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Abstract 
The growing complexily in (he functionalily and system archi- 

tecture of embedded systems has motivated designers to raise the 
level of abstraction by composing the system with a mix of reusable 
and system-specific components. Currently, these components as- 
sume specific programming models that make thera difficult to com- 
pose or retarget. The mo(M process model addresses the problem 
of control composition by separating the synchronization semantics 
from state unification, and by supporting automatic synthesis of con- 
trol communication onto distrilwted architectures. By avoiding over- 
specifying the behavior, the components can be made more compos- 
able and the designer can more easily choose the least expensive syn- 
chronization semantics for implementing the composition. To help 
designers evaluate their choice, we propose a method for analyzing 
the properties of the composed system, including the detection of 
potential deadlock and livelock situations. 

1   Introduction 
Embedded systems are becoming increasingly complex. 

Not only is thei« increased functionality, but the system ar- 
chitecture is also becoming more complex. Specifically, dis- 
tributed (nms&agc passing) systems have become an attractive 
choice because they offer good price performance tradeoffs. 

The increased complexity h^ motivated a higher level of 
abstraction. ITie design task now is dominated by system in- 
tegration, namely composing a set of high level components 
to f«m a complete system. A typical design would consist 
of a mix of mostly retjsable components and some ^plication 
specific components. 

Currently, this component-based design ^proach works as 
long as all components to be composed are written in the 
same pit>gramming model. E^h model makes assumptions 
about the synchrony of transitions, communication, and many 
other factoid. For example, CSP [6] assumes tha different 
processes make progress asynchronously unless they commu- 
nicate by rendezvous synchronization. On the other extreme, 
the synchronous language Estcrel [1J assumes that transitions 
are taken synchiwnously, as are the events. 

Synchiwnous (event or transition) semantics have many ad- 
vantages, including composability and determinism, which 
enable designers to succinctly and precisely captuie complex 
control-dominated behavior. Synchronous models can be im- 
plemented efficiently on a uniprocessor. However, they can 
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be prohibitive on distributed aix:hitectures if they have to syn- 
chronize on every transition. 

Heterogeneous programming models are important for both 
specification and implementation. Certain applications are 
more naturally written in specific models {e.g. dataflow), 
which also enable their analysis and optimiz^ion. Another 
reason for heterogeneous programming models is for mapping 
onto diverse target architectares. Ideally, the cheapest imple- 
mentation should use the least strict semantics that meets the 
requirements of the specific application. Since this knowledge 
is highly dependent on the application, the choice should be 
up to the designer. 

Our framework for control composition and analysis is 
based on the modal process model. It addresses the prob- 
lem of control composition by separating the synchroniza- 
tion semantics from the composition, and by supporting au- 
tomatic synthesis of control communication on distributed ar- 
chitectures. By parameterizing the synchrony of composition, 
modal processes allow the designer to choose the least exjwn- 
sive synchronization semantics, based on the analysis of our 
tool. 

In this paper, we describe such a tool that aids the designer 
in analyzing potential problems in the composed system, in- 
cluding deadlock and livelock situations. Analyses for dead- 
lock and livelock conditions are made possible by the explicit 
constraints that must be stated when composing tftc states of 
the processes. In the next section, we review the modal pro- 
cess model, discuss a taxonomy of various semantics, and re- 
view the synthesis of control communication. Section 3 de- 
scribes our analysis algorithm based on the space-time dia- 
gram representation. 

2   Previous work 
2.1   Modal procKses 

Our model for embedded systems is called modal processes 
[3]. A process consists of event handlers, data variables, com- 
munication ports, and accesses to devices. For the purpose 
of this discussion, we will focus on the control aspect of the 
processes. A modal process is a process with modes. A mode 
is a collection of event handlers. A modal process can have 
several modes, or several ways of handling events. At any 
moment, one or more modes may be active, though it is also 
possible that none of the modes is active. After handling an 
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Figure 2: Partitioning the robot onto three processors 

event, a handler may also return a value requesting the activa- 
tion of a new mode. 

System composition can be viewed as adding application- 
specific constraints to the processes. Modes of different pro- 
cesses can be unified, which means when one mode is ac- 
tivated in one process, all unified modes in other processes 
must be activated, even if they are on different processors. 
These unified modes are said to be bound to a common state. 
For brevity, we say "activating a state s" to mean "activate 
the modes unified by state s," as there is no ambiguity. Dif- 
ferent states can be related hierarchically, where activating a 
child state requires activation of its parent. Each state can 
also constrain its children to be mutually exclusive, or it can 
allow them to be concurrent - in addition to the process's own 
constraints on its modes. State de-activation is not expressed 
explicitly, but is inferred from the constraints. Entering a state 
requires the deactivation of those states that are mutually ex- 
clusive to it. Similarly, exiting a parent state requires the exit 
of alt of its children slates. 

