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Abstract

With the increasing use of Unmanned Aerial Vehicles (UAV)s in military operations,

there is a growing need to develop new methods of control and navigation for these vehicles.

This investigation proposes the use of an adaptive swarming algorithm that utilizes local

state information to influence the overall behavior of each individual agent in the swarm

based upon the agent’s current position in the battlespace. In order to investigate the

ability of this algorithm to control UAVs in a cooperative manner, a swarm architecture

is developed that allows for on-line modification of basic rules. Adaptation is achieved by

using a set of behavior coefficients that define the weight at which each of four basic rules

is asserted in an individual based upon local state information. An Evolutionary Strategy

(ES) is employed to create initial matrices of behavior coefficients. Using this technique,

three distinct emergent swarm behaviors are evolved, and each behavior is investigated in

terms of the ability of the adaptive swarming algorithm to achieve the desired emergent

behavior by modifying the simple rules of each agent. Finally, each of the three behaviors

is analyzed visually using a graphical representation of the simulation, and numerically,

using a set of metrics developed for this investigation.
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DISTRIBUTED CONTROL OF A SWARM OF AUTONOMOUS UNMANNED

AERIAL VEHICLES

1. Introduction

The introduction of unmanned and remotely piloted vehicles into the battlefield has

been a goal of military organizations since before the dawn of aviation. As early as 1863,

Charles Perley designed and patented an “unmanned aerial bomber” [43]. This device

consisted of a hot-air balloon, an explosives device and a timing mechanism. The timer

would be set based on the prevailing winds, the balloon would be launched, and when the

timer went off, an explosive device would be dropped into the midst of the enemy troops

[43].

Unmanned technology has progressed a great deal since the Civil War era. In the

1980’s the Israeli Air Force used remotely piloted Scout vehicles (see Figure 1) to fool

Syrian radar sites into activating their radars. The Israeli bombers used this technique to

locate and destroy 19 missile sites, thus achieving air superiority over Syria [33]. This use

of Remotely Piloted Vehicles (RPVs) highlighted the tactical advantages obtained from

the use of unmanned vehicles.

As technology progresses, Unmanned Aerial Vehicles (UAVs) are used for more ap-

plications in the battlefield environment. In support of Operation Joint Endeavor, for

example, the Predator has flown “more than 350 sorties and 2,800-plus hours” [56]. More

recently, the United States Air Force has pursued the development of the RQ-4 Global

Hawk UAV which is capable of spot radar surveillance, wide-area search and rescue, and

Ground Moving Target Indicator (GMTI) sensor modes [58].

While the 25,600 pound Global Hawk is the heaviest of the UAVs, other UAVs exist

that are small enough to be carried by a soldier into the battlefield. One example of this

smaller UAV is the WASP [23]. This aircraft is an example of a Micro Air Vehicle (MAV)

and is capable of remaining aloft for 1 hour 47 minutes. The WASP is equipped with an
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Figure 1 The Israeli Scout UAV used during the Bekaa Valley Offensive [43]

on-board color video camera, and is capable of transmitting images to the user in real-time

[23].

1.1 Motivation

Missions deemed appropriate for UAVs have changed with advances in UAV tech-

nology. Attack missions that would normally be assigned to a piloted aircraft can now be

performed by Predator UAVs armed with wing-mounted Hellfire missiles [87]. The United

States Senate Committee on Armed Services has committed to further expand the use of

this technology in the near future:

“It shall be a goal of the Armed Forces to achieve the fielding of unmanned,
remotely controlled technology such that
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• by 2010, one third of the operational deep strike aircraft of the Armed
Forces are unmanned; and

• by 2015, one third of the operational ground combat vehicles of the Armed
Forces are unmanned.”[62]

In response to this Congressional bill, the Air Force Research Lab set an objective

to “address fundamental issues in distributed decision, guidance, and control for multiple

UAVs” [9]. This objective is further decomposed into solving problems related to the

forming of teams of UAVs, assigning each team to a task, and performing the assigned

tasks in a coordinated manner [9].

While the use of UAVs in solo flight continues to be the primary application of UAV

technology, it is possible to achieve gains through the use of multiple UAV platforms moving

in a coordinated manner. The concept of using cooperative munitions to search for and

destroy a target has become an important area of research [31] [19] [20] [35] [32]. Another

area of research is the cooperative search ability of a swarm of UAVs [69]. Researchers

in these fields have used path planning techniques, integer programming techniques, set

covering algorithms, and Artificial Potential Fields (APFs) in an attempt to create a

cooperative framework for multiple UAVs to achieve a common goal [64].

1.2 Problem Description

The problem addressed by this research is the development of algorithms to define

behaviors for a team of autonomous agents. The cooperative model used for this research

is analogous to a swarm of bees or a flock of birds. Rather than planning a path from

start to finish for each vehicle, each adjusts its speed, heading, and orientation based upon

local interactions with other members of the team. This method allows the coordination

problem to be separated from the path planning and movement problem. Using this model,

specific behaviors of the overall team, hereafter referred to as a “swarm”, emerge based

upon the complex interactions of some basic rules [15].

The task of decomposing a complex swarm behavior into an irreducible set of rules

is a non-deterministic polynomial (NP)-hard problem [71]. Due to this complexity, rather

than attempting to determine the basic rules that lead to a specific, observed behavior,
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this research attempts to define a behavior by providing a means of modification to a set

of basic rules. This difference in approach provides a more flexible framework from which

many behaviors may potentially be created.

1.3 Assumptions

In order to create a simulation of a real-world problem, it is necessary to make some

assumptions to reduce the problem to a more manageable size. While these are not the

only assumptions made in support of this research, they encompass assumptions that are

necessary for further definition of the problem domain.

The first assumption is that only aerial vehicles are treated in this research. Since

autonomous agents can consist of air or ground vehicles (and may be holonomic or non-

holonomic in the case of ground vehicles [41]), it is necessary to reduce the problem domain

to consist of aerial vehicles only. The behaviors developed in support of this effort are based

upon a sensor-only craft as opposed to an attack aircraft. Sensors are considered to have

a round footprint with the craft positioned at the center. While this assumption leads to

an inaccurate representation for many sensors, more general behaviors are possible by not

limiting the simulation to a specific footprint.

Another assumption is that once airborne, a swarm does not change altitude. This

assumption limits the complexity of the movement problem to a two-dimensional case. This

can be considered reasonable because generally it is not necessary for autonomous vehicles

to change altitude often while performing a mission. While altitude changes do occur

during a mission, most profiles specify flying at a constant altitude for a defined portion

of the sortie. This simplifying assumption relieves the need to incorporate complex cost

functions to determine the optimal altitude.

The final assumption is that the mission planner has knowledge of the area in which

the flight occurs, and has a planned route for that flight. As stated in Section 1.2, the

swarm movement is separated from the path planning aspect of a mission. This allows

research efforts to be concentrated on the interactions of the basic rules rather than on

agent path planning requirements.
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1.4 Research Goals

The goal of this research is to develop a means of creating desired emergent behavior

in a swarm of autonomous UAVs. In order to accomplish this goal, three objectives must

be accomplished. These are:

• Develop a swarm model that is capable of moving through a given landscape along

a path specified by waypoints while avoiding threats.

• Define a set of behaviors for testing.

• Develop an automated method for finding the necessary set of rule interactions to

cause a desired emergent behavior.

In order to accomplish these objectives, a swarming algorithm is defined in Chapter

3 that simulates the interactions between multiple UAVs. This model utilizes a matrix

of coefficients which specify the emergent behavior of the swarm. Five different behaviors

are defined in Chapter 3, as well as three different landscapes which are used to assess

each behavior. A baseline swarm behavior is developed which utilizes a set of basic rules

to move through the landscape while avoiding threats and moving towards a goal along a

path specified by waypoints. Finally, an ES is utilized to perform a search for the values

of the coefficient matrix resulting in the desired emergent behavior.

1.5 Research Sponsors

This research is sponsored by the Information Directorate, Air Force Research Labo-

ratory (AFRL/IF), Wright Patterson Air Force Base, Ohio. The mission of the Information

Directorate is “the advancement and application of Information Systems Science and Tech-

nology to meet Air Force unique requirements for Information Dominance and its transi-

tion to air and space systems to meet warfighter needs.” [2]. This mission is accomplished

through research and development of embedded information systems capable of delivering

timely information about the battlespace to the warfighter while surviving threats. The

research discussed in this thesis supports this mission by developing a control algorithm for

a network of mobile sensor platforms capable of avoiding threats, moving through the bat-

tlespace autonomously, and transmitting high-resolution fused data to the warfighter. The
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control algorithm developed allows maximum flexibility to the warfighter and provides the

ability to get information quickly and effectively through a highly survivable distributed

platform.

1.6 Organization

This document is organized in the following manner: an introduction to the problem

domain and the objectives of this research project is given in Chapter 1. Chapter 2 provides

a summary of the current state of research in the field of autonomous vehicles. Chapter 3

gives the design of the swarm framework used as well as the design of the behaviors that

are investigated. Chapter 4 provides the design of experiments for this research. Results

from the experiments, analysis of the results, and conclusions reached from that analysis

are given in Chapter 5. Finally, Chapter 6 provides a summary of the research effort and

suggestions for future research in the field of swarms of UAVs.
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2. Current Research in Distributed Control

The concept of swarms of robots is not a new concept. In 1987, Reynolds proposed a

means of simulating the movement of birds in a computer simulation [73], Beni and Wang

first coined the phrase swarm intelligence in 1989 [12], and Parker discussed cooperative

behavior among robots in 1993 [63]. Since these initial efforts into the field of multi-agent

cooperation, research has begun to polarize into several different types of cooperation.

Dudek captures the different facets of cooperative systems in his proposed taxonomy [26].

This taxonomy classifies systems based upon their processing capability, communications

capabilities, number of agents, composition, and configuration flexibility. This chapter

uses Dudek’s taxonomy in order to categorize contemporary research efforts in the area of

cooperative multi-agent systems.

This chapter is organized into eight sections. Section 2.1 discusses terms and defi-

nitions that are used throughout the remainder of this document. Section 2.2 provides a

description of the problem domain addressed in this research effort. Section refcurrent-

research summarizes contemporary research efforts in the fields of cooperative robotics,

swarm intelligence, and autonomous cooperative control. Section 2.4 discusses efforts in

the field of cooperative wide area search munitions control. Section 2.5 discusses recent

efforts to develop a theory of convergence and stability for swarm models. Section 2.6

discusses various methods of path planning. Section 2.7 discusses different types of agent

behavior that have been successfully used to implement swarm architectures. Section 2.8

discusses behavior learning techniques proposed in the literature. Finally, section 2.9 sum-

marizes this chapter.

2.1 Terms and Definitions

In order to adequately discuss the topic of cooperative multi-agent systems, it is

important to define the terminology used. Many researchers use terminology that is spe-

cific to their own field of expertise. However, since multi-agent systems are inherently

interdisciplinary, many different terms are used to discuss the same topic. For example,

Mataric [51] refers to a system of multiple robots as a multi-agent system and the complex

7



behaviors that result from interactions among the robots is referred to as group behavior.

Reif and Wang [72] on the other hand, refer to a system with multiple robots as a Very

Large Scale Robotics System (VLSR). Beni and Wang [12] refer to multi-robot system as a

swarm. Since this research deals with a simulated system (rather than referring to robots,

birds, or planes) each individual within the system is referred to as an agent. The overall

collection of agents is referred to as a swarm.

In a swarm model, two types of definitions exist fir the term “behavior”. The first

behavior definition refers to the actions of an agent in response to its environment and

internal state. For this research, this behavior is called the local behavior. The local

behavior refers to an individual agent, and does not consider how other agents are affected

by the action of that individual. The second type of behavior is the emergent behavior.

This behavior is the result of interactions between all of the agents in the swarm.

Over time, researchers have used different definitions to describe local behavior and

emergent behavior, as well as the rules or equations which lead to each type of behavior.

For example, Mataric [51] refers to local behaviors as basic behaviors. These basic behaviors

are defined as a behavior that “either achieves, or helps achieve, a relevant goal”. In [53],

Mataric uses the definition given by Steels in [80] to describe the resulting systemic reaction

to the interaction of basic behaviors as “emergent properties”. It is important to make the

distinction that the behaviors described by Mataric are in relation to the actions of the

agent. The actual rules or mapping of sensor inputs to actuator outputs result in a basic

behavior, but are not in themselves, considered to be a basic behavior.

In Reynolds’ work [73], [74], the actions of individual agents are referred to as be-

haviors. Reynolds does not define the resultant systemic behavior in his work, but rather

refers to the result of simple interactions. The actual interactions in Reynolds’ model

come from the application of equations that define a simulated force between agents. As

opposed to Mataric, Reynolds does not make a distinction between these equations and

the resultant movement of the agent.

In Reif and Wang’s work [72], the mechanism used to drive group behavior is called

social potential fields. This field consists of possibly many equations chosen a priori for
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group interaction. Reif and Wang refer to the potential field equation used by an individual

agent as a force law. The combination of these forces make up the social potential field.

The distinction between the actions of the agents, and the equations used to specify the

force laws for an agent is not clearly stated in this work. The systemic result of the social

potential field is referred to in this work as a behavior.

Since each of these systems use slightly different definitions for individual agent

behavior, overall system behavior, and the actual rules associated with the agent behavior,

it is necessary to clarify the use of these definitions in this work. In this document, the

functions which provide inputs to the agents’ control algorithm are referred to as rules.

These functions map sensor inputs to two-dimensional vector space in the form of a desired

direction. Chapter 3 provides details of the rules used in this research.

When individual agents interact with each other through the use of rules, the swarm

as a whole exhibits observable behaviors that sometimes appear chaotic, and at other

times converge to a structured formation or action. This observable effect can be referred

to as emergent behavior [65], swarm intelligence [12], or simply behavior [72]. Since emer-

gent behavior, and behavior both have the same connotation when discussing the overall

observed actions of the swarm, these terms are used synonymously in this discussion.

In classifying rules that are applied to individual agents, two major types of rules

are found in literature - reactive and deliberative [85]. A reactive model makes decisions

based upon its current state and knowledge of its domain. This knowledge can either be

global or local knowledge, and can be static or dynamic. This leads to a system that

is seldom capable of achieving an optimal solution, but is very robust in a dynamic and

noisy environment [85]. A deliberative model on the other hand, makes decisions several

steps into the future and relies heavily upon an accurate model of its environment for the

entire period of time for which it is reasoning. The deliberative model also utilizes current

state information, as well as either local or global knowledge of the agent’s domain. Such

a model is best suited for environments which are reasonably stable and well understood

[3]. Many of the systems discussed in this chapter utilize a hybrid approach to the reac-

tive/deliberative models. Rather than reacting purely to sensed knowledge at any given

time, many of the systems described utilize partial knowledge of the environment in order
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to provide better decision-making capabilities to the agents. This hybrid rule model is

used in the framework developed in this thesis.

2.2 Problem Domain Definition

The goal of this research is the development of emergent behavior for a group of au-

tonomous agents. This behavior is tested in a potentially hostile environment consisting of

a set of threats, a set of waypoints, and a single goal. In keeping with the objectives devel-

oped, behaviors must be capable of maintaining the desired behavioral traits throughout

the landscape. They must also provide flexibility for agents to avoid threats and collisions,

and move towards the goal via established waypoints.

The problem domain is expressed mathematically as a set S, T,W,G, r,B such that:

• S is the set of all agents within a swarm

• T is the set of all threats {t ∈ T |all threats in the environment}

• W is the set of all waypoints {w ∈W |all waypoints in the environment}

• G is the set containing a single goal, |G| = 1

• r is the set of rules utilized by agents in S for movement

• B is a set of behavior matrices δb such that application of the rules r to the matrix

δb results in the emergent behavior b

The rules contained in r consist of simple rules which map sensor inputs and agent

state information to a desired direction vector. Each rule in r produces a direction vector,

and these vectors are combined to form a local behavior through the use of the behavior

matrix, δb. One of the objectives of this thesis is the development of values for δb in order

to create the desired emergent behavior b. Since the characteristics of a particular behavior

can be highly subjective, this is not treated as an optimization problem, but rather as an

exploration problem in which multiple answers are compared to a pedagogical baseline in

order to determine how well each answer conforms to the desired behavior.
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2.3 Contemporary Research

In order to discuss the qualities of existing swarm models in a meaningful manner, it is

necessary to classify each architecture with others of similar assumptions and capabilities.

Dudek [26] provides a taxonomy of swarm systems which classifies existing architectures.

This taxonomy relies upon the assumptions and capabilities of an architecture in order to

classify it in a manner that allows for direct comparison with another architecture that

shares the same taxonomic labels. This taxonomy decomposes the architectures into seven

different categories: size, communication range, communication topology, communication

bandwidth, reconfigurability, unit processing capability, and swarm composition. Each of

these categories is discussed briefly in the following paragraphs.

The size category refers to the total number of agents within an environment. While

Dudek classifies all agents within an environment as being part of the same collective,

in a real-world application it is possible to have multiple collectives performing multiple

missions within the same environment with or without any form of collaboration between

the separate collections. In order to avoid this ambiguity, this research uses the term

size to denote the number of agents assigned to a particular swarm. This allows us the

ability to maintain multiple swarms in the same environment, and differentiate between

swarms. The different size classifications are SIZE-ALONE, SIZE-PAIR, SIZE-LIM, and

SIZE-INF [26]. SIZE-ALONE refers to a swarm containing only one agent. Although,

by definition, this is not a swarm, it allows us to classify single-agent systems within this

taxonomy. SIZE-PAIR is used to describe a swarm containing two agents. SIZE-LIM

is used to describe a swarm with a limited size greater than two. SIZE-INF describes a

swarm architecture that relies upon infinitely many agents. While this final category is not

possible in the real-world, Dudek gives an example of a notional search and rescue swarm

in which the environment is filled with agents until either the objective is met, or every

space in the environment is occupied by an agent. This problem illustrates a brute-force

solution method requiring a swarm of infinite size to work in all environments.

Communication range is used to describe the distance that agents are capable of

communicating. This category is only concerned with the intra-swarm communication,

and does not take secondary communications devices such as satellite relays, etc into con-
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sideration if they are not used to directly communicate with other agents in the swarm.

Communication ranges can fall into either the COM-NONE, COM-NEAR, or COM-INF

category. COM-NONE is used to refer to a situation in which no explicit communica-

tion takes place between agents. While agents can still communicate through implicit

means such as behavior changes, environmental manipulation, etc, architectures falling

under this category do not directly communicate between agents. COM-NEAR applies

to those systems that assume some limit to the communications range. This limit can be

arbitrarily large. However, it is usually constrained by physical limitations of the communi-

cations architecture. COM-INF refers to a communications system in which any agent can

communicate with any other agent regardless of distance. This is a standard simplifying

assumption used in many of the architectures discussed in this chapter however, it is im-

practical for real-world situations due to the physical limits of the communications system.

This can be assumed, if the swarm is designed to always remain within the communications

limit.

Communication topology is used to classify the different communications network

topologies used in swarm architectures. These topologies can be classified in one of TOP-

BROAD, TOP-ADD, TOP-TREE, or TOP-GRAPH. TOP-BROAD architectures utilize

a broadcast communications topology whereby each agent broadcasts all communications.

TOP-ADD refers to an addressing scheme that allows an agent to send messages to other

agents utilizing their unique identifiers. TOP-TREE addresses architectures utilizing a

static tree communication topology. Finally TOP-GRAPH describes architectures with a

graph topology.

Communication bandwidth is used to classify which bandwidth assumption is made

for a particular architecture. Bandwidth is considered to be either the medium used

for explicit communication such as wireless transmission, or implicit communication such

as proximity sensors. The possible categories for bandwidth are BAND-INF, BAND-

MOTION, BAND-LOW, and BAND-ZERO. BAND-INF is used to describe architectures

that assume that the cost of communication is negligible. BAND-MOTION is used to

describe architectures that consider communications cost to be “of the same order of mag-

nitude of the cost of moving the robot between locations” [26]. BAND-LOW refers to
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a very high cost communication environment in which communications are seldom uti-

lized. BAND-ZERO refers to a situation in which no communication, either implicit or

explicit takes place between agents. This final category describes a system with no agent

cooperation.

Collective Reconfigurability is used to classify the apparent entropy of a swarm. An

example of this would be a swarm of bees reconfiguring very rapidly (high entropy) versus

a flock of birds which reconfigure more gradually (low entropy). The labels used to de-

compose reconfigurability are ARR-STATIC, ARR-COM, and ARR-DYN. ARR-STATIC

describes architectures with fixed formations that do not change over time. ARR-COM is

used to describe a system in which the formation changes using coordination with other

members of the swarm. ARR-DYN applies to architectures in which agents change relative

positions reactively, as in Reynolds [73].

Processing capability is used to classify the computational model of individual agents.

The categories for processing capability are PROC-SUM, PROC-FSA, PROC-PDA, and

PROC-TME. PROC-SUM refers to a simple non-linear summation unit proposed in [36],

PROC-FSA describes agents which use a finite-state automata for computation, PROC-

PDA refers to agents with push-down automata computational models, and PROC-TME

describes agents using a Turing Machine equivalent. This particular taxonomic category

is not very relevant to the classification of the majority of contemporary swarm architec-

tures due to the fact that PROC-TME is the predominant computation model found in

contemporary research.

The last taxonomic characteristic, composition, is used to describe the heterogene-

ity of a swarm. The three labels used to describe composition are CMP-IDENT, CMP-

HOM, and CMP-HET. CMP-IDENT describes systems in which the physical characteris-

tics, hardware, and software of each agent is identical. This is the equivalent of a Single

Instruction Multiple Data (SIMD) parallel processing scheme [29]. CMP-HOM architec-

tures utilize agents which are physically the same, however they may have different software

control routines. CMP-HET is used to describe agents which are different physically. Phys-

ical differences can be used to describe different sensor suites as well as actual form of the

agent.
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2.3.1 Contemporary Swarm Architectures. In order to classify existing architec-

tures under Dudek’s taxonomy, it is necessary to define an ordering of importance for each

taxonomic axis. Architectures are sorted based upon the primary axis, then within that

axis, they are sorted along the secondary, and so forth. Since communication is generally

the primary limiting factor in the development of real-world swarming algorithms, the

communications range is chosen as the primary axis, followed by communication topology,

communication bandwidth, and reconfigurability.

The communications range of an architecture has a strong impact upon the final

design of that architecture. The ideal communications range is COM-INF because it

allows agents to achieve semi-global knowledge through communication with agents in

other parts of the environment. Richards, et. al. [75] uses this methodology in order to

coordinate assignment and trajectory planning into a group of agents. This is accomplished

by employing a method of “combining both assignment and trajectory design into a single

Mixed Integer Linear Programming (MILP) optimization”.

Richards, et. al.’s method addresses a problem that assigns agents with differing ca-

pabilities to a set of waypoints in such a manner as to arrive at the target in a predetermined

order based upon their particular capabilities. This problem domain is representative of

SEAD mission profiles where a vehicle (or vehicles) arrive first to perform reconnaissance.

The same vehicle or vehicles or different vehicles would then arrive to perform electronic

countermeasures. Shortly thereafter, attack vehicles arrive to destroy the target, and fi-

nally surveillance vehicles assess any damage [75]. This sequence must be choreographed

precisely based upon the capabilities of the different vehicles in use to effectively destroy

the target with minimum threat to all participating vehicles.

