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Performance Prediction Model for Road-Constrained
Multiple Target Tracking

Pablo O. Arambel∗, Eugene Lavely, and Herb Landau
ALPHATECH, Inc. 6 New England Executive Park, Burlington, MA USA 01801

ABSTRACT

Signal Processing, Sensor Fusion, and Target Recognition XII

SPIE’s AeroSense 2003, 21-25 April 2003, Orlando, FA

The performance of tracking systems depends on numerous factors including the scenario, operating conditions,
and choice of tracker algorithms. For tracker system design, mission planning, and sensor resource management,
the availability of a tracker performance model (TPM) for the standard measures of performance (MOPs) would
be of high practical value. Ideally, the TPM has high computational efficiency, and is insensitive to the particular
low-level details of highly complex algorithms and unimportant operating conditions. These characteristics would
eliminate the need for high fidelity Monte Carlo simulations that are expensive and time consuming. In this paper,
we describe a performance prediction model that generates track life distributions and other MOPs. The model
employs a simplified Monte Carlo simulation that accounts for sensor orbits, sensor coverage, target dynamics.
A key feature is an analytical expression that approximates the probability of correct association (PCA) among
reports and tracks. The expression for the PCA that we use was developed by Mori et. al. for simplified scenarios
where there is a single class of targets, the noise is Gaussian, and the covariance matrices are identical for all
targets. Based on heuristic considerations, we extend this result to the case of road-constrained tracking where
both on-road and off-road targets are present. We investigate the validity of the proposed expression by means
of Monte Carlo simulations, and present preliminary results of a validation study that compares the performance
of an actual tracker with the performance predictions of our model.†

Keywords: Tracking Performance Prediction, Measures of Performance, Road-constrained Tracking, Probabil-
ity of Correct Association

1. INTRODUCTION

An important objective in the design and application of tracker systems is performance assessment as a function
of the various design parameters and operating conditions. These studies are valuable for quantifying system
trade–offs, and provide a rational objective criterion for system engineering decisions and mission planning. A
key problem for system design is that in the initial stages, the algorithms may not be available to perform the
required evaluation. Therefore, it is necessary to predict the tracking performance without actually implementing
the tracker. There are several ways to obtain these predictions. For example, results can be extrapolated from
existing trackers by analyzing the effect of novel features and new operating conditions on the overall tracking
performance. The accuracy of these studies, however, will depend on the similarities between the existing sys-
tem and the proposed system. Another way to predict performance is by performing high fidelity Monte Carlo
simulations that represent the entire system, including sensor, tracker, and scenario conditions. This is probably
the most reliable method, but it can be very costly and time consuming. It is also possible to use analytical
methods. Unfortunately, the tracking problem is very complex and exact analytical expressions to obtain mea-
sures of performance do not yet exist. Notwithstanding, there have been some efforts to obtain approximations
that cover some aspects of the tracking problem. Mori, Chang, and Chong2 derived an approximate expression
for the Probability of Correct Association (PCA) for the optimal data association problem. The PCA is a key
parameter in the assessment of multiple target tracking systems, as incorrect associations lead to degraded track
estimations and eventually to the termination of the tracks. Though derived on the basis of numerous approx-
imations, Mori et.al.’s PCA expression is remarkably accurate for a large range of operating conditions (e.g.,
target and false target density, measurement noise).

∗ pablo.arambel@alphatech.com, 781-273-3388 x 349, www.alphatech.com
† This work was supported in part by the US Defense Advanced Research Programs Agency (DARPA) and the US