Fig. I shows a robot example described as a composition of 
modal processes. The robot can be operated with a joystick 
or can run autonomously with a bumper and a sonar. Their 
modes are constrained by the state tree above. When the de- 
signer partitions the processes onto a distributed architecture, 
our tool automatically partitions the hierarchical states and 

synthesizes the control communication accordingly.   Fig. 2 
shows the robot partitioned onto three processors. 

2.2   Taxonomy of control communication 
Different semantics can be obtained by changing the syn- 

chronization behavior. We have identified the following 
classes: 

Transition synchronous semantics means that every pro- 
cess takes (at most) one-step, or a transition in the Mealy ma- 
chine sense, in every time step. Examples of this include RTL 
(register-transfer level) semantics and Esterel. 

Event synchronous, a.k.a. discrete event, means that all 
processes see the same set of events simultaneously. Event 
handling is synchronous to the events, which are totally or- 
dered. It is possible to emit events that are globally visible 
instantaneously and trigger a potentially infinite chain of tran- 
sitions within a lime step. The time step ends when no more 
transitions can be triggered. This is the semantics assumed 
by the original StateCharts as well as the program statements 
in hardware description languages such as Verilog [9] and 
VHDL. It is also possible to combine event synchrony with 
transition synchrony, as in Esterel and the later revised State- 
Charts [4]. 

Mode synchronous semantics requires processes to syn- 
chronize on a mode change if their modes are affected. Lo- 
calized transitions that do not affect other processes need no 
synchronization. Otherwise, the system can have any other 
combinations of synchrony. This is the semantics assumed by 
modal processes [3] by default. 

In flata synchronous models, the propagation of control is 
tied to data communication. Even though a set of processes 
should logically operate in the same modes (as a result of 
binding), it is unnecessary to synchronize all of them at once 
on a mode change. Instead, the mode is correlated with data 
and is allowed to be pipelined over data communication chan- 
nels in the same way data flows through a dataflow network or 
a pineline. In other words, control can flow synchronously as 
data, or piggybacked with data. See [81 for a comprehensive 
survey on dataflow models. 

In asynchronous models, each process can make arbi- 
trary amounts of progress asynchronously to other processes. 
Most "process" models fall into this category, most notably 
CSP [6] and its derivatives. Even synchronous models have 
come to rely on asynchronous compositions at the system 
level. For example. CRP [2] is essentially a set of locally- 
synchronous Esterel components that are composed asyn- 
chronously as CSP processes at the system level. StatcMate 
[5] offers similar composition: locally-synchronous State- 
Charts components arc connected together asynchronously in 
ModuIeCharts. Both are motivated by the fact that transition- 
synchrony and event-synchrony are impractical for distributed 
systems. 

Unfortunately, these models force designers to commit to 
a specific synchronization semantics at the highest specifica- 
tion level to reflect their architectural mapping concerns. In 
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contrast, our modal process model allows the designer to pa- 
rameterize and synthesize the synchrony that is appropriate 
for the specific architectural mapping. The advantages are 
that the mcxlules can be made more retargctable without over- 
specifying their behavior, and that they enable better design 
optimization to the target architecture. 

23   Contivl communication 
To satisfy the mode unification constraints in a distributed 

aithitecture, mode changes must be communicated across 
processors. TTie run-time system on each processor does not 
need a full replication of the state space, but only a pityection 
needed for maintaining the local modes and their interactions 
with the other processes. When a handler initiates a mode 
change, our run-time system transmits the target-state refer- 
ence to other processors whose modes are affected, as deter- 
mined by static analysis. On the receiver's side, we synthesize 
a handler for each state that can be a remote target. 

Fig, 3 shows the synthesized transition handlers in the 
nested boxes. These target handlere can be qualified by the 
modes where outgoing transitions to the handlers' targets are 
actually allowed, though they default to always active in the 
figut^. For example, on the second processor, the target han- 
dler for ping is enabled only when in pong state. TTie ability 
to deny transition requests selectively is a useful feature for 
convergence in asynchronous composhions. Fig. 4 shows a 
scenario of the robot examjrfe where two transitions simulta- 
neously requested by both the sonar and the bumper processes 
result in convergence without any synchronization. Tlte sonar 

accepts the bumper's request to go to reverse, while the 
sonar's request to go to pong is dropped while in reverse. 

Control communication may need synchronization depend- 
ing on the composition semantics. Transition-synchronous 
semantics requites synchronization on every Mealy-machine 
transition, or every quantum of compulation, while event- 
synchronous semantics requires synchronization on every 
event, and both are impractical for distributed systems. By 
default, we assume mode-synchronous semantics, which re- 
quires the run-time system to implement the abstraction of al- 
ways presenting a consistent view of the system state. The 
lun-time system can hide the transient conditions from the 
components by using a three-phase synchronization protocol 
on a mode change: the sender sends the request, waits for all 
receivers to reply, and tells everyone to proceed. 

