“- Carnegie Mellon
Software Engineering Institute

DoD Architecture Framework
and Software Architecture
Workshop Report

William G. Wood, Software Engineering Institute
Mario Barbacci, Software Engineering Institute
Paul Clements, Software Engineering Institute
Steve Palmquist, Software Engineering Institute
Huei-Wan Ang, The MITRE Corporation

Loring Bernhardt, The MITRE Corporation
Fatma Dandashi, The MITRE Corporation

David Emery, The MITRE Corporation

Sarah Sheard, Software Productivity Consortium
Lyn Uzzle, Software Productivity Consortium
John Weiler, Interoperability Clearinghouse

Art Krummenoehl, Johns Hopkins University Applied Physics
Laboratory

March 2003

. N STATEMENTA
. .. 2ublic Release

puuon Un\imlted Unlimited distribution subject to the copyright.

Architecture Tradeoff Analysis Initiative

2 Ve

§

pistio

Technical Note
CMU/SEI-2003-TN-006

20030822 124

Technical Note
CMU/SEI-2003-TN-006

DoD Architecture Framework
and Software Architecture
Workshop Report

William G. Wood, Software Engineering Institute
Mario Barbacci, Software Engineering Institute
Paul Clements, Software Engineering Institute
Steve Palmaquist, Software Engineering Institute
Huei-Wan Ang, The MITRE Corporation

Loring Bernhardt, The MITRE Corporation
Fatma Dandashi, The MITRE Corporation

David Emery, The MITRE Corporation

Sarah Sheard, Software Productivity Consortium
Lyn Uzzle, Software Productivity Consortium
John Weiler, Interoperability Clearinghouse

Art Krummenoehl, Johns Hopkins University Applied Physics
Laboratory

March 2003

Architecture Tradeoff Analysis initiative

Unlimited distribution subject to the copyright.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND. EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY. OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work. in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http//www sei.cmu.edw/publications/pubweb. html).

Portions of IEEE Std 1471-2000 reprinted with permission from IEEE Std 1471-2000, “IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems™ Copyright 2000, by IEEE. The IEEE disclairns any responsibility
or liability resulting from the placement and use in the described manner.

Contents \

ADBSIIACYcoiemiresniisissssersreninrsereseessesessnnssssssnssensnsnesessnessessanassasanansssenssssnonanes v
1 Introduction.. I — 1
2 Background and PUrPOSE.........cceceuereesscsanissansssanmsssnseasansessssssssassssnssssansasaenss 2
3 Summary of Briefingscccvieiiisnininsnsscmninnsenssisnninnnseeissssasssensanas 3
4 DiSCUSSION..cccecernserirnrsemserssrsssrasssassasessasssssssssnssnsssnssasenassnsesasansssassasssnsnsssasen 6
5 SUMMACNY cccccciiisnrsserssscnssasammsssnmsssssssssssosssssssnnsssensasssnsssansnsnassssssasssansssnssssans 12
Appendix A Documenting Software Architectures Using the “Views

and Beyond” Approach..........ccccvicenscsccnniensensrsssnensssessnsenssans 13
Appendix B C4ISR Architecture Framework........; 19
Appendix C IEEE Std 1471-2000........cccuremememmersssesssssssssesesssssessessessesssessensas 20
Appendix D Analytic Views Within the DODAFc.cccccircmrescserisnssionsines 26
Appendix E Federal Enterprise Architecture Framework...........cecceusuuinns 28
Appendix F Workshop ANNouncement.......cccucceeeernesnsssssneniiasesssanaensnnessnens 31
Appendix G Biographies of AUthOrscccccuicmminiicctncnsnnnnennneesesiessenes 32
REfEreNCEeS.....cccvvvmicnmrisnicriisisesecsssesssssistssssisensssnssnsssnsssssssassssnassaassansnansasnses 35

CMU/SEI-2003-TN-006

CMU/SEL-2003-TN-006

List of Figures

Figure 1: Linkages Among VIEWS........cciviiiiieiinicnee st 19

CMU/SEI-2003-TN-006 jii

CMU/SEI-2003-TN-006

Abstract

During the Software Engineering Institute’s Workshop on the Department of Defense
Architecture Framework and Software Architecture, participants from government, industry,
and academia discussed the similarities and differences between system and software
architecture representations, and how these representations relate with one another. This
technical note summarizes the activities of that workshop.

