discussed in [19, Fig. 6 and Table II]. 

A. Experiment 1 

Of the 125 suspicious areas, we randomly selected 54 com- 
puter-segmented ROIs where 30 patches were matched with the 
radiologist's mass identification and 24 were not. This database 
was used to train two neural network systems: 1) a conven- 
tional three-layer neural network and 2) the proposed MCPCNN 
training method using the same neural network learning algo- 
rithm. The structure of the MCPCNN was described earlier. In 
the study, we used one fully connected path, four SC paths, four 
NC paths covering two sectors, four NC paths covering three 
sectors, three NC paths covering four sectors, and two NC paths 
covering five sectors in the first step network connection for the 
MCPCNN. All paths in the neural network have their hidden 
layers. Only one hidden layer per path was used. Both neural 
network systems were trained by the error backpropagation al- 
gorithm by feeding the features from the input layer and regis- 
tering the corresponding target value at the output node. Com- 
pletion of the training was determined by the mean square error 
[i.e., Y!i=i{Ti - Oif/N, where JV is number of samples] when 
it was approximately reduced to 3 x 10~^. Once the training of 
the neural networks was completed, we then used the remaining 
71 computer segmented ROIs for the testing. Forty-five out of 71 
ROIs were masses and 26 ROIs were not. Neither the images nor 
their corresponding patients in the testing set could be found in 
the training set. The neural network output values were fed into 
the LABR0C4 program [29] for the performance evaluation. 
The results indicated that the areas (A^) under the receiver op- 
erating characteristic (ROC) curves were 0.7869 ± 0.0536 and 
0.8443 ± 0.0457 using the conventional neural network (MLP) 
and the MCPCNN, respectively The ROC curves of these two 
neural network systems are shown in Fig. 6(a). The A^ value 
was 0.7869 ± 0.0536 when using the MLP method with 125 
hidden nodes. The performance of the MLP remains about the 
same at 0.7809 ± 0.0551 of A^ using the same neural network 
parameters but with 30 hidden nodes. 

We also invited another senior mammographer to conduct an 
observer study using the ROC study protocol. The mammogra- 
pher was asked to rate each patch using a numerical scale rang- 
ingfrom zero to ten for its likelihood of being a breast mass. 
The image patches were displayed on a SUN monitor (Model: 
GDM-20D10). The image size shown on the monitor was re- 
duced to approximately 7" x 9" as compared with the original 
film size (8" x 10"). These 71 numbers were also fed into the 
LABR0C4 program. The A^ of the mammographer's perfor- 

Mammographer A^- 0.909 
, MCPCNN A^-0.844 

MLP A -0.787 
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FPF 

(a) 

  MCPCNN(JK)A^-0.887 

  MLP(JK) A .0.799 

0.1        0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9 1 
FPF 

(b) 

Fig. 6. The ROC curves obtained from corresponding experiments, (a) Shows 
that the performance of MCPCNN training method is superior to that of the 
conventional MLP method. The highest curve is the ROC performance of the 
senior mammographer. (b) Shows that the ROC results were increased using the 
leave-one-case-out procedure in both neural network systems. The MCPCNN 
still showed higher performance than conventional MLP method. 

mance on this set of test cases was 0.909 ± 0.0340. The corre- 
sponding ROC curve is also shown in Fig. 6(a). 

B. Experiment 2 

We also conducted a leave-one-case-out experiment (i.e., 
jackknife procedure) using the same database. In this ex- 
periment, we used those image patches extracted from 90 
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TABLE  I 
ROC PERFORMANCE OF THE TEST METHODS IN DISTINGUISHING TRUE AND FALSE MASSES 

Comparative Analyses of 
Methods 

A. of 
Metliod (1) 

A, of 
Metliod (2) 

P 
Values 

Statistical 
Sieniflcance 

Experiment 1 ;i) Radiologist VS. (2) MCPCNN 0.909 ±0.0340 0.8443±0.0457 0.1855 No 
:i) Radiologist vs. (2) MLP 0.909 ±0.0340 0.7869 ±0.0536 0.0447 Yes 
:i) MCPCNN vs. (2) MLP 0.8443±0.0457 0.7869 ±0.0536 0.1344 No 

Experiment 2 (1) MCPCNN VS. (2) MLP 0.8866 ±0.0289 0.7985 ±0.0394 0.0241 Yes 

mammograms (one mammogram per case) for the training and 
used the image patches (most of them are single) extracted 
from the remaining one mammogram as test objects. The 
procedure was repeated 91 times to allow every ROI extracted 
from each mammogram to be tested in the experiment. For each 
individual ROI, the computed features were identical to those 
used in Experiment 1. Again, the training was stopped when 
the mean square error value approximately equal to 3 X lO"". 
Both neural network systems were independently trained and 
evaluated with the same procedure. The results indicated that 
the A^ values were 0.7985 ± 0.0394 and 0.8866 ± 0.0289 using 
the conventional neural network (MLP) and the MCPCNN, 
respectively. The performance of the MLP decreased to an A^ 
of 0.7608 ± 0.0429 using the same neural network parameters 
but with 30 hidden nodes. Fig. 6(b) shows the ROC curves of 
these two neural network systems using the leave-one-case-out 
procedure [30] in the experiment. 

We also used CLABROC program [31] to analyze the ROC 
data and compare the ROC results. The results and their sta- 
tistical significances using two tailed p value of 0.05 as the 
threshold are shovra in Table I. The radiologist's performance 
is greater than conventional neural network system with a p 
value of 0.0447 in the first experiment. The MCPCNN was also 
proven to be superior to the MLP with a statistically significant 
result (p = 0.0241). 

V. DISCUSSION 

It is known in the field of artificial intelligence that the key 
factors in pattern recognition are: 1) effective methods in the 
extraction of features and 2) classification methods for the 
extracted features. In this study, we showed that the training 
method designed to guide the analyzer is also an important 
factor for a pattern recognition task. Though this finding is not 
new, the research of developing training methods for various 
pattern recognition tasks has not been established in the field 
of medical imaging. Our studies demonstrated that with proper 
network connections and task-oriented guidance, organized 
features would assist the neural network in performing the task. 

Technically speaking, a feed-forward MLP neural network 
provides an integrated process for classification and sometimes 
for feature extraction. The output values of the hidden nodes 
can be interpreted as a reorganized set of features presented to 
the output layer for classification. The drawback of the MLP is, 
the user has a very little control and little understanding about 
the network learning. The MCPCNN is a network design that 
partially remedies these issues and is applicable for any pat- 
tern recognition task associated with ROIs. The MCPCNN (a 

member of the CNN family) possesses shared weights in the 
hidden layer(s) that act as filter kernels for extracting correlated 
features. With a higher resolution mammogram, a finer sector 
(<10°) would be preferred for the analysis mass, especially for 
the study of classification of masses. During forward and back- 
propagation training, the kernels would comply with both sig- 
nals from input and output layers for all training cases, so as 
to maximize the classification performance. We do not recom- 
mend using 2D CNN for the detection of masses because the 
mass sizes vary from a few millimeters to 4 cm or even larger It 
would require a large fixed size to cover the maximum mass size 
when using the 2-D CNN. The varieties of mass shapes and po- 
tential long spiculated patterns make the use of the 2-D CNN not 
practical. Since the MCPCNN processes the features computed 
from sectors, it does not limit the sizes of its ROIs. Best of all, 
the MCPCNN also has the ability to classify partially obscured 
masses. The 2-D CNN, however, would be more appropriate for 
the detection of microcalcifications and small lung nodules. 

As far as the research in the detection of masses is concerned, 
we have shovra that use of MCPCNN with sector features is an 
effective approach. Since the MCPCNN coordinates the input 
data and performs correlation between features of adjacent sec- 
tors in the first stage of data processing, the internal neural net- 
work learning algorithm can be changed if a learning algorithm 
is found to be more effective. In fact, the MCPCNN is a tech- 
nique that can effectively classify features arranged in the polar 
coordinate system. A technique using the rubber band straight- 
ening transformation, independently developed by Sahnier et al. 
[11], for the detection of masses also employs a similar con- 
cept in extracting feature and/or texture in the polar coordi- 
nate system. We believe that integration of features and texture 
values computed at small sectors will be the research trend in 
mass detection and tumor classification. 

VI. CONCLUSION 

In the clinical course of detecting masses, mammographers 
usually evaluate the surrounding background of a radiodense 
area when an ROI is suspected. In this study, we simulated 
this fundamental concept with a neural network system (i.e., 
MCPCNN). In order for the MCPCNN to fiinction, boundary 
features of the suspicious region in each radial sector were com- 
puted. We found that the MCPCNN is capable of analyzing 
correlated features within the sector and between adjacent sec- 
tors, which led to an improvement in detecting mammographic 
masses. 

Through this study, we found that the selected features are 
somewhat effective in the detection of masses. These features 
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were "computationally translated" from the qualitative descrip- 
tors of BI—RAD. These features can be extended for the im- 
provement of the mass detection, but this task is beyond the 
scope of this paper. With the preliminary studies shown above, 
we found the MCPCNN coupling with the proposed training 
method produced greater results than the conventional neural 
network. We found that the performances of both neural net- 
work systems were improved in Experiment 2. This may have 
occurred due to the number of training samples that was in- 
creased from 54 to 124. In Experiment 2, the A^ value was im- 
proved by 0.042 using the MCPCNN, which was higher than 
the Az difference of 0.012 obtained by the conventional training 
method. The results implied that the MCPCNN learned more ef- 
fectively than the conventional neural network when the number 
of trainmg cases was increased. With the use of a larger database 
and advanced texture features proposed by others, it is expected 
that the performance of MCPCNN should be significantly im- 
proved. This paper does not intend to claim the best mass de- 
tection system, in comparison to similar systems; but rather its 
goal is to report a potentially better neural network structure for 
analyzing a set of mass features. 
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Information-Theoretic Matching of Two Point Sets 
Yue Wang, Kelvin Woods, and Maxine McClain 

Abstract—This paper describes the theoretic roadmap of least 
relative entropy matching of two point sets. The novel feature is 
to align two point sets vtithout needing to establish explicit point 
correspondences. The recovery of transformational geometry is 
achieved using a mixture of principal axes registrations, whose 
parameters are estimated by minimizing the relative entropy 
between the two point distributions and using the expecta- 
tion-maximization algorithm. We give evidence of the optimality 
of the method and we then evaluate the algorithm's performance 
in both rigid and nonrigid image registration cases. 

Index Terms—Finite normal mixture, image registration, infor- 
mation theory, neural computation. 

I.  INTRODUCTION 

THE ESTIMATION of transformational geometry from two 
point sets is an essential step to medical imaging and com- 

puter vision [1], [2]. The task is to recover a matrix representa- 
tion requiring a set of correspondence matches between features 
in the two coordinate system [3]. Assume two point sets {PJA} 

and {pifl}; si = 1,2,..., JV are related by 

PiB=RPiA+T + Ni (1) 

where R is a rotation matrix, T is a translation vector, and Ni 
is a noise vector. Given {PIA} and {pis}, Arun et al. present 
an algorithm for finding the least-squares solution of R and T, 
which is based on the decoupling of translation and rotation and 
the singular value decomposition of a 3 x 3 cross-covariance 
matrix [3]. 

The major limitation of the present method is twofold: 
1) while feature matching methods can give quite accurate 
solutions, obtaining correct correspondences of features is a 
hard problem, especially in the cases of images acquired using 
different modalities or taken over a period of time and 2) a 
rigidity assumption is heuristically imposed, leading to the 
incapability of handling situations with nonrigid deformations. 
One popular method that does not require correspondences is 
the principal axes registration (PAR) [1], which is based on the 
relatively stable geometric properties of image features, i.e., the 
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geometric information contained in these stable image features 
is often sufficient to determine the transformation between 
images [2]. 

In this paper, we first discuss the optimality of PAR in a max- 
imum likelihood (ML) sense. The novel feature is to align two 
point sets without needing to establish explicit point correspon- 
dences. We then propose a somewhat different approach for re- 
covering transformational geometry of nonrigid deformations. 
That is, rather than using a single transformation matrix which 
gives rise to a large registration error, we attempt to use a mix- 
ture of principal axes registrations (mPAR), whose parameters 
are estimated by minimizing the relative entropy between the 
two point distributions and using the expectation-maximization 
algorithm. We demonstrate the principle of the method for both 
rigid and nonrigid image registration cases. 

II. THEORY AND METHOD 

A. Optimality of PAR 

As suggested by information theory [4], we note that the con- 
trol point sets in two images can be considered as two separate 
realizations of the same random source. Therefore, we do not 
need to establish point correspondences to extract the transfor- 
mation matrix. In other words, if we denote by P{pi) the distri- 
bution of the control point set in an image, we have the simple 
relationship 

P{PiB} = P{RpiA+T} + ^ (2) 

where v is the noise component (caused by misalignment) [2]. 
The probability distributions can be computed independently 
on each image without any need to establish feature correspon- 
dences, and given the two distributions of the control point sets 
in the two images, we can recover the transformation matrix in 
a simple fashion [2], as we now describe. 

From observation of the distributions, we can estimate R and 
T by minimizing the relative entropy (KuUback-Leibler dis- 
tance) between /'{p^g} and P{R.p^^+^:}, i.e.. 

argminZ)(F(p.^}||F(Rp^ ,+T} (3) 

where D denotes the relative entropy measure. We have pre- 
viously shovra the relationship between the negative log joint 
likelihood and the relative entropy as (Theorem 1) [5] 

- jy^ log^ (■P{RPi.4+T}(Pis)) 

= H (AP.B}) + D [P(p,s}\\P{B.v,.+T})      (4) 

where H denotes the entropy measure. Thus, minimizing 
-^(APJB}IIARP>4+T}) is equivalent to maximizing 
Iog£(F{Rp.^4.T}(Pis)). Following the same strategy to 
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decouple translation and rotation as in [3], we can define a new 
data point by qiA = PiA - PA ^^^ IJB — PjB - Ps, where 
p^ and p^ are the centroids of {pix} and {PJB}, respectively. 
Then the ML estimator of R is defined by 

arg max log £ (^^{Rq,,^} (qjs)) 
R 

(5) 

and T = pO - Rp^. 
In the case of principal axes technique, we assume a Gaussian 

model for P{q,„} and P^^^g}- Therefore, 

log/; 
N 1/2 

(27r)3/2|RCAR*|i/2 

X exp (^-iqjs (RCAR*)   'q,s)j 

= log^^^^^ -loglRCxR*! (27r)V2 

(6) 
j=\ 

where the superscript t denotes matrix transposition, CQ de- 
notes the auto-covariance matrix 

3=1 

and NA and NB are the sizes of the point sets {qiA} and {qjs} 
respectively. By taking the derivative of (6) with respect to R 
and setting it equal to zero, we have the ML equation (see hints 
in Appendix) [6] 

Cj3 = RCAR . (8) 

Now let the eigenvalue decompositions of C^ and Cs be 

CA = UAAAU^,    CB=USABU'B (9) 

where VA and UB are 3 X 3 orthonormal matrices and A.A 

and AB are 3 X 3 diagonal matrices with nonnegative elements. 
Note that the transformation U consists of the orthonormal set 
of eigenvectors of C, and matrix A contains eigenvalues A„, of 
C for m = 1, 2, 3. Then, we assign 

R = UsKU^ (10) 

where K is a 3x3 diagonal matrix with element 
km = \/>^mB/>^mA, the right side of ML (8) becomes 

RCAR' = UBKU^UAAAU^UAKU^ = UBABU*B 

which equals exactly the left side of ML (8). Thus, among all 
3x3 orthonormal matrices, R defined by (10) that also includes 
a scaling matrix K [1], maximizes the joint log likelihood in (6). 
So far, we have verified the optimality of PAR techniques. 

B. Formulation ofmPAR 

However, because of its global linearity, the application of 
PAR is necessarily somewhat limited. An alternative paradigm 

is to model a multimodal control point set with a collection of 
local linear models [7]. The method is a two-stage procedure: 
a soft partitioning of the data set followed by estimation of the 
principal axes within each partition [8]. Recently there has been 
considerable success in using standard finite normal mixture 
(SFNM) to model the distribution of a multimodal data set [5], 
and the association of a SFNM distribution with PAR offers the 
possibility of being able to register two images through a mix- 
ture of probabilistic principal axes transformations [8]. 

Assume that there are KQ control point clusters, where each 
control point cluster defines a transformation {Rfc,Tfc}. Thus 
for a pixel p„A, its new locations, corresponding to each of the 
transformations, are p„fc = RfcPnA + Tfc for fc = 1,..., KQ. 

Further assume that the control point set defines a SFNM 
distribution 

KQ 

/(Pi) = Z^"fc»(PiK'^fc) (11) 
fc=l 

where g is the Gaussian kernel with mean vector ^j. and auto-co- 
variance matrix C^, and ak is the mixing factor which is pro- 
portional to the number of control points in cluster k. For each 
of the control point sets {P^A} and {PIB}, the mixture is fit 
using the expectation-maximization (EM) algorithm [5]. The E 
step involves assigning to the linear models contributions ft'om 
the control points; the M step involves re-estimating the param- 
eters of the linear models in the light of this assignment [8]. 

E-Step 

.« 9{vi\l^f,^f) 

/(piK 4'\ -^f) 
(12) 

M-Step 

i=l 

(l+l) _lui=l^ikPi 

Z^i=l '^ik 

c^^> = 
TJU^jvi-i^i^i-^ 

X/i=l Hk 

(13) 

(14) 

(15) 

For each complete cycle of the algorithm, we first use the "old" 
set of parameter values to determine the posterior probabilities 
4fc using (12). These posterior probabilities are then used to ob- 

tain "new" values a^'+'\ 4'^''. ^t''^ ^nd using (13H15). 
The algorithm cycles back and forth until the value of rela- 
tive entropy between the data histogram and mixture model 
D (■P{p,}||/(Pi)) reaches its saturation point, for {PJA} and 
{Pifl}. respectively. Our experience indicates that 20 iterations 
should be sufficient to reach such point, although the number of 
iterations may vary fi-om case to case occasionally. 

Thus the statistical membership of pixel p„A belonging to 
each of the control (point) clusters can be derived by 

Znk — .P(Rfc,Tfc|p„A) = 
«fcAg(P»A|MfcA! ^kA) 

fiVnA) 
(16) 
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i.e., the posterior probability of {Rk, Tfc} given p„A. We can 
define the mPAR transformation as 

Ko 

Pn = 2^ ^nkPnk 
fc=l 

^ gv a^AgiPnAJt^kA, CkA) (^^p^^ ^ T,)     (17) 
fc=l 

fiPuA) 

where {Rfc,Tfc} is determined based on 
{(A*fcAjCfcs),(MfcB>Cfcs)} that we have estimated in the 
previous step using the EM algorithm. Note that now we do 
need the correspondences between the two control (point) 
clusters for each A;. These correspondences may be found, 
after a global PAR is initially performed, by using a site 
model approach or a dual-step EM algorithm to unify the 
tasks of estimating transformation geometry and identifying 
cluster-correspondence matches [10]. This philosophy 
for recovering transformational geometry of the nonrigid 
deformations is similar in spirit to the modular networks in 
neural computation [5], [7], under which the relative entropy 
between the two point sets reaches its minimum 

arg min 
Rfc,T, ^(AP..}II^(S^^O^,.(R.P..+T.)})      (18) 

both globally and locally. 

