
FINAL REPORT 

High Efficiency, Scalable, 
Parallel Processing 

for 

DARPA (IPTO) 

SBIR CONTRACT: SB022-035 

DiSTRIBUTIOrj STATEfyiENT A 
Approved for Public Release 

Distribution Unlimited 

June 30, 2003 

20030807 131 
PREDICTION SYSTEMS, INC. 

PREDICTION & CONTROL SYSTEMS ENGINEERS 

309 Morris Avenue 
Spring Lake, NJ 07762 

a (732)449-6800 i   (732)449-0897 
gj)   psi@predictsys.com '^  www.predictsys.com 



Public reporlinfl buiDen for this collection of inlonnalion Is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching data sources, galhenng and maintaining the 
data needed and completing and reviewing the collection of infomiation. Send comments regarding this burden estimate or any other aspect of this collection of Information, including suggestions for reducing 
this burden, to Washington Headouartere Services, Directorate for Infomiation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arilngton. VA 22202-4302, and the Office of Management 

and Budget, paperwon< Reduction Project (0704-0188), Washington, DC 20503. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

4. TITLE AND SUBTITLE 

REPORT DOCUMENTATION PAGE 
Form Approved 

0MB No. 0704-0188 

1. REPORT DATE (DD-MM-YYYY) 

06/30/2003 

2. REPORT TITLE 

FINAL 

High Efficiency, Scalable, Parallel Processing Approaches for Multi-Sensor Data Fusion 

6. AUTHOR(S) 

Robert Wassmer 

3. DATES COVERED (From - To) 

10/8/2002-06/30/2003 
5a. CONTRACT NUMBER 

DAAH01-03-C-R031 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

Sd. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Prediction Systems, Inc. 
309 Morris Ave. 
Suite G 
Spring Lake, NJ 07762 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

US ARMY Aviation & Missile Command 
AMSAM-AC-RD-AX 
Beverly Gonzales 
Redstone Arsenal, AL 35898-5280 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

PSI03004 

10. SPONSOR / MONITOR'S ACRONYM(S) 

11. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

12. DISTRIBUTION AVAILABILITY STATEMENT 

Unlimited 

13. SUPPLEMENTARY NOTES 

DISTRIBUTION STATEW1ENT A 
Approved for Public Release 

—  Distribution Unlimiled  

14. ABSTRACT 

PSI's CAD approach to simulation / software development cuts large system life cycle costs by an order of magnitude. A visual representation of software 
architecture that provides a one-to-one mapping to the code, it's based upon separation data from instructions, affording separation of architecture from 
language, and providing ease of control and reuse of complex modules. This paradigm shift for software brakes barriers to building complex systems, 
makes significant upgrades easy, and cuts support costs dramatically, by achieving module independence through visually enforced architectural design 
rules. Its success has resulted in huge simuatlions that meet customer validity contraints but now exceed single processor computer power by one or 
two orders of magnitude. Hardware designers produce parallel computers with speeds into teraflop ranges. However, their practical use on all but very 
special problems has been extremely limited due to software implementation problems. This research is to confirm hypotheses that graphical design 
rules that achieve software understandability and module independence also support allocation of processes to parallel processors. Fusion of this 
technology with parallel processors can result in an order of magnitude of speed improvement, yet making development easier on parallel machines 
than single processor machines due to concurrent memory access and management. 

15. SUBJECT TERMS 

Computer-Aided Design (CAD) 
Software 

Simulation 
Parallel Processing 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 

unclassified 

b. ABSTRACT 

unclassified 

c. THIS PAGE 

unclassified 

17. LIMITATION OF 
ABSTRACT 

unclassified 

IS. NUMBER 
OF PAGES 

80 

19a. NAME OF RESPONSBILE PERSON 
William C. Cave 

19b. TELEPHONE NUMBER (Include area code) 

732/449-6800   
Standard Form 298 {Rev.8-98) 
Prescribed by ANSI-Std Z39-18 



TABLE OF CONTENTS 

SECTION PAGE 

1. BACKGROUND 1 

2. INTRODUCTION 2 

3. PERTINENT CONSIDERATIONS 4 

4. PHASE I TECHNICAL OBJECTIVES 15 

5. OVERVIEW OF THE USER INTERFACE TECHNOLOGY 16 

6. OVERVIEW OF THE RUN-TIME TECHNOLOGY 23 

7. INSTANCED MODELS 24 

8. INTERPROCESSOR COMMUNICATIONS 37 

9. INTERPROCESSOR SCHEDULING 41 

10. EXPERIMENT 46 

11. SUMMARY OF EFFORTS 58 

12. PHASE H OBJECTIVES 60 

13. REFERENCES 68 

APPENDIX A THE EFFECTS OF PARALLEL PROCESSING 
ARCHITECTURES ON DISCRETE EVENT SIMULATION 



1.  BACKGROUND 
Hardware designers have succeeded in producing parallel and distributed processor 

computers with theoretical speeds well into the gigaflop range. However, the practical use of 
these machines on all but some very special problems is extremely limited. The inability to use 
this power is due to great difficulties encountered when trying to translate real world problems 
into software that makes effective use of highly parallel machines. This has been described by 
numerous authors over many years, see for example [1], [2], and [3]. 

COMMERCIAL MARKET REQUIREMENTS 

hi the commercial marketplace, speed benefits gained using a parallel computer must 
sufficiently outweigh the cost to develop and support the software. If not, then real 
commercialization, based upon solid economics, will not occur. These economic goals will be 
achieved if the following requirements can be met: 

1. Subject area experts who understand the problems to be solved must be able to describe 
them easily and directly to computers without concern for parallelism, or even prior 
knowledge of computer programming. 

2. The software must be generated automatically to take fiiU effective advantage of the 
inherent parallelism of the problem on a Massively Parallel Processor (MPP). 

These two requirements are tightiy interrelated. The subject area expert should not care 
whether the problem is being solved on a single processor machine, or one with hundreds of 
processors. The run-time software must be generated to make effective use of the available 
parallelism of the host machine, adapting to changes in the environment, a very tedious but 
mechanical process. 

REQUIREMENT FOR SPECIAL PROGRAMMING SKILLS 

Current approaches to solving problems on parallel processor machines have not, in 
general, overcome these two barriers. Problem description for parallel - as opposed to single - 
processing generally incurs a huge cost increase for all but a few special cases. This is 
compounded by the fact that the problems requiring large processor power are themselves 
complex, and best understood by subject area experts. 

For example, a communications engineer trying to design a specific set of algorithms, to 
implement a very complex set of protocol standards, has difficulty just describing his problem 
using graphic diagrams with plain English text. To constrain him to describe his problem in an 
esoteric programming language is difficult. To force him to learn the language of a system 
programmer, i.e., the operating system, is unlikely. To fiirther burden him to describe his 
problem so that it runs efficientiy on a parallel computer makes the approach intractable. 
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One is then led to an approach that augments the engineering staff with parallel processor 
programmers who perform problem translation for the computer. However, it is well accepted in 
most engineering departments that, when programmers are used to translate an engineer's 
problem to a computer, problem solution becomes a process whose length increases 
exponentially with problem complexity. Finally, translation onto a parallel processing machine 
currently requires very special programming skills that are commensurably scarce and expensive. 

This is why engineering departments invest heavily in Computer-Aided Design (CAD) 
tools that they interface with directly - on their own terms. These CAD tools provide interfaces 
that are tailored to their problem and automatically generate highly efficient computer code. We 
believe that this is the solution to commercialization of parallel computing. 

MULTI-SENSOR FUSION APPLICATION 

PSI currently has a contract with the Army CECOM to develop an Operations 
Management System (OMS) for the Netted Full Spectrum Sensor (NFSS) system, [4]. This 
system must contain an embedded simulation of the detailed target environment, electromagnetic 
environment, sensors, communications, as well as actual multi-level/multi-sensor fusion 
algorithms and control systems to predict the responses to multiple sensor tasking. It also 
contains an optimization subsystem to determine the most effective use of sensor resources 
during large operations. In addition to other challenges, this represents a multi-faceted high 
stress computational problem. This system has been used as the basis for analyzing and 
evaluating approaches to parallel processing under the Phase I contract. 

2.       INTRODUCTION 

Solutions to the parallel processing problem tend to skip over the software piece of the 
problem, going from application requirements to hardware architecture. (The word architecture 
implies hardware in the parallel processing literature. The words "software architecture" do not 
appear.) Software is not much more than an afterthought relative to the size of the hardware 
design effort. This approach, illustrated in Figure 1, is termed software bypass. 

APPLICATIONS SOFTWARE HARDWARE 

^RTHOUGHI^. 

Figure 1. Software bypass - designing the hardware first. 

Prediction Systems, Inc. Parallel Processing Page 2 



Subject area experts who want to use parallel computers cannot simply enter their 
problem specifications into a piece of hardware. They must first write the very complex software 
required to control parallel processor hardware. Without knowledge of the special operating 
systems and languages for parallel computers, these experts typically turn to programmers to do 
the job. Programmers see the chance to increase their value by learning how to be parallel 
programmers. Their interest is in learning deeper specializations to broaden their higher-paying 
job opportunities. This cycle of thinking is at odds with commercial market requirements. 

USE OF ABSTRACT REPRESENTATIONS 

Certainly there are many uses of abstractions when building models of highly complex 
systems and their environments. One could not perform simulation without absti-action of reality 
into models that run on a computer. The General Simulation System (GSS), [5], provides for 
ease of abstraction where complex processes that may be spread across all of the entities in a 
system are represented in a single list. GSS contains a library of high speed list management 
facilities that eliminate the need for the modeler to develop linked list software, a basic 
abstraction in modeling. However, one must consider the trade offs between time and cost of 
development as well as speed and memory utilization at run-time. 

With today's parallel processors, memory utilization is not an issue. It is difficult to 
conceive of a problem where the amount of memory on a large parallel processor computer 
presents a limitation. Using conventional techniques for parallel processing, the trade is usually 
between development time and running time, given resource constraints in dollars. This leads to 
decisions on how models are represented. The choice is usually between the way one deals with 
absti-actions, and typically ends up with substantial hand tailoring of code to the parallel 
processing environment. This implies a huge effort in development, resulting in significant time 
and cost, to use parallel processors. More importantiy, the abstractions required for parallel 
processing make it difficult for a modeler with subject area expertise to understand the code. 

THE INHERENT NATURE OF SYSTEM DECOMPOSITION 

As systems are designed to be more user-fiiendly and adapt to their environment with 
greater effectiveness, they become more complex. To deal with a high level of complexity, 
designers must partition systems into modules that operate independentiy, minimizing the shared 
interfaces. If module interfaces are designed for maximum isolation, they incur a minimum 
ti-ansfer of information. This maximizes the ratio of internal processing to interface processing, 
which in turn maximizes their measure of independence. This is the type of software architecture 
required for effective use of parallel processing. Given a high degree of module independence 
and inherent parallelism, many applications have still failed to achieve a high degree of 
efficiency in parallel processor utilization. This is because current software approaches cloud 
this level of architecture. 
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The two most prominent parallel processing companies in the early 1990s, Kendall 
Square Research (KSR) and Thinking Machines Corp. (TMC), failed due to lack of good 
software environments for both developing and running applications. There are a number of 
reasons that no software environment has yet to crack the problem. We believe that the two most 
important reasons are: 

(1) Decomposition of a large software system is an architectural problem, and the 
architecture of a system of independent modules is best described graphically (like 
hardware) - not using a language; 

(2) Software architectural design methodology and supporting technology have not been 
tied to the requirements of efficient scheduling and assignment of processors to processes 
during run time. 

After one gains a good understanding of the software side of the parallel processing 
problem, it becomes clear that the language environment must be designed to support the 
architecture environment as well as the requirements for understandability and independence of 
the detailed implementation. This has major implications on scoping the size and controlling the 
hierarchies of independent modules. At least as important, the architecture environment must 
serve to optimize the scheduling and assignment of processors to processes in the run-time 
environment. Our proposed solution solves both problems. 

3.       PERTINENT CONSIDERATIONS 

Future survival depends upon the speed with which one can deal with increasing complexity. 

THE IMPACT OF SPEED AND COMPLEXITY ON SURVIVAL 

The things we take for granted today would have boggled the minds of people just 100 
years ago. Looking back 1000 or 10,000 years is awesome. Which way would any of us prefer 
to live? Who is better prepared to survive? The answer to the first question is generally obvious. 
The answer to the second requires more consideration. 

The U.S. is learning that there are many faces of survival. The days of firearm versus 
bow and arrow are long past. Yet a high speed aircraft with smart missiles may not help preserve 
our own infrastructure when attacked by terrorists. The approach to survival is taking on a 
different meaning than historic war. The enemy situation is becoming much more complex. 
Accurately predicting what an adversary may do depends upon how much time he has to think, 
communicate, and take action. The problem of defending the U.S. is being redefined in light of 
the increasing need to deal with speed and complexity as we endeavor to survive. 
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Dealing With Increasing Complexity 

Anyone familiar with the history of mathematics knows the motivations leading to the 
progression of numbers. It started with "whole numbers" or integers, and progressed to signed 
integers, then Xo fractions and rational numbers. It continued to real numbers, imaginary and 
complex numbers. Each step covered a more complex realm - not by imagination, but by 
necessity. 

There is more to this progression than just the increase in complexity. Each of these 
extensions is still referred to as a number. And each encompasses the prior. Real numbers are a 
subset of complex numbers. More importantly, many of the laws and transformations still apply 
as we move up the scale of complexity. Their interpretations are simply extended to be more 
general. This allows us to deal with jumps in complexity. 

Selecting The Most Convenient Coordinate System 

As we continue to move up the food chain of numbers and mathematics, we can group 
nvimbers into vectors. The position of a body in space can be described by three numbers 
depending upon the coordinate system we choose. And we learn in higher levels of mathematics 
and physics, particularly in electro-magnetic theory and partial differential equations, that 
problems can be solved more easily if we select the right coordinate system. For example, when 
a particle moves in a spherical orbit, it is much easier to describe its motion in spherical 
coordinates. Cartesian coordinates will work, but it takes longer to solve the problem. 

Selection of the most convenient coordinate system is typically taught under the topic of 
separation of variables. One learns that the separation principle can be used if the variables form 
an independent set. The property of independence can be verified using specified tests. The 
concept of choosing the best coordinate system and the property of independence are the 
important principles one can apply when dealing with complexity in a constrained time 
environment. We will make use of these concepts. 

Einstein introduced the use of tensors to deal with the increasing dimensions of time, 
velocity, and acceleration. Control system engineers developed the state vector to account for 
the many degrees of fi-eedom required to characterize complex dynamic systems. The state space 
fi-amework has been shown to be the most general representation of a dynamic system, see [6], 
and [7]. Providing a fi-amework for problem description was not the only benefit of the state 
space approach. It also afforded a framework for developing faster solutions to problems that 
could run for days on the computers of the time. 
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FRAMEWORKS FOR REPRESENTING COMPLEX DYNAMIC SYSTEMS 

In a competitive time-constrained environment, time (speed) is the most important factor. 
If two sides develop the same capabiHty, the one that gets there first is likely to be the one that 
wins. When building tools to help people solve design problems or make complex planning 
decisions, time enters into the picture in at least two major ways. 

• Development Time - the time it takes to develop the tool 

• Solution Time - the time it takes to get a useful solution from the tool 

One can imagine a great tool for solving a problem. But one must answer the question - 
can we get it built in time to accomplish our goal? Or, more importantly, will it produce valid 
answers fast enough if we get it built? Of course cost and risk are also major factors. However, 
time is usually of the essence. 

Automating The Representation Process 

In the early 1960's, electronic circuit designers developed automated tools for solving 
complex systems of nonlinear differential equations required to represent digital waveforms in 
the time domain. These Computer-Aided Design (CAD) tools allowed engineers to describe 
large networks topologically and write FORTRAN-like equations describing nonlinear functions. 
Programming skills became unnecessary. The code needed to generate and run simulations of 
very large networks was generated automatically. This afforded a huge leap in design 
productivity. It enabled the design of huge complex networks leading to integrated circuit 
design. 

