
FINAL REPORT

High Efficiency, Scalable,
Parallel Processing

for

DARPA (IPTO)

SBIR CONTRACT: SB022-035

DiSTRIBUTIOrj STATEfyiENT A
Approved for Public Release

Distribution Unlimited

June 30, 2003

20030807 131
PREDICTION SYSTEMS, INC.

PREDICTION & CONTROL SYSTEMS ENGINEERS

309 Morris Avenue
Spring Lake, NJ 07762

a (732)449-6800 i (732)449-0897
gj) psi@predictsys.com '^ www.predictsys.com

Public reporlinfl buiDen for this collection of inlonnalion Is estimated to average 1 hour per response, Including the time for reviewing Instructions, searching data sources, galhenng and maintaining the
data needed and completing and reviewing the collection of infomiation. Send comments regarding this burden estimate or any other aspect of this collection of Information, including suggestions for reducing
this burden, to Washington Headouartere Services, Directorate for Infomiation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arilngton. VA 22202-4302, and the Office of Management

and Budget, paperwon< Reduction Project (0704-0188), Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

4. TITLE AND SUBTITLE

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY)

06/30/2003

2. REPORT TITLE

FINAL

High Efficiency, Scalable, Parallel Processing Approaches for Multi-Sensor Data Fusion

6. AUTHOR(S)

Robert Wassmer

3. DATES COVERED (From - To)

10/8/2002-06/30/2003
5a. CONTRACT NUMBER

DAAH01-03-C-R031
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

Sd. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Prediction Systems, Inc.
309 Morris Ave.
Suite G
Spring Lake, NJ 07762

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US ARMY Aviation & Missile Command
AMSAM-AC-RD-AX
Beverly Gonzales
Redstone Arsenal, AL 35898-5280

8. PERFORMING ORGANIZATION
REPORT NUMBER

PSI03004

10. SPONSOR / MONITOR'S ACRONYM(S)

11. SPONSORING / MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited

13. SUPPLEMENTARY NOTES

DISTRIBUTION STATEW1ENT A
Approved for Public Release

— Distribution Unlimiled

14. ABSTRACT

PSI's CAD approach to simulation / software development cuts large system life cycle costs by an order of magnitude. A visual representation of software
architecture that provides a one-to-one mapping to the code, it's based upon separation data from instructions, affording separation of architecture from
language, and providing ease of control and reuse of complex modules. This paradigm shift for software brakes barriers to building complex systems,
makes significant upgrades easy, and cuts support costs dramatically, by achieving module independence through visually enforced architectural design
rules. Its success has resulted in huge simuatlions that meet customer validity contraints but now exceed single processor computer power by one or
two orders of magnitude. Hardware designers produce parallel computers with speeds into teraflop ranges. However, their practical use on all but very
special problems has been extremely limited due to software implementation problems. This research is to confirm hypotheses that graphical design
rules that achieve software understandability and module independence also support allocation of processes to parallel processors. Fusion of this
technology with parallel processors can result in an order of magnitude of speed improvement, yet making development easier on parallel machines
than single processor machines due to concurrent memory access and management.

15. SUBJECT TERMS

Computer-Aided Design (CAD)
Software

Simulation
Parallel Processing

16. SECURITY CLASSIFICATION OF:

a. REPORT

unclassified

b. ABSTRACT

unclassified

c. THIS PAGE

unclassified

17. LIMITATION OF
ABSTRACT

unclassified

IS. NUMBER
OF PAGES

80

19a. NAME OF RESPONSBILE PERSON
William C. Cave

19b. TELEPHONE NUMBER (Include area code)

732/449-6800
Standard Form 298 {Rev.8-98)
Prescribed by ANSI-Std Z39-18

TABLE OF CONTENTS

SECTION PAGE

1. BACKGROUND 1

2. INTRODUCTION 2

3. PERTINENT CONSIDERATIONS 4

4. PHASE I TECHNICAL OBJECTIVES 15

5. OVERVIEW OF THE USER INTERFACE TECHNOLOGY 16

6. OVERVIEW OF THE RUN-TIME TECHNOLOGY 23

7. INSTANCED MODELS 24

8. INTERPROCESSOR COMMUNICATIONS 37

9. INTERPROCESSOR SCHEDULING 41

10. EXPERIMENT 46

11. SUMMARY OF EFFORTS 58

12. PHASE H OBJECTIVES 60

13. REFERENCES 68

APPENDIX A THE EFFECTS OF PARALLEL PROCESSING
ARCHITECTURES ON DISCRETE EVENT SIMULATION

1. BACKGROUND
Hardware designers have succeeded in producing parallel and distributed processor

computers with theoretical speeds well into the gigaflop range. However, the practical use of
these machines on all but some very special problems is extremely limited. The inability to use
this power is due to great difficulties encountered when trying to translate real world problems
into software that makes effective use of highly parallel machines. This has been described by
numerous authors over many years, see for example [1], [2], and [3].

COMMERCIAL MARKET REQUIREMENTS

hi the commercial marketplace, speed benefits gained using a parallel computer must
sufficiently outweigh the cost to develop and support the software. If not, then real
commercialization, based upon solid economics, will not occur. These economic goals will be
achieved if the following requirements can be met:

1. Subject area experts who understand the problems to be solved must be able to describe
them easily and directly to computers without concern for parallelism, or even prior
knowledge of computer programming.

2. The software must be generated automatically to take fiiU effective advantage of the
inherent parallelism of the problem on a Massively Parallel Processor (MPP).

These two requirements are tightiy interrelated. The subject area expert should not care
whether the problem is being solved on a single processor machine, or one with hundreds of
processors. The run-time software must be generated to make effective use of the available
parallelism of the host machine, adapting to changes in the environment, a very tedious but
mechanical process.

REQUIREMENT FOR SPECIAL PROGRAMMING SKILLS

Current approaches to solving problems on parallel processor machines have not, in
general, overcome these two barriers. Problem description for parallel - as opposed to single -
processing generally incurs a huge cost increase for all but a few special cases. This is
compounded by the fact that the problems requiring large processor power are themselves
complex, and best understood by subject area experts.

For example, a communications engineer trying to design a specific set of algorithms, to
implement a very complex set of protocol standards, has difficulty just describing his problem
using graphic diagrams with plain English text. To constrain him to describe his problem in an
esoteric programming language is difficult. To force him to learn the language of a system
programmer, i.e., the operating system, is unlikely. To fiirther burden him to describe his
problem so that it runs efficientiy on a parallel computer makes the approach intractable.

Prediction Systems, Inc. Parallel Processing Page 1

One is then led to an approach that augments the engineering staff with parallel processor
programmers who perform problem translation for the computer. However, it is well accepted in
most engineering departments that, when programmers are used to translate an engineer's
problem to a computer, problem solution becomes a process whose length increases
exponentially with problem complexity. Finally, translation onto a parallel processing machine
currently requires very special programming skills that are commensurably scarce and expensive.

This is why engineering departments invest heavily in Computer-Aided Design (CAD)
tools that they interface with directly - on their own terms. These CAD tools provide interfaces
that are tailored to their problem and automatically generate highly efficient computer code. We
believe that this is the solution to commercialization of parallel computing.

MULTI-SENSOR FUSION APPLICATION

PSI currently has a contract with the Army CECOM to develop an Operations
Management System (OMS) for the Netted Full Spectrum Sensor (NFSS) system, [4]. This
system must contain an embedded simulation of the detailed target environment, electromagnetic
environment, sensors, communications, as well as actual multi-level/multi-sensor fusion
algorithms and control systems to predict the responses to multiple sensor tasking. It also
contains an optimization subsystem to determine the most effective use of sensor resources
during large operations. In addition to other challenges, this represents a multi-faceted high
stress computational problem. This system has been used as the basis for analyzing and
evaluating approaches to parallel processing under the Phase I contract.

2. INTRODUCTION

Solutions to the parallel processing problem tend to skip over the software piece of the
problem, going from application requirements to hardware architecture. (The word architecture
implies hardware in the parallel processing literature. The words "software architecture" do not
appear.) Software is not much more than an afterthought relative to the size of the hardware
design effort. This approach, illustrated in Figure 1, is termed software bypass.

APPLICATIONS SOFTWARE HARDWARE

^RTHOUGHI^.

Figure 1. Software bypass - designing the hardware first.

Prediction Systems, Inc. Parallel Processing Page 2

Subject area experts who want to use parallel computers cannot simply enter their
problem specifications into a piece of hardware. They must first write the very complex software
required to control parallel processor hardware. Without knowledge of the special operating
systems and languages for parallel computers, these experts typically turn to programmers to do
the job. Programmers see the chance to increase their value by learning how to be parallel
programmers. Their interest is in learning deeper specializations to broaden their higher-paying
job opportunities. This cycle of thinking is at odds with commercial market requirements.

USE OF ABSTRACT REPRESENTATIONS

Certainly there are many uses of abstractions when building models of highly complex
systems and their environments. One could not perform simulation without absti-action of reality
into models that run on a computer. The General Simulation System (GSS), [5], provides for
ease of abstraction where complex processes that may be spread across all of the entities in a
system are represented in a single list. GSS contains a library of high speed list management
facilities that eliminate the need for the modeler to develop linked list software, a basic
abstraction in modeling. However, one must consider the trade offs between time and cost of
development as well as speed and memory utilization at run-time.

With today's parallel processors, memory utilization is not an issue. It is difficult to
conceive of a problem where the amount of memory on a large parallel processor computer
presents a limitation. Using conventional techniques for parallel processing, the trade is usually
between development time and running time, given resource constraints in dollars. This leads to
decisions on how models are represented. The choice is usually between the way one deals with
absti-actions, and typically ends up with substantial hand tailoring of code to the parallel
processing environment. This implies a huge effort in development, resulting in significant time
and cost, to use parallel processors. More importantiy, the abstractions required for parallel
processing make it difficult for a modeler with subject area expertise to understand the code.

THE INHERENT NATURE OF SYSTEM DECOMPOSITION

As systems are designed to be more user-fiiendly and adapt to their environment with
greater effectiveness, they become more complex. To deal with a high level of complexity,
designers must partition systems into modules that operate independentiy, minimizing the shared
interfaces. If module interfaces are designed for maximum isolation, they incur a minimum
ti-ansfer of information. This maximizes the ratio of internal processing to interface processing,
which in turn maximizes their measure of independence. This is the type of software architecture
required for effective use of parallel processing. Given a high degree of module independence
and inherent parallelism, many applications have still failed to achieve a high degree of
efficiency in parallel processor utilization. This is because current software approaches cloud
this level of architecture.

Prediction Systems, Inc. Parallel Processing Page 3

The two most prominent parallel processing companies in the early 1990s, Kendall
Square Research (KSR) and Thinking Machines Corp. (TMC), failed due to lack of good
software environments for both developing and running applications. There are a number of
reasons that no software environment has yet to crack the problem. We believe that the two most
important reasons are:

(1) Decomposition of a large software system is an architectural problem, and the
architecture of a system of independent modules is best described graphically (like
hardware) - not using a language;

(2) Software architectural design methodology and supporting technology have not been
tied to the requirements of efficient scheduling and assignment of processors to processes
during run time.

After one gains a good understanding of the software side of the parallel processing
problem, it becomes clear that the language environment must be designed to support the
architecture environment as well as the requirements for understandability and independence of
the detailed implementation. This has major implications on scoping the size and controlling the
hierarchies of independent modules. At least as important, the architecture environment must
serve to optimize the scheduling and assignment of processors to processes in the run-time
environment. Our proposed solution solves both problems.

3. PERTINENT CONSIDERATIONS

Future survival depends upon the speed with which one can deal with increasing complexity.

THE IMPACT OF SPEED AND COMPLEXITY ON SURVIVAL

The things we take for granted today would have boggled the minds of people just 100
years ago. Looking back 1000 or 10,000 years is awesome. Which way would any of us prefer
to live? Who is better prepared to survive? The answer to the first question is generally obvious.
The answer to the second requires more consideration.

The U.S. is learning that there are many faces of survival. The days of firearm versus
bow and arrow are long past. Yet a high speed aircraft with smart missiles may not help preserve
our own infrastructure when attacked by terrorists. The approach to survival is taking on a
different meaning than historic war. The enemy situation is becoming much more complex.
Accurately predicting what an adversary may do depends upon how much time he has to think,
communicate, and take action. The problem of defending the U.S. is being redefined in light of
the increasing need to deal with speed and complexity as we endeavor to survive.

Prediction Systems, Inc. Parallel Processing Page 4

Dealing With Increasing Complexity

Anyone familiar with the history of mathematics knows the motivations leading to the
progression of numbers. It started with "whole numbers" or integers, and progressed to signed
integers, then Xo fractions and rational numbers. It continued to real numbers, imaginary and
complex numbers. Each step covered a more complex realm - not by imagination, but by
necessity.

There is more to this progression than just the increase in complexity. Each of these
extensions is still referred to as a number. And each encompasses the prior. Real numbers are a
subset of complex numbers. More importantly, many of the laws and transformations still apply
as we move up the scale of complexity. Their interpretations are simply extended to be more
general. This allows us to deal with jumps in complexity.

Selecting The Most Convenient Coordinate System

As we continue to move up the food chain of numbers and mathematics, we can group
nvimbers into vectors. The position of a body in space can be described by three numbers
depending upon the coordinate system we choose. And we learn in higher levels of mathematics
and physics, particularly in electro-magnetic theory and partial differential equations, that
problems can be solved more easily if we select the right coordinate system. For example, when
a particle moves in a spherical orbit, it is much easier to describe its motion in spherical
coordinates. Cartesian coordinates will work, but it takes longer to solve the problem.

Selection of the most convenient coordinate system is typically taught under the topic of
separation of variables. One learns that the separation principle can be used if the variables form
an independent set. The property of independence can be verified using specified tests. The
concept of choosing the best coordinate system and the property of independence are the
important principles one can apply when dealing with complexity in a constrained time
environment. We will make use of these concepts.

Einstein introduced the use of tensors to deal with the increasing dimensions of time,
velocity, and acceleration. Control system engineers developed the state vector to account for
the many degrees of fi-eedom required to characterize complex dynamic systems. The state space
fi-amework has been shown to be the most general representation of a dynamic system, see [6],
and [7]. Providing a fi-amework for problem description was not the only benefit of the state
space approach. It also afforded a framework for developing faster solutions to problems that
could run for days on the computers of the time.

Prediction Systems, Inc. Parallel Processing Page 5

FRAMEWORKS FOR REPRESENTING COMPLEX DYNAMIC SYSTEMS

In a competitive time-constrained environment, time (speed) is the most important factor.
If two sides develop the same capabiHty, the one that gets there first is likely to be the one that
wins. When building tools to help people solve design problems or make complex planning
decisions, time enters into the picture in at least two major ways.

• Development Time - the time it takes to develop the tool

• Solution Time - the time it takes to get a useful solution from the tool

One can imagine a great tool for solving a problem. But one must answer the question -
can we get it built in time to accomplish our goal? Or, more importantly, will it produce valid
answers fast enough if we get it built? Of course cost and risk are also major factors. However,
time is usually of the essence.

Automating The Representation Process

In the early 1960's, electronic circuit designers developed automated tools for solving
complex systems of nonlinear differential equations required to represent digital waveforms in
the time domain. These Computer-Aided Design (CAD) tools allowed engineers to describe
large networks topologically and write FORTRAN-like equations describing nonlinear functions.
Programming skills became unnecessary. The code needed to generate and run simulations of
very large networks was generated automatically. This afforded a huge leap in design
productivity. It enabled the design of huge complex networks leading to integrated circuit
design.

CAD system development became a business for many, including the principals of PSI.
Two systems were developed, one for continuous system modeling (e.g., for digital circuit
design), and one using a discrete-time framework (for the design of signal processing systems).
The second used sampled data principles to reduce computation time. An underlying state space
framework supported both products.

For large networks, the number of state variables runs to thousands. Solving worst case
design problems involves multiple optimization runs of thousands of simulations. Each
simulation has to solve the optimal control problem, involving thousands of nonlinear differential
equations. Speed and accuracy are the driving forces in designing these systems. If it takes a
computer days to get a design, only one or two test points are produced in a week - not very
attractive.

Prediction Systems, Inc. Parallel Processing Page 6

Capitalizing Upon General Principals

State space is used because it provides the most convenient framework for solving any
type of dynamic problem. The general form of the solution holds for any set of independent state
variables. This allows for the development of generalized methods, e.g., optimal sparse matrix
inversion and describing functions, to solve nonlinear problems fast while ensuring algorithm
convergence. The end result is to solve huge problems in minutes. However, this approach
requires formulating problems in a mathematical framework.

Facing Totally New Problems

hi PSI products prior to 1982, models were formulated mathematically, i.e., using vectors,
matrices, and systems of equations. This approach allowed the solution to be derived
automatically and solved very fast. By 1982, this approach was recognized to have severe
limitations when modeling communications or control systems involving algorithmic decision
processes. Clients wanted to describe their problem using more general state concepts, and be
able to write conditional statements within the system of equations. It was determined that these
types of decision processes could be handled using the discrete event approach originally
developed by Gordon in 1961, see [8] and [9].