III. RESULT AND DISCUSSION 

We first illustrate the application of PAR to the coregistra- 
tion of human brain scans by magnetic resonance (MR) imaging 
and positron emission tomography (PET). The purpose of this 
experiment is to demonstrate that under a rigidity assumption 
and without knowing control point correspondences, PAR pro- 
vides a satisfactory solution to multimodality image co-regis- 
tration. MR scan was performed using a GE Signa 1.5 Tesla 
system, with 1.5 mm effective slice thickness, zero gap, 124 
slices of in-plane 192 x 256 matrix, and 24 cm field-of-view, 
to cover vertex to foramen magnum [9]. A thermoplastic mask 
was prepared to fit the patient's face, and facilitate positioning 
and repositioning in PET serving as the ground truth. PET im- 
ages were then obtained using a GE 4096 whole body scanner 
with 15 slices at the center of the field-of-view. The slice thick- 
ness is 6.5 mm and the spatial resolution is 6-7 mm. A typical 
pair of MR and PET brain images is shown in Fig. 1. 

Since PET images are often very noisy (i.e., with high 
speckle noise), an effective pre-processing is performed, which 
jointly uses image segmentation and morphological filtering 
[9], to eliminate background noise and extract the geometric 
contour of the brain tissue area. For MR images, the skull and 
scalp do not contribute to the functional activity shown in PET 
images, we edit MR images to delineate the skull and scalp 
and successfiiUy separate the brain tissues out from MR head 
scans. The extracted contours have good edge correspondence 
to both PET and MR images (see Fig. 1) [9]. 

The results of PAR show that the angle of rotation relative 
to the principal axis is -3.90° and -4.91 ° for PET and MR 
images respectively. Therefore, the relative angle of rotation of 

Fig. 1.   (Left) MR and (right) PET brain scans, where the extracted contour of 
brain tissue area from the MR image is overlaid on the registered PET image. 

Fig. 2.   (Left) Reference phantom image and (right) warped floating phantom 
image using mPAR method. 

MR with respect to PET is -1.01 ° which agrees closely to our 
ground truth of -1.2°. In addition, the scaling factor is found 
to be 2.20, which also matches closely with our ground truth of 
2.21. To demonstrate such co-registration, the re-sampled con- 
tour of MR brain tissue area is overlaid on the registered PET 
image as displayed in Fig. 1 (right). In this experiment, the ca- 
pable nature of the PAR for rigid alignment is evident as the two 
contours match each other very well. 

To evaluate the effectiveness of the mPAR method, we 
first considered a 150 x 150 phantom study containing three 
control objects and four noncontrol objects as seen in Fig. 2. 
The control objects are ellipses while the noncontrol objects 
are squares. Each of the control and noncontrol objects are 
rotated and translated by different amounts. This simulates a 
nonlinear deformation (nonrigid) between image sets. Three 
configurations of rotation angles are considered. These config- 
urations are chosen randomly (within certain range) to show 
the robustness of the proposed algorithm. In each configuration 
the images are aligned using one, two, or three transformations. 

The performance is measured in mean square error (MSE) be- 
tween the reference and warped images. Our experiments show 
that registration by one transform on average reduces the MSE 
by 50% and further reduces another 10% with one additional 
transform. With a mixture of all the three local transformations, 
a significant improvement in MSE is achieved with a reduction 
of approximately 75%>. Fig. 2 shows an example of the reference 
(left) and warped image (right) using all three transformations. 
The result shows the benefit of using multiple transformations 
where possible. 



WANG et at. INFORMATION-THEORETIC MATCHING OF TWO POINT SETS 871 

Fig. 3.   Result of applying mPAR method to register two 3-D prostate models reconstructed from two different real surgical specimens. Left: reference model. 
Middle: floating model. Right: the tumor in the floating model has been mapped into the reference model. 

<»> m m (d) 

Fig. 4. (a) and (b) Pair of real mammograms used to detect changes of breast structure over time. The mPAR method is used to perform an initial registration 
based on all the extracted control points in the two images. Based on which, the control point correspondences are established and a multilayer perceptron neural 
network is trained to refine the nonlinear warping. 

We then tested the proposed mPAR method on the three-di- 
mensional prostate models reconstructed from real surgical 
specimens. Such data set provides us a perfect testing case 
since the prostate models contain multiple internal objects and 
possess natural nonlinear deformations. Without knowing in 
anyway the control point (i.e., the contours of multiple anatom- 
ical objects) correspondences, we used mPAR to map the 
floating model (middle) to the generic model (left), as shown 
in Fig. 3. In particular, one of the research aims here was to 
map detected tumors into a generic model so as to establish the 
heterogeneity statistics of localized prostate cancer. The results 
shown in Fig. 3 (right) were very promising in that the tumor 
distributions closely resemble the measured heterogeneity and 
agree with the visual inspection by a senior pathologist. 

To illustrate the role of the mPAR method as an effective ini- 
tial step for a more refined follow-up registration, we consider 
a hybrid algorithm to register a sequence of mammograms for 
breast cancer detection. In this experiment, the cross points be- 
tween vertical and horizontal elongated structures are used as 
potential control points. These elongated structures represent 
blood vessels and milk ducts. The potential control point clus- 

ters are first aligned using the mPAR method to facilitate the for- 
mation of control point correspondences, and the registration is 
refined by a trained multilayer perceptron neural network based 
on the outcome of mPAR. 

In this experiment, both PAR and mPAR are used to perform 
the initial registration which should be able to correct most of 
the global distortion and misalignment between the two images. 
The control point correspondence is then obtained by overlaying 
the potential control points from the new image with the po- 
tential control points of the old image and then using a nearest 
neighboring principle. 

The raw image sequence is given in Fig. 4 and is composed 
of the scans of a patient acquired on (a) 3/5/96 and (b) 2/24/99. 
The final warped image is shovra in Fig. 4(c). From visual in- 
spection, we see that most of the scale difference between the 
images has been corrected, as shown by the difference image 
in Fig. 4(d). In this example, control point matching using a 
nearest neighboring method yielded 27 control point pairs out 
of a pool of 66 potential control points, evenly distributed across 
the image. This yields a match rate of 40.9%, as a relative and 
indirect measure of the performance of mPAR as an initial reg- 
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istration step. Given the difficulty of the task, our method per- 
forms relatively well in that the information on control point 
correspondences is not in anyway available and many of the po- 
tential control points may not indeed form pairs in fact. 

IV. CONCLUSIONS 

We have presented theoretic evidence which shows that prin- 
cipal axes registration of two point sets based upon informa- 
tion theory, without needing to establish explicit point corre- 
spondences, is optimum under a rigidity assumption. We have 
proposed a mixture of principal axes registration method, sup- 
ported by a standard finite normal mixture modeling of con- 
trol point clusters, for nonrigid cases. The corresponding results 
clearly indicate that such multiple transformational methods, 
in a broad sense, outperform conventional, using single trans- 
formation methods. The new methods presented in this paper 
would be most suitable as an initial step in other, more sophis- 
ticated image registration algorithms. 

APPENDIX 

Examples of Gradients [11, pp. 60-61]: 
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Chapter 1 

Introduction 

1.1    Background 

■ Breast cancer is one of the leading causes of death among women toda}r. To help combat this problem doctors 
use medical imaging (mammography) as a mechanism to screen patients and identify cases where further analysis is 
required. In breast cancer diagnosis, the mammography has proven to be the only way to detect cancer at its earhest 
stages, thus improving the patient survival probabiUty[4]. A patient's survival probability is directly linked to timior 
size upon detection. Tumor size has an apparent relationship to tumor grade or disease progression which can 
dictate treatment options. Studies have shown that women at age 40 and up are most at risk for developing breast 
cancer. Although this factor alone is not the sole contributor, most women over 40 have screening mammograms 
performed periodically (usually one or two years apart) in an effort to detect the existence or onset of a cancerous 
condition ia the breast. This type of study is called breast cancer screening and usually is limited to asym^ptomatic 
women where craniocaudal (CC) and mediatorial obUque (MLO) mammographic views are acquired and analyzed 
for signs of cancer [4]. These images are reviewed manually by a radiologist following a prescribed procedure which 
specific viewing apparatus, Ughting requirements, and amount of time per case [4]. Generally, a radiologist reviews 
four images of a single view ( either CC or MLO) sinaultaneously. The images are the current left and right breast 
aligned over top of the left and right breast taken previously. Figme 1.1 shows the layout for the screening case. By 
aligning the images in this maimer, change (tissue change) over time can better be identified. This tissue is a key 
indicator to the onset of a cancerous condition. Studies have shown a correspondence between tissue change and 
underlying biological change. This change is important for appUcations such as treatment monitoring and lesion 
diagnosis.   Once change has been detected, further analysis of the region is performed. 

1.2    Statement of Problem 

Due to limited resources, radiologist often must review a massive number of cases during a period. Also, the 
constrains on resources have caused radiologist with less experience in mammography analysis to review cases. The 
review of this massive volume (aroimd 8 images per case) of data and inexperience could cause missed tumors, 
delayed detection, and false positives which ultimately cause a reduced life expectation upon detection, unnecessary 
patient call backs, and imneeded needle biopsies. 

To reduce some of the load on the radiologist and to improve diagnosis accuracy, development of automatic 
computer aided diagnosis (CAD) system for change detection have been explored [5], [6], [69]. These systems aim 
to automate portions of the analysis process. In order to accomphsh this task, one must roughly model the analysis 
task performed by the radiologists in the course of an examination. Since this research focuses on change detection, 
the task modehng discussed here focuses on that task. The radiologists's analysis process consists of the following 
steps: (1) Acquire mammograms of previous and cm-rent visit; (2) Mount the image in specific order (see Figure 
1.1); (3) Mentally examine images for similar landmarks and mentally adjust view; (4) Identifying corresponding 
regions and compare for change. From the examination of these four tasks, it is apparent that steps three and four 
would stand to benefit the most from automation as steps one and two are relatively simple. 

Several key issues make automation of steps three and four extremely difficult, udth step three being the most 
difficult. The issue is the fact that mammograms are complex images that do not contain any clearly defined 
landmarks. Secondly, differences in breast positioning and compression during acquisition could cause images of 
one scene to visually appear difierent. Finally, breast sizes and consistency can vary with time (e.g. weight loss, 
surgery, and age). The research of the clinical problem of change detection in a mammogram sequence of a single 
patient uncovers serval difficulties and complex technical problems. The first problem is how do you aUgn a generally 
non-rigid object without apparent control points or landmarks?   This problem is classified as a image registration 
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Figure 1.1: Layout of Screen mammogram analysis 

problem. Image registration has been the topic of much research over the years [73]. The other problems are 
directly related to change detection. In mammograms, drasticaUy different images can be attained from the same 
patient imaged at temporal displayed times. The key questions here are how do we discriminate natural change from 
cancerous change and how do we determine the type of change that has occurred? Often in medical imaging, the type 
of change that has occurred can direct the type of treatment required. Prime examples are treatment monitoring 
and tumor detections. This process we define as change quantification. This definition was motivated by the work 
of |18J where quantification is used to define the process of describing the image udth some model parameters The 
specific aun of this research is to study image registration and change detection to address the clinical and technical 
problems discussed above. The result will be a semi-automatic change detection algorithm. 

1.3    Technical Review 

Two main approaches were developed to deal with the problem of automatic change detection in mammo<Tams 
They are approaches based on processing a single view of a single breast [5], [6] and approaches based on single view 
of multiple breasts (left and right) [8]. [69] presented work that developed an approach to consider both sin-le and 
multiple view processing. Use of multiple breast views leads to additional problems because women typicalTy have 
significantly different structures between left and right breasts [1]. This causes natural asymmetry to be flagged 
as change or lead to landmark confusion [5] while single breast approaches do not have the problem of dealing with 
asymmetry. So, most of the research attention has been focused on single breast approaches. GeneraUy single 
breast approaches contain three main steps: (1) preprocessing of the images searching for control points or regions for 
use m registration, (2) registration, to align the images into a common framework, and (3) detection and analysis of 
local change. The preprocessing is generally handled by classical image processing techniques such as segmentation, 
morphological filtering, edge detection, and feature extraction. The registration process is performed by both rigid 
and non-rigid forms, but generally the breast is considered a deformable object thus non-rigid forms of registration 
should be used [73]. Fmally, the local change analysis is performed with various techniques ranging in complexity 
fi-om difference image analysis [15] to principle component analysis [81]. 

Three main research groups have attempted to address the problems of mammogram registration and change 
detection. Group [5] approached these problems with a two layered approach. In their approach, they perform a 
sequence of two poljTiomial based (thin-plate spline TPS) registration using different sets of control points. The first 
set of control points were extracted fi-om the smoothed dense tissue boundary (i.e. brightest region on mammogram). 
The second set was extracted from the interior region of the dense tissue. Correspondence between control points 
for the first transform was performed by matching points on the reference image contour with similar points on the 
float image contour with the same maximum curvature. For the second transform, points with matching LAWS's 
texture features [87] were matched as control points.   This approach has problems when the dense tissue does not 



occupy a large percentage of the breast which typically occurs in radio-lucent breast [1, Breast book]. In cases like 
this, error occurs in transforms when the point to be transformed is far away from the control points thus reducing 
the effectiveness of the control points. 

Another approach to mammogram registration and change detection was developed by [6].   They consider these 
problems by asserting that accurate registration of mammograms is intractable except with elastic transforms, and 
the only solution is regional registration [7].   In regional registration, locaUzed areas of the two mammograms are 
aligned based on their distance from control points.   In their approach, monotony operators axe used to extract 
vertical and horizontal elongated structures (milk ducts, and blood vessels) in the image which they assume to be 
generally stable between images in the sequence.   A three-pass Gaussian filter is used on the original mammogram 
to mask less prominent structures.    This reduces the complexity and Umits the monotony operators to detecting 
the dominate structures.   The cross points of these horizontal and vertical structures make up the pool of potential 
control points.     Correspondence between the current image control points and reference image control points is 
accomplished by comparing the respective control point signatiues.    The signatures are created by counting the 
number of non-zero pixels that He in a rectangle that is rotated around the control point.   In this configuration, the 
direction of the longest structiue would yield the highest valve in the signature.    The similarity of the signatures 
is used as the matching criteria.    These values are then passed into a thresholded acciunulator matrix for final 
point selection.   To locaUze the area where signatures are compared, the nipple location in both images is used to 
determine a neighborhood region that surrounds the potential control point.   This reduces processing and decreases 
the probability of false alarm.    Using these control points, regions (of any shape) are determined on the current 
image by calculating the distance from a subset of the detected control points.   Finally, the regions are compared for 
change.   This method overcomes the erroneous interpolation problem experienced by [5], but the algorithm uses ad 
hoc point matching criteria, locaUze window size selection, and threshold determination.   In addition, [7] assumes 
a small mis-registration that restricts the generality of this approach.   Both [5] and [6] mainly address registration 
so, simple change detection methodologies based on difference image analysis and wavelets respectively are used for 
their change analysis.   In [9]'s approach, the registration is performed by a radial basis function (RBF) interpolation 
process.     This approach as other in polynomial based registration methods depends heavily on the existence of 
control points in the image pair.    This approach only uses control points on the skin line of the breast which has 
been extracted through threshold based image segmentation.   Control point correspondence is obtained by finding 
contour points that are equidistant (measured in the number of contour points from the corresponding nipple) from 
the nipple.   The control points are then used to solve for RBF parameters which yield the desired transform.   Since 
the control point are selected only from the skin hne, internal structures are not considered in registration.   Thus, 
this method is unable to track non-rigid changes that occur inside the breast.   In addition, use of threshold based 
segmentation could lead to a noisy contour. 

Although these methods have had success on limited databases, their Mmitations could cause erroneous results 
when examining mammograms in a more general sense. For instance, consider a mammogram sequence where both 
images contain a small dense tissue area (relative to total breast tissue size). Using [63], the control points would be 
clustered aroimd the dense tissue area leaving the rest of the image not modeled. So, any transform derived from 
these points could not accurately capture any deformation in the not modeled portion of the image thus causing 
mis-registration. In addition, consider that the same sequence has a large initial misalignment. This causes the 
window sizes, thresholds, and signature matching criteria of [6] to be manually modified to correctly process. The 
approach [69] is insensitive to the above conditions, but would not accurately model the internal structures because 
no control points exist in that region. This short fall could possibly cause the detection of false or missed change. 
The limitations of [5] [6] [69] are Hsted in Table 1.1. 

Another problem not considered by the above three approaches is a sequences containing more than two images 
(i.e.  li, li-i, Ii-2, )•    Sometimes in medical analysis, the radiologist wiU examine further back than previous 
images as some change can only be seen over a longer periods of time. In satellite imaging, site monitoring is a 
similar task. In this task, sites are monitored through several images (generally two or more). To accomplish this 
task [79] uses the site model. The site model is a multimedia representation of an image scene to include object 
shapes location, segmented version of scene, previous location of change, extracted features, and a prior domain 
expert information. Through the site model operations of construction, registration, and update the site model 
tracks the scene over time. This same approach could be used to analyze an anatomical region such as the breast, 
brain,or prostate in temporal studies. 

1.4    Approach 

Thus, considering the limitations hsted in Table 1.1 and site model theories, a new algorithm is proposed to perform 
non-rigid registration apphed to a mammogram sequence. In this algorithm the registration is perform in two steps. 
The first step is called initial registration and it aims to correct large global misahgnment by treating the breast as 
a siun of rigid objects and performing a multi-object principle axis registration(PAR).   The objects iaclude large 



Limitations 
Wirth Method 

Only use control points on the skin-hne. 

Number of contour points between control points 
as measure of control point matching. 

Effect of Limitations 

Unable   to 
structures 

consider   deformation   of   internal 

Difference image analysis (detection only). 
Sallam Method 

Used the boundary and interior of dense tissue to 
determine control points. 

Used threshold methods to segment image. 

Assumes that the number contour points between 
two control points is constant across the float and 
reference image. 
No quantification 

Control points do not model complete image de- 
formation in case when dense tissue is a small per- 
centage of image 

Difference image analysis (detection only) 
Brzako\'ic Method 
Assume small initial mis-registration. 
Image dependent processing parameters such as 
signature search wintow, size of monotony opera- 
tors, and thresholds. 

Histogram analysis using raw images (detection 
only). 

Adhoc signature matching method. 

Yields different contours if intensity ranges differ 
for reference and float image. 
No quantification 

Limits use to cases of small registration. 
Requires new parameters for each image. 

No quantification 

Assumes the longest arm of signature will remain 
the same in float and reference images. 

Table 1.1: Limitation of existing Mammogram registration algorithms 

clustering of similar tissue types and the breast skin fine. An individual PAR transform is calculated for each object 
Each P«el X, is then passed through each of the n transforms resulting in multiple point matching f .^ in the new 
image. The fin^pomt location x, is formed by weighting each point x,, by the probability z^^ that the point x^ was 
transformed by 7^ (or probabihty that x, belongs to class k). z^^ is derived by considering each of the objects as a 
cluster of control points described by a normal distribution. Thus similar [19], we assume that each (x, y) locations 
to be made up of a sum of these normal distribution which can be modeled as a finite mixture. 

This formulation aUows for a weighting of the transform Tk to determine the final transform T. Thus creating 
a global mterpolative transform that weights local characteristics based on their probabihty of membership The 
next step m the registration process is called final registration. In this step, non-rigid displacements between ima-es 
are accounted for using a polynomial based (thin-plate spline) registration. Polynomial based algorithms depend 
heavily on the existence of control points between the images. To obtain the control points, we follow a modified 
ysion of the approach discussed in [7] which it extracts the elongated structure from the mammogram and uses 
the cross points of vertical and horizontal structures as the control points. The approach is modified by using the 
Pearson correlation coefficient [14] to match the potential control point signatures instead of the direction of the 
longest arm of the signature. 

