
moo/¥- -4/- a-^0i/-

Authenticated Address Notification for MobUe Communication

Anupam Datta John C. Mitchell Frederic MuUer
Dept. Computer Science, Stanford Univereity
{danupam, jcm, fmuller}Scs. Stanford. edu

Dusko Pavlovic
Kestrel Institute, Palo Alto, CA

duskoSkestrel,edu

Abstract

We present an improved protocol for authenticating Mo-
bile IPv6 connections, addressing requirements established
in the relevant Internet Draft 13]. The protocol imposes
minimal computational requirements on mobile nodes, uses
as few messages as possible, and may be adapted to resist
denial of service attacks. Our protocol has two parts, an
initialimtion phase and an update phase. The initialimtion
phase takes advantage of available authentication infras-
tructure to set up a shared secret between a mobile and cor-
respotulent node. Each execution of the update phase uses
the shared secret established in the previous phase to main-
tain security of the mobile connection. We have formally
verified the correctness of the protocol using the finite-state
analysis tool Munp, which Ms been used previously to an-
alyze hardware designs and security properties of several
protocols.

1. Introduction

In Mobile IPv6 [1], a mobile node has two associated
IP addresses. A mobile node is always identified by its
home address. While operating away from its home, a mo-
bile node is also associated with a care-of address, which
provides information about its current location on the inter-
net. The care-of address is registered with the home agent,
which transparently routes IPv6 packets sent to the home
address to the care-of address. To reduce routing distance
and relieve the load on home agents, a mobile node may
also inform other IPv6 nodes about its current care-of ad-
dress. The need for authenticating address notification mes-
sages has been recognized [1,3]. While providing authen-
tication, any proposed solution must address two additional
concerns: (a) computational tasks should be appropriately
distributed so that smaller mobile nodes do not need to per-
form tasks which require expensive computations; (b) the
available authentication infrastructure may be limited in the
sense that some nodes may possess public key certificates
while others may not be part of a global public key infras-

tructure. Previous proposals either fall short of meeting the
authentication requirements [1, 4, 5] or use IPSec thereby
requiring mobile nodes to possess public key certificates
from a global PKI and perform expensive computation [2].

In this paper, we present a protocol for authenticating ad-
dress notification messages (or binding updates in Mobile
IPv6 terminology), taking into consideration the computa-
tional and infrastructure requirements. Throughout, we use
the Mobile IPv6 scenario as a concrete example. We em-
phasize, however, that the proposed protocol would be ap-
plicable in other situations where mobile devices conmiuni-
cate with each other. In particular, cellular phone networks
could provide another usefiil application scenario.

The protocol has two phases: (a) a once-per-connection
initialization phase in which a mobile node and a corre-
spondent node use any available chain of trust through au-
thentication servers in their respective domains to confirm
a shared secret; (b) an update phase that is executed every
time an authenticated address notification message needs to
be sent; the shared secret established in the previous phase
is used as the basis of authentication. The protocol provides
sender authentication, data integrity, and replay protection,
without requiring mobile nodes to perform public key oper-
ations. Using a forward message from the mobile node to
the correspondent node, and a reply through the authentica-
tion servers only once in the initialization phase, the proto-
col minimizes the number of messages exchanged between
participating entities. While we assume that mobile and
correspondent nodes share a secret key with their respec-
tive authentication servers, the protocol does not require the
servers to maintain state during the execution of the pro-
tocol, avoiding memory denial-of-service attacks and other
resource consumption problems.

An important idea behind the protocol is to use symmet-
ric key encryption to move computation involving public
keys from a mobile node to a more powerftil node in its do-
main. Starting from an IPSec-like key exchange protocol
in which a mobile node and a correspondent node directly
authenticate each other using public-key cryptography, we
systematically apply protocol transformations to finally ar-
rive at the protocol which meets the desired design crite-

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

20030801 082

ria. The protocol transformations are described informally
to convey the intuition behind the design. A complete for-
malization of protocol transformation rules and their cor-
rectness will be presented elsewhere.

The second important issue is that of limited authenti-
cation infrastructure. While there have been concrete pro-
posals for maintaining a global trust infrastructure, e.g., by
extending the Domain Name System (see [6,7]), successful
deployment in the short term seems unlikely. We therefore
consider several variants of public key certification : nodes
can obtain certificates from a trusted Certification Authority
(CA); they can use cached self-signed certificates; or they
can obtain certificates online from a nearby server where
the server itself might possess either a certificate from a
CA or a cached self-signed certificate. As an expository
convenience, we present our protocol under the assumption
that each authentication server has a public-key certificate
issued by a CA. The strong authentication properti^ dis-
cussed above hold under this assumption. We then con-
sider scenarios in which some of the certificates are self-
signed. The value of self-signed certificates is that the first
time the authentication servers participate in Mobile IP, they
exchange self-signed certificates and cache them. In subse-
quent executions of the protocol, they use the cached self-
signed certificates for authentication. While this method is
susceptible to a person-in-the-middle attack, an attack is
only possible once for each pair of authentication servers
(up to the capacity of the certificate cache). An additional
advantage of this scheme, which could make a difference
during its implementation, is that the structure of the pro-
tocol is minimally affected by the available authentication
infrastructure - the difference merely lies in the nature of
the certificates used and how they are obtained.

The design of security protocols has, in general, been
notoriously prone to errors. In the recent p^t, a fruitful ap-
plication of formal methods has been in uncovering bugs
and proving correctness of a broad class of security proto-
cols. In particular, formal methods have been successfiilly
used to analyze key exchange and authentication protocols
[8, 9, 10, 11, 12, 13]. We have formally verified the cor-
rectness of our protocol using the finite state analysis tool
MuTip [14], In previous work, Mm<p has been used to verify
the correctness of several protocols [13, 15, 16, 17], The
fact that the Mur^ analysis did not find any bugs, therefore,
gives us increased confidence in the correctness of the pro-
tocol.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the requirements for security in Mobile
IPv6. Section 3 briefly discusses the previous proposals for
authenticating binding updates. In Section 4, we present
our basic protocol. Section 5 presents our modelling as-
sumptions and analysis results. In Section 6, we discuss
extensions to prevent denial of service attacks. Concluding

remarks appear in Section 7.