CAD system development became a business for many, including the principals of PSI. 
Two systems were developed, one for continuous system modeling (e.g., for digital circuit 
design), and one using a discrete-time framework (for the design of signal processing systems). 
The second used sampled data principles to reduce computation time. An underlying state space 
framework supported both products. 

For large networks, the number of state variables runs to thousands. Solving worst case 
design problems involves multiple optimization runs of thousands of simulations. Each 
simulation has to solve the optimal control problem, involving thousands of nonlinear differential 
equations. Speed and accuracy are the driving forces in designing these systems. If it takes a 
computer days to get a design, only one or two test points are produced in a week - not very 
attractive. 
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Capitalizing Upon General Principals 

State space is used because it provides the most convenient framework for solving any 
type of dynamic problem. The general form of the solution holds for any set of independent state 
variables. This allows for the development of generalized methods, e.g., optimal sparse matrix 
inversion and describing functions, to solve nonlinear problems fast while ensuring algorithm 
convergence. The end result is to solve huge problems in minutes. However, this approach 
requires formulating problems in a mathematical framework. 

Facing Totally New Problems 

hi PSI products prior to 1982, models were formulated mathematically, i.e., using vectors, 
matrices, and systems of equations. This approach allowed the solution to be derived 
automatically and solved very fast. By 1982, this approach was recognized to have severe 
limitations when modeling communications or control systems involving algorithmic decision 
processes. Clients wanted to describe their problem using more general state concepts, and be 
able to write conditional statements within the system of equations. It was determined that these 
types of decision processes could be handled using the discrete event approach originally 
developed by Gordon in 1961, see [8] and [9]. 

A MORE GENERALIZED PROBLEM FORMULATION 

hi 1982, discrete event simulation was analyzed. The motivation was high because of the 
requirement for writing decision algorithms into the models. Users wanted to break up systems 
of equations and embed English-like conditions and rules, e.g., 

IF THE MESSAGE_TYPE IS CONTROL, THEN ..., 
ELSE IF MESSAGE_TYPE IS DATA, THEN .... 

Additionally, there were complaints about the inability of existing discrete event 
simulation products, e.g., GPSS, SIMSCRIPT, and SLAM, to solve our client's problems. The 
major complaints were lack of scalability (inability to deal with increasing complexity) and 
excessive simulation run-times. This led to an investigation of the deficiencies of the other 
products in the market, as well as an analysis of how to formulate the basis for general solution. 

At first it appeared difficult to derive a mathematical framework to support this new 
requirement. This caused concern about the ability to justify design decisions without a formal 
framework. We appeared to be leaving the world of mathematics. Time steps were determined 
by the modeler in terms of scheduled events. This led to the development of a state space 
definition of discrete event systems. A description of this is provided in the Sections below 
entitled Concept Of A Generalized State Vector and State Space Definition Of A GSS Model. 
The differences and likenesses of mathematical and rule oriented formulations are compared in 
Simulation Of Complex Systems, [10]. 
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Facing The Speed Issue 

Because of the excessive running times of competing products (some critical simulations 
were taking 5 to 7 days to run a 2 hour scenario), it was determined that if PSI developed a new 
product, it must be able to run on a parallel machine. PSI's experience in computer design, 
parallel processing, and the knowledge of how chips were evolving to support fast computing 
methods led to an approach that would take advantage of future hardware technology. 

Parallel processing imposes the requirement that two or more processes must run 
concurrently on separate processors. This implies that concurrent processes must be 
independent. The property of independence implies that the processes share no data. This led to 
the decision to separate data from instructions so the independence property could be tracked. 
The design of a new simulation environment, the General Simulation System (GSS), was 
launched in 1982. It called for a connectivity matrix to determine what processes shared what 
data. Then when allocating processes to processors, the connectivity matrix could be used to 
determine if a process can run concurrently with those already running. 

Separating Data From Instructions - A New Paradigm 

The separation of data from instructions is a new software paradigm that provides 
significant benefits. First, it allows capitalization on the concept of independence. By limiting 
access to specified data structures, models can be made independent. This leads to a 
decomposition of the simulation database into separate data structures - defined as resources in 
GSS. Instructions are grouped into sets of rules defined as processes. Resources and processes 
are grouped into elementary models. Elementary models are grouped into hierarchical models. 
This is illustrated in Figure 2, which contains a model of a local telephone system with PBXs 
connected to a local switch. The resources (data structures) are contained in the ovals, and the 
processes (instructions) are contained in the small rectangles. These can be edited directly as 
shown in the boxes. 

In GSS, the interconnection of processes and resources is done graphically using icons 
and lines. This provides the ability to produce an engineering drawing of the architecture of a 
model, where lines connecting processes to resources determine what processes have access to 
which resources. Models can be connected to each other by connecting a process in one model to 
a resource in another. Independence of models can be inspected visually by looking at the 
number of lines connecting them. 

Independent Instanced Models - Modeling Made Easy 

The above concepts have led to the independent instanced model as part of the GSS 
environment. This allows a modeler to build a single model along physical lines, just like 
building a single piece of equipment. This model can then be instanced many times, 
automatically, in a simulation. This paradigm makes it easier to develop models on a large 
parallel processor than by using current methods on a single processor. This capability has been 
implemented as part of this Phase I contract, and is described in Chapter 7. 
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The Concept Of A Generalized State Vector 

Separating data from instructions has clarified the meaning of the state of a model or 
simulation. It is defined by the state of all of the resources in that model or simulation. This has 
led to the concept of a generalized state vector. One can look at the state of a simulation as one 
big state vector comprised of all the resources in that simulation. Alternatively, a simulation is 
partitioned into a set of sub-states corresponding to the resources or subvectors. 

This paradigm allows reuse of many concepts from the state space framework. For 
example, the simulation state vector as used in GSS is considered to represent a generalized 
coordinate system. It is up to the modeler to come up with the best set of states to make the 
problem easy to solve. This implies selecting the set of resources that simplify the 
fransformations of state that represent the dynamics of the system. These fransformations are 
embodied in the processes. When a process runs, it starts with the initial state of the attached 
resources and takes them to the next state. 

This is the same problem as picking the best set of variables or coordinate system to 
simplify a set of partial differential equations. As indicated above, courses that cover problem 
solving in the applied sciences, e.g., physics and engineering, stress that choice of a coordinate 
system is the key to making a problem easy to solve. In GSS, one selects the best breakout of 
resources (state subvectors) to simplify the processes (transformations of state). 

We have expanded that concept to the generalized state vector, one that consists of 
general information, not just variables that take on numeric values. Consider that a GSS resource 
is equivalent to a data vector containing states such as RED, YELLOW, and GREEN. The data 
can be English words or character strings, as well as numbers. A generalized state vector may 
consist of one or more subvectors, i.e., GSS resources. 

With the above in mind, a GSS simulation consists of a very complex simulation state 
vector (the simulation's data base) that changes as processes are invoked. At any instant of time, 
the simulation state vector contains the values of all the resources in the simulation. It must also 
contain the simulation queue, the simulation clock, and the real-time clock and random number 
generator seed if used. External files are considered inputs to a nonhomogeneous model as 
described in [10], and are not part of the model's state vector. 
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State Space Definition Of A GSS Model 

A GSS model only has access to a subset of the simulation state vector when a process in 
that model is running. This is the model state vector. A subset of the model state vector contains 
those resources that reside within the model. Resources residing in one model can be shared 
with another model. The state space representation of GSS is shown in Figure 3. The state 
vector that a model has access to consists of the following items and their corresponding 
information elements: 

ACCESSIBLE RESOURCES - The resources that processes within a model are 
attached to. Note:- These resources need not reside within the model. 

SIMULATION QUEUE - The entries in the queue, including the indices it uses 
when it's processes are scheduled. 

SIMULATION CLOCK - The time of the simulation clock, including priority, if and 
when it schedules another process. 

REAL TIME CLOCK - The value of the real-time clock if and when it uses the real 
time clock. 

RANDOM NUMBER GENERATOR - The value of the current random number 
generator seed if and when it uses the random number generator. 

INITIAL 
STATE 

VECTOR 

RESRC-1 

RESRC-N 
S-QUEUE 
S-CLOCK 
R-CLOCK 
RANDOMS 

GSS 
MODEL 

PROCESSES 

TERMINAL 
STATE 

VECTOR 

RESRC-1 

RESRC-N 
S-QUEUE 
S-CLOCK 
R-CLOCK 
RANDOMS 

RESRC-N    - the GSS resources that are accessible to the model's processes 
S-QUEUE    - the simulation queue entries used in the schedule command 
S-CLOCK    - the simulation dock time 
R-CLOCK    - the real-time clock time 
RANDOMS  - the random number generator seed GSS^TATE I 1/9/02 

Figure 3. State space representation of GSS. 
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GSS processes are scheduled based upon the logic within itself or other processes. When 
a GSS process runs, it can schedule itself or other processes at specified times in the future, or at 
the current time. GSS processes run in zero simulated time. At any time, the state of a model 
depends solely upon its state vector. When a process in a model runs, its terminal state, i.e., the 
value of its substate vector - when it passes control back to GSS - depends solely upon its initial 
state, i.e., the initial value of its substate vector, and the rules within the process. When 
processes in another model share a part of the state vector of a given model, then any future state 
of the given model is, in general, dependent upon the rules in the other model, since they can 
change the given model's state vector. 

Analogy To Symbolic Models Using State Space 

The state space representation of a GSS model, Figure 3, is analogous to a set of 
equations that represent the state of a dynamic system at any instant in time. All future states are 
represented by the equations of motion in state space notation, and the initial conditions, 
reference Gelb, [7]. Electrical engineers have become accustomed to a graphical representation 
of the differential equations of electrical circuits, using interconnected icons of resistors, 
capacitors, inductors, generators, transistors, transmission lines, etc., refer to Figure 4. Such a 
drawing defines the differential equations of motion of the changes in electrical voltages and 
currents in the circuit. Given the initial conditions, the state of the circuit is defined for all time 
thereafter. In other words, the total dynamical description of the network is defined by the 
symbolic network. 

Figure 4. Iconic representation of an electrical network. 

In GSS, the interconnection of resources and processes, as shown in Figure 2, is 
analogous to the electrical circuit drawing in Figure 4. Each has its corresponding rules and 
storage underlying each primitive element. In the case of electrical circuits, there are constituent 
equations that describe the changes in energy storage in differential form for each primitive icon. 
Representation of any system element must conform to this form of change. 
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In the case of GSS, sets of rules operate on sets of attributes (contained in resources) to 
define the elementary change relationships in a model. The engineering drawing shown in Figure 
2 and the underlying rule and data structures, define the total state of the simulation at any point 
in time after the initial conditions. This is known as the generalized state space framework. 

Choosing the Most Convenient Reference Frame 

As described above, the generalized state space framework, as implemented in GSS, 
supports the representation of discrete event systems as well as discrete time and continuous 
systems. Figure 5 illustrates that generalized state space provides the underlying fi-amework for 
representing dynamic systems. 

CONTINUOUS 
SYSTEMS 

DISCRETE 
TIME 

SYSTEMS 

DISCRETE 
EVENT 

SYSTEMS 

GENERALIZED STATE SPACE FRAMEWORK 
GSS-STATE 5/11/03 

Figure 5. Generalized State Space framework for representing dynamic systems. 

The difference between representations of a system's dynamics is a matter of 
convenience. A particular representation can be selected to support the economics of analyzing 
or predicting specific system behavior. If a system is conveniently represented by a set of 
differential or difference equations, then one of those representations might be best. If the system 
is more easily described by sets of rules operating on sets of attributes, then that representation 
should be chosen. 

Since the advent of the digital computer, people have moved from analytical methods for 
integrating differential equations to numerical methods, especially when the systems represented 
are either nonlinear or nonstationary. Fast numerical algorithms for solving stiff nonlinear 
systems typically use complex heuristic approaches. What is interesting is that these approaches 
can be implemented more explicitiy using GSS rule and attiibute structures. As computers 
provide significantiy greater memory and speed advantages, the space for solving problems is 
growing, alleviating restriction to numerical methods for solution, and moving rapidly toward 
heuristic rule based approaches using complex data structures. These approaches are compared 
in Simulation Of Complex Systems, [10]. 

Having selected GSS as the overall fi-amework, the analogy then becomes one of 
selecting the best set of information vectors (GSS Resources) to represent the system attributes. 
Depending upon how the resources are selected and structured, the rules (GSS Processes) may be 
much more simple to understand, build, and modify. This is determined by the independence 
properties of the architecture, i.e. the interconnection of resources and processes - not the code! 
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Reusability Analogy 

In the case of electrical circuit modeling, a transistor model may require a significant 
effort to build and validate. Once completed, that model can be shared in many different 
simulations, as well as hundreds of instances used in a given simulation. Similariy, for models 
built using GSS. Development and validation may require significant effort, whereupon a given 
model can be shared in many different simulations by different organizations, as well as appear 
in hundreds of instances in a given simulation. 

Complex models of electrical elements, such as transistors and transmission lines, maybe 
made up of the primitive elements, and represented by higher order symbols. One can push down 
on these symbols and bring up the primitive representations that show all the detail underiying 
the model. More complex networks, such as groups of digital circuits in the form of gates and 
flip-flops can be represented using another level of hierarchy. In this manner, complexity is 
pushed down to the level that one wants to see it, and removed from view when it only serves to 
cloud the picture. This aids in both the understandability and reusability of a model. 

Similariy, one can represent complex models in GSS using a hierarchy of models, 
wherein higher level icons are used to represent the highest level of a model, and one can push 
down as many times as needed to get to the primitive layer. In GSS, the primitive layer consists 
of resources and processes. This also aids in model understanding and reusability. 

An Alternative Approach To Generalized State Space 

In 1987, Ramadge and Wonham, [11] and [12], described the need to use English words 
as states in a control system. They introduced the notion of alphabets to deal with these non- 
numeric states. Their finite-state machine approach is somewhat different than that of the 
generalized state vector, particulariy in the implementation of models describing complex 
systems. However, it appears that the underiying effect of these two concepts is essentially the 
same. Although there are no journal publications on this method, the generalized state space 
approach is documented in copyrighted GSS User's Manuals and PSI books on model 
development going back to 1982 and 1983. It is believed that these approaches were conceived 
independently. 
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4.       PHASE I TECHNICAL OBJECTIVES 

In Phase I, PSI proposed to design and demonstrate a CAD tool that subject area 
experts/engineers can use directly to generate both their software and simulations. Our intent 
was to provide an interface that applications engineers relate to easily, rather than using 
expensive parallel computer programmers to translate their problems.   Such a tool can generate 
efficient parallel computer code automatically if the user interface and resulting software are 
designed properly. Furthermore, if the application engineer wants to use a different MPP 
platform, his CAD tool interface should remain identical, generating the required software. This 
concept is illustrated in Figure 6. 

PROPOSED SOLUTION 

RUN-TIME 
SOFTWARE 

HARDWARE 

Figure 6. CAD tool approach - designing the software first. 

Since PSI has already developed the visual CAD technology that: (1) provides users with 
a graphical architecture environment to design independent software modules; and (2) contains 
the architectural database needed to support the parallel processor run-time environment, the 
object of this research has been to analyze the architectural database so that it could be used to 
modify the run-time environment that optimizes the allocation of parallel processors to 
processes. Without information on the application software architecture, the allocation process is 
naive and effectively random. 

The research performed in Phase I derived the pertinent statistics from our large software 
database so that they can be analyzed for pragmatic design decisions in preparation for Phase II. 
In Phase II, we will build and test candidate design approaches using actual systems and 
simulations, leading to a selected product for Phase III. Having already performed an analysis on 
this problem, we have determined that selection of a parallel processor technology for testing is 
an important part of this effort. This selection is addressed under our plan for Phase II. 
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5.       OVERVIEW OF THE USER INTERFACE TECHNOLOGY 

When PSI designed its CAD environment for discrete event simulation, the two major 
issues addressed were: (1) the difficuhy of building valid models; and (2) the time to run a 
realistic scenario. The difficulty in building valid models was due to the complexity of the 
software. Run time may have been reduced by parallel processing, but the investment was huge 
and risky. To address these issues, PSI developed a CAD approach that leads directly to 
effective use of highly parallel processors. We note that software applications are considered 
easier to implement on a parallel computer than discrete event simulations because of the 
requirements to (1) synchronize each process with the main simulation clock; and (2) ensure 
synchronized data coherency to meet validity requirements. From this standpoint, we consider 
the software problem to be a subset of the simulation problem. 

