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ABSTRACT 
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Surveillance, and Reconnaissance (ISR), take strike actions against, or gather battle damage assessment 
(BDA) information about a set of targets in order to perform the targeting cycle. We explore methods 
that combine Partially Observable Markov Decision Processes (POMDPs), which prescribe strike and 
observation policies, and integer programming formulations, which pick the optimal set of policies given 
resource constraints. This work adds five major contributions beyond previous work on similar problems. 

The first improvement is the introduction of allocation decisions for ISR assets, which search out 
and identify new targets. Also included is a model of an intelligent adversary, specifically representations 
of regenerative and mobile targets. In addition to incorporating Cheng's Linear Support algorithm for 
solving two-dimensional targeting POMDPs, we incorporate the Incremental Pruning algorithm to solve 
higher dimensional POMDPs for target discovery and identification. Finally, we introduce a new 
initialization technique as well as two integer programming formulations of the targeting cycle problem. 
We demonstrate the computational benefits of this decomposition through a number of parameter 
variation tests and targeting cycle vignettes and discuss the qualitative characteristics of the solutions 
generated. 
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1 Introduction 
Military planners have a myriad of details to consider when developing the strategy for a 

military campaign. Each service has special capabilities but there is some overlap in their 

missions. The goal of military planners is to lay out plans that use the combat resources of all 

the services in the best possible way. One such area of overlap is the combat air power of the 

Air Force, Navy, Army, and Marines. Air Operations Centers (AOC), or Combined Air 

Operations Centers (CAOC) as they are called if the Joint Forces Air Component Commander 

(JFACC) is in command, work to incorporate these capabilities by ensuring that aircraft, 

weapons, and sensors are used in the appropriate capacity but at the same time, not exposing the 

aircraft to an undue amount of risk. "An AOC is a command and control center that plans, 

executes and assesses aerospace operations during a contingency or conflict" [19]. AOCs and 

CAOCs serve as an operational facility for the Air Component Commander (ACC) to have 

centralized planning, direction, and control over available air resources. They are staffed with 

individuals from different services who work on tasks such as weather prediction, target analysis, 

and sortie generation. 

During the intense, five-week bombing campaign that preceded the ground war in Desert 

Storm, our forces flew over 100,000 aircraft sorties [6]. Almost half were combat missions [35]. 

These combat missions supported the military targeting process, which finds, identifies, strikes. 

15 



and confirms destruction of enemy assets. While basic doctrine is laid out well ahead of time, 

the actual plans to be implemented are dependent upon the theater of operations and the current 

situation and are developed closer to the time of execution. During Desert Storm "...only the 

first 2 to 3 days of the strategic air campaign were planned in great detail, with the remainder to 

be based on the damage done to the high-priority targets that would be hit in the first 48 to 72 

hours" [35]. It is important to develop plans that account for possible future developments and 

respond to a dynamic battlefield. The quicker AOCs can generate and implement plans, the 

better the results. 

By quickly reacting to the enemy and other factors on the battlefield, we can "get inside" 

the enemy's OODA loop. The OODA loop, as shown in Figure 1-1, was proposed by Col. John 

Boyd, a US Air Force fighter pilot. Boyd proposed a fundamental decision making process for 

planning military operations and competing companies in the business world. Boyd recognized 

the importance of completing the cycle faster than your adversary, thus "getting inside" their 

OODA loop. 

Observation 

Action 
OODA 
Loop 

Orientation 

Decision 

Figure 1-1: Boyd's OODA Loop 

Even before the term was coined, speeding up the military OODA loop has been the 

focus of research. In fact, since the advent of war, militaries have been working to improve the 

speed at which this loop is completed. Advances such as balloon reconnaissance, the telegraph, 

and the telescope have all helped this effort, albeit at different levels of command. At each level 

of command, an OODA loop progresses in conjunction with those at the other levels of 
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command.    It is important that all OODA loops be ranning smoothly because the whole 

organization could be slowed by a lower level unit whose OODA loop is not progressing well. 

1.1  Research Scope-Targeting Cycle 

An important military application of the OODA loop is found in the targeting cycle, 

which is the process of finding, identifying, destroying, and confirming the destruction of enemy 

assets. The targeting cycle will be explained in depth in Chapter 2. The necessity of the 

targeting cycle is straightforward. To carry out a successful military campaign, we must perform 

actions that change the will of the enemy. In some cases, this means destroying their military 

resources. We first need to find and identify those resources. Proper identification is becoming 

more important in current wars. During World War H, cities such as London and Tokyo were 

bombed indiscriminately. Subsequent civilian casualties were exceedingly high, which caused a 

backlash against this type of warfare. Since then, the US military has limited the collateral 

damage inflicted upon civilians by using the appropriate weapons against validated targets. 

Targeting is a complicated process that exists in the overlap between intelligence and 

operations as shown in Figure 1-2. 

Figure 1-2: Targeting Balance between Operations and Intelligence 

The operations community is responsible for the aircraft, weapons, and sensors, while the 

intelligence community analyzes intelligence and makes determinations about enemy 

capabilities. Both contribute to and benefit from effective targeting. Operators use intelligence 

estimates to determine appropriate routes for aircraft, and suitable sensors and weapons, to use 

on missions. In return they provide the intelligence community with first-hand accounts of the 
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battle via personal account and video footage. Using this information, and other sources, 

intelligence analysts can develop intelligence estimates for commanding officers, the operations 

community, and other end users. 

This motivates the targeting cycle problem, which considers the allocation of resources to 

find, identify, destroy, and confirm the destruction of enemy resources. The targeting cycle 

problem we consider occurs in a dynamic, stochastic battle space with imperfect information and 

an intelligent adversary. 

These characteristics motivate the research in this thesis and provide the framework for a 

solution algorithm that assigns resources to perform actions against individual objects. In the 

past, this has been time consuming because individuals in an AOC do it manually. An 

automated optimization approach can take into account far more than a human while reducing 

the sub-optimal effects of isolated decision-making. 

1.2 Thesis Overview and Content 

This thesis provides an overview of the targeting cycle and current modeling methods 

that have been applied to the targeting cycle problem. We introduce modeling and algorithmic 

changes to an existing methodology to improve the realism and computational aspects of the 

model and the associated solution algorithm. We enhance this approach by 1) incorporating the 

discovery and identiflcation of targets, 2) handling regenerative targets, and 3) accounting 

for an intelligent adversary. These aspects of the targeting cycle problem have not been 

developed in earlier works and this thesis represents the first piece of work addressing these 

issues. In addition to a more realistic model, we also enhance the solution algorithm by 

proposing a new initialization technique as well as two integer-programming formulations. 

We run experiments based upon a basic scenario, structural variations upon that scenario, and 

expanded targeting vignettes. We investigate computational and planning characteristics of these 

solutions. 

The individual chapters are summarized as follows: 

Chapter 2:     The Targeting Cycle 

In this chapter we introduce the targeting cycle, the method by which the 

military finds, identifies, strikes, and confirms destruction of an enemy's military 

assets. We present a detailed description of the many stages of the targeting cycle 
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and the resources that are used at each stage. Interactions between the phases of 

the targeting cycle are discussed thus motivating a method that plans for objects, 

be they areas of interest, contacts, or targets, in all phases simultaneously. 

Chapter 3:     Modeling the Targeting Cycle 

Modeling methods that have been applied to the targeting cycle are 

presented in this chapter. Two primary types of methods are described: resource 

allocation and policy development. We also consider a hybrid formulation that 

combines a resource allocation method with a policy development method. We 

discuss the strengths and weaknesses of these approaches in dealing with the 

complete targeting cycle problem. A hybrid approach using linear programming 

(LP) and partially observable Markov decision processes (POMDP) has been 

previously applied to a simplified version of the targeting cycle problem. We 

discuss the LP/POMDP framework, POMDP solution techniques, and develop 

our specific POMDP models for object discovery, contact identification, and 

target destruction. 

Chapter 4:     Resource and Task Assignment 

We present a linear programming formulation that we use, along with the 

POMDPs, to model the allocation of resources in the targeting cycle problem. 

We examine variations of this basic formulation including: a new initialization 

procedure, alternative mixed integer programming formulations, methods for 

modeling regenerative targets, and a rolling horizon planning framework. 

Solution techniques for the LP, and its integer formulation, and POMDPs are 

discussed, as well as details of how information is passed between the LP and the 

POMDPs. 

Chapter 5:     Scenarios, Results, and Analysis 

In this chapter we outline a basic targeting cycle problem scenario that we 

use to test the structural variations proposed in Chapter 4. We also present the 

results from tests on an expanded version of this scenario to assess the potential 
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real-time use of this technology. Results from these test are compared using 

solution time and benefit achieved. We also examine the solutions to understand 

how the model makes resource assignments and what interactions occur between 

plans. We discuss qualitative differences between the solution generated by the 

LP/POMDP hybrid approach and manually generated solutions. 

Chapter 6:     Summary and Future Work 

This chapter summarizes the targeting cycle problem formulation and 

solution techniques along with the computational results from structural and 

targeting cycle vignettes. Suggested future research is also discussed. 
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2 The Targeting Cycle 
A central focus of modem military operations is the detection, location, identification, 

and destruction of land based targets. As described by Joint Publication 3-60, Joint Doctrine for 

Targeting [24], the targeting process is divided into six phases that comprise the Joint Targeting 

Cycle, illustrated in Figure 2-1. 

1. Commander's Objectives, Guidance, and Intent 

2. Target Development, Validation, Nomination, and Prioritization 

3. Capabilities Analysis 

4. Commander's Decision and Force Assignment 

5. Mission Planning and Force Execution 

6. Combat Assessment 

The focus of the first phase, Commander's Objectives, Guidance, and Intent, is to create 

"clear, quantifiable, and achievable objectives (that) lead to the successful realization of national 

security goals through a targeting solution" [24]. The scope of these objectives may range from 

wide-area campaigns affecting a large portion of the battle space to tactical level conditions. In 

any case, the focus of these objectives must be to change the adversary's actions so as to 

accomplish stated strategic goals. 

Second in the targeting cycle is Target Development, Validation, Nomination, and 

Prioritization, in which the true identity of a potential target is validated.   This serves two 

21 



purposes. The first is to ensure that the target is a viable part of the target set. Secondly, it must 

be ensured that the target is valid under the Law of Armed Conflict (LOAC). After targets are 

placed on the target nomination list, the Capabilities Analysis phase determines what resources 

should be used against the given targets. Factors that can influence force application include 

potential collateral damage to nearby facilities or noncombatants as well as the effectiveness of a 

weapon type against the target. 

Commander's Objectives, 
Guidance, and Intent 

Combat Assessment 

Mission Planning and 
Force Execution 

Joint 
Targeting 

Cycle 

Target Development, 
Validation, Nomination, 

and Prioritization 

Capabilities Analysis 

Commander's Decision 
and Force Assignment 

Figure 2-1: Joint Targeting Cycle 

Once the targeting list has been compiled and resource assignments made, target- 

resources pairs are approved and orders disseminated under the Commander's Decision and 

Force Assignment phase. Upon completion of these detailed tasking orders. Mission Planning 

and Force Execution can take place. In this phase, final mission details are resolved and targets 

attacked. 

Finally, Combat Assessment is the phase at which the effects of attacks from the previous 

phase are evaluated. This evaluation serves to determine if the target has been successfully 

destroyed and thus whether or not it needs to be included in the next round of target 

development. Battle damage assessment (BDA) is the method by which this evaluation is 

accomplished.   A second function of this phase, munitions effectiveness assessment (MEA), 
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serves to determine the effectiveness of the assets and tactics applied to a target.   Those 

determinations are then used as input for capabilities analysis. 

In a situation where there are a large number of targets, the targeting cycle may be at 

different phases for different objects. In fact, it is this interaction between concurrent targeting 

cycles that motivates this research. All in all, the targeting cycle can be looked at as a useful 

framework. In this research we will focus upon phases two through six which are given in detail 

by the "Attack Mission Cycle" as defined by [4], shown in Figure 2-2. 

Figure 2-2: Air Force Attack Mission Cycle 

2.1  Pre-Strike ISR 

Detection, location, and identification of potential targets are the first tasks in the attack 

mission cycle. These segments of the cycle are accomplished by pre-strike intelligence, 

surveillance, and reconnaissance (ISR) missions, which can be accomplished by a wide variety 

of assets. For instance, satellites orbit the Earth constantly gathering information that can be 

used for ISR. In-theater operatives gather human intelligence. Somewhere in the middle of 

these two extremes is the use of aircraft to gather information. Manned aircraft missions 

performing ISR can be long, arduous, and dangerous. 

23 



In order to mitigate the risks to human life, unmanned aerial vehicles (UAV) are being 

used to complete such missions in place of manned aircraft such as the U-2. UAVs are aircraft 

that do not have a human in the cockpit controlling the flight of the aircraft. In the case of the 

RQ-1 Predator, human operators are at a ground station that can be far from the aircraft thus 

reducing the risk of human casualties. One operator controls the aircraft's flight while another 

monitors information gathering activities. An added advantage is the length of time Predator can 

stay in an area and collect information. Crews at the ground station can change out as often as 

necessary, but the Predator has an endurance time of 24 hours [3]. Such a long loiter time allows 

for almost constant surveillance of areas of interest. 

While Predator has qualities that have led it to improved intelligence gathering 

operations, newer UAVs have better performance characteristics such as longer loiter times and 

less direct human control. The RQ-4A Global Hawk can not only takeoff, fly to the target area, 

perform ISR actions, return, and land autonomously, it also has an extended loiter time of almost 

35 hours [2]. It also flies at high altitudes, up to 65,000 feet, and is thus less vulnerable to anti- 

aircraft systems. 

These systems have expanded the role of airborne intelligence gathering assets in the 

modem battlefield. A commander can receive the latest intelligence about enemy actions and 

plan an appropriate response. Pre-strike intelligence gathering actions that support the 

commander can be divided into two phases: detection and location of objects in an area of 

interest and identification of contacts. The first two actions are grouped together because they 

can, and usually are, accomplished by the same platforms at the same time. For instance, a 

Global Hawk with Synthetic Aperture Radar can find and locate a large number of objects over a 

given region. In fact, a single Global Hawk can "image an area the size of Illinois (40,000 

nautical square'miles) in just 24 hours" [2]. 

2.1.1 Detection and Location in an Area of Interest 

An area of interest can be defined as a geographical area in which there may be targets 

that need to be destroyed so that the commander's objectives can be accomplished. The size and 

shape of such an area can vary based upon terrain, geopolitical considerations, and other factors. 

A standard measurement is a grid square, normally defined to be 1 kilometer by 1 kilometer. 

This, however, is not a steadfast rule. In fact, areas of interest in the same battle space could be 
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of completely different size and shape. This makes it extremely important to have flexible assets 

that can perform well no matter how the areas of interest are formed. 

Another essential characteristic of an area of interest is the potential for targets in the 

area. This can be measured as the expected number of targets in the area or as the probability 

mass function (PMF) over the possible number of targets in the area. In addition to information 

estimating the number of targets in an area it is also important to know the value of those targets. 

For example, intelligence sources might indicate there is a high concentration of armored 

personnel carriers in an area of interest. However, if there is no plan to move ground forces to 

the area of interest, gathering more information about the concentration of personnel carriers 

may be of little value. On the contrary, an area of interest that may contain a handful of surface- 

to-air missile (SAM) sites could be of high value because of the significant threat these SAM 

pose to our aircraft. 

In order to "Detect" and "Locate" targets, as part of the Air Force attack cycle. Figure 

2-2 and 'Target Development, Validation, Nomination, and Prioritization" in the targeting cycle. 

Figure 2-1, path planning must be done. During path planning, the route an aircraft will fly is 

determined. This is done after resources have been assigned to the mission so that platform 

specific attributes can be taken into account. ISR missions to areas of interest with SAM sites 

will be planned differently for a Global Hawk than for a Predator due largely to the Global 

Hawk's high cruising altitude. That is beyond the range for all but the most sophisticated of 

enemy surface-to-air defenses. Predators, on the other hand, have a maximum altitude of 25,000 

feet [3] which is well within the range of a SAM. Consequently, different search patterns may 

need to be drawn up for an area of interest based upon the type of aircraft used. Once a search 

pattern is established, specific guidance would be given to human operators to ensure the best 

possible search is accomplished while limiting the risk to the aircraft. 

2.1.2 Identification of Contacts 
When an object has been discovered and its approximate location found, the next step is 

to identify its target type as shown represented by the "Identify" phase of Figure 2-2. 

Identification of contacts is important when strike actions have the potential for inducing 

collateral damage of noncombatants and non-military structures. Such situations are becoming 

more and more prevalent. In the past decade, cities such as Baghdad, Mogadishu, and Sarajevo 
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were focal points of large scale skirmishes. In such large cities, where civilian and military 

assets are in such close proximity, correct identification of a contact, to prevent civilian 

casualties, is both a military and a political issue. 

As with contact identification in urban areas, it is important in areas where there are only 

military assets. Correct weaponeering is a driver behind this need for proper identification. 

Weaponeering considerations are important because of the advanced, specialized armaments 

used by today's military. For example, the AGM-65 Maverick missile is "a tactical, air-to- 

surface guided missile designed for close air support, interdiction and defense suppression 

mission" [1]. During Desert Storm, Maverick missiles were employed "mainly attacking 

armored targets" [1]. On the contrary, cluster munitions, such as the CBU-52B, are "best used 

against personnel or light-skinned vehicles" [5]. Thus, it is important to correctly identify a 

contact so that the appropriate munition can be used against the target. If a less effective 

munition is used, the odds of destroying the target are greatly reduced. 

Conservation of munitions is the final driver for accurate identification of contacts. As 

shown above, misidentification could lead to over use of weapons. A lack of timely information 

could also lead to the over use of weapons, especially when dealing with mobile targets. While 

an object might be found in an area of interest that contains only military assets, strike resources 

may not be available to prosecute such a target right away. If the time between initial discovery 

and prosecution is even a few hours, a target may move from the original location. Sending a 

strike mission to destroy a target that has moved is a waste of valuable weapons. Also, it induces 

unnecessary risk of losing an aircraft. Thus, it is important to collect information on a contact 

until shortly before it is prosecuted. That way, resources will not be wasted and the maximum 

benefit can be attained. 

2.2 Strike 

When a target has been found in an area of interest and has been correctly identified, the 

decision whether to strike is made. This follows directly from the "Decide" and "Execute" 

phases of the Air Force Attack Cycle, Figure 2-2, and the "Mission Planning and Force 

Execution" phase of the Joint Targeting Cycle, Figure 2-1. If the decision to strike a target is 

made, numerous additional details must be worked out. In addition to weaponeering, decisions 

are made about path planning, timing, individual aircraft assignment, necessary supporting 
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aircraft, and other such issues. The strike action is the only point in the cycle when the target is 

directly influenced and thus proper execution is critical. 

2.3 Post-Strike ISR/BDA 

After a target has been attacked, the next step is to determine the target's functional state. 

Rarely would it be acceptable to consider a target destroyed without confirmation of weapons 

delivery or data indicating the target's destruction. Such information might come from the 

combat pilot who performed the mission. It might come from another aircraft with ISR 

equipment that can take pictures, detect radio frequencies, or produce thermal images. 

Information can even come from assets such as satellites or human operatives. No matter from 

where the information comes, it is invaluable to the targeting process, allowing the commander 

to decide whether the target needs to be struck again. This decision is not as straightforward as it 

might seem. Determining if a tank has been destroyed, either by seeing smoke and fire coming 

from the tank, a lack of radio signals, or a number of other indicators may be easy; determining if 

a building or runway has been sufficiently destroyed can be somewhat harder. During Desert 

Storm, prime targets were bridges. If two of the four spans of a bridge have been destroyed, is 

that bridge 50% damaged or 100% destroyed? 

Not only must battle damage assessment (BDA) be gathered for use in determining target 

status, it is also important for future weaponeering decisions. While AGM-65 Maverick missiles 

may be the primary munition employed against armored targets, BDA could show that other 

munitions could be equally or more effective against certain armored targets. This would allow 

limited resources to be used in the best manner possible while still allowing the commander's 

objectives to be met. 

Another motive for post-strike ISR is that some targets may be seriously damaged by a 

strike but can be rebuilt. Military airfields are one example of such a target. A runway may be 

rendered useless by a cluster bomb. With the right construction equipment and supplies, the 

damage can be repaired and military operations could resume at that airfield. Accordingly, it is 

important to keep updating information on regenerative targets so that appropriate measure can 

be taken to ensure that they remain inoperable. 
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2.4 Chapter Summary 

Each individual phase of the Joint Targeting Cycle and the Air Force Attack Cycle are 

essential but it is important to remember that they are part of a cycle. Each phase must be 

accomplished so that further phases in the cycle may take place. Increasingly the assets that are 

used to complete each phase of these cycles are the same. UAVs, such as Predator, have been 

used as intelligence gathering assets and as seen in Operation Enduring Freedom in Afghanistan, 

they can be used to deliver weapons. Strike platforms such as the F-16 and F-15E are being 

fitted with sensors so that they can perform the ISR mission in addition to striking targets. Given 

the limited availability of aircraft and weapons, we must determine how to best allocate these 

resources to the detection, location, identification, and destruction of enemy targets thus ensuring 

that command objectives are met. 
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3 Modeling the Targeting Cycle 
In this section, we address two broad aspects of the Joint Targeting Cycle, Figure 2-1, 

that have been well structured but not effectively modeled. The first is the allocation of limited 

resources to accomplish specified missions. The second is to find the best actions to take against 

an object of a given type based upon current information about the state of all objects of interest 

and the available resources. First, though, we explore the problem characteristics associated with 

the targeting cycle. 

3.1  Targeting Cycle Problem: Characteristics and Model Assumptions 

In order to model and solve the targeting cycle problem, it is important to understand the 

problem characteristics and to make modeling assumptions. We define the targeting cycle 

problem as the problem of optimally allocating aircraft, weapons, and sensors to find, identify, 

destroy, and confirm the destruction of enemy objects. We define the state of the system as the 

state of our resources and enemy objects. While we focus upon the targeting cycle problem, 

problems with the following characteristics can be addressed in a manner similar to our treatment 

of the targeting cycle problem. 

Discreteness and Finiteness of System Elements: In dealing with the targeting cycle 

problem, we require that the state of each enemy object, be it a target, contact, or area of interest, 

be part of a discrete set. The state representation for an area of interest is the number of objects 
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in the area and thus is discrete. Because we are dealing with a real-world problem, we know that 

the number of objects in an area is finite. Figure 3-1 shows the state representation for an area of 

interest which is simply the integers from 0 to a maximum number of possible objects in the 

area. 

Area of 
Interest States 

S       <oo max 

Figure 3-1: State Representation for an Area of Interest 

A contact is a type of target, a collateral entity, or nothing at all, which are discrete states 

and make up a finite set in a real-world problem. Figure 3-2 illustrates some possible states for a 

contact which include military assets as well as the possibility that a contact is not a target. 

Possible Contact States 

Figure 3-2: Possible State representation for a Contact 

To fully model the state of a target, we would need an infinite number of states 

representing the percent damage to the target. Thus targets do not have an obvious discrete state 

space. In this work we assume this state space is discretized into a finite number of segments. A 

two state problem could be considered in which the target is either live or dead. This can be 

expanded to a three state case in which the target is alive, 50% damaged, or dead. Figure 3-3 

illustrates these two cases as well as a possible five state representation. Larger state 

representations would include more intermediate states between live and dead. 
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Figure 3-3: Possible State Spaces for a Target. Further states could be added to better model the true state of a 
target. The infinite state case would include 0% damaged, 100% damaged, and all values in-between. 