Similar to registration, change detection is performed by a two step process. The process consists of a detection 
phase and quantification phase. The detection phase consists of measuring the relative entropy between the joint 
histogram of the float and reference images with the joint histogram of reference with itseff. The quantification phase 
uses basic geometry to determine an object's area and center of gravity which are then compared to determine if the 
object has change. To add the ability to study longer sequences, the site model was used to support the registration 
and change detection process. The site model supports the registration process by defining a reference frame which 
all subsequent images vnW be registered. The site model also fuses user input knowledge with automaticaUy extracted 
data mto a single model to be used in the registration process. As for change detection the site model stores the 
detected changes along with site memory and any other parameter updates. 

The automatic change detection algorithm can be summarized into three main steps as outhned below. 
Initial Registration 

Preprocess mammogram for skin line and internal objects. 
Use multi-object PAR on breast tissue using the skin line and internal object to form a finite cluster transform. 

Final Registration. 

Preprocess the PAR transformed image searching for control points and transform coefficients. 
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Figure 1.2: Change detection processing system flow 

Use TPS formiilation to determine the required transform. 
Change Analysis 

Use relative entropy for change detection criteria between the image blocks. 
Quantify change by determining difference in object area and center of gravity. 
Update change map located in the site model. 

A complete flow diagram of the process is shown in Figure 1.2. 

1.5    Research Scope 

During the development of this algorithm, several assumptions were made in order to bound the scope of this 
research. First, the mammograms are assumed to be CC and MLO views only (i.e. screening mammograms) of the 
same patient acquired overtime. Second, the radiologist initializes the site model parameters by identifying areas 
of interest (local change windows) and other prominent landmark points (calcifications, large blood vessels) in the 
first image of the sequence. Third, the type of change was limited to growth of a mass, or shrinkage of a mass. 
Microcalcification changes can be detected, but will not be considered because drastic gray level difference between 
microcalcifications and non microcalcifications. Although, if present in both images of the sequence they may be 
used as control points. Fourth, the amount of initial mis-registration is bounded so the skin lines of each breast are 
not more that ±25°rotated from each other. 

1.6    Contributions 

The pursuit of this research has led to several contributions in image processing and medical imaging. Contribution 
one is the development of a new hybrid registration algorithm aimed at the registration of non-rigid objects with 
minimal a pori knowledge. Usually, non-rigid objects axe registered with elastic or deformable methods which require 
knowledge of a sufficient number of control point pairs. While some rigid methods relax this requirement and usually 
only require object correspondence, for example, surface matching and principle axis methods. Use of rigid methods 
alone, in non-rigid problems, would allow for limited correspondence knowledge, but could not accurately model 
expected non-rigid deformations. The purposed algorithm combines rigid and non-rigid techniques to accompUsh 
the registration tasks. The algorithm consists of two steps an initial step (rigid transform) which preforms multi- 
object PAR registration where object correspondence is assumed known, and a final step (non-rigid transform) 
that uses thin-plate sphne (TPS) based mapping where control point correspondence is determined via a detection 
and correspondence algorithm. The combination of these two steps is new and provides many advantages over 
existing methods.   The first advantage is no requirement for point correspondence in the initial step.   Only object 



? ^WH r ^ ? Ti"'^ '' "'"""^ "'"'^ '^'''' computationally to determine. True, point correspondence 
IS reqmred a tsoine pomt m the processing, but performing the determination after the image has been preESly 
ahgned should a^ow for a more focused or narrow control point search windows because potrntTcontrdpo^ts 

each ngid transform as a piece wise component of a total non-rigid transform similar to modelin/a non Hnear 

Contribution two is the development of a new change metric based on the joint relative entropy between two 

ZZ. T L'?" ''r^' 'r'"° "^*"" t^°^' *^^ j°'"* -'^^-^ -*-Py is useM in detecrgTans Son o^y 
changes.   In addition the result of the metric tell us how similar the blocks are to each other     Difference hn^el 

creTb^rftatl^irS^otr^^ "^ ' ' ^^^"^ -"'- ^° -'- - -- - ^- ^ ---" 
Contribution three is the application of the site model concept to medical imaging.   The site model was develon 

accomplish application such as lesion momtoring, and disease detection. In addition, through update procedures 
the  ite model allows for the examination of the entire sequence together, to show region progression or to f^Se 

changes,    ti traditional site model formulations, new objects are added back into the image, but m the medical 

because it forms the base frame for comparison so any modification could alter results 

Contribution four is the development of a methodology to combine multiple transforms together to determine a 
composite image transform. In this research, we apply the combination method to multiple PAR trLsf™ but 
the me hod is generic and can be appHed to any type of transform along as each duster control po"tme"t; the 
particular requirement of the registration method in question. For exaonple, to use an elastic registrat on m hod i 
.^sumed we taiow the point correspondence of control points. In this algorithm, the image is assumed to contain 

obiect f T 'T r^f' -^^^ ^°"7 ^ -^--1 distribution, for which cluster correspondence is known (i.e 
objects). The resulting transform now enables rigid transform methods to handle non-rigid transform assuming the 
clusters are sufficiently distributed through out image. <^^uiiung me 

a1.n?tf.!^'^f'°"/•''^i^ *' development of a new statistical segmentation algorithm for sequences of images.   This 
algorithm is used m the site model update to reprocess the segmented image given the images of the sequence 

s^ttisHcir "'Tr 1 *''l*'' .''^"^"* ^^^" ^°"*^^° *^^ ''^' --'• ™s algorithi^ is based on a 2D 
Th! «1 n .^^'''i "" /?" "^ ^^''^ P^'^ relationship is assumed across adjacent pbcels in the {x,y) direction 
The algorithm extension taies advantage of the relationship between adjacent images. So, pbcel neighborhood is 
considered m three directions (.,,,.).   This additional information leads to a more robust se^entatifn iseen in 

1.7    Report Organization 

This report is organized into seven chapters. The first chapter contains an introduction, background, problem 
statement, and contributions. The second chapter gives a brief tutorial on mammogram formatio^^ and screer^n" 
procedures. Chapter three discusses the algorithms involved in the site model construction and update FoUowed 
by chapter four that contains the techniques for image-tc^site model registration. Chapter five discusses change 
detection while chapter sbc presents and discuss global results.     Finally, chapter seven presents futm-e research 



Chapter 2 

Mammography formation and Screening 

2.1 Introduction 

Breast cancer is one of the leading causes of cancer related deaths among women. Each year more than 100,000 
cases are diagnosed and more than 40,000 women die[l]. For many years researchers have studied breast cancer in 
search of an understand of breast cancer development. A high prediction rate of who will develop breast cancer is 
stiU an impossible task, although several factors have been identified as leading to the increase risk of breast cancer 
development. These factors include: gender, age, family history, age of first-term pregnancy, and previous history 
of breast cancer. Because of the gender factor, all women are at risk of developing breast cancer. In fact, women 
are 100 times more hkely of developing breast cancer than men [4]. Breast cancer is a progressive disease, evolving 
through stages of growth. The size of the tumor size when detect has an apparent relationship to tumor grade and 
should be considered an important prognostic factor. Mammography, a form of X-ray imaging, has been shown to 
be the only method currently available for the rehable detection of early, non-palable, and potentially curable breast 
cancer [3]. So, women starting around the age of 40 are imaged every two years or so. These mammograms are 
put through rigorous examination for possible cancerous regions utilizing a process called screening mammogram. 
The rest of this chapter is organized as follows: tutorial on mammogram formations, and explanation of screening 
mammogram process. 

2.2 Mammogram Formation 

Mammography is an X-ray image of the breast used to detect, diagnose, or monitor cancerous conditions. It is 
usually performed by a trained technician with the ultimate goal of imaging as much breast tissue as possible. The 
patient is usually standing with her breast compressed against a support plate [2]. Compression of the breast is 
performed to equalize the thickness across the breast which produces a uniform image. A manmiogram system is 
generally composed of four main components: X-Ray generator, compression device, scatter grid, and acquisition 
hardware. The general mammogram process is defined by these four steps. (1) arrange the breast in the compression 
apparatus. (2) Transmit a given X-Ray spectrum through the tissue. (3) Collect the X-rays and calculate the signal 
strength. (4) Form image using the results form in step (3). Figure 2.1 shows the arrangement of the components 
in relation to the breast to be imaged. The usabihty of the images is directly dependent on the image quahty. 
Image quality is effected by several interrelated factors such as: contrast, which is useful in soft tissue examination; 
unsharpness, which is useful for small calcification; amount of X-Rays absorbed by breast tissue, where higher level 
increase contrast but put the patient at risk for radiation-induced carcinogenesis [4]; and high dynamic range which 
handles variation of the transmission over the entire mammogram. Thus, the goal is to determine compromises that 
best match the given factors.   Next, each of the components in the Figure 2.1 wiU be discussed in more detail. 

X-rays are produced by energy conversion when high speed electrons from the cathode hit the anode target as 
shown in Figure 2.2. The electrons are discharged from the cathode as a result of heating. This discharge is cahed 
therminic emission. X-rays (photons) are created when the electrons hit the atoms present in the anode. The 
area of the anode that is bombarded by the electrons is called the focal spot. The focal spot is directly related to 
image resolution. The smaller the focal spot the better the resolution. Since the X-ray emission from the anode is 
isotropic, shielding is needed to reduce undesired exposures to the patient and fihn. The shielding is performed by 
an elongated tube with a single opening. The tube opening is capped with a coUimator to further reduce unwanted 
radiation emission. 

The radiation is composed of three general energy levels low, medium, and high. The low and high energy 
photons are filtered out because low level photons usually axe attenuated some much by the tissue that they do not 
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reach the fihn and the high level photons are unchanged by the tissue causing a low contrast image. This filter is 
used to shape the spectrum to achieve the best image quahty. Most frequently, a molybolemmi filter is used, but 
this is variable based on breast composition and thickness. Breast tissue composition goes through several phases 
of development diu-ing a womens' life. In each of these stages the breast can be composed of different tissue types. 
For example, in infancy the breast is mostly composed of adipose tissue while in puberty the fibroglandular tissue 
develops, and in maturity the fibroglandular tissue is replaced by fat tissue. Each of these tissue types attenuate 
the X-rays differently which yields different absorption rates. 

The next component of a mammogram system is breast compression. Compression is performed using flat 
compression plates. A main advantage to compression is the breast tissue is forced to a uniform thickness. This 
avoids the problem of overexposing the thinner regions ( near nipple) and imderexposing the thicker regions (near 
chest wall). A second advantage is that the compression holds the breast in place during imaging. This reduces 
image unsharpness caused from tissue motion. Other advantages of compression are reduced absorption rates 
because the breast tissue is now thinner, shorter exposure time because the x-ray have a shorter distance to travel, 
and confusing and overlapping structm-es are separated. 

Following the breast compression is the scatter grid. The scatter grid is designed to drastically attenuate the 
photons that are hitting the plate obliquely. These photons are more than likely the result of scattering from within 
the breast tissue. Scatter grids are composed of thin strips of metal laid with a particular spacing. Grids come in 
variety of different configurations. They are measured using a term a called grid ratio. This is defined as the ratio 
of the length to strip spacing. When the scattered photons are removed there is an increase the image contrast. In 
[2] contrast was improved by 17%, 37%, and 54% with the use of filters with ratio valves of 2,4, and 8. 

The final component of Figure 2.1 is acquisition hardware. Acquisition hardware includes the process that 
receives the photons from the scatter grid and then translates it onto the film. This process contains two major 
steps. The first step converts the photon into visible spectrum by exposing a luminescent intensifying screen to the 
photons. This reaction produces hght which is then used to expose film and form the radiographic image. Next, 
this image is transformed into a visible image by standard developing techniques. 

2.3    Mammogram Screening 

Screening mammograms is the term given to the periodic mammograms used in early detection of possible cancers 
conditions. The question the radiologist wants to answer using mammograms is, "Is this mammogram completely 
normal or is addition analysis required?" The major goal of mammography is to image the breast in order to 
detect cancerous conditions at its earliest stages. With this goal in mind technicians generally try to arrange the 
breast to image as much of the tissue as possible. Since the breast is a three dimensional organ, it is important 
to obtain multiple views so confusing or overlapping structures can be resolved. Generally, in screening studies 
the mediolateral obUque (MLO) and craniocaudal (CC) projects are obtained [1]. Together these two projections 
visualize the majority of the breast tissue, although, if sufficient compression is not achieved then the deep tissue 
close to the chest wall wiU not be imaged. Figure 2.3 and Figure 2.4 shows examples of CC and MLO compression 
views with a corresponding mammogram. 

The mediolateral obUque projection is the most useful projection because this view projects most of the breast 
tissue onto the image including breast tissue close to the chest wall. In this projection, the compression plane is 
oblique not the patient. The compression plane extends through the nipple from the upper outer quadrant of the 
breast to the lower inner quadrant of the breast as shown in Figure 2.4. On the other hand, in the craniocaudal 
projection the compression plane is perpendicular to the chest waU. This view shows the thinner portion of the 
breast, but can often miss the thicker portion because of positioning. Usually, after the MLO and CC views have 
been examined, additional views may be required depending on the review results. The other supplement views 
include: lateral, medial, lateromedial, and straight mediolateral. Use of these views depends heavily on the particular 
cancerous sign. 



Figure 2.3: Compression plain and sample CC mammogram view 

Figm-e 2.4: Compression plain and sample mammogram for KILO vi( 



Chapter 3 

Patient Site model Construction and 
Update 

3.1    Introduction 
The site model is a dynamic mathematical and geometrical description of a scene under analysis. At a minimum, 
the site model contains the following parameters: objects, boimdaries, object attributes, user input, and associated 
raw and processed data. The site model can vary in complexity ranging from detailed object description (building 
numbers) to simple boundary information. Pioneering work on the site model was performed by [13] in the analysis of 
aerial images for site monitoring and change detection for intelligence gathering pinposes. In that research, the goals 
of site monitoring and change detection were accomplished through the support of three main model tasks. These 
tasks are called site model operations. In [79] the operations axe defined as site model construction, image-to-site 
model registration, and site model update. Other research on the site model idea was performed by [74]. In [75], the 
site model operations are defined as site model acquisition, model-to-image registration and model extension. The 
pursuit of both of these research projects resulted in algorithms for automatic building detection [13], automatic and 
semi-automatic registration [79], [75], and fusion methodologies for combining user input with automatic processing 
results.   Next, each of the site model operations wiU be further defined and discussed. 

The first model operations is site model construction. Site model construction consists of deriving the site 
model parameters from the initial input images and user input. In [79], the construction process is as follows: 
(1) review two or more input images (overlapping views); (2) create a world coordinate system; (3) derive camera 
models for each image; (4) input camera focal length and principal point; (5) determine control points; (6) refine 
camera models for each image; (7) add objects and other annotations. [75] on the other hand, considers a lower 
level construction phase which includes (1) fine segment extraction, (2) building detection, (3) multi-image epipolar 
matching, (4) multi-image triangulation, and (5) projective intensity mapping. These site model parameters which 
include detected fine segments, buildings locations, camera models, and other control points are extracted using 
advanced and classical image processing techniques. 

The next site model operation is image-to-site model registration. Image-to-site model registration is the process 
of putting a new incoming image (float image) into the same coordinate system as the site model (reference image). 
The registration process may be automatic or semi-automatic (user interaction). A general approach is to match, 
in some manner (via. criteria), selected site model parameters with newly extracted parameters in order to derive 
a transform that describes the recovering transformational geometry (transform) required for alignment. [79], [74] 
, [78] describe several registration methods that they use with their site model. The result of this operation is an 
aligned image ready for change analysis. 

The site model's ability to describe a scene over time is derived through the site model update procedm-e. Site 
model update allows for the addition of parameters (objects) of the site based on processing results of previous and 
ciurrent imaging conditions. With these operations, site change, such as a vehicle leaves a parking lot or lesion 
increase in size, can be detected and monitored eflEiciently. To maintain continuity, [79]'s notation for site model 
operation will be used throughout the rest of this report. 

The site model idea can be extended to medical imaging analysis. In medical imaging, the radiologist often wants 
to perform similar types of appUcations to site monitor and change detection. For example, lesion detection and 
treatment monitoring. In these apphcations, a radiologist examines a temporal sequence (same view) of the same 
patient for change that could indicate cancer. When change is found further analysis is performed. For example, 
in mammogram screening,  temporal sequences of the same patient are used to detect possible regions of interest. 

Currently in medical imaging another type of model is used in various processing algorithms [52] called anatomical 
atlas (models).    Although anatomical models are currently not used in change detection appUcation, it is important 



Parameter Size 
1 Skin line 2XN 
2 Raw image MxM 
3 begmented image MxM 
4 Mask MxM 
5 Center Cavity 1x2 
6 Eigenvalue 2x2 
7 Eigenvector 2x2 
8 Nipple location 1x2 
9 Elongated Structiu-es MxM 
10 Potenital Control points nx2 
11 Image histogram IxMgl 
12 change map MxAl 
13 Internal objects kx2xg 
14 Control point Signatures 5^xn 
15 1 Quantification parameters    Kx3 

Table 3.1: Site model parameters 

to note the differences between the anatomical model and the site model. The main difference between the site and 
an atlas is the site model is specific to a particular scene (patient) where an anatomical model is more a textbook 
rendermg ofthe scene that does not consider user input or individual variability. An example is an anatomical 
atlas of a ^ffil brain [57]. In this example, the synthetic brain MR image has the correct tissue percentages. This 
difference leads to a more refined name for the site model caUed the patient specific site model 

In this research, the site model is used to support registration and change detection to achieve the application goals 
of lesion detection and treatment monitoring in mammograms. The site model supports registration by providing a 
common frame (coordinate system) from which all other images in the sequence are registered. It also provides an 
efficient mechanism for combining manual site information (user label objects) and automatic information (detected 
boundaries and control points) in a usefril manner to help facilitate the desired task. The rest of this chapter 
considers the specific contents of the model, the signal and image processing techniques used to construct the model 
parameters, and the site model update procedures. 

3.2    Model Parameters 

In this section, the site model components will be listed and their relevance discussed. Since the site model will be 
used to support sequence registration and change detection, it contains parameters used in the accomphshment of 
these tasks. Parameter order in the site model is arbitrary as the site model is interactive and parameters are used 
m a non-linear fashion. There are some parameters that depend on others, and naturaUy the dependent parameters 
would need to be calculated after the required information was available. The site model parameters included in 
this unplementation are show in Table 3.1.   Next, the purpose of each parameter is discussed. 

The first parameter is a AT x 2 vector containing the x, y coordinates of the breast skin line. The breast skin 
hne parameter is used in initial registration as one of the multiple control objects and as the desired curve to be 
fit m mpple location estimation. The second parameter in the model is an TV x 2 vector containing the (x y) 
coordinates of the largest objects, usually dense tissue, located within the breast tissue. These objects are used in 
conjunction with the skin line to perform multi-object registration. The third parameter is the AT x 2 contain the x y 
locations of potential control points. These points are the cross points of horizontal and vertical structures (blood 
vessels and milk ducts) within the breast. The points are used to form the spatial-coordinate transform m the final 
registration phase. The fourth parameter is an image containing both horizontal and vertical structures This 
unage is used to generate point signatures for the determination of point correspondence between potential control 
pomts m reference (site) and float (incoming) image. The fifth parameter is the estimated nipple location and is 
stored m a 1 X 2 vector. The nipple location is used to localize point correspondence to a neighborhood window in 
the correspondence phase of final registration. The sixth parameter in the site model is the raw image histogram 
stored m a 1 X MGL vector {MGL is the maximum intensity value in the image). The histogram will be used 
as the desu-ed histogram in performing histogram specification between the mcoming image and site. Histogram 
specification normalizes intensity ranges to that of the site model so object extraction is not biased by intensity- 
differences.   The eighth parameter is the image quantification model parameter estimates.   These estimates are used 
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Figure 3.1: Site model construction flow 

to initialize the segmentation of the incoming images so a uniform segmentation is achieved between the images^ A 
copy of the raw image, raw segmented image and tissue mask are included and used in foUow-on processmg. Then, 
finally space is assigned for user specific input; such as the, number of classes in the scene, prominent landniark 
locations, change region of interest, and location of previous change. The number of classes in the scene is used to 
initialize the segmentation process. Prominent landmarks provide addition control points m final registration. The 
previous change location is used to exclude the change regions from further processing or focus m on specific regions 

for analysis. „ „ ^ ,     r     -i.        j i 
The site model construction process is summarized in Figure 3.1.   See Figure 3.2 for an example of a site model 

of a CC view mammogram.   Next, the theory and algorithmic formation of each of the parameters will be discussed. 