It is possible to fiirther relax the synchronization require- 
ment by presenting individually consistent view on different 
processors, even though the entire system may not be simuha- 
neously consistent. For example, data-synchronous seman- 
tics further eliminates global synchronization by exploiting 
the regularity In the underlying dataflow model. As long as 
each process is fired with consistent context, global synchro- 
nization is not a requirement. However, this approach re- 
quires knowledge about the way control flows through the sys- 
tem. We are currently investigating its application to dataflow 
models, which have highly regular structures. In this paper, 
we are mainly concemed with asynchronous composition. It 
achieves the least expensive implementation for a given target 
architecture by exposing transient conditions to the user pro- 
cesses. It should be considered if the application can tolerate 
transient states, especially in areas that are not safety-critical, 

3   Analysis 
In ttiis section, we describe a method for analyzing the 

property of a given asynchronous composition. We assume 
that each mode starts in a consistent steady slate. A system 
state is consistent if the active modes satisfy the unification, 
mutual exclusion, and hierarchy constraints. The system is 
in a (temporary) steady state when all internal (mode-change) 
events have been generated and handled in response to a given 
Mt of input events. Since a given event can occur multiple 
times, a system may never reach a steady state liecause the in- 
put set is potentially infinite. Here wc will use the event inter- 
arrival constraints to allow us to bound the number of events 
to consider in a scenmo between steady states. Anomalous 
conditions in asynchronwi's systems include oscillation, live- 
lock, divergence, and deadlock. 

Oscillation means that the system fails to reach a steady 
state directly, but may be temporarily caught in a cycle of in- 
ternal events due to race conditions. That is, processes on 
different processors bounce between different modes trying 
to unify with each other's modes at the same time telling each 
other to do otherwise. An oscillation can continue indefinitely 
and can pose a problem in the ability to satisfy response time 
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Figure 5: Space-time diagram and lattice of consistent cuts 

constraints or even lead to incorrect behavior, although a later 
event may be able to break the cycle. A stronger case of an 
oscillation is a livelock, which cannot be broken by any event 
or race condition. 

Note that it is difficult to get into an oscillation and even 
harder for a livelock because our synthesized run-time system 
and handlers do not create such a cycle, but anomalous user 
handlers can. On the other hand, it is easy to reach a steady 
state, but it is not necessarily correct. If the steady slate is 
inconsistent, we call this divergence. A special case of diver- 
gence is a deadlock, which is an inconsistent steady state that 
responds to no events and therefore the system has no way of 
exiting. It is possible for a consistent steady state to respond 
to no events, but it would not be considered a deadlock here. 
3.1   Space-time diagram 

The representation for our analysis is based on the space- 
time diagram as used by Lamport [7] for describing events in 
distributed systems. The diagram contains vertices that are 
divided into parallel tracks, each of which models a physi- 
cally separate module with its own views of time and event 
arrivals. Event occurrences are represented by vertices, and 
they are connected by directed edges that represent "happens- 
before" relations. Note that the term "event" in a space-time 
diagram is more abstract and general than those in a behav- 
ioral description because it marks not only I/O and internal 
communication but also mode changes. These events are to- 
tally ordered on a given track but partially ordered between 
different tracks. The happens-bcfore edges capture causality 
due to sequencing and communication. 

The instantaneous state of a system as modeled by a space- 
time diagram can be characterized by dividing the events into 
two sets: a past set and a future set. A cut that has no edges 
going from the future to the past in a space-time diagram is 
called a consistent cut. There can be many consistent cuts 
in a given space-time diagram representing different points in 
a trace. Different consistent cuts of a given diagram can be 
partially related to form a graph (specifically, a lattice). It 
will be used as our primary representation for analysis. Fig. 5 
shows a space-time diagram and the corresponding lattice for 

the transition scenario in Fig. 4. A lattice can be constructed 
by traversing the space-time diagram. The label for the new 
vertex in the lattice is the concatenation the labels of all events 
on the current cut. Initially, the past set is the precondition and 
the future set contains the entire vertex set. We create a new 
vertex by moving an event from the future set to the past set if 
all of its predecessors are in the past set. 
3.2   Formulation and algorithm 

Our approach to the deadlock/livelock analysis is to analyze 
the causality graph, which is based on the graph of consistent- 
cuts. An oscillation/1 ivelock analysis involves cycle detection 
in the causality graph. If it is acyclic, then we check for diver- 
gence by inspecting the states encoded by the sink vertex. 