Beyond the objects being acted upon, we assume that actions are planned and executed at 

discrete points in time with a finite planning horizon of T time periods. Finally, we assume that 

resources are used in finite discrete amounts. 

Memoryless Stochastic System Evolution: Given that an object is in a given state St at 

time t, its state at time t+l depends only upon s, and the action applied at time t, y/,. In the 

targeting cycle problem this action could include the employment of aircraft along with weapons, 

sensors, or a combination of the two. This property is commonly called the Markovian property 

and mathematically is stated as: 

P(s,^i\so^s^,...,s,,y/,) = P(s,^^\s„y/,). (3.1) 

In addition to assuming that the state of each object we are acting upon evolves in this 

manner, we also assume that our resource levels evolve in this way. For instance, when an 

aircraft is sent out to strike a target, we know that there will be fewer available weapons for use 

in the next time step. It is also possible that an aircraft is shot down. Assuming the Markovian 

property is true for the targeting cycle problem, the number of aircraft available for use at the 

next time step depends only upon the number currently available and the actions performed in 

the ensuing time step. 
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Imperfect State Information: While we know the resources that are currently available, 

the true state of enemy objects is unknown. This stems from the fact that our ISR assets are not 

perfect observers of enemy object types or changes in their state due to our actions. For 

example, an ISR asset may misidentify a tank as an artillery piece, or any number of other 

similar systems. Imperfect information prevents us from making determinations based upon the 

true state of the system. Rather, we act upon our belief about the state of the system. 

Independence: We assume an object's state at a given time is independent of the state of 

another object at any time. We also extend this assumption to the outcome of our actions applied 

to an object. If, for instance, a bomb was dropped on a target, its impact upon the target does not 

depend upon our past actions against that target or any other object. Such an assumption implies 

that we have a model of the weapon's effects that accurately describes the probabilities of kill for 

different types of targets. This does not mean, however, that munitions effectiveness assessment 

(MEA) does not need to be done via BDA as described in Chapter 2. Rather, MEA data is not 

immediately incorporated into the action model to maintain the independence assumption. 

Linear Reward Structure: Due partly to the independence assumption, we assume that 

the reward for causing different objects to transition between states is additive, and thus the total 

value function is linear. For example, rewards are gained from identifying a contact or 

destroying a tank. If both of these actions take place, the total reward would simply be the 

reward for identifying the contact plus the reward for destroying the tank. This assumption and 

the independence assumption are somewhat questionable when there are enemy capabilities such 

as integrated air defense (IAD) because knocking out a central control facility may in turn reduce 

the effectiveness of subordinate air-defense sites. 

Intelligent Adversary: During a battle, we are not the only one taking actions. Our 

enemy might be acting to limit or degrade our past, current, or future actions. As mentioned 

earlier, fixed targets, such as a runway, can be repaired; a contact might evade our sensors and 

move to another location. An undetected object moving between areas of interest is another 

action an intelligent adversary would take. However, this would violate our independence 

assumption because changes in the state of one area of interest would affect the state of another 

area of interest. Due to this violation we do not consider such movements in this work. 
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3.2 Current Modeling Methods 

The targeting cycle problem as defined in Section 3.1, can be divided into two parts; the 

first is the allocation of resources and the second, the determination of specific actions to take 

against an object. The first part of the problem is addressed through resource allocation methods 

based upon mathematical programming. For the second, we consider policy development 

methods that can be solved using a dynamic programming framework. Finally, we consider a 

hybrid method in which the two parts of the problem are solved in an integrated formulation, as 

shown in Figure 3-4. Details are presented in the following three subsections. 

Resource 
Allocation 
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Figure 3-4: Hybrid Resource Allocation and Policy Development Method 

3.2.1 Resource Allocation Methods 

Allocation of limited resources using mathematical programming methods has long been 

used in the operations research (OR) community. When we consider the four primary 

characteristics of linear programming (LP) problems, as described by Hillier and Lieberman 

[23], we see- that the targeting cycle problem fits into such a framework quite well. 

Proportionality, in both the objective function and subsequent constraints, is described as "the 

contribution of each activity to the value of the objective function...is proportional to the level of 

the activity..." and "...the contribution of each activity to the left-hand side of each functional 

constraint is proportional to the level of the activity..." [23]. Secondly, in order to cast our 

problem as an LP, we must have additivity, defined in that the objective function and constraints 

are "the sum of the individual contributions of the respective activities" [23]. Divisibility, the 

third characteristic of an LP, is when "Decision variables...are allowed to have any value. 
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including non-integer value..." [23] provided that they satisfy the problem constraints. 

Conceptually, the targeting cycle fulfills this requirement but in practice, we cannot send partial 

aircraft or weapons. Rather, when this model is solved in an operational setting, it is formulated 

as a mixed integer program (MIP) or an integer program (IP). Solutions from these types of 

problems can be directly executed by forces in the field. 

Lastly, linear programs are assumed to follow the certainty principle. That is, the 

coefficients of the decision variables are known constants. This, however, is not the case in the 

targeting cycle problem. We can only estimate the true reward we will receive and the resources 

that will be used by taking a sequence of actions. Even so, this does not mean that the problem 

cannot be solved as an LP. It has been noted by many that "...the certainty assumption is seldom 

satisfied precisely" [23] in real applications. The field of sensitivity analysis deals with 

questions about the impact of changes in LP data. 

To formulate the targeting cycle problem as an LP we define the following notation. 

Each object is indexed by le I. Let Oi be the set of possible contingency plans for object i. 

Contingency plans are fully developed in Chapter 4 but the basic notion is that they are a 

mapping from the current state of an object to a sequence of actions contingent upon 

observations received about the object's state.  Let Uj^, be the resources of type ye J used by 

contingency plan OG OJ against object i and 3^ be the resources of type j available for use. 

Finally, define jc„,. as the proportion of contingency plan o to use against object i and 72^, as the 

associated reward. Our formulation thus becomes: 

^f^jm^[K]Xoi (3.2) 

s.t.   .Zll^[K<h<^yj y/-6 7 (3.3) 
iel oeOj 

2^o,=l Vie/ (3.4) 
oeO,, 

jc„,>0 \/OGO,, iel. (3.5) 

The objective function (3.2) seeks to maximize the expected reward by applying 

contingency plans from the set Oi to object i. Resource usage is constrained in expectation (3.3) 

and the requirement to fully act against an object is enforced (3.4). The decision variables can be 

thought of as the proportion of contingency plan o to use against object / thus, these values must 
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be between 0 and 1, as specified by constraint (3.5). In Chapter 4, Section 4.4.4 we discuss a 

mixed integer programming (MIP) formulation of the targeting cycle problem which yields an 

executable solution. 

By using the expected reward and resources usage, we have an LP formulation that 

satisfies all four of the primary characteristics. However, the sets Oj for all i have yet to be 

defined. For a given object i, |0i| is the number of columns in the LP corresponding to i and thus 

its size is of extreme importance. While computing advances in hardware and software have 

greatly increased the size of linear programs that can be solved, a large number of decision 

variables can greatly increase solution times especially when an integer solution is needed. 

Models with long solution times are ineffective for real world situations in which we need to 

plan and replan in short periods of time. 

Define T, as the set of allowable actions for object / and ©, as the set of possible 

observations that could be received in a single period through ISR. For a horizon of one, it is 

clear that the number of contingency plans is \^^\. However, for a horizon of T larger than one, 

the number of contingency plans, Cj- is 

Q=hK/''- (3-6) 
The reasoning behind this equation is that for a horizon of 1, we simply consider taking 

each action. The resulting observations are not considered because we cannot act upon them. 

For longer time steps, we must chose an action for every observation at each level. We can use 

the one-step contingency plans to build the two-step contingency plans, the two-step contingency 

plans to build the three-step and so on. Figure 3-5 shows the one- and two-step contingency 

plans for a problem with two actions and two observations. 

Even if Y, and 0, are relatively small, a long horizon can make the number of possible 

contingency plans enormous. As observed by Yost [37], actions that do not provide relevant 

information have only one follow-on possibility and thus Cj. is somewhat reduced. However, for 

objects on which only ISR actions are to be performed, the number of contingency plans quickly 

makes the problem become intractable as Y,., 0,, and/or the horizon increase. To get an idea of 

how large (^ can become, even when there are non-ISR actions, Yost provides the example 

shown in Table 3-1 that includes 5 actions, 2 of which conduct ISR, and 2 possible observations. 
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Figure 3-5: One- and two-step contingency plans for a problem with two actions and two observations. Note the 
combinatorial growth in the number of contingency plans. 

Planning Horizon 1 2 3 4                   5 
Potential Contingency Plans 5 65 8645 1.49 E8        4.47 E16 

Table 3-1: Potential contingency plans for object with 5 actions, 2 of which conduct ISR, and 2 possible 
observations. Note the reduction from the possible number of contingency plans when all actions perform ISR. 

While this may seem large, consider Table 3-2 for a contact that has 5 actions, all of which 

conduct ISR with 4 possible observations. 

Planning Horizon 
Potential Contingency Plans 

1 
3125 4.77 E14 2.58 E59 2.23 E238 

Table 3-2: Potential contingency plans for a contact with 5 actions, all of which conduct ISR with 4 possible 
observations 

Linear programs with this many variables cannot be solved. A realistic problem could 

include twenty or more objects to act upon with dozens of actions and would have a planning 

horizon of 8 to 12 time steps depending upon step length. 

A key observation that enables us to use the LP formulation is that many possible 

contingency plans are of little value and only a small subset need to be included in the LP. If we 

consider only those contingency plans, and their associated variables, which are selected in the 

final LP solution, the LP can easily be solved. There are heuristic methods by which 

contingency plans can be generated and used in the LP.  For example Figure 3-6 illustrates a 
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common target contingency plan to strike first, perform an ISR mission, and then strike again if 

the observation indicates that the target survived the initial attack. 

Figure 3-6: Sample strike, ISR, strike contingency plan for a target. 

L represents a live observation and D a dead observation. 

A heuristic method, however, provides no guarantee that the columns considered include 

all of the contingency plans that are part of the optimal solution. This lends itself to the idea of 

column generation which Gilmore and Gomory define as "...'pricing out' or looking for a new 

column or activity that will improve the solution..." [20]. In order to find an activity, and thus a 

new column, that improves the solution, "...we simply create a useful column by solving an 

auxiliary problem" [20]. By using a sub-problem to search through the possible contingency 

plans and then only considering those that "price out" favorably, the computational effort can be 

greatly reduced. Common sub-problems that are used in column generation are shortest path and 

knapsack problems [8]. Neither of these sub-problems addresses the stochastic and partial 

observable nature of the targeting cycle problem. 

Stochastic programming, as described by Birge and Louveaux [9], is another allocation 

method that addresses the problem of sequential decision-making. The general stochastic 

programming problem is multi-stage stochastic programming with recourse. This formulation 

models the system of interest in stages such that decisions are made and then stochastic events 

occur. The realizations of these stochastic events influence the value of subsequent decisions as 

well as the feasibility of decisions at later stages. These are characteristics of the targeting cycle 

problem. The decisions to be made are the assignment of aircraft, weapons, and sensors to 

perform certain missions against specific objects. Stochastic events in the targeting cycle 

problem include: the transitioning of objects from one state to another, the loss of aircraft and 

sensors because of attrition, and the observations from sensor platforms.  A key assumption of 
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stochastic programming is that the realizations of stochastic events are independent of previous 

actions. This assumption is not met in the targeting cycle problem because the likelihood of an 

object being in a given state is dependent upon ISR or strike actions from previous periods. In 

fact, the reason for modeling the targeting cycle is to determine which actions provide the best 

outcomes. Stochastic programming is therefore not an option for our model. 

3.2.2 Policy Development Methods 

The resource allocation methods described in Section 3.2.1 fail to adequately model the 

targeting cycle problem in two main areas: fundamentally, they do not address the probabilistic 

transitions and observations and practically, dealing with the large number of contingency plans 

is not feasible with the current LP solver technology. Rather than allocating resources, policy 

development methods find the best policy for a given object. Policies will be fully explained in 

Chapter 4 but the basic idea is a mapping from states to actions for all states and time steps. A 

logical starting point for policy development methods is Dynamic Programming (DP). DP is 

used to solve models that have two main features. First there must be a core discrete time 

dynamic system and second, the costs must be additive over time [7]. These restrictions may be 

relaxed or further restrictions can be placed upon system dynamics, the cost structure, or other 

parameters, but these two properties form the basis of dynamic programming. For each state of 

the system at a given time, the immediate cost plus discounted future costs is minimized or 

similarly, discounted future value maximized. Such a method is attractive for the targeting cycle 

problem because the two basic assumptions are satisfied. 

We can make use of additional problem characteristics to further refine the solution 

method. The Markovian nature of the state evolution allows the targeting cycle problem to be 

modeled as a,Markov Decision Process (MDP). A MDP is a decision process, with an 

underlying Markov chain, for choosing the optimal actions for a set of states considering 

both immediate and future rewards. A MPD has four main elements: 

1. A set of states, 

2. A set of actions for each state, 

3. Action-dependent Markovian state transition probabilities, 

4. A reward structure indicating immediate rewards as well as terminal rewards for 

each state. 
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In solving an MDP, an optimal policy, described as a "...specification of the decisions for 

the respective states..." [23], is generated such that it maximizes the expected reward, based 

upon the system's evolution over time. This optimal policy is then stored in a table that can be 

referenced as the system evolves. 

MDPs are typically solved using dynamic programming but can also be solved using 

linear programming [26]. This shows that MDPs can be solved in polynomial time, per the proof 

that linear programming is contained in P [8], and thus may be useful in solving realistic 

targeting cycle problem scenarios. Meuleau et al. [30] used MDPs to solve a "military air 

campaign planning problem" in which "tasks correspond to targets" and "there are global 

constraints on the total number of weapons available...(and) the number of available aircraft." 

Meuleau also assumes that "actions have inherently stochastic outcomes and the problem is fully 

observable." The characteristics of the military air campaign planning problem are the same as 

the targeting cycle problem except that we do not have full knowledge of the state of the objects 

being acted upon. MDPs do not capture enough fidelity of the problem because the true state of 

the objects being acted upon is partially observable due to imperfect sensors, enemy actions, and 

other sources of "friction" [14]. 

Partial observability in MDPs has been considered and studied for over thirty years. 

Originally proposed by Drake [16] and formalized by Sondik [34], the partially observable 

Markov decision process (POMDP) is an extension of the MDP model. A POMDP is a 

decision process, with an underlying Markov cliain, for choosing the optimal actions for a 

set of states considering both immediate and future rewards, in which the true state is not 

known but rather is partially observable. A POMDP has six main elements: 

1. A set of states, 

2. A set of actions for each state, 

3. Action-dependent Markovian state transition probabilities, 

4. A set of observations, 

5. Action-dependent observation probabilities mapping observations to states, 

6. A reward structure indicating immediate rewards as well as terminal rewards for 

each state. 

These elements are more precisely defined and related to the targeting cycle problem in 

Section 3.3.1. 
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Sondik states that partial observability may arise "...if the observer is removed from the 

process in some sense and must receive his information over an imperfect communication 

channel" [34]. The true state of the battlefield is partially observable because commanders rely 

upon intelligence analysts who look at information from ISR platforms, talk with pilots who 

perform the missions, gather human intelligence, and otherwise analyze the state of enemy 

objects. Using this information along with other factors such as personal experience, previously 

reported information, and higher level command objectives, the commander makes a decision as 

to what actions to take. Not knowing the true state of enemy forces, such a decision is based 

upon the commanders "belief about the state of the system. Belief states become more 

important when solving a POMDP and interpreting the resulting policy. 

Sondik describes a machine inspection and replacement problem in which a tire 

production machine can be in two states, "Good" or "Fail" with three possible user actions, 

"Operate," "Inspect," and "Replace." If the replace action is taken, the machine is assured to 

move to the good state after which a new tire is produced. With a known probability, Pp, the 

machine will transition from the good to fail state if operated or a tire is inspected, see Table 3-3. 

If an inspection occurs, information is gathered by looking at a tire produced by the machine. 

The machine produces a bad tire when in the good state and produces a bad tire when in the fail 

state with known probabilities. Each action has associated costs dependent upon the state of the 

machine. The objective is to minimize the expected total cost over a specific, possibly infinite, 

horizon by selecting which action to take based upon the current belief that the machine is good. 

Table 3-3 shows the transition and observation probabilities for Sondik's machine inspection and 

replacement problem. Note that the observation probabilities for the "Operate" and "Replace" 

actions are uniform over the states. This occurs because the POMDP framework requires an 

observation to be received at every time step. In this case, however, we do not obtain useful 

information from the "Operate" and "Replace" actions. Figure 3-7 shows the states and possible 

observations in Sondik's machine inspection and replacement problem. 

40 



Action 
p 

transition 

from good 

v^to fail      y 

P 

'transition ^ 

from fail 

^to good    , 

P 

'observe good 

tire given 

^good machine^ 

P 

'observe poor 

tire given 

^^good machine^ 

P 

'observe good ^ 

tire given 

^failed machine^ 

P 

'observe poor \ 

tire given 

.^failed machine/ 

Operate PF 0 0.5 0.5 0.5 0.5 

Inspect PF 0 PGG PpG PGF PPF 

Replace 0 1 0.5 0.5 0.5 0.5 

Table 3-3: Transition and Observation Probabilities for Sondik's Machine Inspection and Replacement POMDP. 
PGG. PpG. PGF. and Pff are problem characteristics based upon the probabilities listed in the heading. 
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Figure 3-7: Sondik Machine Inspection and Replacement Problem: States and Observations 

One important note is that the number of possible observations is not tied to the size of 

the state space, as is the case in the machine Inspection and Replacement Problem which has 2 

states and 2 observations. There can be as many or as few observations as the system dictates as 

long as a probability mapping between states and observations can be made. 

Castafion [12] uses POMDPs to consider a problem similar to contact identification in 

which there are a large number of objects of unknown type. Sensors are used to gather 

information about the objects and then classify them as one type or another. In dealing with this 

problem, Castafion decomposes the problem hierarchically. At the lower level, for each object, 

the best policy is determined by solving a POMDP given a cost for resources. The upper level 

maintains the expected resource usage constraints and determines the appropriate resource costs. 

To determine the appropriate resource costs. A,, the method runs "...a line search on A to 

determine a value of i such that the surplus is nearly zero" [12]. Updated resource costs are 

passed to the sub-problem POMDPs, which then generate a new policy based upon these costs. 

41 



The method iterates until the optimal set of strategies has been found. Such an approach 

provides a valuable example of sensor assignment for contact identification using POMDPs but 

the problems of target prosecution and object detection are not included. They are, however, 

mentioned as potential further research. 

Castafion's approach, and more specifically the cost estimation phase, demonstrates a key 

component of policy development methods. In solving POMDPs it is assumed that there is a 

known cost structure. This is not the case in the targeting cycle problem. Rather, we have 

resource constraints to satisfy. Assigning a value to resources based upon these constraints is 

needed in order to use POMDPs to generate policies for use in the targeting cycle problem. 

3.2.3 Hybrid Method 

Allocation methods adequately address the resource constraints and the basic stochastic 

nature of the targeting cycle problem, but the large number of variables creates tractability 

issues. Some policy development methods address the stochastic and even the partial observable 

characteristics of the problem. However, resource costs, rather than resource constraints, are 

used, limiting their usefulness in the context of resource allocation problems. Each area can deal 

with portions of the targeting cycle problem. Used together, they provide a complete solution 

methodology for the targeting cycle problem. 

Yost [37] uses linear programming to maximize the objective function, equation (3.2), 

and deal with resource constraints, equation (3.3), while generating columns associated with 

optimal policies for target-type POMDPs. While providing the LP with improving contingency 

plans, the POMDPs receive action costs based upon the duals from the resource constraints, 

(3.3), in the LP. The algorithm terminates when the solution is sufficiently close, e, to optimal. 

Figure 3-8 illustrates Yost's decomposition, which is initialized with columns from a heuristic 

policy generator, and is formulated using a master LP with objective function equation (3.2) and 

constraints, equations (3.3) to (3.5). Improving contingency plans are generated using POMDPs, 

one for every type of target in the sensor-shooter problem. The iterative algorithm terminates 

when the percent difference between the upper and lower bounds is less than e. The upper 

bound is based upon the POMDP solutions and the lower bound is the LP objective function 

value. 
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look, attrition, and target 
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(3.3-5) 
T 

K>MDP 
(1 per target type) 

Optimal policy far current 
costs 

Improving contingency plans 

Figure 3-8: Yost hybrid decomposition with master LP and POMDP sub-problems. 

Key to this method and its ability to solve the sensor-shooter problem, a simplified 

version of the targeting cycle problem with only targets, is the fact that POMDPs are run for each 

target type, such as tanks, command and control (C2) facilities, bunkers, etc. This can occur 

because of Yost's assumption that targets of the same type will necessarily have similar 

characteristics, namely value and Y,. With this assumption, it is possible to solve one POMDP 

and use the policy it generates to build contingency plans for each individual target; this 

increases the size of problems the algorithm can handle. Figure 3-9 illustrates the framework for 

a target contingency plan that Yost's algorithm would build based upon a POMDP policy. Each 

node has an associated optimal action and subsequent nodes for each possible observation. 

Contingency plans are formally defined and further developed in Chapter 4, Section 4.53. 
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Figure 3-9: Sample Contingency Plan for Target with two observations. Live or Dead 
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Two main parts of the targeting cycle problem are missing from this formulation: object 

discovery and contact identification. Yost only deals with objects once they are found and 

identified. Because our resources can be used for both ISR and strike, the allocation of resources 

for object discovery, contact identification, strike, and BDA cannot be decoupled and thus must 

be solved together. 

3.3  Completing the Cycle 

A Yost-like hybrid approach seems to be appropriate to model and solve the targeting 

cycle problem. That approach needs to be enhanced and extended in order to adequately model 

the complete targeting cycle problem. Both object discovery in an area of interest and contact 

identification can be represented by additional POMDP sub-problems to be used in conjunction 

with the target sub-problems used by Yost. In order to do this we will first go into further depth 

concerning the POMDP model and its solution techniques. 

33.1 POMDP Model 

Before describing POMDPs and their solution methods, we define some notation. Define 

the set S to be the states of object / and T, as the set of allowable actions for object /. We define 

SI- to be the effects of action yr, the probability that object i transitions from state 5 to state s' 

when action y/ is taken. Similarly for observations. Of is the probability of observing 6 given 

that object i is in state s and action y/ produced the observation. We define n{s) as the 

probability that object i is in state s. Finally, let rj be the reward for taking action y/ when 

object i is in state s at epoch k. While S, £T., Cf, 7r{s), and r^, are all specific for object /, we 

suppress the i to yield more concise notation for clarity of exposition. 

The targeting cycle problem is a time dynamic system in which we must increment time 

in both the master LP and the sub-problem POMDPS. In describing POMDPs and their 

interaction with the LP allocation problem, we will be discussing time steps for the LP and 

epochs for the POMDPs. These are both time indices over the planning horizon T. POMDPs are 

solved via dynamic programming thus epochs begin at the end of the planning horizon and 

increase as we move closer to the current time. Epochs can be thought of as the number of steps 
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left in which actions can be taken. Figure 3-10 shows the relationship between time steps and 

epochs. 

Time Steps 

T-2 T-l T 

Epochs 

T-l T-2 T-3 

Figure 3-10: Comparison of Time Steps and Epochs 

As Stated before, POMDPs, and the first solution technique, were formalized by Sondik. 