3.3    Model Construction 

3.3.1    Segmentation 
The segmentation algorithm used in this research is a statistical based algorithm that classifies each pixel as belonging 
to one of the K classes. The main premise of this algorithm is that the image's distribution can be represented by 
the gray level histogram of the unage. The histogram of an image is defined as the number of times a pixel intensity 

falls within a pre-specified range as shown below. 

1   ^ 

1=1 

Tt \ /I' ■" = ^' 

(3.1) 

(3.2) 

where x is the intensity level of the pixel and J is an indicator function. Then it is assumed that the histogram can 
be mathematical modeled (or composed of) by a sum of K Gaussian distributions or mixture model where each 
individual Gaussian distribution identifies a class (tissue type). Finally, each pixel is assigned a class based on its 
membership probabihty. The algorithm is composed of two main components: quantification and segmentation. 
The quantification phase consists of estimating the parameters of the mixture model while the segmentation phase 
uses these estimates to determine pixel labels in a maximum likelihood sense. ,    ,      , ,1 

Several studies of natural image statistics have yielded some stochastic image mixture models that best mode 
the histogram of the X-ray mammographic images[19]. For this research we selected the standard finite normal 
mixture (SFNM) model as the histogram model.   SFNM can be derived using the foUowing relationships.   First the 
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image is a N x N image where each pixel is assmned to be a random variable. The marginal distribution of the 
random -variable (pixels) is shown below. 

p(.) = f:..-^exp(-i^2#^) (3.3) 

where x is the pixel (random variable), Hk is the A;*'' class mean, al is the k*'^ class variance, and Trj, is the distribution 
parameter. The SFNM is derived by randomly reordering the pixels with no regard to spatial information. This 
allows the pixels memberships to be treated as i.i.d. random variable. The joint distribution of the image is written 
as the product of each pixel's distribution as shown below. 

n-)^ng".^-(-^) <») 
The above equation represents the SFNAl model which can be rewritten in the form of a hkeUhood function condi- 
tioned on 6, the free parameters vector. 

N"   K 

P{X/6)    =   l[J2'"'9{x) (3.5) 
1=1 fc=i 

Ok    =   'i^k,P-k,al (3-7) 

In order to use this equation, the feature vector Ok and K must be estimated. Since the components of 9 are 
not treated Uke random variables, the estimation problem is formulated as a maximum hkelihood (ML ) estimation 
problem [76]. The main goal of ML estimation is to determine valves for 6 and K that cause X to occur. Since 
the logarithm is monotonically increasing, maximizing the log-hkelihood is equivalent to maximizing the likelihood 
function [76]. The ML estimate 6', is that valve of 9 that maximizes the log-UkeUhood function. This estimate can 
be determined by differentiating the log-hkeUhood function log P{X/ 9) and setting it equal to zero (i.e. fmd the 
extreme point of the log UkeUhood function). 

6\ogP{X/e) 
66 

= 0 (3.8) 

Sometimes maximizing log P{X/9) is too complex to solve in a closed form solution. In cases like this, an 
iterative algorithm called the expectation-maximization algorithm (EM) can be used [25] to obtain the required ML 
estimates. The EM algorithm is designed to attack what is termed 'incomplete data problems' [25]. Incomplete data 
problems are defined as problems where part of the data for some reason is unobservable. Take, for instance, the 
true pixel labels L of an image as unobservable data and the pixels intensity Y as observable data. The relationship 
between observable and imobservable data is shown below 

X    =    (y,i) (3.9) 
X   =   T{L) (3.10) 

where X is the complete data and T is a nonreversible many-to-one transformation of L. If L could be observed 
directly then the complete information about the image would be known and no processing would be required. The 
EM algorithm is divided into a E step, where the hkelihood unobservable data L is calculated through the observable 
data Y and the current parameter estimates, and a M step, where the unobservable Ukehhood function is maximized 
to yield new parameter estimates. In the SFNM formulation, the E step, for a assumed number of class K, this is 
formidated as a membership functions shown below 

,M_i£!^(2iZ^&MQ (3 11) 

where m is the current iteration number ranging from 0    Then in the M step the updated parameters (^, (T^, TT) 

are calculated by maximization of the hkehhood with current estimates.   The update equation are shown next. 



(m+1)     _ i (m) 

2(m+l)      _      __L_V-^.(m), „(m+l)s2 

The EM iterates back and forth until a convergence criteria is reached (under regularity conditions) [25] . The 
convergence criteria is reached when the difference between -K^^' and TT^ '^ smaller than some pre-determined 
value e . 

(m+\) (m)\ 
< 6 (3.13) 

A kej' factor in the use of the EM algorithm is obtaining a reasonable initialization of parameter estimates [25]. If 
initiaUzation is not appropriate, then the algorithm could estimate into a local minima [25]. To combat this problem, 
the Adaptive Lloyd Max Histogram Quantization algorithm (ALMHQ) is used to determine the initial parameters 
estimates for the EM algorithm. [20]. The ALMHQ algorithm takes the image intensity histogram p and number 
of regions K as input then iteratively determines each of the K threshold values by trying to minimize the global 
distortion D with respect to the thresholds t and mean gray levels /x. 

SD       6D     ^ ,      , 
— = -—=0 3.14 
Otk OjJLk 

^     rtk+i 

D = J2 ('^ - lJ^kfp{u)du (3.15) 
fc=i •'*'= 

After minimization of distortion, the update equations for ^ can be derived as shown below. 

Mr = 2c - ^r-i (3.16) 

The (T^ and ir for each section are calculated once the optimal mean (/i) assignment has occurred. Iteration 
stops when the parameters no longer significantly change from iteration to iteration. These estimated \'alues are 
used as the initial parameter estimates for the EM algorithm. The ALMHQ and EM assume that K is kno^Ti 
however, except in controlled studies this is usually not true. The determination of K is termed a cluster validation 
problem [32] and can be solved using information criteria. The most commonly used information criteria is Akaike 
information Criteria (AIC). Appendix A describes this approaches along with some examples. Once the parameters 
have been estimated the quantification portion is complete. The results form the quantification phase are then used 
as input to the segmentation phase. 

The segmentation portion consists of two main steps: maximum likelihood classification (MLC) which performs 
the initial segmentation, and contextual Bayesian relaxation labeling (CBRL) which performs the final segmentation 
[26]. The MLC can be used if we treat I*, the true pixel label, as an independent non-random unknown constJint. 
Then the label assignment is performed by maximizing the likehhood for each pixel in the image. The assignment 
of a pixel i into a class k is given by the following relationships 

li=&rg{msxT{X/^l.k,<rl)} (3.18) 
k 

where F is the likehhood function of pixel images for all pixels.   The ML estimate of F for A; would yield estimated 
fc"'class label.    This is realized by minimizing the log likehhood function given 

where dik is defined as the Mahalanobis distance between the intensity of pixel i and mean of class k. 

U = arg i. min dik \ (3.20) 

Thus, the label of the class mean that is closest to the pixel (in terms of Mahalanobis distance) is selected as the 
new pixel label. 
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Figure 3.3: Raw foiir class phantom at 25db SNR 

Relaxation labelling methods Uke CBRL perform efficient segmentation given initial pixel labels. This is ac- 
compHshed by incorporating contextual information m the segmentation process. Context information is defmed 
as the information relating a label (or class) to a pixel. The contextual information is considered by defming a 
neighborhood bxb pixels around the pixel i.    The CBRL derivation starts by defining Sz the pixel neighborhood 
and ki the labels of the neighborhood, l^i = IjfM   3 = 1 «-'       J = i-   Next, we can derive the neighborhood 
membership as 

-^ = -^^j:nh = k,l,/Si) (3-21) 
At 

where I is the indictor function given by 

TTfc can also be interpreted as the conditional probability of k.   The pdf of the gray level is given by 

K 

p(a;i/ZAi) = ^'rfcPfc(^i) (3-23) 
fc=i 

based on SFNM formulation. The segmentation is performed by minimizing the total classification error using the 

following relation. 

,.arg{max(5:fe5^.(./^.))} (3-24) 

where g(x/9k) is the gaussian kernel. 

3.3.2    Experimental Simulation 
The quantification and segmentation algorithm was simulated with a phantom image and real mammoff-anis. The 
phantom was a 40 x 40 image that contained four intensity values (32,42,52,62) each occupying 25% of the miage. 
The image was then corrupted by AWGN that yielded a raw image with a SNR of 25dB as seen m Figure 3 3. The 
perform^ce of the algorithm was evaluated by the analysis of the quantification and segmentat^n results For 
quantification the true SFNM model parameters were compared to the estimated parameters.    These results are 

^^^¥^ot Sc^nation of the table the parameters estimates axe within 0.5% error for ^ and 7.0% error for w. Feeding 
the parameter estimates into the SFNM model and measuring the ORE between the phantom histogram and model 
shows that the distribution closely models the image. Finer estimates can be obtained, but the EM algorithm stop 
criteria must be deceased.   In this current arrangement, the threshold is set to 5.   By decreasmg it to 1, the error 



k /ifc Afc ITfc Tl-fc -I 
1 32 31.82 .25 .242 6.9 
2 42 41.79 .25 .2692 9.59 
3 52 52.29 .25 .2460 6.7 
4 62 62.08 .25 .2429 6.19 

Table 3.2: SFNM parameters estimates for four class phantom. 

i 

Figure 3.4: Segmented version of four class phantom 

percentages drops from 0.5% for n to 0.3%. This error decease is also accompanied by an increase in processing 
time. 

The results of segmentation of the four class phantom is shown in Figure 3.4. The performance of this portion of 
the algorithm was judged using the number of pixels in error and the amount of improvement in GRE between the 
processed and improcessed images.   In this example, the number of pixels in error drops drastically after processing 
from — to    This, in turn, improves down stream processing by removing unwanted intensity fluctuations in the 
image. This segmentation process is not without error. In several simulation runs, it appears that the error pixels 
are equally distributed across the image with most of the errors occurring between adjacent classes (i.e. pixels from 
class one are classified as pixel from class two). This appears to be attributed to the resolution of the quantification 
phase. This is similar to the resolution limitation of a FFT to resolve closely spaced frequencies [77]. If the 
quantification groups pixels into adjacent classes then the error feeds through into final segmentation. 

The mammogram examined was 500 x 300 with 256 gray levels. From appendix A and [26], the number of 
classes for typical mammograms are found to be eight. Figure 3.5 shows a raw mammogram and Figure 3.6 shows 
a segmented version of the mammogram divided into individual classes. Because no ground true tissue map exist 
for real mammograms the performance will be compared to previous results obtained in [26]. Table 3.3 shows the 
estimates for the SFNM parameters for Figure 3.5. 

These values roughly follow the results presented in [26].  Diff'erences can be attributed to the imaging environment 

1 2 3 4 5 6 7 8 
/^ 27.39 32.89 62.84 105.17 132.24 159.53 181.45 203.55 
a'^ .46 1.9 294.69 162.75 82.38 81.00 76.04 52.06 
TV 0.0002 .353 .059 .052 .164 .116 .169 .087 

Table 3.3: SFNM parameters estimates for mammogram with 8 classes. 
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Figure 3.5: Raw and segmented versions of a mammogram 

Figure 3.6: Segmented classes from a mammogram 
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Figure 3.7: Mask image 

(i.e. eqmpment used, signal strength, etc.). 

3.3.3    Breast Tissue mask formation 

The processing mask is formed by segmenting the raw image into two classes corresponding to tissue and non-tissue 
(background). Then for every pixel assigned to the tissue class the corresponding pixel location in binary image is 
set to one otherwise the pixel location is set to zero. 

Mask{i,j) = / 1.    k 
1 0.    k 

(3.25) 

This mask image serves two purposes. The first purpose is to limit processing to only tissue regions of the image by 
multiplying non-tissue pixels by zero. This process increases processing speed and eliminates unwanted backgroimd 
eflFect in none tissue regions. The second purpose is to feed a morphological filter designed to extract the breast 
contoiir for use in further processing.   Figure 3.7 shows some typical mammograms with the associated mask. 

3.3.4    Contour Construction 

The contour is constructed by passing the mask image through two morphological filters. Morphological filters are 
filters designed through a structuring element to perform different tasks. The structuring element is a g x g mask 
where g x q is smaller than the image size. The first filter is a dilation filter and it has the efi'ect of thickening the 
object. The second filter is an erosion filter which has the opposite effect (i.e. thinning). The outhne can then be 
formed by subtracting the dilated image by the eroded image yielding the object outline. A flow diagram of this 
process is shown in 3.8.   Figure 3.9 shows some example extracted contours. 

3.3.5    Object description 
Initially point to point correspondence between images is unknown, but object to object correspondence is known. 
Using this object correspondence, an initial transform can be derived.   Objects in the image include clustered dense 
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Figure 3.8: Contour extraction process 

Figure 3.9: Extracted mammogram contours. 



tissue and the breast skin line.    The first and second moment of the (i, y) coordinates are used to describe the 
object's geometry.   The first moment is calculated using the following equation 

1   " 
^S=N'E'-' (3-26) 

1=1 

where TJ is the (x, y) coordinate of a single point on the object of A'' samples and Rg is the center of gravity (first 
moment) of the object.   The second moment is calculated using this relationship 

= E 
N 

TiA (3.27) 
t=i 

where Cr is the covariance matrix (second moment) of the (i, y) points of the object. To further describe the object, 
the principle axes and dispersion aJong these axes is desired. The principle axes of a object is the axes about which 
the object's entia is miniimi. The dispersion along the axis is the spread of (a;,i/) values. The principle axis and 
dispersion have been shown to describe an object's orientation and scaling [53]. It has also been shown [50] that 
eigem'alue analysis [86] yields the principle axis and associated dispersions through the eigenvectors and eigem-alues 
of the covariance matrix of the object. So, the final description contains the center of gravity, principles axes and 
the dispersion along these axes. 

3.3.6    Nipple point estimation 

The nipple in most screening mammograms views hes on the extrema of the breast skin hne. Several methods exist 
to determine the extrema point. In [88], the point is estimated by determining the point on the skin Hne that is 
farthest fi-om the chest wall hne. This method is suspectable to noise in chest wall estimation. Another more 
stable approach is by [7] which estimates the nipple location through least mean square error approximation of the 
skin line to a quadratic function. The skin line is obtained using intensity thresholding. The least mean square 
formulation is shown below. 

/(x) = Co + cii + C2X^, (3.28) 

n 

e   =    X^(j/i - Co - ciXi - C2X?)2, (3.29) 
i=l 

be     _ ^^ _r\      ^^ _ n 
(5co bc\ (5c2 

where c's are weighting coefficients and n is the number of samples in the contour. The above derivatives yield the 
following system of equation where co, Ci, C2 are the unknowns. 

-2^(l/i-co-CiXi-c2x2)    =   0 (3.30) 
i=\ 

n 

-2'Y^Xi{yi - Co ~ CiXi - C2xf)    -   0 
t=i 
n 

-4^Xi(j/i-co-CiXi-C2X?)    =   0 
i=l 

This approach is stable for breast skin hnes that closely follow the quadratic function which MLO view images 
generally do not. In this research, the method by [7] is extended by the use of statistical segmentation to extract 
skin line, and a higher order polynomial as curve fitting function. The nipple estimation procedure is given by the 
foDowing steps: 

(1) Segment the raw image into classes. 
(2) Group those classes into two classes of breast tissue and background forming a binary image. 
(3) Extract the skin hne using morphological filtering. 
(4) Using A'' contour points /(xj) of skin line, curve fit a n"* order polynomial using least squares.  The formulation 

is as follows: 

f{x)    =    Co + CiX + C2X^ +  c„x" (3.31) 
2 

=     2_^h/i-  1^0 + 2^ C;Xi 
i=l   V \ Z=l > 



Method X y 
GOOD 289 279 
LEfflGH 275 294 
WOODS 287 277 

Table 3.4: Estimated nipple locations for a CC contour the methods. 

Method X y 
GOOD 345 278 
LEfflGH 238 236 
WOODS 367 274 

Table 3.5: Estimated nipple locations on a MLO contour for the three methods. 

This leads to a n + 1 system of equation to be solved for the weighting coefficients c . 

(5) Find the critical points of f{x) using the following 

df{x) 
dx 

= 0 (3.32) 

then solve of x. ,., u i 
A n*'' order polynomial results m n-1 roots.   So, to reduce the number of roots to a manageable number complex 

roots, zero roots, and roots outside the breast tissue were dropped from analysis.   The x yielding the largest f{x) is 
selected as the skin Une extrema or nipple location. 

3.3.7    Simulation Experiments 
The performance of this algorithm was tested through comparison with the results obtained by [6] and [88]. The 
skin Une contours were extracted using the procedure describe in above section. The algorithms were run on several 
CO and MLO view mammograms. Table 3.4 shows the x, y location for a representative CC mammogram usmg the 

three methods. 
Table 3.5 show the x,?/ location for a representative MLO 

In the CC unage, our method obtains a nipple estimate closest to the visually selected nipple, but in the MLO 
unage the [88] method selects the best nipple. Our method selects the bottom of the nipple in this case. On average, 
our method out performs both [6] and [88] because of the low order polynomial used for curve fittmg and contoi^ 
extraction noise.   Table 3.6 shows the MSE between a contour and various order polynomials functions for CC and 

MLO mammograms. ,„^       , ,_• i. 4. 
From this we see the higher order functions obtains a lower MSE especially on MLO contour which are not 

generally quadratic. Thus, with higher order polynomials a more robust nipple estimation is achieved. To further 
highlight the need for higher order polynomials. Figure 3.10 shows the nipple locations given various order polyno- 
mials The proposed algorithm results were evaluated by radiologists and were found to be accurate m 95 % ot the 
cases Although some cases estimated the top or bottom of the nipple, the 5 % error can be attribut^ to contour 
extraction error. In these cases, the contour was not very smooth causing many local extrema points. This problem 
could be addressed usmg a smoothing filter on the contour before nipple detection. 

CC MLO 
Order MSE Order MSE 
2 415.9 2 3640 
5 162.8 5 1419 
10 113.4 10 1381 
20 415.9 20 1129 

Table 3.6: MSE between the contour and n*''-order polynomial for  CC and MLO views 
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Figiire 3.10: Estimated nipple locations for 2,3, 4, and 6th order. 

3.4    Site Model Update 

In [75] and [13] site model update (or extension) is the process of finding and modeling mi-modeled buildings (objects) 
and adding them to the site database. This is possible because the image-to-site model registration provides the 
correspondence (overall aUgnment and camera angle) necessary to compare regions. Once registration is completed, 
the newly aligned images are then processed looking for set model parameters. These new parameters are compared 
to existing parameters looking for difiFerences. The differences in parameters are new locations which are then added 
to the database yielding a composite view of the scene. 