CMU/SEI-2003-TN-006 v

vi

CMU/SEI-2003-TN-006

1 Introduction

The Software Engineering Institute (SEI*) conducted the Workshop on the Department of
Defense (DoD) Architecture Framework (DoDAF)' and Software Architecture on January 30,
2003, near Washington, DC. This workshop provided a forum for participants to discuss the
similarities and differences between system and software architecture representations, and
how these representations interrelate. The participants were invited because of their
familiarity with the representations and the various approaches that apply to those
representations.

This half-day workshop consisted of five presentations, which are described in the body of
this report. The workshop concluded with a facilitated discussion.

This report is organized as follows. Section 2 describes the background and purpose of the
workshop. Section 3 summarizes the attendees’ presentations of approaches to representing
software and system architectures. Section 4 describes the topics attendees discussed, and
Section 5 provides a summary of the results. The appendices provide further detail about the
approaches discussed.

$M SEl is a service mark of Carnegie Mellon University.
! The DoDAF is an in-progress revision of the C4ISR (Command, Control, Communications,
Computer, Intelligence, Surveillance, and Reconnaissance) Architecture Framework.

CMU/SEI-2003-TN-006 1

2 Background and Purpose

The DoDAF is being mandated by the DoD as the basis for building representations of large-
scale systems of systems. The DoDAF prescribes three major interrelated views to represent
system architecture: system, operational, and technical.

While the DoDAF deals with systems of systems, there is also an entire community devoted
to the design and representation of sofrware architectures. For example, the SEI has
developed approaches for documenting, building, and analyzing software architectures. The
Unified Modeling Language (UML) has become a standard notation for describing software
designs. Both UML and the SEI’s “Views and Beyond™ approach to architecture
documentation use multiple views to represent a software architecture. However, the views
most often used in the software architecture community do not correspond to the DoDAF
views.

During the development life cycle, DoDAF views might serve as a basis for the development
of a software architecture, but there is no accepted way of using DoDAF views as a
foundation for this development. Furthermore, there is no clear correspondence between
DoDAF views and notations, and those most useful for representing a software architecture.
Nevertheless, because of the ubiquity of the DoODAF and a failure to distinguish between
system and software architectures in some quarters, some DoD acquisition project teams
attempt to fit their software architectures into the DoDAF because they believe that policy
requires them to do so.

This workshop is a first step toward understanding the representational challenges involved
in architecting system and software architectures, as well as trying to understand the
transformation from DoDAF representations to software architecture representations.

2 CMU/SEI-2003-TN-006

3 Summary of Briefings

Workshop attendees described various aspects of architectural approaches in five briefings. A
summary of these briefings follows, and more detail is provided in the appendices.

1.

Paul Clements presented an overview of the SEI’s Views and Beyond approach to
documenting software architectures. Rather than prescribing a fixed set of views, as in
the Rational Unified Process (RUP) or the DoDAF, this approach suggests that the
stakeholders should first determine which architectural representation best captures the
information they need to do their jobs. The software architects create a table showing the
system stakeholders and the views that best represent their viewpoints. The architects
then combine views and prioritize them until a set of views that sufficiently covers the
viewtypes is selected. The architects document each view as a number of “view packets”
that show, in varying degrees of detail, different elements and element relationships that
would interest a stakeholder. The Views and Beyond approach suggests a template for
view packets, as well as for documentation that applies to more than one view. The most
important part of the latter is a mapping among views that provides a holistic picture of
the total design by showing how information in one view relates to that in another.

The Views and Beyond approach acknowledges that there is a limited number of
viewtypes to represent the essential categories of views. It also recognizes that
architectural styles (or known design approaches) can provide the conceptual basis for
describing a software architecture.

Appendix A contains more details of this approach.

Fatma Dandashi presented the DoDAF by giving an overview of the proposed changes
to the C4ISR Architecture Framework. One major change is that the architectural
products developed for a system architecture now depend on the life-cycle development
stage and the purpose for building the architecture. For example, an architecture
developed to aid budget planning requires different products from one used to assist
with the development of a concept of operations (CONOPS). Likewise, an architecture
developed to assist with the development of a CONOPS differs from one developed to
serve as a blueprint for system construction. The details required by the architecture also
change during its purpose and life-cycle phase. The DoDAF defines 22 products
organized into three views; architects must select the most appropriate subset of these
products to satisfy their purpose.