A MORE GENERALIZED PROBLEM FORMULATION

hi 1982, discrete event simulation was analyzed. The motivation was high because of the
requirement for writing decision algorithms into the models. Users wanted to break up systems
of equations and embed English-like conditions and rules, e.g.,

IF THE MESSAGE_TYPE IS CONTROL, THEN ...,
ELSE IF MESSAGE_TYPE IS DATA, THEN

Additionally, there were complaints about the inability of existing discrete event
simulation products, e.g., GPSS, SIMSCRIPT, and SLAM, to solve our client's problems. The
major complaints were lack of scalability (inability to deal with increasing complexity) and
excessive simulation run-times. This led to an investigation of the deficiencies of the other
products in the market, as well as an analysis of how to formulate the basis for general solution.

At first it appeared difficult to derive a mathematical framework to support this new
requirement. This caused concern about the ability to justify design decisions without a formal
framework. We appeared to be leaving the world of mathematics. Time steps were determined
by the modeler in terms of scheduled events. This led to the development of a state space
definition of discrete event systems. A description of this is provided in the Sections below
entitled Concept Of A Generalized State Vector and State Space Definition Of A GSS Model.
The differences and likenesses of mathematical and rule oriented formulations are compared in
Simulation Of Complex Systems, [10].

Prediction Systems, Inc. ParaUel Processing Page 7

Facing The Speed Issue

Because of the excessive running times of competing products (some critical simulations
were taking 5 to 7 days to run a 2 hour scenario), it was determined that if PSI developed a new
product, it must be able to run on a parallel machine. PSI's experience in computer design,
parallel processing, and the knowledge of how chips were evolving to support fast computing
methods led to an approach that would take advantage of future hardware technology.

Parallel processing imposes the requirement that two or more processes must run
concurrently on separate processors. This implies that concurrent processes must be
independent. The property of independence implies that the processes share no data. This led to
the decision to separate data from instructions so the independence property could be tracked.
The design of a new simulation environment, the General Simulation System (GSS), was
launched in 1982. It called for a connectivity matrix to determine what processes shared what
data. Then when allocating processes to processors, the connectivity matrix could be used to
determine if a process can run concurrently with those already running.

Separating Data From Instructions - A New Paradigm

The separation of data from instructions is a new software paradigm that provides
significant benefits. First, it allows capitalization on the concept of independence. By limiting
access to specified data structures, models can be made independent. This leads to a
decomposition of the simulation database into separate data structures - defined as resources in
GSS. Instructions are grouped into sets of rules defined as processes. Resources and processes
are grouped into elementary models. Elementary models are grouped into hierarchical models.
This is illustrated in Figure 2, which contains a model of a local telephone system with PBXs
connected to a local switch. The resources (data structures) are contained in the ovals, and the
processes (instructions) are contained in the small rectangles. These can be edited directly as
shown in the boxes.

In GSS, the interconnection of processes and resources is done graphically using icons
and lines. This provides the ability to produce an engineering drawing of the architecture of a
model, where lines connecting processes to resources determine what processes have access to
which resources. Models can be connected to each other by connecting a process in one model to
a resource in another. Independence of models can be inspected visually by looking at the
number of lines connecting them.

Independent Instanced Models - Modeling Made Easy

The above concepts have led to the independent instanced model as part of the GSS
environment. This allows a modeler to build a single model along physical lines, just like
building a single piece of equipment. This model can then be instanced many times,
automatically, in a simulation. This paradigm makes it easier to develop models on a large
parallel processor than by using current methods on a single processor. This capability has been
implemented as part of this Phase I contract, and is described in Chapter 7.

Prediction Systems, Inc. Parallel Processing Page 8

o

PS
KUJ
WO EM

S 11J3<

o

ml Ex
DO.

OS
w

X X XXX
14 u w [1] [il Id

H
ss [ii s Z Z ^
H M H t-i t-i t-^

CO o

LU „

F O >•
-1 M

O f: b
< ^
"-I ^ o
X ^
o o u
1- o
s g b Ed
m 6. « 01

III O H D.
lU o m m g 2^

Z'^Z'
w

H B "l^"l
-1 H S a ai Ito
O n H

H
w g g g

(0 H H M D D D
LU t) « ^ D n Bi « 0! n^ <: Z E-i H H

ft. n U> b
0) « (> Ex. fc
m a: F- o o CN OJ Ol

O ^
CO

i-t i-t H rH

1

a!"

/2 uj\
UJ o

5-xu. ma
m ^ ^^3

UJCDO.
UQ.M
tU UJ

I

&

CO

iLlU

lU^'

mm

/^

CJ

ggi

IZ
tOUJ
OS

p
a?

II

00

O

Q

8

I

lU o
tl. t
u. ^
O »

Prediction Systems, Inc. ParaUel Processing Page 9

The Concept Of A Generalized State Vector

Separating data from instructions has clarified the meaning of the state of a model or
simulation. It is defined by the state of all of the resources in that model or simulation. This has
led to the concept of a generalized state vector. One can look at the state of a simulation as one
big state vector comprised of all the resources in that simulation. Alternatively, a simulation is
partitioned into a set of sub-states corresponding to the resources or subvectors.

This paradigm allows reuse of many concepts from the state space framework. For
example, the simulation state vector as used in GSS is considered to represent a generalized
coordinate system. It is up to the modeler to come up with the best set of states to make the
problem easy to solve. This implies selecting the set of resources that simplify the
fransformations of state that represent the dynamics of the system. These fransformations are
embodied in the processes. When a process runs, it starts with the initial state of the attached
resources and takes them to the next state.

This is the same problem as picking the best set of variables or coordinate system to
simplify a set of partial differential equations. As indicated above, courses that cover problem
solving in the applied sciences, e.g., physics and engineering, stress that choice of a coordinate
system is the key to making a problem easy to solve. In GSS, one selects the best breakout of
resources (state subvectors) to simplify the processes (transformations of state).

We have expanded that concept to the generalized state vector, one that consists of
general information, not just variables that take on numeric values. Consider that a GSS resource
is equivalent to a data vector containing states such as RED, YELLOW, and GREEN. The data
can be English words or character strings, as well as numbers. A generalized state vector may
consist of one or more subvectors, i.e., GSS resources.

With the above in mind, a GSS simulation consists of a very complex simulation state
vector (the simulation's data base) that changes as processes are invoked. At any instant of time,
the simulation state vector contains the values of all the resources in the simulation. It must also
contain the simulation queue, the simulation clock, and the real-time clock and random number
generator seed if used. External files are considered inputs to a nonhomogeneous model as
described in [10], and are not part of the model's state vector.

Prediction Systems, Inc. Parallel Processing Page 10

State Space Definition Of A GSS Model

A GSS model only has access to a subset of the simulation state vector when a process in
that model is running. This is the model state vector. A subset of the model state vector contains
those resources that reside within the model. Resources residing in one model can be shared
with another model. The state space representation of GSS is shown in Figure 3. The state
vector that a model has access to consists of the following items and their corresponding
information elements:

ACCESSIBLE RESOURCES - The resources that processes within a model are
attached to. Note:- These resources need not reside within the model.

SIMULATION QUEUE - The entries in the queue, including the indices it uses
when it's processes are scheduled.

SIMULATION CLOCK - The time of the simulation clock, including priority, if and
when it schedules another process.

REAL TIME CLOCK - The value of the real-time clock if and when it uses the real
time clock.

RANDOM NUMBER GENERATOR - The value of the current random number
generator seed if and when it uses the random number generator.

INITIAL
STATE

VECTOR

RESRC-1

RESRC-N
S-QUEUE
S-CLOCK
R-CLOCK
RANDOMS

GSS
MODEL

PROCESSES

TERMINAL
STATE

VECTOR

RESRC-1

RESRC-N
S-QUEUE
S-CLOCK
R-CLOCK
RANDOMS

RESRC-N - the GSS resources that are accessible to the model's processes
S-QUEUE - the simulation queue entries used in the schedule command
S-CLOCK - the simulation dock time
R-CLOCK - the real-time clock time
RANDOMS - the random number generator seed GSS^TATE I 1/9/02

Figure 3. State space representation of GSS.

Prediction Systems, Inc. Parallel Processing Page 11

GSS processes are scheduled based upon the logic within itself or other processes. When
a GSS process runs, it can schedule itself or other processes at specified times in the future, or at
the current time. GSS processes run in zero simulated time. At any time, the state of a model
depends solely upon its state vector. When a process in a model runs, its terminal state, i.e., the
value of its substate vector - when it passes control back to GSS - depends solely upon its initial
state, i.e., the initial value of its substate vector, and the rules within the process. When
processes in another model share a part of the state vector of a given model, then any future state
of the given model is, in general, dependent upon the rules in the other model, since they can
change the given model's state vector.

Analogy To Symbolic Models Using State Space

The state space representation of a GSS model, Figure 3, is analogous to a set of
equations that represent the state of a dynamic system at any instant in time. All future states are
represented by the equations of motion in state space notation, and the initial conditions,
reference Gelb, [7]. Electrical engineers have become accustomed to a graphical representation
of the differential equations of electrical circuits, using interconnected icons of resistors,
capacitors, inductors, generators, transistors, transmission lines, etc., refer to Figure 4. Such a
drawing defines the differential equations of motion of the changes in electrical voltages and
currents in the circuit. Given the initial conditions, the state of the circuit is defined for all time
thereafter. In other words, the total dynamical description of the network is defined by the
symbolic network.

Figure 4. Iconic representation of an electrical network.

In GSS, the interconnection of resources and processes, as shown in Figure 2, is
analogous to the electrical circuit drawing in Figure 4. Each has its corresponding rules and
storage underlying each primitive element. In the case of electrical circuits, there are constituent
equations that describe the changes in energy storage in differential form for each primitive icon.
Representation of any system element must conform to this form of change.

Prediction Systems, Inc. Parallel Processing Page 12

In the case of GSS, sets of rules operate on sets of attributes (contained in resources) to
define the elementary change relationships in a model. The engineering drawing shown in Figure
2 and the underlying rule and data structures, define the total state of the simulation at any point
in time after the initial conditions. This is known as the generalized state space framework.

Choosing the Most Convenient Reference Frame

As described above, the generalized state space framework, as implemented in GSS,
supports the representation of discrete event systems as well as discrete time and continuous
systems. Figure 5 illustrates that generalized state space provides the underlying fi-amework for
representing dynamic systems.

CONTINUOUS
SYSTEMS

DISCRETE
TIME

SYSTEMS

DISCRETE
EVENT

SYSTEMS

GENERALIZED STATE SPACE FRAMEWORK
GSS-STATE 5/11/03

Figure 5. Generalized State Space framework for representing dynamic systems.

The difference between representations of a system's dynamics is a matter of
convenience. A particular representation can be selected to support the economics of analyzing
or predicting specific system behavior. If a system is conveniently represented by a set of
differential or difference equations, then one of those representations might be best. If the system
is more easily described by sets of rules operating on sets of attributes, then that representation
should be chosen.

Since the advent of the digital computer, people have moved from analytical methods for
integrating differential equations to numerical methods, especially when the systems represented
are either nonlinear or nonstationary. Fast numerical algorithms for solving stiff nonlinear
systems typically use complex heuristic approaches. What is interesting is that these approaches
can be implemented more explicitiy using GSS rule and attiibute structures. As computers
provide significantiy greater memory and speed advantages, the space for solving problems is
growing, alleviating restriction to numerical methods for solution, and moving rapidly toward
heuristic rule based approaches using complex data structures. These approaches are compared
in Simulation Of Complex Systems, [10].

Having selected GSS as the overall fi-amework, the analogy then becomes one of
selecting the best set of information vectors (GSS Resources) to represent the system attributes.
Depending upon how the resources are selected and structured, the rules (GSS Processes) may be
much more simple to understand, build, and modify. This is determined by the independence
properties of the architecture, i.e. the interconnection of resources and processes - not the code!

Prediction Systems, Inc. Parallel Processing Page 13

Reusability Analogy

In the case of electrical circuit modeling, a transistor model may require a significant
effort to build and validate. Once completed, that model can be shared in many different
simulations, as well as hundreds of instances used in a given simulation. Similariy, for models
built using GSS. Development and validation may require significant effort, whereupon a given
model can be shared in many different simulations by different organizations, as well as appear
in hundreds of instances in a given simulation.

Complex models of electrical elements, such as transistors and transmission lines, maybe
made up of the primitive elements, and represented by higher order symbols. One can push down
on these symbols and bring up the primitive representations that show all the detail underiying
the model. More complex networks, such as groups of digital circuits in the form of gates and
flip-flops can be represented using another level of hierarchy. In this manner, complexity is
pushed down to the level that one wants to see it, and removed from view when it only serves to
cloud the picture. This aids in both the understandability and reusability of a model.

Similariy, one can represent complex models in GSS using a hierarchy of models,
wherein higher level icons are used to represent the highest level of a model, and one can push
down as many times as needed to get to the primitive layer. In GSS, the primitive layer consists
of resources and processes. This also aids in model understanding and reusability.

An Alternative Approach To Generalized State Space

In 1987, Ramadge and Wonham, [11] and [12], described the need to use English words
as states in a control system. They introduced the notion of alphabets to deal with these non-
numeric states. Their finite-state machine approach is somewhat different than that of the
generalized state vector, particulariy in the implementation of models describing complex
systems. However, it appears that the underiying effect of these two concepts is essentially the
same. Although there are no journal publications on this method, the generalized state space
approach is documented in copyrighted GSS User's Manuals and PSI books on model
development going back to 1982 and 1983. It is believed that these approaches were conceived
independently.

Prediction Systems, Inc. Parallel Processing Page 14

4. PHASE I TECHNICAL OBJECTIVES

In Phase I, PSI proposed to design and demonstrate a CAD tool that subject area
experts/engineers can use directly to generate both their software and simulations. Our intent
was to provide an interface that applications engineers relate to easily, rather than using
expensive parallel computer programmers to translate their problems. Such a tool can generate
efficient parallel computer code automatically if the user interface and resulting software are
designed properly. Furthermore, if the application engineer wants to use a different MPP
platform, his CAD tool interface should remain identical, generating the required software. This
concept is illustrated in Figure 6.

PROPOSED SOLUTION

RUN-TIME
SOFTWARE

HARDWARE

Figure 6. CAD tool approach - designing the software first.

Since PSI has already developed the visual CAD technology that: (1) provides users with
a graphical architecture environment to design independent software modules; and (2) contains
the architectural database needed to support the parallel processor run-time environment, the
object of this research has been to analyze the architectural database so that it could be used to
modify the run-time environment that optimizes the allocation of parallel processors to
processes. Without information on the application software architecture, the allocation process is
naive and effectively random.

The research performed in Phase I derived the pertinent statistics from our large software
database so that they can be analyzed for pragmatic design decisions in preparation for Phase II.
In Phase II, we will build and test candidate design approaches using actual systems and
simulations, leading to a selected product for Phase III. Having already performed an analysis on
this problem, we have determined that selection of a parallel processor technology for testing is
an important part of this effort. This selection is addressed under our plan for Phase II.

Prediction Systems, Inc. Parallel Processing Page 15

5. OVERVIEW OF THE USER INTERFACE TECHNOLOGY

When PSI designed its CAD environment for discrete event simulation, the two major
issues addressed were: (1) the difficuhy of building valid models; and (2) the time to run a
realistic scenario. The difficulty in building valid models was due to the complexity of the
software. Run time may have been reduced by parallel processing, but the investment was huge
and risky. To address these issues, PSI developed a CAD approach that leads directly to
effective use of highly parallel processors. We note that software applications are considered
easier to implement on a parallel computer than discrete event simulations because of the
requirements to (1) synchronize each process with the main simulation clock; and (2) ensure
synchronized data coherency to meet validity requirements. From this standpoint, we consider
the software problem to be a subset of the simulation problem.

Separation Of Data From Instructions For Efficient Processor Allocation

In software, separating data fi-om instructions violates the OOP rules, hi the hardware
world, this paradigm is not new. Data and instructions are separately stored and managed on
today's chips. PSI considers this an essential software paradigm for effective use of parallel
computers, where one has to allocate processes to processors efficiently. This implies knowing
which processes can run concurrently, which implies that they must be independent,
hidependence is effectively determined by whether or not they share data. If allocation is to be
done automatically, the allocation manager must have the information on who shares what data.
PSI's technology is built upon this concept. The most significant paradigm shift in our
development environment is the separation of data fi-om instructions.

The resulting properties of our technology provide enormous benefits. First is the ability
to represent software graphically, with a one-to-one mapping from the drawing to the code.
Second is that software architectures can be designed and reviewed from an engineering
standpoint to determine module independence. Third is the resulting connectivity map of what
processes share what data. Fourth is what processes reside inside what modules. If modules are
independent, then processes within those modules are best migrated to the same processor. This
information is stored in our run-time as well as development databases. It is this information that
provides our ability to optimize the allocation of processes to processors to maximize run-time
efficiency. These benefits are best described by an example.

Prediction Systems, Inc. Parallel Processing Page 16

/ VBR
(CELC
V WORKSPACE

GENERATE_
VBR
CELLS

SEG AND REAS SUBLAYER

SR PROCESSOR

ENTER_CS
REG IN_

SR Q

^

SR_TO_
SWITCH,
PACKET

-4 PARAMETERS -

INTERRUPT,
CEL_

GENERATION

ENTER_NET_
REQ_IN_

SR_Q

GENERATE,
CBR_
CELLS

CBR_ \
CELL

WORKSPACE/

(SR)

1
QUEUE

SR
QUEUE

QUEUE

SR QUEUE

ATMSWICH 8/8/02

Figure 8. SEG_&_REAS_SUBLAYER module.