2. Security Requirements for Address Notifica-
tion

While address notification makes end-to-end routes
shorter, the ability to change routes on the fly introduces a
number of security concerns. A Mobile IPv6 address noti-
fication message specifies an association between the home
address of a mobile node and its care-of address, along with
the remaining lifetime of that association. Upon receiving
an address notification message from a mobile node (MN),
a correspondent node (CN) stores this association. Subse-
quently, the CN will send all packets destined for the MN
to its care-of address instead of its home address. Threats
and security requirements for address notification messages
(or binding updates) are described at length in [3]. Here, we
discuss the most pressing security issues.

In the absence of a pre-established security association
between MN-CN pairs, two major security threats arise:

• An attacker may send false address information if
binding updates are not authenticated. In fact, an ac-
tive attacker can launch a person-in-the-middle attack,
pretending to be the default router to the MN and the
MNtotheCN.

• An attacker can launch denial-of-service attacks on
MN's, CN's and Home Agents (HA's). This could be
done, for example, by flooding IPv6 nodes with fake
binding updates.

Our main goal is to institute a mechanism for setting up
security associations between MN-CN pairs that will allow
binding updates to be authenticated. Additional require-
ments, as specified in [3], are:

• Identity verification should not rely on the existence of
a global PKI.

•. Consider the computational capabilities of the MN's
and CN's.

• Minimize the number of messages and bytes sent be-
tween the participating entities.

• Resist denial-of-service attacks.

• In any event, provide no weaker guarantees than IPv4.

The starting point for our investigation of authenticated
binding updates is the realization that every authentication
protocol relies on some form of previously established au-
thentication infrastructure. In order for A to directly authen-
ticate herself to B, agent A must be able to perform some
action, either individually or in collaboration with services

"available on the network, that can only be performed by A
and that B is able to recognize, either individually or in col-

. laboration with services available on the network. If A has
a public-private key pair and the public verification key is
known by B to be associated with A, then digital signa-
tures allow B to verify a claim from A. Shared symmetric
keys, shared secret hash keys, and other shared secret or un-
forgeable information can also be used for authentication.
In effect, the infrastructure must provide a chain of trust
from A to B. Our goal is to present the most reliable form
of authentication possible for each of the most realistic or
potentially achievable chains of trust. Further discussion on
how our authentication protocol leverages various trust in-
frastructures appears in Section 4.

3. Previous Proposals

Previous protocols for authenticating binding updates
[1, 2, 4, 5] fall short of meeting all the security require-
ments. We review these protocols to show some of the
forms of cryptography that have been considered and to il-
lustrate their shortcomings.

An earlier version of the Mobile IPv6 Internet Draft [2]
advocated the use of IPSec and IKE [18] to authenticate
binding updates. Although this approach provides strong
authentication, it suffers fix>m two serious drawbacks. It re-
quires mobile nodes to possess public key certificates from
a global PKI and to perform expensive public-key crypto-
graphic operations.

In contrast, the current Mobile IPv6 Internet Draft [1]
offers a solution at the other end of the spectrum. The
"return routability procedure" proposed there does not rely
on any form of authentication infrastructure. The mobile
node sends two cookies to the correspondent node: the HoT
cookie and the CoT cookie. The correspondent node returns
the HoT cookie to the mobile node's home address and the
CoT cookie to its care-of address. In addition it generates
two additional cookies of its own - the home cookie and
the care-of cookie and sends them to the mobile node. The
home cookie is sent with the HoT cookie and the care-of
cookie with the CoT cookie. The binding update is cryp-
tographically bound to the cookies generated by the corre-
spondent node. A correspondent node therefore authenti-
cates a mobile node by verifying whether it is reachable at
both its home and care-of addresses. However, an active
attacker on the path between the mobile node and the cor-
respondent node or between the home agent and the corre-
spondent node can launch a person-in-the-middle attack on
this protocol.

Bradner, Mankin and Schiller [4] proposed a framework
called Purpose Built Keys. Before initiating a connection
with a correspondent node (CN), a mobile node (MN) gen-
erates a public-private key pair (called a purpose-built key

pair) for use during the connection. The MN then sends
a hash of the public key to CN. Subsequentiy, when MN
sends a binding update, MN signs it with its private key and
also sends the public key to CN. CN verifies that the public
key hashes to the same value it had received before and, if
so, uses the public key to verify the digital signature. An ad-
vantage of this framework is that it does not require any se-
curity infrastructure. However, purpose-built keys provide
authentication if and only if the initial hash of the public
key is received correctly by CN. This might not be the case.
An attacker could intercept the hash and send the hash of
a different key (which it owns) to CN. Subsequently, it can
pretend to be MN without CN being any wiser. The authors
of the draft were, of course, aware of this weakness.

Le and Faccin [5] propose two protocols for authenti-
cating binding updates. The first assumes that both the
MN and the CN share security associations with two AAA
servers (e.g., RADIUS [19], DIAMETER [20]) and these
two servers in turn share a security association. The proto-
col then uses this chain of trust to achieve authentication.
Our protocol uses a similar architecture and can be easily
adapted to work within a AAA infrastructure. Furthermore,
it employs fewer messages than Le and Faccin's protocol (
5 as opposed to 7). This improvement is obtained by com-
bining encryption-based and signature-based authentication
techniques and will be elaborated further in the next sec-
tion. The second protocol proposed in [5] involves an unau-
thenticated Diffle-Hellman key exchange between MN and
CN. The resulting key is subsequently used to authenticate
binding updates. The authors recognize fliat this protocol is
vulnerable to a man-in-the-middle (MTIM) attack but state
that "due to the properties of IP" such an attack will always
be detected. They argue that since an attacker cannot re-
move any packets from the network, if a MITM attack is
launched, both the MN and the CN will receive two DifBe-
Hellman exponentials and will therefore be able to detect
the attack. There are a couple of objections to this argu-
ment. Firstly, an attacker could remove packets from the
network, e.g., if it gained control of the router being used
by MN. Secondly, even if it were not able to remove pack-
ets from the network, it could delay them, e.g., by flooding
MN and CN's network buffers with junk packets. During
that interval, it could potentially cause damage. Also, even
if MN and CN detect the attack, the only thing they can do
is drop the session, since there is no way to determine which
of the exponentials is authentic. So, the attack still succeeds
as a denial of service attack.