To construct the causality graph, we need to encode causal- 
ity and the event's class using the event labels. The causal set 
of a given event instance is the union of all of those events 
on its incoming edges. To encode causality in an event label, 
we concatenate the class label of the event itself with the class 
labels of those events in its causal set. We modify the routine 
for allocating a new vertex for a consistent cut. The new al- 
location routine must return the same vertex every time if it is 
called with the same causality. A cycle is detected when the 
routine returns the same vertex twice. 

The analysis algorithm constructs causality graphs for all 
possible event orders and for all reachable steady states. For 
every consistent-cut graph, the algorithm continues growing 
the graph until a cycle is detected or when no more vertex can 
be added. A cycle indicates a potential livelock. If the graph 
has no cycles, we check the consistency of the sink vertex 
by substituting the active modes into the constraint equations, 
which are captured by the mode bindings and the state hierar- 
chy. 
33   Examples 

The example shown in Fig. 5 is an analysis of a potential 
race condition in Fig. 4. The bumper module is requesting 
a mode change to reverse while the sonar detects an obsta- 
cle and requests a transition to turn mode. We obtain a finite 
space-time diagram and an acyclic causality graph. There- 
fore, we can verify the sink vertex for state consistency. The 
bumper's processor is in bunnp stale while the sonar's proces- 
sor is in reverse. Because bump is a child state of reverse, 
the system converges to a consistent state for this scenario. If 
we continue enumerating all possible orders of event observa- 
tion and conditional branches, we will find that they converge 
to the same state. Therefore, asynchronous composition can 
be considered for implementation. 

A subtle modification to the bumper process would intro- 
duce divergence. For example, suppose the bumper process 
contains a transition edge from sf bump to pong. The node 
labeled G in Fig. 5 would represent a transition from to pong 
state, instead of remaining in bump. Steady state analysis 
shows that pong and bump are simultaneously active on dif- 
ferent processors even though they should be mutually exclu- 
sive.   Therefore, an asynchronous implementation can lead 



fTl^ 
(2) space-tune digram 

0„R SaaiJ     P«^-OJ     IRQR-R. 

i   P.-P.. I9fla-Q. %jr%j 
R,„.Q„ 

QF.>Q«I 

5V|-^\_:? 
L5fiffiSJ |Q«-Q«I 

(b) graph of consistent cuts 

Figure 6: Livelock example 

to inconsistent behavior. The problem can be fixed by mode- 
synchronous composition, where the run-time system resolves 
the conflicting transition requests before returning control to 
user code. 

Real livelocks involve very intricate sequences of events 
that are too complex to explain for this paper. Instead, we use 
the simplest jKissible, though rather hypothetical, scenario as 
shown in Fig. 6 to illustrate the concepts. Even this seemly 
trivial example involves over a dozen vertices for consistent 
cuts. The reason for the complexity is that even though the 
same modes are visited repeatedly, the causality does not re- 
peat until much later. The earlier vertices are caused by ex- 
ternal evente, while the repeated vertex is in a causality cycle 
without external events. 

4   Conclusions 
Many control-dominated specification models have relied 

on strict synchrony to give them well-defined composition 
semantics and determinism. Unfortunately, strict synchrony 
makes them impractical for targeting heterogeneous, dis- 
tributed architectures. In this paper, we presented an evalua- 
tion method that helps designers determine if alternative com- 
position synchrony yields the same behavior when transient 
conditions can be tolerated. Such consistency tests and im- 
plementation freedom are made possible by the specification 
model, namely modal processes, where the control states of 
the processes arc explicitly bound and constrained indepen- 
dently of their synchrony. It allows the designer to parameter- 
ize, rather than dictates, the synchrony needed for their spe- 
cific application. TTie goal of our tool is to help the designer 
achieve the least expensive implementation by synthesizing 
the corresponding run-time support and perform analysis for 
their evaluation. TTiis paper addresses the asynchronous op- 
tion; we are currently investigating data-synchronous compo- 
sition and other alternatives. 

Currently, manual designs involve mostly asynchronous 
composition for practical reasons, but designers are burdened 

with the task of analyzing race conditions in terms of low 
level primitives like semaphores. It is extremely error-prone 
and difficult to cover all possible intricate cases, and we have 
presented a systematic approach to automating this task. Al- 
though it can be expensive for computers to exhaustively enu- 
merate all possible states, many cases can be pruned in prac- 
tice. Modal processes constrain the state space by unifying 
states across different modules, so that many combinations 
can be ruled out. Also, race conditions are possible only when 
multiple processes request conflicting mode changes simulta- 
neously, and these cases are relatively straightforward to iden- 
tify. We believe that the analysis tool will help designers iden- 
tify more system-level optimization opportunities without re- 
sorting to ad-hoc techniques that hinder design maintainabil- 
ity and reiargetability. 
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