Air Force under contracts F30602-99-C-0065 and F33615-00-C-1614.
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The fundamental difficulty of performance prediction for tracker systems is the dynamical nature of the
problem. Time-dependence is introduced by the sensor orbit, target dynamics, changing obscuration, fluctuations
in the statistical variables, etc. These changes ultimately map into tracker quantities such as the target density
and the Kalman Filter (KF) innovations covariance. Mori et.al.’s PCA expression explicitly depend on these
quantities (see Section 2). Therefore, the PCA changes with time, yet the analytical expression was derived
for a static scenario. Also, the expression was derived for a single time frame whereas real trackers often use
deferred decision logic over multiple time frames. These considerations begin to suggest the complexity of the
problem. As a first approximation it would be natural to consider an average innovations covariance based on
the steady state solution of the KF. However, results based on this assumption would not be very accurate. This
is because the increase on the errors due to the track-report misassociations has a chain reaction effect: the first
misassociation increases the magnitude of innovations covariance, and this in turn decreases the PCA inducing
even more misassociations. This cascade effect eventually leads to the termination of the tracks. In addition, the
initial transients when the tracks have not yet been established have a large impact on the performance of the
system. Real systems mitigate this effect by starting a track only after a few detections have been successfully
associated, but it is clear that a performance analysis needs to consider these effects to produce reliable results.
To take into account the PCA variability and achieve improved prediction accuracy, we have developed a Tracking
Performance Model (TPM) that blends Monte Carlo simulations with theoretical analyses. The latter utilize the
PCA analytical expression. The TPM provides track life as well as target location error statistics. This paper
describes the TPM and discusses preliminary experiments that were implemented to validate this model.

Currently, the TPM is strictly only applicable to trackers that utilize instantaneous assignment algorithms
(e.g., perform association using data from a single time frame only). Trackers that utilize data from multiple time
frames such as Multiple Hypothesis Tracking (MHT) algorithms and multidimensional assignment algorithms,
will generally display a different statistical behavior for the PCA. Unfortunately, a closed form expression for the
PCA is not yet available. In a first attempt to address the single time-frame limitation, we have experimented
with various ad hoc stopping rules for track termination. A simple choice is to terminate a track when N out
of M measurements are misassociated. Such rules may be used to approximate the key attribute of an MHT
algorithm (e.g., improved report to track association by deferring assignment until sufficient evidence has been
accumulated). However, since this is an ad hoc expedient, the optimal choice (N, M) as a function of tracking
parameters and operating conditions is not clear. Although we have performed initial experimentation, rigorous
attention to this issue represents an important future research direction. The goal will be to derive an expression
for the PCA suitable for approximating the behavior of an MHT-based tracker.

The PCA expression used in the present study was developed for simplified scenarios for which there is a
single class of targets, the noise is Gaussian, and the covariance matrices are identical for all targets. Actual
tracking systems are more complex as they use, for example, Variable Structure Interacting Multiple Models
(VS-IMM), feature–aided tracking, and context data such as elevation maps and road network information.
Current efforts are aimed at extending the PCA expression to cover these cases as well. As a first step, we
extended the expression to the case of road–constrained tracking. Since the effect of roads is more difficult to
model than the simplified case (which corresponds to off–road tracking), we based the extensions on heuristic
considerations. However, we believe that the proposed expression captures key effects associated with road–
constrained tracking. In this paper we describe the proposed expression and present results of a simulation to
validate these developments.

This paper is organized as follows. Section 2 briefly discusses the data association problem and reviews the
analytical PCA expression for the unconstrained (off–road) case. Section 3 describes the TPM while Section 4
presents preliminary results of a validation study comparing the performance of a real tracker with the perfor-
mance predicted by our model. Section 5 presents the proposed PCA expression for road-constrained tracking,
and Section 6 presents results on Monte Carlo simulations that were implemented to validate the extensions of
the PCA expression. Section 7 summarizes the results and discusses future work in this area. The Appendix
provides a formal discussion on the concept of uncertainty volume as used in this paper.
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2. PROBABILITY OF CORRECT ASSOCIATION (PCA)

The PCA expression derived by Mori et. al.2 is given by

PCA = exp
(
−Cmβ det(S)1/2 −Dmβc det(S)1/2

)
(1)

where m is the measurement dimension, S is the innovations covariance, β and βc are the target and false alarm
densities, respectively, and Cm and Dm are constants defined as follows:

Cm = 2m−1π(m−1)/2 Γ
(

m+1
2

)

Γ(m/2 + 1)
, (2)

Bm = πm/2 1
Γ

(
m
2 + 1

) , (3)

Dm = Bm2m/2 Γ(m)
Γ(m/2)

. (4)

The innovations covariance is given by
S = HPHT + R (5)

where P is the KF extrapolated covariance, H is the measurement matrix, and R is the measurement error
covariance matrix. In the next section we describe how the PCA expression is used within TPM.