In order to accomplish the requisite coordination, Richards, et. al. [75] propose a

method that develops an assignment and trajectory schedule a priori. In order to develop

the vehicle trajectories, the problem is expressed in terms of the vectors vmax, ω, S, W ,

Z, K, ∆, tD where

• vmax is a vector of maximum velocities such that vimax represents the ith vehicle’s

maximum speed
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• ω is a vector of maximum turning rates such that ωi represents the ith vehicle’s

maximum turning rate

• S is a vector containing the initial positions of each vehicle

• W is a vector containing the position of each waypoint

• Z is a vector of no-fly zones such that (Zj1, Zj2) is the upper bottom left vertex of

the jth no-fly zone, and (Zj3, Zj4) is the upper right vertex of the jth no-fly zone

• K is a matrix containing vehicle capabilities such that if Ki,j = 1 then vehicle i is

capable of performing the necessary mission at waypoint j

• ∆ is a matrix containing the time dependency for each waypoint such that if ∆i,j =

−1 then at the time dependency at row j, waypoint i must have been passed, if

∆i,j = 1 then at the time dependency at row j, waypoint j is next, and if ∆i,j = 0,

then there is no time dependency for waypoint i.

• tD is a vector of time variances such that for time dependency j in ∆i,j , ∆t ≤ tjD

Using this formulation, the cost function

mins,f,b,cJ = t̄+ ε1

Nv
∑

p=1

[tp + ε2

Nt−1
∑

t=0

(|fxtp |+ |fytp |) (1)

is solved, where the forces f are the decision variables, and b and c represent the binary

variables for waypoint visit and no-fly zone, respectively. The variables ε1 and ε2 are

weighting factors that are small positive numbers (values not given).

In this scheme, communication bandwidth is reduced to BAND-ZERO since all of the

coordination tasks are performed prior to mission execution, and the mission profile is then

loaded into each agent prior to take-off. While the overall behavior of coordinated arrival

at the designated target area is accomplished, this method does not address real-time

requirements such as moving targets, pop-up threats, or loss of a vehicle.

While Richards, et. al.’s architecture does not perform any communication after

take-off, the size of the swarm is still limited based upon the MILP computation. The

waypoint assignment problem is equivalent to the set partitioning problem [21] in that
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each waypoint must be covered by one and only one agent. Further constraints are added

in the form of time dependencies. Since this algorithm is a Non-Deterministic Polynomial

Time (NP) Complete algorithm, the time to perform the coordination task increases as a

polynomial of n.

In [57], McLain utilizes a team-based control model that assumes a high level of au-

tonomy among agents, while working to optimize a global objective. The scenario presented

by McClain is a rendezvous situation in which each agent must arrive at the detection en-

velope of a target at the same time. Each agent is fully autonomous to plan its own route

to the target, avoid threats, and minimize fuel usage. The agents coordinate based upon

events in the environment, such as encountering a pop-up threat, or arriving at a predeter-

mined boundary, such as the Forward Edge of the Battle Area (FEBA). Each coordination

epoch is represented by a phase of flight: Phase I is the en-route phase, Phase II occurs

when the agents reach the FEBA, Phase III occurs when an agent detects a threat, and

Phase IV commences once final trajectories to the target are determined.

McLain [57] utilizes a finite state machine within each agent to control the current

phase of the agent. At the transition to each phase, all the agents communicate their

Estimated Time of Arrival (ETA) to the target’s detection boundary, and all ETA’s are

communicated to all agents. This denotes a COMM-INF architecture with a TOP-BROAD

topology and BAND-LOW communications cost. Based upon the information received

from other agents, each agent calculates a “coordination function model” that represents

the optimization of fuel cost and threat exposure for each feasible ETA. This vector is then

passed to all agents. Once each agent knows the optimum ETAs for each individual, the

optimal ETA for the team can be calculated by each individual.

Although McLain’s [57] scheme results in coordinated arrival time at the detection

boundary of a given target, several disadvantages exist. For example, each agent must

communicate its state to every other agent in the system at each phase transition. This re-

sults in a system that is only marginally scalable as the communication overhead increases

exponentially with the addition of new agents to the system, or if global broadcasting

is used, the amount of bandwidth required for communication increases as members are

added. Second, coordination must occur for every pop-up threat encountered. In a dense
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battle field environment where many pop-up threats occur, the communications overhead

becomes a limiting factor to the size and efficiency of the system. This model cannot read-

ily adapt to many pop-up threats as the time to communicate and optimize the trajectories

does not lend itself to fast reaction times for a large system. Finally, cooperative move-

ment techniques are not taken into account by this model. Since this model is designed

specifically to solve the rendezvous problem, no effort was made to address moving agents

cooperatively across the battlespace. This means that each agent is moving independently

to the given target, and cannot be used effectively for sensor fusion while traversing a

high-threat area.

Polycarpou, et. al. [69] [68] [67] propose a method of team control that performs a

cooperative search of an enclosed region. The method proposed utilizes a path planning

scheme that plans the t+ q+1 position at time t in order to move the agents through the

landscape. In [68], this scheme is changed to an interleaved planning scheme that initially

plans q steps, and then replans t+ q− r steps for r = [0..k], k < q. In both cases, the path

is planned using a weighted aggregate function that takes into account the certainty of

the search area, the proximity to other agents, and the amount of fuel. In [68] and [67], a

proximity force is applied to agents when they detect a neighbor within a certain distance

and moving at a heading that sufficiently compares to its own. This force causes the agent

to weigh points in the path that move away from the nearby agent as lower cost points.

This architecture is categorized as a COMM-INF architecture since each agent is

capable of communicating with all other agents regardless of their distance from each

other. The communication cost is determined to be BAND-MOTION since communication

updates are performed at an interval c where c = ∆t.

The overall search results of Polycarpou, et. al.’s algorithm yields a definite improve-

ment in total area searched as compared to a Zamboni search pattern [1] and a random

search pattern. Furthermore since predictive path planning is used, agents are capable

of optimizing their path for several time steps at a time. This capability results in more

efficient overall paths, and a lower communication frequency requirement among agents.

This scheme does however, utilize a great deal of communication due to the need to share
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search space certainty values for areas of the search space. Also, the predictive element of

the algorithm leads to less ability to react quickly to pop-up or unknown threats.

One of the interesting aspects of Polycarpou, et. al.’s work is the ability to embed

swarm-like behaviors into the predictive path planning algorithm by using a repulsion

force. This force allows agents to avoid possible collisions early through small changes to

the path rather than waiting until a certain proximity threshold has been passed before

reacting. While this particular swarm instantiation does not concern itself with maintaining

cohesion, it is possible to adjust the cost function used for the predictive path planning

algorithm in order to maintain a swarm-like “cloud”. The abilities of this algorithm are

very promising for further research.

Trahan [82] implements a swarm using particle-in-cell codes taken from physics simu-

lations. These codes are used due to their well understood behavior, efficiency, and support

of heterogeneous particles. Trahan shows the ability of the swarm to adapt to the tracking

of two moving targets in several different situations.

Trahan [82] models each agent as an atomic particle. Each particle is governed

by environmental and behavioral “forces” much like the kinetic and electrostatic forces

encountered by particles at the atomic level. These forces are easily extensible and allow

the particles’ behavior to be governed by many forces that sometimes conflict with each

other. The main forces associated with Trahan’s model are separation, cohesion, alignment,

and attraction to a target particle or particles.

While the interactions of different particles does not require implicit communication,

explicit communication is required in terms of proximity, direction, and speed of neighbor-

ing particles. This suggests a COMM-NEAR classification on communications distance.

Since communication is implicit in this case, the communications topology can be described

as broadcast communications within a finite distance from a particle. This fits within the

TOP-BROAD category. The bandwidth requirement for this system is BAND-INF since

the cost of implicit communication is considered to be free.

Trahan’s [82] experiments do not address how changes to the forces applied to each

particle affect the overall behavior of the system. While this method appears to hold
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the best potential for investigations into swarm control, more information is required to

determine the affects of various parameters on the overall behavior of the swarm. Further-

more, the actual equations used to achieve the reported results are not given, therefore

this architecture could not be easily verified or tested.

Hayes, et. al. [34] performs experiments using team-based control in order to de-

termine the advantage of using multiple agents to perform a searching function. Hayes

utilizes both a real-world arena consisting of simple robots searching for a beacon, and a

probabilistic simulation in order to generate his results.

In Hayes, et. al.’s [34] experiments, each agent is equipped with simple light sensors

at four locations around the periphery of the robot. The beacon consists of a light beam.

Each robot moves about the arena by turning between 0 and 270 degrees probabilistically.

Collision avoidance is used and takes precedence over goal following behavior. When

an agent senses the beacon, it moves directly to the beacon unless collision avoidance is

required.

Cooperative control is accomplished by having each agent actuate a small light when

it senses the beacon. Other agents then follow this light until they also see the beacon.

Again, collision avoidance behavior takes precedence over all other behaviors.

While the communication in Hayes, et. al [34] is not explicit, the use of lights to

attract other agents is a form of implicit communication among agents.

In his paper, “Cooperative Control of Robot Formations” [28], Fierro, et. al. pro-

poses a means of controlling robots’ formation and trajectory allowing for tasks such as

“collaborative mapping and explorations, and cooperative manipulation”. The control

method employed utilizes a two-tiered hierarchy in which each robot generates a trajec-

tory and then coordinates based upon a behavioral mode. This method results in a stable

formation that can adapt to obstacles or threats in the planned trajectory. Communication

is accomplished via wireless LAN transmissions. Due to the use of LAN transmissions as

the means of communication, this architecture is classified as COMM-NEAR with TOP-

ADDR topology and BAND-MOTION cost of communication.
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The control aspect first performs a trajectory planning step in which each agent uti-

lizes predetermined potential fields in order to generate a trajectory. Visco-elastic collision

modelling is used to simulate a collision however, the model is developed in such a manner

as to avoid any collisions in real-space. This is accomplished through the use of a virtual

“safety envelope” around each robot. The envelop is calculated to be large enough for the

agent to react to incursions before an actual collision can occur.

Once a trajectory is calculated using potential fields and simulated visco-elastic colli-

sions, the robots perform cooperative movement via a second-tier controller. This controller

develops cooperative behavior by switching between three different behavioral rules. The

three rules used are separation-bearing control, separation-separation control, and sepa-

ration distance-to-obstacle control [28]. Each behavior utilizes a specific rule set, and the

agent must determine which rule set to use based upon sensor input. This allows each

robot to “behave” according to its environment.

While the formation achieved using Fierro, et. al.’s [28] methodology is stable and

adaptable, it suffers from the requirement to designate a lead robot. While this is not

necessarily a problem in some circumstances, the inability of the formation as a whole to

adapt to the loss of a leader is undesirable in a battlefield environment. The trajectory

planning method proposed by Fierro, et. al. [28] however, offers a good step-off point for

on-the-fly trajectory planning due to its ability to adapt to new threats easily, as well as

its means of avoiding collisions.

Another disadvantage of Fierro’s approach is that each agent can only maintain a

static set of rules. Since there is no provision for learning or adaptation of new rules, this

limits the overall system to the set of behaviors that are attainable through the use of the

defined rules.

Fax [27] develops a means of information flow that uses small amounts of information

to help drive faster convergence to a stable formation. This method relies on graph and

control theory and assumes that the communication network formed by the agents is a

strongly connected graph (i.e. any two nodes can be joined by a path). Fax develops a

proof which proves that the information flow converges for a given formation. This method
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allows each vehicle to make local decisions based upon global consensus of the location of

the center of the formation.

Fax [27] attempts to minimize communication among agents in his formation while

still allowing each agent to have global information. For his experiments, he utilizes agents

whose dynamics consist of “double integrators in the plane”. These agents are attempting

to take up positions in a hexagonal formation based upon the location of its neighbors.

Fax’s [27] use of information flow allows the swarm to arrive at a consensus of the

swarm’s center through the use of local communications. Using information flow in this

manner allows the use of global metrics in a distributed system.

One of the disadvantages of Fax’s work is that he assumes that the communication

network formed by the swarm consists of a graph structure that is strongly connected.

While this assumption is reasonable for many formations and behavior dynamics, such

a condition cannot be guaranteed in a real-world situation due to unforseen dynamics

in the behavior characteristics. Furthermore, Fax uses a uniform time delay model for

his information flow. Such uniform time delays are not possible in a dynamic swarm

environment due to the fact that communications take a finite amount of time to propagate

through an entire swarm.

2.4 Cooperative Munitions

Cooperative wide area search munitions control is an area of current active research

in cooperative agent systems. This field of research attempts to solve the problem of

finding and engaging a number of targets with unknown locations [32]. The agents in

this case consist of powered sub munitions endowed with scanning sensors (LIDAR) and

capable of flying for approximately 30 minutes over the battle space. Coordination is used

to improve the probability of finding, identifying, and successfully engaging targets in the

landscape as efficiently and effectively as possible. Some efforts address the coordinated

search task ([19] [35]) while others focus primarily on coordination of target identification

and engagement ([32] [20]).
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Gillen [32] addressed the cooperative munitions problem through the use of a weighted

aggregate function that determines whether a particular agent engages a known target.

This function accounts for the agent’s fuel state, the priority of the target, the relative

motion of the agent with respect to the target, referred to as range rate, and number of

agents servicing a target. Each of these values has a weight associated with it. Gillen

adjusts the weight using a Response Surface Methodology (RSM).

The results obtained using Gillen’s algorithm yield a ∼ 5% improvement in target

engagement and kill rates as opposed to a non-cooperative search and destroy mission. This

provides evidence that a cooperative framework is capable of improving overall mission

effectiveness versus non-cooperative frameworks. A disadvantage to using this algorithm

however, is that the results are shown to be highly specialized to the specific scenario in

which they were formulated. This means that a set of weights capable of operating robustly

on any given map may not be possible.

In [35] Hebert gives a method for minimizing the radar exposure of a group of agents

using a hierarchical decision scheme . This method builds upon a single vehicle radar

exposure model. Multi-agent coordination is achieved by each agent communicating radar

exposure versus path length information to a central controller. The central controller then

chooses the optimal path length that achieves the minimum cost for the team as a whole.

This path length is then communicated to the agents. While a central controller is used

in this case, it is possible for agents to communicate information to all agents and then

solve the common table individually. While this requires a great deal of communication

overhead, the central controller is eliminated. Hebert does not investigate this method and

its ability to work in constrained environments with imperfect communication is unknown.

The scalability of the hierarchical decision algorithm proposed by Hebert has not

been investigated. The nominal case of one radar is developed and results given, and

the algorithm is expanded to the two radar case as well. Hebert claims that heuristic

methods are required to deal with the increased complexity of using n radars. One of the

heuristics proposed by Hebert is the use of a Vornoi diagram. Since the optimal solution

tends to lie near the edges of this diagram, the heuristic can be used to obtain good, but

sub optimal results. Another heuristic proposed is the minimax heuristic. In this method,
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exposure to the strongest radar source is minimized. This method works well for some

cases however, Hebert provides a counter example that shows that the minimax heuristic

becomes trapped.

In [19] and [20], Chandler, et. al. propose a hierarchical control model. This model

establishes a team leader that solves the overall task assignment problem, sub team leaders

that are responsible for coordinating assigned tasks, and an agent level controller that

executes the assigned task and performs trajectory optimization. The problem domain

addressed in these papers is the cooperative munitions problem.

In Chandler’s model, the upper level controller performs task allocation. This task

allocation is discussed briefly in [19] and further defined in [20]. Several methods are pro-

posed for solving the task allocation such as binary linear programming, iterative network

flow, and iterative auction using Guass-Seidel and Jacobi auctions. This method allows

agents to be assigned to different sub teams during the execution of the search phase in

order to optimize the task allocation.

Coordination in Chandler’s model requires communication to pass information to

other agents as it is discovered. This information consists of the probability distribution

matrix that denotes the probability of a target’s location. Agents coordinate based upon

this probability matrix. Sub teams are formed based upon predetermined criteria in order

to search high probability areas. A classification probability is also provided based upon

the sensor look angle of agents. This model requires a minimum of two different scans in

order to classify a target. This task is coordinated through the middle level controller.

The architecture proposed by Chandler provides a means of decomposing the problem

space into task allocation, task coordination, and trajectory optimization. By decomposing

this problem, agents can efficiently distribute computational tasks for a highly complex

optimization task. While this eliminates guaranteed optimality, such decomposition allows

the agents to quickly coordinate without requiring large amounts of computation power.
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2.5 Swarm Convergence

In order for a specific behavior to emerge in a swarm, it must be able to converge

to a specific static or oscillating formation. If the convergence properties of the swarm

are unstable, a specific emergent behavior is not sustainable over time. The ability of a

swarm to converge upon a desired behavior is not well understood. A general theory of

swarm stability has yet to be developed, however several important steps have been taken

towards this goal.

In [37], Jadbabaie uses the nearest neighbor rule for coordination of headings of

autonomous agents. Using control theory, he proves that the nearest neighbor rule can

“cause all agents to eventually move in the same direction despite the absence of centralized

coordinated control and despite the fact that each agent’s set of nearest neighbors change

with time as the system evolves”. In order for all n agents’ headings to converge, they must

be “’linked together’ via their neighbors with sufficient frequency as the system evolves.”

A rigorous definition of “sufficient frequency” is not given due to the complexity of the

analysis required to determine this value.

Jadbabaie’s biggest contribution to the area of swarm control is his theorem which

states that “convergence of all agent’s...to a common heading is...certain provided all n

agents are always linked together” via a connected graph. He goes on to prove that if a

leader is used, “all n agents must converge to the leader’s [heading] provided all n agents

plus their leader are linked together via their neighbors frequently enough as the system

evolves”. A rigorous definition of “frequently enough” is not given as the dynamic system

analysis becomes too complex to form a rigorous definition.

One of the main disadvantage of Jadbabaie’s work is the switching function used in

his analysis of the communication dynamics. The models developed are limited in scope

due to restrictions made to this switching function. While these models are helpful in

understanding flocking behavior, they are not fully descriptive of larger systems’ actual

switching functions. Jadbabaie’s work provides a foundation for understanding the need for

communication among neighbors. He shows that by sufficiently frequent communications,

convergence to a globally accepted value can be reached given a sufficiently long period of
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time. This research effort uses neighborhoods to communicate information, and attempts

to communicate as often as practicable in order to maintain pseudo global knowledge via

the convergence shown in [37].

In [46] [47] and [48], an attempt is made to analyze the stability of a swarm model

within a highly restrained communication topology. This work focuses on developing a

set of movement rules that result in collision-free movement of each individual in the

swarm in the midst of uncertainty and communication delays. In [48], the analysis focuses

specifically on the ability of the swarm to converge on a (relatively) non-moving formation,

and then extends the theoretical analysis to the ability of the swarm to converge on a

moving formation. This work defines stability to be the ability of the control algorithm to

achieve “asymptotic collision-free convergence and partial asynchronism [which] leads to

finite time collision-free convergence...” [48].

The swarm model assumed in [48] consists of N : N = 2 agents with some physical

dimension ω > 0, and dimensionality M : M = 2. Furthermore, each agent has a proximity

sensor which instantaneously senses another agent when that agent is within ε : ε > ω

distance. Finally, each agent has a “comfortable distance” d : d > ε > ω at which no

attraction or repulsion forces are experienced with respect to other agents.

The communication topology assumed in [48] is a highly constrained chain topology

where each agent i can only communication with its neighbors i+1, i−1, and the order of

the agents cannot change over time. Furthermore, the movement of each agent is restricted

to remain with a sector that is δ degrees wide and symmetrical about the line drawn from

agent i to agent i − 1. This restraint is further restricted to require that agent i must

remain within the overlap of all sectors formed by agents i− 1..1. Using these constraints

in a non-mobile environment, it is shown that each agent’s movement can be restricted

in such a way to provide guaranteed convergence of each agent to a comfortable distance

from its neighbors i− 1, i+ 1, even with large delays in updates of neighbors’ positions.

For a mobile environment, Liu, et. al. found it necessary to further constrain the

movement such that each agent lies within a sector of size δ
2 degrees. This restraint, coupled
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with a bounded delay in position update information, allows each agent to converge to a

comfortable distance in a finite time without collisions [48].

The main strength of Liu, et. al.’s approach to stability analysis is that they are able

to prove that it is possible for a swarm to achieve collision-free convergence regardless of

communications delays in a non-mobile environment, and that collision-free convergence

is also possible in a mobile environment, provided that communication delays are bounded

to be less than the position update frequency of each agent. This corresponds to the work

done by [37] that states that communication within some bounded interval is required for

convergence to occur.

While Liu, et. al. provide a good start in stability analysis of a swarm control

algorithm, the assumptions impose unrealistic constraints on the swarm. Relaxation of

these constraints causes the stability analysis to become too complex to provide any insight

into the convergence characteristics of the swarm. Another weakness of this approach is

that it requires a fixed communication topology in order to successfully converge. While

it is possible to specify rules which results in maintaining a fixed communication topology,

it is not necessarily desirable to do so.

Another area which Liu, et. al.’s work does not address is the actual motion of

each agent. In their investigation, inertial motion was not taken into account, and the

movements were only constrained by maximum step size, but not minimum step size. In

a flying or otherwise fast moving swarm formation, these requirements cannot always be

realistically met. This means that the collision-free convergence property may not be met

due to violation of the assumptions necessary to guarantee such convergence.

2.6 Path Planning

In a fully reactive swarm architecture, it is not necessary for the swarm to be able

to plan a path through the environment. Instead, a swarm only moves in the manner

that most expediently satisfies the optimization criteria for the current time step. A well

designed system can use this type of reactive behavior to create globally optimal behavior

however, such a system requires a priori knowledge of the agent’s environment. Rather

26



than make this assumption, several efforts have focused on the ability of an agent to act

deliberatively, that is, to plan one or more steps into the future in order to “choose” a path

that best optimizes the agent’s movement criteria.

2.6.1 Path Planning Using Roadmaps. Much of the current research concerning

path planning techniques focuses on the topic of roadmaps. Roadmaps attempt to represent

a collision-free path from a starting location to a goal location using a graph structure. Due

to the heavy computation required, roadmaps are created off-line using global knowledge

of the environment [13]. This assumes that the agent’s domain is fully observable.

Probabilistic Roadmaps (PRM), first proposed by Kavraki [40], attempt to reduce

the total search time by randomly sampling the environment for points that are within the

collision-free configuration space (C-free) of the agent. This algorithm works in an iterative

fashion by creating a randomly generated set of configurations that are in C-free. Each of

these random configurations is then connected to its nearest neighbors if the connection

does not cause a collision. This process is repeated until a sufficient termination criteria

is met such as the number of edges generated in the graph, or the amount of time the

algorithm has taken to create a graph [40].

Bayazit, et. al. [11] create a swarm system in which a PRM is used as a form of global

knowledge to allow for the creation of behaviors in a highly constrained environment. The

underlying swarm architecture utilized in this effort is that proposed by Reynolds [73]. In

order to move the swarm through the environment, agents choose as the target the next

node contained in a path to the goal. A goal steering behavior is then implemented to

move towards that target. The standard intra-swarm interactions of separation, alignment,

and cohesion are used.

Bayazit, et. al.’s use of the PRM method of integrating global path planning capa-

bility into the swarm creates a means for agents to move through a dense obstacle field

towards a goal. Some disadvantages in this method exist however. For example, agents

do not choose the same path within the PRM to get to the goal. This leads to a highly

entropic swarm behavior in which members become separated and move singly towards the

goal. While this allows members to reach the goal state, the overall effect is that agents
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“trickle” in to the goal one at a time, rather than moving through the landscape as a

cohesive whole. This type of behavior appears to be unstable in regards to convergence of

a behavior.

Another method used for deliberative path planning is Rapidly-expanding Random

Search Trees (RRTs). This path planning algorithm is proposed by LaValle [45]. This

method creates paths for non-holonomic vehicles, that is, vehicles that are constrained

to steering while maintaining forward motion [41]. A RRT builds a map of C-free by

beginning in an initial position q0, and choosing a random configuration qrand. Using this

configuration, the nearest neighbor to qrand that is within ρ distance of q0 is added as a

vertex to the tree. This vertex is set as the new q0 and the algorithm is iterated until a

termination criteria is met. LaValle defines the closing criteria to be the number of vertices

in the RRT.