In his dissertation a few key points were proven that provide the foundation for POMDP 

solutions. The first of these is the use of belief states, a probability distribution over the possible 

states. Solutions to Markov decision processes map a state to an action. If the true state of the 

system, as defined in Section 3.1, is not known, there is no way that such a mapping can be 

accomplished. We therefore transform the problem into one in which we know exactly what 

state we are in. That state will not be the state of the system but rather an information state for 

epoch k, I^, that summarizes the complete history of the system. Such an information state 

includes the initial information about the system and all subsequent actions and observations. 

For the targeting cycle problem, we know the initial state of a target, presumably live, and then 

maintain a list of all actions, strike or BDA, that are performed on that target along with the 

observations these actions return. This representation leads to a huge state space that does not 

lend itself to finding the optimal set of actions easily, if at all. 

Instead of using the information state, we characterize a sufficient statistic. Sufficient 

statistics are quantities that "...summarize all the essential content of h as far as control is 

concerned" [7]. Mathematically, the optimal action for an information state, wl (^), must equal 

the optimal action for the sufficient statistic /r^, y/l {n^), for n^ to be a valid sufficient statistic. 

Such a summary could reduce the size of the state space and allow for a mapping from state to 

action as was possible in the MDP. In the case of the POMDP, Sondik [34] proves that a belief 

state is a sufficient statistic. Although the information state space was large, it had a finite size. 

Once the transformation to probabilities (i.e., the belief state sufficient statistic) is made, the size 

of the state space is infinite.   It seems that such a transformation has only compounded our 
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problem. This is not the case. For belief states that are relatively close, optimal actions might be 

the same. Thus it is possible to partition the belief space into portions over which single actions 

dominate. Figure 3-11 illustrates this partitioning for three actions. 

Probability theory provides us with the tools to manipulate belief states in this belief state 

space. Bayes' Rule allows us to update 7r{s) to ;r'(5) based upon taking action yr and receiving 

observation 0 as follows: 

This equation can be simplified if the specified action does not affect the state of the object, in 

which case S^,. = 1 if s=s' and 0 otherwise, or it does not provide a meaningful observation, in 

which case O^ is uniform over all states. 

After the belief state, the next important property of POMDPs is the representation of a 

policy. As stated before, the transformation from an information state to a belief state made the 

size of the state space infinite. Thus, it is no longer feasible to store the state to action mapping 

in tables as is the case in finite-state MDPs. To define the policy and the associated value 

function, another representation is needed. We define r^^ as the terminal reward for state s and 

thus it is the same for all y/. The terminal reward is defined as the reward received for being in 

state s at the end of the planning horizon. 

Consider a problem in which there is only one time step for an action to occur. In such a 

case, maximizing the expected reward will be based solely upon the immediate reward for the 

chosen action and the terminal rewards. Therefore, the problem of finding the best action to take 

while in belief state ;T, the n:{s) vector, is simply a maximum over the actions in T,., of the 

immediate rewards plus the expected future rewards. For the one-step problem, that can be 

expressed in the dynamic programming form as: 
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(3.8) 

From this equation we can see that actions will dominate over a portion of the belief 

state. Thus we can represent the optimal policy as the partitions of the belief space over which 

each action dominates as shown in Figure 3-11. 

I'l'I'l'I'I'- 
I'l'i'ri'i.ii ' m^ im 

•i:::!;] 

0      0.1    0.2    0.3    0.4    0.5    0.6    0.7   0.8    0.9 
n{s) 

Tt{s)=Q. Tis ')= 1 1^S)= 1, K(S ')=0 

Figure 3-11: Partitioning of Belief Space due to Action Dominance 

It is also important to note that the inner portion of the maximization is the value function 

for the POMDP. Via induction and algebraic manipulation, Sondik was able to prove that the 

value function for a finite-horizon POMDP is piecewise linear over the belief space. Due to the 

maximization, the value function is also convex. The argument stems from the fact that the zero- 

step value function is a linear function connecting each of the end states at r^^ for all s&S and, 

by definition, is convex. As shown in equation (3.8), the one-step value function will be a 

maximization over linear functions, thus is piecewise linear and convex. As the horizon of the 

problem increases, the number of linear functions that are being maximized over may increase 

but this does not change the property that the value function is piecewise linear and convex. The 

linear segments that make up the value function are called alpha vectors and are the basis for 

representing the optimal policies and value functions generated by a POMDP solution algorithm. 

Each alpha vector has value at the extreme points of the belief space and a corresponding action. 

To better understand a POMDP value function, a geometric interpretation is useful. In 

fact, a geometric intuition about the POMDP value function will lead to a better understanding of 

the solution algorithms that will be presented in Section 3.3.2. We need further notation to 

develop this geometric intuition. We define V; (;r) as the k^ epoch value function for the belief 

state 7t. Alpha vectors will be denoted as or*' (^) where y/ is the action associated with the alpha 

vector and k is the epoch. In addition, if a specific end-point value of an alpha vector at state s is 

needed, it is referred to as a'^{k,s).  We index alpha vectors in epoch ^ by uEU{k) thus a 

47 



specific alpha vector from epoch k is denoted as or^ (^)or an end-state value for a specific alpha 

vector from epoch k, a^ {k,s). 

Geometric representations of POMDP value functions are simple for two-state problems 

and, with standard plotting software, for three-state problems. However, for problems with four 

or more states, the geometric representation becomes a mental exercise. It would seem as though 

a two-state problem would require a graph in three dimensions, one for each state and one for the 

functional value. However, we are dealing with a probability space so this is not necessary. 

Such a two-state problem can be represented in two dimensions because the probability of being 

in one state is simply the complement, l-7r{s), of being in the other state. Therefore, our belief 

state in a two state problem reduces to a scalar representing the probability that the system is in a 

given state. An example of such a value function is shown in Figure 3-12. 

Vo(;r) 
«r(0. *) = ';„ 

ar(0,5') = r,,, 

«r(o) 

0.1    0.2    0.3    0.4    0.5   0.6    0.7   0.8    0.9 
Tt(s) 

Ms)=0, irfs ')= 1 ^s)= 1, ids ')=0 

Figure 3-12: 0-Epoch Value Function 

This vaflue function represents the final epoch in a POMDP solution.   For that reason, 

there is only one alpha vector and it has no associated action. It is from this single alpha vector 

that value functions for further epochs will be built.   This procedure is discussed in Section 

3.3.2.1. A A:-epoch value function might take the form shown in Figure 3-13. 

48 
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JZ(S)=0. 7C(S ')= 1 ^(S) J^S)= I, K(S 7=0 

Figure 3-13: Alpha vectors making up VM 

A noteworthy characteristic of this value function is that the belief space is divided into three 

portions. In the first section of the belief space, the action associated with alpha vector 1 

dominates while the action associated with alpha vector 2 dominates in the second section and 

the action associated with alpha vector 3 dominates in the last section. Thus the actual Vk(;r) is 

the upper envelope of this set as shown in Figure 3-14. 

0    0.1   0.2  0.3   0.4   0.5   0.6  0.7  0.8   0.9    1 

jt(s)=0, }t(s')=l ^(^) ic(s)=l, ir(s')=0 

Figure 3-14: Value Junction for epoch k seen as upper envelope of alpha vectors 

Using the above graph, it is possible, for any belief state, to determine the best action 

based upon current rewards and expected future rewards. For epoch k, developing the policy, 

and thus the value function, that make up this graph based upon M[', and the value function for 

epoch k-l, V^.i (TT) , seems as simple as running a line search over the belief space and finding 

the points at which the optimal action changes. This, however, depends on some fairly 

restrictive structural properties of the optimal solution.   Therefore, it seems best to pursue 
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algorithms for solving targeting cycle problem POMDPs based upon the general POMDP 

framework and not upon problem specific characteristics. 

3.3.2 POMDP Solution Algorithms 

Solution algorithms for POMDPs have been researched since Sondik proposed the first 

general POMDP algorithm, the "One-Pass Algorithm" [34]. Since then, a wide variety of 

researchers have proposed solution algorithms. Though initially an outgrowth of the operations 

research MDP literature, POMDPs quickly fell out of the OR literature. The Artificial 

Intelligence (AI) community recognized the potential of POMDPs and became the driving force 

behind recent algorithmic advances. 

As with an MDP, a POMDP can be solved for a finite or an infinite horizon. Solving an 

infinite horizon problem is the same as solving a finite horizon problem for a sufficiently long 

horizon so that the optimal policy does not change. Such a solution is what the artificial 

intelligence community hoped to have because there was no set horizon over which the agent 

will act. Rather, it will continue to act until a goal is met. This is definitely not the case in the 

targeting cycle problem. In fact, we are looking for a dynamic solution that incorporates and 

deals with the inherently uncertain nature of the modem battlefield. We will therefore limit our 

discussion of POMDP algorithms to a finite horizon. Many of the algorithms presented in 

Sections 3.3.2.1 and 3.3.2.2 can be implemented with a discount factor to solve infinite horizon 

problems but the reader is referred to Cassandra [10] and Cassandra, Littman, and Zhang [11] for 

further explanation of the infinite-horizon versions of these algorithms. 

All finite-horizon POMDP solution algorithms follow a general framework as shown in 

Figure 3-15. They begin by building the 0-epoch value function using the terminal values, r^^. 

A dynamic prdgramming update is performed to find the next epoch's value function. These 

updates continue until there is a policy for each epoch in the planning horizon. The method by 

which the dynamic programming update is done is what distinguishes each algorithm. 
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Figure 3-15: General finite-horizon POMDP algorithm framework 

A clear method of dividing up POMDP solution algorithms is to first consider those that 

solve for the optimal value function and then consider those that solve for an approximate value 

function. 

3.3.2.1 Exact Algorithms 

Exact POMDP solution algorithms can be further classified by how they construct the 

value function. In general, all of the algorithms use V^., (;r) to build V^ (;r). However, this can 

be accomplished one of two ways, either through enumeration or construction. 

Enumerative algorithms use the fact that in a finite horizon problem, there will only be a 

finite number of alpha vectors, a'^{k), that can be constructed based upon a finite list of actions, 

*P,, and \.i{^). Thus, it is possible to enumerate all alpha vectors for epoch k. Alpha vectors 

are constructed using (3.9) [10] for all extreme points of the belief space. 

a^{k,s) = r^,-i-   X   COfa,(k-U')   \/we'V,eEQ,uEU{k-l).      (3.9) 
eee,,s'€S 

Equation (3.9) can generate a large number of alpha vectors. For a relatively small 

problem with 2 actions and 2 observations the number of generated alpha vectors explodes as the 

number of epochs increases. As stated earlier, Vo(;r) has only one alpha vector. Thus, the 

number of alpha vectors generated for epoch 1 will be 2*1^.   Similarly, the number of alpha 
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vectors generated for possible inclusion in Viiit) will be 2*2^ which equals 8. Further results are 

listed in Table 3-4. 

Epoch 1 2 3 4 5 6 7 
Potential a 2 8 128 32768 2.15 E9 9.22 El 8 1.70 E38 

Table 3-4: Potential alpha vectors for problem with 2 actions and 2 observations 

Generation and storage of this many alpha vectors is impossible for long horizons. A 

POMDP formulation of the targeting cycle problem that has tens or even hundreds of actions and 

many observations would drive these numbers even higher. Thus an algorithm is needed to 

reduce the set of generated alpha vectors to those in the parsimonious set, the set of alpha vectors 

that make up the value function as seen in Figure 3-14. 

Monahan [31] was the first to propose such an algorithm, which he credited to Sondik. 

His reduction phase uses linear programming. The purpose of the linear program is to determine 

whether there is a point in the belief space such that the alpha vector under consideration, 

a*{k), dominates all the other alpha vectors. In order to do this reduction phase, the following 

LP is set up for each alpha vector: 

max  0 (3.10) 

Y,^,(a{k,s)-a'{k,s))<0       ^lai^a* 

;r. >0 

(3.11) 

(3.12) 

V56S. (3.13) 

It contains a set of domination constraints (3.11), a convexity constraint (3.12), and 

nonnegativity constraints (3.13). The need for a convexity constraint is clear because we wish to 

find a point in the belief space so the decision variables (i.e., probabilities) in question must sum 

to one. Nonnegativity constraints ensure all points in the belief space are positive. The decision 

variables, n^, form a belief state. 

While these constraints maintain feasibility in the belief space, the other constraints, 

(3.11), one constraint for all other alpha vectors except the one under consideration, are set up to 

find a point at which the alpha vector under consideration dominates. This is done by summing 

over all the states, the decision variable for that state times the difference between the values of 

the alpha vector for the constraint and the alpha vector under consideration at that state. If this 
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value is less than 0 we know that a*(k) dominates the other alpha vector at a point in the belief 

space. The objective function is irrelevant as we seek a feasible solution. Such a point would 

indicate that the alpha vector under consideration does in fact belong in the parsimonious set. If 

this LP is infeasible for a* (k), a* {k) does not belong in the parsimonious set and thus can be 

discarded.   As an added bonus, it does not have to be represented by a constraint in future 

checks. 

While this algorithm will return the parsimonious set, there is the issue that arises when 

an alpha vector dominates at only one point. This occurs when three or more alpha vectors that 

are part of the parsimonious set meet at a single point as shown for the three alpha vectors in 

Figure 3-16. 

Three Dominant 
Alpha Vectors 

'o      0.1    0.2    0.3    0.4    0.5   0.6    0.7   0.8    0.9 

7r(s) 
]c(s)=0, K(S •)= 1 '!(«>= 1. ^^ ')=0 

Figure 3-16: Multiple Alpha Vector Dominance at a Single Point 

Some of these vectors do not provide a better solution than the others at such a point and 

thus are extraneous.  A slight modification can be made to Monahan's algorithm to deal with 

such a case. This modification is explained in Appendix B, Section B.2.1.1. 

Eagle [18] proposed an improvement upon Monahan's algorithm. Eagle recognized that 

setting up and "solving" a large number of LPs can be time-consuming. In order to reduce the 

number of LPs that must be solved, Eagle's modification checks each new alpha vector that is 

generated against the set of alpha vectors that have already been generated. If the new vector is 

dominated at all end points, thus component-wise dominated, by another alpha vector, it is 

discarded.   Also, if a previously generated vector is component-wise dominated by the new 
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vector, the stored vector is replaced by the new vector. Beyond these steps, Eagle's algorithm 

works the same as Monahan's. 

While the enumerative algorithms are simple to understand and implement, the 

enumeration phase, even with Eagle's additional checks, can produce an immense number of 

alpha vectors. Therefore, use of these algorithms should be limited to problems with a small 

number of actions, observations, and time steps. 

A different approach is taken by constructive algorithms. Rather than building all 

possible alpha vectors and then paring down the set, constructive algorithms build the value 

function one alpha vector at a time. No extraneous alpha vectors are generated, thus 

substantially reducing the number that are built and have to be stored. This is done by using an 

equation similar to (3.9), except that it considers which alpha vector from the previous epoch to 

use in the summation rather than generating alpha vectors based on all of them. This 

consideration includes the belief state and action for which the alpha vector is being generated, 

and the current observation in the summation. Development and further explanation of these 

DP-like equations can be found in Cassandra [10]. 

o^''{k,s)=rr,+ 2 c^r«.(..,..)(*-ur (3.14) 

K{7r,i/r,0) = aTgmaxY,^{i)e:^Ofa,{k-l,j). (3.15) 

Using (3.14) and (3.15), we can generate an alpha vector for action ^ for any point TT in 

the belief space by calculating its value at the extreme points of the belief space. In order to find 

the optimal alpha vector for belief state TT , af {k), we simply use equation (3.14) for all actions 

and pick the one that has the maximum value at TT. Equation (3.16) shows the mathematical 

interpretation. ' 

Determining the points for which to generate alpha vectors is the key to the constructive 

algorithms of which Sondik proposed the first, the One-Pass algorithm. At its core, Sondik's 

One-Pass algorithm finds an alpha vector for a point in the belief space, determines the region 

over which the generated alpha vector dominates, and then checks points at the edge of this 

region for other dominant alpha vectors. Of these procedures, determining the region of 

dominance is  the  most  interesting.     To partition  the belief space,  Sondik  uses  linear 
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programming. Development of this LP formulation is quite in depth and the reader is referred to 

Sondik [34] and Cassandra [10] for full explanation. As noted by a number of authors, to 

include Mukherjee and Seth [32] and Cassandra [10], the One-Pass algorithm has some 

fundamental subtleties and flaws. In fact, as proposed by Sondik, the One-Pass algorithm is not 

guaranteed to find the optimal value function due to the LP formulation [32]. In addition, the 

algorithm chooses dominance regions conservatively and thus explores a large number of regions 

when in reality only a few need to be considered [10]. 

Building upon Sondik's foundation, Cheng [13] developed two algorithms for solving 

POMDPs. The first of these, the Relaxed Region algorithm closely follows the steps of the One- 

Pass algorithm. However, as the name indicates, the regions that this algorithm defines are 

larger than the regions defined in Sondik's approach, reducing the number of regions that must 

be considered. Making this change, however, requires a fundamental change in how the problem 

is solved. Rather than simply solving an LP, Relaxed Region requires that we find the extreme 

points of the defined region. There is no objective function value so a vertex enumeration 

method such as those described by Mattheiss [28] or Mattheiss and Rubin [29] can be used. 

Again, the development of the constraint set and the rationale behind these constraints are quite 

complex. Further discussion can be found in Cheng [13] or Cassandra [10]. 

Cheng showed that the Relaxed Region algorithm solved a POMDP more efficiently than 

the One-Pass algorithm due to the smaller number of regions defined and thus a smaller number 

of extreme points need to be enumerated and checked. Also, Cheng's formulation requires a 

smaller number of constraints. He was not, however, able to make the definitive theoretical 

statement that his algorithm solved POMDPs faster or with less memory than Monahan's 

enumeration algorithm. Recognizing the limiting factor in the algorithm was the complex 

constraint set necessary to define the belief space partitions, Cheng developed an algorithm that 

uses a much simpler constraint set. 

From this idea came the Dnear Support algorithm. Beyond the reduction in the 

complexity of the constraint set, the Linear Support algorithm has the attractive property of 

always having a lower bound approximation of the value function over the entire belief space. 

As opposed to other constructive algorithms, this allows the Linear Support algorithm to be 

stopped before the complete optimal value function is built and still have a valid policy over the 

entire belief space. Such a property is extremely useful as we model the targeting cycle. 
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The Linear Support algorithm begins by building the optimal alpha vectors for the 

extreme points of the belief space using equations (3.14), (3.15), and (3.16). The intersection of 

these alpha vectors is then determined. If the current value function at the point of intersection is 

not optimal, the optimal alpha vector is generated for that point, again using equations (3.14), 

(3.15), and (3.16). Intersections of |S| alpha vectors are found, checked, and optimal alpha 

vectors generated if we do not have the optimal value function at that point. This cycle continues 

until the optimal value function has been found. A step by step explanation of this algorithm 

with accompanying graphs for a two dimensional problem can be found in Appendix B, Section 

B.l. 

Cheng ran a number of empirical tests comparing his two algorithms against those of 

Monahan and Sondik. Table 3-5 shows results for a slightly larger version of Sondik's machine 

inspection and replacement problem, which had 3 states, 4 actions, 2 observations, and a horizon 

of 20, showed the benefit of the Relaxed Region and Linear Support algorithm with respect to 

CPU time. 

Algorithm 
CPU Time 

One-Pass 
2.947 

Enumeration with 
Eagle modification 

0.937 
Relaxed Region 

0.894 
Linear Support 

0.751 
Table 3-5: CPU time comparison ofPOMDP algorithms for a modified version of Sondik's machine inspection and 

replacement problem, Cheng (1988) 

These results showed a marked improvement over previous algorithms.   However, an 

even greater effect was found when the Linear Support algorithm was run as an approximate 

algorithm. This is done by slightly modifying the optimality check of the current value function 

approximation at a belief state.   Rather than checking for equality between the current and 

optimal value functions, the difference is checked against an error tolerance, (p. If the difference 

is less than the error tolerance, this point is removed from the check list without generating a new 

alpha vector.   In further numeric tests, on problems of varying size, Cheng showed how this 

modification can drastically reduce the solution time.   Sondik's One-Pass algorithm was not 

considered due to Cheng's proof that both the Relaxed Region and Linear Support algorithms 

were superior and Monahan's Enumeration algorithm was run with Eagle's modification. 

Results from these empirical tests are shown in Table 3-6. 
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Aleorithm Enumeration 
Relaxed 
Region 

Linear 
Support 

(p=0 

Linear 
Support 
(p=0.001 

Linear 
Support 
9=0.005 

Linear 
Support 
(p=0.01 

Linear 
Support 
(p=0.1 

CPU Time 

4.626 1.012 1.631 1.068 0.535 0.478 0.158 

5.171 2.230 2.348 1.267 0.727 0.692 0.389 

79.154 28.633 36.327 21.877 7.522 4.301 0.891 

762.173 N/A 172.282 57.226 9.140 2.604 2.152 

Table 3-6: CPU time comparisons ofPOMDP algorithms for selected data, Cheng (1998) 

These results show that allowing a small amount of error in the value function can greatly reduce 

the solution time. This fact will be used later in the decomposition algorithm. 

To run the Linear Support algorithm, all extreme points of a convex polytope must be 

found. In lower dimensions this may seem somewhat trivial. However, in order to solve 

problems with varying state space sizes, this must be done in higher dimension. Such a problem 

has been researched in computational geometry and even determining the number of vertices has 

been found to be "...NP-hard in the strong sense" [17]. 

Recognizing this shortcoming, Littman, in conjunction with Cassandra and Kaelbling, 

developed the Witness algorithm [25]. While similar to the Linear Support algorithm, the 

Witness algorithm has two major differences: first, its approximation of the optimal value 

function and second, the way it identifies belief states that need to be checked. Rather than 

generating one approximation for the value function, the Witness algorithm generates multiple 

approximations, each based upon a single action. These approximations are then combined and 

the dominated alpha vectors are removed. Such an approach has an advantage in the case where 

an action dominates over a portion of the belief space and is represented by multiple alpha 

vectors. Details of how the individual approximations for each action are created and then 

combined can be found in Littman [25] or Cassandra [10]. These procedures involve linear 

programming formulations similar to those in the One-Pass and enumeration algorithms. While 

there is no theoretical evidence to show that the witness algorithm is better than Cheng's 

algorithms, "empirical results hint at this result" [10]. 

Currently, the state of the art in POMDP solution methods is actually a group of 

algorithms based upon the idea called incremental pruning. Algorithms of this type build up 

successive approximations of the value function based upon action-observation pairings in a 

similar manner to the Witness algorithm. However, the manner in which these approximations 

are constructed and subsequently reduced is quite different. 
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Originally proposed by Zhang and Liu [38] with a specific algorithm formalized by 

Cassandra, Littman, and Zhang [11], incremental pruning methods build a value function, 

^k^ M' for an action y/ and observation 0. Value functions of this type are combined to form 

an action-based value function, V^ (TT) . Finally, the action-based value functions are combined 

to form the complete value function V^ (TT) . Details of how V^ (n) is constructed as well as the 

reduction of dominated alpha vectors at each successive combination of approximate value 

functions can be found in Appendix B, Section B.2. 

Again, theoretical results provide little insight into how well Incremental Pruning 

methods, and specifically Cassandra, Littman, and Zhang's variant called the Restricted Region 

(RR) algorithm, fare against other POMDP solution algorithms. To test their algorithm, 

Cassandra, Littman, and Zhang ran RR on a number of standard POMDP problems of varying 

size. The results in Table 3-7 show that this new method empirically performs better than the 

witness algorithm. 