4. The Protocol

In this section, we propose a specific protocol for au-
thenticating binding updates. Our protocol consists of two
phases: (a) an initialization phase in which mobile node

(MN) and correspondent node (CN) set up an authentica-
tion key; (b) an update phase in which MN sends an au-
thenticated binding update to CN using the key obtained
from phase (a). The initialization phase protocol is pre-
sented in stages. Starting from an IPSec-like key exchange
protocol in which a mobile node and a correspondent node
directly authenticate each other using public-key cryptog-
raphy, we systematically apply protocol transformations to
finally arrive at the protocol which meets the design crite-
ria. The protocol transformations aim at moving expensive
computations away from mobile nodes as well as reducing
the reliance on authentication infrastructure.

Throughout, we assume that each mobile node has a pre-
established bidirectional security association with an au-
thentication server in its domain. This is a reasonable as-
sumption and has been recognized as such in [3]. A mo-
bile node's authentication server may be co-located with its
home agent or could operate independently. We also as-
sume that the authentication servers are capable of authen-
ticating each other using public key cryptography. Strong
authentication is provided if the public-key certificates are
issued by a CA; weaker authentication guarantees are of-
fered if some of the certificates are self-signed,

4.1 Notation

The following notation is used in describing the protocol.

MN -^CN:g', [CertMJv]

CN-^MN: {5»}^+ , SigcN (5», ^, MN),

MN
CN
AMN

AcN
BU
KM

Kc
Ki
K+
Certi
Sigi{...}
{■■■}K

H
iPi
KD
h{k,M)
MAC(k){M}

Mobile node
Correspondent node
Authentication server of MN
Authentication server of CN
Binding update
Shared secret between MN and AMN

Shared secret between CN and AQN

Public encryption key of AMN

Public encryption key of MN
Certificate of entity i
Signed by entity i
Encrypted with key K
a; is an optional parameter
IP (home) address oft
Shared Diffie-Hellman secret key
Keyed hash of message M with key k
Message auth code of M with key k

4.2 Protocol Descriptioii

4.2.1 Initialization Phase

'■MN

[CertcN]

The base two party protocol from which we derive the ini-
tialization phase protocol is shown in Figure 1. It is an au-
thenticated Diffie-Hellman key exchange protocol [21, 24]
resulting in a shared secret between MN and CN.

MN -+ CN : MACiKoUg", CN]

Figure 1. Base two party protocol

The firet message is straightforward. Note that it as-
sumes that MN already knows a group and generator that
is acceptable to CN. Upon receiving that message, CN
generates g^ and computes KD = g'^v. She then sends g^
encrypted with MN's public key. This ensures that no at-
tacker can observe g^. The signature on the second mes-
sage assures MN that CN did in fact receive ^r^, generate
gV and that the message is meant for MN. Omitting MN's
identity from inside the signature opens up the protocol to
a person-in-the-middle attack similar to the attack on the
original Needham-Schroeder protocol [22]. For the purpose
of this protocol, MN's identity could be its home address.
In the third message, MN sends a keyed message authen-
tication code (e.g„ HMAC [25]) of g' and CN's identity.
The key is the Diffie-Hellman secret resulting from the ex-
change. Since only MN could have recovered g^ and com-
puted KD, CN can conclude that the message was indeed
sent by MN. Including g^ and CN's identity inside the
MAC assures CN that MN had sent the original g^ and
that CN is the intended recipient of this message.

However, this protocol fails to meet the design require-
ments on two counts: it requires mobile nodra to be part of
a global PKI as well as to perform expensive public-key op-
erations. We now describe a protocol transformation mech-
anism aimed at overcoming these limitations. The idea is to
introduce another protocol principal, AMJV. between CN
and MN. Instead of sending authenticated data directly to
MN, CN sends it to AMN, who in turn forwards it to MN.
In effect, the second message of the protocol in Figure 1
gets replaced by two messages - one from CN to AMN and
the next fi-om AMN to MN. Public-key cryptography is
restricted to the CN — AMN link. Symmetric-key cryp-
tography is used between AMN and MN. The resulting
protocol is shown in Figure 2.

The guarantees provided by the second message of the
base protocol in Figure 1 are preserved by the second and
third message of the protocol in Figure 2. Both these mes-
sages (a) preserve the secrecy of g^; (b) authenticate both
gV and g^; and (c) include the intended recipient of the
message within the authenticated data. Note that the second
message includes, within the body of the authenticated data,
the component {AMN, MN}. Along with the intended re-
cipient of the message, this component specifies the path

CN ^ AMN •■ {5", g", {AMiv,MiV}}„+,

[CertcN]

AMN^MN:{gy,g^,MN}K^

MN^CN: MACiKoHg^, CN]

Figure 2. Protocol with one forwarding agent

along which the authenticated data is to be subsequently for-
warded. It can be viewed as a generalization of the scenario
in the base protocol in which the intended recipient does not
need to forward the data to another principal.

In general, a correspondent node (CN) can either be a
stationary or a mobile IPv6 node. If it is a stationary node
with sufficient computational power, it can very well per-
form the public-key operations required in the protocol of
Figure 2, However, if it possesses limited computational re-
sources or if it does not have a public key certificate whereas
some other server in its administrative domain does, then it
would be useful to forward the second message of the pro-
tocol in Figure 2 through that server to AMN • The resulting
protocol is shown in Figure 3.