The RRT method proposed by LaValle provides a very fast method for determining

paths through C-free. The advantage of this method is that it is strongly biased towards

unexplored regions, thus filling in unexplored areas of C-free very quickly. This method

works quickly enough that it allows for real-time replanning, and results are generally

within a factor of 1.3 to 2.0 times longer than the optimal path [45]. Another advantage

of this algorithm is that it can be tailored to work for any kind of kinematic model by

adjusting the selection criteria to include constraints of the physical model.

The main disadvantage of LaValle’s algorithm is the random nature of new state

generation. While using random generation allows for fast construction of the tree, it also

leads to non-optimal solutions. When the optimality of the solution is not as important as

the feasibility, this method provides less desirable paths for agents.

2.6.2 Artificial Potential Fields. Artificial Potential Fields (APFs) is a method

of reactive path planning proposed by Latombe [44]. This method creates fields of artificial

“force” with an attraction towards the goal and repulsion fields around objects and threats.

Using this field, it is possible for an agent to follow the force lines to the goal. This algorithm

produces one predominant problem however, in that large areas of low or zero magnitude

may exist in the field where the goal attraction force and obstacle repulsion forces cancel
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each other. These areas are referred to as local minimums in the potential field. Escaping

these local minimum areas is a topic of on-going research.

Caselli, et. al. [18] discuss a means of parallel path planning for a potential field

landscape. The algorithm proposed utilizes the Probabilistic Roadmap Algorithm first

proposed in [40] in order to develop a search graph of the configuration space. The algo-

rithm then begins searching the graph by attempting to move down the potential gradient.

The main contribution of this algorithm is Caselli’s use of techniques for escaping local

minima. Rather than utilizing random brownian motion in order to escape the local mini-

mum as proposed in [10], Caselli, et. al. propose the use of two different evasion techniques

dubbed “StraightLine” and “StraightLineSelect”. These two techniques attempt to escape

a local minima without the high computation penalty found in brownian motion escape

techniques. “StraightLine” works by selecting a direction randomly in C-free and moving

in that direction until it reaches an obstacle, or the potential is less than the potential at

the original position. If a new lower gradient is not found along the line of motion, the

direction is thrown out and a new direction is chosen. This behavior eventually leads to

a local minimum that might also be the global minimum. StraightLineSelect performs in

a similar manner to StraightLine with the exception that it prunes poor direction choices

early through the use of a state machine.

Both StraightLine and StraightLineSelect are shown to perform very well for “easy”

local minima. However, certain circumstances can be found in which these algorithms

lead to higher computation than random brownian motion before an acceptable escape is

accomplished [18].

The escape forces proposed by Caselli, et. al. offer a possible means of performing

local minima escape in a relatively easy local minima. Since real-world problems often lead

to large, complex interactions among fields, it is not likely that many of these “simple”

minima exists on a standard landscape. The amount of speedup possible from using this

scheme in simple circumstances however, may allow for reasonably fast predictive path

planning in real-time environments.
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Vadakkepat [86] proposes a means of developing optimal potential fields via the use

of a Multi-Objective Evolutionary Algorithm (MOEA). This algorithm utilizes a goal-seek

function, obstacle avoidance function and minimum path function in order to develop

optimal potential functions. Vadakkepat also proposes the use of an “escape force” that

allows the algorithm to avoid stagnation in a local minimum. A standard path planning

algorithm is applied using the evolved potential field and escape force.

For this algorithm, a reactive agent utilizing potential fields for path planning is

introduced. The agent follows potential fields unless it determines that certain criteria

have been met signifying that it is trapped in a local minimum. The criteria used by

Vadakkepat consist of the following two equations:

Fa −
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In these equations, Fa represents the attractive force of the goal, F i
r is the repellant

force of the ith obstacle, and b and c are determined by the MOEA algorithm.

When equations 2 and 3 are satisfied, the escape force is calculated using equation

4.
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For equation 4, Dro represents the distance from the agent to an obstacle, and the

parameters c, d and m are determined by the MOEA.

The cost functions consist of “goal-factor”, “obstacle-factor”, and “minimum-path-

length-factor”. These functions are shown in equations 5, 6, and 7 respectively.

fp =







0 robot at target point

Fa +mint∈[0,tg ](‖p(t)− Pg‖) otherwise
(5)
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Pg is the location of the goal, p(t) is the location of the agent at time t, tg is the time to

reach the goal.

fo =







0 no collision

Fo +maxt∈[0,tg ](Ro − ‖pc(t)− Po‖) otherwise
(6)

pc(t) is the point at which the agent collides with an obstacle at time t, and Po is the

location of the nearest obstacle.

fpath length = length of entire path (7)

The MOEA is designed to minimize all three equations with preference for the so-

lutions on the Pareto front which achieve 0 for equations 5 and 6. Vadakkepat does not

specify the manner in which points are chosen from the Pareto front if they do not achieve

a 0 value for fp and fo.

Vadakkepat’s algorithm achieves a means of producing smooth paths with near-

optimal path lengths. Furthermore, this algorithm is capable of developing potential fields

in real-time, thus allowing for adaptation to a changing landscape. Through the use of

an escape force, this algorithm is capable of escaping local minima. This ability is shown

using anecdotal evidence from test runs however, Vadakkepat does not rigorously show the

capabilities of the escape force portion of his algorithm.

Although this algorithm is useful for developing potential fields and is robust to

changing landscapes, it is only intended for the path planning of a single agent. While

this problem is easily overcome, it is not known how interactions between agents affect the

overall structure of the potential field. Another disadvantage to this method is that it only

addresses point obstacles and a single point goal. While it is relatively simple to extend the

algorithm to account for multiple goals, the ability to adapt to arbitrarily shaped obstacles

is not easily developed. Another drawback of Vadekkepat’s work is that a relatively small

number of obstacles are used. It is unknown as to how well this algorithm scales to larger

numbers of obstacles.

31



While the local minima problem is the primary drawback of using potential fields,

several other problems are inherent in this model. One of these problems occurs when an

agent’s direction of movement lies along a line that passes directly over the center of a

repulsive field. If the repulsive vector is exactly opposite to the attractive vector of the

goal, and both vectors lie on the same line as the agent’s direction vector, then no action

will be taken by the agent to turn away from the obstacle [73].

2.7 Types of Behavior

Contemporary literature lists many different behaviors that can be applied to multi-

agent systems. These behaviors generally apply to the individual agent and are executed

at a local level in the system. In attempting to define multi-agent behavior, Mataric

introduces the concept of a basis behavior [51]. According to Mataric, a basis behavior set

should consist of only those behaviors that “either achieves, or helps achieve, a relevant

goal” that cannot be reached through the use of behaviors outside of that set. Mataric

further constrains this set of basis behavior such that no behavior in the basis set can be

reduced to a behavior or group of behaviors outside of that set.

One of the foundational papers in swarm behavior is “Flocks, Herds, and Schools:

A Distributed Behavior Model” by Reynolds [73]. In this work, Reynolds proposes a

rules-based algorithm that utilizes three rules to maintain swarming characteristics. These

rules are collision avoidance, velocity matching, and flock centering. In a later paper

these rules are redefined as separation, cohesion, and alignment [74]. Reynolds proposes

the application of these three rules as vectors with the magnitude calculated using some

function f(d) where d is the distance from the perceived center of a group of neighbors.

The three vectors can then either be aggregated, or prioritized in some order to create a

final direction for the agent.

Reynolds also proposes a means of identifying neighbors based upon biological limita-

tions such as the field of view of a bird [73]. This limits the interaction with neighbors that

are further away, and causes localized behavior to occur. The advantage of this scheme

is that the size of a flock can grow to any size, but the individual agent is only aware

of a small neighborhood and therefore is not directly affected by the overall size of the
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flock. This also reduces communication requirements to include only those agents in a

local neighborhood.

While Reynolds’ primary concern in [73] is the visual appeal of the swarming behav-

ior, the rules defined have found use in many research efforts up to the present such as

[84] [81] [88] [51] [72]. This method has been shown to be robust and extensible for swarm

simulation, and allows for many areas of algorithmic improvement. One of the aspects of

this algorithm that shows the most promise for improvement is the weighting scheme of

the rules.

In [3] [51] [52] [53], the concept of “basis” behaviors is introduced. These behaviors

are defined as “1) required for generating other behaviors and 2) ... a minimal set [of

behaviors] the agent needs to reach its goal repertoire” [52]. The basis behaviors defined are

safe-wandering, following, dispersion, aggregation, and homing [51]. The safe-wandering

behavior attempts to randomly move about the environment while avoiding collisions with

obstacles and other agents. The following behavior attempts to line up with another agent

using simple rules such as “If the detected agent is on the right, turn right” [51]. Dispersion

and aggregation are corollaries of each other in which agents attempt to either move away

from some central location, or move toward some central location while at the same time

avoiding collision with other agents and inert obstacles. Homing simply causes an agent

to move to a predefined location while avoiding obstacles.

In [51], experiments are performed to determine the effect of non-hierarchical dis-

tributed control on the ability of agents to accomplish the specified task. Tests were

performed using up to 20 robot platforms, and testing aggregation and dispersal behav-

iors. For both behaviors, the non-hierarchical results closely mimicked the hierarchical

results for the amount of time required for the system to converge, with the standard de-

viations of the two sets of results overlapping in all cases. The general trend observed was

that large numbers adversely affect the convergence time, and distributed control leads

to more robust behavior in terms of the system’s ability to deal with agent failures. One

hypothesis offered by Mataric based upon the data from these experiments is that “more

complex strategies requiring individual agents to perform recognition, classification, and

representation might be required to significantly improve group performance”. While this
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hypothesis has not been proven, the current direction of research in the field of multi-agent

systems has been moving towards more complex agents.

Another experiment performed in [51] is the aggregation and switching of different

behaviors in order to combine several basis behaviors to drive a specific global behavior.

The global behaviors pursued were flocking, and foraging. In the flocking model, aggrega-

tion, dispersion, homing, and safe-wander are combined via a weighted sum function. The

values for the weights were determined “experimentally, from the dynamics and mechanics

of the agents, the ranges of the sensors, the agents’ turning radii, and their velocity” [51].

This scheme resulted in robust flocking behavior that is resistant to individual failures.

One area mentioned by Mataric as a possibly fertile area of research is the devel-

opment of aggregating methods for basis behaviors. The development of robust, adaptive

methods for on-line adaptation would allow emergent behaviors to change simply through

correct weighting of the basis behaviors. This research investigation attempts to develop

such a method of on-line adaptation.

Triani, et. al [83] propose a method to control the behavior of a group of agents

using a probabilistic selection methodology. The algorithm proposed uses sensor inputs

to determine the agent’s environment. Behaviors are chosen using a roulette wheel selec-

tion scheme with some probability based upon a context function. The context function

evaluates sensor inputs to calculate the probability value.

The S-bot agent model proposed by Triani, et. al utilizes three different behavioral

sets - movement, light, and grip. Each agent is capable of gripping its neighbor, turning

on or off a light that is used as a beacon for other agents, and moving. Each of these

three behavioral sets contains multiple basic behaviors. Triani, et. al describe the different

movement behaviors in terms of results-based movement such as light attraction, light

repulsion, robot attraction, robot repulsion, and random movement.

Triani, et. al.’s proposed method for determining the correct basic behavior at each

time step is to use sensor inputs to determine the context of the robot. These sensors

are then factored into a context function h(s) ∈ ℵ. The natural number returned by this
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function is used to select a column of a behavior matrix. The behavior is then chosen

based upon a roulette wheel selection using the probability values stored in the matrix.

This method of choosing behaviors relies upon a stochastic behavioral method. While

this allows the system to be more adaptive than a deterministic rules-based control algo-

rithm, the composition of the probability matrix used to determine behavior selection

becomes very important. Triani does not suggest a means for generating this matrix, nor

is any analysis performed upon the usefulness of certain behaviors in accomplishing a given

task.

2.8 Learning

In [50], Mataric discusses a learning scheme used to develop behavioral constructs

leading to accomplishing the desired goal. This learning scheme consists of a set of basis

behaviors, and a set of on-line estimators. The estimators use heuristic functions in order to

determine the efficacy of a particular behavior or sequence of behaviors in accomplishing

some sub-portion of the overall task. The agents begin attempting to accomplish the

given goal by selecting behaviors via a switching mechanism, and positively or negatively

reinforcing behaviors based upon heuristic values. Reinforcement occurs when a particular

sub-goal is accomplished. Behavior switching occurs based upon sensor events.

The overall learning scheme presented by Mataric [50] results in successful learning

of the behavior combinations and switching scheme required to cooperatively accomplish

the task of foraging for food and bringing it back to the “nest”. This learning scheme

is fast (roughly 15 minutes per experiment before convergence of behaviors occurs) and

capable of learning “on-line”.

Many other learning control schemes exist in the literature such as [3] [30] [49] [8]

however, this research does not attempt to perform agent learning of controls, but rather

the development of rule weights based upon a specified emergent behavior.
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2.9 Summary

This chapter has developed terms and definitions that are used throughout this doc-

ument. Also, a problem definition is given that describes the overall area of interest for

this research project. Finally, contemporary research efforts have been discussed in the

areas of swarm architectures, path planning techniques, and artificial potential fields. The

major swarm architectures were categorized based upon Dudek’s taxonomy.

Three systems discuss which show strong potential for providing on-line behavior

adaptation are Reynolds’ boids [73], Mataric’s basis behaviors [51] and Reif and Wang’s

potential fields [72]. An objective of this research investigation is to develop a framework

for testing swarm behaviors. This framework uses portions of these three systems in order

to leverage advantageous of each one. Details of the framework design are given in Chapter

3.
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3. Swarm Algorithm Design

3.1 Introduction

The design of a simulation is a complex undertaking which requires that many as-

pects of the real world be discretized, estimated, or ignored. As the level of detail of the

simulation model increases, the fidelity of that model with the real world increases, but

the computational overhead increases as well. In the design of a swarm framework for this

investigation, it is necessary to consider these tradeoffs and determine a level of detail that

provides acceptably accurate results, while not requiring excessive processing time.

This chapter gives a detailed description of the design of the swarm algorithm de-

veloped for this research investigation. A high level view is provided to highlight the

interactions between subsystems, and each subsystem is described in detail. Finally, met-

rics are defined for the evaluation of the algorithm’s performance, and a search algorithm

is discussed for use as a means of searching for desirable weights for behavior adaptation.

3.2 High Level Design

Due to the need of each agent within a swarm to adapt to different behavioral charac-

teristics based upon its environment, it is necessary to define a robust strategy for behav-

ioral adaptation. This strategy must be computationally inexpensive in order to minimize

the on-board computing requirements, must lend itself to a distributed environment with

little or no explicit communication among agents, and must be capable of realizing the de-

sired behavioral traits without requiring global knowledge of the swarm. Furthermore, the

algorithm must result in a stable formation, that is, it must be capable of sustaining some

steady state configuration or oscillation between several configurations given an infinite

amount of time [48].

In order to develop an algorithm capable of overcoming the problems described above,

we must use concepts from several different disciplines. In order to maintain a stable

formation, a swarm-like behavior is used. This swarm-like behavior is derived from the

system proposed by Reynolds in [73] and [74] as well as Mataric’s method of multi-agent

control proposed in [51] [52] [53] [50] [54] [55] and [14], and modifications to the swarming
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algorithm proposed by Kadrovach in [38] [39]. This behavior results in a cohesive group

that moves in a coordinated manner while avoiding threat zones and other agents in the

swarm. The ability to move towards a goal and avoid threats in the landscape is provided

through the use of artificial potential fields (APFs) as suggested by Reif and Wang [72] .

Different swarm behavior is maintained through the use of several different swarm

modes as described in Section 3.3.8. Finally, in order to provide adaptation based upon

the local environment at a given time step, multiple fitness functions are used as weight

coefficients in an aggregate vector in order to adjust characteristics of the inter-swarm and

intra-swarm rules. These fitness functions are formulated to describe the state of an agent

based upon local information.

3.3 Swarm Model

The swarm model implemented for this research consists of characteristics found to

work well in other simulations and real-world experiments [74] [72] [53] [38]. In order

to work together effectively, the various algorithms used must interact in a well defined

manner. Each agent moves through the environment by determining the direction vector,

~dd, that satisfies the following equation:

~dd =

|τ |
∑

r=1

τr,1 (8)

Where τ is a 4× 1 matrix which is calculated using equation 9.

τ =

















ωσ~σ

ωη~η

ωt~t

ωg~g

















(9)

In the preceding equation, the vectors ~σ, ~η, ~t, ~g denote the direction determined by

the cohesion, separation, threat avoidance, and goal seek rules respectively. The manner

in which these rules determine a direction is discussed in Sections 3.3.3, 3.3.4, and 3.3.5.
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The variables ωσ, ωη, ωt, ωg are weight coefficients that are calculated using a behavior

matrix and a set of functions that describe an agents’ state. The development of a behavior

matrix and the equations used to calculate the fitness functions are discussed in Section

3.4.3 and 3.4.4.

In order to simplify calculation, and to account for local knowledge rather than global

knowledge within each agent, it is necessary for each agent to perform calculations using

a local coordinate system. This system is a standard cartesian coordinate system with the

y direction pointing in the direction of movement of the vehicle. Section 3.4.1 discusses

the local coordinate system of an agent. The local coordinate system is used to calculate

cohesion, ~σ, and separation, ~η. Also, each agent calculates the relative bearing of all

neighbors using the local coordinate system.

The global coordinate system must be used for calculation of phenomena outside

of the agent’s immediate vicinity. The assumption of a global coordinate system does

not necessarily assume global knowledge of the environment, but rather assumes that an

agent is aware of its position within a global coordinate system. This is equivalent to

the knowledge provided by an inertial guidance system (INS), or global positioning system

(GPS). It is also possible for agents to receive broadcast telemetry data from another source

without requiring an increase in bandwidth as the number of agents in a swarm increase.

For these reasons, an agent’s knowledge of its position within the global coordinate system

does not necessarily constitute global knowledge.

The rules that must be calculated using the global coordinate system are goal seek,

~g, and threat avoid, ~t. The reason these values must be calculated using global knowledge

is that the location of threats and the goal are not necessarily within the immediate sensor

range of the agent. Instead, the locations of these points is loaded into the agent’s memory

prior to flight, and calculations are performed based upon the pre-loaded positions. If a

threat or goal moves while it is outside of the agent’s sensor range, then the agent has

no way of updating that knowledge without intervention from an outside source. This

investigation does not attempt to explore how agents act under uncertainty.
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foreach timestep t
build list of neighbors Na

foreach n ∈ N
calculate ωperiph

calculate ~σ(n), ~η(n)
~σ = ~σ + ωperiph~σ(n)
~η = ~η + ~η(n)

end
foreach t ∈ L

~t = ~t+ threat potential(loc(a))
end
~g = goal potential(loc(a))

calculate ~dd

~s = trunc( ~dd)
~d = ~d+ ~s/ma ∗∆t

end

Figure 2 Pseudo code for agent control loop

Once the desired direction, ~dd, is calculated using equation 9, a steering vector, ~s, is

calculated as described in [74]. The equation for this step is given as

~s = ~d− ~dd (10)

Once ~s has been determined, the agent must truncate the value of ~s in order to remain

within the constraints of the vehicle’s actuators. A detailed discussion of this procedure is

given in Section 3.4.2. Finally, the new direction, ~d, is determined using a first order Euler

approximation of motion using the force ~s/ma, where ma is the mass of agent a. Figure 2

gives a pseudo code representation of the program loop for each agent.

3.3.1 Potential Fields. The standard swarm model proposed by Reynolds [74]

consists of three rules that allow for swarm interaction. In order to create goal seek and

threat avoidance behavior, two rules have been added to Reynolds’ basic algorithm, and

one rule has been removed. All four rules use artificial potential fields to determine the

correct direction and magnitude. In a Reynolds swarm model, these four rules can then

be combined by either using a hierarchical system that sums rule vectors until no further
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actuator capability is left for the control inputs [74], or by using an aggregate form in

which the importance of each rule is assigned a weight, and all the vectors are averaged

[38]. The resulting vector is the new desired direction of the vehicle [74].

The major problem associated with using potential fields is the existence of local

minima in the search space. These local minima are sometimes easily escapable, such as in

Figure 3, and other times very difficult to escape as shown in Figure 4. In systems where

the potential field is used to represent an obstacle, it is necessary to perform some form

of backtracking in order to find a path that is free of obstacles. For the purposes of this

investigation however, the potential fields are used to represent threats posed by a radar or

danger of visual detection. It is assumed that no threat represented is impassable, such as a

wall or mountain. Since our flight model assumes an altitude of 20,000 ft, this assumption

holds true for most regions of the world. This means that an agent that has found a local

minima can escape that minima by either backtracking, or by accepting greater threat

exposure and moving through the threat creating the local minima.
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Figure 3 Shallow local minimum in a potential field

In this algorithm, the four rules are aggregated using adaptive weights. This method

allows each rule to be modified based upon environment information. Another advantage
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Figure 4 Deep local minimum in a potential field

to using an adaptive weighted aggregate method is that the local minimum problem is

reduced by crafting fitness functions that detect local minima and allow agents to accept a

less than optimal behavior in order to continue moving in the direction of the goal. This is

analogous to a pilot accepting greater risk in order to reach a well-defended, high priority

target.

3.3.2 Neighborhood Determination. The rules discussed in Section 3.3.3 utilize

the concept of a neighborhood in order to specify interactions between neighbors. De-

pending upon the implicit and explicit communications assumed, the neighborhood can be

static such as proposed in [48], consist of nearby agents as constrained by some distance

or perception field as proposed in [51] and [38], or consist of all agents in the swarm such

as implemented in [72].

The decision of what kind of neighborhood model to use depends upon several differ-

ent factors such as communications assumptions, sensor capabilities, computational com-

plexity, and desired outcome. Each of these factors can change the overall neighborhood

policy.
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An example of how assumptions and design decisions affect the neighborhood policy

can be found in [72]. In this document, a global neighborhood policy is used where each

agent is a neighbor to each and every other agent. This model assumes that the communi-

cations ability of the agents is such that each agent is aware, either through communication

or sensing information, where every agent in the swarm is located in the landscape at any

given time. The computational complexity of this model requires each agent to perform

calculations on the position of every agent in the swarm. This means that for each timestep,

n(n− 1) calculations must be performed.

In [38] however, the neighborhood policy utilizes a vision blocking model, limiting

the number of neighbors based upon a sensor “shadow” affect. This model assumes that

each agent has a sensor capable of determining the bearing to each agent within a given

distance provided that another agent is not between the sensor and the agent. This model

goes on to specify a cone of shadow θv degrees wide, in which an agent cannot be seen.

Based upon these assumptions, the neighborhood size for a steady-state swarm is reduce

to 360/θv. While the simulation computation for this still results in an O(n2) growth rate,

the real-world implementation does not need to check every agent to determine if it fits

within the sensor shadow of another. This reduces the real-world complexity to O(1).

In order to build a neighborhood, each agent first determines the agents that are

within sensor range, sr. Using this information, each agent builds a list ordered by in-

creasing distance from itself. Each agent then steps through this list starting with the

nearest agent. For each agent a in the pseudo-neighborhood N ′ ⊂ S,
−−→
b(a) is added based

on equation 11. Figure 5 visually depicts this calculation.