Because the DoDAF is not yet published, we could not include actual text from it in this
report. Instead, Appendix B contains text from the C4ISR Architecture Framework, and
Appendix E describes how the DODAF relates to the Federal Enterprise Architecture
(FEA) mentioned in Item 5 below.

CMU/SEI-2003-TN-006 3

David Emery presented an overview of the relationship between the DoDAF and IEEE
Std 1471-2000. This standard suggests that representations for a software-intensive
system

e provide a context that describes how a system fits into its environment
e account for the concerns of its various stakeholders

e fulfill the mission requirements of the system

These requirements can be fulfilled by creating a viewpoint, which establishes the
conventions by which a view is created, depicted, and analyzed. The viewpbint
determines the languages that will be used to describe the view, as well as any associated
modeling methods and analysis techniques that will be applied to these representations
of the view. The viewpoints developed depend heavily on the stakeholders’ concerns.
Moreover, a view can consist of a number of architectural models or representations.

An excerpt of IEEE Std 1471-2000 is provided in Appendix C.

Loring Bernhardt presented an overview of the challenges of developing architectures to
evolve existing stovepiped software-intensive systems into a constellation of
interoperable systems of systems. This evolution is usually done in a number of delivery
blocks (e.g.. every 18 months) over a number of years (e.g., 10 years). Many challenges
arise because the legacy systems are often approaching technical obsolescence, and 10-
year technology forecasts are unreliable. Developing architectures to evolve existing
systems requires (among other things) an approach of creating and maintaining a master
evolution plan (MEP) to describe how the new architecture will be developed, the
impact on the *‘sensor-to-shooter” chain at each delivery block, and the life-cycle cost
predictions. None of the standard DoDAF products capture the MEP in a satisfactory
manner.

Appendix D contains more information on analytic views within the DoDAF.

John Weiler presented an overview of the FEA, an architecture that is being developed
for the Office of Management and Budget (OMB) to facilitate cross-agency and within-
agency analysis of duplicative investments and opportunities for collaboration. Many
federal agencies within the federal government have needs for systems whose features
and capabilities overlap with the needs of other government agencies. and which are
likely to be created from the same set of commercial software and hardware
components. This overlap suggests the use of these interrelated reference models:

e Business Reference Model (BRM)

e Performance Reference Model (PRM)

e Data and Information Reference Model (DIRM)

e Application-Capability Reference Model (ACRM)
¢ Technical Reference Model (TRM)

CMU/SEI-2003-TN-006

The BRM and PRM describe the objectives for the agency, and the DIRM, ACRM, and
TRM describe how best to allocate resources, technology, and services to meet these
objectives. To date, only the BRM is defined.

Appendix E provides an overview of the FEA.

CMU/SEI-2003-TN-006 5

4 Discussion

Workshop participants discussed the following topics:

1.

The software and systems architectural views have different purposes but also have
some overlap. Because an enormous number of views could be built, architecture
developers for a system must select the system and software architectural views that are
important to them in documenting the architecture. Developers must also specify the
order and time sequence for developing those views. Selecting which views to use
depends on the purpose for building the architecture, the stakeholders who review the
architecture, and other factors, such as those discussed in IEEE Std 1471-2000.

While everyone agreed that architecture is an essential ingredient in the engineering of
non-trivial systems, there was also general agreement that an “architectural storm” is
brewing with the many overlapping architectural buzzwords. While it is easy to find
references to “information architecture,” “enterprise architecture,” “system
architecture,” “system-of-systems architecture,” “software architecture,”
“‘communications architecture,” “hardware architecture,” “‘security architecture,” “data
architecture,” and many other “architectures,” it is harder to find crisp definitions of any
of them. or descriptions of how they should be used in our engineering discipline. (In
fact. one such overlap—*system architecture” versus “software architecture”—can be
said to have led to this workshop.)

Everyone agreed that. regardless of whether a project deals with a software architecture
or a system architecture, views should be built according to the purpose for building
them. The group was largely suspicious of any methodology with a closed set of
prescribed architectural views. There was some discussion about whether the DoDAF
encourages. merely allows, or forbids the use of views other than the three it promotes.
The attendees agreed that it would be helpful to clarify the DoD’s position on the use of
other views.

IEEE Std 1471-2000 is a good tool for starting to develop viewpoints. This standard is
consistent with the stakeholder/view table in the SEI's Views and Beyond approach.