In this research, the use of the site model differs from that of [75] and [79] because the site model is used as 
a reference model with a variable parameter (change map) not a variable model where every parameter could be 
updated. Site model update, for this application, identifies changes found in new images (registered) and adds 
them into the site model parameter change map while leaving the other site model parameters imtouched. The 
imtouched parameters represent the characteristic of the reference image, and by definition of reference should not 
be altered. So, overtime this database will contain the reference image information Jind changes that have taken 
place over the sequence. This formulation of the site model meets the main objects stated previously which are to 
provide a common registration frame and highhght the change region for possible exclusion from further processing. 
Next, the update processes will be explained in more detail. 

The site model update process is conducted by modifying the change map (M) parameter with the newly detected 
change. The change map parameter is an image the same dimension as the scene image where each pixel M{i,j) 
is initiaUzed to zero to start. Then, each time a pixel M{i,j) is identified as being changed the value of M{i,j) is 
incremented. Figiu-e 3.11 shows an example change map for a growing object. From Figure 3.11 we see that the 
object has grown through four images of the sequence. Tliis map could then be used to quantify the change by 
calculating the size, shape, and rate of change for the object through the sequence. 
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Chapter 4 

Site Model Supported Image 
Registration 

4.1    Introduction 

The registration process is supported by the concept of a site model and site model operations. The site model is 
a mathematical representation of a scene under analysis. A basic site model contains a geometric description of an 
scenes objects (area, size, and other attributes), raw data, and simple user input (previous timaor locations). The 
environment interacts with the site model through the site model operations: construction, image-to-site registration 
and model parameter update. The site model is constructed by thoroughly processing the first image m the sequence 
to obtain the parameters. The site model supports registration in three main ways. First, the site model forms 
the reference frame (reference image) for all subsequent images, thus allowing all of the images in the sequence to be 
aHgiunent to a common coordinate system. Second, the model stores registration parameters like object contours, 
control points, and user identified regions. This effectively integrates both manual and automatic control objects 
in a single place. Third, the model stores previously detected change, this enables the current registration process 
to exclude the previously detected changed portion from the current analysis which improves algorithm robustness. 
This chapter mostly considers the development of the image-to-site model operation starting with registration theorj'. 

Image registration is the process of overlaying two images with the motivation of transforming one of the images, 
usually called the float image (72), into the same coordinate system as the other image called the reference image 
(/I). The process consists of two steps. First, perform a spatial-coordinate transform or mapping function (/) 
which is used to determine the corresponding coordinate in the new image as shown below. 

{x',y') = f{x,y) (4.1) 

In more complex mappings, / can be broken into fx and fy corresponding to the x-component and y-components 
respectively. Typicallj', (x', y') will not map to an integer grid point on the new image so, some interpolation is need 
to find the correct {x\y'). The second step of registration is the intensity transform (5), which is used to assign 
an intensity value to the pixel location (x',y'). Interpolation of the gray levels may also be required to obtain the 
intensity of point (2; ,y ).   The mathematical expression for registration is given next. 

I2{x',y')=g{h{f(x,y))) (4.2) 

Some registration appUcation do not require an intensity transform (i.e. intensity mapping table) such as single 
modality registration with similar gray level distributions, but multi-modality applications require a more complex 
transform that accounts for gray level difi'erences between the two modahties. 

The key problem in image registration is the determination of the spatial-coordinate transform. The most 
common types of transforms are rigid (distance between points in the image are preserved under a transform); affine 
( straight hnes and parallelism are preserved between images); projective (straight lines are preserved); and curved 
(straight hne on the original image maps to a curve on the new image). The rigid transform is characterized by a 
rotation, translation, and scaUng which is reahzed by the following relationship: 

F = AX + T (4.3) 

where A is the rotation matrix and T is the translation matrix.   This equation can be rewritten as the following 



f{x,y) = 
an    ai2 
021     0-22 

+ ai3 
023 

(4.4) 

an = 022 = cos(^),a2i = ai2 = sin(5),ai3 =ta;,a23 — ty 

The affine transform is more flexible because the a values from the above equation are not restricted to take on 
only sin and cos values. The only constraint is A must be real valued. Projective transforms are realized in a 

similar manner 

f{x,y) = 
u an 012 Ol3 X 

V 021 022 023 y 
w 031 023 033 I 

(4.5) 

where w is the extra homogeneous coordinate.   Finally, the curved transform is modeled by a n*'' order polynomial 

as shown below. 

f{x, y) = OQO + oiox + aoiy + .... 

10- In complex mappings, each axis (x-axis, y-axis) has its own polynomial defined as U{x, y), fy{x,y).   These polym 
mials can model several types of transforms.   In this research, we focus on the rigid, affine, and polynomial based 
registration methods to register the sequence of mammograms of the same patient. 

Image-to-site model registration is performed by a multi-step algorithm consisting of an initial and final phase. 
The initial phase registers the images using the principle axis of the skin fine in conjunction with segmented internal 
objects to form a multi-object global rigid spatial-coordinate transform followed by a simple look up table for the 
intensity transform. The final registration phase consists of a global thin-plate spline transform derived from the 
control points of the mterior breast tissue. The intensity transform in this step is also a look-up table. Next each 
phase is described in detail, followed by simulation, results, and discussion. 

4.1.1 Initial Registration 

The main goal of initial registration is to correct for large mis-aUgnments between images in a sequence. The mis- 
aUgnments come from differences in breast placement upon examination, image acquisition process, and fihn size 
difi'erences. Although the breast is generally considered a non-rigid object [84], a rigid approach is used as the basis 
of this phase. This approach is justified by the fact that the distortions, the initial phase is trying to correct, are 
more or less rigid in nature. In addition, it can be appHed without complex knowledge of the input data (i.e. control 
point correspondence). An example change that is consider my this phase is fihn size differences. This occurs when 
different film sizes are used m the acquisition. This type of problem is handled by increasing or decreasing the 
image by a global scale factor which is addressed by a rigid transform (scaling). The mitial registration is performed 
by a multi-object principle axis registration (PAR) algorithm. The objects include the breast skin fine and other 
extracted internal objects (i.e. clustered dense tissue). The algorithm proceeds as foUows: (1) Extract the contours 
(skin-hne and internal objects) from both images. The contours and objects from the reference image are stored m 
the site model. (2) Use PAR to obtain the transforms for each object. To insure similar objects are extracted from 
both images, the mcoming images are histogram specified to match the reference image (site). (3) Transform each 
pbcel of the image using the transform that is closet in terms of EucUdean distance. This type of transform is called 
a local rigid transform. The complete process can be summarized into three main steps which are preprocessing, 
spatial-coorduiate transform, and intensity mapping. Figure 4.1 shows a flow chart of the initial registration process. 

Next, each of these phases are explained. 

4.1.2 Preprocess 
In this phase, the objects used in initial registration are determined. An object is defined, as a cluster of the same 
tissue type in the image. Tissue types are identified with statistical segmentation which assigns a label (tissue type) 
to each pbcel of the image [19] [26]. Clusters are identified by using class based region growing where the joimng 
criteria is the pbcels class membership. In order to perform registration, some level of correspondence must be 
estabhshed between the images. Visual inspection of extracted objects is used to determine object correspondence. 
An unportant step in'this process is the identification of similar objects. This problem can become complex when 
the two images have different pixel intensity ranges. This causes the segmentation algorithm to produce different 
pbcel class assignments resulting in different looking objects. To combat this problem, histogram specification is 
performed on the incoming unage in order to match the site image.   In histogram specification, the goal is to adjust 
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Figure 4.1: Process flow for initial registration phase 

the intensities of an image so that the image's histogram matches a desired shape namely the histogram of the site 
image [85].   The process consists of three steps: 

1. Equalize the input image histogram via histogram equalization [85]. 
In histogram equaUzation, the raw image intensity values are adjusted to produce a uniform histogram. Consider 

the pixels x in the image to be random variables with a probability density distribution of pi(x) and a cumulative 
distribution of Fx = P{x <= x]. Then an associated uniformly distributed random variable would hey = J^ px{x)dx. 
In the digital domain, the integral is replaced by a sum which results in the follow equation. 

y = Si=oP^(0 where y is the new pixel value resulting from the transform y = T{x). 
2. Equalize the desired histogram (histogram of site image). 
3. Determine the new gray level by matching the pixel value in the equalized image y with the gray level required 

to make the transform equate toy.   y — G{z) z = G''^{y) where z is the new intensity level and G is the transform 
Now the histogram specified image is then segmented resulting in more similar looking class assignments. 

4.1.3 Simulation Experiments 

Next, an object extraction example is consider using the sequence shown in Figure 4.2. This sequence is composed 
of mammograms of the same patient, acquired at different times. Figure 4.3 shows the class assignment for Figure 
4.2. From this figure we see the segmentation did not yield uniform pixel membership across the sequence. Thus, 
object selection becomes subjective. This fact is highlighted by examining the histograms of the images as shown 
in Figure 4.4. To correct this problem, the incoming histogram is specified to better match the site image. This 
is shown in Figure 4.4. This results in a uniform segmentation across the sequence as seen in Figure 4.5. Region 
growing is then applied to both images to create the objects. Objects from Figure 4.2 are shoT^ii in Figure 4.6 and 
4.7.   The objects are then used in the calculation of the spatial transformation. 

4.1.4 Spatial transformation 

The transform is calculated by using principle axis methodology[50]. The principle axis method is based on de- 
termining and manipulating the principle axes of an object in an image. The principle axis of an object is the 
axis about which the moments of inertia of the object are minimum. In this method, the objects are registered by 
matching the principle axes. This approach only works with objects that only vary in rotation and scaling. The 
rotation factor is represented by the eigenvectors of the data scatter matrix and the scaling factor is address by 
the ratio of associated eigenvalues of the scatter matrix. Translation is handled by collocating both objects at the 
origin. The algorithm is as follows: (1) obtain the associated coordinates of the object of interest in both images. 
(2)  Determine the center of gravity object using the following equation. 



Figure 4.2: Squence of mammograms 

Figure 4.3: Class assignment for raw squence 
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Figure 4.4: Plots of histograms 

Figure 4.5: Class assignment for specificied image 



Figure 4.6: Selected object in the site image. 
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Figure 4.7: Selected object in the float image. 



Set UnRegistered Registered 
1 48.015 37.391 
2 45.354 39.613 

Table 4.1: Mse between registered and unregistered contours 

1   ^ 
''-s = ^2^ri (4.6) 

t=i 

U represents a point (x, y) and A^ is the tota! number of points in the object.   (3) Translate the objects so the center 
of gravity of each object is the origin (0,0) given by qi 

qi=ri- Teg (4.7) 

(4) Calculate the scatter (covariance) matrix of the translated data points qiS. 

1   ^ 
^=Ar5Z(9'')'^9i (4.8) 

(5) Search for the transformation matrbc that diagonahzes M .   The transform matrix will be composed of the 
eigenvectors of M (prmciple axis).   This can be realized by performing singular valve decomposition (SVD) of M 

A = V'^MV. (4.9) 

where A is a diagonal matrix containing eigenvalues and V contains the associated eigenvectors. (6) Determine the 
scaling matrix by forming a ratio between the axis dispersion (eigenvalues) of each image. 

^/^^ = $r (4.10) 

where $ is the diagonal matrix containing the eigenvalues and S^ is a diagonal matrix contain scale factors for each 
axis.   (7) Form the final transform which is a combination of rotation and scaling which is given below. 

U = VfSVr (4.11) 

4.1.5 Simulation experiments 

This portion of the system was simulated using the skin line contours of the breast as objects. The derived transform 
was then apphed to the contour points of the float image to obtain a transformed contom-. The performance is 
measured by the MSE between the contours as shown in Table 4.1. Figure 4.8 shows two examples with raw 
unregistered contours with the associated warped contour. Prom this table and figure it is apparent that after 
registration the contours are spatially closer together. The difference between the mse for registered and imregistered 
is only be about 22%. This is attributed to the end effects where contour points at the beginning and end of the 
contour create large amounts of matching error. Reducing focus to only consider the central portion of the contour 
would significantly increase the difference between registered and unregistered mse. 

4.1.6 Combination of Spatial Transforms 

Assume that multiple corresponding objects can be extracted from the image pair, and from these objects control 
points could be determined using either contours, surfaces, or object description. In registration, these control 
points are used to determine a spatial-coordinate transform T that maps pbcel in one image to pixel in another. The 
general expression is shown below 

x\ = T{xi) (4.12) 

where x\ is the transformed pbcel and a:, is the pbcel to be transformed. Three combination approaches have been 
investigated during the course of this research. Approach one, is a standard approach that considers each of the 
object pairs as separate registration problems yielding a transform for each object pair. Then a pixel is transformed 
by a particular transform via some metric 0 (i.e. pbcel to contour distance). 

x\    =   Tk{xi) (4.13) 
k   =   e{xi,Ti{))      l = l,...K 



Figure 4.8: Unregistered and registered breast contours. 

where k is the transform index ranging from 1 to ii" number of transforms calculated. This type of transform is 
called a local rigid/non-rigid transform because pixels are transformed based on transforms local to the pixel [73]. 
The second approach assumes that each of the Tk describes the same transformation. Then the final transform is 
obtained by average  The signal model is given below 

ti= fi+W 

where /  is the transform and w is the noise. 
Signal averaging is routinely used to improve the signal to noise ratio of signals that are corrupted by noise 

and can be measured repeatedly [77]. In our case we average the transforms created from all of the objects under 
analysis to obtain a master transform (T) which is appUed to the complete image. 

1 K 

i^" i=l 

where t, represents a sample transform and K equals the total number of transforms in the image.   This method 
leads to a global rigid/non-rigid transform since each pixel is transformed by the same matrix. 

The third approach, considers the control points as belonging to one of K clusters each with its own mean and 
variance. Using the mean and variance each cluster can be modeled as a normal distribution. Now, instead of the 
pixel Xi only beiag influenced by a single transform it is influenced by a multiple transforms specifically K . The 
standard transform equation shown above is modified as follows. 

K 

Xi = }]aikTkixi) 
fc=i 

where aik is the weighting factor for the i*'' pixel for the A;*'^ transform. This formulation reduces back to the 
standard transform equation when a^k = 1; aik = 0; I ^i; Thus each x'^ in this formulation is the weighted swoa of 
K transforms. The weight function could take on several forms such as distance, average, or probability membership. 
Given that the control points are localized to clusters described by their mean and variance, all of the control point 
clusters could be made to define a finite normal mixture model as shown below 
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Figure 4.9: Four pixel grid with point (i'J') that faUs between the points 

K    1 

where g is a gaussian kernel and Hk and Ck are the class mean and covariance respectively. The mixture model 
sets the framework for using pixel membersWp as a weighting criteria. Membership in this context is defined as 
which transform is used to transform a pixel. This model has been used in image segmentation to determine pixel 
class [19] [28] [54]. Shnilar to [19] [28] [54] the posterior probability is used as a measure of each pixels probabiHty 
membership.   The statistical membership of a pbcel with respect to a control point cluster can be defined as 

Qifc 
22l=i9{xi/ni,Ci) 

Thus each pbcel in the Boat image can now be transformed using a membership weighted transform. The gray 
levels of each pixel are assigned using a straight look up table. The procedure is the following: (1) transform the 
pixels located at a point {x, y) in the reference image (Rj) to a point {u, v) in the float image (Rf) using the selected 
transform (T). 

{u,v)=T{x,y) 

Determine the intensity at pomt {u,v). Since points {u,v) are generally not integer values (i.e. faU on a grid 
point), mterpolation is required to select the intensity. Figure 4.9 highlights an example which requires mterpolation. 
Several mterpolation method exist, but for this research Nearest Neighbor interpolation is used. This method assigns 
the new value (u, v) from the closets grid point surrounding it.   This leads to the foUowing relationship. 

w{x,y) = Rj{T{x,y)) 

4.1.7    Simulation Experiments 

The hnplementation of the foUowing methods are discuss through some examples. Figure 4.10 shows the original 
image pah- under consideration. The image pair was created by the addition of a Gaussian filtered block and rigidly 
rotatmg the complete image by 10°. This is a small rotation, but should highhght the effect of the local and global 
multiple object transforms on the image. Figure 4.11 and 4.12 shows the resulting image pairs after transformation 
by the local rigid and global rigid transform respectively. From examination of Figure 4.11 it is apparent that 
discontinuity resulted from the transform as seen on the left hand side of the right image in Figure 4.11. These 
discontinuitj' can be attributed to differences in transform used on adjacent pixels. The global registration pair, on 
the other hand, has a smooth look because of the use of a single transform.    So, no more cases of adjacent pbcels 



Figure 4.10: Original image pair 
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Figure 4.11: Image pair transformed using local rigid with three objects 



Figure 4.12: Image pair produced with the global rigid 

Figure 4.13: Phantom image used in finite normal mixture registration 



Object Configuration 
1 2 3 

Cl 5 7 20 
C2 100 4 5 
C3 20 25 10 
NCI 10 13 4 
NC2 20 6 24 
NC3 5 20 11 
NC4 5 20 11 

Table 4.2: Angle rotations for each object in phantom registration image 

Number of Objects Config. 1 Config. 2 Config. 3 
0 1616 1598 1785 
1 960 930 468 
2 758 842 410 
3 279 504 310 

Table 4.3: Mse results for each configuration 

being transformed by different transforms. To simulate the finite mixture registration method, we considered a 150 
X 150 phantom image containing three control objects and four non-control objects as seen in Figure 4.13. The 
control objects are eUipse while the non-control objects are squares 10 x 10. The key thing about the control objects 
is that only object correspondence is known not point correspondence. Each of the control and non-control objects 
are rotated and translated by different amounts. This simulates a non-linear deformation (non-rigid) between image 
sets, and serves to test the combination abUity of this registration method.   The objects rotation angles are given in 
Table 4.2. ^. ,       ^, 

Three configurations of rotation angles are considered. These configurations are chosen arbitrary to show the 
robustness of the proposed algorithm. In each configuration the image is registered using one, two, or three 
transforms. The performance is measured in mean square error (mse) between the reference and warped image 
where a lower mse is seen as better performance. Table 4.3 shows the mse for each configuration. Prom the table 
it is apparent that registration by one transform on average reduces the mse by 50%. The mse is deceased another 
10% with the addition of another transform. With the addition of the last transform, significant improvement in 
mse is achieved. The mse is reduced by approximately 75%. Figure 4.14 shows an example of the reference and 
warped image using aU three transforms.   These results show the benefit of using multiple transforms where possible. 

4.1.8    Final Registration 
The goal of this section is to fine tune the ahgnment achieved in the initial phase by considering the breast as a 
non-rigid body. This allows for the consideration of the deformation between the image and site model. Deforma- 
tions are caused by positioning differences subject weight gain, natural growth, and nonuniform compression during 
examination. To handle these deformations, more complex transforms are required. In [68], the polynomial based 
transform were shown to be able to handle non-rigid deformation of kidneys so they are selected in this study to 
model the deformations of the breast. Various types of polynomial transforms exist such as linear, quadratic, and 
cubic [68].   In this research, a thin-plate sphne polynomial will be used as the mapping function [5]. 

The key requirement for use of polynomial based transform is the existence of control points. In some environ- 
ments control points are easily obtained (brain images), but in mammograms this task is very difficult because of 
lack of anatomical landmarks between hnages. In this research, the cross points between vertical and horizontal 
elongated structures are used as potential control points. These elongated structures represent blood vessels and 
milk ducts. To use these points, one must assume they are time and shift invariant for the most part. These pomts 
wiU be defined as potential control points. Then the potential control points are matched to produce the final control 
points which are then used to calculated the thin-plate spHne polynomial transform. The fine registration process 
concludes with the transformation of the complete unage pbcel by pbcel. 