N = N + a iff

−−→
b(a)−

−−→
b(n)

|
−−→
b(a)||

−−→
b(n)|

> θv/2, ∀n ∈ N (11)

3.3.3 Reynolds’ Behaviors. Reynolds describes a control scheme whereby each

agent calculates three vectors based upon a set of rules. The rules consist of the following:

• Attempt to move towards the perceived center of the neighborhood

• Attempt to move away from any nearby neighbors
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Figure 5 Depiction of sensor shadowing in neighborhood calculation [38]

• Attempt to move in the same direction and at the same speed as the neighbors

These rules are expressed mathematically in terms of three vectors: cohesion (~σ),

separation (~η), and alignment (~θ). Each of these vectors represents one of the rules listed

in the preceding list. Cohesion is expressed as

~σ =

[

∑

n∈Na
loc(n)

|Na|
− loc(a)

]

r(x) (12)

Where a ∈ S is an individual agent, Na ⊂ S is the neighborhood of agent a, and

the function loc(x) returns the location in x, y coordinates of agent x. The magnitude of

~σ is then calculated based upon an interaction function r(x) that takes as its argument

the current magnitude of ~σ which is the distance from agent s to the perceived center of

the neighborhood N . The function r(x) can be any function desired provided that it is

continuous at all points 0 < x ≤ max distance. Where 0 < max distance <∞.

The function for r(x) used in this research is a Gaussian distribution curve with

mean of µ and standard deviation sr = 50 where sr is the range of each agent’s proximity

sensor. The number 50 is chosen for sr in order to represent a sensor range of 5000 m.
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r(x) = e
−(d−µ)2

2sr2 (13)

σ =

√

(sr− µ)2

2 ln 2
(14)

For cohesion, µ = 0. This results in a gaussian distribution centered at 0. For

separation µ = sr, centering the distribution at sr. Since the distance of a neighbor n cannot

be more than sr units from an agent, the value of µ for each rule allows the separation

magnitude to follow the “front” side of the distribution curve, while the cohesion magnitude

follows the “back” side. Figure 6 depicts the magnitude of separation and cohesion over

the range 0 ≤ x ≤ sr.
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Figure 6 Cohesion and Separation values for distances from 0 to 5km

Equation 13 is chosen as the force model due to the exponential growth factor of

the gaussian distribution. Since it is continuous for all values of 0 < d < sr, it fits the

requirement for r(x) to be continuous. An alternative to this approach is given by Reif

and Wang who suggest the use of the function:
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r(x) = −
c1
rσ1

+
c2
rσ2

(15)

where −c1/r
σ1 represents the attraction weight and c2/r

σ2 represents the repulsion weight.

This scheme is shown to work well in experiments performed by Reif and Wang [72] how-

ever, it suffers oscillation. Furthermore, the overall force goes to infinity as two robots

approach each other. While this is desirable behavior in a simulation, such behavior in

a constrained environment will rapidly overwhelm the actuator limits as well as all other

rule vectors. This results in movement directly away from other agents at close range, but

disregards any need to avoid a threat region or move toward a goal since the weight is so

high at such close proximity.

In Reynolds’ work [74], three rules are used: cohesion, separation, and alignment.

Since there is no goal seeking rule in his system, these three rules cause the agents to move

in an undirected coordinated fashion around the simulation area. When a goal seek rule

is added however, two rules now exist that provide alignment among the agents. The goal

seek rule causes agents to attempt to move towards a goal based upon the potential field

lines at the agents’ location. The alignment rule on the other hand, causes an agent to

align with its neighbors. Since an agent and its neighbors line up on the potential field

lines, this produces a strong force towards the goal. Early experiments using the alignment

rule in conjunction with the goal rule suffered from over speeding, and the cohesion and

separation vectors being overwhelmed by the alignment and goal seek behaviors. Due to

this problem, the alignment rule is not used in the current model. Experiments performed

during development of this algorithm have shown that the overall behavior of the swarm

is much more desirable when the alignment rule is not used.

3.3.4 Peripheral Vision Weighting. Reynolds [73] proposes a means of weighting

agent rules in his model by placing a higher weight on forces associated with neighbors

in front of and to the side of an agent while reducing the weight on forces associated

with neighbors behind the agent. Reynolds claims that this weighting is a more accurate

depiction of how flocking birds tend to interact with their neighbors in the flock [73]. More
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recently, Kadrovach [38] proposed a swarm model that uses a peripheral vision weighting

scheme. This investigation utilizes Kadrovach’s weighting model.

The peripheral weight ωperiph is determined using the following equation:

ωperiph = cosβ(
θa,n
2

) (16)

where θa,n is the angle between ~b(a) and ~b(n). The value for β is chosen experimentally

based upon the behavior of the model. Figure 7 shows the affects of different values for

β. For this investigation, a value of β = 0.1 is used. This keeps neighbors located on the

periphery from exerting too small of a separation force.
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Figure 7 Values of ωperiph using β = 0.1, 1.0, 2.0, 4.0

3.3.5 Goal Seek/Threat Avoidance. The potential fields used to model threats in

the agents’ landscape also rely on the gaussian distribution in equation 13. In this case,

the mean, µ, is set to zero for all threats while standard deviation, rad is determined a

priori based upon operator knowledge of the threat’s maximum effective range. Therefore,

a threat is calculated as:
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Figure 8 Potential field surrounding a threat located at (350,250) with rad = 100

~t = exp(
−d(loc(a), loc(t))2

2(rad/2)2

2 ln 2

) (17)

The function d((x1, y1), (x2, y2)) returns the euclidian distance between two points.

The negative value returned by equation 17 is applied to an attraction vector. This causes

the vector to be positive, pointing away from the center of the threat. Figure 8 shows the

field surrounding a threat located at (350,250) with rad = 100.

Since the threat distribution is intended to represent the probability of detection

of a fixed radar site, it is important to view the characteristics of a monostatic radar

as compared to the gaussian distribution used in this investigation. The equation for a

monostatic radar is given in [25] as:

Pr =
G2Ptrcsλ

2

64π3R4
(18)

The parameters for this equation are as follows:

• Pr : Power received (W)
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• G : Antenna Gain (dB)

• Pt : Power transmitted (W)

• rcs : RCS of target (m2)

• λ : wavelength (m)

• R : distance from target (m)

By eliminating the constants, it becomes clear that the R4 term is the dependent

term of this equation. The plot of this function is shown in Figure 9, and the gaussian

threat model is shown in Figure 10.
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Figure 9 The power received versus distance of target for a monostatic radar. The
distance values are not reflective of any existing radar due to the fact that the
constant coefficients were removed from the equation in order to view the affect
of the dependant variable on power received

Although the threat model is quite different from the radar model, there are several

important reasons that this model is used. First of all, the argument is made in Section

3.3.3 that any value going to infinity as the distance approaches zero is not a desirable

trait in a real-world system. As can be seen from equation 18, the function goes to zero

as R approaches zero. Secondly, as can be seen in Figure 9, the signal gain remains very
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Figure 10 The magnitude of repulsion for a threat versus distance from the threat. The
radius is set to rad = 50 for this example

low and then begins to increase rapidly. This rapid increase indicates a narrow region

between the distance that a radar has a high probability of detection and a low probability

of detection. This means that agents utilizing a realistic radar detection model will have

little time to change course before moving from a low probability of detection distance to

a high probability of detection distance. Due to these problems, a gaussian distribution

with standard deviation greater than zero is used. The rad value can be changed by the

operator prior to a mission and can be tailored to provide a desirable repulsion from high

probability of detection areas associated with radar stations in the battle space.

The potential field of a goal is a vector field pointing towards the goal with a constant

magnitude of %, 0 < % < 1. This field is kept constant in order to guarantee that a critical

attraction node exists at the center location of the goal. Figure 11 shows the attraction

field around a goal with no threats in the landscape. The value of % must be chosen

based upon prior knowledge of the landscape that is being represented. Due to the force

interactions, the attractive force of a goal could fully cancel out the repulsion force of a

threat if % = 1 as shown in Figure 12.
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Figure 11 The potential field around a goal located at (350,250) with % = 0.75
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Figure 12 The potential field resulting from one threat with σ = 100 and one goal with
% = 1.0, 0.75, 0.5, 0.25. The location of the center of the threat is depicted by
a diamond and the location of the center of the goal is indicated by a square.
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Figure 12 shows the affects of different values of % on the size of the repulsion field

around a threat. For the remainder of this experiment, % is set to 0.75. Figure 3.3.5 shows

the resulting potential field formed by ten randomly located threats with σ = 100 and

% = 0.75.
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Figure 13 The potential field created by ten threats with radius of σ = 100 and located
at (159,168), (638,439), (161,284), (539,372), (377,490), (110,280), (9,435),
(161,445), (490,437), (245,196) and 1 goal with rad = 100, % = 0.5 and located
at (650,450). The goal is depicted by a square in the upper right corner, while
the threats are depicted by diamonds

3.3.6 Waypoints. In order to reach a particular goal, an agent must follow a path

through the search space. In this model, the path taken consists of a sequence of waypoints

which are chosen a priori. In order to exert an attraction force on agents without adversely

affecting the agent’s swarming characteristics, it is necessary to represent a waypoint as a

wavefront, rather than a finite point in space. This allows agents to approach the wavefront

of a waypoint from any position without being attracted inward towards a finite point in

space.

In order to allow agents to approach a waypoint without violating swarm behaviors,

it is necessary to view a waypoint as a point in space with a direction. This direction,

~wi is the normal to a plane containing the waypoint, wi. As agents approach a waypoint,
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the distance and location of the waypoint are determined to be the closest point on the

plane wN
i occupied by wi and with ~w as the normal to the plane. The calculation for this

point is performed by calculating the point pw such that pw lies in wN
i and lies on a line

perpendicular to the plane passing through loc(a). This is depicted graphically in Figure

14.

Figure 14 Graphical depiction of the calculation of the waypoint intersection point

If d(pw, loc(wi)) > width, pw is set to be at the minimum distance from loc(s) and

width distance from wi while still lying on the plane wN
i . The new location of pw after

performing this calculation is shown in Figure 15.

Figure 15 Graphical depiction of the corrected waypoint intersection point

While this representation works well, an infinitely long wavefront leads to a behavior

in which agents separated by a threat during a simulation do not reform on the opposite

side of the threat, but rather continue moving towards the next wavefront. This situation
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is shown notionally in Figure 16. Due to this tendency, the length of the wavefront is set

to be some value width > 0. Agents calculate the point of intercept on the plane occupied

by wi using equation 19.

int(w) =







x = ba−bw
mw−ma

y = mwx+ bw
(19)

mw is the slope of the normal plane, ma is the slope of the line which is orthogonal to the

normal plane, bw is the point at which the normal plane intercepts the y axis, and ba is

the point at which the line from the agent to the normal plane intersects the y axis.

If int(w) is more than σ distance from the center location of the waypoint, then

int(w) is recalculated such that (loc(w) − int(w))2 = σ and int(w) is in the normal plane

of ~wi. This causes agents to seek a corridor of attraction, rather than to create a uniform

attraction field. Figure 17 depicts the potential field of a waypoint located in the center

of the search space with a direction vector facing the upper right corner of the graph and

σ = 100.

Figure 16 Notional example illustrating divergence behavior due to an infinitely long
wavefront.

The magnitude of a waypoint field is calculated in the same manner as the magnitude

of a goal field. Due to the need to create a critical region along the line representing the

waypoint, the field is maintained at the uniform value of % = 0.75. The reasons for this

are the same as the reasons for using a uniform magnitude for the goal field.
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Figure 17 The potential field created by a waypoint with location (350,250), direction
[1,1], % = 0.75, and width = 100

Although multiple waypoints are used to specify a path through the landscape, as

agents traverse the landscape, they only feel the force exerted by a single waypoint. An

agent determines which waypoint is exerting a force by consulting a waypoint queue W .

W is a FIFO queue populated a priori and stored in the local memory of each agent. An

agent only seeks towards the waypoint at the head of the list. Once an agent has passed a

waypoint, the agent pops that waypoint off the waypoint list, and seeks the next waypoint.

An agent is said to have passed a waypoint if (loc(w)− loc(a)) · ~wi ≥ 0. When |W | = 0, the

agent will then seek the goal g in the landscape. This behavior allows the agents to follow

a specified path through the landscape, and then move to a predetermined rally point once

the path has been fully traversed.

Waypoints also carry mode transition information. This affords the planner the

ability to change modes by placing a waypoint at a specific transition point. Once an agent

crosses the wavefront of a waypoint on its list, it determines the mode of the waypoint it

has just passed. If the mode is different from the agent’s current mode, then the agent

transitions to the new mode. Next, the agent removes the waypoint from its waypoint list,
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and chooses the next waypoint on the list. The agent then proceeds to the next waypoint

using the mode matrix specified by the previous waypoint.

In the simulation environment developed for this research, an agent follows the list

of waypoints until the queue is empty. It then seeks the goal situated in the landscape.

There is only one goal in each landscape. Once an agent comes within a certain distance

dg of the goal, it signals that it has completed its mission and no further data is take from

that agent. For all experiments performed, dg is set to 100.

3.3.7 Path Planning. In order to move the swarm through the battle-space, a

path is generated a priori which passes over desired targets, as well as maintains desired

safe distance from known threats. The actual characteristics of the path such as path

length, smoothness, distance from threats, etc. are determined entirely a priori by the

operator in order to meet desired mission requirements. This path is then input into the

memory of each agent in S.

As discussed in Section 3.3.6, as each agent moves through the battle-space, it sets

the current goal to be the next waypoint in its queue. The location of these waypoints is

determined a priori by the planner, therefore the agents do not need to perform on-line

path planning. This assumes that the path does not change dynamically. Dynamic path

planning following is possible in this architecture by changing the location of waypoints in

agents’ waypoint list however, in order to maintain zero explicit communication, dynamic

paths are not considered in this research.

3.3.8 Behavior Modes. The main thrust of this research is to develop a manner of

controlling certain emerging behaviors by adjusting the weighting of the individual rules.

The desired emergent behavior of the swarm is defined in this research as a behavior

mode. Each mode uses a set of fitness functions to determine the current environment

of the agent. The individual fitness functions are used to adapt the four swarm modes

based upon individual knowledge of the problem domain. These functions are denoted as

f0 · · · f3. The number of functions used is dependant upon the number of environmental

influences desired. For this research, the environmental influences used are:
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f0 = rule weight

f1 = sensor coverage

f2 = sensor overlap

f3 = difference in velocity from neighbors

Each of these values is discussed in more detail in Section 3.4.3.

The five modes described in this section are: Reconnaissance, Scan, En-Route, Join

and Hold. Each of these modes is described through the use of a behavior matrix δb.

The construction of the behavior matrix is details in Section 3.4.4. These behavior modes

are expressed by multiplying the functions f0 · · · f3 by the matrix δb. The resulting 4 × 1

matrix contains the rule weight vectors discussed in Section 3.4.4. Each behavior mode

is described in this section, and a mathematical expression for reconnaissance, scan, and

en-route modes is determined experimentally in Chapter 5.

Of the five behavior modes, the join and hold modes require special characteristics

and are intended to be used to initially form the swarm and to put the swarm into a holding

pattern while reprogramming the mission profile, or attempting to perform human operator

intervention on a single vehicle of the swarm. Since these two modes are considered to

be house-keeping modes, they are only described in general terms. For this investigation,

only the reconnaissance, scan, and en-route modes are tested.

The reconnaissance mode attempts to perform a low-fidelity scan of a large surface

area. This scan is intended to perform a “broad stroke” approach to battlefield information

gathering, and is similar in concept to the SAR strip mode [66] of the Air Force’s Global

Hawk radar. A reconnaissance formation covers a large area with low sensor density

in order to search for unknown threats, targets, or objectives. Assuming that a sensor

fusion model is used, this means that the overall picture is broad, but not very high

quality. This behavior mode provides enough information to determine details of a specific

target however, for missions such as SCUD-hunting, and search and rescue this mode

allows maximum sensor coverage in order to determine the general location of these desired

targets.
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The global emergent behaviors used to analyze the effectiveness of this mode are

global sensor overlap, and contiguous area coverage. Global sensor overlap refers to the

total amount of overlapping area of each agent’s sensor footprint. As shown in Figure

18, it is possible for multiple agents to cover the same area over a period of time. In

order to account for this behavior, each agent maintains a history of its positions H :

(p(t) · · · p(t − 50)). For global sensor overlap, each agent’s position and history list are

consulted and the total amount of overlap at time t is calculated. If any agent’s sensor

overlaps with a location where another agent’s sensor has scanned within the last 50

timesteps, then the overlap area is included in the calculation.

Figure 18 Sensor coverage of a swarm of agents at specific moment in time. The
light-gray trails represent the area that has been covered in the past 50
timesteps. The dark-gray areas are overlapping areas calculated during the
current timestep. The dark line encloses the total contiguous sensor area for
this example. Note that while agent 1’s footprint does not overlap with agent
2’s current footprint, it does overlap with agent 2’s historical coverage. In this
situation, the area enclosed in a dark line around agent 1 is counted as part
of the contiguous area.
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Contiguous area coverage refers to the total amount of contiguous sensor coverage

of the swarm. This corresponds to the area surrounded by a dark line in Figure 18. This

measure represents the amount of area covered without any gaps occurring within the

sensor footprint A. In the case where two large contiguous areas exist, the size |A| of each

area is considered and depending upon the relative size, the areas are either averaged, or

the larger of the two is used for the metric. For example, if |A1| ≈ |A2|, such as in Figure

19, the average of the two areas is taken. If the size of one of the areas differs by more

than 10%, however, only the size of the larger area is counted. This behavior creates a

non-continuous metric that attempts to measure how well the area flown over by the swarm

is scanned. If a gap exists in the area scanned, some targets could be missed. With this

in mind, contiguous area coverage penalizes a swarm that does not maintain contiguous

coverage of an area of the landscape.

Figure 19 A snapshot in time of agents scanning an area. Two contiguous areas are
depicted with a gap between the two. Each contiguous area is emphasized
by a dark outline. Note that while agent 1’s footprint does not overlap with
agent 2’s current footprint, it does overlap with agent 2’s historical coverage.
In this situation, the area enclosed in a dark line around agent 1 is counted
as part of the contiguous area.
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The scan mode performs a detailed sensor sweep along a given route. This mode

performs a function analogous to the SAR spot mode [66] of the Global Hawk. Agents

perform multi-angle, multi-view scans of the target location in order to provide a high-

fidelity fused sensor image to the warfighter. This mode requires a very high entropy in

the swarm formation, and involves a great deal of coordination and maneuvering in order

to eliminate collision problems. The intent of this mode is to provide a large amount of

sensor data from many different angles of a particular target or objective.

The global metrics used to measure the effectiveness of the scan mode are global

sensor overlap, look angle variance, and minimum safe distance. The global sensor overlap

metric is the same metric discussed previously however, rather than looking for a very small

amount of overlap, a large amount of overlap is desired for the scan mode. The reason for

this is that the scan mode is intended to cover a very small track along the landscape with

a focused sensor coverage. The greater the overlap among sensor footprints, the greater

the sensor focus is.

Look angle variance is a measure of how many different angles the desired track is

being scanned from. Figure 20 depicts how each angle is measured. This metric determines

the sample variance based upon a snapshot in time of look angles. The route that the

planner intends to scan is laid out using waypoints. In order to ensure that agents stay

within close proximity of the scan area, the waypoints must be set so that width is equal

to the width of the area that must be scanned.

Ls2(S) =

∑

s∈S(L(s, t)− L(t))2

t− 1
(20)

where L(s, t) is the average look angle of the swarm S at time t, and L(t) is calculated as

the average of all L(s, t) for the simulation.

The minimum safe distance metric is used in order to determine how close agents are

getting to each other during a scan mission. This measure reports the minimum distance

between two agents for each timestep within a slice of time such that
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Figure 20 A notional example depicting a path and four agents as well as their look
angles.

dmin =

∑t
td=t−∆t mindist(t)

∆t
(21)

Since the scan mode is intended to be highly entropic, the possibility of agents getting

very close to each other during maneuvering is higher due to limits in the agents’ actuators.

In order to ensure that the agents are not maneuvering dangerously close to each other,

this measure is used to view the average minimum distance during a scan.

The en-route mode establishes a direct flight mode where agents move from one

waypoint to the next with a minimum of control inputs. This mode is characterized by a

stable formation that avoids threats and maintains cohesiveness while moving in the most

direct manner possible to the next waypoint. In this behavioral mode, agents maintain

threat avoidance and goal seek characteristics.

Due to the basic nature of the en-route mode, it is used as our baseline for comparing

to the reconnaissance and scan modes. In order to do this, all of the metrics discussed

previously are applied to the en-route mode.

The Join mode is intended to be used only for formation building during the initial

stage of the mission. This mode allows agents to intercept each other and form a swarm.

If no agents are visible in an individual’s neighborhood, then the agent does not enter

into the join behavioral mode. Join can also be used during a mission to bring agents

back into a swarm if they have just completed a high entropy mode such as scan and have

lost sensor contact with all other agents. This helps to maintain swarm cohesiveness and
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overall swarm communications however, it is more desirable for agents separated from the

main swarm to continue moving towards the goal. By following the potential field lines of

the waypoints, the likelihood of an agent rejoining the swarm is very high.

The Hold mode places a pre-defined racetrack route in the agent’s waypoint list.

This pattern is followed until the agent is given a command from the human operator to

transition to a different mode. The Join mode can be entered from the Hold mode, with

all agents involved in the mode transitioning back to the hold mode until a transition is

manually commanded by the human operator or the conditions for transitioning into the

join mode are met. This mode is intended to aid in formation building at the beginning

of a mission, and can also be used when the need arises for a swarm to remain relatively

stationary over a target area while decisions are being made or data is being analyzed.

3.3.9 Mode Transition. Mode transitions are determined a priori by the mission

planner, and are triggered by arrival at a specified waypoint. Since the mission path

consists of multiple waypoints that the swarm follows in successive order, a check is made

at each one to determine whether or not a mode transition is necessary. If the current

waypoint’s specified mode is different from a previous one, then a mode transition occurs.

When an agent transitions modes, the behavior modification matrix for the particular

mode is put into use immediately in equation 9. Since agents transition modes at different

times, it takes a finite amount of time for the swarm to stabilize to the new emergent

behavior. It is not known how transitions affect the overall swarm behavior, nor is the

convergence time to desired behavior known. Some theoretical work has been done to

establish convergence criteria of multiple agents [48] [27] however, no convergence theory

currently exists that is capable of working with a coordination system as complex as the

one used in this investigation.

Several modes, such as hold and join allow for transition triggers. This means that

an agent can enter in the hold or the join mode when a particular environment input is

encountered rather than when a particular waypoint is reached. These modes are intended

to allow the operator to “build” a swarm by launching vehicles in a serial fashion, and
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then allowing them to form into a swarm at a predetermined rally point. The details of

this transition scheme are discussed in more detail in the following paragraphs.

From the Hold mode, an agent can enter into one of three different modes based

upon operator input. These modes are En-route, Scan, and Reconnaissance. Furthermore,

the Join mode can be entered from the Hold mode based upon the precondition of having

encountered a new agent or group of agents, and having previously had a neighborhood

|N | = 0. This transition is intended to allow individual agents to approach the holding

position after launch, and then to join with other agents that are currently holding. This

is how the swarm is initially formed after UAV launch. In order to avoid a situation

where multiple agents are moving in the racetrack path but are not sensing each other,

agents in the Hold mode randomly choose a direction to move in on the racetrack, and

change directions at randomly chosen intervals. Provided that the random intervals are

sufficiently long enough to allow agents to complete several laps of the racetrack, this

results in convergence to a stable swarm formation. The racetrack is also designed so that

parallel legs of the track are within sensor range of each other. This maximizes the chance

that agents sense each other while in the Hold mode.

The Join mode is used to allow an agent to join with other agents already configured

into a swarm formation. From this mode, agents can only reach the Hold mode. The Hold

mode is reached when an agent has successfully joined the swarm formation. An agent is

determined to have joined the formation when it has a neighborhood size |N | > 0. If the

agent has reached the join location, but has not encountered any other agents, it enters

the hold mode until it encounters other agents.