POMDP Problem 

1 rotal Run Time (sec.) 

Witness 
Incremental 

Pruning with RR Enumeration 
4x3 727.1 157 N/A 
4x4 3226 909.2 216.7 

Cheese 351.8 203.3 N/A 
Part Painting 5608.4 5226.4 1116.9 

Network 6422.9 722.5 N/A 
Table 3-7: Computation times for selected POMDP algorithms on classic problems, Cassandra. Uttman. and Zhang 

(1997). Full explanations of the individual problems can be found on Cassandra's POMDP website, 
<http://www.cs.brown.edu/research/ai/pomdp/examples/index.html>. Note that when enumeration works, it does 

better than either of the other two algorithms. 

3.3.2.2 Approximate Algorithms 

Even with advanced algorithms such as Incremental Pruning, solution times for POMDPs 

can be prohibitive, especially when contrasted to the quickly changing landscape of the modem 

battlefield. Problems such as the Network problem shown in Table 3-7 are of reasonable size: 7 

states, 4 actions, 2 observations, and a horizon of 14. In solving POMDPs for the targeting cycle 

problem, we might solve many problems of this size. However, if each takes even half the time 

required for the Network problem, a plan will be out of date before it is generated. A reasonable 

next step is to consider approximate algorithms. We have already covered such an algorithm in 
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Linear Support.    Tuning the error tolerance allows for much faster solution times while 

maintaining a good approximation of the value function. 

Another approximation approach is to divide the belief space with a grid and generate the 

alpha vectors for specific points in this grid. How the grid is constructed is what distinguishes 

algorithms of this type such as those proposed by Lovejoy [27], Hauskrecht [22], and Zhou and 

Hansen [39]. These algorithms are convenient because the amount of computational effort used 

to solve the problem can be specified. This stems from the fact that for each point in the grid, 

equation (3.16) is used to find the optimal alpha vector for that point. With the ability to specify 

computation restrictions, we lose the ability to specify an error tolerance for the value function. 

Interpolating between the value function at grid points gives an estimate of the error between the 

value function approximation and the true value function at any point in the belief space. As 

long as the extremes of the belief space are included in the grid, this interpolation will be an 

overestimate; this fact stems from the piecewise linear and convex properties of the value 

function.  Figure 3-17 illustrates interpolation for a two state problem.  The end points of the 

interpolation are the value function values at the selected grid points. 

/ 
a:'(k) 

K(S)=Q. ]r(s')=l 

0      0.1    0.2    0.3    0.4     0.5    0.6    0.7    0.8    0.9       1 

n(s) 
7C(S)=1,}C(S')=0 

Figure 3-17: Interpolation for Grid Based POMDP Solution Algorithms 

Lovejoy (1991) shows that his interpolation and grid selection scheme maintain this 

upper bound property when dynamic programming is applied. 

3.33 Targeting Cycle POIMDP IVIodels and Hierarchy 

With the background knowledge of POMDPs and their solution methods, we now 

formulate the POMDP models for the targeting cycle problem. 
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• Set Deflnitions and Common Data 
Object index: JG/ 

States: seS 
Allowable action set for object /: I//E ^, 

Contact i possible types: ^e E, (i.e., tank, SAM, SSM, etc.) 

Possible observations for object /: Be 0, 
Horizon: T 
Epoch: keZ* <T 
Number of aircraft a used by action y/: AFTUSE^ 

Number of weapons w used by action y/: WPNUSE;^ 

Number of sensors b used by action y/: SENSUSE*^ 

All action lists contain a "Pause" action that uses no resources, does not influence the 

object being acted upon, and has a uniform observation model. 

• Area of Interest POMDP Input Data 
S={0, 1,2,...} 
e ={0,1,2,...} 
Probability action y/ will discovery an object when applied to area h PDISf 

Probability of attrition of aircraft type a under action y/ applied to area f: PA^ 
Average value of objects in area ;: AVGVAL; 

Cost of action y/ at epoch k applied to area ;: Cl 

It is important to note that the discovery probability, PD|^, is for each object in area /, 

independent of the other objects in area i. 

• Contact POMDP Input Data 
S=H,. 

0=H, , 

Probability contact / v^ll evade when action y/ is applied: BV^ 
Probability of receiving observation 0 when action y/ is applied to contact / 

when it is in state s: Of 

Probability of attrition of aircraft type a under action yr applied to contact i: 

PA!:; 

Value of possible type ^ for contact f: AVGVAL^ 

Cost of action y/ at epoch k applied to contact;: Cl 
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If a contact evades, it is assumed to move to the "Not a target" state and thus is 

essentially lost. It is assumed that the contact will not evade if a "Pause" action is taken. The 

action list for contacts includes "Declare" actions that indicate a level of certainty that the 

contact is of a certain type. It is from these "Declare" actions that value is attained. Further 

explanation of the "Declare" actions can be found in Chapter 4, Section 4.2. 

• Target POMDP Input Data 
S={Live, Dead} 
0 ={Live, Dead} 
Probability of kill for action y/ applied to target /: Sl^ 
Probability of receiving observation 6 v/hen action yr is applied to target i 

when it is in state s: Of 
Probability of attrition of aircraft type a under action y/ applied to target /: 

PA:; 
Probability of target / moving from dead state to live state due to repair when 

action y/ is applied: £li^ 

Value of target;: VALj 
Cost of action yr at epoch k applied to target J: C^^ 

The repair probability, S'^i^, is assumed to be zero for relocatable targets. 

In modeling the targeting cycle, these POMDP models interact in a hierarchy. Beyond 

the objects that are designated at the outset of the problem by intelligence preparation of the 

battlefield (IPB), objects might be discovered in an area of interest, identified, and then struck if 

the object is determined to be a valid target. Over time, objects move down this hierarchy until 

they are placed in the "Not a Target" box for relocatable targets and objects determined not to be 

valid targets and into the "Fixed Target" box for fixed targets. Figure 3-18 illustrates the 

POMDP hierarchy in which IPB initializes objects in each POMDP category. Over time, objects 

are discovered and are dealt with through a contact POMDP. Once they have been identified as 

a relocatable target, a fixed target, or not a target, with a high enough certainty, above x%, they 

are moved accordingly. While fixed targets are never completely destroyed due to the repair 

assumption from Chapter 2, Section 2.3, relocatable targets are assumed not to regenerate and 

thus can be moved into the "Not a Target" box once the belief that the target is dead is 

sufficiently high, above y%. 
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Area of Interest 
POMDP 

Contact 

IPB»- 

Found 

Contact 
POMDP 

Target type determination 

Relocatable 
Target Strike/BDA 

POMDP 
I 

made to x% reliability 

Target belief dead 
above y% 

Not a Target 

Fixed Target 
Strike/BDA      |* 

POMDP 

Figure 3-18: POMDP hierarchy. Over time objects progress down the hierarchy as they are discovered, identified, 
and struck, if appropriate. 

3.4 Chapter Summary 

This chapter began with an overview of the characteristics and assumptions of the 

targeting cycle problem and how different modeling techniques have been applied to solve 

problems similar to the targeting cycle problem. Resource allocation methods address most 

aspects of the targeting cycle problem but fall short due to the large number of possible 

contingency plans. Policy development methods address this problem but deal with action costs 

rather than resource constraints. A hybrid approach, as proposed by Yost, combines these two in 

order to adequately solve the sensor-shooter problem and thus we extend that technique to 

address the targeting cycle problem. In order to lay the groundwork for this extension, we 

covered the m3Jor POMDP solution algorithms and then defined the POMDP models for the 

three types of objects we will be dealing with: areas of interest, contacts, and targets. 
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4 Resource and Task Assignment 
Having explored the POMDP model, and the versatility it provides in modeling a 

stochastic environment, we can further discuss the interaction between the resource assignment 

LP and the task assignment POMDPs. We have seen that a hybrid approach such as Yost's [37] 

is a good model for the sensor-shooter problem. As shown in Chapter 3, Section 3.3.3, further 

POMDP models can be developed to expand this formulation to include discovery in an area of 

interest and contact identification, thus extending the sensor-shooter problem to the targeting 

cycle problem. 

4.1  Motivation 

The targeting cycle, as described in Chapter 2, is complex and fast-paced. Currently, Air 

Force Air Operations Centers (AOC) need one person per planned sortie to make sure everything 

gets done [19]. This is an extremely high number when you consider that a typical air tasking 

order (ATO) can contain a thousand or more sorties. As Lt. Gen. Ronald E. Keys said "We need 

technology to do all those repetitive and cataloging tasks so we don't need as many people..." 

[19]. Repetitive tasks such as assuring resource availability"and deconflicting resource usage 

between different sorties are two such tasks that the LP/POMDP hybrid approach handles. 

In addition, the LP/POMDP formulation of the targeting cycle problem provides planners 

with dynamic plans that account for the stochastic nature of the world. Although future resource 
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usage is considered in expectation, the inclusion of possible future observations, and the effects 

these observations have upon military planning, helps make the plans robust against real world 

events. Another key element of this formulation is the streamlining of the interactions between 

intelligence and operations. With explicit models of ISR actions included, the LP/POMDP 

formulation of the targeting cycle problem can be updated and re-run as events transpire and 

observations are received. 

4.2 LP/POMDP Formulation and Algorithm 

Formulating the targeting cycle problem using the LP/POMDP hybrid approach 

necessitates a few additions to Yost's formulation of the sensor-shooter problem [37]. One 

reason that Yost was able to address problems of such large size was his grouping of targets into 

target types, the assumption being that all targets of the same type are represented in the model 

with the same value and the same allowable actions. Our reduction of the target type set to an 

individual target provides more flexibility with respect to target valuation and allowable actions 

but reduces the total number of targets that can be considered. We also formulate POMDPs for 

individual contacts and areas of interest. Thus, in solving the POMDP sub-problems, there will 

be a POMDP for each target, contact, and area of interest. 

In order to start the algorithm, we need to give the master LP some contingency plans 

with which to generate dual values. A contingency plan of all pauses is generated for all objects 

to ensure that the LP is always feasible. For targets, the three best single-shot contingency plans 

are generated for all time steps and we generate the three best shoot-look-shoot contingency 

plans beginning in all time steps except T-1 and T. We only use ISR resources when dealing 

with contacts and areas of interest; thus, we generate the best three single-look contingency plans 

for all time steps and the best three double-look contingency plans beginning in all time steps 

except T. When these contingency plans have been generated, their associated resource usage 

and expected rewards are calculated and loaded into the LP, which is then solved, yielding dual 

prices for the available resources. These dual prices are passed to the POMDP sub-problems to 

use in the calculation of C^, the cost of applying action y/ against object i during epoch it. 

These POMDPs are then solved, providing a policy from which an improving contingency plan 

is constructed. The new contingency plan is used to generate a column which is then added to 

the LP. 
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We make a simplifying change in the stopping criteria for this algorithm in that we stop 

when the change in the objective function and the maximum change in dual values is less than 

the numeric error tolerance, e. The primal objective function value is commonly used as part of 

the stopping criteria in column generation algorithms. The duals are a direct input into the 

POMDP sub-problems through the action costs, thus we need to consider changes in the 

individual rather than their conglomeration in the dual objective function value when deciding to 

terminate the algorithm. Figure 4-1 is a graphical representation of the LP/POMDP algorithm 

for the targeting cycle problem. 
Heuristic policy generator that approximates 

cufTent campaign planning practices 

Stop when (Objective 
function and dual values 

change by less than t 

L Resource costs 

Master LP 

Sortie, weapon, sensor 
look, attrition, and 
target constraints 

WMDP 
(1 per tsiTget, contact, mad 

area of interest) 

Optimal policy fcff current 
costs 

Improving 
column 

Generate   ^ 
conting^cy plan 

and associated 
Cplumn 

_T step 
policy 

Figure 4-1: LP/POMDP algorithm for targeting cycle problem 

With this structure in mind we can construct the master LP that performs the resource and 

task assignment. 

• Set Definitions and Common Data 
Aircraft types: A 
Weapons types: W 
ISR sensor types: B 
Object set: I 
Area of interest set: ^ c I 
Contact set: Wcl 
Target set: Tcl 
Contingency plans for object /: 0,- 
Contact j possible types: S, 
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Horizon: T 
Time step: te T <T 

• Input Data 

Average value of objects in area of interest /: EVALj 
Value of identifying contact / as type ^ given that it is of type ^': IDVAL^^i 
Value of target /: VAL, 
Number of aircraft of type a available at time t: NAAat 
Number of ISR sensors of type b available at time t: ISRbt 
Number of weapons of type w available: WPNw 
Maximum allowable attrition of aircraft type o: MAXATTAa 
Belief that contact / is of type ^: PT^j 
Belief that target; is dead: PDj 

• Contingency Plan Data 

Expected number of aircraft of type o needed to prosecute contingency plan o 
against object / in time period t: NAaoit 

Expected number of ISR sensors of type b needed to prosecute contingency 
plan o against object f in time period t: LKSboit 

Expected number of weapons of type w needed to prosecute contingency plan 
o against object;: WEwoi 

Expected attrition for aircraft type o under contingency plan o against object /: 
ATTAaoi 

Expected number of discoveries in area of interest ; under contingency plan o: 
EDISoi 

Probability of declaring contact \ as type ^ after applying contingency plan o: 
PDEC^oi 

Expected belief that target / is dead after applying contingency plan o: EDoi 

• Decision Variables 

Proportion of contingency plan o to apply to object /: x^ 

Objective Function 

max 2:1EVAL, EDIS, ^. + ^ ^ Z Z PDEC^oi IDVAL,,, PT,, x, + 
fe-^ OGO, few OEO, feE, ^'eH, 

XZVAL,(ED,-PDO^, ^^-^^ 

Constraints {Dual Information} 

ZZNA3oi,Jr„<NAA„   ^a&\,t<T {ada,} 
JE/  060, 

SELKS^A<ISR„   \fbEB,t<T {Idbt} 
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^j;WE„„iX„.<WPN,   VWEW {wdw} (4.4) 
ie/ oeOj 

^5]ATTA3„JC„,<MAXATTA3   \/aE A {ania} (4.5) 

Y^x^,=\ V/ {tdi} (4.6) 
oeO, 

0<jc,,<l  yiEl,oEO,. (4.7) 

The objective function value of this LP maximizes the expected reward of selected 

contingency plans. For areas of interest, benefit is gained by discovering objects, while correctly 

identifying a contact yields benefit. Benefit is gained with respect to targets when the target is 

transitioned from the live state to the dead state. Equation (4.2) ensures that the expected 

number of aircraft used does not exceed the number available for all the different aircraft types in 

all periods. Equation (4.3) does the same but for ISR sensors. Feasible expected weapons usage 

is maintained by (4.4) while (4.5) ensures that we do not risk too much attrition. The 

requirement to act upon every object is enforced by (4.6), as (4.7) keeps the proportional plan 

usage within the admissible bounds. 

With this information, we can now determine the action costs and associated rewards for 

the POMDPs.    C^ is found using the following equation and the action data as defined in 

Chapter 3, Section 3.3.3: 

d = X AFTUSErad, ,.,,, + ^ WPNUSE>d, + 

XlSRUSE:id,,.,,,+2AFrUSE:PA>m,   . 

A POMDP will incur this immediate cost when action y/ is used at epoch k, which 

corresponds to time step T-/:+l. 

Value is input for area of interest and target POMDPs through the 0-epoch alpha vector. 

For an area of interest /, with a maximum possible number of objects Smax, the end state values 

for the 0-epoch alpha vector are: 

«(0,5) = (S_-5)EVAL,    V5€S. (4.9) 

Targets in the live state are assumed to have a value of zero, thus the 0-epoch alpha 

vector for target / is: 
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a (0, live) = 0; and (4-10) 

o:(0,Jearf) = VALi. (4.11) 

Contact POMDPs, however, do not receive terminal value through 0-epoch alpha vectors. 

Rather, value is gained by declaring a contact as a certain type. Thus, the allowable action list 

for contact i will include "Declare" actions that use no resources and have end state values: 

^o,,are^ (A:, |') = IDVAL,,,    V^, f e E,. (4.12) 

With this general layout of the targeting cycle LP/POMDP formulation, we can address 

some of the problem-specific assumptions. 

4.3 Initialization Techniques 

There might not be the intuition that dictates what kinds of contingency plans should be 

used to initialize the LP when running this decomposition as a proof-of-concept,. In fact, the 

whole purpose of a proof-of-concept is to develop the basic understanding of how the system 

will work. 

Rather than starting the algorithm at the LP as illustrated in Figure 4-1, the algorithm can 

be started at the POMDP sub-problems, which might be more appropriate and computationally 

effective. However, this requires dual prices for aircraft, weapons, sensors, and aircraft attrition. 

Generating such values a priori is similar to the problem of generating "good" contingency 

plans, which might be difficult and provide little insight for the problem. A simpler approach 

may be taken: use an LP for which we know all the inputs and which has constraints similar to 

those in the master LP to generate the duals. This simplified LP takes a form similar to that of 

the master LP with the appropriate sets and data the same as the master LP and the POMDP sub- 

problems. We generate all possible action-object combinations and maximize a similar objective 

function for a one-step problem. Figure 4-2 illustrates the LP/POMDP algorithm for the 

targeting cycle problem with dual initialization. 
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Figure 4-2: LP/POMDP algorithm for targeting cycle problem with dual initialization 

Input Data 
Current belief that area ; is in state s: PNsi 
Weighting factor between strike and BDA actions for targets: A 

Decision Variables 

Proportion of action i^to apply to object /: x^^ 

Objective Function 

ZZEZPT,OflDVAL,,,x,,-f 
ieA \if€'Vi ^Hj #'eH, 

2 2 vALT(;i[i-PDj5r„)+(i-/i)([i-PA]c?r^+PDA"^)]\. 

Constraints {Dual Information} 

Y, 2 SENSUSEJ:JC^, < ISR„   Vfte B 

2]2]WPNUSE:JC^,<WPN„   \/weW 

Y, Z AFTUSE:PA*X^, <MAXATTA,   VaE A 
iel ^eV, 

(4.13) 

{adat} (4.14) 

{Idbt} (4.15) 

{wdw} (4.16) 

{ama} (4.17) 
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ZV=1  ^^ {tdi} (4.18) 

0<x^,<l V/e/.?<reT,. (4.19) 

The objective function, (4.13) can be divided into three parts: one for areas of interest, 

another for contacts, and the third for targets. The first part of the objective function calculates 

the reward gained from the expected number of discoveries for each action applied to each area 

of interest. The second set of terms calculates the expected reward for the identification of each 

contact, while the final term calculates a weighted sum of strike and BDA reward for each action 

applied to the set of targets. Equation (4.14) ensures that the expected number of aircraft used 

does not exceed the number available for all the different aircraft types for the first period. 

Equation (4.15) does the same, but for ISR sensors. Feasible expected weapons usage is 

maintained by (4.16), while (4.17) ensures that we do not risk too much attrition. The 

requirement to act upon every object is enforced by (4.18) as (4.19) keeps the proportional action 

usage within the admissible bounds. 

Once this LP is solved, the action costs for the POMDPs can be calculated using equation 

(4.8) and the POMDPs solved to generate an initial set of contingency plans. To ensure 

feasibility, as in the original formulation, the master LP begins with one contingency plan for 

each object that pauses for all time steps and thus uses no resources. The new columns 

associated with the generated contingency plans are added to the master LP, which is then 

solved, generating new duals. As in the original formulation, these iterations will continue until 

the change in the objective function and the maximum change in the duals are less than e. 

Computational comparisons between the two types of initialization procedures are explored in 

Chapter 5. In general, we cannot say which will be faster but rather presume that the 

initialization procedure is an individual choice depending upon familiarity with the problem at 

hand. 

4.4 Implementing Targeting Cycle Characteristics and Assumptions 

While maintaining the general structure of Yost's algorithm, there are different 

assumptions for the targeting cycle that must be considered. 
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4.4.1 Mobile Contacts 
As explored in Chapter 2, a contact might not be stationary. Rather, much Hke the Scud 

missile launchers during Desert Storm, a contact might be stationary for a period, perform some 

mission at that location, and then quickly move to a "safe" location. A second case is that a 

contact might move when its position is compromised. While this is unlikely to happen when a 

Global Hawk or another high altitude ISR platform finds it in an area of interest, it is a definite 

possibility when an easily observable aircraft, such as Predator, performs additional ISR 

missions. Modeling the first of these cases requires knowledge about the mission of a contact. 

Given that we have yet to determine the contact's object type, determining the specific mission 

of that contact is unlikely. 

The second case, however, can be modeled. An estimated value for the percentage of the 

time that contacts move following an ISR action is performed can be found using means such as 

human intelligence or past experience. EVi*^""^ is assumed to be zero but EVi*^, as defined in 

Chapter 3, Section 3.3.3, for other actions can be determined. This transition probability is 

assumed to be independent of the contact's true type. While not considered in this work, a more 

detailed model could be developed such that the state-dependent value, EV;*^ {s), is determined 

for a contact. This would help incorporate current information about the state of the contact in 

determining how likely a contact is to evade. 

4.4.2 Fixed/Regenerative Targets 
Fixed targets such as runways, bridges, and command and control (C2) facilities are 

important, reparable military assets. When damaged or destroyed, an adversary will work to get 

these assets functional as soon as possible. Since the advent of aerial bombing, the subject of 

regenerative targets has been studied. Today, we have extensive tables listing the times 

necessary to repair certain types of regenerative targets. These, of course, are estimates. An 

adversary may do nothing to rebuild an airfield or they may use all available resources. Under 

these scenarios, and everything in between, the time until military operations are restored can 

vary widely. 

While targets such as tanks, artillery, and other such mobile military assets can be 

repaired when slight damage is inflicted, our choice to model all targets as either live or dead 

removes this possibility.  If a tank is destroyed, it is more economically viable to build a new 
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tank than to repair the destroyed one. This, however, is not the case for fixed targets. Using the 

airfield example, building a new airfield could take months. Repairing a runway that has been 

hit by an anti-runway bomb, such as the BLU-107 Durandal or a conventional MK80 series 

bomb, can take a few days or even a few hours. Repairing such assets allows the enemy to 

quickly reengage. 

To model the transition of regenerative targets from the dead state to the live state, 

Eli^My/^ Y,., we assume the transition follows a geometric distribution with the probability of 

success equal to the length of a time step divided by the mean repair time for the given target 

type. This approximation requires that the time steps be shorter than the expected repair time. 

Such an assumption is reasonable because of the relatively short time periods needed in the 

targeting cycle. 

4.43 Problem Data 

In solving the POMDP sub-problems, we rely upon many pieces of exogenous data that 

indicate the effectiveness of weapons and sensors. This data must be statistically estimated from 

historic data or derived from resource characteristics. To get an accurate estimate of the true 

system parameters, either of these methods, or a combination of the two, must be done in an 

appropriate manner based upon a significant amount of data. We make two assumptions about 

these data in order to use it in our decomposition: unbiasedness and small variance. 

The trade-off between bias and variance has long been studied in statistics and 

econometrics. There are results from these fields that dictate how data is to be collected and 

analyzed in order to guarantee certain properties. In our case, biased estimates of system 

parameters would severely impact how the POMDPs determine the dominant actions over 

portions of the" belief space. While this requirement is straightforward, having a low variance 

might not be. We can consider the performance estimate of a parameter as the mean of the 

observed distribution associated with that weapon or sensor. The variance indicates us how 

much the performance of the weapon or sensor deviates from the true value. 