RESOURCE NAME: MESSAGE_FORMATS

STANDARD_MESSAGE
1 SYNC_CODE

ALIAS

1 TYPE

1 CONTENT

CHARACTER 5
VALID_CODE VALUE '10101'

'OIOIC
STATUS FORMAT_A

FORMAT_B
CHARACTER 46

FORMAT_
1

A
PAD

REDEFINES STANDARD_MESSAG E
CHARACTER 13

1 HEADER
2

A
MESSAGE PRIORITY STATUS FLASH

PRIORITY
ROUTINE

2
2

ORIGIN INDEX
DESTINATION INDEX

ALIAS BROADCAST VALUE 0
1 BODY

2
_A

BODY LENGTH INTEGER
1 TRAILER A

2 MESSAGE NUMBER
2 TIME SENT
2 TIME RECEIVED
2 ACKNOWLEDGMENT

INTEGER
REAL
REAL
STATUS RECEIVED

NOT RECE
2 LAST SYMBOL CHARACTER 2

FORMAT_B
1 PAD
1 HEADER_B

2 SOURCE
2 SINK

1 BODY_B
2 CONTENTS

ALIAS TERMINATOR VALUE '\\', '//', '<<','>>'

REDEFINES STANDARD MESSAGE
CHARACTER 13

INDEX
INDEX

CHARACTER 42

Figure 9. A resource - a hierarchical data structure.

Prediction Systems, Inc. Parallel Processing Page 19

PROCESS: SR_PROCESSOR ~

RESOURCES: SR_TO_CS_PACKET INSTANCES: NODE
SR_PARAMETERS
SR_QUEUE_INTF
SR TO SWITCH PACKET

PKT_SR_PROCESSOR
EXECUTE GET_SR_MESSAGE
EXECUTE PROCESS_SR_MESSAGE
IF QUEUE_STATE IS NOT EMPTY

SCHEDULE SR_PROCESSOR
IN PROCESSING_TIME MICROSECONDS USING NODE

ELSE SET PROCESSOR_STATUS(NODE) TO IDLE.

GET_SR_MESSAGE
SET SR_QUEUE_INTF REQUEST TO DEPART
CALL SR_QUEUE USING NODE

PROCE S S_S R_ME S SAGE
IF PACKET_TYPE IS A CELL

EXECUTE PROCESS_CELL
ELSE IF PACKET_TYPE IS A REQUEST

EXECUTE PROCESS_REQUEST
ELSE EXECUTE INVALID_PACKET_TYPE.

PROCESS_CELL
MOVE SR_QUEUE_INTF MESSAGE TO SR_TO_SWITCH_PACKET
IF SR_TO_SWITCH_PACKET DESTINATION IS EQUAL TO NODE

EXECUTE CHECK_PAYLOAD_DEST
ELSE IF SR_TO_SWITCH_PACKET SOURCE IS EQUAL TO NODE

EXECUTE CHECK_PAYLOAD_SOURCE
ELSE EXECUTE INCORRECT_NODE.

CHECK_PAYLOAD_SOURCE
IF PAYLOAD_TYPE IS USER_VOICE

EXECUTE PROCESS_CELL_VOICE_SRC
ELSE IF PAYLOAD_TYPE IS USER_DATA

EXECUTE PROCESS_CELL_DATA_SRC.

CHECK_PAYLOAD_DEST
IF PAYLOAD_TYPE IS USR_VOICE

EXECUTE PROCESS_CELL_VOICE__DEST
ELSE IF PAYLOAD_TYPE IS USER_DATA

EXECUTE PROCESS_CELL_DATA_DEST.

PROCESS_CELL_DATA_SRC
EXECUTE GET_MESSAGE_INFO_CELL
INCREMENT MESSAGE CELLS_TRANSMITTED
EXECUTE UPDATE_MESSAGE_INFO
IF MESSAGE CELLS_TRANSMITTED IS EQUAL TO MESSAGE CELLS TO TRANSMIT

EXECUTE GET_NEXT_MESSAGE. ~ ~
CALL ENTER_USER_REQ_IN_VC_Q USING NODE

(This process is incomplete - 2 additional pages are not
shown!)

Figure 10. A process - a hierarchical set of rules.

Prediction Systems, Inc. Parallel Processing Page 20

To insure independence of modules, PSI has developed a set of architectural design rules
that can be enforced automatically as the designer builds modules graphically. This involves
viewing a module as an N-port module as used in electronics hardware design. By limiting the
number of lines (wires) at a port to two, the independence of modules is ensured. Note that we
have not considered any aspects of coding, which in VSE or GSS is confined to the language
environment. We have only analyzed the module architecture - graphically! These design rules
assure ease of module understandability and independence, and therefore real reuse. They are the
major reasons we have been able to build and validate the world's largest simulations at very low
cost. This same technology is ideally suited to make effective use of highly scalable parallel
processor computers.

Another departure from typical software is the integrated management environment of
VSE and GSS that completely fa-acks the architecture behind the scenes, and contains the
databases to determine both spatial and temporal independence at run-time. Modules are tracked
through all of the hierarchical levels needed by the designer to control design complexity. Every
resource and process is fracked relative to what processes have access to what resources within
multiple module instances. This database can be used to adaptively manage the allocation of
parallel processor resources during run-time based upon knowledge of module instance
independence at any level in the hierarchy. Load balancing can be achieved concurrentiy through
selected instance migration. This critical information is not available anywhere else!

We will now relate the number of module instances to opportunities for parallelism. As
the top level modules, e.g., a switch, take on higher degrees of complexity, they become
significant opportunities for highly efficient parallel processing. If the switch is modeled along
physical lines, its physical counterpart operates concurrentiy with its neighbors. Therefore,
independent module instances in a simulation can also run concurrentiy in a parallel processing
environment. Such instances are not limited to simulation, but exist frequentiy in real-time
control and communication systems.

Based upon this concept, our hypothesis is as follows: As the number of instances of a
complex independent module increases, the number of parallel processors that can be used
effectively increases proportionately, just due to the independent module instances. Similar
opportunities for effective use of processors can also be obtained within a top level module
instance, down to the process level. This is because of the hierarchical design and resulting
scope of a VSE or GSS process.

For example, the ATMTRANSCEIVER within the ATMSWITCH in Figure 7 can
have 20 instances (one for each port), all tied to the same instance of a switch. A scenario of 100
switch instances can invoke a total of 2000 ATMTRANSCEIVERs. We can envision many
instances of subscribers as well as other packet and circuit switches running concurrentiy,
interfacing with each other through links or gateways. Each of these instances can run
concurrentiy since almost all of the processes and resources are interior to the instance and
therefore independent of the other instances.

Prediction Systems, Inc. Parallel Processing Page 21

Quantifying The Importance Of Software Architecture.

To better understand this typical architectural phenomenon, consider the modules in
Figure 11.

MODULE K

SUBSCRIBER

INSTRUMENTATION

SWITCH

MODULE 3

MODULE 2

MODULE 1

SUBSCRIBER

INSTRUMENTATION

SWITCH

LINK
€EHi>

RUNTIME 8/&02

Figure 11. Independent instanced modules connected by an interface.

The top level modules in Figure 11 are drawn alike for simplicity, but in fact may be
different types or instances of the same type. As an example, we will consider an MSS
simulation with 100 circuit switches, 50 packet switches, and 50 ATM switches. Consider that
each instance of each switch is part of a single module along with its corresponding subscriber
submodule instance that generates and receives voice calls and data messages and files, and its
instrumentation submodule that takes measures of traffic. These large submodules are the largest
part of each module. A link interface submodule also exists connecting each top level module.
Except for the two processes connected fi-om each module to the interface, all other processes in
each module are independent of those in any other module, i.e., they share no other resources
between modules. This is done by design - of the software architecture.

Prediction Systems, Inc. Parallel Processing Page 22

6. OVERVIEW OF THE RUN-TIME TECHNOLOGY

Significant work has been done by PSI on prior projects for the Army as well as DARPA
toward development of the required run-time technology. This work covers the use of the
module architecture knowledge described above as well as knowledge of the independence of
individual processes at the module boundaries to determine what processes can run concurrently.
This work includes development of the protocols required to ensure data coherency of resources
shared across module boundaries and used by processes in different processors. It includes the
synchronization of scheduled processes running on separate processors in a simulation. It
provides for controlled variations in synchronization that ensure validity of results of a
simulation - something not provided by other approaches, e.g., the Time-Warped Operating
System, and its derivatives (e.g., SPEEDES). It provides for optimal ordering and scheduling of
p-threads.

Figure 12 below provides a top level view of the proposed design for the VSE/GSS run-
time environment for an MPP environment. In addition to the Process Scheduler, there is a
Processor Allocator to allocate processes scheduled at the current time (or within a pre-defined
ATmax in a simulation) to the available processors. We plan to use standard OS level calls to
assign parallel threads (p-threads) to processors. This will provide the ability to allocate specific
processes to specific processors.

VSE / GSS RUN-TIME ENVIRONMENT

TASK or SIMULATION

PROCESS 1

PROCESS 2

PROCESS N

PROCESS
SCHEDULER

PROCESSOR
ALLOCATOR

RUNTIME 8/12/02

OPERATING
SYSTEM

Figure 12. Connection between the VSE process scheduler and the processor allocator.

Prediction Systems, Inc. Parallel Processing Page 23

There are additional mechanics of this environment to be characterized, e.g., the nature of
the dynamic changes to the schedule versus the state at time T. This will affect the algorithm
design for optimal ordering in minimal time. Instanced modules create special submatrices of the
connectivity matrix that are independent. These become candidates for quasi-independent queue
management, potentially in separate processors. PSI's work in discrete event simulation for the
past 20 years has provided us with significant knowledge of solutions to these types of problems.
In addition, processor load balancing must be considered in more detail, but this has been the
subject of much prior research, both at PSI and elsewhere. Finally, marrying this new technology
to hardware must be started in the architectural design stages. We have worked with many
hardware vendors in the past, and are prepared to work with them again.

Summarizing The Importance Of The Software Environment

Given applications with a high degree of inherent parallelism and very efficient parallel
computers, their effective use comes down to three major factors. First is ensuring that full
advantage can be taken of the inherent application parallelism - a software design problem.
Second is balancing the load - a run-time software problem. By separating data from instructions
and using the visual development environment that PSI has already developed, we have the
software architectural knowledge to do both well. The third and most important factor is making
it easy for the subject area experts to describe their problem, without having to twist it into a
special computer language. PSI's success in CAD tools for building very complex discrete event
simulations and software tools has already demonstrated the ease with which this is done. We
feel confident in our ability to bring large scale parallel processing power into the mainstream of
computing via ease of use - the winning "WinTel" approach.

7. INSTANCED MODELS

Using the new parallel processing version of GSS, users will be able to define multiple
instanced models, i.e., define the number of instances of a model and build instanced model
hierarchies. This simplifies descriptions of both the model information structures and the model
rule structures. It eliminates the need for pointers at the language level. Pointers are eliminated
from both the model information structures and the model rule structures. Instances are declared
at the architecture level and when specific instance events are scheduled to run. Otherwise, there
is no need to distinguish between model instances. By definition, all instances behave the same.
What they do depends upon their individual state vectors of information at a particular instance
of time. Specifically, GSS provides for the following:

• The user defines the quantity of model instances and the name of the model
instance pointer in the architecture environment when creating or modifying a
model.

• Every resource within the model is automatically translated into multiple
independent instances (copies), one for each of the model instances.

• Hierarchical instances can be defined by declaring the different model instances
at corresponding layers of the model hierarchy.

Prediction Systems, Inc. Parallel Processing Page 24

DEFINITIONS

Classes Of Models And Their Elements

• INTERIOR AND INTERFACE ELEMENTS - Processes (resources) are interior
elements of an elementary model if they have no shared interfaces with resources
(processes) outside that model. They are interface elements if they do have such
shared interfaces. The interior elements of an elementary model are interior to any
higher level model containing the elementary model.

• INTERIOR AND INTERFACE MODELS - Models are interior to a hierarchical
model if they contain no elements with shared interfaces outside that hierarchical
model. They are interface models of that hierarchical model if they do have elements
with such shared interfaces. Models that are interior at a given level of a hierarchy
are interior to all higher levels.

• INSTANCED RESOURCES - Resources are defined to have multiple instances
when they are elements of an instanced model at the architectural level. This implies
that, at run time, each instance of that resource exists as an independent copy of that
resource and is referenced by a unique name determined fi-om the resource name and
instance number.

• INSTANCED MODELS - Models can be defined to have multiple instances at the
architectural level. This implies that, at run time, each instance of the model must
have an independent copy of every resource in the model, corresponding to instanced
resources. When invoked at run time, processes contained in an instanced model are
assigned instance numbers that reference their corresponding resource instances.
Processes in one instance cannot share resources in another instance.

• HIERARCHICAL INSTANCED MODELS - Instanced models may be defined
within instanced models hierarchically. Resources contained in the lowest level
instanced model will have as many independent copies as the product of the
successive instances in the hierarchy. These will be referenced by a unique name
determined fi-om the resource name and successive instance numbers. When invoked
at run time, processes contained inside the lowest level instanced model are assigned
instance numbers that reference the corresponding hierarchy of resource instances.

• SHARED INTERFACES - Models that are connected by shared resources have
shared interfaces. For example, two models have a shared interface if a process
inside one model shares a resource with a process inside another model. The shared
resource is the shared interface.

Prediction Systems, Inc. Parallel Processing Page 25

Classes Of Independence

SPATIAL INDEPENDENCE - Two processes are spatially (memory) independent if
they share no resources (memory), independent of time. Two models are spatially
independent if every process in one is independent of every process in the other, i.e.,
they have no shared interfaces. Interior processes of an instanced model are spatially
independent from those of other instances of the same model. Model instances are
spatially independent if they have no shared interfaces. Interior model instances are
spatially independent. From here on independent will imply spatially independent.

TEMPORAL INDEPENDENCE - Processes (models) can be independent in a given
instance of time, but dependent in another instance of time. If two processes are using
the same instance-pointer value to reference a resource in an instanced model at the
same time, then they are not independent at that time. However, if at another time they
reference mutually exclusive instance-pointer values for that same resource, they are
independent.

Classes Of Schedulers

SYNCHRONIZED SCHEDULERS - Spatially independent processes can run
concurrently in the same time instance, independent of time, and are thus candidates
for local scheduling on separate processors by schedulers synchronized by time
instances, but otherwise independent.

Processes interior to a model or model instance can be scheduled by a synchronized
scheduler provided they are not scheduled with another scheduler and do not share
resources with a process scheduled with another scheduler.

MASTER SCHEDULER - Processes that are only temporally independent must be
scheduled by a master scheduler since they are not spatially independent.

Predicrion Systems, Inc. Parallel Processing Page 26

GENERAL RULES AND CASES

As described in the final report Visual Software Development For Parallel Machines,
[13], most of the opportunities for inherent parallelism occur with instanced models. This is
based upon the assumption that model instances are independent, i.e., except for the possibility
of one or two processes at the boundary, processes in one instance cannot share resources in
other instances. Along with these opportunities come considerations for automating the design
approach to instanced models. Before describing the detailed design for interprocessor time and
space (memory) synchronization, we will investigate the architecture of instanced models and
their interconnections.

Figure 13 illustrates many of the design issues to be considered relative to using instanced
models. If RECEIVER in RADIO schedules R_F_LINK in R_F_LINK, it can specify the
SOURCE and DEST instances and thereby expect RELINK to be tied to the correct instance of
LINKINFORMATION. Since the instance of RECEIVER is known when the schedule
statement is invoked, the instance of the TRANSCEIVER resource can be passed implicitly to
RF LINK as well.

RADIO (TRANSCEIVER) R_F_LINK(SOURCE, DEST)

TPS ^ TRANS

^^
^ R_F_LINK

' UNK \
, CONTROL j 1 ChlVER

^

—^

\ \ / y r

\ N
(™) RECI

i^ f UNK >
INFORMATION ^**^

\
► PROCESS

UNK EVER^^^

MODEL 3 3/03/03

Figure 13. Example of an architecture with instanced resoiirces.

Alternatively, if R_F_LINK schedules RECEIVER, it can specify the TRANSCEIVER
instance. Since R_F_LINK is tied to a specified instance of LINK_INFORMATION, these
instance pointers could be passed implicitly to RECEIVER also.

If, however, TPS schedules RECEIVER, there is no way to know automatically from the
architecture what instance of LINKINFORMATION the RECEIVER process should be
connected to. Therefore, this connection, shown in red, cannot be allowed with this type of call
or schedule statement.

Prediction Systems, Inc. Parallel Processing Page 27

Figure 14 presents a similar case when KP in MODELS schedules LP in M0DEL_2. In
this case, there is no way to pass on the pointer automatically to resource TRS in MODEL 1.
This implies that, if a resource is to be shared between MODELl and M0DEL_2 when LP is
called from outside MODELl, that resource must reside within MODEL 2.

MODEL. 1 (INSTANCE) M0DEL_2

"\-^
 1 TRS

^
^

^

\ \ —•< / \ \"

TRR y TPR ^

y^
__.-.-^ " \ \

\. \

KR
5i »

KP

MODELS 03/03/03 M0DEL_3(INST_1, INST_2)

Figure 14. Example of another architecture with instanced resources.

There appears to be a generic rule that applies to Figures 13 & 14. When a process
connected to an instanced resource is scheduled, the instance pointers for that resource must be
specified automatically from the architecture, i.e., explicitly via the instance pointers in the
schedule statement or implicitly based upon residence within an instanced model. In the case of
the instance pointers, they must match an instanced model containing the resource; else the
connection cannot be made automatically.