Separation Of Data From Instructions For Efficient Processor Allocation 

In software, separating data fi-om instructions violates the OOP rules, hi the hardware 
world, this paradigm is not new. Data and instructions are separately stored and managed on 
today's chips. PSI considers this an essential software paradigm for effective use of parallel 
computers, where one has to allocate processes to processors efficiently. This implies knowing 
which processes can run concurrently, which implies that they must be independent, 
hidependence is effectively determined by whether or not they share data. If allocation is to be 
done automatically, the allocation manager must have the information on who shares what data. 
PSI's technology is built upon this concept. The most significant paradigm shift in our 
development environment is the separation of data fi-om instructions. 

The resulting properties of our technology provide enormous benefits. First is the ability 
to represent software graphically, with a one-to-one mapping from the drawing to the code. 
Second is that software architectures can be designed and reviewed from an engineering 
standpoint to determine module independence. Third is the resulting connectivity map of what 
processes share what data. Fourth is what processes reside inside what modules. If modules are 
independent, then processes within those modules are best migrated to the same processor. This 
information is stored in our run-time as well as development databases. It is this information that 
provides our ability to optimize the allocation of processes to processors to maximize run-time 
efficiency. These benefits are best described by an example. 
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Figure 8. SEG_&_REAS_SUBLAYER module. 
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Figure 9. A resource - a hierarchical data structure. 
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PROCESS: SR_PROCESSOR ~  

RESOURCES:     SR_TO_CS_PACKET INSTANCES:   NODE 
SR_PARAMETERS 
SR_QUEUE_INTF 
SR TO SWITCH PACKET 

PKT_SR_PROCESSOR 
EXECUTE GET_SR_MESSAGE 
EXECUTE PROCESS_SR_MESSAGE 
IF QUEUE_STATE IS NOT EMPTY 

SCHEDULE SR_PROCESSOR 
IN PROCESSING_TIME MICROSECONDS USING NODE 

ELSE SET PROCESSOR_STATUS(NODE) TO IDLE. 

GET_SR_MESSAGE 
SET  SR_QUEUE_INTF REQUEST TO DEPART 
CALL SR_QUEUE USING NODE 

PROCE S S_S R_ME S SAGE 
IF PACKET_TYPE IS A CELL 

EXECUTE PROCESS_CELL 
ELSE IF PACKET_TYPE IS A REQUEST 

EXECUTE PROCESS_REQUEST 
ELSE EXECUTE INVALID_PACKET_TYPE. 

PROCESS_CELL 
MOVE SR_QUEUE_INTF MESSAGE TO SR_TO_SWITCH_PACKET 
IF SR_TO_SWITCH_PACKET DESTINATION IS EQUAL TO NODE 

EXECUTE CHECK_PAYLOAD_DEST 
ELSE IF SR_TO_SWITCH_PACKET SOURCE IS EQUAL TO NODE 

EXECUTE CHECK_PAYLOAD_SOURCE 
ELSE EXECUTE INCORRECT_NODE. 

CHECK_PAYLOAD_SOURCE 
IF PAYLOAD_TYPE IS USER_VOICE 
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ELSE IF PAYLOAD_TYPE IS USER_DATA 
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CHECK_PAYLOAD_DEST 
IF PAYLOAD_TYPE IS USR_VOICE 
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ELSE IF PAYLOAD_TYPE IS USER_DATA 

EXECUTE PROCESS_CELL_DATA_DEST. 
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EXECUTE UPDATE_MESSAGE_INFO 
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EXECUTE GET_NEXT_MESSAGE. ~  ~ 
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(This process is incomplete - 2 additional pages are not 
shown!) 

Figure 10. A process - a hierarchical set of rules. 
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To insure independence of modules, PSI has developed a set of architectural design rules 
that can be enforced automatically as the designer builds modules graphically. This involves 
viewing a module as an N-port module as used in electronics hardware design. By limiting the 
number of lines (wires) at a port to two, the independence of modules is ensured. Note that we 
have not considered any aspects of coding, which in VSE or GSS is confined to the language 
environment. We have only analyzed the module architecture - graphically! These design rules 
assure ease of module understandability and independence, and therefore real reuse. They are the 
major reasons we have been able to build and validate the world's largest simulations at very low 
cost. This same technology is ideally suited to make effective use of highly scalable parallel 
processor computers. 

Another departure from typical software is the integrated management environment of 
VSE and GSS that completely fa-acks the architecture behind the scenes, and contains the 
databases to determine both spatial and temporal independence at run-time. Modules are tracked 
through all of the hierarchical levels needed by the designer to control design complexity. Every 
resource and process is fracked relative to what processes have access to what resources within 
multiple module instances. This database can be used to adaptively manage the allocation of 
parallel processor resources during run-time based upon knowledge of module instance 
independence at any level in the hierarchy. Load balancing can be achieved concurrentiy through 
selected instance migration. This critical information is not available anywhere else! 

We will now relate the number of module instances to opportunities for parallelism. As 
the top level modules, e.g., a switch, take on higher degrees of complexity, they become 
significant opportunities for highly efficient parallel processing. If the switch is modeled along 
physical lines, its physical counterpart operates concurrentiy with its neighbors. Therefore, 
independent module instances in a simulation can also run concurrentiy in a parallel processing 
environment. Such instances are not limited to simulation, but exist frequentiy in real-time 
control and communication systems. 

Based upon this concept, our hypothesis is as follows: As the number of instances of a 
complex independent module increases, the number of parallel processors that can be used 
effectively increases proportionately, just due to the independent module instances. Similar 
opportunities for effective use of processors can also be obtained within a top level module 
instance, down to the process level. This is because of the hierarchical design and resulting 
scope of a VSE or GSS process. 

For example, the ATMTRANSCEIVER within the ATMSWITCH in Figure 7 can 
have 20 instances (one for each port), all tied to the same instance of a switch. A scenario of 100 
switch instances can invoke a total of 2000 ATMTRANSCEIVERs. We can envision many 
instances of subscribers as well as other packet and circuit switches running concurrentiy, 
interfacing with each other through links or gateways. Each of these instances can run 
concurrentiy since almost all of the processes and resources are interior to the instance and 
therefore independent of the other instances. 
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Quantifying The Importance Of Software Architecture. 

To better understand this typical architectural phenomenon, consider the modules in 
Figure 11. 

MODULE K 

SUBSCRIBER 

INSTRUMENTATION 

SWITCH 

MODULE 3 

MODULE 2 

MODULE 1 

SUBSCRIBER 

INSTRUMENTATION 

SWITCH 

LINK 
€EHi> 

RUNTIME 8/&02 

Figure 11. Independent instanced modules connected by an interface. 

The top level modules in Figure 11 are drawn alike for simplicity, but in fact may be 
different types or instances of the same type. As an example, we will consider an MSS 
simulation with 100 circuit switches, 50 packet switches, and 50 ATM switches. Consider that 
each instance of each switch is part of a single module along with its corresponding subscriber 
submodule instance that generates and receives voice calls and data messages and files, and its 
instrumentation submodule that takes measures of traffic. These large submodules are the largest 
part of each module. A link interface submodule also exists connecting each top level module. 
Except for the two processes connected fi-om each module to the interface, all other processes in 
each module are independent of those in any other module, i.e., they share no other resources 
between modules. This is done by design - of the software architecture. 
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6.       OVERVIEW OF THE RUN-TIME TECHNOLOGY 

Significant work has been done by PSI on prior projects for the Army as well as DARPA 
toward development of the required run-time technology. This work covers the use of the 
module architecture knowledge described above as well as knowledge of the independence of 
individual processes at the module boundaries to determine what processes can run concurrently. 
This work includes development of the protocols required to ensure data coherency of resources 
shared across module boundaries and used by processes in different processors. It includes the 
synchronization of scheduled processes running on separate processors in a simulation. It 
provides for controlled variations in synchronization that ensure validity of results of a 
simulation - something not provided by other approaches, e.g., the Time-Warped Operating 
System, and its derivatives (e.g., SPEEDES). It provides for optimal ordering and scheduling of 
p-threads. 

Figure 12 below provides a top level view of the proposed design for the VSE/GSS run- 
time environment for an MPP environment. In addition to the Process Scheduler, there is a 
Processor Allocator to allocate processes scheduled at the current time (or within a pre-defined 
ATmax in a simulation) to the available processors. We plan to use standard OS level calls to 
assign parallel threads (p-threads) to processors. This will provide the ability to allocate specific 
processes to specific processors. 

VSE / GSS RUN-TIME ENVIRONMENT 

TASK or SIMULATION 

PROCESS 1 

PROCESS 2 

PROCESS N 

PROCESS 
SCHEDULER 

PROCESSOR 
ALLOCATOR 

RUNTIME 8/12/02 

OPERATING 
SYSTEM 

Figure 12. Connection between the VSE process scheduler and the processor allocator. 
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There are additional mechanics of this environment to be characterized, e.g., the nature of 
the dynamic changes to the schedule versus the state at time T. This will affect the algorithm 
design for optimal ordering in minimal time. Instanced modules create special submatrices of the 
connectivity matrix that are independent. These become candidates for quasi-independent queue 
management, potentially in separate processors. PSI's work in discrete event simulation for the 
past 20 years has provided us with significant knowledge of solutions to these types of problems. 
In addition, processor load balancing must be considered in more detail, but this has been the 
subject of much prior research, both at PSI and elsewhere. Finally, marrying this new technology 
to hardware must be started in the architectural design stages. We have worked with many 
hardware vendors in the past, and are prepared to work with them again. 

Summarizing The Importance Of The Software Environment 

Given applications with a high degree of inherent parallelism and very efficient parallel 
computers, their effective use comes down to three major factors. First is ensuring that full 
advantage can be taken of the inherent application parallelism - a software design problem. 
Second is balancing the load - a run-time software problem. By separating data from instructions 
and using the visual development environment that PSI has already developed, we have the 
software architectural knowledge to do both well. The third and most important factor is making 
it easy for the subject area experts to describe their problem, without having to twist it into a 
special computer language. PSI's success in CAD tools for building very complex discrete event 
simulations and software tools has already demonstrated the ease with which this is done. We 
feel confident in our ability to bring large scale parallel processing power into the mainstream of 
computing via ease of use - the winning "WinTel" approach. 

7.       INSTANCED MODELS 

Using the new parallel processing version of GSS, users will be able to define multiple 
instanced models, i.e., define the number of instances of a model and build instanced model 
hierarchies. This simplifies descriptions of both the model information structures and the model 
rule structures. It eliminates the need for pointers at the language level. Pointers are eliminated 
from both the model information structures and the model rule structures. Instances are declared 
at the architecture level and when specific instance events are scheduled to run. Otherwise, there 
is no need to distinguish between model instances. By definition, all instances behave the same. 
What they do depends upon their individual state vectors of information at a particular instance 
of time. Specifically, GSS provides for the following: 

• The user defines the quantity of model instances and the name of the model 
instance pointer in the architecture environment when creating or modifying a 
model. 

• Every resource within the model is automatically translated into multiple 
independent instances (copies), one for each of the model instances. 

• Hierarchical instances can be defined by declaring the different model instances 
at corresponding layers of the model hierarchy. 
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DEFINITIONS 

Classes Of Models And Their Elements 

• INTERIOR AND INTERFACE ELEMENTS - Processes (resources) are interior 
elements of an elementary model if they have no shared interfaces with resources 
(processes) outside that model. They are interface elements if they do have such 
shared interfaces. The interior elements of an elementary model are interior to any 
higher level model containing the elementary model. 

• INTERIOR AND INTERFACE MODELS - Models are interior to a hierarchical 
model if they contain no elements with shared interfaces outside that hierarchical 
model. They are interface models of that hierarchical model if they do have elements 
with such shared interfaces. Models that are interior at a given level of a hierarchy 
are interior to all higher levels. 

• INSTANCED RESOURCES - Resources are defined to have multiple instances 
when they are elements of an instanced model at the architectural level. This implies 
that, at run time, each instance of that resource exists as an independent copy of that 
resource and is referenced by a unique name determined fi-om the resource name and 
instance number. 

• INSTANCED MODELS - Models can be defined to have multiple instances at the 
architectural level. This implies that, at run time, each instance of the model must 
have an independent copy of every resource in the model, corresponding to instanced 
resources. When invoked at run time, processes contained in an instanced model are 
assigned instance numbers that reference their corresponding resource instances. 
Processes in one instance cannot share resources in another instance. 

• HIERARCHICAL INSTANCED MODELS - Instanced models may be defined 
within instanced models hierarchically. Resources contained in the lowest level 
instanced model will have as many independent copies as the product of the 
successive instances in the hierarchy. These will be referenced by a unique name 
determined fi-om the resource name and successive instance numbers. When invoked 
at run time, processes contained inside the lowest level instanced model are assigned 
instance numbers that reference the corresponding hierarchy of resource instances. 

• SHARED INTERFACES - Models that are connected by shared resources have 
shared interfaces. For example, two models have a shared interface if a process 
inside one model shares a resource with a process inside another model. The shared 
resource is the shared interface. 
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Classes Of Independence 

SPATIAL INDEPENDENCE - Two processes are spatially (memory) independent if 
they share no resources (memory), independent of time. Two models are spatially 
independent if every process in one is independent of every process in the other, i.e., 
they have no shared interfaces. Interior processes of an instanced model are spatially 
independent from those of other instances of the same model. Model instances are 
spatially independent if they have no shared interfaces. Interior model instances are 
spatially independent. From here on independent will imply spatially independent. 

TEMPORAL INDEPENDENCE - Processes (models) can be independent in a given 
instance of time, but dependent in another instance of time. If two processes are using 
the same instance-pointer value to reference a resource in an instanced model at the 
same time, then they are not independent at that time. However, if at another time they 
reference mutually exclusive instance-pointer values for that same resource, they are 
independent. 

Classes Of Schedulers 

SYNCHRONIZED SCHEDULERS - Spatially independent processes can run 
concurrently in the same time instance, independent of time, and are thus candidates 
for local scheduling on separate processors by schedulers synchronized by time 
instances, but otherwise independent. 

Processes interior to a model or model instance can be scheduled by a synchronized 
scheduler provided they are not scheduled with another scheduler and do not share 
resources with a process scheduled with another scheduler. 

MASTER SCHEDULER - Processes that are only temporally independent must be 
scheduled by a master scheduler since they are not spatially independent. 
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GENERAL RULES AND CASES 

As described in the final report Visual Software Development For Parallel Machines, 
[13], most of the opportunities for inherent parallelism occur with instanced models. This is 
based upon the assumption that model instances are independent, i.e., except for the possibility 
of one or two processes at the boundary, processes in one instance cannot share resources in 
other instances. Along with these opportunities come considerations for automating the design 
approach to instanced models. Before describing the detailed design for interprocessor time and 
space (memory) synchronization, we will investigate the architecture of instanced models and 
their interconnections. 

Figure 13 illustrates many of the design issues to be considered relative to using instanced 
models. If RECEIVER in RADIO schedules R_F_LINK in R_F_LINK, it can specify the 
SOURCE and DEST instances and thereby expect RELINK to be tied to the correct instance of 
LINKINFORMATION. Since the instance of RECEIVER is known when the schedule 
statement is invoked, the instance of the TRANSCEIVER resource can be passed implicitly to 
RF LINK as well. 

RADIO (TRANSCEIVER) R_F_LINK(SOURCE, DEST) 

TPS  ^ TRANS 

^^ 
^ R_F_LINK 

'         UNK         \ 
,      CONTROL j  1 ChlVER 

^ 

—^ 

\ \ / y r 

\ N 
(   ™  ) RECI 

i^ f      UNK         > 
INFORMATION ^**^ 

\ 
► PROCESS 

UNK EVER^^^ 

MODEL 3 3/03/03 

Figure 13. Example of an architecture with instanced resoiirces. 