In comparing actions, the POMDPs simply look at the cost/reward of an action and the 

estimated parameters for that action. For example, if two strike actions that do not perform ISR 

have the same costs but one has a slightly higher probability of kill for the target type, that action 

will be chosen. This may be somewhat misleading. Suppose the munition had an idiosyncrasy 
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that caused its effectiveness to vary wildly. Such an example is that of laser guided munitions 

which perform superbly under clear weather conditions but do not perform well under adverse 

weather conditions. Knowing the mean value of its probability of kill does not give us the whole 

picture. Now suppose the other action uses a GPS guided bomb, which is somewhat less 

accurate in the best of conditions but it maintains this level of accuracy during adverse weather. 

In such a case the GPS munition might be preferable due to its lower variance, even though it has 

a lower probability of kill. In this work we assume that the variance of resource performance 

characteristics are small enough so as to have little affect upon deciding which action to choose. 

Formulations that model the variance of actions would be an important extension of this work. 

4.4.4 Integer Solutions 
When the LP/POMDP algorithm has converged to the optimal solution, as described in 

Section 4.2, we must solve the LP once more with integer constraints. This is necessary because 

we cannot use fractional resources. In all but special cases, to meet the resources constraints, 

equations (4.2) to (4.5), while still fully acting upon an object, equation (4.6), the optimal LP 

solution contains fractional decision variables. An integer programming (IP) or mixed integer 

programming (MIP) formulation is necessary. Yost addresses this problem by proposing a MIP 

in which decision variables corresponding to contingency plans with an initial action of pause are 

allowed to be fractional. In such a formulation, multiple contingency plans beginning with pause 

could be combined such that their total usage is integer. Contingency plans that begin with an 

action that consumes resources, however, are required to be integer. 

While this formulation may initially seem to make sense, further examination brings up 

some interesting questions. Why is it that only contingency plans with initial pause actions are 

allowed to be.combined? What does the combination of contingency plans signify and is it 

valid?. While the first of these questions yields a general answer, the second is a philosophical 

question that does not seem to have a definite answer. Only allowing contingency plans with 

initial pause actions to be combined does not seem reasonable. Fundamentally, there is nothing 

different about contingency plans with initial pause actions and those with an initial action that 

uses resources. Thus, we propose a formulation in which contingency plans can be combined as 

long as they have the same initial action. Equations (4.20), (4.21), and (4.22) are used in place of 

equations (4.6) and (4.7). 
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Let x^ be the decision variable representing a contingency plan o for object i that has an 

initial action of y/ and let yf be the binary variable for contingency plans for object / that begin 

with action i//. Also, the objective function, equation (4.1), is maximized over both x and y. 

T.^oi = y'!'   ^W^^ni^J (4.20) 

E3'r=l  V/e/ (4.21) 

yfelO,!}. (4.22). 

This formulation will allow different contingency plans with the same initial action to be 

chosen at partial levels. Yost's approach would simply limit the yf variables to cases in which 

yr is the pause action and equations (4.6) and (4.7) would apply to all other decision variables. 

Combinations of contingency plans might not make sense in a given problem and thus a 

third, fully integer, formulation is necessary. Such a formulation will force contingency plans to 

be fully chosen or not chosen at all. In order to do this, the following set of (4.23) replaces 

equation (4.7). 

jr„,e{0,l}  Vo6 0„/e/. (4.23) 

Solution characteristics for these three different IP/MIP formulations, such as solution 

time, objective function value, LP-IP/MIP gap, and selected contingency plans, will be explored 

in Chapter 5. 

4.4.5 Accelerating POMDP Solutions 

As observed by Yost [37], the POMDP sub-problems consume a large portion of the 

solution time. In some of our initial runs of a realistic problem, solution times ranged from tens 

of minutes to hours, with the vast majority of the time being spent solving the POMDP sub- 

problems. Yost suggests techniques for speeding up the sub-problems and thus the 

decomposition. 

•  ^-Control 

The first technique suggested by Yost is to vary the POMDP error tolerance through (p- 

control. A classic problem with this type of "price-directive" decomposition was described by 

Dantzig in 1963 [15]. During the initial iterations of the algorithm there are severe swings in the 

74 



resource prices. Initially, the master LP duals are low and the sub-problems try to use a large 

amount of resources, pushing the price exceedingly high. Due to the high resource prices, the 

sub-problems produce columns that use very little resources, starting the cycle over again. This 

initial oscillation dampens as the master LP gets more columns to consider and balances between 

the high and low consumption columns. 

In order to moderate this oscillation and spend less time solving initial POMDP sub- 

problems, we solve them with a loose error tolerance. As the algorithm converges, we 

systematically tighten the error tolerance until it reaches a specified lower bound. For the 

targeting cycle problem, we start with an initial q> and reduce it by a factor of ten each time the 

objective function and dual values change by less than e, that is: 

(p' = ^.\(p. (4-24) 

This continues until (p is less than or equal to e and the other stopping criteria are met. 

The computational impact of (p -control is examined in Chapter 5. 

• Action Control 
To calculate the optimal value at a point in the belief space using equation (3.8), we must 

maximize over all of the allowable actions for object /. Computationally, this is done by 

enumerating the function for all actions and picking the best one. This suggests that another way 

to speed up the POMDP sub-problems is to limit the number of actions they considered. 

However, we do not want to remove them from consideration altogether because this could lead 

to a sub-optimal solution. Therefore, we consider a method in which we limit the allowable 

actions for a number of iterations. At regular intervals, all of the actions are considered and the 

new allowable actions set is derived. 

In solving the targeting cycle problem, we are solving a sequence of POMDPs. Thus, we 

can use information from previous POMDPs solutions to determine which actions to consider in 

future POMDPs. Specifically, we only consider those actions used in the policy of a previous 

POMDP. For each object, we solve the initial POMDP using all of the actions. We then limit 

^. to the actions used in the POMDP policy. This limitation on 4^,. is maintained for a number 

of iterations based upon an update interval. At integer multiples of the update interval, all of the 

actions are considered and the new limited W^ is derived from the policy generated. In Chapter 

5, we consider the computational effects of different update intervals. 
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4.4.6 Rolling Horizon 

Another important aspect of the targeting cycle problem is the rolling horizon, that is, we 

will only execute one time step of each selected contingency plan and then replan. There are two 

reasons such a technique is necessary. First, we do not know the actual length of the military 

campaign for which we are planning. Thus, we plan for a sufficiently long horizon so as not to 

use resources greedily in the beginning. Secondly, once a time step has been completed, we 

want to use the intelligence information that was gathered during that time step. This 

characteristic allows us to combine contingency plans as described in Section 4.4.4. 

4.5 Solution Techniques 

There are two main types of problems, the master LP, Section 4.2, and the subproblem 

POMDPs, Chapter 3, Section 3.3.3, that we need to solve, as well as to determine the 

interactions between these two problems. Figure 4-3 shows the interactions between these two 

types of problems. 

Contingency 
plans with 
associated 
expected 

resource usage 
and reward 

Master Linear Program 
Assignment of aircraft, 
weapons, and sensors 

Dual Prices from 
Resource Constraints 

Pre-Strike ISR POMDP 
Ordering of intelligence 

gathering actions against a 
Contact or Area of Interest 

Contingency 
plans with 
associated 
expected 

resource usage 
and reward 

Strike/BDA POMDP 
Ordering of strike and 
BDA actions against a 

Target 

Figure 4-3: Hierarchical decomposition of targeting cycle problem with a master LP and POMDP sub-problems 

In order to explain the interactions, we provide formal definitions for a policy, a plan, and 

a contingency plan.  A policy is a mapping from states to actions for all time steps and is the 

output from our POMDP sub-problems. Appendix B, Sections B.l and B.2 show how POMDP 

policies are developed. Figure B-13 illustrates one time step of a policy. 
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A plan indicates a sequence of actions to take based solely upon the time step. Figure 

4-4 shows a sample plan. From this figure you can see that the action to be performed depends 

only upon the current time step. 

Action for 
time step 1 

¥l 

Action for 
time step 2 

¥2 

Action for 
time step 3 

¥3 
Time 
Steps 

Figure 4-4: Sample Plan 

An extension of this idea is the contingency plan that indicates a sequence of actions to 

take, contingent upon observations. The first step of a contingency plan contains one action and 

|0l branches which we can traverse. The second level thus contains |©| actions each with |0| 

branches. In our formulation, a POMDP policy is used to generate a contingency plan as 

described later in this chapter. Figure 4-5 shows a contingency plan for a contact with three 

possible types: Not a target. Tank, and SSM. 

Figure 4-5: Sample contingency plan for a contact with three possible types: Not a target. Tank, and SSM. 
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4.5.1 Solving the LP 

There is a large body of literature concerning the solution of linear programming 

problems. A variety of algorithms have been proposed and extensively analyzed. Polynomial 

time algorithms have been found along with many other important theoretical results [8]. Two 

main bodies of solution algorithms can be identified. The first of these groups is the set of 

algorithms based upon the simplex method. The simplex method, originally proposed by George 

Dantzig in 1947, traverses the extreme points of the feasible space as defined by the constraints. 

It moves from one extreme point to the next until it finds the optimal solution. Extensions and 

modifications have been made to Dantzig's original algorithm to deal with degeneracy and other 

computational issues. 

Interior point methods are the other large class of algorithms that are used to solve linear 

programming problems. Algorithms of this type include the log-barrier, Newton's, affine 

scaling, primal path following, and primal-dual path following. Algorithms of this type, as the 

title indicates, start at a point interior to the feasible region. They then move in the feasible 

region toward the optimal solution. 

While interior point algorithms have superior theoretic properties, the simplex method 

and its subsequent modifications perform quite well in practice, so we consider another criterion 

in picking which type of algorithm to use. In solving the targeting cycle problem, we are not 

solving a single LP. Rather, we are solving a large number of similar LPs that vary only in that 

later LPs have a superset of variables with respect to eariier LPs. In considering this note that, 

upon termination, the simplex method is at the optimal point for the original problem which 

would in turn be a feasible solution to a subsequent LP. In fact, the point at which the simplex 

method terminates might be relatively close to the optimal solution for the new problem. Rather 

than starting over, we can begin the simplex method at the previous optimal basis and take 

advantage of the computation performed for the previous problem. 

This is not possible when interior point methods are used. The power of interior point 

methods is their ability to traverse the feasible region freely, without a large hindrance from the 

constraint set. Thus, starting an interior point method from the previous optimal solution would 

reduce it to an algorithm much like the simplex that moves along the exterior portion of the 

feasible region. Each iteration of an interior point method, however, requires more work than an 

iteration of the simplex method.  Rather than starting at the previous optimal solution, we can 
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start an interior point method at another interior point. This provides no guarantee that we are 

close to the optimal solution so we cannot make use of the computational effort expended in the 

previous iteration. 

For these reasons and due to the widespread availability of optimization packages that 

implement the simplex method, we use it to solve the master LP. Full details of the simplex 

algorithm can be found in [8]. 

4.5.2 Solving the POMDPs 
Of the POMDP solution algorithms discussed in Chapter 3, two were selected. 

Incremental Pruning and Linear Support. The Linear Support algorithm, with its ability to 

approximately solve POMDPs, would be the sole choice if it were not for the complexity of 

finding extreme points in higher dimensional spaces. For the two-state target POMDPs, the 

extreme point enumeration step described in Appendix B, Section B.1.1, is trivial. When the size 

of the state space increases, this procedure becomes more difficult. This in turn makes the 

Linear Support algorithm more difficult. For this reason, we use Incremental Pruning to solve 

POMDPs for areas of interest and contacts, both of which might have more than two states. 

4.53 Interactions 
There are two types of interaction between the master LP and the POMDP sub-problems. 

Simplest of the two types of interactions is the passing of dual information from the master LP to 

the POMDP sub-problems. These duals provide the marginal value of one unit of each resource. 

The column of duals, p, is found by using equation (4.25) in which CB and B correspond to the 

objective function coefficients and columns, respectively, for the variables in the optimal 

solution. 

P = C;BV (4.25) 

From p we get the dual values from equations (4.2) to (4.6) that we need to pass to the 

POMDP sub-problems for the calculation of C^. In actual implementation, the dual values are 

retrieved from the LP solution package through a function call. Once these duals are received 

and C^ calculated for all objects, actions, and epochs, the POMDP sub-problems can be solved, 

yielding optimal policies which are then used to generate improving contingency plans. 
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This process is not as straightforward as it might seem. A POMDP solution algorithm 

such as Linear Support or Incremental Pruning does not generate a contingency plan. Rather, it 

generates a policy mapping belief states to actions. From this policy, we must extract the 

contingency plan. 

Note that, given an initial belief state, we can only visit a finite number of belief states 

over a finite horizon. For example, if we begin with a target that is fully alive and we perform 

action y/ on that target, we will receive one of two observations, live or dead. Each of these 

action-observation pairings has an associated belief state; thus, the number of belief states we 

must consider in time step two is two, three is four, four is eight, and so forth. The branching 

factor of this tree is the number of possible observations, so these trees can become quite large 

for long horizons or for contacts with a large number of possible observations. 

To explain how contingency plans are generated, we must first introduce the idea of a 

belief state node. A belief state node contains the observation for which the node was generated, 

a belief state, the optimal action associated with that belief state at that epoch, and the probability 

of arriving in that belief state. A contingency plan is built by generating the belief state nodes 

for all the belief states we may transition to over the planning horizon. Figure 4-6 shows the 

belief state node representation of a contingency plan for a target. 

Time 
Steps Epochs 

1 

Figure 4-6: Contingency Plan for a target with first three time steps shown. 

L and D represent live and dead observations. 
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Using the Baysean update equation, equation (3.7), with the associated belief state and 

action from the parent node as well as the observation for which the child node was generated, 

we can calculate the child node's belief state. To determine the action associated with the node, 

we simply do a table lookup to find the alpha vector, at the appropriate epoch, that dominates at 

the node's belief state. 

To calculate the probability of occurrence, y^, for a belief state node with associated 

observation 6 and parent node with a belief state of n, action y/, and probability of occurrence 

3^ we use (4.26). 

s'eS seS 

When the entire contingency plan has been generated, we calculate the necessary data to 

add a column to the master LP. There are two parts to this data: expected reward and expected 

resource usage. Calculating the expected resource usage for use in equations (4.2) to (4.5) 

follows the same procedure for all of the POMDP types. For each belief state node, the 

resources necessary (e.g. aircraft, weapons, etc.) to carry out the associated action are multiplied 

by the probability of occurrence, yj^. These values are then summed across belief state nodes 

at the same level for aircraft and sensor usage and across all belief state nodes for weapons usage 

and aircraft attrition. This provides the constraint data for equations (4.2), NAaoit, (4.3), LKSboit, 

(4.4), WEwoi, and (4.5), ATTAaoi- Generation of the objective function value, however, depends 

upon the type of POMDP we are solving. 

The objective function value for an area of interest contingency plan is a function of the 

expected number of discoveries in that area. To calculate this quantity, we store an additional 

piece of data in belief state nodes that correspond to an area of interest POMDP. This extra 

piece of data is the expected number of discoveries when the optimal action is performed at the 

current belief state. This number is multiplied by yj^ and then summed for all the belief state 

nodes in the contingency plan yielding EDISoi- The belief state for an area of interest, a PMF 

over the number of objects in the area, is not directly used because of possibility of movement 

between areas, which, though not considered here, is an important extension. 

The objective function value for a contact contingency plan depends upon the probability 

of declaring a contact as a certain type.  This is found for each element of S,. by summing up 
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y^ for the nodes with "Declare" actions for the appropriate contact possible type.   This 

summation yields PDEQoi for all ^e E.. 

Columns generated by target POMDPs have objective function coefficients based upon 

the belief that the target is dead by the conclusion of the contingency plan. This is calculated by 

updating the belief state, which for targets is the belief that the target is dead, for all nodes in the 

lowest level of the tree using the optimal action. Each new belief state is multiplied by the 

probability of occurrence for its associated node, yf. These values are summed, resulting in 

the probability the target is dead at the end of the contingency plan. We do not consider 

observations received after the last step in the planning horizon because we are unable to take 

advantage of the information they provide. 

This brings up an interesting characteristic of area of interest contingency plans. While 

the contact and target contingency plans branch upon the observations received, area of interest 

contingency plans do not have this characteristic. This is due to our belief state representation. 

For contacts, our belief state is our belief that the contact is of a certain type and as stated earlier, 

our belief state for targets is the belief that the target is dead. Observations that we receive help 

update this information. Our belief state for areas of interest is a PMF over the number of 

objects in that area. When a number of objects are discovered, we update our belief state using 

only the transition probabilities, £T,. We do not use this information as a separate observation 

about the state of the system. Inferences based upon the number of objects discovered would be 

problem specific and difficult to quantify for a number of reasons. An example of using the 

number detected as an observation would be increasing the probabilities of the higher states 

when a large number of objects are discovered. The logic behind such an inference is that 

military resources are usually grouped together for mutual defense. Adding such observation 

characteristics to area of interest POMDPs could be done but in addition to the logic governing 

the updates, the finite size of the belief state PMF must be taken into account. Figure 4-7 

illustrates a contingency plan for an area of interest with the appropriate information in the belief 

state nodes. Note that this contingency plan has collapsed into a plan in which the optimal action 

is based solely upon the time step. 
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Belief State 
Action 
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Occurrence 

Expected Number 
of Discoveries   . 

-Z^ 

Belief State 
Action 

Probability of 
Occurrence 

Expected Number 
of Discoveries   . 

-Z^ 

Belief State 
Action 

Probability of 
Occurrence 

Expected Number 
of Discoveries   . 

Figure 4-7: Contingency plan for an area of interest. Note that we do not branch upon observations. 

4.6 Chapter Summary 

Using the hybrid framework originally proposed by Yost, we see that the entire targeting 

cycle problem can be solved using the LP/POMDP formulation. Our addition of areas of 

interest, contacts and regenerative targets as objects to act upon as well as a new initialization 

and new integer formulations provide a broader framework for solving the targeting cycle 

problem. The intricacies of implementing this algorithm, along with some specific assumptions 

and problem characteristics, yield a variety of different tests that can be run to determine the 

technical and real-world behavior of the algorithm. 
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5 Scenarios, Results, and Analysis 
While the theoretical properties of the LP/POMDP decomposition and solution of the 

targeting cycle problem are important, they do little to provide information about how well the 

approach could provide real-time assistance to military planners. We know that the POMDP 

sub-problems are PSPACE-complete [33], see [36] for a brief overview of complexity theory. 

Essentially, a problem being PSPACE-complete means that it is in the set of hardest problems in 

PSPACE where PSPACE is "the set of decision problems that can be solved by a Turing 

machine using a polynomial amount of memory, and unlimited time" [36]. 

5.1  Testing the Algorithm 

Yost proved the theoretical validity of the LP/POMDP decomposition and presented 

preliminary solution analysis. We delve further into our solutions, specifically, the selected 

contingency plans and the characteristics of these contingency plans under a variety of 

conditions. We divide these experiments into two groups, those that test computational 

characteristics of the formulation and those that demonstrate the formulation's use in a variety of 

planning scenarios. Each experiment is set up with a specific hypothesis in mind and a scenario 

is constructed to test that hypothesis. We then take the results from each scenario and draw 

conclusions about the hypothesis. To perform these tests we begin with a basic scenario and 

then vary input parameters and data. 
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5.1.1 Basic Scenario 

The basic scenario we consider closely mirrors current and projected Air Force 

operations. Aircraft are divided into five groups: strike aircraft with large capacity, strike aircraft 

with small capacity, ISR aircraft with a wide variety of sensors, ISR aircraft with a more limited 

set of sensors, and composite aircraft that combine some characteristics of strike and ISR 

aircraft. In keeping with the current Air Force vision, three types of munitions are employed. 

The Joint Direct Attack Munitions (GBU 31/32) are GPS guided munitions for destroying 

hardened targets and vehicles. AGM-65 Maverick missiles are guided by infrared, electro- 

optical, or thermal sensors and extremely versatile. However, they do not perform well against 

hardened buildings or troop deployments. Finally, we consider the use of cluster munitions, such 

as the CBU-52B mentioned in Chapter 2, used against lightly armored vehicles or personnel. 

Enemy targets include C2 facilities, surface-to-surface missiles (SSM), eariy warning (EW) 

radars, tanks, and other military equipment. Table 5-1 summarizes the aircraft, weapons, and 

targets considered in the targeting cycle problem basic scenario. 

Aircraft Weapons Targets 

Large Sensor 

Small Sensor 

Large Weapon 

Small Weapon 

Small Combo 

Seeker Missile 

GPS Bomb 

Cluster Bomb 

C2 Facility 

SSM 

Tank 

Supply Truck 

Mobile HQ 

EW Radar 

Table 5-1: Summary of aircraft, weapons, and targets used in the targeting cycle problem basic scenario. 

Figure 5-1 spells out the characteristics of the basic problem, which will be used as a 

starting point for all of the structural variations and targeting cycle vignettes. Dual initialization, 

q)- control, action control, and the first-action-same MIP formulation are those described in 

Chapter 4. 
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1                                                      Basic Scenario                                                      1 
Targets—Value 
2 C2 Facilities—5 

2 SSMs—50 
2 Tanks—5 

2 Supply Trucks—3 
2 Mobile HQ—5 
2 EW Raciars—5 

Actions 
Large Sensor                      Small Combo + Seeker Missile 
Small Sensor                         Small Combo + GPS Bomb 
Small Combo                       Small Comtio + Cluster Bomb 

Large Weapon + Seeker Missile     Large Weapon + 2 Seeker Missiles 
Large Weapon + GPS Bomb          Large Weapon + 2 GPS Bombs 

Large Weapon + Cluster Bomb       Large Weapon + 2 Cluster Bombs 
Small Weapon + Seeker Missile     Small Weapon + 2 Seeker Missiles 

Small Weapon + GPS Bomb          Small Weapon + 2 GPS Bombs 
Small Weapon + Cluster Bomb      Small Weapon + 2 Cluster Bombs 

Aircraft 
1 Large Sensor 

1 Large Weapon 
2 Small Sensor 

2 Small Weapon 
2 Small Combos 

Allowable Attrition 
1 Large Sensor 

1 Large Weapon 
1 Small Sensor 

1 Small Weapon 
1 Small Combo 

Munitions 
10 Seeker Missiles 

5 GPS Bombs 
10 Cluster Bombs <p-Gontrol for POMDPs Action Control for POMDPs with 

update interval of 10 
Horizon 

8 periods at 30 
minutes per period First Action Same IMIP Dual Initialization 

Sensors coupled with aircraft thus no constraints beyond aircraft usage 

Figure 5-1: Basic Scenario 

Due to the large number of combination actions, in which an ISR platform is paired with 

a strike platform, e.g. an action that uses a Large Weapon aircraft with a Seeker Missile together 

with a Large Sensor aircraft, we do not list them in Figure 5-1. However, such combination 

actions are used in the formulation. ISR aircraft can jam the radar of antiaircraft systems thus 

reducing their effectiveness and the probability of attrition. Pairing strike and ISR aircraft can 

also provide immediate BDA. 

5.1.2 Structural Variations 
In testing the structural characteristics of the LP/POMDP formulation and algorithm, we 

consider five main areas: varying values of the allowable POMDP value function error {(p), the 

update interval for action control, short versus long planning horizons (T), initialization 

techniques, and IP/MIP formulation. 

• Impact of POMDP Value Function Error Tolerance 
> Preset POMDP Error 

Hypothesis: Increase in POMDP error tolerance only slightly degrades solution but greatly 
reduces solution times. Refer to Chapter 3, Section 3.3.2.1 and Appendix B, 
Section B.1.2 for discussion about the POMDP value function error tolerance q>. 