Prediction Systems, Inc. Parallel Processing Page 28

CALCULATING RADIO CONNECTIVITY

One of the most common models encountered in communications system analysis is that
used to represent a large number of radios or switches interconnected in a network. Switched
systems are generally fixed in space, and their interconnections do not change with time, i.e.,
their connectivity is generally time-invariant. Radio systems are usually mobile, and their
connectivity can vary significantly with time. The propagation calculations required to determine
connectivity can take considerable processing time and are of particular interest here.

Figure 15 uses a radio model as an example. Each radio can have links to many others.
A radio can only operate properly on one link at a time. However, the receiver model must
account for the potential interference coming from other radios that are fa-ansmitting at the same
time. Therefore, each radio must be connected to an environment model that provides for all of
the possible cross-link connections between radios.

RADIO.MODEMO

STACK MODEL

TPR1 TPS1

c^y -C^D
MODELS - 03/01/03

XCVR MODEL

LP_
OUTBOUND

<^}
LP

INBOUND

ENV_MODEL(i, j)

GED

Figure 15. Example of good architecture for instanced resources.

The radio model in Figure 15 has an instance(i) for each radio. The environment model
has an instance for each destination receiver(j) coupled with each source ti-ansmitter(i). All
environment link instances (i, j) may operate concurrentiy, just as each radio can operate
concurrently, hi the case of collision analysis, i.e., when two or more ti-ansmitters transmit to
more than one receiver at the same time, it is necessary for the model to have access to all link
information at the same time. When an instanced model interfaces with a noninstanced model,
the noninstanced model can present a bottleneck that, depending upon the architecture, can be
significant.

When source radio(i) ti-ansmits to destination radio(j), it does so through link(i, j). The
environment model instance(i, j) gets scheduled from radio(i) to h-ansmit a message to radio(j).
Environment model instance(j, i) then schedules radio(j) to receive the message. For this to work
correctiy, the architecture must support process calls and schedules that automatically invoke the
desired instance-pointers.

Prediction Systems, Inc. Parallel Processing Page 29

INSURING MODEL INSTANCE INDEPENDENCE

For model instances to be independent, processes in one instance must not share any
resources in another instance. Except for the interface resources, this is true for the architecture
in Figure 15. With this architecture, each radio model instance can reside on a separate
processor. Likewise, each environment model instance can reside on a separate processor. It
may be better that environment model instances reside on the same processor as the
corresponding radio model instances to minimize the time to move data between processors.
This is shown in Figure 16. This may be a trade-off between operating in parallel and operating
sequentially. However, message transfer implies a degree of sequential processing between
corresponding instances of affiliated models, and this architecture may also be best for a single
processor.

Consider that radio instance(l) transmits a message to radio instance(2&4). This is
accomplished by having instance(l) of process LPOUTBOUND scheduled with the message to
go out. Since LPOUTBOUND only interfaces with resources that are interior to
RADI0_M0DEL(1), the instance pointer, 1, is passed implicitly. In this case, the message is
placed in LRL(l).

LPOUTBOUND then schedules EPl 1 as the transmitter for radio 1. EPl 1 uses instance
LRL(l) to get the message as well as ERl 1. This allows process EPl 1 to transfer data from
LRL(l) to the selected receiver resources ER21 and ER31, and schedule EP21 and EP31 on
computers 2 and 3.

On computer 2, EP21 schedules LPINBOUND to receive the message, passing the
pointer to ER21 where the message is currently stored. LPINBOUND then takes the message
from ER21 and places it in LRL. Similarly, on computer 3, EP31 schedules LPINBOUND to
receive the message, passing the pointer to ER21

This sequence of events represents what typically occurs in a real communication system
where most of the events are occurring concurrently with other events. We note that the transfer
of messages from radio(i) to radioO) can be sequential. However, many pairs of radios can be
doing similar transfers concurrently, and this is where the inherent parallelism exists. This
parallelism is best realized in a simulation if the model architecture follows the same physical
design as the architecture of the real system.

In the case that one must process information from all instances concurrently, e.g., when
doing calculations based upon signals from every radio, then a utility model can be called from
the environment model. This utility can store information on every link. It becomes a potential
bottleneck in that it may be used by every instance. However, it may be used infrequently,
typically only when there is movement or power changes in radios. This implies that, on the
average, links operate independently, occasionally requiring cross-link calculations for all links.

Prediction Systems, Inc. Parallel Processing Page 30

TERMINAL_M0DEL(1) |ENV_MODEL(I. 1)
(on Computer 1)

RADIO_MODeL(1)

TERMINAL_M0DEL(3)
(on Computer 3)

RADI0_M0DEL(3)

XCVR MODEL

LP_
OUTBOUND

LRL V

LP_
INBOUND

ENV_M0DEL<3, 3)

ENV_MODEL(3,4)

EP34

I ER34)

|ENVMODEL(2,I)| TERMINAL_M0DEL(2)
(on Computer 2)

RADI0_M0DEL(2)

XCVR MODEL

TERMINAL_M0DEL(4)
(on Computer 4)

MODELS-04/28rt33

Figure 16. Example of a parallel architecture for instanced resources.

Prediction Systems, Inc. Parallel Processing Page 31

INSTANCE POINTER VALUE RULES

To specify an instance from outside an instanced model, the instance values (up to a
maximum of 6) are assigned by the model in a schedule or cancel statement. The general format
for a schedule statement is as follows.

SCHEDULE processname INSTANCE instance_pointer_l,..., instance_pointer_n

When a process starts to execute, the instance pointers defined for models containing that
process hold the current values of the instances that the process represents. These instance
pointers are used to automatically attach the proper resource instances to the process when it
runs. Instance pointers are also available for use by the process in a read-only mode, i.e., values
of model instance pointers cannot be changed by processes within that model instance. When
one process is scheduled by another in the same model instance, the instance pointers are passed
implicitly and must not appear in the argument list. Because model instances must be
independent, processes in an instance cannot schedule any in a different instance of the same
model.

Referring to Figure 15 above, TPSl can SCHEDULE LPOUTBOUND with the pointers
back to the proper instance of TRSl being automatically invoked. If LPOUTBOUND
schedules EPl in ENV_MODEL(i, j), then it must explicitly use the form:

SCHEDULE EPl INSTANCE source, dest,

where source, dest can be any property defined numeric attributes or literals. Note that trying to
connect LPOUTBOUND directly to ERl would not be permitted architecturally, since there is
no way for LPOUTBOUND to attach to the proper instance of ERl when scheduled by TPSl.
This follows from the independence properties. EPl can schedule LPINBOUND.

CALL STATEMENT RULE

CALL statements are sequential; they cannot be used to increase the number of
concurrent processes (parallel paths). They directly control any processes they invoke at the
time, rendering them nonindependent from the calling process. Calls from instanced models will
automatically carry the current value of the instance pointer to the called process. If independent
models are to be run concurrently, they must be scheduled. Calls may serve to invoke a process
on another processor, e.g., a utility, but this may not be an efficient way to use the processors
containing either the process or the call statement. Multiple copies of frequently called utilities
are a more effective solution if they can run in parallel. This represents the typical time memory
tradeoff, with memory being relatively inexpensive today. This leads to the desire for utilities
that can be copied (or instanced) to be distinguished from those that can't.

Prediction Systems, Inc. Parallel Processing Page 32

MODEL INSTANCE CASES OF CONCERN

Case 1 SCHEDULES, CANCELS & CALLs from a noninstanced model to an
instanced model.

Referenced model (process) instances must be identified by specifying a value for the
instance pointer, i.e., SCHEDULE process_name INSTANCE instance_pointer.

Case 2(a) SCHEDULES, CANCELS, & CALLs within the same model instance.

References to the instance pointers of processes within the same instance are implicit,
being resolved automatically by the process translator and run-time monitor. Values of
the instance pointers of a model are read-only by processes within that model, and cannot
be changed by them.

Case 2(b) SCHEDULES, CANCELS & CALLs across instances of the same model.

References across instances of the same model must be accomplished by using a shared
interface in a separate model. Direct references are not permitted across different
instances of the same model.

Case 3(a) SCHEDULES, CANCELS, & CALLs from an instanced model to a
noninstanced model.

The instance pointer of the referencing process is passed automatically to the referenced
process by the run-time monitor, without any explicit reference to point back to the
resource instances in the referencing model that the referenced process shares with it.

Case 3(b) SCHEDULES CANCELS & CALLs from one instanced model to another
instanced model.

The modeler must identify the referenced process instance by specifying a value for the
instance pointer, i.e., SCHEDULE processname INSTANCE instance_pointer. Again,
pointers to resource instances within the referencing model that are shared with the
referenced model are automatically passed to the referenced process.

Prediction Systems, Inc. Parallel Processing Page 33

2a

2b

3a

3b

CASES

SCHEDULES, CANCELS & CALLS
from a noninstanced model to an
instanced model

SCHEDULES, CANCELS, & CALLs
within the same instance

SCHEDULES, CANCELS & CALLS
across instances of the same model

SCHEDULES, CANCELS, & CALLS
from an instanced model to a
noninstanced model.

SCHEDULES CANCELS & CALLs
from one instanced model to another
instanced model

SINGLE PROCESSOR

Referenced model (process) instances must be identified
by specifying a value for the instance pointer, i.e.,
SCHEDULE process_name INSTANCE instance_pointer.

References to the instance pointers of processes within
the same instance are implicit, being resolved
automatically by the process translator and run-time
monitor. Values of the instance pointers of a model are
read-only by processes within that model

References across instances of the same model must be
accomplished by using a shared interface in a separate
model. Direct references are not pennitted across
different instances of the same model

The instance pointer of the referencing process is passed
automatically to the referenced process by the run-time
monitor, without any explicit reference to point back to the
resource instances in the referencing model that the
referenced process shares with it

The modeler must identify the referenced process
instance by specifying a value for the instance pointer, i.e ,
SCHEDULE prDcess_name INSTANCE instance_pointer.
Again, pointers to resource instances within the
referencing model that are shared with the referenced
model are automatically passed to the referenced process

PARALLEL PROCESSORS

Referenced model (process) instances must be identified
by specifying a value for the instance pointer, i.e.,
SCHEDULE process_name INSTANCE insfance_pointer.

References to the instance pointers of processes wKhin
the same instance are implicit, being resolved
automatically by the pnxess translator and run-time
monitor Values of the instance pointers of a model are
read-only by processes within that model.

References across instances of the same model must be
accomplished by using a shared interface in a separate
model Direct references are not penmitted across
different instances of the same model.

The instance pointer of the referencing process is passed
automatically to the referenced process by the njn-time
monitor, without any explicit reference to point back to the
resource instances in the referencing model that the
referenced process shares with it.

The modeler must kientify the referenced process
instance by specifying a value fof the instance pointer, i.e..
SCHEDULE process_name INSTANCE instancejxjinter.
Again, pointers to resource instances within the
referencing model thai are shared with the referenced
model are automatically passed to the referenced process.

Prediction Systems, Inc. Parallel Processing Page 34

GENERAL RULES

When a process in an instanced model is scheduled or called, the instance pointers
must be specified explicitly if not implicitly. The values of the pointers are set as
follows:

When referenced from a process outside the model, the model instance must
be specified as an instance_pointer after the process name.
Example: SCHEDULE process_name INSTANCE instance_pointer

When referenced from a process inside the same model instance, the
instance pointer must not appear in the instance_pointer list.

When a process within an instanced model references another process in that same
instance, it automatically invokes the same instance pointers. No arguments are
specified relative to the common model instances after the process name.

References to hierarchical model or other multiple instance pointers must be
ordered as specified in the instance pointer list of the process being called. This
must be in the order of the hierarchy, from the top down, with instance pointers that
do not reference model instances going last.

If a process within a hierarchically instanced model is scheduled from outside a
subset of the instances, only the new instance pointers must appear in the instance
pointer list of the process, in order from the top of the hierarchy down.

Reuse of instance-pointer names in resources attached to any process interior to an
instanced model must be qualified.

Prediction Systems, Inc. Parallel Processing Page 35

CREATING AND ADDRESSING INSTANCED MODEL RESOURCES

Since the quantity clause will not be used explicitly to create multiple copies of the
instanced resources inside instanced models, these will be created automatically by the GSS
translators and monitors. These will be created as instanced data structures, each with their own
names, e.g., RES9901 [m], RES9962[m,n], etc. Subscripted C pointers will be equated to these
structure instances during model initialization by assignment statements as follows:

39901(0001)
59901(0002)
89901(0003)

&RES9901(0001)
&RES9901(0002)
&RES9901(0003)

Actual Pointer values

59962(0001, 0001) = &RE59962(0001 0001
59962(0001, 0002) = &RES9962(0001 0002
59962(0001, 0003) = &RES9962(0001 0003
59962(0002, 0001) = = &RES9962(0002 0001
59962 (0002, 0002) = &RES9962(0002 0002.

Actual Pointer values

Up to six levels of model instancing are allowed, including any QUANTITY levels of
hierarchy within the lowest level model. These C pointers can then be passed via C
function calls as follows.

next_process_function(S9901 (instance_pointer_l),
S9962(instance_pointer_2, instance_pointer_3))

Prediction Systems, Inc. Parallel Processing Page 36

8. INTERPROCESSOR COMMUNICATIONS

Under the Phase I contract, multi-processor communication protocols were built and
tested at the user's simulation level. This was accomplished using the Inter-Processor (IP)
Resource developed by PSI. The goal of this step was to provide an easy-to-use facility for inter-
processor communications. In the final implementation, these resources will be used for
communications between multiple processors, each running separate model instances of a
simulation, and each communicating with the other.

In the Phase I experiment/demonstration, information was sent between GSS user level
processes on different processors. These processes were connected to GSS interprocessor
resources that automatically provided the link between the processors. During this experiment,
models on one processor sent messages to models on the others while data was collected to
verify that concurrent processing and communication were operating successfully.

8.1 IP RESOURCE COHERENCY MANAGER

The IP Resource Coherency Manager provides a coherent communications link when
processes share a resource between two or more processors. New protocols were developed to
insure coherency of multiple copies of the same resource residing on separate processors. As
shown in Figure 17, GSS resources can be shared by processes on different processors as IP
resources.

This architecture is required for both networked computers and an MPP. The
requirement is for coherency of data shared between processors. If the processors are in
networked computers - implying separate operating systems - then additional levels of protocol
are needed to communicate. If the processors are in an MPP, then the protocol must match the
memory transfer mechanism across processors, e.g., the KSR machine had automatic cache
coherency.

To support coherency, an interlock mechanism is required to ensure that, when a process
sharing an IP resource is rurming, a process on another processor sharing the same resource
cannot run concurrently. In addition, if a process has just used an IP resource on one processor,
any process sharing that resource on another processor must receive the latest copy before it can
run.

Finally, there are two types of protocols needed to support fast processing of simulation
models at the interface between many processors. These are the following:

• Asynchronous - The latest copy of an IP resource (the one connected to the process
that ran last) gets passed to the next process that needs it in another processor. Data
coherency is guaranteed (independent of time).

• Synchronous - Everyone gets the latest copy from a single source, a one to many
interface. This depends upon time synchronization (by design) to ensure data
coherency.

Prediction Systems, Inc. Parallel Processing Page 37

PROCESSOR A

SIMULATION A

RES A1 PROC SA

c RES SIP

MULTICOMP 3/31/01

INTERPROCESSOR RESOURCE
COHERENCY MANAGER

C IPRCM ^
l^ONTROLS;

IPRC
MANAGER

I
N
T
E
R
P
R
O
C
E
S
S
o
R

C
O
M
M

IPRC
COMR

N
T
E
R
P
R
O
C
E
S
S
o
R

C
O
M
M

PROCESSOR B

INTERPROCESSOR RESOURCE
COHERENCY MANAGER

IxONTROLSy

IPRC
COMf^

IPRC
MANAGER

SIMULATION B

PROC_Se RES B1

RES SIP

Figure 17. Resource coherency manager architecture.

The desired protocol must be specified by the designer when running in a parallel
processing environment. It is specified relative to the IP resource, i.e., an IP resource must be
shared using either the synchronous or asynchronous protocol. In the case of multiple computers,
matching IP resources must use the same protocol. These protocols are further specified below.

Prediction Systems, Inc. Parallel Processing Page 38

Asynchronous Coherency Protocol

When the Asynchronous Coherency Protocol is used, the latest copy of an IP resource
(the one connected to the last process to run) gets passed to the next process that needs it in
another processor. When a process (e.g., PA) that is connected to an IP resource gets
scheduled, the coherency protocol is invoked. This protocol first checks to see if PA controls
the IP resource, i.e., it is the last process using the resource. If so, it has the latest copy already.
If it is not the controlling process, it must request the latest copy firom the controlling process. If
more than one process requests a copy, they are queued up on a first-in first-out FIFO basis. Data
coherency is guaranteed (independent of time).

The following functional rules are implemented in the asynchronous coherency protocol
used for an MPP environment. The rules for a multiple computer simulation environment are
slightly different.

• One copy of an IP resource must reside on each processor that contains a process
that shares it.

• When a process that shares an IP resource is running, processes sharing other
copies cannot run. The process that is running has control of the IP resource until it
passes control to a process that shares it on another processor.