Alternatively, if R_F_LINK schedules RECEIVER, it can specify the TRANSCEIVER 
instance. Since R_F_LINK is tied to a specified instance of LINK_INFORMATION, these 
instance pointers could be passed implicitly to RECEIVER also. 

If, however, TPS schedules RECEIVER, there is no way to know automatically from the 
architecture what instance of LINKINFORMATION the RECEIVER process should be 
connected to. Therefore, this connection, shown in red, cannot be allowed with this type of call 
or schedule statement. 
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Figure 14 presents a similar case when KP in MODELS schedules LP in M0DEL_2. In 
this case, there is no way to pass on the pointer automatically to resource TRS in MODEL 1. 
This implies that, if a resource is to be shared between MODELl and M0DEL_2 when LP is 
called from outside MODELl, that resource must reside within MODEL 2. 
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Figure 14. Example of another architecture with instanced resources. 

There appears to be a generic rule that applies to Figures 13 & 14. When a process 
connected to an instanced resource is scheduled, the instance pointers for that resource must be 
specified automatically from the architecture, i.e., explicitly via the instance pointers in the 
schedule statement or implicitly based upon residence within an instanced model. In the case of 
the instance pointers, they must match an instanced model containing the resource; else the 
connection cannot be made automatically. 
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CALCULATING RADIO CONNECTIVITY 

One of the most common models encountered in communications system analysis is that 
used to represent a large number of radios or switches interconnected in a network. Switched 
systems are generally fixed in space, and their interconnections do not change with time, i.e., 
their connectivity is generally time-invariant. Radio systems are usually mobile, and their 
connectivity can vary significantly with time. The propagation calculations required to determine 
connectivity can take considerable processing time and are of particular interest here. 

Figure 15 uses a radio model as an example. Each radio can have links to many others. 
A radio can only operate properly on one link at a time. However, the receiver model must 
account for the potential interference coming from other radios that are fa-ansmitting at the same 
time. Therefore, each radio must be connected to an environment model that provides for all of 
the possible cross-link connections between radios. 

RADIO.MODEMO 

STACK MODEL 

TPR1 TPS1 

c^y -C^D 
MODELS - 03/01/03 

XCVR MODEL 

LP_ 
OUTBOUND 

<^} 
LP 

INBOUND 

ENV_MODEL(i, j) 

GED 

Figure 15. Example of good architecture for instanced resources. 

The radio model in Figure 15 has an instance(i) for each radio. The environment model 
has an instance for each destination receiver(j) coupled with each source ti-ansmitter(i). All 
environment link instances (i, j) may operate concurrentiy, just as each radio can operate 
concurrently, hi the case of collision analysis, i.e., when two or more ti-ansmitters transmit to 
more than one receiver at the same time, it is necessary for the model to have access to all link 
information at the same time. When an instanced model interfaces with a noninstanced model, 
the noninstanced model can present a bottleneck that, depending upon the architecture, can be 
significant. 

When source radio(i) ti-ansmits to destination radio(j), it does so through link(i, j). The 
environment model instance(i, j) gets scheduled from radio(i) to h-ansmit a message to radio(j). 
Environment model instance(j, i) then schedules radio(j) to receive the message. For this to work 
correctiy, the architecture must support process calls and schedules that automatically invoke the 
desired instance-pointers. 
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INSURING MODEL INSTANCE INDEPENDENCE 

For model instances to be independent, processes in one instance must not share any 
resources in another instance. Except for the interface resources, this is true for the architecture 
in Figure 15. With this architecture, each radio model instance can reside on a separate 
processor. Likewise, each environment model instance can reside on a separate processor. It 
may be better that environment model instances reside on the same processor as the 
corresponding radio model instances to minimize the time to move data between processors. 
This is shown in Figure 16. This may be a trade-off between operating in parallel and operating 
sequentially. However, message transfer implies a degree of sequential processing between 
corresponding instances of affiliated models, and this architecture may also be best for a single 
processor. 

Consider that radio instance(l) transmits a message to radio instance(2&4). This is 
accomplished by having instance(l) of process LPOUTBOUND scheduled with the message to 
go out. Since LPOUTBOUND only interfaces with resources that are interior to 
RADI0_M0DEL(1), the instance pointer, 1, is passed implicitly. In this case, the message is 
placed in LRL(l). 

LPOUTBOUND then schedules EPl 1 as the transmitter for radio 1. EPl 1 uses instance 
LRL(l) to get the message as well as ERl 1. This allows process EPl 1 to transfer data from 
LRL(l) to the selected receiver resources ER21 and ER31, and schedule EP21 and EP31 on 
computers 2 and 3. 

On computer 2, EP21 schedules LPINBOUND to receive the message, passing the 
pointer to ER21 where the message is currently stored. LPINBOUND then takes the message 
from ER21 and places it in LRL. Similarly, on computer 3, EP31 schedules LPINBOUND to 
receive the message, passing the pointer to ER21 

This sequence of events represents what typically occurs in a real communication system 
where most of the events are occurring concurrently with other events. We note that the transfer 
of messages from radio(i) to radioO) can be sequential. However, many pairs of radios can be 
doing similar transfers concurrently, and this is where the inherent parallelism exists. This 
parallelism is best realized in a simulation if the model architecture follows the same physical 
design as the architecture of the real system. 

In the case that one must process information from all instances concurrently, e.g., when 
doing calculations based upon signals from every radio, then a utility model can be called from 
the environment model. This utility can store information on every link. It becomes a potential 
bottleneck in that it may be used by every instance. However, it may be used infrequently, 
typically only when there is movement or power changes in radios. This implies that, on the 
average, links operate independently, occasionally requiring cross-link calculations for all links. 
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Figure 16. Example of a parallel architecture for instanced resources. 
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INSTANCE POINTER VALUE RULES 

To specify an instance from outside an instanced model, the instance values (up to a 
maximum of 6) are assigned by the model in a schedule or cancel statement. The general format 
for a schedule statement is as follows. 

SCHEDULE processname INSTANCE instance_pointer_l,..., instance_pointer_n 

When a process starts to execute, the instance pointers defined for models containing that 
process hold the current values of the instances that the process represents. These instance 
pointers are used to automatically attach the proper resource instances to the process when it 
runs. Instance pointers are also available for use by the process in a read-only mode, i.e., values 
of model instance pointers cannot be changed by processes within that model instance. When 
one process is scheduled by another in the same model instance, the instance pointers are passed 
implicitly and must not appear in the argument list. Because model instances must be 
independent, processes in an instance cannot schedule any in a different instance of the same 
model. 

Referring to Figure 15 above, TPSl can SCHEDULE LPOUTBOUND with the pointers 
back to the proper instance of TRSl being automatically invoked. If LPOUTBOUND 
schedules EPl in ENV_MODEL(i, j), then it must explicitly use the form: 

SCHEDULE EPl INSTANCE source, dest, 

where source, dest can be any property defined numeric attributes or literals. Note that trying to 
connect LPOUTBOUND directly to ERl would not be permitted architecturally, since there is 
no way for LPOUTBOUND to attach to the proper instance of ERl when scheduled by TPSl. 
This follows from the independence properties. EPl can schedule LPINBOUND. 

CALL STATEMENT RULE 

CALL statements are sequential; they cannot be used to increase the number of 
concurrent processes (parallel paths). They directly control any processes they invoke at the 
time, rendering them nonindependent from the calling process. Calls from instanced models will 
automatically carry the current value of the instance pointer to the called process. If independent 
models are to be run concurrently, they must be scheduled. Calls may serve to invoke a process 
on another processor, e.g., a utility, but this may not be an efficient way to use the processors 
containing either the process or the call statement. Multiple copies of frequently called utilities 
are a more effective solution if they can run in parallel. This represents the typical time memory 
tradeoff, with memory being relatively inexpensive today. This leads to the desire for utilities 
that can be copied (or instanced) to be distinguished from those that can't. 
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MODEL INSTANCE CASES OF CONCERN 

Case 1 SCHEDULES, CANCELS & CALLs from a noninstanced model to an 
instanced model. 

Referenced model (process) instances must be identified by specifying a value for the 
instance pointer, i.e., SCHEDULE process_name INSTANCE instance_pointer. 

Case 2(a)        SCHEDULES, CANCELS, & CALLs within the same model instance. 

References to the instance pointers of processes within the same instance are implicit, 
being resolved automatically by the process translator and run-time monitor. Values of 
the instance pointers of a model are read-only by processes within that model, and cannot 
be changed by them. 

Case 2(b)       SCHEDULES, CANCELS & CALLs across instances of the same model. 

References across instances of the same model must be accomplished by using a shared 
interface in a separate model. Direct references are not permitted across different 
instances of the same model. 

Case 3(a)        SCHEDULES, CANCELS, & CALLs from an instanced model to a 
noninstanced model. 

The instance pointer of the referencing process is passed automatically to the referenced 
process by the run-time monitor, without any explicit reference to point back to the 
resource instances in the referencing model that the referenced process shares with it. 

Case 3(b)       SCHEDULES CANCELS & CALLs from one instanced model to another 
instanced model. 

The modeler must identify the referenced process instance by specifying a value for the 
instance pointer, i.e., SCHEDULE processname INSTANCE instance_pointer. Again, 
pointers to resource instances within the referencing model that are shared with the 
referenced model are automatically passed to the referenced process. 
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2a 

2b 

3a 

3b 

CASES 

SCHEDULES, CANCELS & CALLS 
from a noninstanced model to an 
instanced model 

SCHEDULES, CANCELS, & CALLs 
within the same instance 

SCHEDULES, CANCELS & CALLS 
across instances of the same model 

SCHEDULES, CANCELS, & CALLS 
from an instanced model to a 
noninstanced model. 

SCHEDULES CANCELS & CALLs 
from one instanced model to another 
instanced model 

SINGLE PROCESSOR 

Referenced model (process) instances must be identified 
by specifying a value for the instance pointer, i.e., 
SCHEDULE process_name INSTANCE instance_pointer. 

References to the instance pointers of processes within 
the same instance are implicit, being resolved 
automatically by the process translator and run-time 
monitor. Values of the instance pointers of a model are 
read-only by processes within that model 

References across instances of the same model must be 
accomplished by using a shared interface in a separate 
model. Direct references are not pennitted across 
different instances of the same model 

The instance pointer of the referencing process is passed 
automatically to the referenced process by the run-time 
monitor, without any explicit reference to point back to the 
resource instances in the referencing model that the 
referenced process shares with it 

The modeler must identify the referenced process 
instance by specifying a value for the instance pointer, i.e , 
SCHEDULE prDcess_name INSTANCE instance_pointer. 
Again, pointers to resource instances within the 
referencing model that are shared with the referenced 
model are automatically passed to the referenced process 

PARALLEL PROCESSORS 

Referenced model (process) instances must be identified 
by specifying a value for the instance pointer, i.e., 
SCHEDULE process_name INSTANCE insfance_pointer. 

References to the instance pointers of processes wKhin 
the same instance are implicit, being resolved 
automatically by the pnxess translator and run-time 
monitor Values of the instance pointers of a model are 
read-only by processes within that model. 

References across instances of the same model must be 
accomplished by using a shared interface in a separate 
model   Direct references are not penmitted across 
different instances of the same model. 

The instance pointer of the referencing process is passed 
automatically to the referenced process by the njn-time 
monitor, without any explicit reference to point back to the 
resource instances in the referencing model that the 
referenced process shares with it. 

The modeler must kientify the referenced process 
instance by specifying a value fof the instance pointer, i.e.. 
SCHEDULE process_name INSTANCE instancejxjinter. 
Again, pointers to resource instances within the 
referencing model thai are shared with the referenced 
model are automatically passed to the referenced process. 

Prediction Systems, Inc. Parallel Processing Page 34 



GENERAL RULES 

When a process in an instanced model is scheduled or called, the instance pointers 
must be specified explicitly if not implicitly. The values of the pointers are set as 
follows: 

When referenced from a process outside the model, the model instance must 
be specified as an instance_pointer after the process name. 
Example: SCHEDULE process_name INSTANCE instance_pointer 

When referenced from a process inside the same model instance, the 
instance pointer must not appear in the instance_pointer list. 

When a process within an instanced model references another process in that same 
instance, it automatically invokes the same instance pointers. No arguments are 
specified relative to the common model instances after the process name. 

References to hierarchical model or other multiple instance pointers must be 
ordered as specified in the instance pointer list of the process being called. This 
must be in the order of the hierarchy, from the top down, with instance pointers that 
do not reference model instances going last. 

If a process within a hierarchically instanced model is scheduled from outside a 
subset of the instances, only the new instance pointers must appear in the instance 
pointer list of the process, in order from the top of the hierarchy down. 

Reuse of instance-pointer names in resources attached to any process interior to an 
instanced model must be qualified. 
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CREATING AND ADDRESSING INSTANCED MODEL RESOURCES 

Since the quantity clause will not be used explicitly to create multiple copies of the 
instanced resources inside instanced models, these will be created automatically by the GSS 
translators and monitors. These will be created as instanced data structures, each with their own 
names, e.g., RES9901 [m], RES9962[m,n], etc. Subscripted C pointers will be equated to these 
structure instances during model initialization by assignment statements as follows: 

39901(0001) 
59901(0002) 
89901(0003) 

&RES9901(0001) 
&RES9901(0002) 
&RES9901(0003) 

Actual Pointer values 

59962(0001, 0001) =  &RE59962(0001 0001 
59962(0001, 0002) =  &RES9962(0001 0002 
59962(0001, 0003) =  &RES9962(0001 0003 
59962(0002, 0001)  = =  &RES9962(0002 0001 
59962 (0002, 0002) =  &RES9962(0002 0002. 

Actual Pointer values 

Up to six levels of model instancing are allowed, including any QUANTITY levels of 
hierarchy within the lowest level model. These C pointers can then be passed via C 
function calls as follows. 

next_process_function(S9901 (instance_pointer_l), 
S9962(instance_pointer_2, instance_pointer_3)) 
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8.       INTERPROCESSOR COMMUNICATIONS 

Under the Phase I contract, multi-processor communication protocols were built and 
tested at the user's simulation level. This was accomplished using the Inter-Processor (IP) 
Resource developed by PSI. The goal of this step was to provide an easy-to-use facility for inter- 
processor communications. In the final implementation, these resources will be used for 
communications between multiple processors, each running separate model instances of a 
simulation, and each communicating with the other. 

In the Phase I experiment/demonstration, information was sent between GSS user level 
processes on different processors. These processes were connected to GSS interprocessor 
resources that automatically provided the link between the processors. During this experiment, 
models on one processor sent messages to models on the others while data was collected to 
verify that concurrent processing and communication were operating successfully. 

8.1       IP RESOURCE COHERENCY MANAGER 

The IP Resource Coherency Manager provides a coherent communications link when 
processes share a resource between two or more processors. New protocols were developed to 
insure coherency of multiple copies of the same resource residing on separate processors. As 
shown in Figure 17, GSS resources can be shared by processes on different processors as IP 
resources. 

This architecture is required for both networked computers and an MPP. The 
requirement is for coherency of data shared between processors. If the processors are in 
networked computers - implying separate operating systems - then additional levels of protocol 
are needed to communicate. If the processors are in an MPP, then the protocol must match the 
memory transfer mechanism across processors, e.g., the KSR machine had automatic cache 
coherency. 

To support coherency, an interlock mechanism is required to ensure that, when a process 
sharing an IP resource is rurming, a process on another processor sharing the same resource 
cannot run concurrently. In addition, if a process has just used an IP resource on one processor, 
any process sharing that resource on another processor must receive the latest copy before it can 
run. 

Finally, there are two types of protocols needed to support fast processing of simulation 
models at the interface between many processors. These are the following: 

• Asynchronous - The latest copy of an IP resource (the one connected to the process 
that ran last) gets passed to the next process that needs it in another processor. Data 
coherency is guaranteed (independent of time). 