Scenario: Basic scenario with POMDP error tolerances of 0, 0.00001, 0.0001, 0.001, 0.01, 
0.1, and 1. 
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Conclusion: As hypothesized, the solution times were markedly improved when looser 
POMDP value function error tolerances were used and there was little impact 
upon the optimal LP objective function value. See Section 5.4.1 for the 
computational results. 

> ^-Control 

Hypothesis: The LP/POMDP formulation can be solved with progressively smaller POMDP 
value function error tolerances with no affect upon the optimal solution but with 
greatly reduced solution times. Refer to Chapter 4, Section 4.4.5 for a discussion 
of <p -control. 

Scenario: Basic scenario with initial POMDP error tolerance of 1. When the stopping 
criteria described in Chapter 4, Section 4.2 are met, (p is reduced by a factor of 10 
and the algorithm continued. This is done until (p<e, the numerical error 
tolerance used in this work. 

Conclusion: As hypothesized, the solution times were considerably improved when (p-control 
was used and there was no impact upon the optimal LP objective function value. 
See Section 5.4.1 for the computational results. 

• Action Control with Varying Update Intervals 

Hypothesis: Different update intervals will speed up the algorithm due to the reduced number 
of actions considered by each POMDP. Refer to Chapter 4, Section 4.4.5 for a 
discussion of action control. 

Scenario: Basic scenario with action control off and action control on with update intervals 
of 2, 5,10, and 15. 

Conclusion: As hypothesized, the solution times were shorter for some action control update 
intervals and but were longer for others. There was no impact upon the optimal 
LP objective function value. See Section 5.4.2 for the computational results. 

• Variations in Planning Horizon 

Hypothesis: Longer planning horizons will increase the solution times but will allow for 
improved objective function values due to the increased number of time steps that 
an object can be acted upon. 

Scenario:       Basic scenario with horizons from 4 to 15. 

Conclusion: As hypothesized, solution times for shorter horizons were less than those for 
longer horizons. However, the change in the optimal LP objective function value 
that we expected was not present. See Section 5.4.3 for the computational results. 
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• Plans versus Dual Initialization Techniques 

Hypothesis: Dual initialization will produce the same optimal solution in fewer iterations and 
less time. Refer to Chapter 4, Sections 4.2 and 4.3 for descriptions of plans and 
dual initialization. 

Scenario:       Basic scenario with plans and dual initialization. 

Conclusion: As hypothesized, dual initialization yielded the same optimal UP objective 
function value as policy initialization, in a shorter period of time and less 
iterations. See Section 5.4.4 for the computational results. 

• Different IP/MIP Formulations 

Hypothesis: Varying MIP formulations have little impact upon the optimal value but have 
definite impact upon the solution time. Refer to Chapter 4, Sections 4.2 and 4.4.4 
for a full explanation of the three IP/MIP formulations. 

Scenario: Basic scenario with all binary variables, contingency plans with first action pause 
mixed, and all contingency plans with same first action mixed. 

Conclusion: As hypothesized, the values attained for the three IP/MIP formulations were 
almost identical but the all binary and first action pause formulations did not solve 
in a reasonable amount of time and thus were stopped after 500 seconds. See 
Section 5.4.5 for the computational results. 

5.13 Targeting Cycle Vignettes 
While the structural vignettes aim to demonstrate the characteristics of the algorithm 

based upon adjustable parameters that are independent of the application, these targeting cycle 

vignettes probe the behavior of the algorithm when characteristics of the planning scenario are 

changed. 

• Basic Scenario 
This scenario serves as a baseline from which to compare the later vignettes. Its 

characteristics are listed in Figure 5-1. Computational results for all of the vignettes are listed in 

Section 5.5. See Section 5.5.1 for a full discussion of this vignette's solution. 

• Regenerative Targets 

Hypothesis:   Regenerative targets will be examined more often and struck more often. 

Scenario:       Basic scenario with C2 facilities regenerating at different rates. 
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Conclusion: Contrary to our hypothesis, regenerative targets were not always examined and 
struck more often. If the target began in the live state, it was more efficient to 
wait to act upon the target until the final time steps. If, however, the target began 
in a belief state closer to 0.5, then it was examined and struck more often. See 
Section 5.5.2 for a full discussion of this vignette's solution. 

• Antiaircraft Threats 

Hypothesis: Increased rates of attrition due to antiaircraft threats will induce strategies that are 
more conservative and the use of jamming. 

Scenario: Basic scenario with addition of 2 medium and 2 long SAMs covering all other 
targets. 

Conclusion: Due to the relative availability of jamming resources, there was little change from 
the basic scenario. See Section 5.5.3 for a full discussion of this vignette's 
solution. 

• Object Discovery 

Hypothesis: Benefit to be gained from object discoveries drives the use of ISR and 
combination resources in object discovery actions. 

Scenario: Basic scenario with addition of 2 areas of interest with varying PMFs over the 
number of objects in the area and average value of objects in the area. 

Conclusion: As hypothesized, ISR resources were used for object discovery thus increasing the 
optimal LP objective function value. See Section 5.5.4 for a full discussion of this 
vignette's solution. 

• Contact Identification 

Hypothesis: Benefit to be gained from contact identification will cause a shift of ISR and 
combination resources to identification actions. 

Scenario:       Basic scenario with addition of 3 contacts with varying PMFs over object types. 

Conclusion: As hypothesized, ISR resources were used for contact identification thus 
increasing the optimal LP objective function value. See Section 5.5.5 for a full 
discussion of this vignette's solution. 

• Complete Targeting Cycle 

Hypothesis: Combining all portions of the targeting cycle will result in a balanced strategy that 
deals with areas of interest, contacts, targets, both regenerative and 
nonregenerative, and the potential for attrition. 

Scenario:       Basic scenario with the additions described in the previous four bullets. 
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Conclusion: As hypothesized, a balanced strategy was developed that dealt with the potential 
for attrition while still finding objects, identifying contacts, striking targets, and 
performing BDA. Modeling the complete targeting cycle problem provided 
marked improvement over solutions to the individual problems. See Section 5.5.6 
for a full discussion of this vignette's solution. 

5.2 Building a Contingency Plan from a POMDP Policy 

To illustrate the process described in Chapter 4, Section 4.5.3, we will use a policy 

generated by a target POMDP and generate three steps of the contingency plan associated with 

that policy given that the target starts in the live state. We begin with the value function for 

epoch T, which is the same as time step 1, as illustrated in Figure 5-2. We begin at belief 

state;?,, which is equal to 0 because we know the target is in the live state, and find that the 

optimal action is to use a Small Weapon aircraft with a GPS bomb in conjunction with a Large 

Sensor aircraft. This action is added to our contingency plan along with the associated 

probability of occurrence of 1 because we know the initial belief state. We then update ;?] to ;r[ 

based upon the transition probabilities of that action. 

Tiine Step One Policy 

- Smal_Weapon_GPS_LargE_Sensor 

- SniaD_Sensor 

- Smafl_Scnsor 

-Pause 

Figure 5-2: Time step one policy. We begin at 71^ and find that the optimal action at that belief state is to use the 

Small Weapon aircraft with a GPS bomb in conjunction with a Large Sensor aircraft. We then update TC^ to 71^ 
based upon the transition probabilities of that action. As a reminder, the belief state represents the probability that 

the target is dead. 
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Once we have updated our belief state to n[ we then move to epoch T-1, which is the 

same as time step 2.  Based upon a dead observation we would move to belief state n^ which 

again has an optimal action of using a Small Weapon aircraft with a GPS bomb in conjunction 

with a Large Sensor aircraft. If, however, we receive a live observation from the epoch T action, 

we would move to belief state n^ which has an optimal action of using only a Large Sensor 

aircraft. Figure 5-3 illustrates these updates. Also of note in Figure 5-3 is that while there is not 

much change in the shape of the optimal value function, the ISR action that dominates over the 

middle of the belief space has changed. These two optimal actions for epoch T-1 are added to our 

contingency plan along with the associated probabilities of occurrence, y^, as defined by 

equation (4.26) in Section 4.5.3. 

Time Step Two Policy 

-♦- SnBlLWeapon_Ca>S_Largc_Stnsor 
-3({-Largt.Sensor 
-■-Large.Stnsor 
-*-Pause 

Figure 5-3: Time step two policy. Based upon the updated belief state from time step 1 we move to either JI2  or 

^22 fi^pending upon if we receive a live or dead observation, respectively. From these updated belief states, we 

find the two optimal actions for these belief states and add them to our contingency plan. 

When we have found n^^ and n^ we can update them to 7^2^ and ^^ using the transition 

probabilities of their respective optimal actions. Figure 5-4 illustrates these updates. 
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Figure 5-4: Update ofTTj and 712^ to u'^ and Tt'.^^ based upon their respective optimal action transition 

probabilities. 

When we have calculated Tt'^^and n\^ we can move to time step 3, epoch T-2, and 

determine the four belief states to which we could possibly move. From n'^^ we could move to 

n-^ based upon a live observation and n^^ for a dead observation. Similarly, from ;r^ we could 

move to ;r, if we receive a live observation and n. if we receive a dead observation. Figure 

5-5 illustrates these updates as well as another change in the ISR action that dominates over the 

middle portion of the belief space. The optimal actions for these four belief states are added to 

the contingency plan along with their associated probabilities of occurrence. 
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Figure 5-5: Time step three policy. Belief state n\^ would be updated to JTy based upon a live observation and 

Tly^ for a dead observation.  We find the optimal actions for these belief states and add them to the contingency 

plan. Similarly, TT-^ would be updated to /Tj^ if we receive a live observation and ^Tj   if we receive a dead 

observation. The optimal actions for these belief states are also added to the contingency plan. 

Using the information gathered to this point, we can build the three step contingency plan 

based upon this POMDP policy, shown in Figure 5-6.   Note the branching upon observations 

that occurs.  Specifically, note that after two dead observations, a pause action is taken against 

the target but that even with two live observations, after two strikes, the contingency plan calls 

for an ISR action to better assess the state of the target. This illustrates the balancing between 

the probability of destruction and the reporting accuracy of the sensors.   The value of the 

probability of occurrence is included in the first belief state node for illustration purposes only. 

Values for subsequent nodes depend upon the optimal action for the first node. Refer to Chapter 

4, Section 4.5.3 for the use of these probabilities in calculating objective function and constraint 

coefficients. 
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7t, 
Small Weapon GPS 

Large Sensor 

Small Weapon GPS 
Large Sensor 

Large Sensor Action 

[ ""'^ 1 Small Combo Small Combo 
Action Action 

Figure 5-6: Three-step contingency plan generated from the three time steps of the POMDP shown above. Note the 
branching upon observations and specifically the fact that after two dead observations, a pause action is taken 

against the target. 

5.3 Metrics 

In determining the effectiveness of each variation and vignette, there are two main areas 

of interest: optimal objective function value and solution time. Interestingly, there is not 

necessarily a trade off between the two. While simply stopping the algorithm after a shorter time 

will decrease the optimal value attained, techniques such as <p-control and action control seek to 

reduce solution time while maintaining the same optimal value. In considering the optimal 

solution, we will look at the linear programming optimal solution, the integer programming 

optimal solution, and the gap between the two. The solution time for each vignette or variation 

is divided into four parts: the time taken to initialize the algorithm, time spent solving the master 

LPs, time spent solving the POMDP sub-problems, and the time spent in the branch-and-bound 

search for an integer solution. Also of interest is the number of iterations between the master LP 

and the POMDP sub-problems necessary for the algorithm to converge, which provides insight 

into how quickly the algorithm will converge, independent of the speed of the computer it is 

being run on. 
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5.4 Structural Variations 

The algorithms to solve the targeting cycle problem were implemented in Java on a 

computer with 384MB of RAM and a 1 GHZ Pentium III processor. Linear and integer 

programming problems were solved with XPRESS 2003C. 

Table 5-2 shows the preferred trends for the metrics we will be considering. We would 

like the LP and MIP optimal solutions to be as high as possible while we would like the gap 

between the LP and integer solutions, all parts of the solution time, and the number of iterations 

to be as low as possible. 

Optimal Solution Solution Times (sec.) Number of 
Iterations Variation LP MIP Gap Total Initialize LP POMDP MIP 

T T i i i i i i i 
Table 5-2: Preferred trends for metrics considered in targeting cycle problem structural variations and targeting 

cycle vignettes. 

5.4.1 Allowable POMDP Value Function Error 

Table 5-3 shows the metrics for various values of (p. The ^-control variation was 

implemented as discussed in Section 5.1.2. As expected, larger values of (p allow for much 

faster solutions with only minor degradation of the optimal solution. It is interesting to note the 

difference between objective function values for the first three cases. While the LP solutions are 

the same to the thousands place, the MIP solution for q> equal to 0.0001 is actually higher than 

for 0.00001 and 0.0000001. At the same time, however, the time necessary to achieve this 

solution drops by a factor of ten. Even when ^ is set to 1, the optimal solution is less than 1.5 

percent away from the optimal solution for the most restrictive case. 

0| jtimal Solution Solution Times (sec.) Number of 
Iterations Variation LP MIP Gap Total Initialize LP POMDP MIP 

<p=e 143.7388 143.7384 4.0429E-4 5364.215 0.22 4.824 5344.368 9.213 107 
<p=0.00001 143.7388 143.7385 3.0741E-4 1364.346 0.28 4.899 1349.695 4.861 109 
9=0.0001 143.7388 143.7386 1.9803E-4 520.837 0.24 4.962 507.412 4.287 108 
(p=0.001 143.7387 143.7375 0.0013 166.457 0.27 4.036 153.897 3.896 102 
9=0.01 143.7372 143.7339 0.0033 62.93 0.18 3.708 46.685 6.599 96 
9=0.1 143.6047 143.5888 0.016 28.581 0.20 1.984 15.171 6.83 74 
9=1 141.9067 141.8638 0.0429 11.136 0.23 0.28 5.628 2.404 40 

9 control 143.7388 143.7386 2.5468E-4 514.462 0.35 9.461 494.857 4.777 172 

Table 5-3: Metrics for different values of the POMDP error, ip, as well as tp-control. Note the decrease in the 
optimal solutions with looser tolerances but the much smaller solution times for the POMDPs. 

As expected, ^-control greatly reduced the solution time necessary for the optimal 

solution. In this case, successive values of (p were reduced by a factor of ten with only a slight 
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increase in the LP solution time due to the higher number of iterations that result from q)- 

control. 

Figure 5-7 graphically shows the effect of (p upon the solution time. The graph is done 

with logarithmic scales thus the linear relationship between solution time and the POMDP error 

tolerance, (p, indicate an exponential growth in solution time as ^ is reduced. Due to the 

reduction in solution times, with negligible impact upon the optimal solutions, we can 

confidently use higher values of (p, or, if ^-control is used, we can set the lower bound on (p 

higher than e. 

10000 

Solution Time vs. POI\/IDP Error Tolerance 
Logarithmic scale  

1 , ,— 

0.000001       0.00001 0.0001 0.001 0.01 

POMDP Error Tolerance 

0.1 

Figure 5-7: Solution time versus POMDP error tolerance on a logarithmic scale. Note that this graph is linear on a 
logarithmic scale thus is exponential on a normal scale. 

5.4.2 Action Control Update Intervals 
Table 5-4 shows the metrics for different action control update intervals as described in 

Chapter 4, Section 4.4.5. Reductions in solution times could vary depending upon how the 

interaction between epsilon control and action control are handled. In this implementation, we 

reset the actions for all objects if the stopping criteria are met but <p is not at its lower bound. 

The algorithm may then find actions that were not being considered that now improve the 

solution. Thus, action control updates occur regularly as the algorithm converges so updates 

might occur more often than specified. Before the algorithm terminates it is important to have (p 

at its lower bound and action control off. This will provide the same solution as the uncontrolled 

problem but will greatly reduce the time necessary to attain that solution. 
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As hypothesized, action control can decrease the solution time, with the lowest solution 

times in these tests being found with an update interval of 10. 

Optimal Solution Solution Times (sec.) Number of 
Iterations Variation LP MIP Gap Total Initialize LP POMDP MIP 

No Action Control 143.7388 143.7386 2.0363E-4 629.948 0.321 12.867 596.766 18.781 181 
2 143.7388 143.7379 8.9268E-4 581.137 0.25 8.935 541.624 29.237 159 
5 143.7388 143.7371 0.0017 682.113 0.699 11.944 657.515 8.96 184 
10 143.7388 143.7386 2.5468E-4 502.22 0.22 9.419 485.972 5.558 172 
15 143.7388 143.7375 0.0013 769.406 0.291 10.581 748.126 9.075 186 

Table 5-4: Metrics for different action control update intervals. 

5.4.3 Variations in Planning Horizon 

Table 5-5 shows the output from varied planning horizons. As originally thought, the 

solution times decreased significantly with shorter planning horizons. However, this does not 

affect the optimal solution as much as previously thought. Rather, the algorithm assigns most of 

the resources in the small number of times steps over which it has to plan rather than over a 

longer period of time. In the cases of T between 4 and 6, reusable assets such as aircraft and 

sensors were the most valuable. For T between 9 and 11, non-reusable assets such as weapons 

and aircraft attrition were tightly constrained. In the intermediate cases, the reusable and non- 

reusable assets were more equally used. The final four test cases, planning horizons between 12 

and 15, did not converge after three hours of run time so they were terminated. Even with 

horizons of 9, 10, and 11, with ^-control and action control, the solution times are prohibitive. 

While solving the problem over a sufficiently long horizon provides robustness against 

future events, too long of a horizon reduces the viability of such a formulation for use in real 

time. As computing power increases, longer horizons could be considered with the exact number 

of time steps being a judgment call for the operator. 

Figure 5-8 shows the relationship between planning horizon and solution time. While 

there is a definite increase in solution time as the planning horizon increases, the exponential 

growth that was in Figure 5-7 is not present. 

98 



Optimal Solution Solution Times (sec.) Number of 
Iterations Variation LP MIP Gap Total Initialize LP POMDP MIP 

T=4 142.2072 142.1941 0.0131 25.849 0.34 2.795 18.116 1.803 111 

T=5 142.7058 142.7046 0.0012 52.047 0.23 2.953 44.538 2.724 125 

T=6 143.1009 143.1009 6.8979E-6 94.008 0.25 4.039 85.893 2.022 132 

T=7 143.445 143.4446 3.7593E-4 332.628 0.18 5.837 318.179 4.426 142 

T=8 143.7388 143.7386 2.5468E-4 534.425 0.15 9.333 504.31 9.879 172 

T=9 144.0064 144.0064 7.5608E-6 1449.206 0.26 15.683 1412.373 11.419 210 

T=10 144.2359 144.2359 1.3585E-6 1293.928 0.31 27.599 1254.822 5.218 236 

T=ll 144.4492 144.4492 4.4846E-6 8548.453 0.3 46.642 8479.876 11.689 288 

Table 5-5: Metrics for different planning horizons, T. Note that as the planning horizon increases, the solution time 
also increases. In addition to solution time, the memory usage also increases. 

Solution Time vs. Planning Horizon 
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Figure 5-8: Solution time versus planning horizon. As hypothesized, the solution 

time increases with the planning horizon. 

5.4.4 Policy versus Dual Initialization 
Table 5-6 lists the metrics for policy and dual initialization using the basic scenario. 

While both solution techniques attain the same optimal solution value, the total solution time is 

quite different for the two techniques. This time difference is not found in the time spent 

actually initializing the algorithm. Rather, the dual initialization initiates the algorithm in such a 

manner that the initial dual values are closer to the final dual values. Thus, the POMDPs 

produce columns that are used in the optimal solution in earlier iterations. This accounts for the 

reduction in the number of iterations where, in the case of the LP/POMDP problem formulation, 

one iteration can add a sizeable amount of time. While the results below are only indicative of 
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one problem instance, it indicates that the dual initialization technique should be considered 

when implementing the LP/POMDP formulation and associated solution algorithm. 

Optimal Solution Solution Times (sec.) Number of 
Iterations Variation LP MIP Gap Total Initialize LP POMDP MIP 

Policy 143.7388 143.738 8.676E-4 715.177 0.501 15.576 685.287 8.201 177 
Dual 143.7388 143.738 2.5468E-4 523.759 0.291 9.552 501.43 6.735 172 

Table 5-6: Metrics for different initialization techniques. Note that the optimal solutions are the same but policy 
initialization took more than 3 minutes longer to solve and required 5 additional iterations. 

5.4.5 IP/MIP Formulations 

As discussed in Chapter 4, Section 4.4.4, there are three different integer-programming 

formulations of the targeting cycle problem that can be used to find an executable solution. The 

first formulation forces all decision variables to be binary. The second, as proposed by Yost 

[37], forces those contingency plans with a first action other than pause to be binary and allows 

the contingency plans with pause first action to be combined as long as the total usage equals 

one. Our proposed formulation of allowing contingency plans to be combined, as long as their 

initial actions are the same, also provides an executable solution due to the rolling horizon 

planning framework in which we are working. 

Table 5-7 lists the metrics for the three formulations. As expected, the optimal LP value, 

the initialization time, the LP solution time, the POMDP solution time, and the number of 

iterations are essentially the same for all three formulations. The total solution times are quite 

different for the three formulations. The branch-and-bound searches for the first and second 

formulations were stopped after 500 seconds. In initial trials, both were allowed to run for three 

hours without the optimal integer solution being found. Also of interest is the fact that the LP- 

IP/MIP solution gap values for the first two are still relatively small. This indicates that the 

algorithms could be stopped even earlier with little effect upon the solution. Rather than 

stopping the branch-and-bound search after 500 seconds, it could be stopped after an integer 

solution has been found that is sufficiently close to the LP optimal solution which is an upper 

bound on the MIP optimal solution. However, even if an integer solution is found immediately, 

the third formulation finds an optimal solution in a matter of second. Unless a problem instance 

dictates a different integer programming formulation, the third formulation has good 

performance characteristics. 
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Optimal Solution Solution Times (sec.) Number of 
Iterations Variation LP IP/MIP Gap Total Initialize LP POMDP MIP 

All Binary 143.7388 143.7345 0.0044 1012.812 0.29 9.202 491.814 510.233 172 

First Action Pause 143.7388 143.7322 0.0066 999.738 0.22 9.289 481.965 507.221 172 

First Action Same 143.7388 143.7386 2.5468E-4 506.484 0.281 9.307 489.575 5.919 172 

Table 5-7: Metrics for different MIP formulations. Note that the optimal LP solutions are the exact same but that 
the MIP solutions are different. The all-binary and first action pause branch-and-bound searches were stopped 

after 500 seconds. The optimal integer solution was not found for either formulation within 3 hours. 

5.5  Targeting Cycle Vignettes 

After considering the results from the structural tests above, we implement our findings 

in the targeting cycle vignettes. Specifically, we use ^-control but rather than reducing <p until 

it has reached the numeric tolerance e, we reduce it until it reaches 0.001. This slight 

modification greatly reduces solution times while having little impact upon the optimal solution 

generated. While the target POMDPs are solved much faster, this reduction in solution time is 

offset by the addition of higher dimensional area of interest and contact POMDPs that must be 

solved with Incremental Pruning, see Chapter 4, Section 4.5.2. Table 5-8 shows the metrics for 

the six targeting cycle vignettes. Of interest are the slightly lower objective function values for 

the second and third vignettes. The third case is not as low as might be expected due to the 

relative availability of ISR assets that can reduce the effectiveness of antiaircraft threats and the 

relatively high allowable attrition. Note, however, that the solution times for these two vignettes 

increase over that of the basic scenario. 