MN^CN:g-,[CertA^^]

CN -4. AcN : {g^, r. {AcN. AMN, MN}}Ka,

[Cert AMN]

AcN -> AMN • {g^, g"", {AMN, MJV}} „+,

SigAoAg", g', {AMN, MN)),

[CertAan]

AMN -^ MN : {gv, g^, MN)KM

MN -> CN : MAC{KD){g'', CN)

Figure 3. Protocol with two forwarding agents

As before, 5" is sent encrypted throughout and g", f^,
and the forwarding paths are included within the body of
the authenticated data. Symmetric-key cryptography is used
between CN and ACN- Note that whether CN sends the
message to AMN directly or through AQN the format of
the message is exactly the same. So, based on the available
computational power and authentication infrastructure, CN
can locally decide which version of the protocol to imple-
ment without in any way affecting either MN or AMN-

Public-key Certificates. An issue that merits discussion at
this point is the nature of the public-key certificates used
and how they are obtained. Two of the protocol principals
(CN or ACN and AMN) must possess public-key certifi-
cates. Ideally, both of these certificates would be issued
by a globally trusted CA or a chain of issuers ending at
a CA. In that case, after executing the protocol both MN
and CN are guaranteed that they share a secret key with
each other. However, in the absence of CA-issued certifi-
cates, one or both of the certificates could be self-signed.
In that case, the principals will exchange the certificates the
first time they execute the protocol and cache them for sub-
sequent use. Self-signed certificates can be created by a
node for herself or it could be obained online from a nearby
server which owns a certificate (either firom a CA or self-
signed). How certificates are obtained is thus a matter of
local administrative policy. The viabiUty of caching unau-
thenticated certificates has been tested by SSH and seems to
work quite well in practice.

Based on the nature of the certificates, the protocol pro-
vides different authentication guarantees. Three possible
cases arise: (a) CN (or ACN) uses a self-signed certificate
while AMN uses a CA-issued certificate. In that case, upon
receiving the last message of the protocol, CN is assured
that it has a shared secret with MN. However, MN comes
to the same conclusion only under the assumption that the
first time the protocol was executed with that CN, a pereon-
in-the-middle attack was not launched. In any case, even
if MN sets up a shared secret with a node impersonating
CN, authentication is not compromised. Since CN does
not know the secret, it will reject binding updates authenti-
cated with it. This results in longer routes through the mo-
bile node's home agent. But the attacker cannot fool CN
into accepting a fake binding update by pretending to be
MN. (b) AMN has a self-signed certificate while CN (or
ACN) has a CA-issued certificate. In that case, the first time
CN executes the protocol with MN, it is possible for an at-
tacker to set up a shared secret with CN by pretending to
be MN. It can subsequently fool CN into accepting bind-
ing updates authenticated with the shared secret, (c) Both
AMN and CN (or ACN) have self-signed certificates. As
in case (b), an attacker can set up a secret with CN pretend-
ing to be MN and then fool her into accepting fake binding
updates authenticated with that key. In addition, as in case
(a), an attacker can set up a shared key with MN pretend-
ing to be CN. However, as discussed above, this does not
result in a compromise of the authentication requirement.
Indeed for the purpose of authenticating binding updates, it
is sufficient if AMN possesses a CA-issued public-key cer-
tificate. However, unless CN (or ACN) also possesses a
similar certificate, the protocol is open to denial-of-service
attacks. This issue is discussed further in Section 6.

A possible instantiation of the concept of self-signed cer-

tificates is CAM [26]. When a mobile CAM node is first
initialized, she creates a public-private key pair. It next
chooses a home address for itself. The routable 64—bit
address prefix is obtained by listening for local router ad-
vertisements. The lower-order 64 bits are chosen to coin-
cide with a cryptographic one-way hash of the node's public
key. Upon receiving a binding update signed with the mo-
bile node's private key, the correspondent node can verify
that the mobile node's public key does indeed hash to the
lower order bite of her IPv6 address. In our protocol, a sim-
ilar approach can be adopted for binding CN's or AQJ^S

public keys to their IP addresses if they are in a position to
choose the lower order bits of their IPv6 address.

Minimizing Number of Messages. In this protocol, CN
authenticates herself to MN flirough the chain of trust CN
-4 AcN -^ AMN -^ MN. MN could also use the same
trust chain in the other direction to authenticate herself to
CN. This would lead to a 7-message protocol similar to
the one presented in [5]. In order to reduce the number of
messages to 5, we use a different technique. CN's Diffie-
Hellman exponential is never sent in the clear; it is sent en-
crypted along the trust chain and the very fact that MN
is able to recover it and compute the same Diffie-Hellman
secret as CN serves to verify her identity. We thus com-
bine the two standard techniques of signature-b^ed and
encryption-based authentication to realise a protocol with
fewer messages. The difference in the number of messages
exchanged in the two protocols becomes more appreciable
as the trust chain becomes longer. If there are n participants,
our protocol requires n+1 messages while the previous ap-
proach requires 2n — 1. It also appears that we can do no
better. Specifically, any Diffie-Hellman based authenticated
key exchange protocol P between entities A and B that uses
a chain of trust of length n requires at least n + 1 messages.

Perfect Forward Secrecy. The use of Diffie-Hellman key
exchange ensures that the protocol ^ovides perfect forward
secrecy (PFS), i.e., the disclosure of long-term secrets like
private signing/decryption keys does not compromise the
secrecy of exchanged keys from earlier runs. However, if
perfect forward secrecy is not a requirement, an alternative
would be to replace the exchange of DH exponentials by an
exchange of nonces (TIMJV and TICN)- KMN could be sent in
the clear in message 1, while ncjv is sent encrypted in mes-
sage 2,3,4. The shared secret could be derived from a hash
of fljese nonces, e.g., HMAC(nMiv, "cjv) (see [25]). Note
that this variation of the base protocol does not have PFS
since the compromise of long term secrete like the shared
key between MN and AMN exposes all past ncjv val-
ues and hence all past session keys. The advantage is that
it is computationally very lightweight: mobile nodes have
to perform relatively inexpensive operations - generating a
random nonce and computing a hash instead of exponentia-
tion.