• Synchronous   - Everyone gets the latest copy from a single source, a one to many 
interface. This depends upon time synchronization (by design) to ensure data 
coherency. 
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Figure 17. Resource coherency manager architecture. 

The desired protocol must be specified by the designer when running in a parallel 
processing environment. It is specified relative to the IP resource, i.e., an IP resource must be 
shared using either the synchronous or asynchronous protocol. In the case of multiple computers, 
matching IP resources must use the same protocol. These protocols are further specified below. 
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Asynchronous Coherency Protocol 

When the Asynchronous Coherency Protocol is used, the latest copy of an IP resource 
(the one connected to the last process to run) gets passed to the next process that needs it in 
another processor. When a process (e.g., PA) that is connected to an IP resource gets 
scheduled, the coherency protocol is invoked. This protocol first checks to see if PA controls 
the IP resource, i.e., it is the last process using the resource. If so, it has the latest copy already. 
If it is not the controlling process, it must request the latest copy firom the controlling process. If 
more than one process requests a copy, they are queued up on a first-in first-out FIFO basis. Data 
coherency is guaranteed (independent of time). 

The following functional rules are implemented in the asynchronous coherency protocol 
used for an MPP environment. The rules for a multiple computer simulation environment are 
slightly different. 

• One copy of an IP resource must reside on each processor that contains a process 
that shares it. 

• When a process that shares an IP resource is running, processes sharing other 
copies cannot run. The process that is running has control of the IP resource until it 
passes control to a process that shares it on another processor. 

• Before a process that shares an IP resource can run, a check must be made to 
determine if that process has control. If that process does not have control, the IP 
resource manager must initiate a request to its counterpart on the processor 
containing the controlling process. It must then wait to receive a return signal. If 
the signal contains passage of control along with the latest copy of the resource, the 
resource is controlled (locked) for use only by that requesting process. 

• If conti-ol has been transferred before the request is received by the prior conti-oUing 
process, the request is sent on to the processor that has control. A FIFO queue will 
be built of processes that have requested the IP resource. The queue is passed fi-om 
processor to processor with the IP resource. 

• At some point, we may make a decision to attempt to schedule the next process in 
the queue, or to wait for control of that resource to be passed to the requesting 
process. This decision must consider that the resource in use may be shared by a 
large number of model instances, implying a high level of contention. 

In addition to building the IP resource coherency manager to implement these rules, 
modifications were made to the development monitor, process translator, control specification 
translator, and run-time environment. These modifications account for recognition of IP 
resources, and processing of the master and slave control specifications so that tables are built to 
determine which processes share IP resources, and what machines they reside upon. 
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These facilities were designed to provide a clear speed advantage since (1) the GSS 
environment is a tool that needs to be tailored only once on a given platform; (2) the protocols 
used are generally transportable; and (3) speed is the predominate reason for using parallel 
processing. This is not an area where speed was sacrificed for simplicity of the software. 

8.2       DEVELOPMENT MONITOR MODIFICATIONS 

The IP resource is a new entity in GSS. This new resource type was incorporated into the 
databases, lists, prompts, and decision processes. Changes were made specifically with regard to 
the prompts for determining the resource type attached to a given process. This resource is 
similar to the inter-task resource, and the modifications followed along the similar lines. In 
addition, all query reports that list resources by type were modified. 
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9.       INTERPROCESSOR SCHEDULING 

9.1       MASTER AND SLAVE SYNCHRONIZERS 

Before a simulation can run on multiple processors, whether SMP or networked, 
knowledge must reside on each processor regarding the processes that can be scheduled on each 
of the other processors, hi a networked computer environment running multiple simulations, this 
requires exchanging data among the processors used in the simulation to support scheduling 
processes in another simulation - on another processor. 

Figure 18 illustrates this requirement. Note that the simulation on processor A schedules 
processes on processors B and C as well as itself The simulation on processor C only schedules 
processes on itself and processor D. When a process is scheduled in a different processor, this 
schedule request must be sent to that host processor. To accommodate these cross-schedules, the 
scheduling mechanism on each processor must have knowledge of the host processor that each of 
its scheduled processes resides upon. This information must be available before each simulation 
starts. 

To meet these needs, a process assignment database is built containing the pertinent 
cross-processor scheduling information corresponding to each simulation. This database is then 
attached to each simulation at run-time to support the distribution of cross-processor schedule 
requests to the proper processor. This is illustrated in Figure 18. This database contains the 
name of each simulation control specification, and the processor's host-id, for each process that 
is cross-scheduled by the simulation running on that processor, as well as each process in that 
simulation that can be scheduled. It is derived from information on each process in that 
simulation. The data structure is shown below. 

IP_SCHEDULE_TABLE   QUANTITY(1000) 
1  PROCESS_NAME CHAR 24 *** CROSS-SCHEDULED PROCESS 
1  HOST_PROCESSOR_ID CHAR 24 *** CONTROLLING PROCESSOR ID 
1  PATH_SIMULATION_NAME CHAR 60 *** SIMULATION ID 

The master simulation control specification names the host-IDs of the subordinate 
simulations. It also requires that the confrol specifications of the subordinate simulations have 
been prepared, and that the process assignment database file has been created for each before 
preparing the master simulation control specification. Then, when the master simulation confrol 
specification is prepared, all of the subordinate simulation process assignment databases are 
accessed, all of the cross-processor schedule statements are reconciled with respect to the 
processes scheduled, and the subordinate simulation databases are updated with the host-IDs for 
each process that is cross-scheduled. 

Figure 18 shows the master and slave synchronizers. The master synchronizer fracks the 
earUest scheduled time of processes in the ATmax interval. It determines when the clock can be 
set to the next interval, and handles cross-schedules going both ways on processor A. The 
synchronizer modules on the other machines report their earliest schedule time, to the master, 
and when they have reached the end of their ATmax intervals. 
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Figure 18. Cross-schedules for a four processor case. 
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9.2       PROCESS TRANSLATOR MODIFICATIONS 

The process translator was modified to accommodate the new cross-processor schedule 
statement defined below. Code is now generated to call on the new synchronizer module to pass 
the resulting schedule requests to the proper processor. This code contains a pointer to the record 
in the IPSCHEDULETABLE corresponding to the process being scheduled. The value for this 
pointer is determined during translation of the subordinate simulation control specification. The 
HOSTPROCESSORID and PATHSIMULATIONNAME are determined by the master 
simulation conti-ol specification translator. The IPSCHEDULETABLE is read during 
initialization of each simulation. Then the code generated by the process translator calls the 
synchronizer, passing the pointer to the proper record in this table for cross-scheduling. 

Cross-Processor SCHEDULE And CANCEL Statements 

New SCHEDULE and CANCEL statements in GSS provide for cross-processor 
scheduling and canceling of processes. These statements add an "IN ... SIMULATION" clause 
to qualify the processname as follows. 

Format 

\ [   process name     IN    simulation name SIMULATION     [[...]        ] 
[CANCEL    J 

9.3       CONTROL SPECIFICATION TRANSLATOR MODIFICATIONS 

In addition to the modifications required for supporting the IP resource coherency 
manager, the control specification can contain a statement for specifying the ATmax interval 
defined below. The new translator also provides for initialization of the databases to be used for 
cross-processor scheduling. These databases are created by the master simulation control 
specification translator reading files produced by all of the subordinate simulation control 
specification translators, and then building a file for each of the subordinates as well as itself for 
initialization at run-time. These changes are described in more detail below. 

When a cross-processor schedule statement is translated, code is generated to call the 
synchronizer to initiate a schedule request to the processor containing that process. The 
synchronizer then performs the table look-up to determine the processor to which the request 
must be sent. 
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Specifying The ATmax Interval 

The "DELTATIME = " statement specifies the ATmax interval for that portion of the 
hierarchy controlled by this particular simulation control specification. The format for this 
statement is shown below. 

Format 

DELTA_TIME  = Atmax_interval   [time units] 

The timeunits options are given in Appendix 3 of the GSS User's Reference Manual. 
They range from PICOSECONDS to DAYS. 

If the timeunits option is not used, time is assumed to be in seconds (the default). 

If a DELTATIME statement does not appear in the list, it is assumed to be 0 (the 
default). 

Synchronizer Database Initialization 

As described above, commands to schedule processes residing in another simulation at 
run-time are communicated via InterProcessor (IP) communications to a PATH_ 
SIMULATION_NAME within a HOST_PROCESSORJD. To accomplish this, each simulation 
reads these names during initialization (one set for each process cross-scheduled in the 
simulation) from its corresponding process assignment database, and stores them in a table 
available to the synchronizer. To create this database, each of the subordinate simulation control 
specification translators produces their initial process assignment databases. These initial 
databases contain the names of all of the processes in that simulation, as well as the names of the 
cross-scheduled processes and their simulation names. These are put into files that the master 
simulation control specification translator reads to reconcile all of the cross-scheduled processes 
within each of the simulations. It then updates these files with the corresponding 
HOSTPROCESSORIDs, and ships them back to the hosts/paths for each simulation so they 
can load their IP_SCHEDULE_ TABLEs during run-fime initialization . 

File Processing Summary 

During translation, each control specification translator creates a list of the processes 
cross-scheduled by that simulation. It also creates a list of all the processes that reside within 
that simulation, since they can be scheduled by a simulation on another processor. Both of these 
lists are available to the master control specification translator. These files, one for each 
simulation, are updated by the master translator with the host-id of each simulation. They are 
then used by each of the respecfive simulations during run-time initialization. 
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9.4       SCHEDULER MODIFICATIONS 

Schedule Synchronization 

When a process that is currently running on a given processor terminates, the next process 
is retrieved from the schedule queue. In the single processor case, the clock can simply be 
advanced at this time, and the process invoked. In the multi-processor case, if the clock advances 
beyond the Te+ATmax interval, then it must wait until all processors have reached the same 
condition. When this happens, a new Te+ATmax interval is set, and the checks are made again. 
Any processor with a process in the Te+ATmax interval can proceed to invoke that process. 
Others must wait for the proper interval. 

When the simulation clock in any processor exceeds the Te+ATmax interval, a 
notification is sent to the master synchronizer containing the processor/simulationlD. hi 
addition, all cross-schedule requests are sent to the master synchronizer before being sent to the 
processor containing the cross-scheduled process. This latter information is used to update the 
status maintained in the master scheduler regarding the number of processes (if any) to schedule 
beyond the Te+ATmax interval. For example, if processor A sends a signal to the master 
synchronizer that its simulation clock has exceeded the interval, but a cross-schedule is sent to 
that processor subsequently, it is not finished. However, the order of presentation will insure that 
the master simulation clock will advance beyond the Te+ATmax interval only after the clock- 
time of the next process to be scheduled in every simulation is beyond the interval. 

9.5       SYNCHRONIZER DESIGN 

When a process passes the interval test, i.e., it falls within the interval, it is checked to 
determine if it shares an interprocessor resource. If it does, then the interprocessor resource 
coherency check is made. If that processes shares an interprocessor resource, then the process 
must wait until conti-ol of that resource is obtained by that process. When these conditions are 
satisfied, the process is invoked to run. The interprocessor resource coherency facility is 
described in the previous section. 

The Te+ATmax interval is computed by the master synchronizer after receiving the next 
schedule time from each simulation and determining the earliest. After the current interval has 
completed, i.e., there are no more processes in any of the queues whose schedule times fall 
within the current interval, then the master synchronizer notifies all of the other simulations of 
the new Te value, signalling the start of a new interval. The synchronizer module shown in 
Figure 18 handles these communications, as well as the cross-processor schedules. 
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10.     EXPERIMENT 

In addition to the instanced model development effort described in this report, and as part 
of the final deliverable on this contract, PSI has built a multi-computer experiment on a 
networked cluster of twelve Intel computers. This experiment consists of the multi-computer 
version of the General Simulation System and the Netted Full Spectrum Sensor (NFSS) 
Operations Management System (OMS) that PSI has been building for the Army at CECOM, Ft. 
Monmouth. The OMS provides for the management of all of the Army's sensors, including the 
MASINT sensors. It involves taking in product reports from individual sensor control systems 
and fiising a picture of the battlefield. 

The purpose of these experiments was multi-fold. It provided a test-bed for refining the 
data coherency, cross-scheduling, and synchronization algorithms that were designed and built on 
a prototype basis under previous efforts. It also provided for the collection of test data relevant to 
analyzing the effects of latency on the broad class of simulations that we classify as partially 
independent. This classification is described in the paper that has resulted fi-om the experimental 
efforts reported upon here. This paper is attached as Appendix A to this report. 

10.1     HARDWARE PLATFORM 

The hardware platform used in the parallel NFSS experiment consists of twelve Intel 
computers networked with a Gigabit Ethernet switch as shown in Figure 19. The twelve 
machines are arranged in three sets of four. Each of the sets is represented with one keyboard, 
monitor and mouse via a KVM switch. All of the computers have access to shared directories 
that reside on computers 1 and 8. 

Processors arc linked via one Gieabit Elhcrnet switch 

/        \ / \ 
Twelve processors are interfaced with three user 
workstations via three keyboard, video & mouse switches. 

Figure 19. Cluster architecture. 
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The Intel computers used in the cluster are described in Figure 20. Since they all have 
identical hardware, Windows 2000 and supporting software was installed manually on one of the 
machines, which was then cloned onto the remaining eleven. This process resulted in a cluster 
with very similarly configured and performing machines. 

/I7\ 

4x512 Megabyte Sims 

3.06 Gigahertz Processor 

Gigabit Ethernet Adapter 

Figure 20. Individual machine configuration. 

The Ethernet Adapters support Full and Half Duplex modes at 10, 100 and 1000 Mbps. 
The ability Xopin the adapters at slower speeds was crucial for gathering communications latency 
type data. 
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10.2     THE GSS MULTI-COMPUTER SIMULATION FACILITY 

As described throughout this report, the GSS Multi-Computer Simulation Facility is 
designed to work on multiple networked computers, each running their own Operating System 
(OS). The facility is designed to be independent of the number of computers. The version used 
for this experiment requires that simulations run on each machine (there can be more than one 
simulation on a machine) without load balancing. 

Each machine contains a copy of the run-time environment consisting of the three 
subsystems. The Resource Coherency subsystem ensures that only one process is allowed to 
access a resource at a time and that processes have the most current version of the resources they 
share before they run. The Inter-processor Scheduling subsystem is used to invoke processes in 
other participating simulations in different machines, as well as the simulation that invokes the 
schedule. The Time Synchronization System is used to ensure that the clock drift between 
simulations is kept under a user specified ATmax. These systems will be expanded in future 
versions of the GSS parallel processing environment. 

The cluster based parallel processing system used here communicates via TCP/IP. The 
communications architecture design omits a central hub, which would present a bottleneck. As 
the number of simulations increases, the TCP/IP infrastructure that is established to support it 
becomes significantly more complex. Most off this infrastructure is not required on single 
operating system machine architectures. Furthermore, the communications fabric used to support 
multi-processor, single operating system machines is as much as 60 times faster than Gigabit 
Ethernet. 
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10.3     NFSS-OMS SIMULATION OVERVIEW 

The NFSS QMS system contains an embedded simulation of the detailed target 
environment, electromagnetic environment, sensors, communications, as well as actual multi- 
level/multi-sensor fusion algorithms and control systems to predict the responses to multiple 
sensor tasking. In addition to other challenges, this represents a multi-faceted high stress 
computational problem. We are using this real world system as the basis for analyzing and 
evaluating approaches to parallel processing. As will become evident in the Analysis of Results 
section below, the NFSS is also a good choice for analysis purposes because of the ease with 
which the sensor load across the cluster and the degree of inherent parallelism can be varied. 

As shown in Figure 21, the NFSS QMS system includes three basic components. First, 
the emitter component represents transmitter ground truth. This component contains the transmit 
process, which is responsible for providing the sensor component with transmission locations. 
The sensor component includes the sensing processes that determine whether or not a given 
transmission was detected. This information is then furnished to the QMS component, which 
fuses the results together into useful reports. 

Emitter 
Transmissions 

NFSS QMS Components 

Figure 21. NFSS QMS components. 