As expected, the addition of contacts and areas of interest increases the optimal objective 

function value due to the value gained by discovering objects and identifying contacts. Note, 

however, that the time necessary to solve the POMDP sub-problems greatly increases as is 

evident in the increased POMDP solution times present in the final three vignettes. 

While the metrics shown above give a good overview of the LP/POMDP hybrid 

formulation, a closer look at the selected contingency plans and the resulting resource allocations 

provide insight into the complex interactions that the LP/POMDP formulation of the targeting 

cycle problem accounts for. Also, it will show how the LP/POMDP formulation improves upon 

the commonly used contingency plans, such as shoot-look-shoot for a target. 
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Optimal Solution Solution Times (sec.) Number of 
Iterations Variation LP MIP Gap Total Initialize LP POMDP MIP 

Basic 143.7387 143.7366 0.0021 111.607 0.261 6.522 86.645 16.806 153 

■ 

Basic with 
Regenerative 

Targets 
142.1012 142.1012 4.878E-5 145.163 0.3 11.275 127.037 5.078 209 

Antiaircraft 
Threats 143.7386 143.7364 0.0022 119.272 0.261 12.74 95.885 8.844 195 

Object 
Discovery 200.1857 200.1851 5.723E-4 1607.296 0.291 8.258 1591.805 5.209 173 

Contact 
Identification 155.9736 155.9734 1.565E-4 888.255 0.3 7.85 873.835 5.069 167 

Full Targeting 
Cycle Problem 229.6137 229.6137 1.768E-5 3324.087 0.491 12.763 3302.278 5.839 188 

Table 5-8: Metrics for targeting cycle vignettes.  While the first three vignettes have similar solution times and 
objective functions, the addition of contacts and areas of interest increase the solution time but also increases the 

objective junction values. 

5.5.1 Basic Scenario Solution Analysis 

One manner in which to see the interactions between different targets is to see how their 

expected belief state changes over the planning horizon. Figure 5-9 shows this progression for 

seven of the twelve targets considered in the basic scenario. To calculate the data for such a 

graph we define O^ as the set of belief state nodes for contingency plan o at time step t, n^ as 

the belief state for belief state node ^, and 3^^ as the probability of occurrence for belief state 

node 0. Thus, the expected belief state for target / at time step t. En.,,, is shown in (5.1). 

E^i.=llllxoi^,y,- (5.1) 

These £;r„ values are graphed in Figure 5-9. Note that high value targets such as the 

Surface-to-Surface missiles (SSM) are struck immediately with highly effective actions but that 

low value targets such as the supply truck are not even considered until later in the planning 

horizon. Also of interest are the portions of the graph such as that for the Mobile HQ 1 during 

time steps 2 and 3. The relative flatness of this portion of the graph indicates that the target is 

not being attacked. However, it is struck in time step 1 and then again in time step 4. During 

this pause, reusable assets such as aircraft and sensors are in use against other targets but then 
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become available for use against the Mobile HQ later on. Finally, note the steady progression of 

strikes against the C2 Facility, which is a hardened target thus requires a large number of strikes 

to destroy. 
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Figure 5-9: Belief state progression over the time steps for a selected contingency plan. Note that high value targets 
such as the SSM are struck immediately and continually checked. Also note the flat portion of the Mobile HQ 1 line 

in which only pause actions are taken against the target thus not changing its belief state. 

To reach the belief states shown above, the master LP assigns resources to be used 

against each target. In the basic scenario, the most highly constrained resources were the 

weapons, especially the GPS bombs. The large sensor aircraft were the next most highly 

constrained resource. 

At each iteration of the algorithm, the POMDP sub-problems provide improving columns 

to the master LP. The master LP considers these new columns and finds a new optimal solution. 

This new optimal solution might not have a higher objective function value. Rather, the master 

LP might shift the use of resources between different contingency plans, which changes the dual 

values for some or all of the resource constraints. If we were to stop the algorithm when the 

objective function value does not change, we might terminate the algorithm long before the 

optimal solution is found. This phenomenon can be seen in Figure 5-10 which shows the 

objective function value for the 153 iterations necessary to solve the basic scenario. Note the 

horizontal sections between iterations 4 and 5 and 12 and 13. If the algorithm were terminated at 
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the first of these sections, we would be a full 26 percent below optimal and at the second, 13 

percent. 

Ob|ective Function Convergence 

Figure 5-10: Objective Junction convergence of the LPfor the basic scenario. Of interest are the horizontal sections 
between iterations 4 and 5 and 12 and 13 as well as the slow tail convergence. 

Figure 5-10 also shows the slow tail convergence of the algorithm. While 99.5 percent 

of the optimal value is attained in the first 45 iterations, the remaining 108 iterations only 

provide a 0.5 percent improvement. This indicates that less restrictive stopping criteria might 

provide a solution that is sufficiently close to optimal in a significantly shorter time. 

Contingency plans selected under the basic scenario show interesting behaviors exhibited 

by the LP/POMDP formulation. In addition to branching upon observations, as illustrated in 

Figure 5-6, some contingency plans act upon a target, pause for a number of time steps, and then 

reengage the target, as illustrated by the contingency plans represented in Figure 5-9. This is 

indicative of the balancing of resource usage between different targets, which, in the end, 

provides for a better solution. Such contingency plans, however, are not intuitively obvious to 

military planners. Rather, a human would think that we should strike a target, and continue 

acting upon it, be it with strike, ISR, or combination assets, until we have established that the 

target is destroyed. The solution to the basic scenario indicates that it is important to address a 

range of targets, even if specific targets are not fully transitioned to the dead state. 
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5.5.2 Basic Scenario with Regenerative Targets Solution Analysis 

As expected, the basic scenario with regenerative targets has some of the same properties 

as the basic scenario. Namely, the objective function convergence shown in Figure 5-10 is also 

present in this vignette. In addition, the contingency plans selected in the integer solution for 

nonregenerative targets have similar characteristics to those in Section 5.5.1. For the 

regenerative targets, however, there are marked differences. For one, if the regenerative target is 

in the live state initially, the algorithm will pause until the last few time steps and then use highly 

effective resources against the target. This makes sense as the target cannot regenerate if it is in 

the live state so using resources to move it to the dead state early on does not provide benefit. 

However, the interesting case arises when a regenerative target has a belief state near 0.5. In that 

case, the selected contingency plans continually use ISR assets to observe the target. If a live 

observation is received, strike resources are assigned to destroy the target. If a dead observation 

is received, the next action is either a pause or another ISR look. This behavior is also 

contingent upon the probability of regeneration for a target. Regenerative targets that regenerate 

with a lower probability are observed less often than those with a regeneration probability close 

to 0.5. If, however, a regenerative target has a probability of regeneration close to 1, it is treated 

much like a target that begins in the live state in that it is mostly ignored until the final few time 

steps when strong measures are taken to destroy the target. 

5.5.3 Basic Scenario with Antiaircraft Threats Solution Analysis 

As stated in Section 5.5.1 the available weapons were the most constraining resource in 

the basic scenario while ISR assets were not as constraining. Thus, the addition of antiaircraft 

threats did not affect the optimal solution as much as we might have expected. We do observe a 

change in the selected contingency plans in that there are few contingency plans that use strike 

only actions. Rather, the combination platform, or actions that combine strike and ISR assets are 

used extensively. In the end, however, the result is almost the same as the basic scenario. If the 

number of ISR assets or the allowable attrition were more constrained, we would see more 

conservative strategies that do not attain as high of expected belief states as the less constrained 

problem. 
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5.5.4 Basic Scenario with Object Discovery Solution Analysis 

As hypothesized, the addition of areas of interest in which objects can be discovered 

yields a higher optimal objective function value with the same tail convergence properties that 

were present in the basic scenario. Figure 5-11 illustrates these properties. 
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Figure 5-11: Objective function convergence of the LPfor the basic scenario with object discovery. Again note the 
horizontal portions of the graph indicating small or no change in the objective function associated with changes in 

the duals. Also, we see the slow tail convergence property that was present in the basic scenario. 

Also, as we had hypothesized, ISR assets are more highly constrained in this vignette 

than in the basic scenario.  While the weapon constraints still have the highest dual values, the 

duals for the large sensor aircraft increase by 20 percent or more.  We also see similar but less 

drastic gains in the small sensor and combination aircraft because of their lower discovery 

probabilities. The higher value of these ISR resources drives the generation of contingency plans 

that share them across different objects. Figure 5-12 illustrates a contingency plan for an ai^a of 

interest. Note the pauses in time steps 4 through 7. In these time steps, the ISR assets that were 

being used in this area of interest are being used for other tasks, such as BDA for a target or 

discovery of objects in another area of interest. 
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Figure 5-12: Contingency plan for an area of interest. Note the pauses in the middle where ISR assets are used 
elsewhere but in the last time step, the best sensor available is used. 

5.5.5 Basic Scenario with Contact Identification Solution Analysis 

Figure 5-13 again illustrates the properties seen in the previous four vignettes, namely 

slow tail convergence and flat portions of the graph indicating changes in the dual values but 

with little to no change in the objective function value. The increase in the objective function of 

approximately 12 is about what we would expect for the three contacts that were considered. 

Due to the large size of contact contingency plans, for the three contacts considered there were 

five possible target types, we will simply describe the behaviors exhibited rather than trying to 

graphically show them. One behavior of interest is the continued presence of pauses in the 

middle of contingency plans as resources are used against other objects. 
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Figure 5-13: Objective function convergence of the LPfor the basic scenario with contact identification. Again we 
see the slow tail convergence and iterations in which there is only changes in the dual values, not in the objective 

function. 
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In conjunction with this characteristic, the contingency plans that are generated and 

selected choose different actions for different observations at the same time step. For example, 

in one case when a 'Not a Target" observations is received, the contingency plan indicates a 

pause but when any other observation is received at that same time step, it uses an ISR asset to 

gather more information on the contact. 

In general, as in the previous vignettes, ISR assets are more constraining than in the basic 

scenario. While this drives somewhat lower expected final belief states for the targets, the 

benefit gained by contact identification outweighs that loss. Again we see the power of the 

LP/POMDP formulation which carefully balances the use of resources between a myriad of 

tasks. 

5.5.6 Full Targeting Cycle Problem 

When regenerative targets, antiaircraft threats, object discovery, and contact 

identification are all added into the basic scenario we have a higher fidelity representation of the 

real-worid targeting cycle problem. Solving such a problem is not trivial, however. Even with 

the use of action control for all of the POMDPs and ^-control for the target POMDPs, the full 

targeting cycle problem with 2 areas of interest, 3 contacts, and 12 targets took almost an hour to 

solve. As expected, the majority of this time is spent solving the POMDP sub-problems. As 

illustrated in Table 5-8, each addition to the basic problem added to the time necessary to solve 

the problem. 

Of interest, however, is that the objective function for the full targeting cycle problem is 

not simply the addition of the individual contributions. The actual objective function value, 

229.6, is over 8 percent higher than the sum of the individual contributions, 210.8, of which the 

basic scenario provides 143.7, regenerative targets reduces this by 1.6 but the addition of areas of 

interest and contacts add 56.4 and 12.23 respectively. This provides verification that 

consideration of the full targeting cycle problem rather than the individual parts yields a better 

solution. This improvement in the objective function value comes at a computational cost 

similar to the growth in the objective function value. The basic problem took 111.6 seconds to 

solve. The addition of regenerative targets, antiaircraft threats, object discovery, and contact 

identification added 33.6 seconds, 7.7 seconds, 1495.7 seconds, and 776.6 seconds respectively. 

This would seem to indicate that the full targeting cycle problem could be solved in 2425.2 
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seconds. This, however is not the case. Instead, the full targeting cycle problem took 30 percent 

longer, 3324.1 seconds. Figure 5-14 again shows characteristics of the objective function value 

converge similar to all of the previous vignettes. Of interest is the definite staircase effect that is 

present in this solution. Five distinct levels are present at which the objective function levels out 

for a few iterations and then continues to climb. In some cases this climb is dramatic, such as 

that in iterations 11 and 12, but in other cases it is gradual, such as iterations 20 through 23. 

Objective Function Convergence 

225 '~" 

Figure 5-14: Objective function convergence of the LPfor the full targeting cycle problem. We again see level 
portions of the graph and slow tail convergence. 

Furthermore, we have the same constraining resources as previous discussed, but in this 

case the ISR assets are even more constraining as they are being used to perform BDA, jam 

antiaircraft threats, perform object discovery, and identify contacts. Contingency plans selected 

in this problem instance are similar to those discussed before, but with even more pauses waiting 

for resource availability due mostly to the large demand for ISR assets. 

5.6 Chapter Summary 

We have explored the LP/POMDP formulation, algorithm, and solutions to the targeting 

cycle problem. Many different structural variations and targeting cycle vignettes can be 

considered in exploring the behavior of this solution technique.  <p and action control provide for 
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significantly faster solution times while attaining the same optimal solution as the uncontrolled 

problems. These improvements become important as we add higher dimensional POMDPs for 

object discovery and contact identification, which take a large amount of time to solve and to 

generate contingency plans. In this work we consider targeting cycle problems with 2 areas of 

interest and 3 contacts due to memory and computing power limitations. Larger problems with 

more areas of interest and contacts would better serve the operational community but would 

require fast machines with a large amount of memory or parallel processing of POMDP sub- 

problems. In general, however, the LP/POMDP formulation of the targeting cycle problem has 

much to offer the operational community such as the non-intuitive act-pause-act contingency 

plans and the ability to balance resources among a large number of targets, contacts, and areas of 

interest. 
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6 Summary and Future Work 
This research has focused upon the application of optimization techniques to aid in the 

joint targeting cycle. Conventional modeling approaches have considered either resource 

allocation or policy development which do not adequately address the complexities of the 

targeting cycle problem. These shortcomings can be addressed by expanding the LP/POMDP 

framework proposed by Yost [37] to include object discovery, contact identification, and an 

intelligent adversary. This chapter serves as a sunmiary of the work presented in this thesis, and 

we present suggestions for future research. 

6.1  Thesis Summary 

We introduced modeling and algorithmic changes to an existing methodology to improve the 

realism and computational aspects of the model and the associated solution algorithm. We enhanced this 

approach by 1) incorporating the discovery and identification of targets, 2) handling regenerative 

targets, and 3) accounting for an intelligent adversary. These aspects of the targeting cycle problem 

have not been developed in eariier works and this thesis represents the first piece of work addressing 

these issues. In addition to a more realistic model, we also enhanced the solution algorithm by proposing 

a new initialization technique as well as two integer-programming formulations. We ran experiments 

based upon a basic scenario, structural variations upon that scenario, and expanded targeting vignettes and 

investigated computational and qualitative characteristics of these solutions. 
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Chapter 1 lays the foundation and motivation for this research. We describe Air 

Operations Centers and the part they have to play in planning the air portion of a war. The 

battlefield is an ever-changing environment in which military planners must be able to respond 

quickly to enemy actions and provide the decision makers with plans to achieve military 

objectives. This is done through the targeting cycle, an implementation of Boyd's OODA loop. 

In Chapter 2, we describe the targeting cycle the military uses to find, locate, and 

destroy the assets of an opposing military. We define the scope of this research to be the 

creation and selection of contingency plans with which to accomplish these three tasks using a 

limited amount of aircraft, weapons, and sensors. In this chapter, we discuss, in depth, the pre- 

strike ISR, strike, and post-strike ISR components of the targeting cycle. We also discuss the 

interactions between these phases which necessitates an integrated planning process. 

In Chapter 3, we present the two primary modeling methods that have been applied to 

the targeting cycle problem: resource allocation and policy development. Resource allocation 

methods, namely mathematical programming formulations, are able to deal with large, complex 

planning problems but are not tractable with the large number of contingency plans possible in 

the targeting cycle problem. Policy development methods focus on resource costs rather than 

resource constraints and thus are unable to directly solve the targeting cycle problem. This 

suggests the use of column generation with a master level linear programming problem and 

policy development sub-problems, in this case, partially observable Markov decision processes. 

Therefore, we further explain the POMDP model and its solution techniques. Finally, we present 

the POMDP formulations for object discovery in an area of interest, contact identification, and 

targeting of identified contacts. 

Using these POMDPs, we formulate the complete targeting cycle problem in Chapter 4. 

We also present a new initialization technique for the algorithm as well the assumptions we 

make about mobile contacts, regenerative targets, problem data, and executable integer solutions. 

Due to initial test results, and the findings of Yost [37], we also present two methods to speed up 

the POMDP sub-problems: (p -control and action control. Having provided the formulation, we 

discuss the techniques with which we will solve the targeting cycle problem. The Linear Support 

algorithm, as proposed by Cheng [13] is used to solve the two-state target POMDPs, while the 

Incremental Pruning algorithm [11] is used to solve area of interest and contact POMDPs. The 

master linear program is solved using the simplex method.   We also discuss the interactions 

112 



between these two levels. While the dual information passed from the LP to the POMDPs is 

relatively straightforward, the construction of contingency plans based upon POMDP policies is 

much more difficult and thus is discussed at length. 

We present scenarios solved with the LP/POMDP formulation in Chapter 5. These 

scenarios vary computational characteristics of the decomposition as well as the targeting cycle 

components that are included. We present the results of these tests as well as discuss some of the 

qualitative properties of the solutions. To aid the understanding of contingency plan 

construction, we provide a target POMDP policy and build three steps of the contingency plan 

associated with the policy. 

In conclusion, the purpose of this thesis is to demonstrate the ability of an LP/POMDP 

formulation, and its associated solution algorithm, to aid in the targeting cycle process. While 

solution times for the complete targeting cycle problem are somewhat higher than we would like, 

they are still much faster and less labor intensive than the current methods employed in AOCs. 

Also, this optimization approach helps account for the system-wide impact of decisions made 

about individual objects leading to a globally optimal solution rather than a conglomeration of 

locally optimal solutions. This phenomenon is also present in the fact that modeling the 

complete targeting cycle problem yields higher value than a combination of models of the 

individual aspects of the targeting cycle. However, human interaction is needed if this approach 

were to be implemented in an operational setting. Post-implementation evaluation of selected 

contingency plans by human operators can improve the solutions provided. 

6.2 Future Work 

In this section we provide suggests for future research in applying the LP/POMDP 

formulation to the targeting cycle problem. 

MOVEMENT BETWEEN AREAS OF INTEREST 

Due to our independence assumption, movement of objects between areas of interest is 

not considered. These movements are a realistic part of the modem battlefield and can provide 

valuable information about military concentrations and enemy intent. 

DISCOVERIES AS OBSERVATION INPUTS FOR CONTINGENCY PLAN GENERATION 

As described in Chapter 3, Section 3.1, we do not consider the number of discoveries in 

an area of interest a separate indicator of the actual number of objects in that area. Inclusion of 
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discoveries as an observation would better model an intelligent adversary, one who would group 

military assets for mutual protection, as well as account for errors in intelligence preparation of 

the battlefield data. 

PARALLEL SOLUTIONS TO POMDPS 

Looking at the results in Chapter 5, we see that the largest portion of time is spent 

solving the POMDP sub-problems. These problems, however, are independent of each other. 

The connection between them is made in the resource allocations of the master LP. Thus, once 

the master LP has been solved and the duals calculated, the POMDP sub-problems can be solved 

in parallel. This will reduce solution times while providing the same level of optimality. 

Especially of interest is solving the higher dimensional area of interest and contact POMDPs, 

which require long solution times compared to the two dimensional target POMDPs. 

APPROXIMATE SOLUTIONS FOR AREA OF INTEREST AND CONTACT POMDPs 

As discussed in Chapter 4, finding optimal solutions to the POMDP sub-problems is not 

as crucial in the initial iterations of the LP/POMDP algorithm as it is in the later iterations. This, 

in conjunction with the fact that the area of interest and contact POMDPs take a long time to 

solve suggest a method similar to <p-control for those POMDPs. As proposed by Yost (1998) 

we could use grid-based POMDP solution algorithms to solve such POMDPs in the preliminary 

iterations of the algorithm. After switching criteria have been met, we would then solve these 

POMDPs with incremental pruning or another exact algorithm. Implementation of a grid-based 

method and the associated switching criterion could provide improvement in solution times thus 

allowing the LP/POMDP formulation to be used in real-time planning. 

COMPARISON WITH OTHER TECHNIQUES TO SOLVE THE TARGETING CYCLE PROBLEM 

While tlie solutions to the targeting cycle problem generated by the LP/POMDP 

formulation are valuable, contrasting this approach with other techniques would provide valuable 

insight into the strengths and weaknesses of each method. Metrics such as value attained and 

solution time are of interest as are the qualitative characteristics of the solutions generated. 

VISUALIZATIONS OF SOLUTIONS 

An important extension of this work would be to provide intuitive visualizations of the 

solutions generated, to include representations for contact contingency plans and resource usage. 

Such work would allow battlefield commanders to better utilize this optimization technology. 
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Appendix A: Formulations 
This appendix serves as a reference for the five formulations used in this thesis.   We 

begin with the LP formulations and then list the three POMDP formulations. 

A.l   Set Definitions and Common Data 

Aircraft types: aeA 
Weapons types: we W 
ISR sensor types: beB 
Object set: iel 
Area of interest set: Ad 
Contact set: Wcl 
Target set: Tcl 
Admissible contingency plans for object /: oe 0,- 
Contact / possible types: ^e H, 
States: 56 5 
Allov/able actions for object /: w^^^i 
Possible observations for object i: 0E 0, 
Horizon: T 
Time period: t£Z^<T 
Epoch: kEZ*<T 

A.2   Master LP 

• Input Data 
Average value of objects In area of Interest /: EVALi 
Value of identifying contact i as type ^ given that It Is of type ^': IDVAL^^i 
Value of target /: VALi 
Value of identifying contact / as type | given that It Is of type ^': IDVAL^^-i 
Number of aircraft of type a available at time t: NAAat 
Number of ISR sensors of type b available at time t: ISRbt 
Weapons availability of type w: WPNw 
Maximum allov/able attrition of aircraft type a: AAAXATTAa 
Belief that contact / is of type ^: PT^j 
Belief that target i is dead: PDi 

• Contingency Plan Data 
Expected number of aircraft type a needed to prosecute contingency plan o 

against object / in time period t: NAaoit 
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• 

• 

Expected number of weapon type w needed to prosecute contingency plan o 
against object /: WEwoi 

Expected number of ISR sensors b needed to prosecute contingency plan o 
against object / in time period t: LKSboit 

Expected attrition for aircraft type a under contingency plan o against object /: 
ATTAaoi 

Expected belief that target / is dead after applying contingency plan o: EDo,- 
Probability of declaring contact ; as type 4 after applying contingency plan o: 

PDEC^oi 
Expected number of discoveries in area of interest i under contingency plan o* 

EDISo, 

Decision Variable 
Apply contingency plan o to object /: Xoi 

Objective Function 

max X X EVAL, EDIS, x, + ^ I Z S PDEqoi IDVAL,,, FT,, x, + 
16-4 o^O^ ieU OEO, feE; I'eEi 

2EVAL,(ED,-PD0^„, 

• Constraints {Dual Information} 

ILlL^^ouXoi^NAA^,   ^a,t {ada,} 

ZZ^^.«A/^^^^.   Vw {Wdw} 
(6/  OEOi 

Y^Y.^TT\oXoi^MAXATTA„   \fa {ania} 
»E/ oeO; 

Z^./=l  ^' {tdi} 

0<x„,.^l  VieI,oeO, 

A.3   Dual Initialization LP 

• Input Data 
Current belief that area ; is in state s: PNs, 
Weighting factor between strike and BDA actions for targets: A 

• Decision Variables 
Proportion of action (/to apply to object /: jc, 
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Objective Function 

max5] J] J^EVALj PDIS,!' PN,; \s\x^, + 

2 2 VAL,[(>l[l-PDj5r,) + (l-i)([l-PD,]0r^+PD,a-^)]^„. 