Other Issues. Typically, in order to prevent replay attacks,
key exchange protocols require each participant to use some
fresh information in every run of the protocol. The Diffie-
Hellman exponentials serve this purpose in our protocol.
We would also like to note here that an implicit assumption
in our protocol is that it is possible to verify whether an au-
thentication server actually owns a node which it claims as
ite own (e.g., by matching the network prefix of the home
address of the mobile node with that from the authentica-
tion server's certificate). Otherwise, the protocol is open to
attack. Any adversary which possesses a certificate could
intercept message 1 and then send message 3 without AMN

being any wiser. Of course, the use of signatures does pro-
vide non-repudiation: if the exchange is reconied AMN can
prove later that the adversary claimed ownership of a node
that it in fact did not own.

We also assume that the signature scheme is such that no
information regarding plaintext data can be deduced from
the signature itself on that data (e.g., when the signature
operation involves preliminary one-way hashing). This is
critical because, in general, data may be recovered from a
signature on it (e.g„ RSA witfiout hashing). An alternative
approach would be to include the signed block inside the
public key encryption. A disadvantage of this method is
that here the data to be public-key encrypted is larger. This
might require adjustment of the block-size of the public en-
cryption scheme or the use of techniques like cipher-block-
chaining (see Section 12.5.2 of [23] for fiirther discussion
on the relative advantages of the two methods),

4.2.2 Update Ph^e

Once MN and CN have set up a shared secret, Kj}, MN
can easily send an authenticated binding update (BU) by
executing the following 1-message protocol.

BUMKD,BU)

Here, /i(...) is a keyed cryptographic hash function (e.g.,
HMAC [25]). This protocol provides sender authentication
since MN is the only entity other than CN which possesses
the key KD- Data integrity is also provided since the hash
is also a message authentication code (MAC). Replay at-
tacks can be prevented by using the sequence number field
in the binding update option (see Section 5.1 of [2]). The
sequence number field holds an 8-bit number. Each binding
update sent by a mobile node must use a sequence number
which is greater than the sequence number of the previous
binding update sent to the same destination address. Every
time the sequence number space is exhausted, the shared
key should be refreshed. Key refresh could, of course, be
done by re-executing the initialization phase protocol. Al-
ternatively, MN and CN could set up a new key by execut-
ing an authenticated Diffie-Hellman key exchange protocol

in which they can use the old key to authenticate messages.
This approach would require the home agents to be involved

■ in only the initialization phase (once per {MN, CN) pair)
and the system would scale up better.

5. Analysis of the Protocol

We used Mupp, a finite-state analysis tool, to carry out
a formal analysis of the initialization phase of our protocol.
In this section, we briefly outline the general methodology
and describe some of the challenges we faced in applying it
to this protocol. A general description of the methodology
can be found in [13].

5.1 The Mur^ Verification System

Mur^ [14] is a finite-state verification tool that has been
successMiy applied to multiprocessor cache coherence pro-
tocols and multiprocessor memory models [27, 28]. The
purpose of finite-state analysis (also called model checking)
is to exhaustively search all possible execution sequences.
While this process often reveals errors, failure to find errors
does not imply that the protocol is completely correct, be-
cause the Munp model may simplify certain details and is
inherently limited to configurations involving a small num-
ber of protocol participants.

To use Mur^ for verification, one has to model the pro-
tocol in the Mur^j language and augment this model with
a specification of the desked properties. The Mm^p system
automatically checks, by explicit state enumeration, if all
reachable states of the model satisfy the given specification.
For the state enumeration, either breadth-first or depth-first
search can be selected. Reached states are stored in a hash
table to avoid redundant work when a state is revisited. The
memory available for this hash table typically determines
the largest tractable problem.

The Mur^ language is a simple high-level language for
describing non-deterministic finite-state machines. Many
features of the language are familiar from conventional pro-
gramming languages. The main features not found in typi-
cal high-level programming languages are described in the
following paragraphs.

The state of the model consists of the values of all global
variables. In the startstate statement, initial values are as-
signed to global variables. The transition from one state
to another is performed by rules. Each rule has a Boolean
condition and an action, which is a program segment that is
executed atomically. The action may be executed if the con-
dition is true (i.e., the rule is enabled) and typically changes
global variables, yielding a new state. Most Mur^ models
are nondeterministic since states typically allow execution
of more than one rule. For example, in the model of our

authentication protocol, the intruder (which is part of the
model) usually has the choice of several messages to replay.

Mwtip has no explicit notion of processes. Nevertheless a
process can be implicitly modeled by a set of related rules.
The parallel composition of two processes is simply done
by taking the union of the rules of the two processes. Each
process can take any number of steps (actions) between the
steps of the other. The resulting model is that of asyn-
chronous, interleaving concurrency.

The Mur^ language supports scalable models. In a scal-
able model, one is able to change the size of the model by
simply changing constant declarations. When developing
protocols, one typically starts with a small protocol config-
uration. Once this configuration is correct, one gradually
increases the protocol size to tbe largest value that still al-
lows verification to complete. In many cases, an error in
the general (possibly infinite state) protocol will also show
up in a down-scaled (finite state) version of the protocol.
Mur^ can only guarantee correctness of the down-scaled
version of the protocol, but not that of the general protocol.
For example, in modelling our authentication protocol, the
numbers of mobile nodes and authentication servers were
scalable and defined by constants.

The desired properties of a protocol can be specified in
Mur^ by invariants, which are boolean conditions that have
to be true in every reachable state. If a state is reached in
which some invariant is violated, Mmip prints an error trace
- a sequence of states fi'om the start state to the state exhibit-
ing the problem,

5.2 The Methodology

We analyzed oiu- protocol using the following sequence
of steps:

1. Formulate the protocol. This generally involves sim-
plifying the protocol by identifying the key steps and
primitives. The Mury? formulation of a protocol, how-
ever, is more detailed than the high-level descriptions
often seen in the literature, since one has to decide ex-
actly which messages will be accepted by each partic-
ipant in the protocol. Since Mur^ communication is
based on shared variables, it is also necessary to define
an explicit message format, as a Muryj type.