• Before a process that shares an IP resource can run, a check must be made to
determine if that process has control. If that process does not have control, the IP
resource manager must initiate a request to its counterpart on the processor
containing the controlling process. It must then wait to receive a return signal. If
the signal contains passage of control along with the latest copy of the resource, the
resource is controlled (locked) for use only by that requesting process.

• If conti-ol has been transferred before the request is received by the prior conti-oUing
process, the request is sent on to the processor that has control. A FIFO queue will
be built of processes that have requested the IP resource. The queue is passed fi-om
processor to processor with the IP resource.

• At some point, we may make a decision to attempt to schedule the next process in
the queue, or to wait for control of that resource to be passed to the requesting
process. This decision must consider that the resource in use may be shared by a
large number of model instances, implying a high level of contention.

In addition to building the IP resource coherency manager to implement these rules,
modifications were made to the development monitor, process translator, control specification
translator, and run-time environment. These modifications account for recognition of IP
resources, and processing of the master and slave control specifications so that tables are built to
determine which processes share IP resources, and what machines they reside upon.

Prediction Systems, Inc. Parallel Processing Page 39

These facilities were designed to provide a clear speed advantage since (1) the GSS
environment is a tool that needs to be tailored only once on a given platform; (2) the protocols
used are generally transportable; and (3) speed is the predominate reason for using parallel
processing. This is not an area where speed was sacrificed for simplicity of the software.

8.2 DEVELOPMENT MONITOR MODIFICATIONS

The IP resource is a new entity in GSS. This new resource type was incorporated into the
databases, lists, prompts, and decision processes. Changes were made specifically with regard to
the prompts for determining the resource type attached to a given process. This resource is
similar to the inter-task resource, and the modifications followed along the similar lines. In
addition, all query reports that list resources by type were modified.

Prediction Systems, Inc. Parallel Processing Page 40

9. INTERPROCESSOR SCHEDULING

9.1 MASTER AND SLAVE SYNCHRONIZERS

Before a simulation can run on multiple processors, whether SMP or networked,
knowledge must reside on each processor regarding the processes that can be scheduled on each
of the other processors, hi a networked computer environment running multiple simulations, this
requires exchanging data among the processors used in the simulation to support scheduling
processes in another simulation - on another processor.

Figure 18 illustrates this requirement. Note that the simulation on processor A schedules
processes on processors B and C as well as itself The simulation on processor C only schedules
processes on itself and processor D. When a process is scheduled in a different processor, this
schedule request must be sent to that host processor. To accommodate these cross-schedules, the
scheduling mechanism on each processor must have knowledge of the host processor that each of
its scheduled processes resides upon. This information must be available before each simulation
starts.

To meet these needs, a process assignment database is built containing the pertinent
cross-processor scheduling information corresponding to each simulation. This database is then
attached to each simulation at run-time to support the distribution of cross-processor schedule
requests to the proper processor. This is illustrated in Figure 18. This database contains the
name of each simulation control specification, and the processor's host-id, for each process that
is cross-scheduled by the simulation running on that processor, as well as each process in that
simulation that can be scheduled. It is derived from information on each process in that
simulation. The data structure is shown below.

IP_SCHEDULE_TABLE QUANTITY(1000)
1 PROCESS_NAME CHAR 24 *** CROSS-SCHEDULED PROCESS
1 HOST_PROCESSOR_ID CHAR 24 *** CONTROLLING PROCESSOR ID
1 PATH_SIMULATION_NAME CHAR 60 *** SIMULATION ID

The master simulation control specification names the host-IDs of the subordinate
simulations. It also requires that the confrol specifications of the subordinate simulations have
been prepared, and that the process assignment database file has been created for each before
preparing the master simulation control specification. Then, when the master simulation confrol
specification is prepared, all of the subordinate simulation process assignment databases are
accessed, all of the cross-processor schedule statements are reconciled with respect to the
processes scheduled, and the subordinate simulation databases are updated with the host-IDs for
each process that is cross-scheduled.

Figure 18 shows the master and slave synchronizers. The master synchronizer fracks the
earUest scheduled time of processes in the ATmax interval. It determines when the clock can be
set to the next interval, and handles cross-schedules going both ways on processor A. The
synchronizer modules on the other machines report their earliest schedule time, to the master,
and when they have reached the end of their ATmax intervals.

Prediction Systems, Inc. Parallel Processing Page 41

PROCESSOR A

SIMULATION

SCHEDULE C_P

SCHEDULE B_P

SCHEDULE A P

A's
SCHEDULE

SCHEDULER
B P
C P

PROCESS
ASSIGNMENT

DATABASE L.
MASTER

SYNCHRONIZER

C P B P

INTERPROCESSOR
COMMUNICATIONS

C P

INTERPROCESSOR
COMMUNICATIONS

PROCESS c -^
ASSKSNMENTI 1

DATABASE l^^ J

SCHEDULER

SYNCHRONIZER

C PI

SIMULATION

SCHEDULE_C_P1

SCHEDULED P

C's
SCHEDULE

PROCESSOR C

B's
SCHEDULE

PROCESSOR B

»• SIMULATION

^&J-

SCHEDULER

SYNCHRONIZER L„
PROCESS

ASSIGNMENT
DATABASE

B P

INTERPROCESSOR'
COMMUNICATIONS'

MULTICOMP 3/31/01

SIM TIME

D P INTERPROCESSOR!
COMMUNICATIONS'

D P

SYNCHRONIZER Q PROCESS
ASSIGNMENT

DATABASE

D P

D'S
SCHEDULE

D P

:SCHEDULER

SIMULATION

PROCESSOR D

Figure 18. Cross-schedules for a four processor case.

Prediction Systems, Inc. Parallel Processing Page 42

9.2 PROCESS TRANSLATOR MODIFICATIONS

The process translator was modified to accommodate the new cross-processor schedule
statement defined below. Code is now generated to call on the new synchronizer module to pass
the resulting schedule requests to the proper processor. This code contains a pointer to the record
in the IPSCHEDULETABLE corresponding to the process being scheduled. The value for this
pointer is determined during translation of the subordinate simulation control specification. The
HOSTPROCESSORID and PATHSIMULATIONNAME are determined by the master
simulation conti-ol specification translator. The IPSCHEDULETABLE is read during
initialization of each simulation. Then the code generated by the process translator calls the
synchronizer, passing the pointer to the proper record in this table for cross-scheduling.

Cross-Processor SCHEDULE And CANCEL Statements

New SCHEDULE and CANCEL statements in GSS provide for cross-processor
scheduling and canceling of processes. These statements add an "IN ... SIMULATION" clause
to qualify the processname as follows.

Format

\ [process name IN simulation name SIMULATION [[...]]
[CANCEL J

9.3 CONTROL SPECIFICATION TRANSLATOR MODIFICATIONS

In addition to the modifications required for supporting the IP resource coherency
manager, the control specification can contain a statement for specifying the ATmax interval
defined below. The new translator also provides for initialization of the databases to be used for
cross-processor scheduling. These databases are created by the master simulation control
specification translator reading files produced by all of the subordinate simulation control
specification translators, and then building a file for each of the subordinates as well as itself for
initialization at run-time. These changes are described in more detail below.

When a cross-processor schedule statement is translated, code is generated to call the
synchronizer to initiate a schedule request to the processor containing that process. The
synchronizer then performs the table look-up to determine the processor to which the request
must be sent.

Prediction Systems, Inc. Parallel Processing Page 43

Specifying The ATmax Interval

The "DELTATIME = " statement specifies the ATmax interval for that portion of the
hierarchy controlled by this particular simulation control specification. The format for this
statement is shown below.

Format

DELTA_TIME = Atmax_interval [time units]

The timeunits options are given in Appendix 3 of the GSS User's Reference Manual.
They range from PICOSECONDS to DAYS.

If the timeunits option is not used, time is assumed to be in seconds (the default).

If a DELTATIME statement does not appear in the list, it is assumed to be 0 (the
default).

Synchronizer Database Initialization

As described above, commands to schedule processes residing in another simulation at
run-time are communicated via InterProcessor (IP) communications to a PATH_
SIMULATION_NAME within a HOST_PROCESSORJD. To accomplish this, each simulation
reads these names during initialization (one set for each process cross-scheduled in the
simulation) from its corresponding process assignment database, and stores them in a table
available to the synchronizer. To create this database, each of the subordinate simulation control
specification translators produces their initial process assignment databases. These initial
databases contain the names of all of the processes in that simulation, as well as the names of the
cross-scheduled processes and their simulation names. These are put into files that the master
simulation control specification translator reads to reconcile all of the cross-scheduled processes
within each of the simulations. It then updates these files with the corresponding
HOSTPROCESSORIDs, and ships them back to the hosts/paths for each simulation so they
can load their IP_SCHEDULE_ TABLEs during run-fime initialization .

File Processing Summary

During translation, each control specification translator creates a list of the processes
cross-scheduled by that simulation. It also creates a list of all the processes that reside within
that simulation, since they can be scheduled by a simulation on another processor. Both of these
lists are available to the master control specification translator. These files, one for each
simulation, are updated by the master translator with the host-id of each simulation. They are
then used by each of the respecfive simulations during run-time initialization.

Prediction Systems, Inc. Parallel Processing Page 44

9.4 SCHEDULER MODIFICATIONS

Schedule Synchronization

When a process that is currently running on a given processor terminates, the next process
is retrieved from the schedule queue. In the single processor case, the clock can simply be
advanced at this time, and the process invoked. In the multi-processor case, if the clock advances
beyond the Te+ATmax interval, then it must wait until all processors have reached the same
condition. When this happens, a new Te+ATmax interval is set, and the checks are made again.
Any processor with a process in the Te+ATmax interval can proceed to invoke that process.
Others must wait for the proper interval.

When the simulation clock in any processor exceeds the Te+ATmax interval, a
notification is sent to the master synchronizer containing the processor/simulationlD. hi
addition, all cross-schedule requests are sent to the master synchronizer before being sent to the
processor containing the cross-scheduled process. This latter information is used to update the
status maintained in the master scheduler regarding the number of processes (if any) to schedule
beyond the Te+ATmax interval. For example, if processor A sends a signal to the master
synchronizer that its simulation clock has exceeded the interval, but a cross-schedule is sent to
that processor subsequently, it is not finished. However, the order of presentation will insure that
the master simulation clock will advance beyond the Te+ATmax interval only after the clock-
time of the next process to be scheduled in every simulation is beyond the interval.

9.5 SYNCHRONIZER DESIGN

When a process passes the interval test, i.e., it falls within the interval, it is checked to
determine if it shares an interprocessor resource. If it does, then the interprocessor resource
coherency check is made. If that processes shares an interprocessor resource, then the process
must wait until conti-ol of that resource is obtained by that process. When these conditions are
satisfied, the process is invoked to run. The interprocessor resource coherency facility is
described in the previous section.

The Te+ATmax interval is computed by the master synchronizer after receiving the next
schedule time from each simulation and determining the earliest. After the current interval has
completed, i.e., there are no more processes in any of the queues whose schedule times fall
within the current interval, then the master synchronizer notifies all of the other simulations of
the new Te value, signalling the start of a new interval. The synchronizer module shown in
Figure 18 handles these communications, as well as the cross-processor schedules.

Prediction Systems, Inc. Parallel Processing Page 45

10. EXPERIMENT

In addition to the instanced model development effort described in this report, and as part
of the final deliverable on this contract, PSI has built a multi-computer experiment on a
networked cluster of twelve Intel computers. This experiment consists of the multi-computer
version of the General Simulation System and the Netted Full Spectrum Sensor (NFSS)
Operations Management System (OMS) that PSI has been building for the Army at CECOM, Ft.
Monmouth. The OMS provides for the management of all of the Army's sensors, including the
MASINT sensors. It involves taking in product reports from individual sensor control systems
and fiising a picture of the battlefield.

The purpose of these experiments was multi-fold. It provided a test-bed for refining the
data coherency, cross-scheduling, and synchronization algorithms that were designed and built on
a prototype basis under previous efforts. It also provided for the collection of test data relevant to
analyzing the effects of latency on the broad class of simulations that we classify as partially
independent. This classification is described in the paper that has resulted fi-om the experimental
efforts reported upon here. This paper is attached as Appendix A to this report.

10.1 HARDWARE PLATFORM

The hardware platform used in the parallel NFSS experiment consists of twelve Intel
computers networked with a Gigabit Ethernet switch as shown in Figure 19. The twelve
machines are arranged in three sets of four. Each of the sets is represented with one keyboard,
monitor and mouse via a KVM switch. All of the computers have access to shared directories
that reside on computers 1 and 8.

Processors arc linked via one Gieabit Elhcrnet switch

/ \ / \
Twelve processors are interfaced with three user
workstations via three keyboard, video & mouse switches.

Figure 19. Cluster architecture.

Prediction Systems, Inc. Parallel Processing Page 46

The Intel computers used in the cluster are described in Figure 20. Since they all have
identical hardware, Windows 2000 and supporting software was installed manually on one of the
machines, which was then cloned onto the remaining eleven. This process resulted in a cluster
with very similarly configured and performing machines.

/I7\

4x512 Megabyte Sims

3.06 Gigahertz Processor

Gigabit Ethernet Adapter

Figure 20. Individual machine configuration.

The Ethernet Adapters support Full and Half Duplex modes at 10, 100 and 1000 Mbps.
The ability Xopin the adapters at slower speeds was crucial for gathering communications latency
type data.

Prediction Systems, Inc. Parallel Processing Page 47

10.2 THE GSS MULTI-COMPUTER SIMULATION FACILITY

As described throughout this report, the GSS Multi-Computer Simulation Facility is
designed to work on multiple networked computers, each running their own Operating System
(OS). The facility is designed to be independent of the number of computers. The version used
for this experiment requires that simulations run on each machine (there can be more than one
simulation on a machine) without load balancing.

Each machine contains a copy of the run-time environment consisting of the three
subsystems. The Resource Coherency subsystem ensures that only one process is allowed to
access a resource at a time and that processes have the most current version of the resources they
share before they run. The Inter-processor Scheduling subsystem is used to invoke processes in
other participating simulations in different machines, as well as the simulation that invokes the
schedule. The Time Synchronization System is used to ensure that the clock drift between
simulations is kept under a user specified ATmax. These systems will be expanded in future
versions of the GSS parallel processing environment.

The cluster based parallel processing system used here communicates via TCP/IP. The
communications architecture design omits a central hub, which would present a bottleneck. As
the number of simulations increases, the TCP/IP infrastructure that is established to support it
becomes significantly more complex. Most off this infrastructure is not required on single
operating system machine architectures. Furthermore, the communications fabric used to support
multi-processor, single operating system machines is as much as 60 times faster than Gigabit
Ethernet.

Prediction Systems, Inc. Parallel Processing Page 48

10.3 NFSS-OMS SIMULATION OVERVIEW

The NFSS QMS system contains an embedded simulation of the detailed target
environment, electromagnetic environment, sensors, communications, as well as actual multi-
level/multi-sensor fusion algorithms and control systems to predict the responses to multiple
sensor tasking. In addition to other challenges, this represents a multi-faceted high stress
computational problem. We are using this real world system as the basis for analyzing and
evaluating approaches to parallel processing. As will become evident in the Analysis of Results
section below, the NFSS is also a good choice for analysis purposes because of the ease with
which the sensor load across the cluster and the degree of inherent parallelism can be varied.

As shown in Figure 21, the NFSS QMS system includes three basic components. First,
the emitter component represents transmitter ground truth. This component contains the transmit
process, which is responsible for providing the sensor component with transmission locations.
The sensor component includes the sensing processes that determine whether or not a given
transmission was detected. This information is then furnished to the QMS component, which
fuses the results together into useful reports.

Emitter
Transmissions

NFSS QMS Components

Figure 21. NFSS QMS components.

Figure 21 shows an instanced sensor component because many types of sensors can
participate in the system. Li this experiment, twelve similar sensor simulations were used (one
per processor). The emitter and QMS simulations were run on a single processor with one of the
sensor simulations because their loads are negligible compared to that of the sensors'.

Prediction Systems, Inc. Parallel Processing Page 49

The experimental NFSS also includes a graphics toggle that is used to turn graphics on
and off. While graphics are very useful for debugging and documenting, they sometimes produce
noise when used in timed runs. Figure 22 shows a scenario that includes two sensor types and
enabled graphics. The top left window labeled TRANS shows the locations of the transmitters.
As shown in the sensor simulation windows labeled UGSOl and UGS_02, the location of a
transmission is depicted with a star in the sensor simulations. When graphics are enabled, lines
are drawn from each of the sensors to the transmission location and colored according to whether
or not the transmission can be detected. Finally, the OMS simulation labeled DISP registers a
spot report that includes fused found/missed information from the sensor simulations. As
illustrated in Figure 22, the transmission shown was detected by two of the sixteen sensors.

Figure 22. NFSS multi thread illustration.

Prediction Systems, Inc. Parallel Processing Page 50

In order to obtain real single processor runtime for use in efficiency calculations, the
NFSS was altered to be able to run as a single thread. Figure 23 shows a single thread version of
the above scenario. The single thread version was also used as a validity benchmark.

HM NFSS

Figure 23. NFSS single thread illustration.