The group identified a number of important uses for the DODAF views, including

* as aninitial stage in developing a large-scale system. In this case, the evolution from
a DoDAF set of views to a set of software architecture views is necessary if the
system is software intensive (because software views are needed by the software
developers).

* asasource-selection mechanism for fly-off evaluation. In this case, the appropriate
DoDAF views should be chosen, and—if the system is software intensive—some

CMU/SEI-2003-TN-006

software architectural views should be built to describe the important software
capabilities being proposed by the competing teams.

e as a mechanism for making investment decisions. In this case, since the investment
decision is often to “mix and match” among the proposed alternatives, many options
are discarded. Once again, if the system is software intensive, some software
architectural views should be developed to demonstrate the capabilities that are
poorly represented in the DoDAF.

5. The group felt that the DoDAF did not adequately represent architectures that involve
software styles such as distributed data or distributed computation; these styles require
some software architectural views. They also felt that, while the DoDAF sufficiently
addressed broad, overarching designs, it did not adequately capture detailed system
design.

6. The end user is under-represented in the development and review of the views or
products. For example, the end user has little patience for reviewing hundreds of pages
of documents and diagrams. Members of each end-user class, however, can be walked
through a number of important use case scenarios that are relevant to the way they will
use the system. The end user relates well to demonstrations of capabilities, especially
person-in-the-loop prototype simulations. The models for these demonstrations must
have reasonable computer-human interfaces.

7. The current DoDAF is representation oriented, and does not impose or recommend a
process for architecture development. Such a process can be quite sophisticated and can
differ across contractors and vendors. Guidance and expertise can prevent the developer
from making mistakes others have already made. Other considerations include the
following:

e There is no obvious way to determine the effect of a reduction in scope, reduction in
funding, or advancement in schedule.

e The “reward” structure is not aligned with the desire to create interoperable
constellations of systems. Each system manager is rewarded by the progress of his or
her system, and the integration of the constellations of systems becomes secondary.

e There is no clear set of criteria to determine what constitutes “acceptable and good”
versus “unacceptable and poor” for individual view products or the set of products
developed.

8. The views in the DoDAF and in the software architecture realm tend to be complex and
are often captured using a variety of notational styles.

e Software architects use the word “view” to describe a set of software elements and
the relationships among them. For example, a logical view describes classes and the
relationships among them, and a process view describes processes and their uses. The
definitions of views are complicated by the fact that more than one representation is
possible for each view (e.g., state transition diagrams and statecharts can be used to

CMU/SEI-2003-TN-006 7

represent the behavioral aspects of processes) and that UML-based tool sets support
many views and multiple representations for each view.

® The DoDAF discusses framework products that are included in 3 types of views: (1)
the Operational View (OV), which contains 7 products: (2) the System View (SV).
which contains 11 products; and (3) the Technical View (TV), which contains 2
products.

Moreover, the DoDAF contains two All-Views (AV) products that do not comprise a
separate view but rather include aspects of the architecture that apply to the
architecture as a whole (e.g., the AV-2 product is the integrated dictionary for the
whole architecture and contains architecture information from all three views).

9. Since both system and software architectures describe elements and how they relate to
each other, there is likely to be some conceptual confusion. Therefore, there will
probably also be confusion between DoDAF views developed by system engineers and
software architecture views developed by software engineers. It is also likely that teams
will mistakenly interpret the DoDAF as sufficient to document the software architecture.
This is wrong because there is superficial overlap among the following:

¢ the logical view of software architecture as defined by RUP [Kruchten 01] and the
System Functionality Description product of the DoDAF

e the process view of software architecture (again. as defined by RUP) and the System
State Transition Description product of the DODAF

® usecases in the software architecture (defined by RUP as the “plus one” view, and
captured by sequence diagrams) and the System Event Trace Description product of
the DoDAF

* the deployment view of software architecture (defined in the Views and Beyond
approach summarized in Section 3) and the allocation of the system functions to the
systems that implement them in the DoDAF’s Systems Interface Description; that
product and the supporting Systems-Systems Matrix may also be used to detail the
inter-system software interfaces (i.e., what is currently documented in the Interface
Description Documents [IDDs]).

10. System architectures (especially as represented by the DoDAF) are particularly
concerned with functionality, whereas software architectures are more concerned with
achieving functionality that is specified elsewhere. The software is represented by the
system functions in the DoDAF; this representation is not appropriate for a software
architecture because a software architecture shows how functions are achieved as a
result of cooperating structural elements.