3. TRACKING PERFORMANCE MODEL (TPM)

The objectives of the TPM are to capture essential details of the tracking process, to appropriately draw from
random processes in a simulation setting so that robust measures of performance may be computed, and to
achieve this in a practical sense. Our approach utilizes two principal assumptions (approximations) to satisfy
these objectives. First, in contrast to a high fidelity simulation that lays out and tracks multiple targets, the
TPM simulates one target per Monte Carlo run. Second, the impact of multiple targets (for real scenarios) and
the performance of the association component of trackers (for actual trackers) is represented via the analytical
expression for the PCA. The latter depends on target density, and thereby captures the effect of multiple targets
in this way. The additional confusing effect of false alarms is also modeled by the PCA expression. In this way,
we predict the ability of a nominal actual tracker to associate the current track with the correct report (with the
caveat, as discussed previously, that instantaneous association is assumed). The use of Monte Carlo simulations—
instead of a pure analytical study—allows us to account for the variations in the PCA, both statistical and due to
kinematics and dynamics of the problem. The causes for these variations include misdetections due to occlusions
and minimum-detection-velocity (MDV), variations on the revisit rate, and variations on the sensor/coverage
area geometry, among other factors. In addition, misassociations also increase the estimation error covariance,
which in turn affects the PCA as well.

A functional block diagram of the TPM is shown in Figure 1. It begins with the initialization of a number
of parameters that define the system, including radar performance parameters, platform orbits, tracker settings,
cartographic information, and target parameters. A list of these parameters is shown in Table 1. In each
iteration of the Monte Carlo run, the initial platform location and the initial location and heading of the
target are randomly selected. Both a nominal and true KF covariance matrices are propagated. The nominal
covariance is the one computed by the KF and is used to determine the KF gain used by the tracker for that
particular target. The truth covariance matrix is that which results from updating the state estimate with the
measurement, which could be either a genuine measurement or a measurement that is a false alarm or belongs
to another target and has been misassociated. The next step is to check whether the target is covered by the
platform constellation, whether the LOS velocity is larger than the MDV, and whether the target is detected by
the radar. To simulate the latter, a detection instance is randomly generated with probability Pd. If all those
checks are successful, a positive detection is declared. The probability of correctly associating the detection is
evaluated using the PCA expression (1) with S being the truth innovations covariance (as opposed to the nominal
one, carried over by the KF). An instance of misassociation is generated with probability PCA. If positive, a
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correct association is declared and both the nominal and truth covariances are updated using the KF update
equations. If negative, the nominal covariance is updated using the nominal KF update equations, but the truth
one is updated assuming that the innovations is a zero mean random variable uncorrelated with the the current
state estimate. The rationale is that, given that the incorrect measurement has been associated, the difference
between the measurement and the prediction is a random variable with zero mean (conditioned to the current
state estimate). The final effect is that the variance of the estimation error decreases if a correct association is
made, but the variance increases if the association is incorrect.

Initialization (set simulation parameters)
(e.g., target density, target speed, Pd, MDV,

measurement noise, sensor orbit model, AOI, etc.)

Extrapolate KF covariance matrices
Nominal (propagated by the tracker)
True (due to association history)

Is the target covered by orbiting platforms?
Is the LOS velocity at least MDV?
Is the target detected by the radar?

Check target detection

Compute the PCA using the true KF covariance
Randomly generate an instance of association

Update nominal KF covariance
using KF equations
Update true KF covariance using
uncorrelated error covariance

Misassociation
Update nominal and true

equations

Correct association

KF covariances using KF

Is the Stop Rule satisfied?
(e.g., maximum number of misdetections or misassociations)

Stop Track, Save Track Life
Execute another Monte Carlo run?

Compute MOPs (e.g., Track Life Statistics)

Set initial conditions with random draws
Platform location
Target location and heading

YES

NO

NO YES

YESNO

Figure 1. Tracker Performance Model (TPM) functional diagram. The outer loop indicates the iterative cycle of the
Monte Carlo simulation.
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Table 1. Main TPM parameters.