Prediction Systems, Inc. Parallel Processing Page 51

The NFSS produces two results reports for use in validation. Shown in Figure 24, the
Emitter Report is generated by the emitter component and includes the location and number of
transmissions for each transmitter. The SPOTREP Report is generated by the OMS component
and includes locations, number of sightings and found/missed information for each spot report.

aMI^rC CSHBIBAA^-■k.a^i_!;:i^l£ ^JnjjiJ
J Fiir Edt Vr'-' F, or -..^;.^_.-^.__ 1 ■

NFSS - Emitter Report

1 TRANS

Location Transmissions

J

: 82883 1 66617
■ (57507"'] 54767

45332 17930

: 92029 53782

I 52027 53232
-- -

1 27927 57045

i 54696 34027

89257 74322

Total 8

zi

SNFSS - STOTJlWliieliSI ^jDljtj
J file [L.'if /■..„; F,;.,,-, M- ip 1 B

NFSS - SPOT_RI:F Report
J

Location

Report

Sightings Fomid Missed

82883 1 66617 \ 2 3 13

67507 ; 54767 ; 2 1 15

45332 1 17930 ■ 2 2 14

92029 i 53782 | 2 4 12

52027 1 53232 2 2 14

d

27927 : 57045 i 2 3 13

54696 1 34027 | 2 1 15

89257 1 74322 ! 2 0 16
Total { 16 16 112

Figure 24. NFSS generated reports.

Prediction Systems, Inc. Parallel Processing Page 52

10.4 THEORY

The NFSS as well as many other discrete event simulations uses a time synchronized
architecture as illustrated in Figure 25. In this figure, wall clock time (Twc) is shown in the
negative y direction and is displayed in the first column. The second column shows time slot
spans. Simulation processes and their simulation times are shown in the last column. Longer
blocks in the last column represent processes that take more CPU cycles to run.

Single Processor Simulation

«- I ' >-

Key
Time Slot One (Ti)

Ti trah^misstoii Prorjess

Ti Sensing Process
T2 Sensing Process

Wall Clock Time (Twc)
Single Processor Simulation Time (Ps Tsim)

Two Time Slot Ps Tsim
0

1

0.01

1 0.03

3 0.04

5 0.05

7 0.06

9 ' '' BBHHI

10 1.03

12 1.04

14 1.05

16 1.06

18

Figure 25. Single processor event sequence illustration.

At the beginning of the time slots illustrated in Figure 26, transmissions occur.
Transmission processes are responsible for making transmission locations available to sensing
processes. Sensing processes use transmission locations along with their own locations and the
electro-magnetic environment model to determine whether or not transmissions are detected. It
follows that the order of the sensor processes within a time slot is not important as long as they
follow the proper transmission process. For instance, if a Ti sensing process runs after the T2
transmission process, the sensing process will use the wrong transmission location and therefore
produce invalid results. In this way, the validity of the results is dependent on the sequential
integrity of the time-step.

Prediction Systems, Inc. ParaUel Processing Page 53

Three Processors (AT^ax < 0.01)

Twc Time Slot Pl Tsim P2 Tsim P3 Tsim
0

1

. Ml
1 0.03

3 0.04

5 0.05

7 0.06

9 ULjju^mgil

10 H^ 1.03

12 1.04

14 1.05

16
^Bt- '■■^TJ'i t*>^!^fcl 1.06

18

Figure 26. Multi-processor event sequence with small ATmax-

When discrete event simulations are spread across multiple threads, it is possible that the
individual simulation times may vary at any given wall clock time. In order to maintain validity,
individual simulation clocks need to be synchronized.

Figure 27 shows the event sequence of the above scenario spread over three processors.
In this figure, the maximum difference in simulation time (ATmax) is kept under 0.01 second.
While this ensures the exact same event sequence as the single thread version, it precludes any of
the processes from running at the same time. The white blocks in the figure indicate blocks of
time where the processor is idle. Since no processes are allowed to run concurrently, the three
processor version of the simulation cannot be faster than the single thread version and therefore
the efficiency cannot be better than 1 over the number of processor used.

Prediction Systems, Inc. Parallel Processing Page 54

As mentioned earlier, the integrity of the time slot is maintained as long as its sensing
processes run after its transmission process and before the next time slot's transmission process.
Figure 27 shows the event sequence of the above scenario across three processors with a AT^ax
greater than 0.01 second and less than 0.2 seconds. This ATmax is large enough to permit sensing
processes to run concurrently and small enough to ensure that they run after the intended
transmission process. Efficiency is improved while validity is maintained.

Twc

Thr ee Process

Time Slot

ors(0.01

Pl Tsim

<ATMax<0.2)

P2 Tsim P3 Tsim

0

1

Q.at

1 0.03 0.04

3 0.05 0.06

5 - m^KM
6 ' 2t ,

ft

1.03 1.04

8 1.05 1.06

10

Figure 27. Multi-processor event sequence with optimal ATmax-

As shown in Figure 28, when AT^ax is greater than 1, the first time slot's transmission
process and sensing processes are allowed to run concurrently. Furthermore, the second time
slot's transmission process is allowed to run directly after the first transmission process. While it
appears that the validity of the second time slot may be intact, first time slot results are obviously
compromised.

Twc

Three Processors (1

Time Slot Pi Tam

<ATMax)

P2 Tsim P3 Tsim

0 1 001 0.03 0.04
1

2

a
0.05 0.06

4 1.03 1.04

6 1.05 1.06

8

Figure 28. Multi-processor event sequence with large ATmax-

Prediction Systems, Inc. Parallel Processing Page 55

The objective when migrating a single processor simulation to a multi-computer
environment is to achieve smaller run times while maintaining validity. ATmax is tuned on a per
simulation basis in order to achieve these goals. As shown above, a ATmax of zero effectively
forces the simulation to run sequentially with little or no opportunity for parallel processing. It
would likely run slower on multiple processors than it would on a single processor. As ATmax is
increased, more processing can take place in parallel before the simulations have to perform a
time resynchronization, and thus efficiency increases. Hardware architecture efficiency curves
EAI and EA2 in Figure 29 show this trend. They also show how increased communication speeds
vary these curves.

AT„

V

/

1
E.,/

EA2/'

J /
/

/
/

/
/

 -^ 1
•

100%

80%

60%

40%

20%

AT. AT„

Figure 29. Theoretical ATmax vs validity and efficiency graph.

As ATmax is further increased, various activities on some processors are allowed to start
before other activities, which must be completed first in order to insure validity, finish
processing. The negative effect of this situation on validity varies differently in different
simulations. In some simulations, the effect is gradual; in others, the effect is immediate, the
simulation goes unstable, and no useful results can be derived. Furthermore, the more inherently
parallel a simulation is, the more likely that ATmax can be increased to a point that delivers very
high efficiency, while still remaining well below the point where results would become invalid.
Validity curve V in Figure 29 shows how validity drops off quickly after some optimal ATmax-

Prediction Systems, Inc. Parallel Processing Page 56

10.5 ANALYSIS OF EXPERIMENTAL RESULTS

The chart of ATmax vs. efficiency and vaUdity shown in Figure 30 is taken from the actual
results of varying AT^ax in multiple runs of the NFSS OMS multi-computer simulation across the
twelve-processor cluster. The architecture 1 (Al) curve was generated with the network running
in 1000 Mbps mode. The A2 curve was generated with the network running in 100 Mbps mode.
As can be seen in the chart, efficiency increases rapidly from 25 to approximately 93 percent as
ATmax is varied from .2 milliseconds to 200 milliseconds in architecture 1. In architecture 2,
efficiency never gets above 25%. It is not until AT^ax is increased to over 1 second, that validity
begins to suffer.

♦ Efficiency A1 »- Efficiency A2 -*- Validity

ATmax

0.0001 0.001 0.01 0.1 1 10 100
120%

Figure 30. Experimental AT^ax vs validity and efficiency graph.

Prediction Systems, Inc. Parallel Processing Page 57

11. SUMMARY OF EFFORTS

As part of this Phase 1 effort, PSI has completed all of the key objectives defined in its
proposal. In particular, we have analyzed and documented our efforts in the following areas:

• Architectural Use Of Tasks, Subtasks, Modules And Threads - Analyzed the use of
hierarchies of tasks, modules, and threads in both military and commercial
applications, including large sensor fusion systems, planning tools requiring large
embedded simulations with optimization, transaction processing systems, database
processing systems, etc.

• bistanced Module Facility - Completed the detailed design of the automated instance
module facility for the parallel processing version of VSE and GSS. Implemented
the automated model instance facility in the current production version of VSE and
GSS.

• Standards For Maximizing Module Independence - Designed the implementation of
automatic enforcement of software architectural standards to ensure maximum
independence of both instanced and non-instanced modules.

• Independent Module Database And Measures - Designed the independent module
database, including built-in measures of module independence for both instanced and
non-instanced modules.

• Maintaining Coherency Of Interprocessor Resources - Designed the run-time system
for maintaining interprocessor resource coherency.

• Optimal Ordering/Scheduling Of Threads - Designed the run-time system for optimal
ordering and scheduling of threads for both simulations and software tasks.

• Hardware-Software Architecture Compatibility - Analyzed pertinent MPP hardware
architectures as they pertain to the design efforts on this project to ensure
compatibility of software and hardware architectures.

The most significant findings of our Phase I effort are presented in the attached paper
entitled: The Effects of Parallel Processing Architectures on Discrete Event Simulation.

Prediction Systems, Inc. Parallel Processing Page 58

11.1 USE OF THE NFSS OMS AS A TEST BED

In addition to completing the above objectives, PSI has provided a demonstration of the
proposed technology using the Netted Full Spectrum Sensor (NFSS) Operational Management
System (OMS). The NFSS OMS is being developed by PSI for the Intelligence and hiformation
Warfare Directorate (I2WD) of the U.S. Army's Communications Electronics Command
(CECOM) at Ft. Monmouth, NJ.

The NFSS-OMS allows engineering decision-makers to perform tradeoffs in sensor
requirements and design parameters and to support staff officer decisions in real-time mission
planning and execution. The graphical interface displays the current state of Blue Force
(BLUFOR) and Opposing Force (OPFOR) as a continually updating Common Operational
Picture (COP). The NFSS-OMS supports simultaneous connections from multiple systems
providing sensor data. The accuracy and level of detail from each of the sensor systems vary
with their capabilities.

As described in Section 10.3, the hierarchical sensor fiision process easily lends itself to
the benefits of parallel processing. The hierarchical fiision stages have little dependence on each
other. In addition, the lower layers can be separated into groups that have littie or no dependence
on each other. For example, each individual sensor system may have its data fiised separately in
the first level of data fiision and then fiised with other sensor systems' data in subsequent levels
of fiision. This demonstration used from 1 to 12 processing nodes and was inshoimented to
illusfrate the potential efficiencies to be gained.

11.2 IMPLEMENTATION OF THE INSTANCED MODULE FACILITY

As part of Phase I, PSI has implemented the instanced module facility into its current
production version of GSS and VSE. This facility removes the need for the software developer
to deal expUcitiy with tables of attributes that relate to multiple instanced modules. For example,
in a node and link simulation, each node can be represented by the same model. This facility
allows the modeler to declare the number of instances at the module level. Then one can build a
single instance without reference to the particular instance pointers of that module, except at the
boundaries when one instance interacts with another module instance, in which case the specific
instance is known.

This facility makes it easier to build multiple instanced modules since pointers can be
eliminated. Some additional memory may be used, since software designers can reuse the same
attributes for multiple instances. However, this makes the code more abstract, and more difficult
to relate to the real system. These absfractions also remove the independence properties that
afford parallelism. The amount of additional memory used is considered insignificant compared
to the total. More importantiy, the instanced module facility is considered a keystone to
automating the software facilities required to produce efficient parallel processing architectures.

Prediction Systems, Inc. Parallel Processing Page 59

12. PHASE II PLANS

CATEGORIES OF SOLUTIONS

PSI has supported many parallel processing efforts using different technologies. These
include clusters, DIS, and HLA. Figure 31 is an attempt to bring to light the many dimensions of
the problem when considering parallel processing solutions to achieve significant speed
improvements. An explanation of each column is provided below.

Configuration Speed Hardware
Cost

Software
Development

Cost

Software
Maintenance

Cost
Single

Processor SPs SPH SPD SPM

Multi-Computer
Distributed DIs DIH DID DIM

Multi-Computer
MPP Cluster CLs CLH CLD CLM

Single-OS
MPP SOs SOH SOD SOM

Figure 31. Categories of Solutions.

Configuration

set
The configuration categories are defined below. This is not meant to be an all-inclusive

combinations could be used.

Single Processor
be measured.

This is used as a bench mark against which the other approaches can

Multi-Computer Distributed - This covers the multiple computer case using
distributed simulation, e.g., DIS and HLA. While PSI considers HLA an
interoperability solution and not a parallel processing solution, it is addressed in Figure
31 because some people consider it a parallel computing approach. The main
characteristics are separate operating systems and wide area (geographically spread)
networks.

Multi-Computer MPP Cluster - This covers multiple computer clusters which can
range from a large Beowulf cluster to a more tightly coupled set of computer chips, each
running their own operating system. The main characteristics are separate operating -
systems and high speed LANs.

Single-OS MPP - This implies that a large set of processors are controlled by a single
operating system. PSI also considers this category as having local memory to each
processor with fast hardware caching and coherency protection across processors.

Prediction Systems, Inc. Parallel Processing Page 60

Additional combinations exist and can be developed. However, as indicated above, this
list is considered representative for the purposes of this discussion.

Speed

The single processor has been used to provide a benchmark on speed. It is convenient to
use 1 GigaHertz (GHz) as the baseline, since most of today's single processor machines exceed
this. Also, speed up using multiple processors depends upon the inherent parallelism of the
system being modeled. We are concerned with partially independent systems. This implies they
are not embarrassingly parallel.

As an example of partial independence, we are concerned with large military systems that
interchange data somewhat randomly - on the order of thousands of messages per (simulated)
second, with synchronization required on the order of every hundred messages. This implies a
significant message exchange over a 4 hour scenario. This must be accomplished in
approximately one minute of real time to perform the analyses required.

Another way to look at this is to consider that 50M to lOOM messages must be transferred
somewhat randomly among parallel processors in approximately one minute, with
synchronization every 100 messages. We must also consider that the amount of time spent
transferring the messages is about 100 times less than the other processing that must be
performed within each processor to transmit a message. Therefore there is a significant degree of
partial independence.

PSI's experimental results, as analyzed in the attached paper. Appendix A, indicate that
partially independent systems will run several times faster on single-OS machines than on multi-
OS machines. This is because of the latency encountered - going across the layers of protocol
fi-om one operating system to another - when cross-scheduling, sending messages, and
synchronizing simulation clocks. For these types of systems, feasibility - driven by validity - is
the key issue. Speed comparisons are provided below.

• Single Processor - Single processor ruiming time is used as a bench mark. Cannot
provide a feasible solution.

• Multi-Computer Distributed - Latency is huge. Cannot provide a feasible solution,
independent of number of processors.

• Multi-Computer MPP Cluster - Measured in the attached paper. Latency plays a
major role in meeting the combination of validity and speed requirements. We
anticipate a problem achieving feasibility as the number of processors grows above
1000.

• Single-OS MPP - PSI considers this category as having the best speed performance by a
potentially wide margin over the others, and therefore having the best chance for
achieving a feasible solution. However, to achieve significant speed margins will
require the kind of software solution described here for partially independent systems.

Prediction Systems, Inc. Parallel Processing Page 61

Hardware Cost

This refers to the costs of different hardware architectures to achieve a feasible solution.
Hardware cost comparisons are provided below.

• Single Processor - Single processor can be used as a bench mark on cost.

• Multi-Computer Distributed - Number of processors multiplied by single processor
cost.

• Multi-Computer MPP Cluster - Number of processors multiplied by single processor
cost plus some overhead cost.

• Single-OS MPP - It is not unusual to spend several times more per processor on single-
OS processors than multi-OS processors. However, the number of processors needed to
achieve a feasible solution may be sufficiently less, potentially mitigating the cost
differential or providing a favorable cost.

If a feasible solution is not achieved, there is no savings. Finally, one must consider the
redundancy required to cope with down-time for each of these systems.

Software Development Costs

Software development cost must include consideration for time to get to the solution, and
the considerable history of prior projects that have not achieved their goals. Conventional
approaches to parallel processing software generally include many explicit parallel processing
user code calls. Because of this manual tailoring, and the typical level of complexity
encountered, the cost of developing simulations to take advantage of parallel processing
platforms is significantly greater than the cost of developing single processor simulations.
Software development cost comparisons are provided below.

• Single Processor - Single processor can be used as a bench mark on cost.

• Multi-Computer Distributed - Some overhead costs are incurred, but likely not to be
more than 50% higher than the single processor cost when building the software. Using
GSS can bring this cost down to the single processor cost. Time and cost for testing and
debugging can run very high just due to the coordination required in the distributed
environment.

• Multi-Computer MPP Cluster - Special approaches taken to tailor the solution to the
number of processors to alleviate extremely high costs. When testing and debugging is
considered, reduced costs still can be whole number multipliers above the single
processor cost. Project failure rates are high. Using GSS, this cost can be brought down
to the single processor cost.

• Single-OS MPP - Very special approaches taken to tailor the solution to the number of
processors to alleviate extremely high costs. When testing and debugging is considered,
reduced costs still can be whole number multipliers above the single processor cost.
Project failure rates are very high. Using GSS, this cost can be brought down to the
single processor cost.

Prediction Systems, Inc. Parallel Processing Page 62

The GSS solution leverages modeler knowledge in a way that allows user code to be
independent of the intended runtime platform. Regardless of the number of processors, number
of operating systems or operating system type, GSS user code will remain constant.