2. Add an adversary to the system. We assume that the
adversary (or intruder) can masquerade as an honest
participant in the system, capable of initiating commu-
nication with a truly honest participant, for example.
We also assume that the network is under the control
of the adversary and allow the adversary the following
actions:

• overhear every message, remember all parts of

each message, and decrypt ciphertext when it has
the key;

• intercept (delete) messages;

• generate messages using any combination of ini-
tial knowledge about the system and parts of
overheard messages.

Although it is simplest to formulate an adversary that
nondeterministically chooses between all possible ac-
tions at every step of the protocol, it is more efficient to
reduce the choices to those that actually have a chance
of affecting other participants.

3. State the desired correctness conditions. A typical cor-
rectness condition would be that the intruder does not
learn any secret information. More details about the
correctness conditions for our protocol are given in
Section 5.4.

4. Run the protocol for some specific choice of system
size parameters. We have been able to run our protocol
with upto 3 mobile nodes and 3 authentication servers,
where each mobile node can execute 2 sessions in par-
allel. Details of execution time appear in Section 5.4.

5.3 The Intruder Model

The Mwiip intruder model is limited in its capabilities
and does not have all the power that a real-life intruder may
have. In particular:

• No cryptanalysis. Our intruder ignores both com-
putational and number-theoretic properties of crypto-
graphic functions. As a result, it cannot perform any
cryptanalysis whatsoever. If it has the proper key, it
can read an encrypted message or (forge a signature).
Otherwise, the only action it can perform is to store the
message for a later replay.

• No probabilities. Mur^ has no notion of probability.
Therefore, we do not model "propagation" of attack
probabilities through our finite-state system (e.g., how
the probabilities of breaking the encryption, forging
the signature, etc. accumulate as the protocol pro-
gresses). We also ignore, e.g., that the intruder may
learn some probabilistic information about the partici-
pants' keys by observing multiple runs of the protocol.

• No partial information. Keys, signatures, etc. are
treated as atomic entities in our model. Our intruder
cannot break such data into separate bits. It also can-
not perform an attack that results in the partial recovery
of a secret (e.g., half of the secret bits).

In spite of the above limitations, previous studies have
shown that Mur^ is a useful tool for analyzing security pro-
tocols. It considers the protocol at a high level and helps dis-
cover a certain class of bugs that do not involve attacks on
cryptographic functions employed in the protocol. Mury; is
quite useful in discovering authentication bugs since proper-
ties like key ownership, source of messages, etc. are e^ily
captured in logical statements. The fact that Mur^ did not
uncover any bugs in our protocol therefore gives us a fair
degree of confidence in its correctness.

5.4 Modelling the Initialization Phase

The Mur^ model of the protocol consists of three types
of finite state machines corresponding to mobile nodes, au-
thentication servere and intruders. The number of mobile
nodes, authentication servers and intruders are scalable and
defined by constants. Each mobile node can participate in a
number of parallel sessions. This number can also be con-
figured by changing the value of a constant.

The state of a mobile node consists of an IP address, the
IP address of an authentication server, the secret shared with
the authentication server and the individual states of all the
sessions that she is involved in. We associate the state-id of
a session with the next message that the node is expecting
in that session. We denote by Si the state in which a node
is expecting the i*^ message of the protocol. For example,
after initiating a session (sending message 1), a node sets
the state-id of that session to S4 since the next message that
it expects is the 4*^ message of the protocol. Initially, the
state-ids of all sessions are set to Si. In this state, a mo-
bile node can spontaneously initiate a session. Other than
the state-id, the state of a session also includes the values
of all the session parametere that the mobile node has seen
up until that point. For example, if the state-id of a ses-
sion that a mobile node is taking part in is S4, then the state
would also contain the node's Diffie-Hellman private key
and the address of the peer node with whom she is exe-
cuting the session. Upon completing a session, the state-id
for that session is set to SBONE- The transition rules for
a mobile node capture the exact sequence of actions that
she would carry out in an actual run of the protocol. For
example, when a mobile node receives the 4** message of
the protocol, she processes it iff the corresponding state-id
is 54. She then verifies that the encryption key specified
in the message is the same as the key she shares with her
authentication server. This corresponds to decrypting the
message. Then she computes the Diffie-Hellman secret us-
ing the Diffie-Hellman exponential in the message and her
own previously recorded Diffie-Hellman private key. She
finally verifies that the computed secret matches the one in
the message before changing the state-id to SDONB-

The finite state machine of an authentication server is

much simpler. Since an authentication server only forwards
messages, her state does not change during the execution of
the protocol. The state of an authentication server consists
of her certificate, the verification key of the trusted third
party (Certification Authority of the PKI) and the shared
keys with the mobile nodes in her domain. The transition
rules define the sequence of actions that an authentication
server executes upon receiving the 2"'' or 3'"'' message of
the protocol.

As mentioned before, the intruder's transition rules en-
able it to intercept messages, overhear all messages and re-
member parts of all overheard messages and generate new
messages using any combination of initial knowledge and
parts of overheard messages. Thus, at any given point in
the protocol, there are a large number of possible transi-
tions for the intruder. This results in a very large number
of reachable states for the protocol. The following tech-
niques proved useful in reducing the number of states to be
explored:

• The intruder always intercepts all messages sent by the
honest participants.

• The intruder does not send messages to honest partici-
pants in states where at least one of the honest partici-
pants is able to send a message.

• The intruder only generates messages that are expected
by the legitimate parties and that can be meaningfully
interpreted by them in their current state, e.g., the in-
truder sends the 4*^ message to a mobile node only if
the mobile node is in state S4.

The first two techniques have been proved to be sound (see
[30]), i.e., each protocol error that would have been discov-
ered in the original state graph will still be discovered in the
reduced state graph. The soundness of the third technique
is quite obvious.

We modelled the following correctness conditions in our
Mur^ code:

• If two mobile nodes have completed a session with
each other, then the shared Diffie-Hellman secret com-
puted by both must be identical.

• The secret shared between two mobile nodes is not in
the intruder's database of known message components.

• The mobile nodes agree on each other's identity and
protocol completion status, i.e., if A has completed a
session with B, then B should also have completed the
same session with AorB should be waiting for the 5**
message of the protocol.