Similar to the mitial registration , final registration can be divided into several parts. They are preprocess- 
ing point correspondence, spatial coordinate transform, and intensity mapping.    Figure 4.15 shows the complete 



Figure 4.14: Reference and warped image from multi-object registration 

algorithm flow.  Next, each part will be discussed in detail. 

4.1.9     Preprocessing 

In this part, the potential control points are extracted from the image. This is achieved by detect the elongated 
structures in the image using modified monotony operators to highlight both horizontal and vertical structures in 
the image[7]. The monotony operators are defined by two overlapping rectangular neighborhoods, one small and 
one large, centered aroimd a pixel (ij). Figure 4.16 shows an example of both the vertical and horizontal operators 
in a image. The operators work as follows: the pixel at {i,j) is labeled one if the number of pixels in the large 
neighborhood that are larger than g^ax, exceeds a threshold r. Otherwise, the operator assigns a zero to the pixel 
{iJ)- 9mBx is defined as the maximum gray level in the small neighborhood surrounding the pixel {i,j). The 
vertical and horizontal operators are defined by the following relations 

vertical: 

a={{k,l)\k = l,-p<l<p} 

A = {{m, n)\m = l, —g < n < q] 
(4.14) 

horizontal: 

a = {{k,l)\l = l,-p<k<p} 

A = {(m, n)|n = 1, -5 < m < q] 
(4.15) 

q>P,T=(q-p) (4.16) 

where a is the small neighborhood of length p and A is the large neighborhood of length g. Using the vertical 
and horizontal binary images the potential control points are obtained by finding the cross points of vertical and 
horizontal elongated structures. This is implemented by applying a logical AND operation to the vertical elongated 
structures image A and horizontal elongated structures image F yielding T image which only contain cross points. 

T = r0A (4.17) 

In cases like these. Depending on elongates structure thickness the cross points could contain multiple pixels, 
the centroid of the group of pixels is defined as the potential control point. 

Following the method defined in [7], a Gaussian kernel is passed over the image several times to blur the image 
in an effort to reduce the effects of fine details in structure detection. This leads to detection of only the most 
prominent elongated structures. Applj'ing this process to raw images produces an intractable amount of potential 
control points[7].   Figure 4.17 and 4.18 shows a raw and blur image with their respective elongated structure images. 
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Figure 4.15: Process flow for final registration phase 
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Figure 4.16: Monotony operators for an image 



Figure 4.17: Raw mammogram and assocated elongated structures 

Figure 4.18: Three pass filter mammogram with associated elongated structures 



Skin line 

Figure 4.19: Matching window location on new mammogram 

4.1.10 Point Correspondence 

The next step in the fine registration process is matching corresponding control points from the associated pools of 
control points in each image. Several methods for point correspondence have been investigated and proposed by 
[7] These included a signature matching, which is an algorithm that search for longest direction of an elongated 
structure cross point, and a wavelet based approach that examined localized regions. In addition, [5] used laws 
texture features to determine correspondence. This research presents two new correspondences methods. The first 
is based on the signature matching algorithm by [7], but an attempt is made to match the complete structure not only 
longest direction. The second method transposes the new potential control points Og(xg, i/,) onto the old unage and 
matches control points based on point distance from an old potential control point Op(xp, 2/p). To improve matching 
rates on both methods, only a subset of the potential control pool from the new image are tested at a smgle time. 
This subset is identified as potential control points contained inakxl window centered around the pomt Xc- 

The point Xc is the intersection point between a circle centered around the estimated nipple location 0„(x„,j/„) 
in the new image and a straight line passing through 0„ with a slope of m as shown in below. The slope m of the 
line is equal to the slope of a similar line in between the potential control point Opixp,yp) m the site model (old 
image) and Oo the nipple location in the old image. 

y = m{x - Xn) + Vn {^■'^^) 

m = -^  
Xp       XQ 

{x - Xnf + (y - Vnf = {^o - Xpf + {Vp - Vo? 

Figure 4.19 shows a pictorial example.   Next, each correspondence method will be discussed. 

4.1.11 Elongated structure matching 

After passmg the location criteria {k x I window), signatures for each potential control point contained, in the local 
window axe calculated. The signatures axe designed to capture the characteristics of the elongated structures 
surrounding a potential control point. The signatures axe calculated by forming the elongated structure image 
which contains both vertical and horizontal structures. This is realized as a logical OR operations on the vertical 
and horizontal structure images as shown below. 

n = r®A (4-19) 

The image fi now contains cross points and associated vertical and horizontal elongated structures. Figure 4.20 
shows some elongated structures derived from a mammogram. 



Figure 4.20: Elongated structures detected by monotony operators 

The next phase of signature construction is the rotation of a m x n window Ns steps around the control point. 
This jdelds A^° for each step. For each step the number of nonzero pixels {NZ ) contained within the sum window 
are counted. The number counted for each step is the signature y{A^°) = NZ. This process is shown in Figure 4.21. 
The signatures are then matched by measuring the Pearson correlation coefficient [14] between a pair of potential 
control point signatures. The resulting coefficient is then applied to a threshold. The Pearson correlation coefficient 
is formulated by the follow equations 

^^  (4.20) 

where y is the N^ point signature of Op. The Pearson coefficient measures the statistical distance of two distributions. 
Because non-rigid deformation occiu's between images the corresponding control point signature could be a circularly 
shifted version of each other as seen in Figure 4.22. To consider this problem, the complete signature of the new 
image control point is circularly shifted by one sample and then Pearson matched. The highest Pearson between all 
shifts is taken to be the resulting Pearson value for that {Op,Og) pair. 

The Pearson results for a {Op, Oq) pair are stored in a modified accumulator matrix. The accumulator matrix 
is a A'o X Nn matrix where A^o and N-n are the number of potential control points in the site model (old) and new 
images respectively. In traditional accumulator formulations [7] ??, the element (Op, Oq) is incremented each time 
point Op matches point Oq, but in this research we put the maximum Pearson correlation coefficient the element 
corresponding to {Op,Oq). The final match is performed by taking the maximum value dowTi the columns and 
zeroing the other colimin entries for that column. This is followed by taking the maximum value in each row and 
zeroing the other row entries. The resulting matrix should contain only one nonzero value per row and column. 
The nonzero elements are the control points. 

4.1.12    Simulation experiments 

Pearson based control point matches were obtained for the phantom and several real mammograms. The phantom 
sequence was composed of two versions of the same image. The second image in the sequence was a rigidly 
transformed copy of the first image. The real sequence contained two images of the same patient acquired at 
different times. Figure 4.23 shows the potential 'o' and real control points '*' for the phantom sequence where 
37 out of the 43 potential control points where matched across the sequence. Compare this to Figure 4.24 where 
only 5 out of the 36 potential control points where matched. This difference in final control point matching is the 
result of the variabihty of extracting elongated structures from mammograms.   In Figure 4.23, the structures remain 
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Figure 4.21: Formation of potential control point signature. 

0     20     40     60     60     100    12D 

0     20     40 80     100    120 

Figine 4.22: Potenial control point signature with corresponding shifted version 
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Figure 4.23: Potential and Matched Control points via Pearson matching for the phantom study 

stable because the rigid transform causes the signatures to be rotated versions of each other which allows for easy 
matching. But in Figure 4.24 non-rigid deformation between the image causes the signatures of potential control 
points to look drastically different if detected at all. In [58], which uses much the same approach but only considers 
a 40 X 40 window using the longest arm of the structure as the matching metric, only obtains 6 control points for 
a real sequence. In this research, a smaller 10 x 10 window is used along with the Pearson matching criteria to 
obtain comparable results. This reduction in window size is attributed to use of the complete signature information 
in matching not just the most dominate structure arm. To increase matches, the local match window currently 
at 10 X 10 should be increased. It should be noted that this operation also increases false match probabihty and 
processing time. 

4.1.13    Nearest Neighbor match 

In this method, mitial registration is assumed to have corrected most of the global distortion and mis-adjustment 
between the two images. The control point correspondence is then obtained by overla3'ing the potential control 
points from the new image with the potential control points of the old image and calculating the Euclidean distance 
from each old potential control point to each new potential control point. 

dj= y/i^i - ^iY + {Vi - Vi? 

with i and j equal to the index of potential control points bounded by i = 1 TVo/d and j = 1 Nnew.    The 
new potential control point with the smallest d value is selected as a match for the old point of interest. Figure 4.25 
shows a typical case of a localized window. In the event, a new potential control point is matched to several old 
points the match with the smallest d is selected as the final match. 

4.1.14    Simulation Experiments 

Figure 4.26 shows the same sequence shown in Figure 4.24 where nearest neighbor matching is used. This matching 
methodology more than doubles the number of matched control points over matching with Pearson matching method. 
It also produces control points that are distributed evenly around the image. This method exceeds the method 
presented by [7] at smaller matching window sizes. A key note is the dependence of this method on initial registration. 
Without initial registration, distance is not a good enough metric along. Again more matches can be obtained by 
increasing -window size at a cost to processing time and false match rate. 

4.1.15    Spatial-coordinate 

The main goal in registration is to obtain a transform TA such that one of the images could be transformed into 
correspondence with the other.   In general, an image mapping transform is represented by 



Figure 4.24: Potenial control points shown by o and matched control points shown by * via Pearson matching 
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Figure 4.25: Local correspondence window for a potential control point 



Figure 4.26: Potenial control points shown by o and matched control points shown by * via Nearest nieborhood 
method. 

TA{x,y) = {U{x,y),fy{x,y)) (4.21) 

where fx{x,y) is the mapping function for x coordinate of {x,y) and fy{x,y) is the mapping function for the y 
component of (x.y). Since breast tissue is inherently nonrigid, complex changes can occur between the image in 
the sequence. To account for these changes, the function /() needs to be non-linear. [5],[68] selected TPS as the 
mapping transform so we apply it in our case.   The mapping function for TPS is shown below 

f{x, y) = Wo + wix + W2y + ^ Wig{ri) (4.22) 
t=i 

g{ri)=rf\ogrf 

given that Vi - (xi - x)^ + (yi - y)^. This transform is made up of a global (affine) portion and (elastic) portion. 
These two portions are distinct but can be evaluated simultaneously. 

In order to use f{x,y) to transform the image, the coefficients WQ, wi, u;2, Wi must be estimated. This is done 
by usmg the control points determined form the previous section, to formulate a least square approach to coefficients 
estimation.   The least squares formulation starts with coordinate mapping relation 

iu,v) = (U{x,y),fy{x,y)) (4.23) 

where {u,v) is a point in the new image (control point) that is associated with the point (x,y) in the old image 
(control point). Given (u, v) and (x, y) are control points, zero error should occur when transforming {x, y) through 
the mapping function. 

{u,v) - (fx{x,y)Jy{x,y)) =0 

Rearranging terms and expanding to handle n control points a general error equation is formed given below. 



Figure 4.27: Raw phantom sequence 

i=l 

The above equations leads to the normal equations.   The relation for the x mapping functions is shown below. 

mi Ti 

EE«^i [E-i^r^'-fj/r^ = E-^-f^r' (4-25) 

where a = 0....m and /3 = 0....a. The coefficients for the y mapping functions are found in a similar fashion. With 
the mapping functions f^, and fy each pixel is then transformed to produce the warped image. In general, the new 
pixel location will not fall on a exact grid point some interpolation is used to obtain the pixel value. In this research, 
nearest neighborhood interpolation is used to determine the new pixel value. 

4.1.16    Simulation experiments 
This process is examined through the following example of a phantom that is made up of two squares where each 
square is transformed by a different amount. The image pair is shown in Figure 4.27. Table 4.4 shows the mse 
between the reference and the stages of the warped image. Prom the table one can see the mse decrease through out 
the process. Use of FAR along reduces the mse by 77%. With the addition of TPS the mse is reduces by another 
10%. A smaU decrease in mse after PAR is attributed to the use of only 6 control points. If more control points 
had been selected the performance gain of TPS in this process should improve. 

4.2    Summary 

This registration approach is composed of two main steps an initial step and fine step that are supported by the 
site model.   The site model supports the registration process by storing user (manual) and automaticaUy extracted 
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Figure 4.28: Registered phantom sequence 

Number in error Method 
395 none 
90 PAR 
60 PAR-TPS 

Table 4.4: Amount of pixels in error for registrations methods 



Chapter 5 

Site Model Supported Change Detection 

5.1    Introduction 
Change detection is the process of identifying significant differences as mesisured by a metric between two or more 
objects. In this research, the objects of interest are images or sub-images (i.e. locaUzed windows) in a sequence. 
In an image sequence with objects, three types of change can be defined. In the first type of change, defined as 
type I, only intensities of the pixels change. In the second type, defined as type II, the intensities remain constant, 
but the location or shape of the object changes. In the third type of change, defined as type III, intensities, shape, 
and location change. These tj^es of change can be measured either pixel by pixel or image by image. A simple 
formulation of a pixel change metric is shown below. 

D = QiRf,Rr) (5.1) 

imageiij)    =    | J;   D^^-fl^'' 

where D is a change map containing the metric measurements at each pixel. Q{) is the pixel function criteria applied 
for processing. For example, in difference analysis the function Sj would equal abs. 7 is the metric threshold, Rf 
is the transformed image, and Rr is the reference model image. Image change is measured in much the same way as 
pixel, but the image is evaluated as a whole. 

D     =     ^oiRf,Rr) 

mage    =    { J;    g ^ :j (5.2) 

where 5o is the image change function, D is a scalar change value, Rf is the float image, and Rr is the reference 
image. An example of an image change function could be the mutual information between to image blocks as shown 
below where 

QO = ^Pxy logpxy 

Pxy is the joint distribution of an image x with marginal density px and an image y with a marginal density of py. 
Change detection in images has found apphcation in various fields including video sequence processing; sateUite 

imaging; and medical imaging. In video sequence processing, numerous change detection metrics have been developed 
[10]. The main goal ID this apphcation is to find abrupt scene changes to aid in sequence compression. The 
compression is achieved by sending only a reference image (i.e. first image in sequence) then only scene change 
information (global) in subsequent transmissions. The video change metrics assumes high SNR and the occurrence 
of abrupt change. The main motivation is to detect the region of the image that contains the change. No effort 
has been put into describing the change. The most research on change detection has been conducted in the satelhte 
imaging area (remote sensing). In this area, work has been done on building change detection, agriculture crop 
analysis, and weather tracking [79], [82]. Some specific change metrics have been developed for synthetic aperture 
(SA) images [83], but they take advantage of the multi-spectral data that is inherent to SA imaging. For this reason, 
they are not as useful for other applications (i.e. non-SAR apphcations). Again, as in video change, no effort has 
been put into describing the type of change. 

In the medical environment, the existence of change and the classification of change are very important. This 
change leads to valuable diagnosis information. Since the change metrics for video requires high SNR and the metrics 
for SRA are SAR signal dependent, a new metric is needed.   The newly developed change process should also have 



input for use in registration. The model also provides a common frame for incoming images to register to. Finally, 
the site model stores the complete image sequence history in a common place. The initial registration step is aimed 
at addressing gross misalignment between the images. This step is rigid model deformation based and requires little 
environment knowledge (i.e. control point locations). While the fine registration step requires the identification 
of corresponding control points. The fine step is aimed at correcting non-rigid deformation between images in the 
sequence. Together mammograms can be robustly registered in support of change analysis. With the mapping 
functions derived above each pixel is transformed to produce the new image. 
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Figure 5.1: Change detection process flow 

the capability to quantify change. To accomplish this task, a two step process is developed. The steps are change 
detection and quantification. The detection phase is performed by measuring the joint relative entropy between the 
two objects with entropy values higher than a user specified threshold marked as change. Quantification consists of 
comparing the objects area and center of gravity. Often, in medical apphcations such as lesions monitoring, change 
overtime is of great interest as it can show response to drugs or disease progression. The site model, which is a 
dynamic mathematical and geometrical description of a scene imder analysis, has been shown to be a useful tool in 
the analysis of changing images in a sequence [79]. When apphed to the medical change problem, the site model 
could store the behavior of an object in the scene as well as over all image behavior. Use of the site model also 
allows the integration of user supplied input (domain knowledge) with automatically extracted parameters towards 
the goal of change detection. This idea of user input models the real process that a radiologist uses to analysis the 
image. Specifically, the site model supports change detection in two main ways. First, the site model provides a 
unified location to store change that has been occurring overtime. This feature is useful in monitoring apphcation. 
Second, the site model can be used to determine which part of the image should be considered in processing. For 
example, the changed portion of a image might not be included in transform calculation. This generates a more 
robust transform. The rest of the chapter considers the development of the change algorithm. The complete block 

diagram is shown in Figure 5.1. 

5.2    Change Analysis Theory 

The site model supported change detection algorithm contains two main phases. Phase I is change detection and 
phase II is change quantification. Change detection is the process of determining whether two objects (images) 
differ. In practice, nothing is ever exactly the same, so the change detection results are measiu-ed in comparison 
to a threshold. For this research we selected the use of relative entropy as our change metric. Relative entropy 
is a measure of the inefficiency of assuming that one distribution exactly matches the other, (i.e. distance apart) 
Relative entropy is given by the equation. 

D{p//q) = Epi:c)log^^ 

where p{x) and q{x) are the distribution of image P and Q respectively. Relative entropy is also known as Kullback 
Leibler distance. To utiUze this relationship, the distribution of each image is required. These distributions are 
modeled by the gray level histogram of the image. The resulting D(p//q) valve is then compared to a threshold 
for change determination. The threshold is selected manually and is highly dependent on image dynamic range. 
Since spatial mformation is thrown away during the calculation of the histogram, the use of the marginal densities 
makes the metric insensitive to type II changes. To address this problem we, consider the use of the joint densities 
because these densities maintain spatial information.  This leads to the formulation of a new detection metric relative 



Change type Orignal object Change object                           | 
a:,3/ size Intensity x,y size Intensity 

III 205,205 10x10 100 205,205 10 X 10 100 
III 100,100 10x10 100 100,100 10x10 100 
II 50,435 10x10 100 58,426 10 X 10 100 
I 250,250 10x10 100 250,250 10x10 115 
none 135,333 - - 135,333 - - 

entropy. 

Table 5.1: Configurations of change blocks in phantom. 

qc qd qc qd GRE AHST Chi 
1 +300 0 302 0 10.8 .05 .2565 
2 0 12.04 9.89 15.86 4.99 .2 .3 
3 0 0 0 0 2.87 0 0 
4 100 0 -100 N/A 2.56 .0013 .00319 
5 N/A N/A - - 0 0 0 

Table 5.2; Change Quantification results 

DiPxyf/Pxx) J^Pxylog^ 
yxx 

This metric measures the inefficiencies of assuming that p^x is the distribution for p^y. 
The next phase of processing is change quantification. In this process, the characteristics of the change are 

determined (i.e. amount, shape, change). This is performed in a multistep process. First, segment the image into 
two classes. Second, compare the segmentation image with the reference segmented image. Third, form objects 
from each image and calculate object shape area and center of gravity. Finally, calculate the object overlap and size 
of diflFerence.   The results are then stored in the site model for the next stage of processing. 

5.3    Simulation Experiments 

To simulate this portion of the system, a phantom mammogram sequence containing four manually changed regions 
was processed. The three types of change were simulated by modifying a. N x N block of manually changed pixels. 
Table 5.1 shows the four different configurations. To make the blocks more natriral, Gaussian filters are applied 
to smooth out the edges. To isolate the change detection performance, the phantom sequence was assumed to be 
perfectly registered. This is accomplished by using the same mammogram in both images of the sequence. We 
further assume that the radiologist has identified the regions of interest, a 30 x 30 block of pixels, a pori. Generally, 
in most change detection metrics a, function is evaluated yielding a value which is then compared to a threshold. 
For this simulation it is assumed the detection threshold is predetermined at 0.5. The performance of joint global 
relative entropy (GRE) wiU be compared to two video sequence metrics, an absolute histogram (AHST) and chi 
square metric (CHI). The quantification portion will be tested by quantitative comparison of the phantom blocks. 