3.3.10 Communication. One of the goals of this research is to keep the amount

of explicit communication between agents to a minimum. The reason for this is that as

swarms increase in size, the communications between agents becomes the primary bot-

tleneck. For purposes of this research, explicit communication between agents has been

eliminated. In order to assume no explicit communication, it is vital to develop forms of

implicit communication that provides the desired amount of functionality. These implicit

communications are outlined in this section.
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In order to form a neighborhood, an agent must be able to determine where its

neighbors are. This can be accomplished either through a communications broadcast

of an agent’s position followed by responses from agents within the neighborhood range

of that position, or it can be accomplished through sensors. The model used for this

experiment assumes that each agent is capable of sensing other agents in the swarm. The

exact nature of the sensor is not assumed however, the sensor must have the ability to

accurately determine the distance and relative bearing of every agent within a finite range.

For purposes of implementation simplicity, a sensor “shadow” cast by one agent does not

preclude an agent in that shadow from being detected. While this means that the model

used is not fully accurate to real-world circumstances, the results obtained by this model

are still useful for understanding the adaptation of various swarm behaviors.

3.4 Low Level Design

3.4.1 Scaling and Coordinate Systems. A simulated representation of the real-

world can work in many different types of numbering systems and scales. When designing

a simulation environment, it is necessary to define a coordinate system for locating objects

within the simulation, as well as a scale factor that allows the simulated calculations to

be mapped to a real-world instantiation of the simulation. The coordinate system used

in this simulation is a modified Cartesian coordinate system where the x coordinate value

increases from the origin to the right of the simulation field, and the y coordinate value

increases from the origin down. This coordinate system is used in order to map directly to

a graphics environment that utilizes an origin in the upper left corner of the screen with y

increasing in value in the downward direction. All locations in the simulation are specified

using double precision floating point number representation.

The scale used in this simulation is based upon the pixel resolution of the monitor.

For a monitor with low resolution, only a small portion of the overall landscape can be

visualized without performing a transformation on the graphics rendering. One pixel on the

screen represents a 100 m square in real space. This means that a threat with rad = 100 has

a radius spanning 10000 m. Since double-precision values are used to represent coordinates,

it is possible to represent locations to within fractions of a meter in the simulation.
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Another aspect of scaling that must be defined is the timestep used. This value is

the interval of time that elapses between each discrete event in the simulation. While it

is possible for this interval to be dynamic, the current simulation implements a constant

time interval. This interval represents a discrete amount of time that has passed since the

last sequence of events occurred. For this research, the updating of an agent’s position is

the only event considered. At the beginning of each timestep, all agents calculate desired

direction ~dd, and at the end of each timestep all agents update their position and direction

vector ~d. This allows each agent to make calculations based upon the current position

of all neighbors rather than allowing some agents to perform calculations on the future

location of their neighbors.

3.4.2 Flight Model. The flight model for each agent consists of a very simple

inertial model that takes a steering force as its input. The direction of an agent is stored

as a vector ~d. When a steering force ~s is applied to the agent, the new vector is calculated

as:

~a =
~s

ma
(22)

~d = ~d+ ~a∆t (23)

The value of ma is the mass of agent a. This calculation gives the acceleration of an

object with a certain mass when the force ~s is applied to that object. While this model does

not accurately reflect the flight model, it is accurate for prediction of inertial motion on a

large scale. Since one time step in our model is equivalent to one second of real-time, this

simple model provides a reasonable level of reality without incurring large computational

overhead.

The steering force ~s is used to apply a force on the agent during a given timestep.

This force is the equivalent of the force applied on an aircraft when the rudder is turned

and the ailerons deflected in a certain manner. While the actual manner in which different
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control surfaces interact is not modelled, the overall result of those interactions, specifically,

the turning, acceleration, or deceleration forces are modelled by the steering force.

In order to create a more realistic model, it is necessary to limit the total amount of

steering for the vehicle. This steering force depends upon the actual model that is being

used. For example, an F-16 fighter can exert much more turning force than a C-141 cargo

aircraft. The model proposed by Reynolds in [74] is used to accomplish this. This model

applies maximum turn limits and maximum acceleration and deceleration limits to the

steering force components such that 0 <= ~sx <= θmax, amin <= ~sy <= amax. Figure

21 shows how the steering limits affect overall vehicle characteristics.

Figure 21 Reynold’s steering force envelope as restricted by thrust, braking, and steering
[74]

In this investigation, the steering limits are defined as the engine thrust, and a

turning actuator. In reality, the turning component of ~s would be passed to an on-board

control algorithm which would then determine the correct combination of control surface

movements needed in order to achieve the desired turning force. Since this level of detail

does not affect the overall results of this investigation, only the x component of ~s is used

to determine the rate of turn of the vehicle.

Actuator limits are calculated based upon the x and y component of ~s with respect

to the vehicle’s local coordinate system. Both components of ~s represent the acceleration

required in order for the vehicle to be moving in the desired direction at time t+ 1. This

means that the thrust required to match the y component of ~s is actually the thrust
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required to accelerate or decelerate the vehicle to the desired speed within 1 timestep. The

y component is mapped to thrust required using equations from [16]:

D = Cdρ
1

2
v2s (24)

T = vym+D (25)

where Cd is the coefficient of drag of the vehicle, ρ is the air density, v is the current velocity

of the vehicle, and s is the wing planform area. The thrust required is then truncated to

the maximum available thrust of the craft Tmax, or to 0 if the required thrust is negative.

The value of T represents the total amount of force exerted by the thrust of the engine

on the vehicle, the actual acceleration experienced by the vehicle must be calculated using

equation 29.

The force exerted by the turning actuator is calculated using the x component of ~v.

The value must be calculated as a triangle with points A, B, and C where |AB|2+ |BC|2 =

~s2x. Furthermore, since acceleration is determined by ~s’s y component, the turning force

must not add any forward acceleration into the system. This means that |AB| = |BC|.

Finally, the total turn must be limited such that ∠BAC ≤ θmax. This system of equations

is given in 26 with a graphical depiction shown in Figure 22.

|AB|2 + |BC|2 = ~s2x (26)

|AB| = |BC| (27)

∠BAC ≤ θmax (28)

Once the force required to move in ~dd direction at time t + 1 has been calculated,

the acceleration in the vehicle’s local x direction is calculated using equation 29.

~a =
~s

m
(29)
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Figure 22 The amount of turning force required is calculated by representing the current
direction, desired direction, and turning force as an isosceles triangle. The
length of the two equal sides of the triangle is set to |~d|. In this manner, the
steering force results in a turn with no forward or reverse acceleration.

Property Value

Cd 0.09
ρ 0.652691 kg/m3

S 1.858 m2

m 1020.6 kg
Tmax 200.0 N
θmax 20◦/s
vmax 77.16 m/s
vs 20.577 m/s

Table 1 Values used for the physics model of the airframe

This equation is used to calculate both the x and the y components of the acceleration

experienced by an agent. The value ~a is what is finally returned from the vehicle’s inner

control loop.

The values used for Cd, ρ, and S as well as m, Tmax, θmax, vmax, and vs are given

in Table 1, and were chosen in order to closely reflect the flight characteristics of a RQ-1

Predator UAV flying at 20, 000 feet altitude [24]. The flight characteristics of the simulated

UAV are compared to the flight characteristics of the RQ-1 Predator in Table 2.

Using the acceleration forces embodied in ~s, the motion of the vehicle is calculated

via a first order Euler equation with ∆t = 1.

~v(t+∆t) = ~v(t) + (∆t)
d~v

dt
(30)
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Characteristic Simulated Predator

Max Speed 117.67kts 117kts
Cruise Speed 88.25kts 70 kts

Weight 1020kg 1020kg

Table 2 A comparison of the flight performance of the simulation model and the flight
performance of the RQ-1 Predator UAV [24]

It is possible to perform the simulation using a much smaller ∆t however, this in-

creases the runtime considerably. Since all agents in the simulation are subject to the

same truncation error associated with using a first order approximation, a ∆t value was

determined to not interject enough error into the system to invalidate the data gathered

from experiments.

3.4.3 Fitness Objectives. The coefficient matrix δb for each behavior mode b ∈ B

consists of four rows corresponding to the four rule vectors discussed previously, and four

columns which correspond to four different functions f0 · · · f3 which provide a numerical

value representing some aspect of the agent’s current environment.

The first function, f0, is a weighting factor that determines how much weight the

the rule vector will have in the calculation of ω for each rule. The other functions are

descriptive of a particular aspect of an agent’s state at a given timestep. These are defined

in the following paragraphs.

The function f1 represents the sensor overlap of an agent and its neighbors. Sensor

overlap calculates the total amount of overlap in sensor area of every neighbor in an

agent’s neighborhood. In order to work properly, this function must take into account

the historical coverage as well as the current coverage. The reason for this is that, if a

neighbor is behind agent a, then its sensor footprint covers the same area covered by agent

a one or more time steps previously. This means that when neighbor n’s overlap is being

calculated, it must take into account the historical coverage of agent a. Since the value of

sensor coverage relates only to the overlap with agent a’s sensor footprint, overlaps of two

neighbors’ footprints are not considered in this calculation.

Sensor overlap is calculated as:
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f1(a) =

∑

n∈N(a)O(n, a)

C(a) +
∑

n∈N(a) C(n)
(31)

In the equation above, C(a) is the sensor footprint coverage of agent a, and O(n, a)

returns the amount of overlap between neighbor n’s footprint and agent a’s footprint to

include historical coverage.

The function f2 measures the distance of neighbors from the normal plane of the

primary agent. The state characteristic that this function measures is the velocity matching

of an agent with its neighbors. A negative distance is assigned to those agents behind the

normal plane, while a positive distance is assigned to those agents in front of the plane.

Figure 23 shows a depiction of how the normal plane is represented and how the distances

are determined.

Figure 23 Method for determining distance for velocity matching fitness function

The distance from the normal plane is determined to be the distance from the point

that intersects a line passing through a neighbor’s position and orthogonal to the normal

plane, to the position of the neighbor. The distances are used in the following equation:
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f2(a) =

∑

n∈N(a) d(n)

|N(a)| s(a)
(32)

where N(a) returns the set of all neighbors to agent a, d(n) returns the distance of neighbor

n from the normal plane of a, and s(a) is the sight range of agent a.

Approach angle variance, f3, measures the total variance of the approach angles

in the swarm. The approach angle is defined relative to the target location, and is the

bearing of an agent a from the target. Since the target location is known by each agent,

this calculation can be made by each agent for itself, and each of it’s neighbors. This

means that each agent has a slightly different value for this fitness function.

The variance of the different approach angles is the statistical variance normalized

between 0 and 1. Using θapp(a) as the approach angle of agent a, the equation is:

f3(a) =
(|N(a)|+ 1)(

∑

n∈N(a) θapp(n)
2 + θapp(a)

2)− (
∑

n∈N(a) θapp(n) + θapp)
2

(|N(a)|+ 1)|N(a)|µmax
(33)

The value of µmax is determined to be 19.7392 which is the maximum variance

possible from 0 to 2π. This value was determined using the equation for sample variance

[60]

µmax =
1

n− 1

n
∑

i=1

(xi − x̄)2 (34)

The maximum sample variance occurs when n = 2, x1 = 0 and x2 = 2π. This value

normalizes the function.

3.4.4 Behavior Adaptation. In order to allow the four rule vectors to adapt

to the agent’s current environment, it is necessary to adjust the manner in which these

four vectors are aggregated. This is accomplished through the use of a mode coefficient

matrix δb for each behavioral mode b ∈ B as well as the fitness functions f0 · · · f3 discussed
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δb =









δf0,~σ δf1,~σ δf2,~σ δf3,~σ

δf0,~η δf1,~η δf2,~η δf3,~η

δf0,~t
δf1,~t

δf2,~t
δf3,~t

δf0,~g δf1,~g δf2,~g δf3,~g









Figure 24 The structure of a behavior adaptation matrix

previously. Each row of this matrix corresponds to a specific rule vector, while each column

corresponds to a specific fitness function. Figure 24 shows the structure of δb.

Equation 35 shows the method used to determine the coefficient for σ(Ns)

ω~σ =

∑3
n=0 fnδfn,~σ

Z(δ~σb )
(35)

where Z(x) is a function that returns the number of zeros in a vector, and δ~σb represents

the row of δb corresponding to ~σ.

Using the results of equation 35, each vector is multiplied by its corresponding ω

coefficient. The actual coefficients for δb are determined using an advanced search heuristic,

discussed in Section 3.6.

3.5 Metrics

Due to the complex nature of emergent behaviors within a swarm, it is necessary

to determine some measure of merit for various simulation runs. This allows for a more

objective treatment of the given coefficient matrix, and reduces the need to make purely

subjective assessments of the swarm’s behavior. Since these metrics are only used to

analyze the overall swarm behavior a posteri, we utilize global knowledge for our analysis.

It is important to note however, that these metrics cannot be used by agents during a

simulation run because it would require global knowledge on the agent’s part, and this

reliance on global knowledge is undesirable in this investigation. The global metrics used

to analyze the overall swarm behavior are center of mass, total accumulated threat, total

overlap, total coverage, velocity variance, arrival time variance and alignment variance.
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The center of mass metric treats each agent as a point with mass, and the global

swarm as a single entity. The metric then calculates where the center of gravity of that

object would be if all its mass were evenly distributed at each of the agent’s locations. This

metric allows us to see how the swarm as a whole progresses across the landscape. For all

the designated modes, the center of mass of the swarm should remain close to constant (i.e.

moving in the average direction of all the agents, at the average speed of all the agents),

without making sudden changes at mode transition points. The ideal behavior would be

for the center of mass to follow approximately the path marked out by the waypoints.

The equation for center of mass is given as follows:

Cm(t) =

∑|S|
i=0 p(i, t)

|S|
(36)

Total accumulated threat TAT is used to determine how much risk the global swarm

assumes in accomplishing a particular task. This TAT provides a measure of the tradeoff

made between accomplishing the desired behavior, and avoiding threats. A high TAT value

denotes that the swarm incurred deeply into a high threat area, while a low value signifies

that the swarm maintained a good distance from all threats. The equation for this metric

is:

Ta(S) =
n
∑

t=0

∑

a∈S

(T (a, t)− T (a, t− 1)) (37)

Total overlap and total coverage are complementary equations measuring the amount

of sensor overlap in the swarm, and the amount of sensor coverage provided by the swarm

as a whole. These values highlight the sensor coverage aspect of the swarm, and are most

applicable when analyzing reconnaissance and scan modes. For example, in a reconnais-

sance mode, a high amount of sensor coverage is desired with a small, positive amount

of overlap. In the scan mode however, a very high amount of overlap is required and the

sensor coverage necessarily decreases.

Total overlap is calculated to be:

73



0tot(S) =
n
∑

t=0

O(S, t) (38)

and total sensor coverage is calculated as:

Ctot(S) =
n
∑

t=0

C(S, t) (39)

Where O(s, t) returns the total amount of overlapping sensor area in the swarm at

time t, and C(S, t) returns the total amount of coverage, including overlapping areas, at

time t. Each of these functions only return the area in terms of what is overlapped or

covered. In other words, overlapped areas are only counted once rather than each agent

possibly reporting the same overlapping area.

Velocity variance, arrival time variance and alignment variance all provide informa-

tion concerning the collaborative nature of the swarm. A high variance in velocity or

alignment denotes very little uniformity among the swarm. Depending upon the desired

mode, high variance is a desirable result. For reconnaissance however, a very low amount

of variance would be desirable in order to maintain a long, spread-out line which would

be the ideal formation for a large-area scan. Arrival time variance is used to discern the

effectiveness of a particular mode in maintaining proximity as a swarm. Small values for

arrival time variance indicate that all of the agents arrived at the goal within a relatively

small period of time, while large variances indicate that the swarm has become “strung

out” or has formed into one or more sub-swarms which took longer to move to the goal.

Either of these behaviors, while not necessarily bad, indicate that the particular coefficient

matrix for that mode should be analyzed in more detail to determine whether or not the

desired behavior is being achieved.

Velocity variance is calculated as:

VS =
1

t− 1

∑

a∈S

(|~va|
t
− |~v|)2 (40)

Alignment variance is:
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AS =
1

t− 1

∑

a∈S

(θ̄ta − θ̄)2 (41)

Arrival time variance is calculated to be:

TS(t) =
1

|S| − 1

∑

a∈S

(ETAt
a − ETA

t
)2 (42)

where |~va|t, θ̄
t
a, and ETA

t
denote the average velocity, direction angle, and ETA respec-

tively for a swarm S at a given time t, and |~v|, and θ̄ are the sample mean for ∀t, |~va|t and

∀t, θ̄ta respectively [60].

3.6 Evolution Strategy

In order to determine a good coefficient matrix initialization, some form of search

heuristic is required in order to reduce the total number of combinations tested. Normally,

a search heuristic is based upon problem domain knowledge in order to lead the search

towards a good solution [59]. For this problem domain however, very little is known

concerning the relationships between different coefficients in the matrix, and how they

affect each other. Due to this limitation, it is necessary to use a search algorithm that does

not require a great deal of problem domain specific information in order to find a “good”

solution. With these criteria in mind, an Evolution Strategy (ES) algorithm was chosen as

the most desirable search algorithm based upon its ability to search through real-valued

search spaces, as well as to modify its search parameters during the search [7]. This on-line

search strategy modification is referred to as “self-adaptation” [7].

An ES algorithm is a subclass of Evolutionary Algorithms (EAs) [5]. This algorithm

is capable of utilizing the mechanisms of biological reproduction in order to direct a search

through a given search space. ESs have been shown to be successful on many different

real-valued optimization problems including decomposing spectral data for analysis [70],

designing the shape of a microchannel [61], and designing parameters for the control of

jet flow [42]. The ES was originally developed to work with real-valued problem domains,
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and has been shown to converge to good, although not necessarily optimal, results given

enough computation time [7].

3.6.1 Selection Operators. The traditional ES utilizes one of two different selec-

tion operators, (µ, λ) and (µ+λ) [7]. In a (µ, λ) selection scheme, λ offspring are generated

through a recombination operator (discussed in Section 3.6.3). From this λ offspring, the

µ best individuals are chosen. Accordingly, in order to avoid creating a random-walk be-

havior, it is necessary for λ to be much greater than µ [7]. The (µ, λ) selection operator

completely disposes of the parent population at each generation. This behavior allows

the algorithm to escape from local minimums early in the search, and also has the added

benefit of allowing the search to be conducted on dynamic as well as static fitness functions

[7]

The (µ + λ) selection operator combines the parent and offspring populations into

one population, and then chooses the best µ individuals in the combined population. This

operator affords a monotonic improvement in the solution quality however, since good

solutions have a tendency to remain in the population, it is possible for poorly adapted

search strategies with relatively good fitness evaluations to remain in the population for

a large portion of the search [7]. This results in slower convergence, and may sometimes

lead to the algorithm becoming “stuck” in a local minima.

According to experiments performed by Schwefel [76] and later reported by Bäck [7],

the convergence rate of the ES algorithm relies upon the ratio of size for µ/λ[7]. For a

(µ, λ) selection operator, a ratio of 1/7 is recommended where µ À 1. Bäck recommends

using a value of µ = 15 for most problem domains. While this ratio has been shown to

work well in a general sense, no theory currently exists that allows for the derivation of

the proper ratio for a given problem domain type.

3.6.2 Mutation Operators. The self-adaptation aspect of the ES is derived from

the use of normally distributed mutations with an expectation value of zero and standard

deviation of σ [4]. This operator works by mutating the object variable vector using a

logarithmic function. It is possible to further adapt the mutation distribution through
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the use of variances and rotation angles. Variances are related to object variables such

that, for n object variables and nσ variances nσ = n, each object variable ni is mutated

using a normal distribution characterized by σi. Mutations can take several different

forms based upon the values of nσ. Mutations can occur uniformly across two dimensions

(nσ = 1), separately across two dimensions (nσ = 2), and using correlated mutations, the

two dimensional mutation can be rotated in two dimensions (nσ = 2, nα = 1) [4]. Figure

25 shows how different values of nσ and nα affect the distribution in two dimensions.

Figure 25 Affect of rotation angles on the shape of the probability density for nσ = 1
on the left, nσ = 2 in the middle, and correlated mutations nσ = 2, nα = 1 on
the right [4]

3.6.3 Recombination. Recombination in ES algorithms can take one of many dif-

ferent forms, however, the standard forms of recombination associated with ES algorithms

are discrete, intermediate, global discrete, and global intermediate [6]. Recombination can

be either sexual or panmictic, that is, recombination can either utilize only two parents

from the population (sexual), or they can utilize multiple parents from the population

(panmictic) [7]. For discrete recombination, for each position in the vector, one of the

two parents is randomly chosen as the donor (for sexual recombination - panmictic ran-

domly chooses a parent from the population). Intermediate recombination determines the

arithmetic mean of the two parent values. The panmictic variant chooses a single parent

from the population, and chooses the second parent at random for each position in the

child vector [7]. Recombination can occur for only the object variables, only the variance

vector, only the rotation angles, or any combination. Furthermore, different recombination

techniques may be used for each vector. Currently, no theory exists to determine the best

recombination operators to use and on which vector to use it [6].
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3.7 Low Level Design Implementation

The algorithm detailed in Chapter 3 is implemented in the Java R© programming

language. This language was chosen for its included graphics libraries as well as ease of

development. The object oriented nature of the Java programming language provide the

ability to encapsulate sensor characteristics, aircraft characteristics, and rules in different

classes, providing the ability to easily modify aspects of the algorithm through the use of

inheritance.

For purposes of precision, all floating point numbers are implemented as IEEE-

compliant double precision numbers. This allows for minimum error due to truncation, as

well as higher precision calculations. A disadvantage to this design decision is the added

computation overhead associated with performing math on double precision numbers.

In order to analyze the various aspects of the swarm algorithm, a visualization Graph-

ical User Interface (GUI) was developed that provides real-time animation of agents’ po-

sition and heading, threat, goal, and waypoint locations, agent neighborhood, sensor foot-

print, and agent sight range. This GUI is used in Chapters 4 and 5 to analyze the emergent

behaviors observed for a given behavior matrix.

Due to the computation requirements of the swarm algorithm, it is necessary to use

distributed computation techniques for the evaluation of behavior matrices produced by

the ES. This is accomplished through the use of a Master-Slave decomposition strategy

in which chromosomes are assigned to a given processor. Each processor runs the swarm

simulation using the given behavior matrix encoded in the chromosome. Communication

is accomplished through the use of Java’s Remote Method Invocation (RMI) framework.

3.8 Summary

This chapter has discussed the design aspects of the swarm model in terms of intra-

swarm interactions, and inter-swarm interactions. The potential field model used for this

research has been developed and the effects of the APF parameters have been depicted

graphically. A framework for behavior adaptation defined in terms of a behavior matrix

is applied to the basic rules that make up the swarm interaction model. Furthermore,

78



the underlying physical model of the UAVs used is defined, and a brief comparison of

capabilities is made to a Predator UAV. Also, the major aspects of Evolution Strategies

are discussed. Chapter four provides the design of experiments, and discusses briefly the

tuning of many of the ES parameters in order to obtain good results.
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4. Design and Analysis of Experiments

The experimental aspect of this thesis effort involves developing behavior matrices that

result in desired emergent behavior when applied to the swarm model discussed in Chapter

3. In order to obtain good results from the ES algorithm, it is necessary to “tune” the

parameters for best performance. Since the evaluation time of the swarm model is large,

only a small set of tuning experiments is conducted.

4.1 Overview of Experiments

In order to determine the ability of the distributed swarm algorithm discussed in

Chapter 3, experiments are conducted to measure the actual emergent behavior obtained

by modifying the behavioral coefficients. Due to the subjective nature of evaluating the

desired behaviors, results are analyzed visually via an animation based on the simulation

data. Numerical analysis is also performed by comparing the metrics (discussed in 3.5) of

the behavior to metrics obtained from the baseline behavior defined in Section 4.3. Where

stochastic algorithms are used, experiments are repeated in order to perform statistical

analysis as discussed in Section 4.6.1.