Figure 21 shows an instanced sensor component because many types of sensors can 
participate in the system. Li this experiment, twelve similar sensor simulations were used (one 
per processor). The emitter and QMS simulations were run on a single processor with one of the 
sensor simulations because their loads are negligible compared to that of the sensors'. 
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The experimental NFSS also includes a graphics toggle that is used to turn graphics on 
and off. While graphics are very useful for debugging and documenting, they sometimes produce 
noise when used in timed runs. Figure 22 shows a scenario that includes two sensor types and 
enabled graphics. The top left window labeled TRANS shows the locations of the transmitters. 
As shown in the sensor simulation windows labeled UGSOl and UGS_02, the location of a 
transmission is depicted with a star in the sensor simulations. When graphics are enabled, lines 
are drawn from each of the sensors to the transmission location and colored according to whether 
or not the transmission can be detected. Finally, the OMS simulation labeled DISP registers a 
spot report that includes fused found/missed information from the sensor simulations. As 
illustrated in Figure 22, the transmission shown was detected by two of the sixteen sensors. 

Figure 22. NFSS multi thread illustration. 
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In order to obtain real single processor runtime for use in efficiency calculations, the 
NFSS was altered to be able to run as a single thread. Figure 23 shows a single thread version of 
the above scenario. The single thread version was also used as a validity benchmark. 

HM NFSS 

Figure 23. NFSS single thread illustration. 
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The NFSS produces two results reports for use in validation. Shown in Figure 24, the 
Emitter Report is generated by the emitter component and includes the location and number of 
transmissions for each transmitter. The SPOTREP Report is generated by the OMS component 
and includes locations, number of sightings and found/missed information for each spot report. 

aMI^rC      CSHBIBAA^-■k.a^i_!;:i^l£ ^JnjjiJ 
J   Fiir     Edt     Vr'-'     F, or -..^;.^_.-^.__ 1 ■ 

NFSS - Emitter Report 

1                            TRANS 

Location                Transmissions 

J 

:   82883   1   66617 
■   (57507"'] 54767 

45332       17930 

:   92029       53782 

I   52027      53232 
--  -  

1   27927       57045 

i   54696       34027 

89257      74322 

Total 8 
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SNFSS - STOTJlWliieliSI ^jDljtj 
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45332   1 17930  ■ 2 2 14 

92029   i 53782  | 2 4 12 

52027   1 53232 2 2 14 
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27927   : 57045   i 2 3 13 

54696   1 34027   | 2 1 15 

89257   1 74322   ! 2 0 16 
Total          { 16 16 112 

Figure 24. NFSS generated reports. 
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10.4     THEORY 

The NFSS as well as many other discrete event simulations uses a time synchronized 
architecture as illustrated in Figure 25. In this figure, wall clock time (Twc) is shown in the 
negative y direction and is displayed in the first column. The second column shows time slot 
spans. Simulation processes and their simulation times are shown in the last column. Longer 
blocks in the last column represent processes that take more CPU cycles to run. 

Single Processor Simulation 

«-  I   '   >- 

Key 
Time Slot One (Ti) 

Ti trah^misstoii Prorjess 

Ti Sensing Process 
T2 Sensing Process 

Wall Clock Time (Twc) 
Single Processor Simulation Time (Ps Tsim) 

Two Time Slot Ps Tsim 
0 

1 

0.01 

1 0.03 

3 0.04 

5 0.05 

7 0.06 

9 '   '' BBHHI 

10 1.03 

12 1.04 

14 1.05 

16 1.06 

18 

Figure 25. Single processor event sequence illustration. 

At the beginning of the time slots illustrated in Figure 26, transmissions occur. 
Transmission processes are responsible for making transmission locations available to sensing 
processes. Sensing processes use transmission locations along with their own locations and the 
electro-magnetic environment model to determine whether or not transmissions are detected. It 
follows that the order of the sensor processes within a time slot is not important as long as they 
follow the proper transmission process. For instance, if a Ti sensing process runs after the T2 
transmission process, the sensing process will use the wrong transmission location and therefore 
produce invalid results. In this way, the validity of the results is dependent on the sequential 
integrity of the time-step. 
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Three Processors (AT^ax < 0.01 ) 

Twc Time Slot Pl Tsim P2 Tsim P3 Tsim 
0 

1 

.   Ml 
1 0.03 

3 0.04 

5 0.05 

7 0.06 

9 ULjju^mgil 

10 H^ 1.03 

12 1.04 

14 1.05 

16 
^Bt- '■■^TJ'i t*>^!^fcl 1.06 

18 

Figure 26. Multi-processor event sequence with small ATmax- 

When discrete event simulations are spread across multiple threads, it is possible that the 
individual simulation times may vary at any given wall clock time. In order to maintain validity, 
individual simulation clocks need to be synchronized. 

Figure 27 shows the event sequence of the above scenario spread over three processors. 
In this figure, the maximum difference in simulation time (ATmax) is kept under 0.01 second. 
While this ensures the exact same event sequence as the single thread version, it precludes any of 
the processes from running at the same time. The white blocks in the figure indicate blocks of 
time where the processor is idle. Since no processes are allowed to run concurrently, the three 
processor version of the simulation cannot be faster than the single thread version and therefore 
the efficiency cannot be better than 1 over the number of processor used. 
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As mentioned earlier, the integrity of the time slot is maintained as long as its sensing 
processes run after its transmission process and before the next time slot's transmission process. 
Figure 27 shows the event sequence of the above scenario across three processors with a AT^ax 
greater than 0.01 second and less than 0.2 seconds. This ATmax is large enough to permit sensing 
processes to run concurrently and small enough to ensure that they run after the intended 
transmission process. Efficiency is improved while validity is maintained. 

Twc 

Thr ee Process 

Time Slot 

ors( 0.01 
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P2 Tsim         P3 Tsim 
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1 0.03 0.04 

3 0.05 0.06 

5 - m^KM 
6 '      2t    , 

ft 

1.03 1.04 

8 1.05 1.06 

10 

Figure 27. Multi-processor event sequence with optimal ATmax- 

As shown in Figure 28, when AT^ax is greater than 1, the first time slot's transmission 
process and sensing processes are allowed to run concurrently. Furthermore, the second time 
slot's transmission process is allowed to run directly after the first transmission process. While it 
appears that the validity of the second time slot may be intact, first time slot results are obviously 
compromised. 

Twc 

Three Processors ( 1 

Time Slot    Pi Tam 
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P2 Tsim P3 Tsim 

0 1 001 0.03 0.04 
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8 

Figure 28. Multi-processor event sequence with large ATmax- 
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The objective when migrating a single processor simulation to a multi-computer 
environment is to achieve smaller run times while maintaining validity. ATmax is tuned on a per 
simulation basis in order to achieve these goals. As shown above, a ATmax of zero effectively 
forces the simulation to run sequentially with little or no opportunity for parallel processing. It 
would likely run slower on multiple processors than it would on a single processor. As ATmax is 
increased, more processing can take place in parallel before the simulations have to perform a 
time resynchronization, and thus efficiency increases. Hardware architecture efficiency curves 
EAI and EA2 in Figure 29 show this trend. They also show how increased communication speeds 
vary these curves. 
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Figure 29. Theoretical ATmax vs validity and efficiency graph. 

As ATmax is further increased, various activities on some processors are allowed to start 
before other activities, which must be completed first in order to insure validity, finish 
processing. The negative effect of this situation on validity varies differently in different 
simulations. In some simulations, the effect is gradual; in others, the effect is immediate, the 
simulation goes unstable, and no useful results can be derived. Furthermore, the more inherently 
parallel a simulation is, the more likely that ATmax can be increased to a point that delivers very 
high efficiency, while still remaining well below the point where results would become invalid. 
Validity curve V in Figure 29 shows how validity drops off quickly after some optimal ATmax- 
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10.5     ANALYSIS OF EXPERIMENTAL RESULTS 

The chart of ATmax vs. efficiency and vaUdity shown in Figure 30 is taken from the actual 
results of varying AT^ax in multiple runs of the NFSS OMS multi-computer simulation across the 
twelve-processor cluster. The architecture 1 (Al) curve was generated with the network running 
in 1000 Mbps mode. The A2 curve was generated with the network running in 100 Mbps mode. 
As can be seen in the chart, efficiency increases rapidly from 25 to approximately 93 percent as 
ATmax is varied from .2 milliseconds to 200 milliseconds in architecture 1. In architecture 2, 
efficiency never gets above 25%. It is not until AT^ax is increased to over 1 second, that validity 
begins to suffer. 

♦   Efficiency A1 »- Efficiency A2     -*- Validity 

ATmax 

0.0001 0.001 0.01 0.1 1 10 100 
120% 

Figure 30. Experimental AT^ax vs validity and efficiency graph. 
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11.     SUMMARY OF EFFORTS 

As part of this Phase 1 effort, PSI has completed all of the key objectives defined in its 
proposal. In particular, we have analyzed and documented our efforts in the following areas: 

• Architectural Use Of Tasks, Subtasks, Modules And Threads - Analyzed the use of 
hierarchies of tasks, modules, and threads in both military and commercial 
applications, including large sensor fusion systems, planning tools requiring large 
embedded simulations with optimization, transaction processing systems, database 
processing systems, etc. 

• bistanced Module Facility - Completed the detailed design of the automated instance 
module facility for the parallel processing version of VSE and GSS. Implemented 
the automated model instance facility in the current production version of VSE and 
GSS. 

• Standards For Maximizing Module Independence - Designed the implementation of 
automatic enforcement of software architectural standards to ensure maximum 
independence of both instanced and non-instanced modules. 

• Independent Module Database And Measures - Designed the independent module 
database, including built-in measures of module independence for both instanced and 
non-instanced modules. 

• Maintaining Coherency Of Interprocessor Resources - Designed the run-time system 
for maintaining interprocessor resource coherency. 

• Optimal Ordering/Scheduling Of Threads - Designed the run-time system for optimal 
ordering and scheduling of threads for both simulations and software tasks. 

• Hardware-Software Architecture Compatibility - Analyzed pertinent MPP hardware 
architectures as they pertain to the design efforts on this project to ensure 
compatibility of software and hardware architectures. 

The most significant findings of our Phase I effort are presented in the attached paper 
entitled: The Effects of Parallel Processing Architectures on Discrete Event Simulation. 
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11.1     USE OF THE NFSS OMS AS A TEST BED 

In addition to completing the above objectives, PSI has provided a demonstration of the 
proposed technology using the Netted Full Spectrum Sensor (NFSS) Operational Management 
System (OMS). The NFSS OMS is being developed by PSI for the Intelligence and hiformation 
Warfare Directorate (I2WD) of the U.S. Army's Communications Electronics Command 
(CECOM) at Ft. Monmouth, NJ. 

The NFSS-OMS allows engineering decision-makers to perform tradeoffs in sensor 
requirements and design parameters and to support staff officer decisions in real-time mission 
planning and execution. The graphical interface displays the current state of Blue Force 
(BLUFOR) and Opposing Force (OPFOR) as a continually updating Common Operational 
Picture (COP). The NFSS-OMS supports simultaneous connections from multiple systems 
providing sensor data. The accuracy and level of detail from each of the sensor systems vary 
with their capabilities. 

As described in Section 10.3, the hierarchical sensor fiision process easily lends itself to 
the benefits of parallel processing. The hierarchical fiision stages have little dependence on each 
other. In addition, the lower layers can be separated into groups that have littie or no dependence 
on each other. For example, each individual sensor system may have its data fiised separately in 
the first level of data fiision and then fiised with other sensor systems' data in subsequent levels 
of fiision. This demonstration used from 1 to 12 processing nodes and was inshoimented to 
illusfrate the potential efficiencies to be gained. 

11.2     IMPLEMENTATION OF THE INSTANCED MODULE FACILITY 

As part of Phase I, PSI has implemented the instanced module facility into its current 
production version of GSS and VSE. This facility removes the need for the software developer 
to deal expUcitiy with tables of attributes that relate to multiple instanced modules. For example, 
in a node and link simulation, each node can be represented by the same model. This facility 
allows the modeler to declare the number of instances at the module level. Then one can build a 
single instance without reference to the particular instance pointers of that module, except at the 
boundaries when one instance interacts with another module instance, in which case the specific 
instance is known. 

This facility makes it easier to build multiple instanced modules since pointers can be 
eliminated. Some additional memory may be used, since software designers can reuse the same 
attributes for multiple instances. However, this makes the code more abstract, and more difficult 
to relate to the real system. These absfractions also remove the independence properties that 
afford parallelism. The amount of additional memory used is considered insignificant compared 
to the total. More importantiy, the instanced module facility is considered a keystone to 
automating the software facilities required to produce efficient parallel processing architectures. 
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12.     PHASE II PLANS 

CATEGORIES OF SOLUTIONS 

PSI has supported many parallel processing efforts using different technologies. These 
include clusters, DIS, and HLA. Figure 31 is an attempt to bring to light the many dimensions of 
the problem when considering parallel processing solutions to achieve significant speed 
improvements. An explanation of each column is provided below. 

Configuration Speed Hardware 
Cost 

Software 
Development 

Cost 

Software 
Maintenance 

Cost 
Single 

Processor SPs SPH SPD SPM 

Multi-Computer 
Distributed DIs DIH DID DIM 

Multi-Computer 
MPP Cluster CLs CLH CLD CLM 

Single-OS 
MPP SOs SOH SOD SOM 

Figure 31. Categories of Solutions. 

Configuration 

set 
The configuration categories are defined below. This is not meant to be an all-inclusive 

combinations could be used. 

Single Processor 
be measured. 

This is used as a bench mark against which the other approaches can 

Multi-Computer Distributed - This covers the multiple computer case using 
distributed simulation, e.g., DIS and HLA. While PSI considers HLA an 
interoperability solution and not a parallel processing solution, it is addressed in Figure 
31 because some people consider it a parallel computing approach. The main 
characteristics are separate operating systems and wide area (geographically spread) 
networks. 

Multi-Computer MPP Cluster - This covers multiple computer clusters which can 
range from a large Beowulf cluster to a more tightly coupled set of computer chips, each 
running their own operating system. The main characteristics are separate operating - 
systems and high speed LANs. 

Single-OS MPP - This implies that a large set of processors are controlled by a single 
operating system. PSI also considers this category as having local memory to each 
processor with fast hardware caching and coherency protection across processors. 
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Additional combinations exist and can be developed. However, as indicated above, this 
list is considered representative for the purposes of this discussion. 

Speed 

The single processor has been used to provide a benchmark on speed. It is convenient to 
use 1 GigaHertz (GHz) as the baseline, since most of today's single processor machines exceed 
this. Also, speed up using multiple processors depends upon the inherent parallelism of the 
system being modeled. We are concerned with partially independent systems. This implies they 
are not embarrassingly parallel. 

As an example of partial independence, we are concerned with large military systems that 
interchange data somewhat randomly - on the order of thousands of messages per (simulated) 
second, with synchronization required on the order of every hundred messages. This implies a 
significant message exchange over a 4 hour scenario. This must be accomplished in 
approximately one minute of real time to perform the analyses required. 

Another way to look at this is to consider that 50M to lOOM messages must be transferred 
somewhat randomly among parallel processors in approximately one minute, with 
synchronization every 100 messages. We must also consider that the amount of time spent 
transferring the messages is about 100 times less than the other processing that must be 
performed within each processor to transmit a message. Therefore there is a significant degree of 
partial independence. 

PSI's experimental results, as analyzed in the attached paper. Appendix A, indicate that 
partially independent systems will run several times faster on single-OS machines than on multi- 
OS machines. This is because of the latency encountered - going across the layers of protocol 
fi-om one operating system to another - when cross-scheduling, sending messages, and 
synchronizing simulation clocks. For these types of systems, feasibility - driven by validity - is 
the key issue. Speed comparisons are provided below. 

• Single Processor - Single processor ruiming time is used as a bench mark. Cannot 
provide a feasible solution. 

• Multi-Computer Distributed - Latency is huge. Cannot provide a feasible solution, 
independent of number of processors. 

• Multi-Computer MPP Cluster - Measured in the attached paper. Latency plays a 
major role in meeting the combination of validity and speed requirements. We 
anticipate a problem achieving feasibility as the number of processors grows above 
1000. 