Radar Performance Parameters GMTI revisit time
Minimum grazing angle

Minimum Detectable Velocity (MDV)
1-σ Range Error

1-σ Range Rate Error
1-σ Cross-Range Error
Probability of Detection

False Alarm Density

Tracker Parameters Promotion and Deletion Rules
Dimensionality of raw data measurements

Cartographic Parameters Digital Terrain Elevation Data (DTED) Errors
Road Network Error

Road Density

Target Parameters On–Road Motion Model (Process Noise)
Off–Road Motion Model (Process Noise)

Target Density
Fraction of Targets on roads

The TPM can be used to generate many of the standard tracker MOPs. In our studies thus far, we have
focused on the computation of track life statistics. A typical output of the model is cumulative track life proba-
bility vs. track life in minutes. To compute these track life statistics, the TPM keeps track of the misdetections
and the correct/incorrect associations. As already discussed, it uses an ad hoc rule to terminate the track. The
rules that we have explored include: (1) one misassociation, (2) two or more misassociations in a row, and (3) N
misassociations out of M associations. The first rule assumes that the tracker ends the track as soon as a misas-
sociation occurs. In practice, the tracker is not “cognizant” of that until the accumulation of the errors produce
several misdetections. The rule is very conservative as the tracker may recover the track if the next association
is correct. Nonetheless, this rule is important because it measures the time in which tracks remain 100% pure,
which is a measure of performance per se. The second and third rules are somehow more realistic. They assume
that the large errors induced by a series of misassociations will trigger enough number of misdetections that
induce the tracker to drop the track. It is not clear, however, what values of N and M should be chosen as a
function of tracking parameters to represent the effect of track termination. We are currently investigating this
effect and will report the results in a future publication.

4. SIMULATION RESULTS

To assess the validity of our TPM, we conducted several simulation experiments using ALPHATECH’s Precision
Fire Control Tracker (PFCT) to empirically compute MOPs for comparison to those predicted by the TPM.
Currently, the TPM only models the basic multi-target tracking functions, and therefore we turned off many
of PFCT’s capabilities such as Multiple Hypothesis Tracking and feature–aided tracking in order to make a
meaningful comparison. In this exercise we ran the TPM with 5 sec revisit time, 0.5 m/s MDV, 6 m range
error, 5 m/s range rate error, 300 m cross–range error, 10 m DTED error, and 10 m road network error. The
target density was set to β = 5 Km−2, while the false alarm density was negligible. The stopping rule was set
to 1 misassociation, so that the track life actually represents the time the tracks remain 100% pure. Following,
we generated a scenario for the PFCT that, in average, corresponded to the same parameters. To achieve the
same target density, approximately 100 targets where randomly distributed on a disc of radius R ≈ 2500 m.
Initially, the target speed was set to 5 m/s and the target heading was randomly selected. (The target speed can
alternatively be drawn from a given probability distribution. By fixing it, the results are given with target speed
as a parameter.) The motion of each target was simulated by a motion model with the appropriate random
noise. An example display from this process is shown in Figure 2.
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Figure 2. ALPHATECH’s Display Manager (DM++) showing the measurements (triangles), the tracks (squares), and
the truth (diamonds). The ellipses indicate 1-sigma track errors while the numbers beside the squares are the track IDs.
The small screen on the upper right displays all the targets that were laid out on the AOI (which is disc). The main
screen is a close–up showing more details. On the bottom, a number of control buttons allow for adjusting the display.
On the bottom right, details on either the truth, tracks, or measurements can be displayed as well.

Targets that drift out of the support of the disc have the undesired effect of decreasing the target density. To
address this problem, the velocities of such targets were reversed as required. These targets were tagged to be
discarded at the time of tracking statistics generation (since the motion of these targets would not correspond to
the assigned motion model). The motion of the platform was also simulated (we used a standard racetrack orbit).
Sensor reports were then generated and input to the tracker, which generated the standard output consisting
of lists of tracks and associated reports. This list was processed along with the list of truth reports to generate
track life statistics.