® The system engineer’s view of application functionality tends to be oriented toward
the domain challenges associated with the function. while the software engineer
concentrates on the services provided to achieve the functionality. These approaches
can be quite different. For example, a system engineer may be interested in the

8 CMU/SEI-2003-TN-006

development of an aircraft’s track based on timed inputs from multiple sensors,
whereas the software engineer is likely to be interested in how the tracks get
distributed to clients. Both are important, but the mindset for each is different.

o The system engineering community seems to be comfortable with the well-
established IDEF approach to detailing the architecture that starts with designing the
hardware elements with associated functionality. The software engineering
community gave up on the IDEF approach many years ago in favor of an object-
oriented approach that allocates software to hardware at a later time in the
development cycle. Many of the major software components that are distributed
throughout the system are poorly represented by the IDEF approach but are well
represented by the object-oriented approach. The software infrastructures, such as
operating systems, communications protocols, and distribution middleware, are all
poorly represented in the DoDAF approach. The tensions between the two
communities make resolving these problems challenging.

11. The interactions of the system with its environment are treated quite differently in the
software architecture and the DoDAF. The software architecture relies heavily on use
cases to describe how multiple actors (end user or external system) interact with the
various automated elements of the system. The DoDAF uses activity diagrams (OV-5) to
describe the general interaction between activities conducted at nodes within the system;
the DoDAF does not distinguish between manual and automated activities, since this
decision is made later. The functions are traced back to the OV-5 diagram relationships
captured in the SV-5 diagrams. There is a strong correlation between use cases and the
OV-5 and SV-5 diagrams. In addition to the product descriptions and the data element
definition tables (which detail the relationships across products), the object-oriented
example in the deskbook also provides guidance on these relationships.

12. The tool sets that support the architectures have been inconsistent in the past. For the last
10 years, the software tool development community has been building a UML standard
that is targeted at the software architectural views and is the basis for most current
graphical tool sets associated with building software architectural views. Additional
UML tool support includes the following capabilities, which many software architects
use to build their software architecture and design representations:

e consistency checking between the different views, which is very necessary and which
is performed by these tool sets, and is very necessary. It is almost impossible, given
hundreds of complicated diagrams and tables, to determine consistency by manual
inspection.

e export and import of representations between tool sets

Until recently, many of the DoDAF views were not UML compliant, and could not be
built, consistency-checked, exported, or imported. The UML-based tools were built
initially for software design, rather than software architectures, and hence lack some
features that many software architects believe are important.

CMU/SEI-2003-TN-006 9

13. Some parts of the community believe that architecture is shaped more by its quality
attributes or “ilities” (performance, availability. modifiability. security, usability, etc.)
than by its functionality. Though this is a well-accepted belief in software architecture,
there are few such representations in the DoDAF view products.

e The DoDAF OV3 product asks for information-exchange performance.
¢ UML extensions allow for performance annotations.

However, methods and procedures (such as the Architecture Tradeoff Analysis Method™™
[ATAM®]) have been developed to analyze software architectures against quality
attribute scenarios; these methods can either produce high confidence that the
architecture will satisfy its major business drivers, or identify risks, tradeoffs, and
concerns. Analysis methods for the DODAF have not been reported publicly, though they
are undoubtedly used by architects in many cases.

14. The chief information officers (CIOs) and the materiel developers mandate the use of
standards and commercial products, including middleware such as Java 2 Enterprise
Edition (J2EE), .NET, common object request broker architecture (CORBA), and the
Web.

® The DoDAF uses the TV-1 and TV-2 views to represent current and future standards.
but relationships between these standards were not shown in the diagrams in the
previous version of the DoDAF. To remedy this situation. the DODAF has included
relationships between the standards as detailed in the TV-1 and TV-2 views. and the
architectural elements to which these standards correspond (e. g., systems as well as
software and hardware components of systems).

¢ One approach used by software architects is a “layering” view to describe how
applications, user interfaces, middleware, computing platforms, sensors. and
actuators interact. However, this approach is often depicted weakly in the
architecture. Another approach is to have a constraint model that establishes
responsibilities and obligations that each component must fulfill to behave
predictably.

¢ Though the FEA attempts to address the standards and commercial off-the-shelf
(COTS) issues explicitly, the representations to capture these issues are not yet
defined. making it difficult to judge the representations’ effectiveness.