• Single-OS MPP - PSI considers this category as having the best speed performance by a 
potentially wide margin over the others, and therefore having the best chance for 
achieving a feasible solution. However, to achieve significant speed margins will 
require the kind of software solution described here for partially independent systems. 
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Hardware Cost 

This refers to the costs of different hardware architectures to achieve a feasible solution. 
Hardware cost comparisons are provided below. 

• Single Processor - Single processor can be used as a bench mark on cost. 

• Multi-Computer Distributed - Number of processors multiplied by single processor 
cost. 

• Multi-Computer MPP Cluster - Number of processors multiplied by single processor 
cost plus some overhead cost. 

• Single-OS MPP - It is not unusual to spend several times more per processor on single- 
OS processors than multi-OS processors. However, the number of processors needed to 
achieve a feasible solution may be sufficiently less, potentially mitigating the cost 
differential or providing a favorable cost. 

If a feasible solution is not achieved, there is no savings. Finally, one must consider the 
redundancy required to cope with down-time for each of these systems. 

Software Development Costs 

Software development cost must include consideration for time to get to the solution, and 
the considerable history of prior projects that have not achieved their goals. Conventional 
approaches to parallel processing software generally include many explicit parallel processing 
user code calls. Because of this manual tailoring, and the typical level of complexity 
encountered, the cost of developing simulations to take advantage of parallel processing 
platforms is significantly greater than the cost of developing single processor simulations. 
Software development cost comparisons are provided below. 

• Single Processor - Single processor can be used as a bench mark on cost. 

• Multi-Computer Distributed - Some overhead costs are incurred, but likely not to be 
more than 50% higher than the single processor cost when building the software. Using 
GSS can bring this cost down to the single processor cost. Time and cost for testing and 
debugging can run very high just due to the coordination required in the distributed 
environment. 

• Multi-Computer MPP Cluster - Special approaches taken to tailor the solution to the 
number of processors to alleviate extremely high costs. When testing and debugging is 
considered, reduced costs still can be whole number multipliers above the single 
processor cost. Project failure rates are high. Using GSS, this cost can be brought down 
to the single processor cost. 

• Single-OS MPP - Very special approaches taken to tailor the solution to the number of 
processors to alleviate extremely high costs. When testing and debugging is considered, 
reduced costs still can be whole number multipliers above the single processor cost. 
Project failure rates are very high. Using GSS, this cost can be brought down to the 
single processor cost. 
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The GSS solution leverages modeler knowledge in a way that allows user code to be 
independent of the intended runtime platform. Regardless of the number of processors, number 
of operating systems or operating system type, GSS user code will remain constant. 

The complete GSS solution proposed for Phase II automates load management, both for 
distribution and balancing. Along with other the PSI software technologies, the development 
cost implications are profound, especially when confronted with finding feasible solutions for the 
types of partially independent problems that PSI has been working on. 

Software Maintenance Costs 

Software maintenance cost must include consideration for time to get to get back on the 
air. Software maintenance cost comparisons are provided below. 

• Single Processor - Single processor can be used as a bench mark on cost. 

• Multi-Computer Distributed - Some overhead costs are incurred, but likely not to be 
more than 50% higher than the single processor cost when making changes to the 
software. Using GSS can bring this cost down to the single processor cost. Time and 
cost for testing and debugging can run very high just due to the coordination required in 
the distributed environment. 

• Multi-Computer MPP Cluster - Because of the special approaches taken to tailor the 
software to the number of processors, it becomes difficult to make changes to the 
fimctional logic due to the typical level of complexity encountered. When testing and 
debugging is considered, costs can be whole number multipliers above the single 
processor cost.    Using GSS, this cost can be brought down to the single processor cost. 

• Single-OS MPP - Because of the special parallel processing software absfa-actions that 
become part of the user code, it is difficult to make changes to what otherwise may be 
simple fimctional logic. The typical level of complexity encountered is very high, 
especially when testing and debugging is considered. Costs can be whole number 
multipliers above the single processor cost. Using GSS, this cost can be brought down 
to the single processor cost. 

SUPPORT FOR ALL SOLUTION APPROACHES 

There is a very large class of problems that have a high degree of parallelism but are far 
from being embarrassingly parallel. We have labeled these problems as partially independent. 
PSI has been working on a subset of this class that requires huge multipliers on speed (on the 
order of thousands) over that of a single processor to allow simulations to be run at speeds that 
exceed real time by factors of 10 to 100 and higher. 

The distiibuted multi-computer approach used for DIS and HLA simulations have been 
designed to bring together separately developed simulations running in real time. Although they 
are not suited to solving this type of problem, GSS currentiy supports these approaches. 
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Multi-computer MPP clusters can be implemented in various ways. We have compared 
the case where each processor has its own operating system to the MPP single OS case. 
Combinations of single OS and multi-OS machines can be analyzed as being in between these 
two cases. In our experiments, we have determined that the latency encountered to move data 
across the OS boundaries becomes significant when simulating partially independent systems. 
Even though GSS provides great software simplifications for either type of parallel processing 
approach, feasible solutions that meet the speed and validity constraints will likely not be 
achieved for a class of problems in the near future without the single OS solution. 

Based upon the above analysis, and the results derived in the attached paper, a single-OS 
MPP is best suited to meet speed and validity requirements for simulations of large partially 
independent systems that must run much faster than real time. The high software development 
and maintenance costs, and the inability to take advantage of extremely small latencies provided 
by this architecture have heretofore made it hard to justify. These problems can be overcome by 
GSS, making the single-OS MPP most attractive for simulating partially independent systems. 

Most importantly, GSS solutions provide significant increases in productivity for all of 
the above types of processor architectures. The instanced model facilities can be taken advantage 
of on a single processor as well as all of the parallel processor approaches. 

GSS PARALLEL PROCESSING DEVELOPMENT ROADMAP 

In 1996, PSI was awarded a contract from CECOM's Software Engineering Center (SEC) 
for Visual Software Development For Parallel Machines, [13]. This contract along with a 
subsequent DARPA MHPCC BAA Consortium contract, [14], supported the development of the 
GSS Multi-OS environment illustrated in Figure 32. We now describe the work to be completed. 
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Figure 32. Complete GSS parallel processing solution. 

Prediction Systems, Inc. Parallel Processing Page 64 



Work To Be Completed In Phase II 

In Phase II, we will build and test candidate design approaches using actual systems and 
simulations, leading to a selected product for Phase III. Having already performed an analysis of 
this problem in Phase I, we have determined that the use of an MPP running a Single-OS 
provides the best environment to complete the product line. This selection is based upon the 
current need for simulations of partially independent systems that run much faster than real-time. 
Building the intelligent adaptive software required to take advantage of the low latencies of this 
architecture is key to ease-of-use as well as the practical application of this architecture for a 
wide range of problems. Finally, the solutions for automatic processor allocation and load 
balancing will also support a multi-OS architecture, although the inherent latencies of these 
systems will not be nearly as efficient for a wide range of problems. 

Completion of each of the elements of the solution in Phase II is described below. 

• Time Synchronizer - The time synchronizer has been built on prior projects, and has 
been tested in Phase I as well. Porting this facility to a single-OS machine should not be 
a significant effort. 

• Resource Coherency Manager - The resource coherency manager has been built on 
prior projects, and has been tested in Phase I as well. Porting this facility to a single-OS 
machine should not be a significant effort. If OS facilities exist for fast caching data 
between processors, these may be invoked and will have to be tested. 

• Cross-Processor Scheduler - The cross-processor scheduler has been built on prior 
projects, and has been tested in Phase I as well. Porting this facility to a single-OS 
machine should not be a significant effort. 

• Model Instancing - The model instancing facility has been built and tested in Phase I. 
Porting this facility to a single-OS machine should not be a significant effort. Changes 
to the run-time database will have to be made and tested. 

• Processor Allocator - The processor allocator has been designed in prior projects. It 
must be built and tested in Phase II. 

• Load Balancing - The load balancing facility has been designed in prior projects. It 
must be built and tested in Phase II. 

• Run-Time Initialization - 

In addition to the above pieces, the run-time initialization facilities will have to be 
modified for a single-OS parallel processing environment. This must provide for initialization of 
databases and initiation of fiinctions to support the above items. 
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Commercialization 

PSI has elected to work with SGI in Phase II. This will provide for a machine at PSI's 
facilities in Spring Lake, NJ. SGI will also provide systems engineering assistance, particularly 
in the area of operating system calls and optimization of resource allocation. 

PSI plans to use large existing battlefield simulations that will be tied together as a single 
simulation to provide for a real test bed environment. These simulations will demonstrate the 
use of parallel processing to support important fiiture applications for military planning. It will 
also demonstrate an approach that can be extended to the industrial and commercial business 
planning process. 

Finally, SGI will initiate initial marketing efforts of the parallel processing software 
product to existing and prospective clients. 

Benefits Of The Final Product 

The major benefits of the product to be produced in Phase II are illustrated in Figure 33. 
The top bar contains the three constraints that must be satisfied before parallel processing can 
achieve broad commercial success.   With a software environment that is easy to use, modelers 
and software developers trying to obtain a combination of high speed and efficiency will be able 
start to focus on valid solutions to the real problems they are trying to solve. If their software can 
run on a wide variety of platforms without modification, they will have more choices and more 
competition will ensue. The paradigm defined in Figure 33 is key to ensuring speed, validity, 
and ease-of-use 
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Figure 33. Illustration of how the basic paradigm supports the objectives. 
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OVERVIEW 

We are concerned with simulation as it is used to support design decisions, evaluate 
system effectiveness and performance, and predict future outcomes resulting from different 
actions. We limit this concern to simulations that must produce valid results in specified time 
frames to be useful. This implies that modelers must provide a level of detail that achieves 
sufficient model accuracy to produce valid simulation results. 

As systems become more complex, particularly those containing embedded decision 
algorithms, mathematical modeling presents a rigid framework that often impedes representation 
to a sufficient level of detail. Using discrete event simulation, one can build models that more 
closely represent physical reality, with actual algorithms incorporated in the simulations. Higher 
levels of detail increase simulation run time. This paper is focused on the effects of model 
architecture, run-time software architecture, and parallel processor architecture on speed. 

Simulation Run-Time Constraints 

Parallel processing is used to meet time constraints that cannot be met running on a single 
processor. Time constraints occur for many reasons. If it takes many days to complete one 
simulation run, then it may take weeks of running simulations to obtain a single valid test. This 
can inhibit the simulation development and validation process. If one wants to use simulated 
output to make a decision within hours, having to wait days renders the output useless. 

Cases of interest involve modeling real world systems where the time to run a single 
processor simulation far exceeds the time taken by the real system for the same scenario. One 
must question why a simulation cannot run at least as fast - or even much faster, using a large 
number of parallel processors. Such applications cover many fields, including computer design, 
communication network design, and planning and control system design. When running 
applications requiring many hours of simulated scenario time, it is desirable to have the 
simulation time to real time ratio be very high. One can then run a simulation, review the output, 
make changes, and run another simulation quickly. 

ENSURING VALIDITY 

Test results can be presented in many ways, e.g., graphically observing events unfold, or 
visually scanning reports of data points. These can be classified as measures of merit, i.e., 
measures of effectiveness or performance of a system. We use M to denote a generalized vector 
of values measuring the properties of a system under test (SUT). Field or laboratory testing is 
subject to the Uncertainty Principle, and properties being tested are typically presented in terms 
of a distiibution of measurements. At the end of a series of tests, M is represented as a set of 
distiibutions, one for each property or element, Vi, of the measurement vector. Typically, these 
distributions can be characterized in terms of a mean and variance as illusfrated in Figure 1. 
These distributions are used to determine validity of test results. 
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Figure 1. Illustration of the distribution of test results for performance measure VI. 

When field or laboratory testing is prohibitive or expensive, one typically resorts to 
simulation. One must then assess the cost of obtaining valid results from a simulation. 

Comparing Statistical Results 

When running a single processor simulation, one will get the same results from every run 
unless it is taking in real time data. To provide a more accurate view of results, values of 
parameters that may vary are drawn randomly from predetermined distributions representing 
known or anticipated variations. To analyze the effects of these variations, one typically runs 
Monte Carlo simulations, whereby the simulation is run a sufficient number of times, each with a 
different random number seed, to produce a distribution of results. Then one can compare the 
distribution of the measurement vector from the single processor simulation, Ms, to that of a 
valid test set, Mt. If the distributions are deemed to be the same by the "validation committee," 
then the simulation can be used as a valid substitute for field or laboratory tests. 

Validating simulations can be difficult, but typically not more so than validating data 
from complex field or lab tests. Simulation validity can be achieved on a model-by-model basis 
and by comparing the results of simulations to those from a reduced set of laboratory or field 
tests. In many cases, a subset of models may have been previously validated. Regardless, 
validating a single processor simulation is outside the scope of this paper, so we will assume that 
a single processor simulation exists that produces a valid measurement vector, Ms. We are 
concerned with obtaining valid results, Mp, when moving from a single processor to a parallel 
processor environment. 
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Validating Parallel Processor Simulations 

As indicated above, we will start with a validated single processor simulation and 
investigate the potential loss of validity when running that simulation on a parallel processor. 
The major factor of concern is data coherency. Data coherency implies that, when o. process (set 
of instructions) accesses data in memory, the data has not been changed by a previous process in 
a way that causes the logic to produce intermediate results that lead to invalid simulation results. 

The data coherency problem is not limited to discrete event simulation. It can occur in 
software. For example, if a process on one processor shares a data structure with a process on 
another processor, and they both update that data structure thinking the values are unchanged the 
next time they access that data structure, the results of either of these processes may be invalid. 
Clearly the end results depend upon the logic in the processes, and the assimiptions that logic 
makes regarding the coherency of the data. In software, this problem is generally solved by 
ensuring that, while a process is running, no other process shares its data - unless by design. 

Simulation Time Synchronization 

In discrete event simulation, processes are scheduled at specified (event) times in the 
fiiture, with the anticipation that the data accessed by these processes will be correct at those 
scheduled times. Loss of data coherency can occur due to loss of time synchronization, where 
time is simulation clock time. If a single processor version of a simulation is producing valid 
results, with no data coherency problems, then it can run on a parallel processor and produce the 
same results, provided the following is true: Processes running on different processors and 
sharing data run in the same sequence as they would on a single processor. This is a sufficient - 
but not a necessary condition for validity of the results. 

To validate the results of a simulation, one must compare the distributions of the 
measurement vector fi-om the parallel processor simulation, Mp, to that of a valid test set, Mt, or 
valid single processor simulation, Ms (single thread implied). Validity can be achieved without 
having the same process sequence. In fact, the process sequence will vary in the single processor 
case simply by varying the random number seed. As stated above, maintaining a strict sequence 
is not a necessary condition. It is important to know what will produce valid results from a 
simulation, and what happens when we move that simulation from a single processing 
environment to a parallel processing environment. 

INHERENT PARALLELISM IN SYSTEMS 

In many applications, the best solution approaches do not lend themselves to parallel 
processing. For example, the fastest known algorithms for sparse matrix inversion are inherently 
sequential. These methods, known as symbolic preprocessors, eliminate looping and testing, 
leaving only the minimum sequential set of add, subtract, multiply, and divide operations to be 
performed, see for example, Berry, [1], and Hachtel, [2]. hi addition, focusing on parallelism in 
short instruction strings inside program loops does not necessarily lead to efficient use of large 
numbers of processors. The overhead required to confrol which processor will perform what set 
of instructions using what data may take as long as the user instruction strings themselves, see 
Reiher [3]. 
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Increases in processing speed clearly depend upon the inherent parallelism of a system as 
well as the solution approach. If the problem has little inherent parallelism, i.e., each step must 
follow in sequence with each depending upon the prior outcome, then parallel processors will not 
help speed up the solution. If large blocks of code can be processed at the same time, 
independently, parallel processor computers may significantly improve the speed. To realize 
such speed increases, one must take effective advantage of the inherent parallelism of the system 
when designing model and simulation architectures. 