Figure 3 shows the cumulated track life probability vs. track life. These initial results demonstrate a good
agreement between the performance plots predicted by TPM and those computed empirically using output from
the real tracker. In this example, the stopping rule was set as the time to the first misassociation. We chose this
stopping rule for the initial set of experiments to minimize the complexity of the simulation. Additional tests
and further simulation experiments are planned.
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Figure 3. Cumulative track life probability vs. track life for the example displayed in Figure 2.

5. ANALYTICAL EXPRESSION FOR ROAD–CONSTRAINED PCA

Equation (1) can be interpreted as an exponential of the average number of measurements within the “un-
certainty volume” of the prediction. To be correctly associated, a given measurement competes with all the
measurements—both true targets and false alarms—that fall within the uncertainty volume. Thus, to extend
the PCA expression to the road–constrained case, we need to compute the uncertainty volume. The difficulty is
that the road–constrained error distribution is not gaussian and depends on the road density. Hence, we formally
define the uncertainty volume for arbitrary distributions (see Appendix) and derive an approximate expression
for the case of road–constrained tracking.

We begin with preliminary definitions of road density, and one–dimensional and two–dimensional on–road
target densities, including normalized versions of these parameters. We then present our expressions for the PCA
for off–road and on–road targets and explain the rationale behind these approximations.

Road Density

Road density is defined as the ratio between the total road length within a given area and the area. In terms of
the average distance between roads, d, the road density for a grid–like road network is given by:

ρ =
total road length within a given area

area
=

2N(Nd)
(Nd)2

=
2
d

(6)

Intuitively, the tracking prediction power depends on the ratio between the average distance between roads and
the off–road innovations standard deviation, σo. Therefore, we define the normalized road density, ρ̃, as follows:

ρ̃ = ρ σo (7)

The road density is given in terms of “Km of road per sq Km”. The normalized road density has no units.

On–road Target Density

We define the one–dimensional and the two–dimensional on–road target densities. The one–dimensional density,
denoted by λ, is the average number of targets per road length:

λ =
number of targets on a road

length of the road
(8)

7



The two–dimensional density, denoted by βR, is the average number of on–road targets per area:

βR =
number of on–road targets within an area

area
(9)

These two densities and the road density defined above are related as follows.

βR = λρ (10)

As in the case of off–road targets, the concept of density can be generalized to higher dimensions. A typical
three–dimensional density involves the speed of the target as well as the area. In that case, the density is
expressed in terms of “number of targets per square Km per m/s.”

Road Constrained PCA

The idea is to modify equation (1) to account for the road network. In particular, we will replace the product
of Cm and the square root of the determinant of the innovations matrix in (1) by an approximate uncertainty
volume. The uncertainty volume is formally defined in the Appendix. The first step is to interpret equation (1)
in terms of the average number of targets and false alarms that fall within the uncertainty volume. Notice from
equation (22) that for Gaussian distributions and for a given target density, β, the average number of targets
within the uncertainty volume is given by

βV = β det(S)1/2Cm (11)

which is exactly the part in the exponent of equation (1) that corresponds to the targets.

For the case of road–constrained tracking, we need to distinguish between targets that are off the road and
targets that are on the road. We propose the following heuristic approximations for these two cases:

PCA|O = exp (−(βR + βo + γmβc)Vo) (12)

and
PCA|R = exp (−(βR + βo + γmβc)VR) (13)

where βo, βR, and βc are the off–road, on–road, and false alarm densities, respectively; Vo and VR are the off–road
and on–road uncertainty volumes, and γm = Dm/Cm is a constant. The rationale for these expressions is that
to be correctly associated, measurements compete with targets and false alarms that fall within the uncertainty
volume. Thus, if a target is off the road, the average number of measurements that fall in the uncertainty volume
is βRVo + βoVo, while the average number of false alarms is βcVo. The factor γm takes into account the fact that
random false alarms are more difficult to associate that measurements of other tracks.1, 2