The complete GSS solution proposed for Phase II automates load management, both for
distribution and balancing. Along with other the PSI software technologies, the development
cost implications are profound, especially when confronted with finding feasible solutions for the
types of partially independent problems that PSI has been working on.

Software Maintenance Costs

Software maintenance cost must include consideration for time to get to get back on the
air. Software maintenance cost comparisons are provided below.

• Single Processor - Single processor can be used as a bench mark on cost.

• Multi-Computer Distributed - Some overhead costs are incurred, but likely not to be
more than 50% higher than the single processor cost when making changes to the
software. Using GSS can bring this cost down to the single processor cost. Time and
cost for testing and debugging can run very high just due to the coordination required in
the distributed environment.

• Multi-Computer MPP Cluster - Because of the special approaches taken to tailor the
software to the number of processors, it becomes difficult to make changes to the
fimctional logic due to the typical level of complexity encountered. When testing and
debugging is considered, costs can be whole number multipliers above the single
processor cost. Using GSS, this cost can be brought down to the single processor cost.

• Single-OS MPP - Because of the special parallel processing software absfa-actions that
become part of the user code, it is difficult to make changes to what otherwise may be
simple fimctional logic. The typical level of complexity encountered is very high,
especially when testing and debugging is considered. Costs can be whole number
multipliers above the single processor cost. Using GSS, this cost can be brought down
to the single processor cost.

SUPPORT FOR ALL SOLUTION APPROACHES

There is a very large class of problems that have a high degree of parallelism but are far
from being embarrassingly parallel. We have labeled these problems as partially independent.
PSI has been working on a subset of this class that requires huge multipliers on speed (on the
order of thousands) over that of a single processor to allow simulations to be run at speeds that
exceed real time by factors of 10 to 100 and higher.

The distiibuted multi-computer approach used for DIS and HLA simulations have been
designed to bring together separately developed simulations running in real time. Although they
are not suited to solving this type of problem, GSS currentiy supports these approaches.

Prediction Systems, Inc. Parallel Processing Page 63

Multi-computer MPP clusters can be implemented in various ways. We have compared
the case where each processor has its own operating system to the MPP single OS case.
Combinations of single OS and multi-OS machines can be analyzed as being in between these
two cases. In our experiments, we have determined that the latency encountered to move data
across the OS boundaries becomes significant when simulating partially independent systems.
Even though GSS provides great software simplifications for either type of parallel processing
approach, feasible solutions that meet the speed and validity constraints will likely not be
achieved for a class of problems in the near future without the single OS solution.

Based upon the above analysis, and the results derived in the attached paper, a single-OS
MPP is best suited to meet speed and validity requirements for simulations of large partially
independent systems that must run much faster than real time. The high software development
and maintenance costs, and the inability to take advantage of extremely small latencies provided
by this architecture have heretofore made it hard to justify. These problems can be overcome by
GSS, making the single-OS MPP most attractive for simulating partially independent systems.

Most importantly, GSS solutions provide significant increases in productivity for all of
the above types of processor architectures. The instanced model facilities can be taken advantage
of on a single processor as well as all of the parallel processor approaches.

GSS PARALLEL PROCESSING DEVELOPMENT ROADMAP

In 1996, PSI was awarded a contract from CECOM's Software Engineering Center (SEC)
for Visual Software Development For Parallel Machines, [13]. This contract along with a
subsequent DARPA MHPCC BAA Consortium contract, [14], supported the development of the
GSS Multi-OS environment illustrated in Figure 32. We now describe the work to be completed.

BUILT AND TESTED
FOR MULTI-OS
ENVIRONMENT

TIME
SYNCHRONIZER

RESOURCE
COHERENCY

MANAGER

CROSS
PROCESSOR
SCHEDULER

BUILT AND TESTED
FOR SINGLE-PROCESSOR

ENVIRONMENT

MODEL
INSTANCING

GSS
PARALLEL PROCESSING

FACILITIES

REQUIRED
FOR SINGLE-OS
ENVIRONMENT

PROCESSOR
ALLOCATOR

LOAD
BALANCER

VSEPRS02 7/2A)3

Figure 32. Complete GSS parallel processing solution.

Prediction Systems, Inc. Parallel Processing Page 64

Work To Be Completed In Phase II

In Phase II, we will build and test candidate design approaches using actual systems and
simulations, leading to a selected product for Phase III. Having already performed an analysis of
this problem in Phase I, we have determined that the use of an MPP running a Single-OS
provides the best environment to complete the product line. This selection is based upon the
current need for simulations of partially independent systems that run much faster than real-time.
Building the intelligent adaptive software required to take advantage of the low latencies of this
architecture is key to ease-of-use as well as the practical application of this architecture for a
wide range of problems. Finally, the solutions for automatic processor allocation and load
balancing will also support a multi-OS architecture, although the inherent latencies of these
systems will not be nearly as efficient for a wide range of problems.

Completion of each of the elements of the solution in Phase II is described below.

• Time Synchronizer - The time synchronizer has been built on prior projects, and has
been tested in Phase I as well. Porting this facility to a single-OS machine should not be
a significant effort.

• Resource Coherency Manager - The resource coherency manager has been built on
prior projects, and has been tested in Phase I as well. Porting this facility to a single-OS
machine should not be a significant effort. If OS facilities exist for fast caching data
between processors, these may be invoked and will have to be tested.

• Cross-Processor Scheduler - The cross-processor scheduler has been built on prior
projects, and has been tested in Phase I as well. Porting this facility to a single-OS
machine should not be a significant effort.

• Model Instancing - The model instancing facility has been built and tested in Phase I.
Porting this facility to a single-OS machine should not be a significant effort. Changes
to the run-time database will have to be made and tested.

• Processor Allocator - The processor allocator has been designed in prior projects. It
must be built and tested in Phase II.

• Load Balancing - The load balancing facility has been designed in prior projects. It
must be built and tested in Phase II.

• Run-Time Initialization -

In addition to the above pieces, the run-time initialization facilities will have to be
modified for a single-OS parallel processing environment. This must provide for initialization of
databases and initiation of fiinctions to support the above items.

Prediction Systems, Inc. Parallel Processing Page 65

Commercialization

PSI has elected to work with SGI in Phase II. This will provide for a machine at PSI's
facilities in Spring Lake, NJ. SGI will also provide systems engineering assistance, particularly
in the area of operating system calls and optimization of resource allocation.

PSI plans to use large existing battlefield simulations that will be tied together as a single
simulation to provide for a real test bed environment. These simulations will demonstrate the
use of parallel processing to support important fiiture applications for military planning. It will
also demonstrate an approach that can be extended to the industrial and commercial business
planning process.

Finally, SGI will initiate initial marketing efforts of the parallel processing software
product to existing and prospective clients.

Benefits Of The Final Product

The major benefits of the product to be produced in Phase II are illustrated in Figure 33.
The top bar contains the three constraints that must be satisfied before parallel processing can
achieve broad commercial success. With a software environment that is easy to use, modelers
and software developers trying to obtain a combination of high speed and efficiency will be able
start to focus on valid solutions to the real problems they are trying to solve. If their software can
run on a wide variety of platforms without modification, they will have more choices and more
competition will ensue. The paradigm defined in Figure 33 is key to ensuring speed, validity,
and ease-of-use

~

EASE OF USE VALIDITY SPEED

ONE-TO-ONE
MAPPING
TO THE

MACHINE CODE

MEASURES OF
ARCHITECTURAL

DESIGN

INDEPENDENCE
OF

MODELS

PARALLEL
PROCESSING
EFFICIENCY

GRAPHICAL
REPRESENTATION

OF THE
DETAILED DESIGN

KNOWLEDGE
OF RESOURCE

& PROCESS
CONNECTIVITY

VSEPRS02 7;2X3

SEPARATION OF DATA FROM INSTRUCTIONS

Figure 33. Illustration of how the basic paradigm supports the objectives.

Predicrion Systems, Inc. Parallel Processing Page 66

13. REFERENCES

[I] Patterson, D., Bell, G., et al, "Massively Parallel Uproar," Upside, pps 88-97, March, 1992.

[2] Bell, C. G., "Ultracomputers A Teraflop Before Its Time," Communications of the ACM,
August 1992, Vol.35, No 8.

[3] Mitchell, R., "In Supercomputing, Superconfusion," Business Week, pps 89-90, March,
1993.

[4] Netted Full Spectrum Sensor (NFSS) Operational Management System (OMS), Final
Report, Contract DAAB07-02-C-1415, U.S. Army CECOM/I2W , 30 July 2002.

[5] GSS User Reference Manual, Prediction Systems, Inc., Spring Lake, NJ, 2003.

[6] Athans, M. and Falb, P.L., Optimal Control, McGraw-Hill, New York, 1966.

[7] Gelb, A., Editor, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.

[8] Gordon, G., A General Purpose Systems Simulation Program, Proc. EJCC, Washington,
D.C., pp 87-104., MacMillan PubUshing Co., New York, 1961.

[9] Gordon, G., The Application of GPSS V to Discrete System Simulation, Prentice Hall,
Englewood CUffs, NJ, 1961.

[10] Cave, W.C, Simulation of Complex Systems, Prediction Systems, hic. Spring Lake, NJ,
June 2001.

[II] Ramadge, P. J. and W.M. Wonham, "Supervisory Control of a class of discrete-event
processes," SLAM J. Control Optimization, vol 25, no.l, pp 206-230, Jan. 1987.

[12] Ramadge, P.J. and W.M. Wonham, "The Control Of Discrete-Event Systems," Proc. IEEE,
vol 77, no.l, pp 206-230, Jan. 1989.

[13] Visual Software Development For Parallel Machines, Final Report, Contract
DAAB07-97-C-H501, Software Engineering Center, U.S. Army CECOM, March 31,1997.

[14] Multi-Computer Version of GSS, Final Report to University of New Mexico to support the
DARPA BAA MHPCC Consortium, September 31,1998.

Prediction Systems, Inc. Parallel Processing Page 67

Prediction Systems, Inc. Parallel Processing Page 68

APPENDIX A

THE EFFECTS OF PARALLEL PROCESSING ARCHITECTURES
ON DISCRETE EVENT SIMULA TION

W. Cave, E. Slatt, & R. Wassmer

June 19,2003

©
PREDICTION SYSTEMS, INC.

PREDICTION & CONTROL SYSTEMS ENGINEERS

309 Morris Avenue
Spring Lake, NJ 07762

S (732)449-6800 i (732)449-0897
£p psi@predictsys.com ^ www.predictsys.com

OVERVIEW

We are concerned with simulation as it is used to support design decisions, evaluate
system effectiveness and performance, and predict future outcomes resulting from different
actions. We limit this concern to simulations that must produce valid results in specified time
frames to be useful. This implies that modelers must provide a level of detail that achieves
sufficient model accuracy to produce valid simulation results.

As systems become more complex, particularly those containing embedded decision
algorithms, mathematical modeling presents a rigid framework that often impedes representation
to a sufficient level of detail. Using discrete event simulation, one can build models that more
closely represent physical reality, with actual algorithms incorporated in the simulations. Higher
levels of detail increase simulation run time. This paper is focused on the effects of model
architecture, run-time software architecture, and parallel processor architecture on speed.

Simulation Run-Time Constraints

Parallel processing is used to meet time constraints that cannot be met running on a single
processor. Time constraints occur for many reasons. If it takes many days to complete one
simulation run, then it may take weeks of running simulations to obtain a single valid test. This
can inhibit the simulation development and validation process. If one wants to use simulated
output to make a decision within hours, having to wait days renders the output useless.

Cases of interest involve modeling real world systems where the time to run a single
processor simulation far exceeds the time taken by the real system for the same scenario. One
must question why a simulation cannot run at least as fast - or even much faster, using a large
number of parallel processors. Such applications cover many fields, including computer design,
communication network design, and planning and control system design. When running
applications requiring many hours of simulated scenario time, it is desirable to have the
simulation time to real time ratio be very high. One can then run a simulation, review the output,
make changes, and run another simulation quickly.

ENSURING VALIDITY

Test results can be presented in many ways, e.g., graphically observing events unfold, or
visually scanning reports of data points. These can be classified as measures of merit, i.e.,
measures of effectiveness or performance of a system. We use M to denote a generalized vector
of values measuring the properties of a system under test (SUT). Field or laboratory testing is
subject to the Uncertainty Principle, and properties being tested are typically presented in terms
of a distiibution of measurements. At the end of a series of tests, M is represented as a set of
distiibutions, one for each property or element, Vi, of the measurement vector. Typically, these
distributions can be characterized in terms of a mean and variance as illusfrated in Figure 1.
These distributions are used to determine validity of test results.

Prediction Systems, Inc Parallel Processing Architectures Page 1

Number
of

Test Points

fivi crvi 3C5V1 Performance Measure V1

Figure 1. Illustration of the distribution of test results for performance measure VI.

When field or laboratory testing is prohibitive or expensive, one typically resorts to
simulation. One must then assess the cost of obtaining valid results from a simulation.

Comparing Statistical Results

When running a single processor simulation, one will get the same results from every run
unless it is taking in real time data. To provide a more accurate view of results, values of
parameters that may vary are drawn randomly from predetermined distributions representing
known or anticipated variations. To analyze the effects of these variations, one typically runs
Monte Carlo simulations, whereby the simulation is run a sufficient number of times, each with a
different random number seed, to produce a distribution of results. Then one can compare the
distribution of the measurement vector from the single processor simulation, Ms, to that of a
valid test set, Mt. If the distributions are deemed to be the same by the "validation committee,"
then the simulation can be used as a valid substitute for field or laboratory tests.

Validating simulations can be difficult, but typically not more so than validating data
from complex field or lab tests. Simulation validity can be achieved on a model-by-model basis
and by comparing the results of simulations to those from a reduced set of laboratory or field
tests. In many cases, a subset of models may have been previously validated. Regardless,
validating a single processor simulation is outside the scope of this paper, so we will assume that
a single processor simulation exists that produces a valid measurement vector, Ms. We are
concerned with obtaining valid results, Mp, when moving from a single processor to a parallel
processor environment.

Prediction Systems, Inc Parallel Processing Architectures Page 2

Validating Parallel Processor Simulations

As indicated above, we will start with a validated single processor simulation and
investigate the potential loss of validity when running that simulation on a parallel processor.
The major factor of concern is data coherency. Data coherency implies that, when o. process (set
of instructions) accesses data in memory, the data has not been changed by a previous process in
a way that causes the logic to produce intermediate results that lead to invalid simulation results.

The data coherency problem is not limited to discrete event simulation. It can occur in
software. For example, if a process on one processor shares a data structure with a process on
another processor, and they both update that data structure thinking the values are unchanged the
next time they access that data structure, the results of either of these processes may be invalid.
Clearly the end results depend upon the logic in the processes, and the assimiptions that logic
makes regarding the coherency of the data. In software, this problem is generally solved by
ensuring that, while a process is running, no other process shares its data - unless by design.

Simulation Time Synchronization

In discrete event simulation, processes are scheduled at specified (event) times in the
fiiture, with the anticipation that the data accessed by these processes will be correct at those
scheduled times. Loss of data coherency can occur due to loss of time synchronization, where
time is simulation clock time. If a single processor version of a simulation is producing valid
results, with no data coherency problems, then it can run on a parallel processor and produce the
same results, provided the following is true: Processes running on different processors and
sharing data run in the same sequence as they would on a single processor. This is a sufficient -
but not a necessary condition for validity of the results.

To validate the results of a simulation, one must compare the distributions of the
measurement vector fi-om the parallel processor simulation, Mp, to that of a valid test set, Mt, or
valid single processor simulation, Ms (single thread implied). Validity can be achieved without
having the same process sequence. In fact, the process sequence will vary in the single processor
case simply by varying the random number seed. As stated above, maintaining a strict sequence
is not a necessary condition. It is important to know what will produce valid results from a
simulation, and what happens when we move that simulation from a single processing
environment to a parallel processing environment.

INHERENT PARALLELISM IN SYSTEMS

In many applications, the best solution approaches do not lend themselves to parallel
processing. For example, the fastest known algorithms for sparse matrix inversion are inherently
sequential. These methods, known as symbolic preprocessors, eliminate looping and testing,
leaving only the minimum sequential set of add, subtract, multiply, and divide operations to be
performed, see for example, Berry, [1], and Hachtel, [2]. hi addition, focusing on parallelism in
short instruction strings inside program loops does not necessarily lead to efficient use of large
numbers of processors. The overhead required to confrol which processor will perform what set
of instructions using what data may take as long as the user instruction strings themselves, see
Reiher [3].

Prediction Systems, Inc Parallel Processing Architectures Page 3

Increases in processing speed clearly depend upon the inherent parallelism of a system as
well as the solution approach. If the problem has little inherent parallelism, i.e., each step must
follow in sequence with each depending upon the prior outcome, then parallel processors will not
help speed up the solution. If large blocks of code can be processed at the same time,
independently, parallel processor computers may significantly improve the speed. To realize
such speed increases, one must take effective advantage of the inherent parallelism of the system
when designing model and simulation architectures.

Properties Of Independence

We will focus on discrete event simulation. To this end, we define the property of
process independence as follows: Processes are independent if they can be run concurrently
without loss of validity.

An example of independence occurs when performing Monte Carlo analysis. If a
simulation is run N times, such that each run (n) uses a different random number seed and
produces a final output containing the measurement vector Mn, then each simulation can be run
concurrently producing the same set of measurement vectors M|, M2,..., MN as would be
produced if run sequentially. In this example, outputs are compared after the runs are complete,
but there is no data shared during the course of the simulation. The results are the same because
each simulation is independent of the others. Hence, every process in one simulation is
independent of every process in any of the others. This is known as an "embarrassingly parallel"
example. It is only of interest here as an extreme case of total independence.