Table 5.2 contains the results from processing the phantom where QC and qd are the true A area and location 
respectively; and qc and qa are the estimated A area and location. For the detection phase of processing we see 
that GRE metric obtains favorable detection results on all three types of change. The GRE values are >> than 
the threshold. This indicates that possibly the threshold can be increased which would improve robustness by 
decreasing the possibility of noise being flagged as change. On the other hand, AHST and CHI fail to detect change 
at all. This is attributed to the dependence of these metrics on the marginal densities which do not store spatial 
information. The values produced by these two metrics are << than the threshold. One would tend to think that 
performance for these metrics could be improved by decreasing the threshold, but this would only serve to flag noise 
differences as change. The superiority of the GRE metric can also be seen by examining the ranges of -values. The 
GRE ranges from 0..10.8, while AHST and CHI teams range from 0..0.3 and 0..0.2 respectively. These ranges can 
also be called dynamic range (value ranges). In communication systems dynamic range is a indicator to the systems 
sensitive. This same ideal appUes to the detection metrics. The GRE metric has a larger spread than AHST and 
CHI which allows it to capture more and smaller amounts of change. 

In the quantification phase, the algorithm accurately quantifies type III change. In this example, the true area 
difference was 300 pixels^.  The estimated area difference was 302 pixels^.  In this case, the translation was estimated 



with exactly 0 pixels. In the type II change example the areas remained the same, but a translation of 12 pixels 
was recorded. The algorithm estimated an area change of 9 pixels^ and a translation of 15 pixels. The error in 
the area could be attributed to the inabiUty of the object selection process to extract the object. Generally, this 
occurs when the block is the same intensity level as the background. In type I change, the algorithm estimates 0 
area change and 0 translation. To fully test the algorithm, an example was selected were no change occurred at all. 
These results are shown on the bottom row of Table 5.2. Here we see that GRE, AHST, and CHI did not flag this 
region as changed, but it is difficult to tell if AHST and CHI really found no change or are producing values in there 
dynamic range. 



Chapter 6 

Experimental Results and Discussion 

6.1    Introduction 

The main objective of this research is to detect biological change in a temporal sequence of mammograms. Different 
types of change can occur between mammograms acquired overtime. The first type of change is natural change which 
includes weight change and tissue composition change. The next type of change is image acquisition change. This 
includes the changes caused by breast positioning, breast compression, and differences in imaging equipment. Finally, 
change that possibly indicates cancer or the onset of cancer. This type is usually visualized as a microcalcification 
or mass [3]. The first two types of change generally affect the complete image and are classified as global change. 
On the other hand, the third type of change is usually locaHzed to a region and is classified as local change. Due to 
the enormous number of combinations relating to the first two types of change, we focus attention on local change. 
In addition, we also only consider change calculated from a radiologist selected locahzed window. Local change has 
been shown to be an indicator of the onset of cancer [4]. Currently, radiologists perform change analysis manually 
following a specific procedm-e [3]. Automation of this task could help to reduce the fatigue felt by the radiologists 
which may lead to an increase in analysis accuracies. This chapter presents and discusses the results generated 
by applying the developed change detection algorithm to real mammogram sequences. See Figiire 6.1 for a system 
over\dew and flow diagram.   Next, the results of several example mammogram sequences will be discussed. 

6.2    Experiment Results and Discussion 

The first example is a sequence composed of two right CC views of the same patient acquired on 1/21/93 and 2/3/99 
as shown in Figure 6.2 a and b. The image acquired on 2/3/99 contains a suspicious region located at (77,317). 
Figure 6.2a is taken as the reference image and used to construct the site model. The users input to the site model 
is the region of mterest, which is a 30 x 30 square centered around the point (77,317). The radiologist selects 
the window size manually as seen in Figure 6.3. After construction of the site model, processing new images can 
commence. The first step is the extraction of parameters used in initial registration. This includes objects and 
their descriptions. Next, multi-object PAR is performed using 2 of the objects as seen in Figure 6.4. The resulting 
initial registration pair is shown in Figure 6.5. Comparing Figure 6.5 and Figure 6.2 we see that most of the 
scale difference between the images has been corrected. Finer alignment could be obtained if control points were 
known. Using the uiitially registered unage, final registration parameters are extracted. These parameters include 
potential control points and their associated signatures. Next, the recently extracted potential control points are 
matched with the potential control points from the site model to obtain the final control points. This matching is 
performed by two methods in this research. Figure 6.6 shows control points obtained by matching signatures using 
the Pearson correlation coefficient while Figure 6.7 shows control points obtained by matching Nearest Neighbor. In 
this example, Pearson matching yields 13 control point pairs out of a pool of 66 potential control points or a match 
rate of 0.197. This rate is low because the deformation between the site and incoming image produced different 
potential control point pools in each image. Thus, signature matching yields few matches when signature correlation 
is low. The final control points in this example are clustered into 2 loose groups located on the top and bottom of 
the breast. This appears to be caused by the existence of dense tissue near the center of the breast. In dense tissue, 
the monotony operators (used to find elongated structures) appear to have problems when the tissue intensities are 
nearly constant. Nearest Neighbor matching, on the other hand, yielded 27 control points evenly distributed across 
the image. This yields a match rate of 0.409. This number is still low, but more acceptable. Both matching rates 
could be improved by the increase in the localized search window size, but the probabiUty of mis-match would also 
increase.   ^'Iis-match control points cause gross distortion in the transformed image.   Since our method of control 
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Figure 6.1: Change detection process flow 
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Figure 6.2: Raw mammogram sequence, (a) 1/21/93. (b) 2/3/99. 
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Figure 6.3: Marked region of interest. 
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Figure 6.4: Objects used in Multi-object transform. 
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Figure 6.5: Multi-object PAR image pair. 
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Figure 6.6: Potenial 'o' and final '*' control points using Pearson correlation. 
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Figure 6.7: Potential /or and final / * / control points using Nearest Neighbor method. 

point extraction is based on [58] we suffer the same image dependence problems as [58]. Window sizes, thresholds, 
and monotony operator dimensions are among the key parameters that need to be adjusted on a per image basis! 
For our research we use a window size of 10 x 10, threshold of 6, monotony operator dimension of 1 and s!' These 
values were experunentally determined using visual inspection of initial output. Next, the final transform is derived 
and applied to the image pixel by pixel resulting in the pair shown in Figure 6.8. 

To perform change detection, the corresponding region of interest from the incoming unage is compared to the 
site model. The histograms of the two regions are compared in Figure 6.9. From this figure, the difference is 
visually apparent as the two regions have different distributions. Three change metrics were apphed yielding the 
foUowing results: global relative entropy (GRE) 23.63; absolute histogram difference (AHST) 0.885; and chi square 
(CHI) 1.0. The last two metrics are video sequence metrics and serve as comparisons of existing change methods. 
Given the threshold of 1.5 which was determined experimental, both AHST and CHI miss the change which means 
they appear to be insensitive to slight scene changes, but GRE detects the change. In fact, this change resulted in 
a GRE value » 1.5. It would appear that the threshold could be increased, but this would increase the probability 
of miss. 

Unlike the phantom studies performed in the other chapters, no ground truth exists for quantification of the 
changed region. For this reason, visual inspection is used to examine the results. The quantification process 
determined an area difference of 353 pixels which was verified by an radiologist during a manual inspection. The 
detected area is larger then the area estimated by the radiologist because the object extraction process cannot remove 
all of the background pixels.   54 out of the 354 pixels are background pixels. 

In the next example, the radiologist identified a suspected area (region of interest) on the final mammogram (i.e. 
first image). The raw sequence is given in Figure 6.10 and is composed of a right CC view of a patient acquired on 
3/5/96 and 2/24/99. The fXi marks on the image are the location of the change region. On the site image the 
IX/ is the associated point. For this example, two objects were selected for use with the multi-object PAR.   Figure 
6.11 is the resulting transformed image where fX/ marks the change location.        control points were matched 
out of — potential control points to form the TPS transform. The final warped image is shown m Figure 6.12. 
From examination of the image it appears distortion occurred, but the location of the /Xf on both images appear 
to visually cover the same portion of tissue. In comparing. Figure 6.10, 6.11, and 6.12 we indeed notice this fact. 
The image's distorted look is caused by too few control points on the skin line (or region).   Thus, the affect of the 
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Figure 6.8: Final warped image pair. 
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Figure 6.9: Histogram of corresponding regions of interest 



Figure 6.10: (a) Reference image 3/5/96 , (b) float image 2/24/99. 

Figure 6.11: (a) Reference image, (b) Multi-object PAR image. 

Figure 6.12: Final image pair after registratoin. (a) Reference image, (b) Warped image. 
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Figure 6.13: Histogram comparison between the two local change windows 

control points on the skin-Une pixels is greatly reduced causing a massive warping effect. The algorithm was then 
used to see if the area was present on the site mammogram. The intensity histograms of two regions are shown in 
Figure 6.13. Prom here chainge can be visually determined. To detect the change, GRE, AHST, and CHI metrics 
were calculated yielding the following values 22.9, 0.512, and 0.4611 respectively. Again, the GRE metric is » then 
the threshold while AHST and CHI fall below the metric. The quantification results estimate a 530 pixels^ change. 
The true change is closer to 9 pixels^. The massive error results from the inabiUty to extract the object from the 
background of similar pixel intensities resulting in a large selected region. 

6.2.1 Summary 

Change detection not only highlights existence of possible changed regions, but when combined with the site model 
provides a patient history by showing site progression. One of the key components of change detection is image 
registration. In this chapter, we applied our multi-step registration algorithm to mammogram sequences. Acceptable 
registration and change detection were obtained. Improvement in control object selection and control point extraction 
would go along way to improving the overall results. The key to registration is landmarks between the images. In 
this research, we use objects and points as landmarks. Ciurrent methods of object and point selection are image 
dependent and adhoc. Incorrect assignment of control points/objects could cause erroneous transformation. This 
change detection is not exact, but would be sufficient to flag a radiologist to review the area. The main results 
of this study consisted of the automatic alignment of maimnograms, detection of change in a local window, and 
implementation of a mechanism to store and build up patient information via the site model. 



Chapter 7 

Future Work 

In this chapter the future directions of this research are discussed. The chnical problem of change detection 
m a temporal sequence of mammograms has lead to several interesting and chaUenging technical problems (non- 
ngid registration and change detection). Of these problems, performing image registration is the most unportant. 
Currently only four approaches, including the approach presented in this research, exist for the registration of 
mammograms.   So, development toward this problem could yield major benefits in the clinical field. 

With that in mind, the future direction of this research is two fold, registration and change detection. Several 
key aspects of registration have bee researched here. They are control point determination and use of multiple 
objects m registration. Control point determination covers potential control point detection and control point corre- 
spondence theories. While multi-object registration, covers object definition, object correspondence, and transform 
combmation. Extension of these ideas could lead to more robust registration which ultimately leads to better chanse 
detection. 

In terms of change detection, the future work includes extension of change detection quantification theories 
to more accurately categorize the change. This includes more automatic object detection and shape description. 
Another change detection direction is the expansion of this local change approach to consider global change detection 
and quantification. This will include discrimination between natural and unnatural change and change localization. 
Possible signal and image processing techniques include wavelets and statistical based processing. 

**Enchance nipple detection using approach in NIPPLE PAPER 
Use CC and AILO to create site model  *issue obtain correspondence between images and points 
control point correspondence ( HMM, FD, etc.)**** 



Chapter 8 

Appendix A:   Information Criterion 

Determining the number of components in a mixture signal is useful in numerous applications from speech processing 
to object recognition. These type of problems are termed model selection or cluster validation in the literature [23]. 
The main goal in these type of problems is to estimate, given the data, the number of components K, are present in 
the mixture signal. This is accompUshed by evaluating a function (Information Criterion IC) for reasonable valves 
of K. K is taken as the K value that yields the minimum function result. The first and most widely used IC is 
Akaike Information Criterion (AIC). 

8.1    Theory 

The AIC formulation can be derived using the following model [23].   Suppose our data is represented by N random 
vectors given by y = {yi, VN}-   Further assvune that the distribution of y is composed of K components where 
the distribution of the k"* component is fk(Y/9^i) where 9ml are the ML estimate of the features. So the goal of 
the IC is to find the K that maximize the function. Since we assume our distribution is a Gaussian, finding its 
maximum is equivalent to minimizing the log of the distribution function. The results are the AIC equations given 
below. 

AIC{K) = -2 \og{f{x/4>rr,i)) + 2*Ka (8.1) 

K =aigTmnAIG{K)\2^K<Ko (8.2) 

where f{x/(f>mi) is the conditional likehhood function distribution given the maximum likelihood feature vector (pmi- 
Ka is the number of free parameters to estimate and was added to make the AIC estimate an unbiased estimate of 
the mean distance between f(x/6) and f{x/6 ) where 0' is the estimated parameter vector. 

8.2    Simulation Experiments 

To illustrate this algorithm two examples were processed a four class phantom shown in Figure 8.1 and a real 
manunogram. For each example, the k ranged from 2..10. Figure 8.2 shows the plot the AIC curve for the phantom 
and Figure 8.3 shows the plot for the mammogram. From these plots we see that JK' is 4 and K is 8. The results 
correspond to results achieved in [27]. 



Figure 8.1: Four class phantom 

Figure 8.2: AIC plot of four class phantom 



Figure 8.3: AIC plot of mammogram image. 
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ABSTRACT 

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has emerged as an effective tool to ac- 
cess tumor vascular characteristics. DCE-MRI can be used to characterize microvasculature noninvasively for 
providing information about tumor microvessel structure and function (e.g., tumor blood volume, vascular per- 
meabihty, and tumor perfusion). However, pixels of DCE-MRI represent a composite of more than one distinct 
functional biomarker (e.g., microvessels with fast or slow perfusion) whose spatial distributions are often het- 
erogeneous. Complementary to various existing methods (e.g., compartment modeling, factor analysis), this 
paper proposes a bhnd source separation method that allows for a computed simultaneous imaging of multiple 
biomarkers from composite DCE-MRI sequences. The algorithm is based on a partially-independent component 
analysis, whose parameters are estimated using a subset of informative pixels defining the independent portion 

-of-the observations. We demonstrate the principle of the approach on simulated image data sets, and then apply 
the method to the tissue heterogeneity characterization of breast tumors. As a result, spatial distribution of 
tumor blood volume, vascular permeabiUty, and tumor perfusion, as well as their time activity curves (TACs) 
are simultaneously estimated. 

Keyvifords: Independent component analysis (ICA), partially-independent component analysis (PICA), intrin- 

sic dependency/non-intrinsic dependency of the components, dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI), compartment model, time activity curves (TACs). 

1. INTRODUCTION 

Remarkable advances in functional imaging have been made in developing molecular-targeted contrast agents, 
ligands and imaging probes. Such imaging capabilities will allow for the visualization and elucidation of im- 
portant disease-causing physiologic and molecular processes in living tissue. Subsequently, functional imaging 
will play an important role in the early detection, diagnosis, and treatment of diseases.-^ It is known that 
most advanced tumors are highly heterogeneous in structure that may reflect the underlying angiogenesis and/or 
metastasis.^ Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive imaging 
method for tumor microvascular characterization, which can be applied to assess (and potentially predict) the 
response to treatment including anti-angiogenic drugs. Kinetic characteristics changes following treatment have 
correlated with histopathological outcome (e.g., microvessel density) and patient survival. However, widespread 
success of DCE-MRI may be hmited by the need for further technology development, particularly due to the 
lacking of quantitative and computational data analysis tools included by the instruments. 

As a common problem in functional imaging, pixels represent a composite of more than one distinct molecular 
marker (i.e., the observed pixel intensity will consist of the weighted sum of activities of the various molecules). 
This problem exists for various reasons, e.g., target mixture, probe non-specificity, and kinetics or spectrum 
overlap. These aspects are briefly described as follows. First, mixed signals can result when distinct markers are 
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combined into a homogeneous mixtm-e (e.g., fast and slow flow microvessels), independent of spatial resolution. 
Second, ligand-receptor binding depends largely on the three-dimensional shapes of both elements, where a 
ligand has many bonds that can be rotated into many different positions resulting in many shapes. Third, 
even with a precision excitation source, any overlap of the absorption spectra of the flubrophores leads to the 
excitation of multiple fluorophores whose emission spectra often also overlap. Thus, the observed signal intensity 
may well be composed of the emission from several markers of differing concentration and kinetics/spectrum 
(e.g., specific/nonspecific bindings, fast/slow flows). As a result, the overlap of multiple molecular signatures 
can severely decrease the sensitivity and specificity for the measurement of molecular signatures associated with 
different disease processes. As an example, imaging neuro-transporters in the brain requires the passage of 
radioligands across the blood brain barrier by ways of their high lipophihcity. But lipophilicity carries the risk 
of high nonspecific binding and retention in the white matter and could result in a bias of the estimated kinetic 
parameters that are used to measure binding to specific recognition sites. 

It is well known that Independent Component Analysis (ICA)^^'^''' is a powerful method for blind source 
separation with a strong assimiption that the sources are independent to each other. This paper describes a 
computation approach to dependent component imaging, where functional imaging is the case. The method 
is to identify an informative index subspace and over which to separate mixed imagery sources by partially- 
independent component analysis (PICA), whose parameters are estimated using informax principle. We discuss 
the theoretic roadmap of the approach, and its apphcations to computer simulation phantoms and DCE-MRI 
sequences of breast tumor. 

2. THEORY AND METHOD 

Independent component analysis (ICA)^^ is a statistical and computational technique for revealing hidden factors 
that underhe sets of random variables, measurements, or signals. The application of ICA has been found in 
"many separate fields such as feature extraction, image processing, medical image processiiig, telecoihmunication, 
econometric signal processing, and so fourth.-^-^'^'^ The method aims at recovering the unobservable independent 
sources (or signals) from multiple observed data masked by Unear or nonUnear mixing of the components.^'^ One 
of the basic assumptions for ICA model is the statistical independence between components.^® However, the 
dependent components are often occurred in the real world situation, including functional imaging derived from 
tissue samples. 

2.1. Compartment Modeling 

Compartment modeling forms the basis for tracer characterization in DCE-MRI.^ Fig. 1 shows a parallel mode 
two-tissue compartment model.^ The conventional compartment model leads to a set of first order differential 
equations: 

Cf(t)     =    kifCp{t)-k2fCf{t) 

(1) 

where Cf{t) and Cs{t) are the tissue activity in the fast turnover and slow turnover pools, respectively, at time 
t; Cp{t) is the tracer concentration in plasma (i.e., the input function); ct{t) is the total tissue activity; Cm(t) 
is the measured total tissue activity; kif and kis are the imidirectional transport constants from plasma to 
tissue (ml/min/g: spatially shift-varying); and ^2/ and k2s are the rate constants for efflux (/min: spatially 
shift-invariant). It is important to note that c/(i), Cs{t), Cp{t), and Cmit) are also called the time-activity curves 
(TACs) associated with a pre-defined region of interest (ROI). 

It can be shown that c/(i) and Cs{t) can be solved analytically in a parametric form 

Cf{t)    =    kifCp{t) ® e-''^f* ^2) 

where ® denotes the mathematical convolution operation. By fitting Cm[t) to the measured ROI TAG in the 
Ught of pre-acquired Cp[t), the model parameters [kif, fcj^, k2f, k2s) can be estimated.^'* 

Cf{t) = kifCp{t) -k2fCf{t) 

Cs{t) = kisCpit) -k2sCs{t) 

ct{t) = Cf{t) + C At) 
Cmit) = Cf{t) + C sit) + Cp{t) 



Vascular space plasma Cp(t) 

Fast flow pool Cj-(t) Slow flow pool c^ (t) 

Figure 1. Two-tissue compartmant model (parallel mode). 