To use the PCA expressions (12) and (13) we still need to evaluate Vo and VR. The off–road uncertainty
volume, Vo, is given by the product Cm det(So)1/2 because the distribution of the innovations is Gaussian. The
innovations covariance matrix, So, is computed using the KF equations as in (5). The on–road uncertainty
volume, VR, is more difficult to compute because the distribution is not gaussian and depends on the road
density. The correct way to compute it would be to propagate a mix Gaussian distribution and compute the
uncertainty volume using equations (18) and (19). Instead, we approximate it based on heuristic considerations.
We propose the following approximation:

VR(ρ) =
a + ρσo

b + ρσo
Vo (14)

where

a = b
σ2

R0

σ2
o

(15)

b =
σ2

o − σ2
R1

σ2
R1
− σ2

R0

(16)

The parameter σo is the “effective” standard deviation of the target location innovations. By effective we
mean the geometric average of the standard deviation in all directions. We define σ2

o as the square root of the

8



determinant of the sub-matrix of So that corresponds to the (x, y) components. If the estimates of the (x, y)
components are uncorrelated, then σ2

o = σxσy (although the (x, y) components are rarely uncorrelated). The
parameters σR0 and σR1 are the “effective” innovations standard deviation for the case of ρ = 0 and ρ = 1/σo,
respectively. We use heuristic expressions for σR0 and σR1 as well, since they are difficult to compute.

Equation (14) captures three of the properties of the on–road uncertainty volume that we expect to find:

1. For very large ρ, VR converges towards Vo, since the road network does not add any information. In this
case, VR(∞) = Vo = Cmσ2

o .

2. For ρ = 0, the uncertainty region is given byVR(0) = Cmσ2
R0

.

3. For ρ = 1/σo, the uncertainty region is given by VR(1/σo) = Cmσ2
R1

Figures 4 and 5 depict the properties described above.

Figure 4. On–road uncertainty regions (gray areas) for very small density (left) and large road densities (right).

Figure 5. Schematic of the variation of the on–road uncertainty volume with road density.

Average PCA

The average PCA for on–road and off–road targets is obtained by averaging equations (12) and (13):

PCA =
βo

βR + βo
exp (−(βR + βo + γmβc)Vo) +

βR

βR + βo
exp (−(βR + βo + γmβc)VR) (17)
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6. VALIDATION OF THE ROAD-CONSTRAINED PCA EXPRESSION

The derivation of the expression for road-constrained PCA involves several heuristic approximations. Therefore,
it needs to be validated against realistic scenarios. Here we report on initial efforts to accomplish this validation.
We fixed a basic scenario and varied both the normalized target density and the normalized road density,
and computed the PCA using the proposed formula for various on–road/off–road target ratios and various
maneuvering ratios (MR). The MR is defined as the ratio between the standard deviation of the position error
due to the process noise and past measurements, and the standard deviation of the position error due to the
latest measurement. (The MR is similar to the target maneuvering index.3 ) Then we set up experiments to
mimic these parameters and validate the PCA expression. In this initial validation effort, we did not use an
actual tracker; instead, we followed a similar procedure as in Mori et. al.2 except for the effect of roads, which
was approximated.

The expected total number of objects was set to be 100, keeping the on–road/off–road target ratio set for each
experiment. For off–road targets, the prediction error covariance matrix was set to be diagonal with identical
terms in the main diagonal. For on–road targets, a random heading was set for every target, and a random
prediction error along the road was generated with the off–road prediction variance. The across–road error was
generated by drawing a random variable with the off–road prediction variance, and subtracting a random number
rd drawn from a uniform distribution between 0 and d, where d is the average distance between roads in a uniform
road network. The resulting across–road error distribution is concentrated around the origin for large d (small
road density) and converges towards a Gaussian with the off–road prediction variance for very small d (large
road density). Then, we added a measurement noise to both on–road and off–road targets. The ratio between
prediction error and measurement noise standard deviations was determined from the maneuvering ratio set for
that particular experiment. Finally, we solved the assignment problem using a version of the Munkres algorithm.
The PCA was obtained by repeating this experiment 100 times and determining the ratio between the number
of correct associations and the total number of associated points. The results are shown in Figures 6 and 7.
There is a good agreement between the values obtained by the proposed road–constrained PCA (solid line) and
those obtained experimentally. The caveat is that the across–road error probability distribution was generated
ad hoc. A more comprehensive simulation using a real tracker is planned.