Partial Independence

The discrete event simulations of interest are of systems with partially independent
components. Examples include networks of physical systems, typically connected by
communication equipment. Large networks involve hundreds or even thousands of complex
components, each running concurrently. An example is air traffic control. Aircraft platforms
may require 6 degree of fi-eedom models. These platforms interact via radar sensors and wireless
communication systems. Signals and messages are continually being interchanged by these
models during the course of a simulation, just as they do in a real system.

In such simulations, there is a large amount of data sharing, much of which is highly
synchronized, causing major concerns about validity - even in a single processor simulation.
Yet, there is generally a large degree of inherent parallelism. This is supported by the fact that
single processor simulation scenarios typically take considerably longer than their real system
(parallelized) counter parts. It is not unusual for a simulated two hour scenario to take days.

Building models that take advantage of the partial independence of systems has
heretofore been a challenge. This is a very large application area where PSI applies most of its
efforts. To address the problem of ensuring validity, as well as modeling partially independent
systems on parallel processors, PSI developed the General Simulation System (GSS), [4].

Prediction Systems, Inc Parallel Processing Architectures Page 4

THE GSS - PARALLEL PROCESSING ENVIRONMENT

GSS has been designed to support efficient parallel processing, both during development
and run-time. There are a number of system features that support these design goals.

1. Data structures (resources) are separated from instructions (processes) to track which
processes share what resources. This is used to determine independence and thus the
potential for concurrent processing at run-time.

2. Models are built using a visual CAD tool, where icons of processes and resources are
connected by lines, denoting data sharing. This provides a one-to-one mapping from
engineering drawings to the code. Double clicking on an icon brings up the code.

3. Model connectivity (independence) can be inspected visually to determine if the inherent
parallelism of a physical system is properly represented. Thus, models do not have to be
changed to move from a single processor to a parallel processor. No code is changed - a
major factor affecting validity.

4. Knowledge of the architectural parallelism is stored within the system, and used during
run time. To take advantage of this knowledge, the system has its own run-time
environment that allocates processors to processes in a maximally efficient way.

5. Efficient data coherency protocols ensure that processes are not using the same resources
(data structures) at the same time. These can be tailored to manage hardware coherency
protocols on a parallel processor.

6. The scope of a resource is very large compared to the way attributes are formulated in
typical programming languages, e.g., C, C"^, Java, FORTRAN, etc. Similarly, processes
have a large scope compared to subroutines in other languages. This is due to the
additional level of hierarchy in both. This provides substantially increased scalability,
and much larger bovmd instruction sets.

7. The run-time system provides for efficient cross-scheduling of processes across
processors as well as fast scheduling within a processor.

8. The simulation clock on each processor does not vary by more than AT, a parameter
specified by the modeler. Simulation clock units can vary from picoseconds to days in a
single simulation. This allows the modeler to set AT to the maximum value that ensures
validity of results. As described below, this is a key factor in obtaining efficiency of
parallel processing, reducing idle time of processors waiting for clock synchronization.

9. The system supports instanced models. At run-time, large numbers of independent model
instances are adlocated to separate processors, with minimized resource sharing across
processors.

10. The run-time system can perform optimized load balancing given real time data on
processor loading.

Prediction Systems, Inc ParaUei Processing Architectures Page 5

Scheduling Processes

Modelers use a GSS SCHEDULE statement to cause processes to be placed in a schedule
queue to be run at a specified time in the future. Processes scheduled at the same time can be
given a priority. If no priority is assigned, it is implied that the order does not matter, i.e., a valid
result will occur if ordered randomly.

Valid results can occur even when processes, scheduled at different times, are run out of
order. This is because timing may or may not affect validity. For example, if message A comes
in before message B, but neither get processed until both are in, it does not matter which one
comes in first. Or, if ten messages must come in before something happens, which ones get in
under the wire may not matter because, in the real world, the results are valid either way. This is
especially true when variations occur naturally, causing the distribution of the measurement
vector.

Determining The Maximum Value Of AT

As indicated in feature 8 on the prior page, one must determine the maximum value of
AT that still ensures validity of results. This is done by running multiple Monte Carlo sets of the
simulation in the GSS parallel processing environment, varying AT until the measurement
vector, Mp, produces distributions whose variance exceed those of the single processor version,
Ms. Figure 2 illustrates this effect for two different simulations, A and B.

Vm
VARIANCE OF
PERFORMANCE
DISTRIBUTIONS

Vm(A) Vm(B)

±
I
I DISTRIB1 6/17/03

ATmaxA ATchaosA ATmaxB ATchaosB

Figure 2. Illustration of the selection of ATmax.

AT

Prediction Systems, Inc Parallel Processing Architectures Page 6

For simulations of nonlinear systems, the variance of the distributions is typically
unchanged until a break point, ATchaos, at which point results become chaotic. If the systems
being simulated have a synchronized component, i.e., events occur on a time synchronized basis,
then this effect can be expected to occur as AT crosses the time synchronization point. Judgment
can be used to back off to a valid point, hi the sensor simulations used to test this approach, [5],
the break point occurred at about 1 second. Backing off to ATmax = 0.8 seconds was sufficient.
It is likely that changes could be made to this simulation to move the curve to the right,
increasing the allowed ATmax. If changes are made to a simulation, ATmax must be revalidated.

Simulations of TDM A wireless systems may place a more stringent requirement on
ATmax. For example, military Link 16 networks use a JTIDS terminal with time slot
synchronization at 7.8125 milliseconds. If the modeler has property synchronized scheduled
events within a time slot, a ATmax of 7 milliseconds is likely to ensure validity of simulations
that model message traffic to the time slot level. Depending upon other items in the simulation,
modeling to the JTIDS frame level may relax this requirement to more than 10 seconds, since a
frame covers 12 seconds. But such a modeling approach would severely limit the validity of the
simulation to investigate network performance when subject to rapid response requirements at
the individual message level.

We note that validity as a fiinction of ATmax is generally independent of the parallel
processing environment. However, the actual curve will encounter variations resulting from the
effects of random ordering of processes, producing a distribution of results caused by these
random variations. This distribution should be within the simulation validity requirements.

The Effect Of AT On Parallel Processing Efficiency

Parallel processing efficiency is defined here as: the ratio of the time it takes to run a
simulation on a single processor to that on a parallel processor, divided by the number of
processors. As shown in Figure 3, AT plays a major role in processing efficiency.

Ep
Efficiency
Of Parallel
Processing
Environment J.00%

90% Lp2^-

/ 80%

/ 70%

r.<£__=^-^ Epi - 60%

i <:'Parallf>l Prorflssor Architecture __iD54

/ ~^^r———-—__ 40%

/ / 30%

y / 20%

 -^ 10%

DISTRIB1 6/16/03

0 AT

Figure 3. lUusfration of parallel processor efficiency versus ATmax.

Prediction Systems, Inc Parallel Processing Architectures Page 7

The Effects Of Architecture On Parallel Processing Efficiency

The curves shown in Figure 3 are representative of those derived from data taken on
percent efficiency versus AT as part of the experiments reported upon in [5]. As AT is increased
from 0 to larger values, efficiency increases as shown in each of the two curves, Epl and Ep2.
These curves represent different parallel processor architectures for the same simulation and
same number of processors. The difference in levels achieved represents the different losses of
efficiency incurred when:

• Maintaining data coherency across processors

• Transferring shared data from one processor to another

• Scheduling processes on different processors

• Idling due to imbalanced loading

The first three contribute latencies that reduce efficiency as they become a greater percentage of
the overall processing time. Imbalanced loading will be treated separately below.

The Effects Of Software Architecture

The curves in Figure 3 also depend upon the inherent parallelism in the system being
modeled. In the Monte Carlo (embarrassingly parallel) case, the overhead of the first three
bullets is generally unnecessary. If the processing time for each simulation were identical, the
total processing time should be that of a single processor divided by the number of processors. If
run on a set of separate computers, the efficiency would be 100%. If the processing fimes were
not equal, then the total time would be equal to that of the one simulation with the longest
running time; idle time would occur at the end of the others.

In the cases of interest, where there is only partial independence, there may be a large
amount of scheduling and data sharing among processors relative to the embarrassingly parallel
case. However, as in the real systems represented, this may still be small compared to the
processing required within a processor. In these cases, two areas become important.

• Modeling and simulation architecture

• Parallel processor run-time management software

If the model architecture does not match the inherent parallelism of the actual system
from an independence standpoint, efficiency will be lost relative to that of the actual system.
This is particularly obvious when building software abstractions that cut across multiple
hardware instances of a subsystem, causing bottlenecks in a parallel processor environment.
Software abstractions are commonly used to save memory - a major pitfall in parallel processing.
GSS provides a visualization of the architecture that can be used to eliminate this problem.

If the software architecture is mapped along physical lines but the run-time management
software has no knowledge of this, then good model architecttires will likely be scattered
randomly across processors, losing the efficiency they could otherwise provide. The GSS run-
time system is designed to take full advantage of parallelism within model architectures. It runs
on clusters; however, our analysis demonstrates that it runs most efficiently on tightly coupled
processors under a single Operating System (OS).

Prediction Systems, Inc Parallel Processing Architectures Page 8

The Effect Of Hardware Architectures

Given that the model and run-time software architectural approach takes fiill advantage of
the inherent parallelism of a system, we must ensure that if we select a hardware architecture, it
will meet the time and validity constraints. To illustrate the selection process, we will use a
simple example of run-time constraints whereby a 2 hour scenario must be run in less than 6
minutes to achieve the desired goal. This implies a simulation time to real time ratio of 20. If
the simulation runs 3 times slower than real time on a single processor, it must run with greater
than 60% efficiency using 100 processors to achieve the goal. This provides a speed up factor of
60 (one hour of single processor time is done in one minute).

Figure 4 illustrates two different hardware architectures, Epl and Ep2, as candidates to
achieve the goal. In the case of Epl, the efficiency remains at about 10% as we approach
ATmax. This illustrates the effect of latency on achieving a feasible solution, i.e., meeting the
time and validity constraints. Ep2 achieves in excess of 90% efficiency prior to reaching
ATmax. For this example, Ep2 clearly achieves the goal.

Ep
Efficiency
Of Parallel
Processing
Environment

Vm
VARIANCE OF
PERFORMANCE
DISTRIBUTIONS

V m
inn%

''//////// ..-—■ 90%

/ //FEASIBLE/// R0%
// /REGION ///

70%

 60%

Ep2/
 ^ ,'''' 50%

tpl/
/ 40% / /

/ 30%
/

20%
__^-'' _____^ y

 r 10%

1 DISTRIB1 6/19/03

0 ATmax ATchaos AT

Figure 4. Relative effects of parallel processor architecture on validity.

When assessing parallel processing architectures, one must understand the dynamics of
latency as it affects the feasibility of different hardware solutions. When simulating partially
independent systems on parallel processors, one is prone to doing battle with chaos. These limits
are apparent when using HLA federations to simulate large numbers of instances of complex
units. When the federates are required to be highly synchronized to ensure validity, simulation
times can quickly become excessive. There have been examples of parallel processing operating
systems where substantial time is spent in special algorithms fighting chaotic behavior. These
examples are prevalent in high latency systems.

Prediction Systems, Inc Parallel Processing Architectures Page 9

LOAD BALANCING

When imbalanced loading occurs, decisions may be made regarding the movement of
processes from processors experiencing maximum loading to processors experiencing minimum
loading. If this is done dynamically, movement may waste more time than it can save. Consider
the processor loading histogram in Figure 5. It has been ordered by loading level.

USING 100 PROCESSORS

■lUoVERHEAD
IDLE TIMEl

USEFUL TIME

PROCESSOR NUMBER

Figure 5. Ordered processor loading histogram.

100

If this histogram represents results of the total scenario, then it appears that many
processors were idle a majority of the time. One may quickly conclude that many less
processors could have been used to achieve the same run-time speed. This assumes that
movement does not increase data sharing across processors, and that process loading remains in
a steady state. If these assumptions are true, one may be able to hand tailor the placement of
processes on processors to maximize processor utilization and therefore efficiency. This may be
at the expense of speed loss that will be small if the assumptions hold. We consider this a rare
case, and even then consider hand tailoring a questionable investment.

Now consider that Figure 5 represents a sample of a time period that is relatively short
compared to the scenario. Also, consider that processor utilization changes dynamically during
the scenario as shown in Figure 6. Then one must be concerned with the overhead of migrating
processes verses the time constants of significant load changes, e.g., from times Tl to T2 to T3
in Figure 6. Given that the migration times are sufficiently small compared to the dynamic
loading time constants, one still must be concerned about increases in data sharing across
processors.

m nu

1 PROCESSOR NUMBER 100

TIME T1

• • •

■ ■ ' ■

1 PROCESSOR NUMBER 100

TIME T2

1 PROCESSOR NUMBER 100

TIME T3

Figure 6. Changes in processor loading over time.

Prediction Systems, Inc Parallel Processing Architectures Page 10

Taking Advantage Of The Independence Properties Of Actual Systems

By virtue of the physical architecture of engineered systems, components are designed to
be maximally independent. This provides for system survivability as well as ease of
maintenance. Therefore, models that are designed along physical lines, without software
abstractions, can take advantage of this inherent independence. Knowledge of the partial
independence (inherent parallelism) of models and their instances within a GSS simulation is
used to support intelligent load balancing decisions, independent of the number of processors
assigned.

Assigning And Migrating Models And Instances.

The visualization of models of components of physical systems in GSS provides the
modeler with the ability to take maximum advantage of the partial independence of the system
being modeled. Large models containing many layers of submodels can be instanced just as
their physical counterparts. The automatic instancing facility built into the system ensures their
independence, except at specified boundaries where instances share resources to represent the
real world exchanges of partially independent entities.

All processes and resources within an instance are automatically assigned to the same
processor by the run-time system. This ensures minimal data sharing across processors. Load
balancing is achieved by comparing the dynamic load created by each instance to processor load
dynamics. Thus, the time constants of each can be compared as well as the loading over selected
time periods to determine if migration of an instance is likely to improve speed.

If latencies between processors in a large array vary sufficiently, then a latency matrix
can be used to optimize the placement of instances. Assignment can be based upon the dynamics
of data sharing between model instances.

Assignment and migration of model instances can be more efficient and more easily
controlled when running under a single OS. When running in a cluster environment, GSS
provides the same automatic coherency and cross-scheduling protocols between separate
simulations interacting via a high speed network. It can also support multiple federates in an
HLA environment, any of which may be GSS clusters or single OS parallel processors
simultaneously.

Synchronization, Coherency, And Look-Ahead

When simulating large synchronized systems, it is not unusual for a large n\imber
(thousands) of processes to be scheduled at the same time and priority. When a process is
popped off the schedule queue, it may have to wait for the use of a resource due to a coherency
protocol. If the next process in the queue is scheduled at the same time and priority, and none of
its resoiirces are stopped by coherency protocol, it may proceed before the first. Additionally,
algorithms can be added to the scheduler to determine the optimal ordering of processes within
each processor that are at the same time and priority, e.g., optimal placement of those processes
with interface resources. This form of look-ahead does not require retracing steps in an attempt
to regain validity, but supports continuous forward motion in time while maintaining validity.

Prediction Systems, Inc Parallel Processing ArcWtectures Page 11

CONCLUSIONS

The potential speed increases that discrete event simulations can achieve on parallel
processors depend directly upon:

• Model architecture

• Run-time software architecture

• Parallel processor hardware architecture.

The effectiveness of each of the above items depends upon the preceding one.
Assessment of good hardware architectures can be masked by poor run-time software. Similarly,
a poor model architecture will not take advantage of an excellent combination of run-time
software running on a low latency parallel processor.

Many approaches to discrete event simulation using parallel processors disregard the hard
constraints on validity, and the very real effects this has on efficiency. This is apparent fi-om the
literature, as many organizations continue to search for methods to unravel chaos instead of
working to take full advantage of inherent parallelism and reduce latency.

Without an environment that affords modelers the ability to take maximum advantage of
the inherent parallelism in partially independent systems, the information required to make a
feasible (let alone optimal) selection of a hardware architecture may be masked.

When modelers find it easier to run simulations on a parallel processor than using their
current approach on a single processor, the benefits of parallel processing will be finally realized.
This implies that the environment they use must automatically take advantage of the inherent
parallelism in partially independent systems.

REFERENCES

[1] Berry, R., "An Optimal Ordering of Electronic Equations for a Sparse Matrix Solution,"
IEEE Trans, on Circuit Theory, Vol CT-18, No.l, pps 40-50, January 1971.

[2] Hachtel, G. et al, "The Sparse Tableau Approach to Network Analysis and Design," IEEE
Trans, on Circuit Theory, Vol.CT-18, No-1, January 1971.

[3] Richer, P., "Parallel Simulation Using the Time Warp Operating System," Proceedings of
the 1990 Winter Simulation Conference, New Orleans, LS, pp 38-45.

[4] GSS User Reference Manual, Prediction Systems, Inc., Spring Lake, NJ, 1996.

[5] High Efficiency, Scalable Parallel Processing, Phase I Final Report, DARPA
Conti-act SB022-035, Prediction Systems, Inc., Spring Lake, NJ, June 2003.

Prediction Systems, Inc Parallel Processing Architectures Page 12