¢ The FEA focuses on information technology (IT). which is largely associated with
distributed access to large-scale commercial databases and is often concentrated on
providing high-volume throughput to serve many customers as quickly as possible.
Many DoD systems must handle significant real-time response requirements. In such
systems. commercial database management system (DBMS) products are used with

M Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon
University.

10 CMU/SEI-2003-TN-006

care, in a way that ensures that the COTS product either meets the performance
requirement or is only used in the system’s non-critical computations.

CMU/SEI-2003-TN-006

11

5 Summary

A summary of the implications of using the approaches described in the previous sections is
provided below. All the following statements refer to large-scale. software-intensive systems
of systems.

L.

The DoDAF and current software architecture approaches have been developed
separately. by different organizations, with different purposes, and with little overlap.
Hence. there are significant differences between their favored representations. and there
is no way to ensure compatibility and consistency among their different views.

There is a need to select which views (system and software) will be needed for a system.
IEEE Std 1471-2000 and the SEI's Views and Beyond approach (which leads to 1471-
compliant documentation) both provide guidance on selecting views.

The DoDAF does not represent software architectures; some software architectural
views are needed to supplement the DoDAF products to understand how well these
systems will operate.

None of the views conveniently represents multi-stage transitions from stovepiped
legacy systems to interoperable systems of systems, even though this is “where the
action is” nowadays in developing mission-critical systems. Some additional approach,
such as an MEP, is needed.

Currently each system program office (SPO)/contractor combination must struggle—
with little guidance—with the differences between the DoDAF and current software
architecture approaches to develop individual approaches for solving their problems.
They must then train their staffs to follow the approach, using available tool sets as
much as possible.

Though there is certainly room for improving this situation, no detailed discussions took
place at the workshop. Some of the above issues can be targeted for further workshops.

12

CMU/SEI-2003-TN-006

Appendix A Documenting Software Architectures
Using the “Views and Beyond” Approach

Authors’ note: The material in this appendix is based on the book Documenting Software
Architectures: Views and Beyond [Clements 02].

Introduction: Viewtypes, Styles, and Views

Three years ago, researchers at the Software Engineering Institute and the Carnegie Mellon
School of Computer Science set out to answer the question: “How should you document an
architecture so that others can successfully use it, maintain it, and build a system from it?”
The result of that work is an approach we loosely call “views and beyond.”

Modern software architecture practice embraces the concept of architectural views. A view is
a representation of a set of system elements and the relations associated with them. Views are
representations of the many system structures that are present simultaneously in software
systems. Modern systems are more than complex enough to make it difficult to grasp them all
at once. Instead, we restrict our attention at any one moment to one (or a small number) of
the software system’s structures that we represent as views.

Some authors prescribe a fixed set of views with which to engineer and communicate an
architecture. Rational’s Unified Process, for example, is based on Kruchten’s 4+1 view
approach to software [Kruchten 01]. The Siemens Four Views model [Hofmeister 00] is
another example. A recent trend, however, is to recognize that architects should produce
whatever views are useful for the system at hand. IEEE Std 1471-2000, a recommended best
practice for documenting the architectures of software-intensive systems exemplifies this
philosophy [IEEE 00]; it holds that an architecture description consists of a set of views, each
of which conforms to a viewpoint, which, in turn, is a realization of the concerns of one or
more Stakeholders.

This philosophy about views leads to the fundamental principle of the Views and Beyond
. approach:

Documenting an architecture is a matter of documenting the relevant views, and then
adding documentation that applies to more than one view.

CMU/SEI-2003-TN-006 13

What views are available, from which the views relevant to a system can be chosen? Plenty,
in fact. too many. To lend some order to an otherwise-chaotic collection of possible views, we
find it extremely helpful to think about views in groups. according to the kind of information
they carry. Architects carry out their creative task by thinking about the system in three
different ways at once:

1. How is the system to be structured as a set of code units?
2. How is the system to be structured as a set of interacting runtime elements?

3. How is the system to relate to non-software structures in its environment?

Considering views along the lines of these three broad categories helps an architect think in
naturally structured terms about the system, and helps consumers of documentation
discriminate among the separate concerns that an architecture manifests, We call the
categories viewtypes. The three viewtypes are:

1. Module viewtype. In views belonging to the module viewtype, the elements are
modules, which are units of implementation. Modules represent a code-based way
of considering the system. Modules are assigned areas of functional responsibility
and assigned to teams for implementation. There is less emphasis on how the
resulting software manifests itself at runtime. Relations among modules shown in
module views include is a. is part of. and depends on.