Figure 6. Probability of Correct Association as a function of the Normalized Target Density for various on–road/off–road
target ratios and maneuvering ratios, and for a Normalized Road Density of 0.2.

7. CONCLUSIONS

This paper described a Tracker Performance Model (TPM) that predicts the performance of a nominal tracker as
a function of a number of tracking parameters. The purpose of this model is to be able to generate approximate
measures of performance in a time and cost efficient way. We carried out some preliminary experiments to
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Figure 7. Probability of Correct Association as a function of the Normalized Road Density for various on–road/off–road
target ratios and maneuvering ratios, and for a Normalized Target Density of 0.3.

validate TPM and compared the performance of ALPHATECH’s Precision Fire Control Tracker (PFCT) against
the performance predicted by TPM. Preliminary results show good agreement, what encourages us to continue
testing and refining TPM to account for advanced features such as MHT and feature–aided tracking. We also
introduced an expression for the PCA for road–constrained tracking and set up simulations to provide some level
of confidence on its accuracy. To fully validate the road–constrained PCA expression, however, we will need to
experiment with real data or implement a high fidelity Monte Carlo simulation that accurately represents the
effect of the roads on tracking performance. We consider this expression as an initial attempt to quantify the
effect of roads using a simple analytical expression. Current efforts are aimed at extending the PCA expression
to account for MHT explicitly (as opposed to “N out of M” rules) and other effects such as hypothesis tree
pruning strategies.
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Appendix: Uncertainty Volume for On-Road Targets

Probability Concentration Region—For arbitrary probability densities and a given percentile, pm, we for-
mally define the Probability Concentration Region, R(pm), as follows:

R(pm) =

{
x ∈ <m : P{x ∈ R} = pm and the volume of R,

∫

x∈R(pm)

dx, is minimum

}
(18)
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Uncertainty Volume—The Uncertainty Volume, V , is defined as the volume of the probability concentration
region for a particular percentile:

V =
∫

x∈R(pm)

dx (19)

for

pm =
mπm/2

Γ
(

m
2 + 1

)
∫ rm

0

νm−1 e−
1
2 ν2

(2π)m/2
dν (20)

where

rm =
(

Cm

Bm

)1/m

=
(

2m−1

√
π

Γ
(

m + 1
2

))1/m

(21)

We should point out that this choice of pm is somehow arbitrary. With this choice the uncertainty volume exactly
matches the exponent of the PCA expression, including the constant Cm, but we could have chosen another pm

with similar results. With our choice of pm, however, the uncertainty volume for Gaussian distributions equals
the square root of the determinant of the covariance matrix multiplied by the constant Cm; that is,

V = Cm det(S)1/2. (22)

To show this, we evaluate (19) for a Gaussian distribution with mean µ and covariance matrix S. The probability
concentration regions are ellipsoids given by

R =
{
x ∈ <m : (x− µ)T S−1(x− µ) ≤ r

}
(23)

The particular r that corresponds to the percentile pm is computed as follows:

pm = P{x ∈ R}
=

∫

(x−µ)T S−1(x−µ)≤r

1
(2π)m/2 det(S)1/2

e−
1
2 (x−µ)T S−1(x−µ)dx

=
∫

yT y≤r

1
(2π)m/2

e−
1
2 yT ydy

=
mπm/2

Γ
(

m
2 + 1

)
∫ r

0

νm−1 e−
1
2 ν2

(2π)m/2
dν (24)

The last equality is obtained by using the following property of spherical integrals2:
∫

‖y‖≤r

f(‖y‖)dy = mBm

∫ r

0

νm−1f(ν)dν (25)

By comparing equations (24) and (20), it follows that r is in fact the rm given by equation (21). Now, the
uncertainty volume for this probability concentration region becomes:

V =
∫

(x−µ)T S−1(x−µ)≤rm

dx

= det(S)1/2

∫

yT y≤rm

dy

= det(S)1/2mBm

∫ rm

0

νm−1dν

= det(S)1/2Bmrm
m

= det(S)1/2Cm

where again we made use of the expression (25).
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