MuTip did not discover any violations of the above
mentioned correctness conditions for the configurations on

which we ran the verifier. Running under Linux on a 300
MHz dual-processor Pentium II with 512MB of RAM, the
verifier required approximately 30 seconds to check for the
case with 2 mobile nodes, 2 authentication servers and no
more than 2 simultaneous sessions per mobile node. About
4200 states were explored. The largest instance of our
model that we verified included 3 mobile nodes, 3 authen-
tication servers and no more than 2 simultaneous sessions
per mobile node. Checking took about 20 minutes, with
125,941 states explored.

We note here that this is the first Diffie-Hellman key ex-
change based protocol that has been modelled using Mur^.
Modelling the DH-protocol within the finite state analy-
sis framework required some thought. The "obvious" ap-
proach would be to do what is actually done in practice: use
integers to explicitly model the various parameters (g, p,
X, y) and then derive the secret by exponentiating modulo
p. However, we observe that explicit exponentiation is un-
necessary. The two main properties that the model should
capture are: (a) flie computational hardness of the Diffie-
Hellman problem, i.e., given g^ mod p and gv mod p, it
should not be possible to compute g^^ m,odp; (b) the com-
mutativity of exponentiation so that {g^ m,odp)v modp =
(g^ mod p)^ m,odp. (From Fermat's Little Theorem, we
also know that both these values are equal to p^w»ns<*(p-i)
m,od p. In order to capture these two properties we used a
different technique. In the Mur^ code, a key is modelled
as a record with two fields - a type and a random value.
We defined three additional types of keys: dh-private, dh-
public, and dh-secret. x is of type dh-private and g^ is of
type dh-public. For both keys, the value is x. The DH se-
cret is computed using a fiinction which takes in a key of
type dh-private (say with value a;) and another of type dh-
public (say with value y) and returns a key with type dh-
secret and value xy m,od (p — 1). Note that interchanging
the values of x and y yields the same secret because of the
commutativity of integer multiplication. This ensures that
both participants compute the same Diffie-Hellman secret.
Also, since this function is the only way of computing a DH
secret, property (a) above is also satisfied.

In earlier work [29], Meadows analysed a Diffie-
Hellman based key exchange protocol using the NRL Proto-
col Analyzer. Her framework requires all assumed crypto-
graphic identities to be explicitly specified as rewrite rules.
The commutative properties of the Diffie-Hellman algo-
rithm therefore had to be specified as such. Her solution in-
volved developing two sets of operations and rewrite rules,
one for initiator and one for responder. In other words, com-
putation of the Diffie-Hellman key was assumed to involve
different operations for initiator and responder, even though
in fact they are both the same. Two more rewrite rules were
then used to reduce the keys computed by the initiator and
the responder to the same syntactic expression. The com-

putational hardness property did not have to be explicitly
modelled. The very fact that there was no rewrite rule for
computing the Diffie-Hellman secret from the public expo-
nentials ensured that it could be done.

We note that our modelling approach is distinct from
Meadows'. Since the basic modelling frameworks are quite
different, a durect comparison of the relative merits and de-
merits of the two approaches is not meaningfiil.

6. Preventing Denial-of-Service Attacte

The basic 5-message protocol is susceptible to denial of
service attacks. By sending a random number to a CN, an
attacker can force a CN to perform a Diffie-Hellman expo-
nentiation and an encryption operation. The CN will also
create state at this point. By continuously initiating ses-
sions with a CN, an attacker can exhaust its computation
and memory resources. One way of preventing this attack
would be to use "cookies", a technique originally proposed
by Kam and Simpson in [31]. Upon ra;eiving the firet mes-
sage, CN replies with a cookie (which could be a keyed
hash of the received exponential concatenated with a times-
tamp and the IP address of the sender as used in the IKE-
SIGMA protocol [32]). The sender then sends the cookie
back to CN proving that it is capable of receiving messages
at the IP address it is claiming as ite own. Thus, two addi-
tional messages are exchanged between MN and CN after
the first message of the original protocol.

A useful property of our protocol is that since authenti-
cation servere do not create state, memory denial of service
attacks are not possible on the authentication servers. Pre-
venting computation denial of service attacks on the authen-
tication servers reduces to the problem of detecting, without
performing expensive computations, whether a message has
been replayed. Replay attacks on ACN can be prevented
by including a sequence number or timestamp inside the
encryption in message 2 of the protocol, AQH will ac-
cept a message from CN only if the sequence number is
greater than the last sequence number received from the
same CN. Preventing denial of service attacks on AMN

without adding extra messages, appears to be more difficult.
Adding a sequence number to message 3 and including it in
the signature alleviates the problem somewhat: a replayed
message will be detected after performing one public key
operation instead of two. Adding two extra messages for
exchanging cookies, of course, solves the problem.

7. Conclusions

In response to the requirement that all location informa-
tion about a mobile node in IPv6 should be authenticated [2,
3.1], we have proposed a protocol for authenticating bind-
ing updates. The computational load on the mobile nodes is

minimized, by moving expensive public-key operations to
more powerful nodes. The number of messages is kept at
a minimum. The appropriate extensions preventing denial-
of-service attacks are also suggested.

We have formally verified the correctness of the proto-
col using the finite-state analysis tool MuT(p. The fact that
the Mur^ analysis did not uncover any bugs gives us in-
creased confidence in the correctness of the protocol. In
previous work, Muvp has been used to analyze the security
properties of several protocols. However, this is the first
Diffie-Hellman based key exchange protocol that has been
analyzed with Mmifi. We used a new modelling technique
to capture the two most important properties of the Diffie-
Hellman exchange: the computational hardness property
which ensures that an intruder is not able to compute the DH
secret from the public exponentials; and the commutativity
property which guarantees that both participante compute
the same shared secret. Although, in previous work [29], a
Diffie-Hellman based key exchange protocol h^ been for-
mally analyzed, the framework and modelling technique
used there is quite different from ours.