The experiments are designed around three test maps: Saddle, Obstacle, and Over-

lap. These three maps are discussed in Section 4.4.1. In order to determine the robustness

of the swarm algorithm, tests are also performed in a general map that contains features of

all three of the test maps. Tests are also performed to test the scalability of the algorithm.

These tests are conducted on the general map.

Since an Evolutionary Algorithm is used, experiments are also performed to de-

termine good parameters for the development of the behavior matrix. Results of these

experiments are analyzed and parameters are chosen for subsequent experiments.

4.2 Experimental Methodology

Experiments are conducted in multiple stages in order to create “good” coefficient

matrices and evaluate their effect on emergent behaviors. The term “good” is used in this
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instance to denote a coefficient matrix that provides the desired emergent behavior; a good

coefficient matrix is not necessarily the optimal coefficient matrix.

4.2.1 Evolutionary Strategy Optimization. The first part of the experiment de-

velops values for the coefficients of δb. Since there is no theoretical model describing the

relationships between values in δb, it is not currently possible to determine good values

a priori. Furthermore, the large size of δb coupled with a large range of possible values

for each coefficient, renders an enumeration-type search impractical. With these issues in

mind, an ES was chosen to evolve matrix values.

The Java Distributed Evolutionary Algorithm Library (JDEAL) is used to perform

the necessary coefficient search [22]. This package is chosen due to its wide variety of

evolutionary operators, as well as the ease of integration with the simulation developed for

this research. Furthermore this package’s ability to perform distributed evolution using a

master-slave paradigm is useful for reducing the total wall-clock time of the search. Due

to the relatively long evaluation time of approximately 22s per evaluation, it is necessary

to utilize the performance ability of a parallel computing paradigm in order to decrease

total evolution time.

The parameters of an ES can adversely affect the performance of the search if not

chosen correctly. To avoid this problem, the first step of experimentation is to tune the

parameters used by the ES for the best attainable results. There are several parameters

however, which have been shown to be good values for a large set of problem domains.

These values are: µ = 15, λ = 100. The recombination operator used is discrete crossover

for the object variables and panmictic intermediate recombination for the strategy vectors.

These values and operators were chosen according to Bäck [7], based upon investigations

performed by Schwefel [77]. They are chosen based upon their general applicability and

their ability to provide an even compromise between exploration and exploitation of the

search space [6]. The parameters that are tuned through experimentation are σi(0), ι(P (t)),

and the selection operation.

While most of the parameters used are based upon values recommended by Bäck

[7], the σi(0) value must be determined experimentally. This is due to the nature of the
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problem domain being searched. Since each coefficient of δb ∈ [0, 1], a variance value of 3.0

causes the algorithm to take maximum steps in setting values. The variances would then

be reduced through self-adaptation. This behavior could cause the algorithm to take longer

to converge. While this is desirable from a quality of solution standpoint, slow convergence

in this problem is too costly in computation time. Therefore the value of σi(0) is tuned

for exploitation rather than exploration. This value is chosen to initially allow mutation

to occur across the entire range of possible values of δb.

Experiments are performed using σi(0) = {0.25, 0.5, 0.75, 1.0} in order to determine

the best value of σi(0). The results are shown in Figure 26 with statistical results given

in Table 3. Since all of the values for σi(0) are statistically equivalent, any value of σi(0)

between 0.25 and 3.0 can be used. For this research, σi(0) = 1.0 is used for all subsequent

experiments.

Figure 26 Comparison of convergence for different values of σi(0)

The results shown in Figure 26 imply that the value of σi(0) does not have a great deal

of influence on the convergence of the search algorithm. This means that the search space

for this particular problem domain is relatively smooth and possibly unimodal. Due to this

apparent smoothness, it is possible that a gradient-based search algorithm could perform
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σ value Min(s) s̄ Max(s) s

0.25 167435.8696 199677.1712 209728.6294 6713.964459
0.5 173010.1842 198667.8616 208519.5327 6362.83784
0.75 176710.6836 198111.1415 207132.0101 6262.409196
1.0 184153.4665 197156.8133 205621.2470 5506.8813
2.0 171444.5332 198447.9914 208106.1087 6934.199872
3.0 171199.9448 198354.1836 208555.6536 6729.685135

Table 3 Sample Minimum, Mean, Max, and Standard Deviation for results obtained
using values of σi(0) = {0.25, 0.5, 0.75, 1.0}

better than an ES-based algorithm. For future research in this area, it is recommended

that a gradient-based search algorithm be implemented as opposed to an ES algorithm.

Another aspect of the ES operation that is considered is the use of rotation angles

(see Section 3.6). Since very little is known about the shape of the fitness landscape, it is

desirable to conduct tests to determine the effectiveness of the algorithm with and without

rotation angles. Based upon the results in Figure 27 however, the use of rotation angles

is not anticipated to affect the convergence or effectiveness of the algorithm. This is due

to the fact that rotation angles on a smooth search space orient in the direction of the

slope. This affect is analogous to using nσ = 1 with sufficiently large values of σ. For this

problem domain, a value of σi(0) = 1.0 is the largest possible value, and can be retained

by the algorithm if it causes mutations to improve in a hill-climbing manner. If rotation

angles are used, it is possible for the algorithm to more easily converge to a local minimum

and require added generations to sufficiently evolve the strategy vector in order to escape

that minimum.

Based upon the experiments performed in this section, the final values used for the

ES algorithm are nσ = 1, σ1(0) = 1.0, ι(P (t)) = 100, and (µ + λ) selection. The ES is

run five times for each behavior on each of the test landscapes (discussed in Section 4.4.1).

Since the average running time of the ES for a 100 generation run is approximately 3 hours

on a high performance computing platform, it is not possible to perform a large number

of runs.

Table 4 summarizes the tuning experiments performed and gives the sample mean,

(s̄), of each experiment.
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Figure 27 Convergence rate for σi(0) = 1.0

# of runs σi(0) ι(P (t)) Selection Operator s̄

5 0.25 100 (µ+ λ) 199677.1712
5 0.5 100 (µ+ λ) 198667.8616
5 0.75 100 (µ+ λ) 198111.1415
5 1.0 100 (µ+ λ) 197156.8133

Table 4 Summary of experiments performed for Evolution Strategy algorithm parameter
tuning. Average run time using 25 procesors is ∼1200 minutes.

4.3 Baseline

Analysis of the metrics from Section 3.5 is performed by comparing results generated

by a particular behavior matrix to results generated by a baseline matrix. Since no standard

baseline has been developed for this problem domain, a pedagogical example is created for

the purpose of comparison. The baseline matrix assumes that no weight is applied to

any of the rule vectors except for the function that specifically applies to that rule. For

example, the equation for ωσ in Section 35 becomes

ωσ = f0δσ,f0 (43)
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The values for δ~σ,f0,, δ~η,f0
, δ~g,f0

, δ~t,f0
are set to 1.0, and all other δ values are set to

0.0. This is the equivalent of a standard swarm model without weighting coefficients. The

baseline matrix is shown in Table 5.

f0 f1 f2 f3
~σ 1.0 0.0 0.0 0.0
~η 1.0 0.0 0.0 0.0
~g 1.0 0.0 0.0 0.0
~t 1.0 0.0 0.0 0.0

Table 5 Baseline Coefficient Matrix

4.4 Validation of Coefficient Matrices

Upon obtaining a set of values for each behavior matrix δb, b ∈ B, a real-time sim-

ulation is conducted using each evolved matrix. The real-time simulation is run in order

to generate data concerning the global behaviors of the swarm for each of the behavior

matrices generated by the ES (see Appendix A for results produced by the ES). These

characteristics are analyzed both visually, using an animation of the simulation, and nu-

merically using the set of global metrics discussed in Section 3.5. All five behavior matrices

generated by the ES are used to gather metrics, and the final metric values are averaged

across the five runs using the methods discussed in Section 4.6.1. This allows for a more

balanced analysis of the results obtained.

Since the metrics designed do not completely describe the swarm behavior in an

easily understandable manner, visual assessment of the behavior coefficients is necessary.

Furthermore, since the mechanisms of emergent behavior are not yet fully understood, it is

not possible to determine metrics which fully describe the observed behavior. This means

that the metrics used may not fully capture the observed behavior. Visual inspection of

the emergent behavior allows the researcher to quickly assess the nature of that behavior.

This also suggests a fast method for identifying poor coefficient matrices, thus focusing

analysis on why a matrix does not provide the desired behavior rather than analyzing if

the desired emergent behavior was generated.
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4.4.1 Test Landscape. In order to provide a consistent comparison between the

baseline metrics and the test metrics, it is necessary to define test landscapes to use for

evolution and testing of the coefficient matrix. This is analogous to using a training set

in neural networks [59] or learning methods used in data mining approaches [17]. Each

test landscape used contains threats, a goal, and a list of waypoints that the agents must

follow. The path specified by the waypoints can be a straight line or a curved path, and

leads from the initial position to the goal.

Threats are placed on either side of the designated path with a varying distance from

each other. This creates three different situations, a saddle in the potential field as seen in

Figure 28, an obstacle in the agents’ path such as in Figure 30, and a “raised” saddle in

between two threats as shown in Figure 29. In each of these situations agents must either

accept higher risk to maintain the desired behavior, or partially compromise the desired

behavior in order to reduce the total amount of accumulated risk.

Three different test cases are used with each one containing a particular feature

of interest. A summary of each of these landscapes is provided in Table 6. The test

landscapes, seen in Figures 28, 29, and 30 consist of 500×500 pixel wide squares containing

either one or two threats with a diameter of 100 located above and below the waypoint

path in the case of the Saddle and Obstacle landscapes, or on the path in the case of

the Obstacle landscape. The goal also has a diameter of 100. The start location is the

upper left corner of the landscape, and the goal location is the lower right corner of the

landscape. The initial starting configuration for the agents is a diagonal line which is

roughly perpendicular to the specified path. The waypoint path makes a direct line from

the start to the end point.

The simulation terminates when one of three conditions is met: an agent leaves the

map boundaries, all agents have reached the goal, or a set time limit elapses before all

agents reach the goal. If the first condition occurs, the fitness value of the simulation

is set to the maximum representable double value in IEEE Standard 754-1985 [79]. The

second condition is the desired finish point, and the fitness function does not have a penalty

applied to it when this condition is met. If the third condition is met, the fitness function

is set to the maximum representable double value.
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Map Prominent Feature

Saddle Broad saddle in between two threats with
path passing through center of saddle

Obstacle Obstacle placed in the center of the path
with no other threats in the landscape

Overlap
“Raised” saddle at overlap of two threats
with path passing through the overlapping
area

Table 6 Comparison of features contained in each of the test cases used

The time limit used for condition three is based on the agents’ minimum speed and

the size of the landscape. For example, in our experiments an agent’s minimum speed is

20.577 m/s, which translates to 74 kph. With a 500×500 landscape, the farthest an agent

should have to fly to get to the goal is 1000 pixels, or 100 km (moving along the horizontal

edge of the map, followed by moving along the vertical edge of the map to the goal, or

vice versa). Based upon the minimum speed, the longest amount of time an agent should

take is 4865s. While it is possible for an agent to fly a longer course than this by taking a

serpentine course to the goal, a limit of 5000s is deemed to be adequate time to allow all

agents to reach the goal.

Figure 28 Saddle landscape with broad saddle feature
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Figure 29 Overlap landscape with “raised” saddle feature

Figure 30 Obstacle landscape with obstacle feature
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Small sized landscapes are used for the initial testing due to the computation time

required to process a single simulation. Since the scale of our landscape is 1 pixel =

100 meters, a 500 × 500 pixel landscape is a representation of a 50km wide area. Since

the agent’s minimum vehicle speed is 74kph, it is necessary to simulate up to 5000 steps

of the algorithm for an agent to reach the goal. This process takes approximately 22s

on an Intel Pentium IV R© dual 1.0 GHZ processor machine. Since the ES performs 100

generations and produces 100 children each generation, the total running time for a small

landscape is approximately 220000s, or 61 hours. This time is reduced through the use of

high performance computation techniques however, small landscapes are still necessary in

order to obtain results in a timely manner.

4.5 Generality

Since the ES algorithm only optimizes a coefficient matrix for a specific landscape,

it is important to determine whether a matrix is capable of performing well on multiple

landscapes. Rather than using an ES to design the coefficient matrix for each specific

mission, it is desirable for the adaptation algorithm to be capable of working in a wide

variety of missions with little or no modification of the coefficient matrix. Experiments

are performed for the best found coefficient matrix in order to determine whether the

algorithm is capable of this. This test is performed on a landscape that incorporates all

of the features of the test landscapes as well as behavior transitions in order to study all

three behaviors in a single simulation run. The metrics discussed in Section 3.5 are then

used to analyze how well the given coefficient matrix maintained the desired behavior in a

new landscape.

The landscape used to test the generality of the algorithm is much larger than the

test cases, and incorporates each of the aspects of the test cases, that is a wide saddle,

overlapping threats, and an obstacle in the path. The test landscape also changes behaviors

at certain waypoints in order to test the ability of the swarm to modify its behaviors during

flight. Figure 31 shows the larger sized landscape used to test these aspects of the adaptive

algorithm, as well as the location at which the behaviors change. The initial behavior of

the swarm is set to be the reconnaissance behavior discussed in Section 3.3.8. Agents begin
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the simulation at location A in Figure 31. At location B, the agents transition to a scan

behavior. At location C, the agents transition to an en-route behavior.

Figure 31 Landscape used to test the generality and scalability of the evolved coefficient
matrix. The starting point is in the upper left corner of the landscape and the
goal is in the lower right corner. This landscape is 2000 × 2000 pixels wide,
which simulates a 200km wide area.

4.6 Scalability

Another aspect of importance to this investigation is the scalability of the adaptation

algorithm. As UAVs become smaller and sensor packages are reduced in size, it becomes

more desirable to utilize swarms of several hundreds or even thousands of UAVs. In this

case, it is important that the control algorithm be able to scale with little or no degrada-

tion to the desired emergent behavior. To determine the algorithm’s scalability, tests are

performed using |S| = 1024 in order to determine its scalability. The test landscape used

for this larger sized swarm is the same as that used for the generality tests.
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Due to the large number of agents used, the initial position of each agent affects the

time to converge to a stable swarm structure. It is important that this behavior emerge

prior to the swarm moving too closely to any threats that may deform the overall shape

of the swarm. In order to ensure that the swarm is given sufficient time to converge, the

agents are initialized in a triangular grid formation with distance between agents set to

250m. This formation is theorized by Kadrovach to be the most stable structure based

upon the neighborhood model used [38]. The distance of 250m is determined by finding

the point of intersection between the cohesion and separation equations (shown in Figure

6).

4.6.1 Statistical Methods. Since the Evolution Strategy algorithm described in

Section 3.6 is a stochastic algorithm, it is necessary to perform a statistical analysis on the

results produced in order to obtain a reasonable expectation of performance. This section

discusses the statistical methods used to tune the ES’s parameters.

Data gathered through experimentation does not provide a complete picture of the

population distribution. Coupled with the fact that the mean and standard deviation of

the distribution are unknown, it is necessary to use estimators that rely upon the central

limit theorem [60]. These estimators are referred to as the sample mean s̄, and the sample

standard deviation s. For a sample set X = X1, X2, · · · , Xn these values are calculated as

s̄ =

n
∑

i=1
Xi

n
(44)

s =

√

√

√

√

2
∑

i=1

(Xi − s̄)2

n− 1
[60] (45)

(46)

In order provide a statistical analysis of a sample set of data, it is necessary to

determine the minimum size of the sample set in order to estimate µ to within d units with

100(100− α)% confidence. This value can be determined using the equation
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n
.
=
(tα/2)

2σ2

d2 standard deviation known

n
.
=
(tα/2)

2σ̂2

d2 standard deviation unknown [60]
(47)

where tα/2 is area under the curve for a T distribution with n− 1 degrees of freedom, and

α/2 standard deviation and d is the distance between the sample mean, s̄ and the upper

confidence interval s̄ + (tα/2)
2σ̂2. This test assumes that the underlying distribution of

the sample data is a normal distribution [60]. While normality is assumed, the underlying

distribution of the process may not be normal in nature. Unfortunately, due to the long

computation times involved in the evaluations for the ES algorithm, it is not possible from

a time standpoint to perform enough experiments to provide a reasonable expectation of

the underlying distribution.

Several tests exist that indicate with some level of confidence that the underlying

distribution is either normal or non-normal however, each of these tests have undesirable

characteristics for this problem domain. The Shapiro-Wilks test for example, loses sig-

nificance as the size of the data set decreases [78]. The Lilliefors test for normality on

the other hand, works with small sample sizes. However, it is sensitive to outliers within

the data set [60]. For the purpose of this investigation, minimum, maximum, and average

values are given as well as sample standard deviation in order to give rough idea of the

distribution of the data. While this does not provide an accurate estimate of the under-

lying distribution, an average value that is approximately centered between the minimum

and maximum values indicates that a normal distribution is likely.

4.7 Summary

This chapter provides the experimental methodology for validating the swarm model

developed in Chapter 3. Furthermore, parameters are determined for the ES in order

to evolve good results for the experiments described. These parameters are determined

through the use of statistical methods also defined in this chapter. Test cases are defined

for the experiments performed and a baseline case is defined. Finally a general test case is

developed for testing scalability and robustness of the swarm algorithm.
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5. Results and Analysis

5.1 Introduction

This chapter contains data obtained through the experiments described in Chapter

4. An analysis of the data is conducted using a baseline data set as described in Section

4.3 as the comparison set. Experimental results are also discussed using visualization of

the swarm’s emergent behavior. This visualization leverages the pattern matching and

recognition capabilities of a human operator in order to assess the overall effectiveness of

a behavior in meeting its desired goal.

5.2 Fitness Evaluation

One aspect of ESs discussed in 3.6 is that the fitness function must be carefully crafted

in order to correctly capture the observed behavior resulting from a behavior matrix.

Before experimentation can be performed using the different behaviors, it is necessary to

analyze the results obtained using different fitness functions. This section gives the results

and analyses for these tests. Since each behavior requires a separate fitness function to

optimize a particular aspect of that behavior, this section discusses the fitness evaluations

for each of the the three different behaviors.

5.2.1 Reconnaissance. The first fitness evaluation tested attempts to minimize

the sensor overlap, f1, while providing a penalty for results in which one or more agents do

not reach the goal, and a penalty for each agent that is separated from the swarm during

the course of a run. The fitness evaluation used is given in equation 48.

frecon(δb) = O(S) ∗ 1.1p (48)

where p is an accumulator which increments for each agent that has a neighborhood of

zero at each timestep, as well as for each agent that has not reached the goal at time t,

and O(S) is the global overlap of the swarm. The motivation behind using this penalty

function is to penalize solutions that sacrifice swarm cohesion for a lower overlap value.

This penalty scheme also leads to solutions with shorter paths receiving lower fitness values.
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This provides a selection pressure towards solutions which reach the goal quickly. Table

7 shows the results obtained using this fitness evaluation for the reconnaissance behavior.

The value reported for each column is an average of five runs.

Map Fitness Value Overlap Penalty

Saddle 3.64043E+783 3017992.8 18773.4
Obstacle 2.11977E+820 3942492.4 19658.8
Overlap 1.06688E+674 9478018.8 16115.2

Table 7 Metrics obtained using equation 48 on all three test maps

The results obtained using equation 48 consist of tightly grouped agents moving in

seemingly erratic directions with no discernable structure to the swarm. The reason for

this becomes clear when viewing the affect that the penalty function has on the overall

value of the fitness function. As the penalty function increases over time, the weight of the

penalty function increases exponentially. This causes the algorithm to favor population

members that have low penalty values regardless of overlap because the penalty value has

overshadowed the overlap value. Another problem observed using this fitness function is

that there is no provision for threat avoidance.

Using the observations made in the previous paragraph, a new fitness function was

designed that attempts to address the noted shortcomings of the previous function while

still providing a penalty to solutions which lead to poor swarm cohesion and long paths.

This new function performs an aggregate of the overlap, O(S), penalty, p, and threat

exposure, Ta(S), values. Since the average values given in Table 7 are similar in order of

magnitude, no weighting is used in the aggregate function. The new fitness function used

is given as equation 49.

frecon(δb) = O(S) + Ta(S) + p (49)

The results obtained using equation 49 are given in Table 8. The metrics reported in

this table are obtained by running the swarm algorithm using the same behavior matrix

used for Table 7. Rather than running the ES to determine the effectiveness of the result,

the baseline behavior is used to simulate a swarm. Equation 49 is used to report the values
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obtained by the baseline behavior. This same method was used to produce the results seen

in Table 7. This methodology allows for a direct comparison between equations 48 and 49.

Map Fitness Value Overlap Penalty

Saddle 8071329.307 8047324.8 23458
Obstacle 3329958.105 3310327.8 19255.2
Overlap 9071568.962 9052409.6 15797

Table 8 Metrics obtained using equation 49 on all three test maps

As can be seen from Table 8, the fitness values calculated from equation 49 are much

lower than the those calculated using equation 48. The important point illustrated by this

table however, is the affect of penalty on the overall fitness evaluation. In Table 7, a high

penalty value such as for the Obstacle map leads to a disproportionate leap in the fitness

evaluation. Equation 49 on the other hand, results in a much more reasonable increase

in fitness evaluation. Since the overlap value now dominates the fitness evaluation, it is

possible to evolve results that do not “focus” on the penalty value to the exclusion of the

overlap value.

5.2.2 Scan. Using the lessons learned in the formulation of equation 49, the scan

fitness evaluation is determined as:

fscan(δb) = (C(S)−O(S)) + (19.7392088− Ls2(S)) + p+ Ta(S) (50)

where C(S) is the total sensor coverage of the swarm during the simulation, O(S) is the

amount of overlapping coverage, Ls2(S) is the look angle variance defined in equation 20,

and p is the same penalty function described in equation 49.

This behavior attempts to maximize the amount of sensor overlap however, since the

ES algorithm is designed to minimize the search function, overlap is subtracted from total

coverage to provide a measure of fitness which decreases with increasing overlap. To create

a decreasing value as look angle variance decreases, the constant 19.7392088 is subtracted

from the look angle variance equation. This constant is derived as the maximum possible

value of equation 20. Which occurs in the sample {360, 0}. The penalty measure is used

to ensure that agents do not stray too closely too each other. This is accomplished by
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penalizing any agent that moves within 10m of another agent. This value is chosen as the

minimum safe distance possible between two agents.

5.2.3 En-route. Due to the relative simplicity of the en-route behavior, it is only

necessary to encode a shortest path function and a threat exposure function into the fitness

evaluation. Since the penalty function increments by the number of unfinished agents at

each time step, the en-route behavior is optimized on shortest path as well as maintaining

minimum safe distance, and swarm cohesion. Threat avoidance is expressed in terms of

the threat exposure measure. The equation used for en-route is simply:

fen-route(δb) = p+ Ta(S) (51)

5.3 Baseline

The baseline metrics are defined first in order to provide a means of comparison to

the other behaviors observed. Using the behavior matrix described in Section 4.3, the

simulation is executed and results recorded. The results reported in Table 9 were obtained

with the Saddle map. Table 10 gives the results for the Obstacle map. Table 11 give results

for the Overlap map. Figure 32 shows the formation that emerges from the baseline matrix.

Since the swarm algorithm is deterministic, it is only necessary to perform one run for each

map using the baseline behavior matrix.