Properties Of Independence 

We will focus on discrete event simulation. To this end, we define the property of 
process independence as follows: Processes are independent if they can be run concurrently 
without loss of validity. 

An example of independence occurs when performing Monte Carlo analysis. If a 
simulation is run N times, such that each run (n) uses a different random number seed and 
produces a final output containing the measurement vector Mn, then each simulation can be run 
concurrently producing the same set of measurement vectors M|, M2,..., MN as would be 
produced if run sequentially. In this example, outputs are compared after the runs are complete, 
but there is no data shared during the course of the simulation. The results are the same because 
each simulation is independent of the others. Hence, every process in one simulation is 
independent of every process in any of the others. This is known as an "embarrassingly parallel" 
example. It is only of interest here as an extreme case of total independence. 

Partial Independence 

The discrete event simulations of interest are of systems with partially independent 
components. Examples include networks of physical systems, typically connected by 
communication equipment. Large networks involve hundreds or even thousands of complex 
components, each running concurrently. An example is air traffic control. Aircraft platforms 
may require 6 degree of fi-eedom models. These platforms interact via radar sensors and wireless 
communication systems. Signals and messages are continually being interchanged by these 
models during the course of a simulation, just as they do in a real system. 

In such simulations, there is a large amount of data sharing, much of which is highly 
synchronized, causing major concerns about validity - even in a single processor simulation. 
Yet, there is generally a large degree of inherent parallelism. This is supported by the fact that 
single processor simulation scenarios typically take considerably longer than their real system 
(parallelized) counter parts. It is not unusual for a simulated two hour scenario to take days. 

Building models that take advantage of the partial independence of systems has 
heretofore been a challenge. This is a very large application area where PSI applies most of its 
efforts. To address the problem of ensuring validity, as well as modeling partially independent 
systems on parallel processors, PSI developed the General Simulation System (GSS), [4]. 
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THE GSS - PARALLEL PROCESSING ENVIRONMENT 

GSS has been designed to support efficient parallel processing, both during development 
and run-time. There are a number of system features that support these design goals. 

1. Data structures (resources) are separated from instructions (processes) to track which 
processes share what resources. This is used to determine independence and thus the 
potential for concurrent processing at run-time. 

2. Models are built using a visual CAD tool, where icons of processes and resources are 
connected by lines, denoting data sharing. This provides a one-to-one mapping from 
engineering drawings to the code. Double clicking on an icon brings up the code. 

3. Model connectivity (independence) can be inspected visually to determine if the inherent 
parallelism of a physical system is properly represented. Thus, models do not have to be 
changed to move from a single processor to a parallel processor. No code is changed - a 
major factor affecting validity. 

4. Knowledge of the architectural parallelism is stored within the system, and used during 
run time. To take advantage of this knowledge, the system has its own run-time 
environment that allocates processors to processes in a maximally efficient way. 

5. Efficient data coherency protocols ensure that processes are not using the same resources 
(data structures) at the same time. These can be tailored to manage hardware coherency 
protocols on a parallel processor. 

6. The scope of a resource is very large compared to the way attributes are formulated in 
typical programming languages, e.g., C, C"^, Java, FORTRAN, etc. Similarly, processes 
have a large scope compared to subroutines in other languages. This is due to the 
additional level of hierarchy in both. This provides substantially increased scalability, 
and much larger bovmd instruction sets. 

7. The run-time system provides for efficient cross-scheduling of processes across 
processors as well as fast scheduling within a processor. 

8. The simulation clock on each processor does not vary by more than AT, a parameter 
specified by the modeler. Simulation clock units can vary from picoseconds to days in a 
single simulation. This allows the modeler to set AT to the maximum value that ensures 
validity of results. As described below, this is a key factor in obtaining efficiency of 
parallel processing, reducing idle time of processors waiting for clock synchronization. 

9. The system supports instanced models. At run-time, large numbers of independent model 
instances are adlocated to separate processors, with minimized resource sharing across 
processors. 

10. The run-time system can perform optimized load balancing given real time data on 
processor loading. 
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Scheduling Processes 

Modelers use a GSS SCHEDULE statement to cause processes to be placed in a schedule 
queue to be run at a specified time in the future. Processes scheduled at the same time can be 
given a priority. If no priority is assigned, it is implied that the order does not matter, i.e., a valid 
result will occur if ordered randomly. 

Valid results can occur even when processes, scheduled at different times, are run out of 
order. This is because timing may or may not affect validity. For example, if message A comes 
in before message B, but neither get processed until both are in, it does not matter which one 
comes in first. Or, if ten messages must come in before something happens, which ones get in 
under the wire may not matter because, in the real world, the results are valid either way. This is 
especially true when variations occur naturally, causing the distribution of the measurement 
vector. 

Determining The Maximum Value Of AT 

As indicated in feature 8 on the prior page, one must determine the maximum value of 
AT that still ensures validity of results. This is done by running multiple Monte Carlo sets of the 
simulation in the GSS parallel processing environment, varying AT until the measurement 
vector, Mp, produces distributions whose variance exceed those of the single processor version, 
Ms. Figure 2 illustrates this effect for two different simulations, A and B. 
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Figure 2. Illustration of the selection of ATmax. 
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For simulations of nonlinear systems, the variance of the distributions is typically 
unchanged until a break point, ATchaos, at which point results become chaotic. If the systems 
being simulated have a synchronized component, i.e., events occur on a time synchronized basis, 
then this effect can be expected to occur as AT crosses the time synchronization point. Judgment 
can be used to back off to a valid point, hi the sensor simulations used to test this approach, [5], 
the break point occurred at about 1 second. Backing off to ATmax = 0.8 seconds was sufficient. 
It is likely that changes could be made to this simulation to move the curve to the right, 
increasing the allowed ATmax. If changes are made to a simulation, ATmax must be revalidated. 

Simulations of TDM A wireless systems may place a more stringent requirement on 
ATmax. For example, military Link 16 networks use a JTIDS terminal with time slot 
synchronization at 7.8125 milliseconds.   If the modeler has property synchronized scheduled 
events within a time slot, a ATmax of 7 milliseconds is likely to ensure validity of simulations 
that model message traffic to the time slot level. Depending upon other items in the simulation, 
modeling to the JTIDS frame level may relax this requirement to more than 10 seconds, since a 
frame covers 12 seconds. But such a modeling approach would severely limit the validity of the 
simulation to investigate network performance when subject to rapid response requirements at 
the individual message level. 

We note that validity as a fiinction of ATmax is generally independent of the parallel 
processing environment. However, the actual curve will encounter variations resulting from the 
effects of random ordering of processes, producing a distribution of results caused by these 
random variations. This distribution should be within the simulation validity requirements. 

The Effect Of AT On Parallel Processing Efficiency 

Parallel processing efficiency is defined here as: the ratio of the time it takes to run a 
simulation on a single processor to that on a parallel processor, divided by the number of 
processors. As shown in Figure 3, AT plays a major role in processing efficiency. 
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Figure 3. lUusfration of parallel processor efficiency versus ATmax. 
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The Effects Of Architecture On Parallel Processing Efficiency 

The curves shown in Figure 3 are representative of those derived from data taken on 
percent efficiency versus AT as part of the experiments reported upon in [5]. As AT is increased 
from 0 to larger values, efficiency increases as shown in each of the two curves, Epl and Ep2. 
These curves represent different parallel processor architectures for the same simulation and 
same number of processors. The difference in levels achieved represents the different losses of 
efficiency incurred when: 

• Maintaining data coherency across processors 

• Transferring shared data from one processor to another 

• Scheduling processes on different processors 

• Idling due to imbalanced loading 

The first three contribute latencies that reduce efficiency as they become a greater percentage of 
the overall processing time. Imbalanced loading will be treated separately below. 

The Effects Of Software Architecture 

The curves in Figure 3 also depend upon the inherent parallelism in the system being 
modeled. In the Monte Carlo (embarrassingly parallel) case, the overhead of the first three 
bullets is generally unnecessary. If the processing time for each simulation were identical, the 
total processing time should be that of a single processor divided by the number of processors. If 
run on a set of separate computers, the efficiency would be 100%. If the processing fimes were 
not equal, then the total time would be equal to that of the one simulation with the longest 
running time; idle time would occur at the end of the others. 

In the cases of interest, where there is only partial independence, there may be a large 
amount of scheduling and data sharing among processors relative to the embarrassingly parallel 
case. However, as in the real systems represented, this may still be small compared to the 
processing required within a processor. In these cases, two areas become important. 

• Modeling and simulation architecture 

• Parallel processor run-time management software 

If the model architecture does not match the inherent parallelism of the actual system 
from an independence standpoint, efficiency will be lost relative to that of the actual system. 
This is particularly obvious when building software abstractions that cut across multiple 
hardware instances of a subsystem, causing bottlenecks in a parallel processor environment. 
Software abstractions are commonly used to save memory - a major pitfall in parallel processing. 
GSS provides a visualization of the architecture that can be used to eliminate this problem. 

If the software architecture is mapped along physical lines but the run-time management 
software has no knowledge of this, then good model architecttires will likely be scattered 
randomly across processors, losing the efficiency they could otherwise provide. The GSS run- 
time system is designed to take full advantage of parallelism within model architectures. It runs 
on clusters; however, our analysis demonstrates that it runs most efficiently on tightly coupled 
processors under a single Operating System (OS). 
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The Effect Of Hardware Architectures 

Given that the model and run-time software architectural approach takes fiill advantage of 
the inherent parallelism of a system, we must ensure that if we select a hardware architecture, it 
will meet the time and validity constraints. To illustrate the selection process, we will use a 
simple example of run-time constraints whereby a 2 hour scenario must be run in less than 6 
minutes to achieve the desired goal. This implies a simulation time to real time ratio of 20. If 
the simulation runs 3 times slower than real time on a single processor, it must run with greater 
than 60% efficiency using 100 processors to achieve the goal. This provides a speed up factor of 
60 (one hour of single processor time is done in one minute). 

Figure 4 illustrates two different hardware architectures, Epl and Ep2, as candidates to 
achieve the goal. In the case of Epl, the efficiency remains at about 10% as we approach 
ATmax. This illustrates the effect of latency on achieving a feasible solution, i.e., meeting the 
time and validity constraints. Ep2 achieves in excess of 90% efficiency prior to reaching 
ATmax. For this example, Ep2 clearly achieves the goal. 
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Figure 4. Relative effects of parallel processor architecture on validity. 

When assessing parallel processing architectures, one must understand the dynamics of 
latency as it affects the feasibility of different hardware solutions. When simulating partially 
independent systems on parallel processors, one is prone to doing battle with chaos. These limits 
are apparent when using HLA federations to simulate large numbers of instances of complex 
units. When the federates are required to be highly synchronized to ensure validity, simulation 
times can quickly become excessive. There have been examples of parallel processing operating 
systems where substantial time is spent in special algorithms fighting chaotic behavior. These 
examples are prevalent in high latency systems. 
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LOAD BALANCING 

When imbalanced loading occurs, decisions may be made regarding the movement of 
processes from processors experiencing maximum loading to processors experiencing minimum 
loading. If this is done dynamically, movement may waste more time than it can save. Consider 
the processor loading histogram in Figure 5. It has been ordered by loading level. 

USING 100 PROCESSORS 

■lUoVERHEAD 
IDLE TIMEl 

USEFUL TIME 

PROCESSOR NUMBER 

Figure 5. Ordered processor loading histogram. 

100 

If this histogram represents results of the total scenario, then it appears that many 
processors were idle a majority of the time. One may quickly conclude that many less 
processors could have been used to achieve the same run-time speed. This assumes that 
movement does not increase data sharing across processors, and that process loading remains in 
a steady state. If these assumptions are true, one may be able to hand tailor the placement of 
processes on processors to maximize processor utilization and therefore efficiency. This may be 
at the expense of speed loss that will be small if the assumptions hold. We consider this a rare 
case, and even then consider hand tailoring a questionable investment. 

Now consider that Figure 5 represents a sample of a time period that is relatively short 
compared to the scenario. Also, consider that processor utilization changes dynamically during 
the scenario as shown in Figure 6. Then one must be concerned with the overhead of migrating 
processes verses the time constants of significant load changes, e.g., from times Tl to T2 to T3 
in Figure 6. Given that the migration times are sufficiently small compared to the dynamic 
loading time constants, one still must be concerned about increases in data sharing across 
processors. 

m nu 

1 PROCESSOR NUMBER 100 

TIME T1 

• • • 

■ ■ '    ■ 

1 PROCESSOR NUMBER 100 

TIME T2 

1 PROCESSOR NUMBER      100 

TIME T3 

Figure 6. Changes in processor loading over time. 
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Taking Advantage Of The Independence Properties Of Actual Systems 

By virtue of the physical architecture of engineered systems, components are designed to 
be maximally independent. This provides for system survivability as well as ease of 
maintenance. Therefore, models that are designed along physical lines, without software 
abstractions, can take advantage of this inherent independence. Knowledge of the partial 
independence (inherent parallelism) of models and their instances within a GSS simulation is 
used to support intelligent load balancing decisions, independent of the number of processors 
assigned. 

Assigning And Migrating Models And Instances. 

The visualization of models of components of physical systems in GSS provides the 
modeler with the ability to take maximum advantage of the partial independence of the system 
being modeled. Large models containing many layers of submodels can be instanced just as 
their physical counterparts. The automatic instancing facility built into the system ensures their 
independence, except at specified boundaries where instances share resources to represent the 
real world exchanges of partially independent entities. 

All processes and resources within an instance are automatically assigned to the same 
processor by the run-time system. This ensures minimal data sharing across processors. Load 
balancing is achieved by comparing the dynamic load created by each instance to processor load 
dynamics. Thus, the time constants of each can be compared as well as the loading over selected 
time periods to determine if migration of an instance is likely to improve speed. 

If latencies between processors in a large array vary sufficiently, then a latency matrix 
can be used to optimize the placement of instances. Assignment can be based upon the dynamics 
of data sharing between model instances. 

Assignment and migration of model instances can be more efficient and more easily 
controlled when running under a single OS. When running in a cluster environment, GSS 
provides the same automatic coherency and cross-scheduling protocols between separate 
simulations interacting via a high speed network. It can also support multiple federates in an 
HLA environment, any of which may be GSS clusters or single OS parallel processors 
simultaneously. 

Synchronization, Coherency, And Look-Ahead 

When simulating large synchronized systems, it is not unusual for a large n\imber 
(thousands) of processes to be scheduled at the same time and priority. When a process is 
popped off the schedule queue, it may have to wait for the use of a resource due to a coherency 
protocol. If the next process in the queue is scheduled at the same time and priority, and none of 
its resoiirces are stopped by coherency protocol, it may proceed before the first. Additionally, 
algorithms can be added to the scheduler to determine the optimal ordering of processes within 
each processor that are at the same time and priority, e.g., optimal placement of those processes 
with interface resources. This form of look-ahead does not require retracing steps in an attempt 
to regain validity, but supports continuous forward motion in time while maintaining validity. 
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CONCLUSIONS 

The potential speed increases that discrete event simulations can achieve on parallel 
processors depend directly upon: 

• Model architecture 

• Run-time software architecture 

• Parallel processor hardware architecture. 

The effectiveness of each of the above items depends upon the preceding one. 
Assessment of good hardware architectures can be masked by poor run-time software. Similarly, 
a poor model architecture will not take advantage of an excellent combination of run-time 
software running on a low latency parallel processor. 

Many approaches to discrete event simulation using parallel processors disregard the hard 
constraints on validity, and the very real effects this has on efficiency. This is apparent fi-om the 
literature, as many organizations continue to search for methods to unravel chaos instead of 
working to take full advantage of inherent parallelism and reduce latency. 

Without an environment that affords modelers the ability to take maximum advantage of 
the inherent parallelism in partially independent systems, the information required to make a 
feasible (let alone optimal) selection of a hardware architecture may be masked. 

When modelers find it easier to run simulations on a parallel processor than using their 
current approach on a single processor, the benefits of parallel processing will be finally realized. 
This implies that the environment they use must automatically take advantage of the inherent 
parallelism in partially independent systems. 
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