Constraints {Dual Information} 

2;X^^^^'^^X.^'^^«i   Va {ada,} 

IE/ »reM'; 

fe/ v^eY, 

0<X^,.<1   V/6/, ^€4^, 

A.4   POMDP Models 

A.4.1     Area of Interest POMDP Input Data 

S={0, 1, 2,...} 
e ={0,1,2,...} 
Probability action y/ will discovery an object when applied to area i: PDISf 
Probability of attrition of aircraft type a under action yr applied to area i: PA^ 
Average value of objects in area ;: AVGVALj 
Cost of action ij/ at epoch k applied to area ;': Cl 

It is important to note that the discovery probability, PDj^, is for each object in area i, 

independent of the other objects in area i. 

A.4.2     Contact POMDP Input Data 

s=s.. 
0=H. 
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Probability contact i will evade when action i// is applied: EVj*^ 
Probability of receiving observation 0 when action i// is applied to contact ; 

when it is in state s: Of 

Probability of attrition of aircraft type a under action y/ applied to contact /: 

PA: 

Value of possible type ^ for contact;: AVGVAL^ 

Cost of action i^ at epoch k applied to contact /: C^^ 

If a contact evades, it is assumed to move to the "Not a target" state and thus is 

essentially lost. It is assumed that the contact will not evade if a "Pause" action is taken. The 

action list for contacts includes "Declare" actions that indicate a level of certainty that the 

contact is of a certain type. It is from these "Declare" actions that value is attained. Further 

explanation of the "Declare" actions can be found in Chapter 4, Section 4.2. 

A.4.3     Target POMDP Input Data 

S={Live, Dead} 
0 ={Live, Dead} 
Probability of kill for action ij/ applied to target /: ff^ 

Probability of receiving observation 6 when action y/ is applied to target ; 
when it is in state s: Of 

Probability of attrition of aircraft type a under action y/ applied to target /: 

Probability of target ? moving from dead state to live state due to repair when 
action y/ is applied: ^"^^ 

Value of target /: VALj 

Cost of action y/ at epoch k applied to target /: C^ 

The repair probability, 5^^, is assumed to be zero for relocatable targets. 
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Appendix B: Linear Support and 

Incremental Pruning Algorithms 
In Chapter 3, Section 3.3.2 we gave brief descriptions of several POMDP solution 

algorithms. Our use of both Linear Support and Incremental Pruning algorithms requires an 

understanding of the mechanisms behind these algorithms and the idiosyncrasies of 

implementing them. While this description takes an implementation slant, the reader is referred 

to Cheng [13], Zhang and Liu [38], and Cassandra, Littman, and Zhang [11] for full theoretical 

development of these two algorithms. 

Both algorithms follow the general, finite horizon framework as shown in Figure B-1. 

What distinguishes them is the method by which the dynamic programming update is performed. 

The Linear Support algorithm is a constructive method, while Incremental Pruning is a hybrid 

between the constructive and enumerative methods. 

Initialize with Final Epoch 
containing Alpha Vector 

constructed from Terminal 
Values 

T: 

Perform Dynamic 
Programming Update 

Current Epoch < 
Horizon 

Check Current Epoch 

Current Epoch = 
Horizon 

1 
Return Policy 

Figure B-1: General, finite horizon. POMDP algorithm firamework 

B.l    Linear Support Algorithm 

To explain the linear support algorithm, a simple, two-state example is used.  We assume 

that the following data is given: a value function over the belief space 7t for the previous epoch 
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(^k-i(^)) ^^^ 3 set of allowable actions for object i (I/TQ^'.) with associated costs/rewards 

(r*'), transition probabilities (S^^.), and observation probabilities (Cf^). We suppress the i in the 

final three quantities, as well as for S, the set of states for object /, for ease of notation. Further, 

we define P to be the set of extreme points that need to be checked. Using the previous epoch 

and the action set, we will construct a value function for epoch k. This is done via the following 

algorithm that is illustrated in Figure B -2. 

1. Initialize V with the extreme points of the belief space. 
2. Find the alpha vectors for the points in V, store and mark them in V^ (;r), and 

clear V. 
3. If there are no marked alpha vectors in V^[n), go to 6. 

4. Selected a marked alpha vector from V^ (n).  Find the selected alpha vector's 
extreme points at which it intersects |S|-1 other alpha vectors and add those 
points to V. 

5. Check the error between the true value function and the current approximation 
for the points in V. Generate the optimal alpha vectors for the points with an 
error larger than (p. Add and mark them in V;^(;r). Unmark current alpha 
vector and clear V. Go to 3. 

6. Vj {n) is complete value function for epoch k with maximum error less than or 
equal to (p. 

Generate alpha vectors for 
extreme points of belief 

space and mark them 

Remove a marked vector from 
V^(7i), generate extreme points and |—i 

store them in V 

Check value function 
error for all points in V 

Error >q)—' Error <<p- 

Generate alpha vector, add it 
to V^(jt) and mark it Do not generate alpha vector — 

Figure B -2: Linear Support Algorithm DP update 
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This algorithm can be split up into three procedures: extreme point enumeration, alpha 

vector generation, and error checking. 

B.1.1     Extreme Point Enumeration 

While easy conceptually, extreme point enumeration is difficult in higher dimensions. In 

a two state problem, with a two dimensional value function, we simply find the two alpha vectors 

that were generated for belief states that most closely encompass the belief state for which the 

selected alpha vector was generated. Finding intersections of the selected alpha vector, a^, with 

each of these alpha vectors is trivial and can be found using the following equation in which 

^inteisect '^ ^ scalar because we are dealing with a two state problem. 

'"'^'^'    a,{k,l)-a,{k,0)-aj{k,l) + aj{k,0)' 

This process becomes much more difficult in three dimensions. A closed form equation 

such as (B.l) could be derived for finding the intersection of three alpha vectors. However, 

determining which two alpha vectors to use in conjunction with Oi is not inconsequential. It thus 

becomes necessary to use an algorithm from computational geometry such as the ones described 

by Mattheiss [28] or Mattheiss and Rubin [29]. These algorithms search over a defined 

polyhedron and return all of the extreme points. To do this, most algorithms set up and solve a 

fairly complex linear programming problem. Polynomial time deterministic algorithms are 

available to solve such a problem [8]. The necessity to do such calculations, however, somewhat 

diminishes the original intention for the Linear Support algorithm "to develop an algorithm 

which does not require complicated constraint sets" [13]. 

B.1.2     Error Checking 

Once we have found the extreme points that need to be considered for a, we must check 

the error between the true value function and the current approximation. This should be done 

even if we are implementing linear support as an exact algorithm so that we do not expend 

computational resources generating the optimal alpha vector for a belief state at which we 

already have the optimal alpha vector.  To find the error between the optimal value, val^ [TT) , 
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and the current approximation, val^ [TT) , at a belief state ;r we consider the difference between 

(B.2) and (B.3). 

va/;(;r) = niax  X';X^) + Z (B.2) 

vfl/. (;r)=max{« •;r|. (B.3) 

If this difference is less than or equal to the error tolerance, <p, then this point can be 

ignored. However, if the calculated error is larger than the error tolerance, then we must 

generate the optimal alpha vector for the belief state ^i„,e^,. 

B.1.3     Alpha Vector Generation 

As described in Chapter 3, Section 3.3.2.1, we use (B.4) and (B.5) to generate an alpha 

vector for a given belief state n and action v|/: 

C^''{k,s) = rr,+   2   CC?r«.(„.,,.)(*-Ur (B.4) 
0eB,.s^S 

The first of these equations combines the current value and the expected future value. 

The future value comes from the appropriate future alpha vectors as chosen by (B.5). (B.5) 

returns the index for the alpha vector we would use in the next time step if we were at belief state 

71, took action y, and received observation 0. We do not receive the full value from this alpha 

vector though. Rather, the value must be weighted by the probability that the object transitions 

from s to s' and then we receive the observation 6. To find the optimal alpha vector for the 

belief state ;ri„^^,, aj {k), we use equation (B.4) to generate an alpha vector based upon the 

maximizing action from (B.2). Along with the end point values from equation (B.4), we also 

store ^i„,^^, and the action associated with the new alpha vector. 

B.1.4     Graphical Example of a Linear Support Algorithm DP Update for a 2 
State Problem 

The first step of the DP update is to find the extreme points of the belief space and then 

generate alpha vectors for these points. Figure B-3.   Select either of these alpha vectors and 
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check its extreme points. One has already been checked and the other is the intersection of the 

two alpha vectors. Figure B-4. We find this intersection and check the difference between the 

optimal value and the current approximate value, Figure B-5. In this case, the error is larger than 

(p and we use equations (B.4) and (B.5) to generate a new alpha vector, Figure B-6, for that 

belief state, storing it in Vi<(7c), Figure B-7. We then select the other alpha vector generated for 

the end points of the belief space. Since its extreme points have already been checked we select 

orf' (ife) and find its extreme points. Figure B-8. 

0       0.1       0.2      0.3      0.4      0.5      O.B      0.7       0.8      0.9        1 

Figure B-3: Generation of Alpha Vectors for Extreme Points of Belief Space 

0       0.1       0.2      0.3      0.4      0.5      0.6      0.7       0.8      0.9        1 

Figure B-4: Extreme Point Enumeration for Current Alpha Vector 
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0       01       02      03      04      05      06      07      08      09        1 

Figure B-5: Calculation of Error at Extreme Point 

01      02      03      04      05      06      07      08      0.9        1 

Figure B-6: Generation of Alpha Vector at Extreme Point 

12 r 
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Figure B-7: Updated Approximation of Value Function 
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Figure B-8: Extreme Point Enumeration for Current Alpha Vector 

Once we have found these extreme points, we can check the value function error.  We 

first check a'^'[k)'s right hand extreme point, Figure B-9, and find that the error is larger than cp 

therefore we need to generate the optimal alpha vector associated with that point. Figure B-10. 

Again, we use (B.4) and (B.5) based upon the maximizing action from (B.2). The generated 

alpha vector is then stored in Vit(K) and marked for later consideration. We then check the other 

extreme point of a^' (k), Figure B-11. In this case, the value function error is less than 9 thus 

we do not generate the optimal alpha vector for that point. 

We then move on to the next marked vector, which was the fourth alpha vector we 

generated, a'^'{k).   In finding the endpoints and checking the value function error at these 

points. Figure B-12, we see that both of the errors are less than 9 and so no additional alpha 

vectors are generated. There are no more marked alpha vectors and our DP updates is done. We 

have found the cp-optimal value function. Figure B-13. This value function specifies the regions 

of the belief space over which different actions are optimal. That is, the range over which each 

alpha vector in the value function dominates, is the range of belief points for which its associated 

action is optimal. 
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Figure B-9: Calculation of Error at Extreme Point 

0       01      0.2      0.3      04      0.5      06      0.7      08      0.9        1 

Figure B-10: Generation of Alpha Vector at Extreme Point 
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Figure B-11: Calculation of Error at Extreme Point 
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Figure B-12: Calculation of Error at Extreme Points 
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Figure B-13: Final ^-Optimal Value Function 

B.2   Incremental Pruning Algorithm 

While the Linear Support algorithm is intuitive and easily demonstrated for a two state 

problem, implementation in higher dimensions is not straightforward. With the possible number 

of intersections increasing exponentially with the size of the state space, the computational effort 

needed to implement the algorithm will greatly increase. A method that combines some ideas 

from the enumerative algorithms and some from the constructive algorithms would better serve 

us when dealing with higher dimensional POMDPs. While we lose the ability to maintain an 

approximate solution at every iteration of the algorithm, as is possible in linear support, this will 

be offset by the increased efficiency of the algorithm. 
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Zhang and Liu presented such an algorithm called Incremental Pruning [38]. The key to 

this algorithm is that when (B.6) is used for a dynamic programming update of the value 

function, it must be done for all possible combinations of actions, observations, and future alpha 

vectors. 

a*'(*,5) = rX+   X   S:.Ofa^(k-l,s') V<^eT,^6 0,MGf/. (B.6) 
s'€S.0eB 

Zhang and Liu showed that sets of alpha vectors could be generated based upon a fixed 

action and observation for all future alpha vectors using the following equation: 

e'-;+Zcc?>„(*-7,.'). (B.7) 
I i   *'e5 

These alpha vectors could then be compared and dominated alpha vectors removed thus 

returning the parsimonious set, that is the set of dominate alpha vectors, for the given action and 

observation, V^ (;r). Once all of the parsimonious sets for a given action-observation pair have 

been found, they can be incrementally combined and extraneous alpha vectors removed, yielding 

a parsimonious set for the action, V/ [JT) . For all the possible actions, these sets are then 

combined and the parsimonious set found; this set is the optimal set of alpha vectors for the 

current epoch, V^ (;r). The full algorithm is as follows with Figure B-14 providing a graphical 

representation. 

1. Set \^ equal to first action in ^j and 0 to first observation in 0. 
2. Generate alpha vectors for all a„(k-l) using \|/, 0, and equation (B.7).  Filter 

these alpha vectors and set V^'* (;r) equal to the result. 

3. If 9 is the last observation in 0 go to 4, else increment 0 and go to 2. 
4. Set V^*' (;r) equal to incrementally pruned V/'* (;r) sets. 

5. If \j/ is the last action in "V go to 6, else increment \j/ and go to 2. 
6. Filter |J V7 (;r) and set V^ (TT) equal to the result. 
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Set w to first action and 9 to 
first observation 
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Generate alpha vectors for \|» 
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VI IS not last «—    .   .       — Check f 
1 

i|f is last 
Action 

1 
Set Vk(ji) equal to filtered \J^V^ {n) 

Figure B-14: Incremental Pruning Algorithm DP update 

As in the linear support algorithm, the procedures of this algorithm can be split up.  In 

this case the partitions are the filter and incremental pruning steps. 

B.2.1     Filter 

The basic idea of the filter operations is to reduce a set of alpha vectors to its 

parsimonious set. This is done in a similar way to Monahan's algorithm with Eagle's 

modification as described in Chapter 3, Section 3.3.2.1. We begin with a set of alpha vectors, 

S, which might contain dominated alpha vectors. We want to reduce 5 to a set V which only 

contains alpha vectors that dominate over a convex neighborhood within the belief space. This is 

done using the following algorithm in which V c «S at all times: 

1. Set s to first state in S. 
2. Find the alpha vector in S that dominates at s and add it to V if it is not already 

in V. 
3. If s is last state in S, go to 4, else increment s and go to 2. 
4. Remove all alpha vectors from S that are now in V. 
5. Pick an alpha vector a* from S. 
6. Perform Dominate Function, see Section B.2.1.1, on a* and  V setting n to 

returned belief state. If n is null, remove a* from S and go to 8. 
7. Find alpha vector that dominates at n, remove it from S and add it to V. 
8. If S does not equal the null set, go to 5. Else, V is parsimonious set. 
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B.2.1.1 Dominate Function 

An added function is necessary to complete the filter algorithm. This is the dominate 

function. The dominate function sets up and solves an LP to find a belief state at which we need 

to find the dominant alpha vector. The dominate function is spelled out below for inputs a* and 

V. 

1. Define an LP with decision variables TTS and d and objective function to maximize 
S. 

2. Pick first alpha vector in V and define it as a. 
3. Define a set of constraints such that ^3r^{^a{s)-a*{s))<-d. 

seS 

4. If a was last alpha vector in V go to 5, else set a as next alpha vector in V and 
go to 3. 

5. Add the constraint ^;r, = i. 

6. Add nonnegativity constraints for all Ttg. 
7. Check LP for infeasibility. If it is infeasible, return null. 
8. Solve LP. If<$>0 return decision variable values. If ^=0, return null. 

The dominate command sets up and solves the following formulation: 

max  S (B.8) 

Y,^s(oi{s)-0!*{s))<-S       >Ja^a* (B.9) 

Z^^=l (B.IO) 

n^>0 ysGS. (B.ll) 

As you can see, this is exactly Monahan's reduction algorithm, as discussed in Chapters, 

Section 3.3.2.1 with an objective function that ensures that chosen alpha vectors dominate over a 

convex neighborhood of the belief space. 

B.2.2     Incremental Pruning 

While the first and last combinations of alpha vector sets, V/* (;r) and  (J V/ (;r), in 

the Incremental Pruning algorithm are accomplished much like Monahan's algorithm with 

Eagle's modification, the middle combination is quite different. It is the key to the Incremental 

Pruning algorithm and its efficiency. The key observation here is that when we combine the sets 
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of Vl^ (;r) for different 9s, we can combine the first two and then remove any dominated alpha 

vectors. We can then combine this parsimonious set with the next V^ (;r) and then purge that 

set.   This is continued until all of the V/^ {TT) sets have been combined and pruned.   This 

incremental combining and pruning gives the algorithm its name. 

To do this, remember how the initial alpha vectors were generated. The immediate 

costs/rewards were scaled by the number of possible observations while the future rewards were 

scaled by the probability of receiving the given observation. Thus, to combine the sets we must 

sum the entire first set of alpha vectors with all of the alpha vectors from the second set. It is this 

cross-summed set from which we will remove dominated alpha vectors. Each V^ (;r) is cross 

sunmied with the current parsimonious set and then purged of dominated alpha vectors. The 

incremental pruning step is: 

1. Select n""' (;r) and V/'^ (;r). 

2. Cross sum two selected vector sets and set equal to S. 

3. Filter S and set result to V. 

4. If there is another V^* [n) select it and V and go to 2. If not, go to 5. 

5. SetV;^{7[) equal to V. 

Cassandra, Littman, and Zhang [11] explore a modification to this algorithm that change 

how the filter and dominate functions work during the incremental pruning step. Instead of using 

the alpha vectors from V when constructing the constraints for the LP, they use cross-summed 

alpha vectors from the two sets being considered. They also show other vector sets that could be 

used in place of V. 

B.3   Summary 

Linear Support and Incremental Pruning both provide benefits when solving certain types 

of POMDPs. With no theoretical proof as to which algorithm has better general characteristics 

we use both algorithms in solving our POMDP problems. Linear support is used for the target 

POMDPs because we model targets as having two states, live and dead, and the ability to 

generate (p-optimal value functions. Incremental pruning, on the other hand, is used for the area 

of interest and contact POMDPs due to the varying and potentially large size of the state space. 
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Appendix C: Glossary of Acronyms 
ACC Air Component Commander 

AGM Air to Ground Missile 

AI Artificial Intelligence 

AOC Air Operations Center 

BDA Battle Damage Assessment 

C2 Command and Control 

CAOC Combined Air Operations Center 

CBU Cluster Bomb Unit 

BLU Bomb Live Unit 

DP Dynamic Program 

EW Early Warning 

F Military Designation for Fighter Aircraft 

GPS Global Positioning System 

GBU Guided Bomb Unit 

GHZ Gigahertz 

HQ Headquarters 

IAD Integrated Air Defense 

IP Integer Program 

IPB Intelligence Preparation of the Battlefield 

ISR Intelligence, Surveillance, and Reconnaissance 

JFACC Joint Forces Air Component Commander 

LOAC Law of Armed Conflict 

LP Linear Program 

MB Megabytes 

MDP Markov Decision Process 

MEA Munitions Effectiveness Assessment 

MIP Mixed Integer Program 

OODA Observation, Orientation, Decision, Action 

OR Operations Research 
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PMF Probability Mass Function 

POMDP Partially Observable Markov Decision Process 

RQ Military Designation for Reconnaissance Drones 

RAM Random Access Memory 

RR Restricted Region 

SAM Surface-to-Air Missile 

SSM Surface-to-Surface Missile 

UAV Unmanned Aerial Vehicle 
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Appendix D: Notation 
Sets and Common Data 
aG A Aircraft resources 

be B Sensor resources 

we W Weapon resources 

ie I Object set 

AQI Area of interest set 

UQI Contact set 

T c I Target set 

je J Generic resource set 

oe Oi Contingency plans for object i 

se S Object states 

}/r e Y, Allowable actions for object i 

^ 6 S, Contact / possible types 

0 e 0, Possible observations for object i 

T Horizon 

e Numeric tolerance used to determine if two floating point numbers are equal 

neZ*<T Time step 

keZ^<T Epoch 

ueU{k) Index of Alpha Vectors for epoch k 

^ 6 ^„ Set of belief state nodes for contingency plan o at time step t 

Linear Programming 
K^. Reward for using contingency plan o against object / 

U„i Resources of type/ used by contingency plan o against object i 

yj Resources of type; available 

X . Variable representing the decision to use a proportion of contingency plan o 

against object i 

Cj Number of contingency plans for problem with horizon of T 

O!^ Contingency plan for object i that has an initial action of y/ 
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■V' Variable representing the decision to use a proportion of action y/ against object / 

p 

CB 

B 

POMDP 

^max 

w, 

ss 

s 

n 

7t intersect 

n(s) 

no 

a*'{k,s) 

a:(k) 

Variable representing the decision to use a proportion of contingency plan o, 

which has an initial action of ifr, against object / 

Binary variable for the decision to use contingency plans with an initial action yr 
against object / 

Column of dual values from a linear programming problem 

Objective function coefficients for the variables in the optimal solution of a linear 
programming problem 

Matrix composed of the columns of the variables in the optimal solution of a 
linear programming problem 

State of an object at time t 

Maximum number of objects in an area of interest 

Action taken at time t 

Probability that an object transitions to state s' from state s when action if/ is taken 

Probability of observing 6 given that the object is in state s and action if/ was 
taken 

Reward for taking action y/ when in state s at epoch it 

PMF over possible states 

Decision variable in domination check LP 

Belief state representing the intersection of alpha vectors 

Resource costs 

Probability that an object is in state s 

Terminal value for being in state 5 

Alpha vector associated with action y/ in epoch it 

Value of alpha vector at state s with action y/ in epoch it 

Alpha vector with index u with associated action yr in epoch it 

Value of alpha vector with index u at state s with action y/ in epoch it 

Value function for epoch k over belief space represented by z 
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K[n,\if,0) Function used to determine alpha vector for use in update equation 

(p Allowable error in value function when solving with linear support algorithm 

V^ [n) Value function for epoch *: based upon action y/ and observation 9 

^k (^) Value function for epoch k based upon action y/ 

Cl Cost of action y/ at epoch k applied to object / 

V List of extreme points to check under linear support algorithm 

vail {^) Optimal value at belief ptfint K at epoch k 

val^ [TT) Value at belief point w at epoch k based upon approximate value function 

/^ Information vector for k steps 

V^l {h) Optimal action for information vector /^ 

;rt Sufficient statistic for k steps, sufficient statistic is the belief state for POMDPs 

V^k i^k) Optimal action for sufficient statistic TT^ 

a*{k) Alpha vector under consideration in domination checks 

af [k) Optimal alpha vector for belief state TT with associated optimal action y/* 

EX*' (5) State dependent evasion probability for a contact 

3/^ Probability of occurrence for a belief state node with an associated observation 0 

who's parent node had a belief state of TT and optimal action of if/ 

^ Probability of occurrence for a generic parent belief state node 

V Probability of occurrence for belief state node ^ 

E;r„ Expected belief state for target i at time step t 

S A set of alpha vectors that may contain non-dominate alpha vectors 

V A set of alpha vectors that dominate over a region of the belief space 

S Variable in dominate function of incremental pruning forcing a neighborhood 

dominance for alpha vectors added to V 
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