Metric Value

Overlap: 3711976.0
Accumulated Threat: 11.945907268293919
Velocity Variance: 0.006179421795581918
Alignment Variance: 0.015239034592473388
Arrival Variance: 2034902.25
Look Variance: 0.00964591768459882
Penalty: 75
Coverage: 7096294.425669053

Table 9 Metrics obtained for the baseline behavior on the Saddle map
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Metric value

Overlap: 4094901.0
Accumulated Threat: 145.55451302412777
Velocity Variance: 0.0063572915968869445

Alignment Variance: 0.04588783554559924
Arrival Variance: 2092362.25
Look Variance: 0.007522928713479843

Penalty: 2140
Coverage: 7040548.7283041235

Table 10 Metrics obtained for the baseline behavior on the Obstacle map

Metric value

Overlap: 2594326.0
Accumulated Threat: 774.4018113850954
Velocity Variance: 0.006246305714556331

Alignment Variance: 0.35681296272978075
Arrival Variance: 2689600.0
Look Variance: 0.014341440051668274

Penalty: 371
Coverage: 9155544.077023283

Table 11 Metrics obtained for the baseline behavior on the Overlap map
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Figure 32 Figure showing snapshot of baseline swarm behavior on Saddle map
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5.4 Reconnaissance

As described in Section 3.3.8, the reconnaissance behavior is intended to provide

the best trade-off between area coverage and threat avoidance. As compared to the base-

line metrics, the desired outcome is a low sensor overlap, high contiguous area coverage,

and reasonable threat exposure value. Since reconnaissance includes determining a trade-

off between threat avoidance and sensor coverage, a higher value for threat exposure is

expected.

5.4.1 Saddle Map. The behavior matrices produced by the ES for the saddle

map are given in Appendix A. Figure 33 shows a visualization of the swarm algorithm

using behavior matrix 5. The circles around each agent in this figure represent the sensor

footprint of the agent. This figure is taken after the swarm has been given ample time to

converge to a stable configuration. The desired configuration for this behavior is a widely

dispersed formation moving roughly in a line abreast. As the swarm approaches the saddle

area, the desired formation compresses in order to reduce threat coverage. As discussed

in 4.6.1, the metrics produced by the swarm algorithm using each of these matrices is

averaged, and the maximum, minimum, and standard deviation are reported in Table 12.

Figure 33 Visualization of swarm reconnaissance behavior on Saddle map
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For all five behavior matrices generated for the Saddle map, the results are very

similar. In each case, agents initially turn away from each other as much as possible in

order to spread out and increase sensor overlap as shown in Figure 34. This initial behavior

results in the converged behavior seen in Figure 33. The two agents on the outside “wings”

of the formation are trailing far behind the other agents due to their initial reaction of

turning sharply to move away from their neighbors. The total overlap of the algorithm is

significantly reduced in comparison to the baseline behavior as seen in tables 12 and 9.

Figure 34 Visualization of initial response in reconnaissance behavior on Saddle map

Metric min(s) s̄ max(s) σ

Fitness 165844.1099 1165408.669 5127097.788 2214661.929
Total Overlap 164982 174128.4 183093 6487.423703

Total Accumulated Threat 54.95271419 72.10207491 105.9012332 20.28661758
Velocity Variance 0.009990875 0.014116512 0.016054478 0.002430203

Alignment Variance 0.268678109 0.340602595 0.383799294 0.047047394
Arrival Time Variance 617010.25 639123.2 703921 36503.83673
Look Angle Variance 0.022492336 0.026771268 0.028563948 0.002480376

Penalty 803 971.8 1634 370.1968395
Total Coverage 5009394.921 5082238.016 5286860.123 115955.9906

Table 12 Minimum, average, maximum, and standard deviation for metrics of the re-
connaissance behavior on Saddle map
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The matrices evolved by the ES algorithm point out several important features in

the reconnaissance behavior. Of the five matrices evolved, two of the matrices contain

zero weight for the cohesion rule and two set δb(~σ, f3) = 1.0 with all other values in the

row set to zero. These weights are appropriate for this behavior because a low cohesion

implies that the swarm will spread out more. Also, as agents fall behind the rest of the

swarm, as shown in Figure 34, the velocity variance increases, resulting in an increase in

cohesion. This strategy does not work well in practice, because the time required for the

agents on the flanks of the formation to accelerate to a higher relative speed compared

to their neighbors is more than the time it takes for those neighbors to move out of sight

range.

For separation, the feature that appears to have the most impact on the weight is the

overlap function, with three of the five matrices weighing δb(~η, f2) at the maximum value

while weighing all others in that row at zero. Again, this strategy makes sense because

overlap is inversely proportional to the distance between agents. In order to decrease

overlap, agents must increase separation. As can be seen in Figure 33, this strategy leads

to the agents’ sensor footprints touching, but not overlapping, throughout the simulation.

The goal seek behavior does not have as clear a distinction as the cohesion and

separation behaviors. For the most part, the matrices weigh the goal rule, δb(~g, f0) as the

highest contributor to the weight, with δb(~g, f1) having a small contribution. The results

are inconclusive for overlap and velocity variance however, as the matrices do not have a

discernible pattern in how these values are weighted.

One aspect of the reconnaissance behavior that is not addressed well is threat avoid-

ance. During a simulation, the agents on the outsides of the formation stray into the threat

areas with no discernible change in course. Three out of the five matrices set δb(~t, f0) to

the maximum coefficient value of 1.0, so the lack of response within threat areas is likely

the result of a weak repulsion field around the threat, rather than poor matrix values.
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5.4.2 Obstacle Map. For the Obstacle map, the desired reaction of the recon-

naissance formation to the threat in the pathway is for the formation to break up into two

separate lines moving in a line abreast formation while passing the threat, and then to

converge back to a single line after the threat has been passed. Figure 35 shows the actual

behavior of the swarm using behavior matrix 1.

Figure 35 Visualization of swarm reconnaissance behavior on the Obstacle map

As can be seen in Figure 36, the same initial action of spreading out dominates the

initial swarm behavior. Once the agents have sufficiently separated, the agents begin to

move towards the goal. Unlike the behavior observed in the Saddle map, the agents all

stay within sensor range of each other, with the agents on the flanks falling behind slightly,

but still within sight of their neighbors. As the simulation progresses, the swarm maintains

a curved “V” formation as seen in Figure 35. As can also be seen in this figure is that

the swarm does not react to the threat in the path, but rather moves directly through

the threat without taking any evasive action. The reason for this is likely due to the low

value of threat exposure in relation to overlap in this function (see Table 13). Since threat
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exposure is so low, the ES primarily optimizes on the need to maintain overlap rather than

compromising between threat exposure and overlap.

Figure 36 Visualization of initial response in reconnaissance behavior on Obstacle map

Two differences are noted between the observed behavior for the saddle map, versus

the observed behavior for the obstacle map. The first of these is that the two agents on the

outside edges maintain cohesion with the swarm on the Obstacle map. It is not possible

based upon the data collected, to determine the exact reason that this behavior occurs.

It is likely however, that this difference occurs due to the placement of the threat. In the

Saddle map, the threats are on the edges, and cohesion with the swarm drives the flanking

agents further into the threats. By allowing the cohesion to be broken, the two outside

agents are able to move towards the center, and thereby reduce the threat exposure.

The second difference observed between these two behaviors is the gap that occurs

between the agents’ sensor footprint on the Obstacle map. This gap is not observed for

the three agents in formation on the Saddle map. Again, while it is not possible based

upon the data collected to determine why this difference exists, a plausible reason is that
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Metric min(s) s̄ max(s) σ

Fitness 161687.8945 169775.6324 173650.7892 4890.728549
Total Overlap 160603 168695 172602 4897.116345

Total Accumulated Threat 253.7892162 272.0323801 299.1996684 17.13992304
Velocity Variance 0.013870763 0.014584391 0.015079663 0.00044511

Alignment Variance 0.322343034 0.345819599 0.377026012 0.020465469
Arrival Time Variance 629642.25 633142.15 638401 3406.660501

Look Variance 0.022412855 0.023722811 0.02493534 0.001134118
Penalty 795 808.6 823 12.89573573

Total Coverage 5043291.485 5060827.284 5087386.645 16718.40738

Table 13 Minimum, average, maximum, and standard deviation for metrics of the re-
connaissance behavior on the Obstacle map

the placement of the threat drove the ES algorithm’s search space to produce minimums

which contain sensor gaps.

5.4.3 Overlap Map. In the Overlap map, the desired reconnaissance behavior

splits around the two overlapping threats, while also sending single or possibly multiple

agents through the overlapping region. This method ensures broad sensor coverage of the

area while not incurring too much threat. The actual performance of the swarm algorithm

using matrix 1 is shown in Figure 37. Table 14 shows the metrics obtained for this map.

Metric min(s) s̄ max(s) σ

Fitness 190102.524 203821.6231 210571.1367 8238.776918
Total Overlap 189003 202198.2 208656 7899.708868

Total Accumulated Threat 313.4395557 344.823121 366.1367058 23.33513727
Velocity Variance 0.009973014 0.012212458 0.015517104 0.002346116

Alignment Variance 0.283741421 0.32814885 0.405004753 0.053375891
Arrival Time Variance 632820.25 690794.95 751689 50290.08795

Look Variance 0.017235275 0.019594231 0.024098286 0.003036264
Penalty 762 1278.6 1682 468.9715343

Total Coverage 5055705.5 5248656.198 5468255.456 171338.7044

Table 14 Minimum, average, maximum, and standard deviation for metrics of the re-
connaissance behavior on the Overlap map

As with the Saddle and Obstacle maps, the reconnaissance behavior begins by spread-

ing out as quickly as possible. For this map however, the observed behavior consists of all

five members of the swarm moving out of sight range of each other, thus creating noth-

ing more than five uncoordinated UAVs. The threat avoidance values evolved are very
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Figure 37 Visualization of swarm reconnaissance behavior on the Overlap map

low, so little reaction is observed when an agent comes into proximity with a threat. The

converged formation of this behavior is shown in Figure 37.

5.5 Scan

As described in 3.3.8, the scan behavior is designed to cover a relatively small area

with a large number of sensors, as well as a large variance of look angles. This behavior is

designed to be tolerant of threats, exhibiting higher threat exposures in order to maximize

the scanned area. As compared with the baseline metrics, scan is expected to have a high

alignment variance, low arrival time variance, and higher threat exposures.

Figure 38 shows a visualization of the swarm algorithm using matrix 2 in Appendix

A on the Saddle map. This figure shows the swarm after ample time has passed for

convergence to a stable configuration. Since the scan behavior is designed to remain close

to the path denoted by waypoints, agents are expected to pass through the saddle area
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with minimal change in behavior as compared to the behavior observed prior to the saddle

area. Metrics for this behavior on the Saddle map are reported in Table 15.

Figure 38 Visualization of swarm exhibiting scan behavior on the Saddle map

As can be seen in Figure 38, the behavior generated by the ES algorithm does

not maintain a highly entropic formation as desired, but rather compresses the formation

laterally. This behavior maximizes the sensor overlap, but does not maximize the look angle

variance. The reason for this can be found in Table 15. The average look angle variance

measured for this behavior is on the order of 1× 10−2. When this is subtracted from the

constant 19.7392088, the resulting number is still five orders of magnitude less than the

result of the overlap function, C(S) − O(S). The penalty function also overshadows this

value. Based upon these observations, as well as the knowledge gained from developing

frecon, it is very likely that a better behavior can be developed by properly scaling the

different components of fscan with respect to each other. A new fitness equation is not

suggested here due to the costly run-time of the ES algorithm on a new fitness function.

In Figure 39, the behavior of the swarm is shown as agents encounter the threat on

the Obstacle map. The desired response of the scan mode in this situation is for the agents

to either split into two distinct groups and continue scanning along the desired route, or for
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Metric min(s) s̄ max(s) σ

Fitness 2704242.448 2714284.29 2719767.31 6276.661671
Total Overlap 2108295 2175780.8 2225021 42939.68614

Total Accumulated Threat 1.556724514 1.778375504 2.136617385 0.214593837
Velocity Variance 0.001463264 0.001793917 0.002099682 0.000288784

Alignment Variance 0.019732845 0.022333729 0.029507718 0.004162825
Arrival Time Variance 543169 557445 568516 9636.441304

Look Variance 0.010687063 0.011276045 0.011761629 0.000463124
Penalty 1139 1357.2 1511 134.9544368

Total Coverage 3565250.338 3591323.362 3612444.851 19388.29496

Table 15 Minimum, average, maximum, and standard deviation for metrics of the scan
behavior on the Saddle map

the agents to skirt the edge of the threat in a single group. Since this behavior is intended

to accept a great deal of threat in order to scan along the intended route, the distance that

the agents should begin to react to the threat is intended to be small. As can be seen in

Figure 39, the agents do not react to the threat in any perceptible manner. Table 16 gives

the metrics computed for the scan behavior on the Obstacle map.

Figure 39 Visualization of swarm exhibiting scan behavior on the Obstacle map

The lack of response to the threat in the Obstacle map leads to a relatively high

TAT value however, as pointed out previously, the value of C(S)−O(S) is roughly 1×106.
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Metric min(s) s̄ max(s) σ

Fitness 2857384.583 2871616.892 2892713.802 14121.15814
Total Overlap 1994129 2066365 2142525 52743.09443

Total Accumulated Threat 456.0224362 472.2224194 497.4757014 16.22432782
Velocity Variance 0.001166643 0.001758434 0.002243806 0.000422752

Alignment Variance 0.0244932 0.031719869 0.045583621 0.00837767
Arrival Time Variance 553536 569493.5 592900 14415.33975

Look Variance 0.005960215 0.006540499 0.007185598 0.000441822
Penalty 676 966.8 1242 216.4178828

Total Coverage 3667572.272 3697804.709 3754223.816 33350.98588

Table 16 Minimum, average, maximum, and standard deviation for metrics of the scan
behavior on the Obstacle map

This means that the TAT is overwhelmed by the C(S)−O(S) component of the aggregate.

Furthermore, since the penalty in this scenario is greater than the TAT, the ES is optimizing

by first minimizing the sensor coverage, followed by the penalty, and finally the TAT. Since

a decrease in TAT would cause an increase in p for this map due to the extra time the

agents must take to circumvent the threat, the better solution is to keep penalty low.

This behavior suggests that a multi-objective approach may be capable of providing a

good continuum of values that offer the planner the ability to choose how much TAT and

penalty the swarm should incur.

For the Overlap map, the desired scan behavior reacts to the overlapping threats

by compressing the agents between the threats. This maximizes the amount of sensor

coverage over the path while avoiding threat as much as possible. Figure 40 shows that

the swarm reaction to this landscape feature is as desired. While the agents in Figure 40

appear to have collided, due to the map scale, the distance between agents in this scenario

is actually greater than 100 m in this figure. Table 17 provides the calculated metrics for

this behavior on the Overlap map.

While the swarm’s behavior on the Overlap map is as desired in terms of its reaction

to the overlapping threats, the movement of the agents still produces a very low look

variance value. Furthermore, the swarm reacted to the threat in this case by compressing

laterally, but it did not react to the threat in the Obstacle map. This indicates that the

fitness function used is sensitive to the swarm’s landscape.
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Figure 40 Visualization of swarm exhibiting scan behavior on the Overlap map

5.6 En-route

The en-route behavior is designed to be a general-purpose swarm behavior which

allows for goal seek, and threat avoidance characteristics. This state only attempts to

optimize the amount of time each agent takes to reach the goal. Appendix A, section A.4

gives the behavior matrices evolved for this behavior on each of the three test maps.

Metric min(s) s̄ max(s) σ

Fitness 2711615.316 2729204.598 2737329.385 10186.07918
Total Overlap 2121536 2159668.8 2230841 45393.59975

Total Accumulated Threat 41.89687795 49.41681811 55.4310526 5.851895292
Velocity Variance 0.001431626 0.002509129 0.003804479 0.00096784

Alignment Variance 0.035363323 0.049539765 0.074178309 0.01626828
Arrival Time Variance 547600 557010.05 574564 11402.25616

Look Variance 0.00505128 0.006176207 0.007520305 0.000991371
Penalty 947 1132.4 1472 221.4335115

Total Coverage 3571769.531 3600384.672 3634667.592 23575.77883

Table 17 Minimum, average, maximum, and standard deviation for metrics of the scan
behavior on the Overlap map
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Figure 41 shows a visualization of the swarm algorithm using matrix 5 on the Saddle

map. This figure shows the swarm after ample time has passed for convergence to a stable

configuration. Due to the threat avoidance portion of the en-route behavior, the formation

is expected to compress slightly as it passes through the saddle area of the map. This

expectation is met, as shown in Figure 41. During the beginning of this simulation, the

agents move in a line-abreast formation similar to the one observed in the scan mode

behavior. As the agents pass between the threats however, the center agent accelerates

to move forward of the other agents. This is the behavior shown in Figure 41. As the

simulation continues, the swarm begins to form a circular formation however, the agents

reach the goal before this shape can fully stabilize. Metrics for this behavior on the Saddle

map are reported in Table 18.

Figure 41 Visualization of swarm exhibiting enroute behavior on the Saddle map

The en-route behavior on the Obstacle map is intended to minimize threat exposure

while still moving towards the goal. This means that as the agents approach the threat,

their expected behavior is to split into two sub-swarms which move independently towards

the goal. After passing the threat, the two sub-swarms are expected to reform into a single

swarm. Figure 42 shows the actual behavior for en-route using matrix 3 on the Obstacle

map. As can seen in this figure, the agents break into two swarms before entering into

110

-k 



Metric min(s) s̄ max(s) σ

Fitness 9.394079717 10.21234458 10.54369498 0.491154993
Total Overlap 1917848 2192819 3249055 590495.1899

Total Accumulated Threat 4.394079717 5.212344577 5.543694985 0.491154993
Velocity Variance 0.002585693 0.003611108 0.005049277 0.001267287

Alignment Variance 0.028141571 0.062738053 0.150003036 0.052274759
Arrival Time Variance 537289 728292.7 1490841 426277.6164

Look Variance 0.008358835 0.012347487 0.014589385 0.002342676
Penalty 5 5 5 0

Total Coverage 3628129.871 4135221.914 6128923.169 1114532.92

Table 18 Minimum, average, maximum, and standard deviation for metrics of the en-
route behavior on the Saddle map

the threat radius of the obstacle. The agents continue to skirt the threat with roughly the

same distance from the center until they reach the opposite side. Once clear of the threat,

the agents converge towards the waypoint path and rejoin just before reaching the goal.

Table 19 contains the metric values for the en-route matrices tested on this map.

Figure 42 Visualization of swarm exhibiting en-route behavior on the Obstacle map

The exemplary behaviors observed in the enroute behavior are partially due to a

fitness function that has the same order of magnitude for all components in the summation.

This allows the ES the opportunity to minimize all functions simultaneously rather than
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Metric min(s) s̄ max(s) σ

Fitness 83.74826577 111.0619455 133.9758752 22.33950394
Total Overlap 2224650 2277616.2 2372172 58759.06917

Total Accumulated Threat 22.56504892 36.86194547 50.97587517 13.88865734
Velocity Variance 0.004366112 0.007847868 0.010596205 0.002694711

Alignment Variance 0.096992087 0.192037808 0.256956526 0.072556373
Arrival Time Variance 786769 847323.3 937992.25 62860.25899

Look Variance 0.020754529 0.024205965 0.027814004 0.003187465
Penalty 60 74.2 83 9.679876032

Total Coverage 4502749.761 4692490.52 4987288.134 207213.5094

Table 19 Minimum, average, maximum, and standard deviation for metrics of the en-
route behavior on the Obstacle map

focusing on the minimization of a single component at the expense of all others. This

is accomplished due to the simplicity of the en-route fitness function as compared to the

reconnaissance and scan functions.

The desired behavior of the en-route mode on the overlap map is to move through

the center of the two overlapping threats in the most expedient manner. This can either

consist of the formation compressing laterally to pass through the threats, or even better,

moving through the threats in a line in order to guarantee that each agent passes through

the lowest possible threat potential. The actual observed behavior is shown in Figures 43

and 44. Contrary to the expected behavior of compression as the swarm approaches the

threats, the swarm spread out into a triangular grid just before the threats (see Figure 43).

Immediately before entering the overlapping area however, the swarm very quickly adjusts

the formation to two lines in a row (see Figure 44). This behavior is likely due to the

broad local minimum just before the two threats. When the agents enter into this area,

the threat repulsion is cancelled by the goal attraction, so the swarm quickly converges

to the formation which results in cohesion and separation cancelling out. This is why

the triangular grid is hypothesized by Kadrovach to be the most stable formation for the

model used [38]. Once the agents move out of the local minimum area, the threat repulsion

quickly pushes the swarm into a new formation that better minimizes the threat exposure.

Table 20 gives the metrics calculated for this simulation.
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Figure 43 Visualization of swarm exhibiting en-route behavior on the Overlap map

5.7 Matrix Values

In order to understand which state functions have the greatest contributions to an

observed behavior, it is necessary to look at the results obtained by the ES for each different

behavior. This section provides a visual comparison of the weight coefficients obtained by

the ES algorithm and develops an understanding of which weights are most important to

the success of a given behavior mode in achieving the desired behavior.

Metric min(s) s̄ max(s) σ

Fitness 91.1228535 125.7406957 145.7105806 21.91788708
Total Overlap 1799358 2130433.6 3196202 597487.04

Total Accumulated Threat 71.71816456 96.74069571 132.5042512 25.1390764
Velocity Variance 0.005158287 0.008856643 0.010963287 0.002297082

Alignment Variance 0.165933128 0.221216519 0.278209087 0.047111729
Arrival Time Variance 588289 837080.1 1572516 417624.5226

Look Variance 0.006486697 0.011142143 0.013620281 0.002789738
Penalty 5 29 65 32.86335345

Total Coverage 3929909.169 4662534.926 6384057.614 1008730.958

Table 20 Minimum, average, maximum, and standard deviation for metrics of the en-
route behavior on the Overlap map
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Figure 44 Visualization of swarm exhibiting en-route behavior on the Overlap map

Figure 45 depicts the coefficient weights evolved by the ES in five runs for the Recon-

naissance mode on the Saddle map. Each row in the figure represents a row in the behavior

matrix, and each column is numbered on the x axis of the bar graphs. The coefficient value

for a particular coefficient is given as a bar with height equal to the coefficient value. The

gray shading is used to depict the experiment number and ranges from experiment one

through five.

The coefficient values evolved for the Reconnaissance Behavior on the Saddle map are

widely distributed. Several coefficient values are strongly correlated however, indicating

that the coefficient value in this portion of the matrix may contribute to this particular

behavior on this map. The areas of importance in Figure 45 are in row one, columns one,

two and three, row two, column three, row three, column four, and row four, column two.

This indicates that it is important for the Reconnaissance mode on the Saddle map to

maintain low or zero values for coefficients δ~σ,f0
, δ~σ,f1

, and δ~σ,f2
, and δ~g,f1

. It also appears

to be equally important for values of δ~η,f2
, δ~t,f0

and δ~t,f3
to be near one. One feature of

interest in this figure is that all of the cohesion (~σ) coefficients with the exception of δ~σ,f3
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Figure 45 Comparison of matrices evolved for the Reconnaissance Mode on the the Sad-
dle map

are zero. This indicates that a low weight for ~σ is necessary to achieve a reconnaissance

behavior.

Figures 46 and 47 indicate several interesting relationships for the Reconnaissance

mode across different maps. First, several features can be seen across these two figures as

well as Figure 45. These features indicate that some values of the matrix are global across

swarm domains. These features do not have full correlation across all five runs however,

their appearance in all three behavior matrices for the same mode in different domains

provides some confirmation that these feature may be important to the emergence of

reconnaissance behaviors. These features are δ~t,f3
, which maintains a relatively high value

for all three domains, and δ~g,f0
, which also remains high. Coefficients that remain either at

or near zero for all three domains are δ~σ,f1
, and δ~σ,f2

. The fact that these values consistently

remain low across all domains indicates that sensor coverage and sensor overlap are not

good measures in regards to calculating ω~σ.
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Figure 46 Comparison of matrices evolved for the Reconnaissance Mode on the the Ob-
stacle map
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Figure 47 Comparison of matrices evolved for the Reconnaissance Mode on the the Over-
lap map
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These analysis techniques, when applied to the scan and en-route behavior matrices

reveal that similar structures exist between these behaviors. While it is not within the

scope of this research, further analysis of the relationships between behavior matrices

appears to be a promising area of study for further refinements of the behavior adaptation

method developed for this effort. The scan and en-route behavior matrices are provided

in Appendix B.