2. Component-and-connector viewtype. In views belonging to the C&C viewtype,
the elements are components (which are principal units of computation) and
connectors (which are the communication vehicles among components). The
principle relation shown in C&C views is attachment between the components and
the connectors.

3. Allocation viewtype. Views belonging to the allocation viewtype show the
relationship between the software elements and elements in one or more external
environments (hardware, organizational, environmental, etc.) in which the software
is created and executed.

Even within the confines of a viewtype, elements and relation can be specialized in known
ways. resulting in styles. Styles represent known design approaches to architectures. In the
C&C viewtype. many styles are well known. By restricting the components to interact via a
client-server request-reply connector, and by restricting the communication paths among the
elements, a client-server style emerges. Or. by restricting the components to be data
repositories and data accessors that communicate via connectors that provide the appropriate
communication mechanisms, a shared-data style emerges.

Many authors have catalogued C&C styles (e.g., the work of Shaw and Clements [Shaw 97)).
However. the other two viewtypes are just as rich with respect to styles. For example, by
specializing the relation among modules to “allowed to use” and imposing a strict ordering
on the relation. the well-known layers style emerges. Specializing the relation to is part of

14 CMU/SEI-2003-TN-006

and modules to elements that have functional responsibilities yields the module
decomposition style. Employing the is a relation and other constraints yields a generalization
style, the basis for inheritance relations in object-oriented systems.

The allocation viewtype can host various styles depending on how the software and
environmental elements are specialized. Allocating modules to a development organization’s
structure produces the work assignment style. Allocating processes to processors defines the
deployment style. And allocating modules to a development environment’s file structure
gives us the implementation style.

When a style is bound to a particular system, the result is a view.

Choosing the Views

Our fundamental principle cited in Section 3 implies that the first task for an architect is to
decide which views are relevant. Our approach provides a simple three-step procedure for
choosing the views relevant to a particular project’s needs. In concert with IEEE Std 1471-
2000, it is based on determining the needs of the stakeholders.

Step 1: Produce a Candidate View List

Begin by building a stakeholder/view table for your project. Enumerate the stakeholders for
your project’s software architecture documentation down the rows. Be as comprehensive as
you can. For the columns, enumerate the views that apply to your system. Some views (e.g.,
decomposition, uses, and work assignment) apply to every system, while others (C&C views,
the layered view) only apply to systems designed according to the corresponding styles.

Once you have the rows and columns defined, fill in each cell to describe how much
information the stakeholder requires from the view: none, overview only, or detailed
information. We encourage architects to hold a workshop with stakeholders or their
representatives to begin a dialogue about what information they will need from the
documentation.

The candidate view list consists of those views for which some stakeholder has a vested
interest.

Step 2: Combine Views

The candidate view list from Step 1 is likely to yield an impractical number of views. Step 2
winnows the list to a manageable size.

CMU/SEI-2003-TN-006 15

First. look for views in the table that require only overview depth. or that serve very few
stakeholders. See if the stakeholders could be equally well served by another view having a
stronger constituency.

Next, look for views that are good candidates to become combined views. A combined view
shows information native to two or more separate views. A rule of thumb is that if there is a
strong correspondence between the elements in two views, then they are good candidates to
be combined.

Step 3: Prioritize

After Step 2, you should have the minimum set of views needed to serve your stakeholder
community. At this point, you need to decide what to do first. For example, some
stakeholders’ interests supersede others. A project manager or the management of a company
with which yours is partnering often demands attention and information early and often, and
you may want to cater to his/her needs first.

Documenting a View

The unit of documentation for a view is a view packet, which is the smallest unit of
information about the system you would ever want to give a stakeholder. View packets are a
mechanism to “chunk” the information in a view into manageable pieces. because a single
unit of documentation that portrayed all the information in a view (especially for large and
complex systems) would be unmanageably complex. A view packet can show information
about a small portion of the system, or it can show information at a particular level of detail.
For instance, the first view packet in a view might show the entire system, but with coarse-
grained information. Subsequent view packets could show more detail about each element
(such as its substructure). View packets let a stakeholder pan and tilt a “camera” of interest
around the system in a view; he/she can zoom in or zoom out to/from elements of interest,
and jump from view to view in an organized fashion.

No matter the view, the documentation for a view packet is placed into a standard
organization or template comprising seven