Finally, we have addressed the most difficult adoption is-
sue for authenticated Mobile IPv6: reliance on authentica-
tion infrastructure. Our goal has been to make the best use
of whatever authentication infrastructure is present, thereby
offering a middle path between proposed protocols which
require the existence of a global PKI [2] and which do not
assume any infrastructtire at all [1] and therefore provide
weak authentication guarantees. By capturing the differ-
ences in authentication infrastructure in the type of public-
key certificates, we ensure that the structure of the protocol
depends minimally on the available infrastructure. Also, the
update phase of our protocol remains the same in each case
since the basis for authenticated update is the shared secret
established in the initialization phase. We believe that our
protocol addresses the main issues in Mobile IPv6 authenti-
cation. In particular, the exchange of self-signed certificates
by authentication servers the first time these servers partic-
ipate in Mobile IP, allows the protocol to be used without a
global PKI.

References

[1] D. Johnson, C. Perkins, Jari Arrko, Mobility Support
mWv6. Internet Draft, Jum 2002.

[2] D. Johnson, C. Perkins. Mobility Support in IPv6. In-
ternet Draft, July 2001.

[3] A. Mankin, B. Patil, D. Harkins, E. Nordmark, P.
Nikander, P. Roberts, T Narten. Threat Models intro-
duced by Mobile IPv6 and Requirements for Security
in Mobile IPv6. Internet Draft, October 2001.

[4] S. Bradner, A. Mankin, J.I. Schiller. A Framework for
Purpose Built Keys (PBK). Internet Draft, February
2001.

[5] F. Le, S.M. Faccin. Dynamic Diffie Hellman based
Key Distribution for Mobile IPv6. Internet Draft,
April 2001,

[6] J. M. Galvin, Public Key Distribution with Secure
DNS. In Proc. 6th USENIX Unix Security Symposium,
1996.

[7] G. Ateniese, S. Mangard. A New Approach to DNS
Security. In Proc. 8th ACM Conference on Computer
and Communications Security, 2001.

[8] R, Kemmerer, C. Meadows, J. Millen. Three Sys-
tems for Cryptographic Protocol Analysis. In Journal
of Cryptography, 7(2):79-130,1994,

[9] A.W.Roscoe. Modelling and Verifying Key Exchange
Protocols using CSP and FDR. In Proc. 8th Computer
Security Foundations Workshop, pages 98-107,1995.

[10] C. Meadows. The NRL Protocol Analyzer:
An Overview. In Journal of Ijjgic Programming,
26(2):113-131,1996.

[11] D. Bolignano. Towards a mechanization of crypto-
graphic protocol verification. In Proc. 9th Interna-
tional Conference on Computer Aided Verification,
131-142,1997.

[12] L, Paulson, The inductive approach to verifying cryp-
tographic protocols. In Journal of Computer Security,
6:85-128,1998.131-142,1997.

[13] J.C. Mitchell, M. Mitchell, U. Stem . Automated
Analysis of Cryptographic Protocols Using Mur^.
In Proc. IEEE Symposium on Security and Privacy,
pages 141-153,1997.

[14] D. Dill. The Mur^ Verification System. In Proc. 8th
International Conference on Computer Aided Verifi-
cation, pages 390-393,1996.

[15] J.C. Mitchell, V. Shmatikov, U. Stem . Finite-State
Analysis of SSL 3.0. In Proc. 7th USENIX Security
Symposium, pages 201-216,1998.

[16] V. Shmatikov, J.C. Mitchell. Analysis of a Fair Ex-
change Protocol. In Proc. 7th Annual Symposium on
Network and Distributed System Security, pages 119-
128,2000.

[17] V. Shmatikov, J.C. Mitchell. Analysis of a Abuse-Free
Contract Signing Protocol. In Proc. Financial Cryp-
tography, 2000.

[18] D. Harkins, D. Carrel, The Intemet Key Exchange
(IKE), RFC 2409, November 1998.

[19] C. Rigney, A. Rubens, W. Simpson, S. Willens. Re-
mote Authentication Dial In User Service (RADIUS).
«FC2Sd5, June 2000,

[20] P R. Calhoun, H. Akhtar, J. Arrko, E, Guttman, A.C.
Rubens, G. Zom, Diameter Base Protocol. Intemet
Draft, November 2001.

[21] W. Diffie, M. E. Hellman. New Directions in Cryp-
tography. IEEE Transactions on Information Theory,
22(6):644-654,1976.

[22] G, Lowe. Breaking and Fixing the Needham-
Schroeder Public-key Protocol using CSP and FDR. In
Proc. 2nd International Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems,
Springer-Verlag, 1996.

[23] A. J. Menezes, P, C. van Oorschot, S. A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, 1996,

[24] W, Diffie, P. C. Van Oorschot, M, J. Wiener, Authen-
tication and Authenticated Key Exchanges. Designs,
Codes and Cryptography, 2:107-125,1992.

[25] H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-
Hashing for Message Authentication. RFC 2104,
February 1997.

[26] G. O'Shea, M, Roe . Child-proof Authentication for
MIPv6 (CAM), Computer Communications Review,
April 2(K31.

[27] D, Dill, S. Park, A, G, Nowatzyk. Formal Specifica-
tion of Abstract Memory Models, In Symposium on
Research on Integrated Systems, pages 38-52,1993.

[28] U. Stem, D. Dill, Automatic Verification of the SCI
Cache Coherence Protocol. In Advanced Research
Working Conference on Correct Hardware Design and
Verification Methods, pages 21-34,1995,

[29] C. Meadows. Analysis of the Intemet Key Exchange
Protocol using the NRL Protocol Analyzer. In Proc.
IEEE Symposium on Security and Privacy, pages 216-
231,1999.

[30] V. Shmatikov, U, Stem . Efficient Finite-State Anal-
ysis for Large Security Protocols, In Proc. 11th IEEE
Computer Security Foundations Workshop, pages 106-
115,1998,

[31] P. Kara, W, Simpson. Photuris: Extended Schemes
and Attributes. RFC 2523, March 1999.

r
[32] H. Krawczyk. The IKE-SIGMA Protocol. Internet

Draft, November 2001.