Based on linear system theory, a simple method can be developed to convert temporal kinetics to spatial 
information.^' ^   First, we can normalize the ROI based tissue kinetics to define three TACs for each pixel 

(3) 

where Vp is the plasma volmne in tissue. Second, for pixels i = 1,...,N within an ROI, we let kif{i) and kis{i) 
be the local model parameters and use them to describe the dynamics of each pixel in the ROI 

Cmii, t) = kif{i)af{t) + ku{i)asit) + Vp{i)ap{t) (4) 

where Cm{i,t) is the measured pixel TAG, kif{i) and kis{i) are the permeability of fast and slow turnover regions 
in the pixel, respectively, and Vp{i) is the plasma volume in the pixel. We call this representation as factored 
compaftiiieht modeling.'^ 

Third, let (ti,t2, •••,*n) be the samphng time points of the DCE-MRI measurements. Then, the linear least 
square solution of Eq. (4) can be given by the following equation: 

kif(i) 
ku(i) 
Vpii) 

(A-A) 
-1 

Cjnytj ZT^ 

(5) 

where 
af{ti)    Usih)    ap{ti) 
a-f{h)    as(*2)    cipih) 

(6) 

af{tn)    as(tn)    ap{t„) 

The estimated values of kif{i), kis{i) and Vp{i) vary from pixel to pixel and reconstruct three factor images 
respectively. In particular, factor images kif{i) and kis{i) represent ROI sub-regions with fast and slow kinetics, 
respectively. 

Prehminary effort has been recently made to perform blind compartment modeling without any knowledge 
of the input fimction.^^"^^ An initial effort, eigenvector based multichannel bhnd deconvolution (EVAM),-^^ 
was used to estimate the parameters of a two-tissue compartment model for PET FDG imaging,-'^ but was 
shown to give relatively poor (sensitive to noise) and non-unique estimates in a simulation study.-^^ A more 
optimal solution was proposed on the appUcation of the iterative quadratic maximum-hkelihood (IQML) method 
to parameter estimation. ^^ The blind identification problem is treated as a nonUnear least square problem 
whose variables are separate.-^''' Other approaches in which both the input function and kinetic parameters are 
treated as unknowns have been explored in [14, 15]. 



3. PARTIALLY-INDEPENDENT COMPONENT ANALYSIS (PICA) 

3.1. Independent Component Analysis (ICA) 

As aforementioned, one potential limitation associated with compartment analysis is that they are all restricted to 
a parametric (thus simplified) model that may not adequately describe the underlying physiological or biochemical 
processes about tracer-target interactions, in addition to the likely invasive acquisition of the input function. 
Although factor analysis (FA) attempts to solve the problem, the results were mostly unsatisfactory. 

Prom hnear system theory,^^ it can be shown that the solution (zero-state response) to a kinetic system has 
the very general form as shown in Eq. (4), or Eq. (7) as represented in vector-matrix form. This motivates 
the consideration of a statistically-principled computational approach involving newly invented independent 
component analysis (ICA) theory.-^-^'^^'^''' The goal is to blindly and computationally reconstruct both A and 
k based on Cm- This philosophy for computed simultaneous imaging of multiple biomarkers is similar in spirit 
to the blind source separation (BSS) for solving the cocktail-party problem?^ 

Prom latent variable model interpretation,^^   Eq. (7) 

Cmii,tl) 
Cm{i,t2) 

iV,^) tn) 

= A 
kif{i) 
kisii) 
Vp{i) 

(7) 

describes how the observed data are generated by a process of mixing the latent (or "hidden") variables, where 
matrix A is called the mixing matrix, the factor images (or "source signals") are not observable, and nothing is 
kiTiowh about the properties of the TACs (or "mixing process"). In the absence of this informa,tion, one has to 
proceed "blindly" to recover the factor images from their TAC-modulated activity mixtures.^ 

We can state such computed simultaneous imaging of multiple biomarkers as follows: "Given N independent 
realizations of the measured pixel TAG vector Cm{i,t), i — 1,2, ...,iV, find an estimate of the inverse of the 
TAG-mixing matrix A(i) and factor image vector k(i) = [k-\_f{i), kis{i)Y■" 

IGA method, as a newly invented statistical and neural computation technique, promises a powerful computa- 
tional tool for separating hidden sources from mixed signals when many classic methods fail completely.^^ IGA 
method utiUzes independence as a guiding principle and performs BSS based on a nongaussian factor analysis 
with a unique solution.-'^ More precisely, by assuming that the hidden components are statistically independent 
with nongaussian distributions, these hidden sources can be found by IGA, except for an arbitrary scaling of 
each signal component and permutation of indices. In other words, it is feasible to find a demixing matrix W 
whose individual rows are a rescaling and permutation of those of the mixing matrix A. IGA approach exploits 
primarily temporal diversity in that the dynamic images taken at different times carry different mixtures of the 
factor images.^ There are several algorithms for IGA that are derived from different optimization principles. 
More details can be found in [11, 26]. 

3.2. Partially-ICA 

We have found that direct apphcation of IGA to tumor heterogeneity characterization using all the pixels, 
however, often leads to an unsatisfactory recovery of factor images k(?). By a closer look at the joint distribution 
of the factor images, we found that they are often not statistically independent over the whole pixel set.^ This 
shall not be a surprise since factor images are expected to be piece-wise continuous thus form clusters over the 
joint distribution. It can be further concluded that such joint distribution clusters correspond to the overlapped 
homogeneous areas of the factor images. Thus, we shall expect to achieve a better factor image decomposition 
using a subset of pixels that supports the independency of the factor images. 

Inspired by such reasoning, we proposed a partially-ICA (PIGA) technique in [5].   Rather than using all 
the pixels that give rise to a large decomposition error due to sovuce dependency, we attempt to (iteratively) 



identify a pixel subset supporting source independency and over which to estimate the demixing matrix W and 
subsequently factor images k(z). 

- Compared with the basic ICA model, where each observation is a hnear combination of independent compo- 
nents, our PICA model assumes that each observation Xi is a linear mixture of statistically dependent components 
si, S2,...,s„, with an n by n non-singular mixing matrix A, i.e.. 

where 

"   Xi "   Si 

^2 = A S2 

.  ^"   . .   ^»   . 

or X = As (8) 

S2 

Sll       Si2 

S2I       S22 

Snl      Sn2 

Sin 

S2r, 
[S,S2,...,Sm],X- 

Xi 

^2 

Xii      XY2. 

X2\      2:22 

*^nl      ^n2 

X\n 

X2r, 
[Xj X2,---,Xm] 

(9) 
and m is the number of pixels in each functional image. Our task is to recover the dependent components from 
observations by still utilizing ICA. 

Let us review the mechanism of independent component analysis on basic ICA model. The components Si 
are statistically independent, while based on the Central Limit Theorem; the distribution of a sum (observations) 
of independent random variables (components) tends toward a Gaussian distribution, under certain conditions. 

' ThefefoFeVthe^p-ocedufe^thatTCA searches'for "estiihates of the'comporiehts Is lo^ffndllirectiohsr such' that 
the projections of observations on each direction are distributed with most non-Gaussian distribution. This 
is the reason that ICA algorithm can help find the (statistically) precise estimate of the components if the 
components are completely independent (except those two ambiguities of ICA on the scale and order of the 
components). However, it will mislead direction finding if the components are dependent but ICA algorithm is 
still superimposed on the observations, which are mixtures of the dependent components. Also, it will give rise 
to a large separation error since all the pixels are utilized for ICA calculation while the components over all these 
pixels are statistically dependent. 

In order to effectively utilize ICA for this problem, an informative pixel index subspace (corresponding to the 
independent part of the components) needs to be identified. Then we can perform ICA over this subspace to 
recover the estimated mixing matrix over the subspace. Imposing this mixing matrix over all the pixel indices, 
the dependent components are then available to be recovered. The key point is to identify the informative pixel 
indices, over which the components are statistically independent. The difficulty of this approach is that the 
independent subspace of the components needs to be identified without any statistical information derived from 
the components themselves: the components are just what need to be recovered. We only have information 
derived from observations rather than from components. For simpHcity, we consider the dependency of the 
components rather than that of the observations. It is well know that the statistical dependency/independency 
of the components s could be measured (visuahzed) by means of scatter plot with m sample points 51,52, ...,5m 
in n dimensional space (each dimension corresponds to a.component): they consist of dependent/independent 
components, which we can perform linear/nonUnear regression curve to estimate the statistical relation between 
n components. 

Clearly, when the number of pixels m is much larger than the number of components n, which is the situation 
for functional imaging, most probably the sample points are clustered into some clusters. Based on this obser- 
vation, we divide the dependency of the components into two categories: intrinsic dependency and non-intrinsic 
dependency. By intrinsic dependency of the components, we mean the dependency caused by the linear and/or 
nonUnear correlation between components over cluster centers. We refer to non-intrinsic dependency of the 
components as the dependency over sample points inside each cluster. In other words, the intrinsic dependency 
corresponds to the global dependency among clusters, while non-intrinsic dependency corresponds to the local 



dependency among samples in each cluster. For ICA to work well, we need to remove both intrinsic dependency 
and non-intrinsic dependency of the components. This can be accomphshed by removing the pixels that con- 
tribute to intrinsic dependency and non-intrinsic dependency of the components, while retaining the informative 
pixel indices. Finally, we will apply the ICA onto the subset of pixels for effective recovery of the components 
over those informative pixel indices. 

Notice that both intrinsic dependency and non-intrinsic dependency of the components should be removed 
with only the information from observations rather than from components. A possible approach to remove intrin- 
sic and non-intrinsic dependencies can be summarized as follows. The intrinsic dependency of the components 
can be removed by removing all of the clusters except one. The non-intrinsic dependency of the components can 
be alleviated by removing some sample points in the remained cluster. We will describe the removal procedures 
next. 

3.2.1. Intrinsic dependency removal 

In order to remove intrinsic dependency of the components from the observations, the joint distribution of the 
observations is estimated with Expectation-Maximization (EM) algorithm initialized by k-means method. We 
assume that the number of clusters t is known with some prior knowledge of the problem. In our DCE-MRI 
study of breast tumor, the prior knowledge tells us that this number should be two considering the fast-flow and 
slow-flow characteristics of the breast tumor. Assume that the distribution of the observations is in the following 
form: 

t 

P(^) = Xl^iP(^; '^i' «^f) (10) 
«=1 

" where p{x;mi, cr?) is the ith Gaussian distribution with Mi and erf as its mean and variance, and TTJ is the weight 
t 

of the ith Gaussian distribution, J^TTJ = 1.  Notice that each Gaussian distribution forms a cluster in scatter 

plot of the observations. 

We remove intrinsic dependency of the components in a statistical way. Each sample point Xj is removed in 
observation scatter plot statistically, with the probability of 

p.,(removal of X,) = Pi^j)—^Pi^r^-^^^-D (U) 
P{^j) 

where k is the index of the remaining cluster. 

3.2.2. Non-intrinsic dependency Removal 

For removal of non-intrinsic dependency of the components, the remained sample points in scatter plot of the 
observations are statistically down-sampled with Pg as its parameter, i.e., Xj is removed statistically with the 
probabihty of 

p..(removalofX,) = {'^'=^(^-"^Q^''^'^-^^     ^toS""'"'''^ " ^'     " ^'^^ 

As a result, the remained sample points in scatter plot of the observations would be uniformly distributed. It is 
important that the statistical dependency of the components over the corresponding sample points are removed 
without any destruction of the linear dependency of the observations over the remained sample points. In fact, 
this dependency should not be removed for the following ICA computation, because the observations over the 
remained sample points are still the linear mixing of the components, which are statistically independent over 
the corresponding sample points from the PICA model. 
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Figure 2. Removal of the intrinsic dependency between the components: (i) observation consists of more than one cluster; 
(ii) the removal of intrinsic cluster dependency; (iii) the remaining cluster after the removal of intrinsic dependency. 

3.2.3. Proposed Algorithm 

Assume I is the remained sample point index subset, which is obtained by the removal of intrinsic dependency 
and non-intrinsic dependency of the components from the scatter plot of the observations. / corresponds to the 
independent pixel index subspace of the components. We have following procedure for a composite separation 
of observations: 

Step 1: estimate the joint distribution p{x) of the observations with EM algorithm initiahzed by k-means 
method, where the number of clusters t is assumed to be known from some prior knowledge; 

Step 2: remove intrinsic dependency of the components by a statistical cluster removal method with eq. 11, 
and remove non-intrinsic dependency of the components by a statistical down-sampling method by utilizing eq. 
12 with parameter Pg, both in the scatter plot of the observations; assume the retained pixel index subset is J; 

Step 3: perform ICA on the retained part of the observations, {Xj,j e /}, to obtain the estimated mixing 
matrix A. Since the observations over the retained pixel index subspace / are independent, which satisfies the 
assumption of basic ICA model; the mixing matrix A is expected to be better estimated except the ambiguity 
of scaling and ordering. 

Step 4: impose the estimated mixing matrix on the observations over entire indices to obtain the estimated 
-1 

X. components, i.e., s = A 

There are two parameters, t and Pg, in the above algorithm, t is set with some number by prior knowledge 
of the problem, while Pe is a trade-off parameter for controlling the uniformity of the distribution over the 
sparseness of the sample points in the scatter plot of observations after the removal procedures. The smaller the 
Pe is, the more uniform the distribution of sample points over the index subspace looks like, and the less sample 
points over the index subspace will be. The directions searched out for the sample points over the index subspace 
with ICA algorithm determine the rows of the estimated mixing matrix. Theoretically speaking, if the parameter 
Pg is set smaller, the more uniformed distribution of the sample points in scatter plot of the observations over 
the index subspace will merit this direction searching; On the other hand, the number of sample points becomes 
less that limits the sample points to form that distribution, demeriting this direction searching. 

4. RESULT AND DISCUSSION 

We first applied our method to two computer simulation phantoms for the removal of intrinsic dependency 
and non-intrinsic dependency among components. Then we applied o\ir method to a data set generated by 
compartment models, and a real DCE-MRI data set of tumor heterogeneity study. 
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Figure 3. The scatter plots of the component recovery process, for both Hnear (a) and non-linear (b) dependency 
cases, with ICA and PICA method, (i) components, (ii) observations, (iii) recovered components from ICA method, (iv) 
observations over the informative index subspace, (v) recovered components over the informative index subspace, (vi) 

'recovered cornponents over full index space.from PICA method. 

4.1. Phantom study 

Figure 2(i) shows the data set that is generated by a sum of two Gaussian distributions: centered at (0,1) and 
(1,0) with standard variations as two components. Clearly, the components are not independent (i.e., they are 
intrinsically dependent), and the removal of either Gaussian distribution makes the sample points over the index 
subspace statistically independent (see Figure 2(ii) and (iii)). 

The next data set is generated such that the two components are independent in their first half (left half), 
and have Unear/non-linear correlation for the other half (right half), both with uniformly distributed intensities. 
The mixing matrix is randomly generated to forrh observations. Clearly there is a linear/non-linear non-intrinsic 
dependency between the components in this experiment. Figure 3 (upper/lower figure) shows the scatter plots in 
the component recovery process with ICA and PICA methods for the situation of linear/non-linear dependency 
between the components. Figure 4 shows the component recovery process, where the randomized intensities of the 
first half and the second half are shown in two-dimensional images. Note that the pixels for the first component 
in the figure are reordered according to its intensities. Evidently, the estimated components recovered by PICA 
method are much closer to the ground truth of the components by comparing both the scatter plots in Figure 
3(i), (iii), (vi) and the images in Figure 4(ii), (iv), (vi). 

4.2. Experiments on compartment model 

A compartment model is used to simulate the dynamic behavior of the breast tumor obtained with a DCE- 
MRI sequence. The mask for the fast-flow (FF)/slow-flow (SF) patterns, as well as the overlap region of FF 
and SF, is shown in Figure 5(a). The pixel intensity in the FF-dominant region/overlap region/SF-dominant 
region is a linear combination of FF and SF patterns with the corresponding intensity weights of 0.9/0.5/0.1 
and 0.1/0.5/0.9. In Figure 5(a), bright/dark gray color corresponds to FF/SF region, and the fight gray/dark 
corresponds to overlap/background, respectively. From the compartment model, we can get a sequence of images 
shown in Figure 5(b). Our task is to identify the FF and SF patterns hidden in the observed sequence of images. 



(i) (ii) (iii) (iv) (V) 

(a) The situation of linear dependency between components 

(i) (ii) (iii) (iv) (v) 

(b) The situation of non-linear dependency between components 

(vi) 

(vi) 

Figure 4. Recovery results from ICA and PICA, (i) observations, (ii) recovered components by utilizing ICA method, 
-.(iii)-observations-Over the informative index subs-pace, (iv) recovered components over the informative index subspace, 
(v) recovered components over full index space by utilizing PICA method, (vi) real components. 
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Figure 5. A simulator tumor phantom inclusing fast and slow kinetic subregions; (a) Image mask in compartment model, 
(b) The sequence of images from the compartment model with the mask shown in (a) 

We applied our PICA method to separate the observed composite images into two FF and SF patterns, as well 
as to have the time-activity curve (TAG). The only two spatial patterns, FF and SF, which is a prior knowledge 
of this problem, induced us to make an assumption of two components from the observed image sequence. Thus, 
we divided the image sequence into the first half of the sequence and the second half of the sequence, according 
to the time index. Then PICA was performed for each pair of observed images, one from the first half, and 
another from the second half, and the corresponding components were estimated. The final estimation of the 
components (spatial FF/SF patterns) was attained by averaging all of the estimated components obtained from 
each pair of observed images. Figure 6 shows the spatial FF/SF pattern and the corresponding TACs achieved 
by PICA, together with those by ICA for comparison. Notice that each TAC according to the compartment 
model should be a positive curve.   Figure 6(a) shows a better performance for the estimation of the FF and 



SF patterns, which are closer to the ground truth of 0.9:0.5:0.1 and 0.1:0.5:0.9/0.9:0.3:0.1 and 0.1:0.7:0.9 from 
Figure 6(a)(i)/(ii). It is shown from Figure 6(b) that TACs from PICA are better than those from ICA, since 
they are both approximately positive and more fit to the meaning of dynamic fast-flow and slow-flow activity of 
the tumor tissue. 
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Figure 6. ICA and PICA result, (a) the factor images results for compartment model with FF:overlap:SF region inten- 
sity for FF pattern and for SF pattern to be 0.9:0.5:0.1 and 0.1:0.5:0.9/0.9:0.3:0.1 and 0.1:0.7:0.9 respectively; (b) the 
corrseponding TACs. 

4.3. Experiment on real DCE3-MRI data set 

We tested our PICA method with a real DCE-MRI sequence of breast tumor studies. Figure 7 shows a typical 
sequence of breast tumor DCE-MRI study. Compared with results from the direct application of ICA, oru results 
using PICA shown in Figure 8, were quite promising in the extracted factors that closely resemble the expected 
characteristics of compartmental kinetics of tumors. The factor images and the TACs reveal regional distribution 
of the FF and SF patterns. 
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Figure 7. (a) Tumor (breast cancer) spatial heterogeneity revealed by DCE-MRI; (b) Sequences of the breast tumor 
ROI. 
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Figure 8. The recovered factor images of the breast cancer spatial heterogeneity and the corresponding TACs revealed 
by DCE-MRI with PICA method 
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