5.8 Scalability

The final experiment conducted is the scalability test. For this test, a swarm is

initialized in a large map consisting of multiple behaviors and containing all of the charac-

teristics contained in the three individual test maps. The best behavior matrices found for

the Saddle map are used. The swarm is initialized with three different behavior matrices,

and the landscape is designed with waypoints that change the behavior of the swarm at

given locations in the landscape. The resulting behavior is analyzed visually rather than

numerically because the changing behaviors each require a different measure of fitness.

This test is conducted with a swarm size of |S| = 1024.

The five member swarm performs as expected on the larger scale map, exhibiting the

same behavioral characteristics as on the smaller test maps. Since only one behavior matrix

is used for all three characteristics - saddle, obstacle, and overlap - the resulting behavior

is not necessarily optimal for the given landscape characteristic. One area of interest for

the small swarm is the time required to converge to a new behavior after passing a mode

transition point. At each transition point, the swarm quickly transitions to the observed

characteristics for the new behavioral mode. This indicates that it is possible for a swarm

to switch between modes within a short time spans (on the order of 30 seconds to one

minute).

The results produced for a 1024 member swarm are much more interesting than the

five member swarm. The first emergent behavior observed is that the swarm begins a

high entropy process of attempting to converge to behavior that characterizes the current

behavioral mode. Since agents in the center of the swarm do not have any space to move

without increasing ~η, many of the inner agents simply turn in circles until the forward edge
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of the swarm has moved sufficiently far away for the agent to move forward. The affect

of the waypoint width becomes apparent quickly as the swarm moves past the first set of

threats (see Figure 48).

Figure 48 Emergent behavior of swarm with |S| = 1024 after passing first saddle obstacle
using Reconnaissance mode

When the swarm encounters the first overlapping threat region, several behaviors are

observed that are of interest. For example, as agents on the edge of the swarm encounter

higher repulsion form one of the two threats in the overlapping region, they begin to turn

in circles, first moving away from the threat, and then moving away from nearby neighbors,

which leads back towards the threat. This behavior is reminiscent of separating airflow.

As agents in the back of the swarm move forward, the agents on the edges eventually move

around the threat. This results in the swarm splitting to flow around a threat as shown in

Figure 49.

When the larger sized swarm reaches the transition between reconnaissance and scan

behaviors, a different global behavior emerges than that observed for the five agent swarm.

Rather than moving in a close proximity line-abreast formation, the agents form a single-

file line that is tightly packed from nose to tail (see Figure 50). This behavior persists until

the transition from scan to en-route.

At the en-route transition point, the single-file line dissipates into a more spread-out

formation. The swarm formation of the en-route mode is very similar to the formation

observed for the reconnaissance mode (see Figure 51).
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Figure 49 Emergent behavior of swarm with |S| = 1024 as it encounters a set of over-
lapping threats while in Reconnaissance mode

A swarm of size 1024 exhibits the same behavioral characteristics of the smaller 5

agent swarm with the exception of separation. Due to the high numbers of agents involved,

the 1024 sized swarm becomes very densely packed at turns in the landscape. This behavior

is similar to the manner in which a slinky R© must compress on the inside during a turn

while the outside contracts. Figure 52 shows this behavior at a turn in the landscape.

As compared to a 5 agent swarm, the larger sized swarm has a much more pronounced

turbulence-like behavior when encountering threats. Agents near the threat circle over a

small area while neighbors pass by on the periphery. This allows the swarm to easily flow

around threats as seen in Figure 53.

5.9 Summary

The results obtained using the swarm model developed in Chapter 3 indicate that it is

possible to obtain emergent behavior that closely matches the desired emergent behavior.

The values of coefficient matrices have been shown to hold structure among the same

behavior mode for different maps. This indicates that it may be possible to develop a

theoretical approach to determining the values for behavior matrices. The structures also

indicate that potential exists for possibly more effective fitness functions to be formulated to

better describe the state space. While the initial results using this model are encouraging,
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Figure 50 Emergent behavior of swarm with |S| = 1024 for the Scan mode

much is still unknown about the complex interactions between coefficient matrices and

agent rules.
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Figure 51 Emergent behavior of swarm with |S| = 1024 as the swarm transitions from
Scan to En-route mode

Figure 52 Emergent behavior of swarm with |S| = 1024 as it encounters a turn in the
waypoint path
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Figure 53 Emergent behavior of swarm with |S| = 1024 as it encounters an obstacle
threat in En-route mode
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6. Conclusions

6.1 Introduction

As stated in Chapter 1, the goal of this research is to develop a means of creating

desired emergent behavior in a swarm of autonomous UAVs. Three objectives are given

to accomplish this goal. These objectives are: 1) develop a swarm model that is capable

of moving through a given landscape along a path specified by waypoints while avoiding

threats, 2) define a set of behaviors for testing, and 3) develop an automated method for

finding the necessary set of rule interactions to cause a desired emergent behavior.

Objective one is met in Chapter 3 where a model is developed that is capable of

moving through a given landscape along a path specified by waypoints while avoiding

threats. This model utilizes potential fields to represent threats, goals, and waypoints in

a landscape. Agents traverse the resulting potential field based upon a set of rules.

Objective two is accomplished in Chapter 3 where three behaviors are developed.

These behaviors are reconnaissance, scan, and en-route. Each of these behaviors is defined

mathematically in Chapter 5. These behaviors are used to test the ability of the swarm

model to achieve the desired emergent behavior utilizing a given behavior matrix.

The third objective is met through the use of an Evolution Strategy algorithm de-

scribed in Chapter 3. Chapter 4 experimentally determines good parameters for the ES

algorithm. These parameters are then used to automatically create behavior matrices for

three different desired behaviors on three different test landscapes. The results of this

automated process are presented and discussed in Chapter 5.

6.2 Swarm Model

The swarm model developed in Chapter 3 is shown in Chapter 5 to produce a swarm

of agents that exhibit threat avoidance, path following, and collision avoidance between

agents. Using the baseline behavior defined in Chapter 4, it is possible for all members of

the swarm to reach the goal state while at the same time maintaining a cohesive swarm

formation. Furthermore, as shown in Section 5.8 this model is capable of scaling from
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small numbers of agents |S| = 5, to very large numbers |S| = 1024. This indicates that

the model proposed and used in this research is a robust model in terms of scaling.

The use of behavior matrices for behavior modification is also shown in Chapter 5 to

provide a means of modifying the overall emergent behavior of a swarm. While the results

achieved do not fully meet the design criteria of the behaviors tested, the results discussed in

Sections 5.4, 5.5, and 5.6 reveal that it is possible to modify the swarm’s behavior through

the use of behavior matrices. This indicates that the practice of modifying interaction

rules has a potential to provide fruitful results in future research efforts.

6.3 Fitness Evaluation

The development of fitness evaluation functions for the development of behavior

matrices proved to be difficult given the lack of a theoretical foundation. Without a good

understanding of how a particular fitness metric relates to the desired emergent behavior,

it is difficult to develop meaningful fitness functions that fully express the desired behavior.

As discussed in Chapter 5, this leads to behaviors which do not fully meet the design criteria

for that behavior. On the other hand, even the partially described behaviors used in this

effort result in behaviors that closely resemble the desired behavior in many aspects. With

a better understanding of how fitness metrics contribute to the description of a desired

behavior, it may be possible to develop behavior matrices to more closely emulate the

desired behavior.

An area that holds a great deal of potential for future progress in this field is the

development of a framework for a formal description of swarm behaviors. This framework

should be general enough to allow for possibly many different behaviors to be described. A

formal behavioral description can then possibly be translated into a fitness function which

more accurately describes the desired behavior. By formalizing the process of behavior

definition and description, it may be possible for behaviors to be sufficiently described by

the underlying fitness function.

Another approach which may prove beneficial for this area of research is the use of a

multi-objective search algorithm. Since the fitness functions used in this research consists
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of a weighted aggregate of fitness values, the use of a multi-objective algorithm may lead

to a better understanding of the complex interactions of the fitness values, as well as lead

to a set of behaviors that can be picked based upon the mission planner’s desired level of

safety for the swarm.

6.4 Noisy Swarm Model

The swarm model developed in Chapter 3 assumes that all sensor inputs provide a

correct picture of the actual environment. This model does not attempt to mimic noise

in sensing, or account for factors such as wind, turbulence, or hostile electro-magnetic

environments. A swarm implemented in hardware must be capable of managing such

environments. Since this algorithm does not account for noise, it is possible that the intro-

duction of noise to the model can lead to diminished overall performance. It is necessary to

include a noisy sensing environment as well as a dynamic landscape environment in order

to determine the robustness of this algorithm to imperfect knowledge.

Another area of development for this algorithm is the migration from two-dimensional

agents to three-dimensional agents. Currently, this algorithm assumes that all agents move

at the same altitude, and that avoidance is only achieved by steering away from an agent

or threat by turning in the plane of the swarm. A three-dimensional model introduces the

ability for agents to climb or descend to avoid threats or collisions. In order to effectively

function in three dimensions, the algorithm must include cost functions that determine the

cost of descending, climbing, or turning for avoidance. These functions can then be used

to determine what combination of turning, climbing or ascending is the most efficient for

the agent.

Currently, the swarm model used does not utilize any look-ahead or predictive plan-

ning. It is possible that by providing predictive planning, more efficient overall behaviors

can be achieved. For example, rather than making a large turning maneuver to avoid a

collision, agents can predict that a collision is imminent if corrective action is not taken,

and perform a small turn early. This may lead to more efficient individual behavior while

still maintaining the desired emergent behavior.
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6.5 Summary

This research effort provides a limited swarm model capable of performing multiple

missions based upon a desired behavior for each mission. The ability to change behaviors

by changing behavior matrices is tested and demonstrated. Shortcomings of the developed

model are identified and discussed, and potential research areas for future efforts are also

discussed.

The autonomous flight of multiple aerial vehicles promises to provide great gains to

the warfighter. By utilizing resources in an efficient manner, and reducing the manpower

required to conduct an operation, swarms promise to reduce the decision loop of the theater

commander. Through careful design and application of engineering principles, it is possible

for swarms to one day become a vital part of a world-class Air Force.
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Appendix A. Coefficient Matrix Values by Test Case

A.1 Baseline Matrix

1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

Baseline Coefficient Matrix

A.2 Reconnaissance Matrices

A.2.1 Saddle map.

0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

0.6459361947886197 0.1921577371628287 0.5667221903585732 0.0

1.0 0.0 0.0 0.0

Landscape Files/recon test.lsc

Reconnaissance Behavior

Fitness: 173367.13691274566

Overlap: 172493.0

Accumulated Threat: 66.13691274564292

Velocity Variance: 0.01575911387760824

Alignment Variance: 0.3822069716137067

Arrival Variance: 623310.25

Look Variance: 0.028388294978885717

Penalty: 808

Coverage: 5040832.710658519

Behavior Matrix and metrics for Reconnaissance Behavior on Saddle map, result 1

127



0.0 0.0 0.0 1.0

1.0 0.0 1.0 0.0

1.0 0.13548603803598336 0.0 1.0

0.0 0.0 1.0 1.0

Landscape Files/recon test.lsc

Reconnaissance Behavior

Fitness: 175901.4095892962

Overlap: 175024.0

Accumulated Threat: 74.40958929621084

Velocity Variance: 0.014400291418555521

Alignment Variance: 0.33348789575073096

Arrival Variance: 629642.25

Look Variance: 0.02856394791233296

Penalty: 803

Coverage: 5057160.12951862

Behavior Matrix and metrics for Reconnaissance Behavior on Saddle map, result 2

0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

1.0 0.20644366782753595 0.0 1.0

0.0 0.0 0.0 0.0
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Landscape Files/recon test.lsc

Reconnaissance Behavior

Fitness: 165844.10992514022

Overlap: 164982.0

Accumulated Threat: 59.109925140222686

Velocity Variance: 0.01437780129763794

Alignment Variance: 0.33484070717357145

Arrival Variance: 621732.25

Look Variance: 0.02698961196827455

Penalty: 803

Coverage: 5016942.195306933

Behavior Matrix and metrics for Reconnaissance Behavior on Saddle map, result 3

0.2001623717421428 0.05108794730951009 0.0 0.8906475342082305

0.0 1.0 1.0 1.0

0.008134171592144707 1.0 0.0 1.0

1.0 0.3287670961706531 0.4666884922232355 1.0

Landscape Files/recon test.lsc

Reconnaissance Behavior

Fitness: 184832.90123318255

Overlap: 183093.0

Accumulated Threat: 105.90123318253785

Velocity Variance: 0.009990875073783295

Alignment Variance: 0.26867810867539205

Arrival Variance: 703921.0

Look Variance: 0.022492336209964825

Penalty: 1634

Coverage: 5286860.122945665
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Behavior Matrix and metrics for Reconnaissance Behavior on Saddle map, result 4

0.0 0.0 0.0 0.0

0.0 0.0 0.8884442766804643 0.0

0.6861562561012117 0.15542110453480718 0.9844193547265686 0.37505901822636145

1.0 0.0 0.7393675705069607 0.0

Landscape Files/recon test.lsc

Reconnaissance Behavior

Fitness: 5127097.787714759

Overlap: 175050.0

Accumulated Threat: 54.95271418775132

Velocity Variance: 0.016054478371859325

Alignment Variance: 0.38379929362350407

Arrival Variance: 617010.25

Look Variance: 0.027422146929026312

Penalty: 811

Coverage: 5009394.921184062

Behavior Matrix and metrics for Reconnaissance Behavior on Saddle map, result 5

A.2.2 Obstacle map.

0.3244981580652232 0.0 0.0 0.0

0.0 0.0 1.0 0.0

0.4765285340963318 0.15693895293785476 0.0 1.0

0.0 0.0 0.0 0.31874080376572833
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Landscape Files/threat in path.lsc

Reconnaissance Behavior

Fitness: 173449.0388096961

Overlap: 172356.0

Accumulated Threat: 272.03880969609463

Velocity Variance: 0.014751382072223861

Alignment Variance: 0.3223430342709401

Arrival Variance: 631230.25

Look Variance: 0.023504749772358204

Penalty: 821

Coverage: 5050954.307150005

Behavior Matrix and metrics for Reconnaissance Behavior on Obstacle map, result 1

0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.1653734241132664 0.0 1.0

1.0 0.0 0.0 0.0

Landscape Files/threat in path.lsc

Reconnaissance Behavior

Fitness: 173650.7892162423

Overlap: 172602.0

Accumulated Threat: 253.78921624230546

Velocity Variance: 0.013870763137805235

Alignment Variance: 0.3343748615057222

Arrival Variance: 629642.25

Look Variance: 0.02291583439759436

Penalty: 795

Coverage: 5043291.48478139

Behavior Matrix and metrics for Reconnaissance Behavior on Obstacle map, result 2
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1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

0.4016112877656819 0.15397243041466635 0.6957668601682138 1.0

1.0 0.0 0.0 1.0

Landscape Files/threat in path.lsc

Reconnaissance Behavior

Fitness: 169148.1996683555

Overlap: 168051.0

Accumulated Threat: 299.19966835550423

Velocity Variance: 0.01467613549122873

Alignment Variance: 0.350174059168542

Arrival Variance: 634412.25

Look Variance: 0.0224128550521048

Penalty: 798

Coverage: 5063159.903641491

Behavior Matrix and metrics for Reconnaissance Behavior on Obstacle map, result 3

0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0

1.0 0.09597191803232846 0.0 0.0

0.0 0.0 1.0 0.0
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Landscape Files/threat in path.lsc

Reconnaissance Behavior

Fitness: 161687.89454503043

Overlap: 160603.0

Accumulated Threat: 261.8945450304439

Velocity Variance: 0.01454401133034088

Alignment Variance: 0.34518002754141375

Arrival Variance: 632025.0

Look Variance: 0.024935340498184296

Penalty: 823

Coverage: 5059344.081272876

Behavior Matrix and metrics for Reconnaissance Behavior on Obstacle map, result 4

1.0 0.0 0.0 0.76769244011095

0.005564087874642465 0.0 1.0 0.0

1.0 0.08094201682674707 0.0 0.6980343304059021

0.0 0.0 1.0 1.0

Landscape Files/threat in path.lsc

Reconnaissance Behavior

Fitness: 170942.23966118367

Overlap: 169863.0

Accumulated Threat: 273.2396611836871

Velocity Variance: 0.015079663038279312

Alignment Variance: 0.377026011922981

Arrival Variance: 638401.0

Look Variance: 0.024845272897146983

Penalty: 806

Coverage: 5087386.644870206

Behavior Matrix and metrics for Reconnaissance Behavior on Obstacle map, result 5
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A.2.3 Overlap map.

0.09518888405925759 0.20128084006021982 0.34789327429321504 1.0

0.0 0.6031602801822111 1.0 0.0

0.0 1.0 0.013670185992548656 1.0

0.0 0.0 1.0 0.0

Landscape Files/overlaping threat.lsc

Reconnaissance Behavior

Fitness: 204360.09685780824

Overlap: 202320.0

Accumulated Threat: 358.09685780823577

Velocity Variance: 0.010996615801410183

Alignment Variance: 0.30375215731746175

Arrival Variance: 751689.0

Look Variance: 0.017302545243871283

Penalty: 1682

Coverage: 5468255.456283898

Behavior Matrix and metrics for Reconnaissance Behavior on Overlap map, result 1

0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

1.0 0.35680172398684273 1.0 0.44103419063227234

0.1367141332505969 0.0 1.0 0.0
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Landscape Files/overlaping threat.lsc

Reconnaissance Behavior

Fitness: 204141.43955574496

Overlap: 203066.0

Accumulated Threat: 313.4395557449655

Velocity Variance: 0.015517103914411074

Alignment Variance: 0.40500475317637424

Arrival Variance: 632820.25

Look Variance: 0.024098285500519814

Penalty: 762

Coverage: 5055705.500132979

Behavior Matrix and metrics for Reconnaissance Behavior on Overlap map, result 2

0.0 0.0 0.26547181137459785 1.0

0.0 0.0 1.0 0.0

0.6016996679371549 0.142379151084861 1.0 0.0

1.0 0.0 0.0 0.0

Landscape Files/overlaping threat.lsc

Reconnaissance Behavior

Fitness: 190102.52403723

Overlap: 189003.0

Accumulated Threat: 326.5240372300143

Velocity Variance: 0.013802972936835618

Alignment Variance: 0.36213268999035525

Arrival Variance: 650442.25

Look Variance: 0.021364852023578733

Penalty: 773

Coverage: 5118029.03083615

Behavior Matrix and metrics for Reconnaissance Behavior on Overlap map, result 3
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0.10735394428731893 0.0 0.0 0.0

0.0 1.0 1.0 1.0

1.0 0.8434512810576973 0.0 0.0

0.5585311649760426 0.0 1.0 1.0

Landscape Files/overlaping threat.lsc

Reconnaissance Behavior

Fitness: 209932.9184482661

Overlap: 207946.0

Accumulated Threat: 359.91844826611526

Velocity Variance: 0.010772584768419777

Alignment Variance: 0.2861132277323101

Arrival Variance: 690561.0

Look Variance: 0.01723527530889682

Penalty: 1627

Coverage: 5231707.962856852

Behavior Matrix and metrics for Reconnaissance Behavior on Overlap map, result 4

0.08409370269055039 0.0 0.0 1.0

0.0 0.7420070753677647 1.0 0.0

1.0 1.0 0.0 0.0

1.0 0.0 1.0 0.0
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Landscape Files/overlaping threat.lsc

Reconnaissance Behavior

Fitness: 210571.1367058031

Overlap: 208656.0

Accumulated Threat: 366.13670580309366

Velocity Variance: 0.009973013659392117

Alignment Variance: 0.28374142087523163

Arrival Variance: 728462.25

Look Variance: 0.017970197622180908

Penalty: 1549

Coverage: 5369583.039614783

Behavior Matrix and metrics for Reconnaissance Behavior on Overlap map, result 5

A.3 Scan Matrices

A.3.1 Saddle map.

0.0 0.11798441890756257 0.06264895540938643 0.20902382636688133

1.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

1.0 1.0 1.0 1.0
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Landscape Files/recon test.lsc

Scan Behavior

Fitness: 2712329.568371471

Overlap: 2225021.0

Accumulated Threat: 1.5567245140265449

Velocity Variance: 0.00146326398956404

Alignment Variance: 0.01973284486778234

Arrival Variance: 568516.0

Look Variance: 0.01068706276020968

Penalty: 1511

Coverage: 3612444.850999159

Behavior Matrix and metrics for Scan Behavior on Saddle map, result 1

1.0 0.049355010038414464 0.05902823847405375 1.0

0.0 0.0 0.0 1.0

0.0 0.0 1.0 1.0

0.8658297405019696 1.0 0.20623589095277045 1.0

Landscape Files/recon test.lsc

Scan Behavior

Fitness: 2704242.447753567

Overlap: 2168960.0

Accumulated Threat: 1.7225345198517452

Velocity Variance: 0.0017386565005328473

Alignment Variance: 0.019905413177920654

Arrival Variance: 553536.0

Look Variance: 0.011313817371977898

Penalty: 1380

Coverage: 3577643.497927361

Behavior Matrix and metrics for Scan Behavior on Saddle map, result 2
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0.0 0.0 0.06022992970560268 0.6138694216188119

1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.9680048962787019

0.0 1.0 0.0 1.0

Landscape Files/recon test.lsc

Scan Behavior

Fitness: 2719767.3095446127

Overlap: 2108295.0

Accumulated Threat: 2.136617385050915

Velocity Variance: 0.0020996816741451034

Alignment Variance: 0.0224631988829693

Arrival Variance: 543169.0

Look Variance: 0.011761629385932148

Penalty: 1139

Coverage: 3565250.3378385385

Behavior Matrix and metrics for Scan Behavior on Saddle map, result 3

0.0 0.0 0.08487297544358781 0.050549628720282236

1.0 0.0 0.0 0.5696397239352176

0.0 0.0 1.0 1.0

1.0 0.683339216829228 0.0 0.0
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Landscape Files/recon test.lsc

Scan Behavior

Fitness: 2716632.827185807

Overlap: 2184092.0

Accumulated Threat: 1.7246371135817147

Velocity Variance: 0.0020834869791224735

Alignment Variance: 0.02950771817462467

Arrival Variance: 559504.0

Look Variance: 0.011677409306570904

Penalty: 1368

Coverage: 3597723.5132789523

Behavior Matrix and metrics for Scan Behavior on Saddle map, result 4

0.0 0.0 0.08695057278250695 0.0

0.5407474843036476 0.0 0.0 1.0

0.0 0.0 1.0 0.0

1.0 1.0 0.12018469048229674 0.0

Landscape Files/recon test.lsc

Scan Behavior

Fitness: 2718449.294721433

Overlap: 2192536.0

Accumulated Threat: 1.75136398968718

Velocity Variance: 0.0015844982719151243

Alignment Variance: 0.020059472156064906

Arrival Variance: 562500.0

Look Variance: 0.010940304892557514

Penalty: 1388

Coverage: 3603554.60977044

Behavior Matrix and metrics for Scan Behavior on Saddle map, result 5
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A.3.2 Obstacle map.

1.0 0.04470732320283517 0.0 0.0

0.0 0.0 0.0 0.44859123066533063

0.0 1.0 1.0 0.0

1.0 0.0 0.0 0.08548718801570454

Landscape Files/threat in path.lsc

Scan Behavior

Fitness: 2876215.179889817

Overlap: 1994129.0

Accumulated Threat: 456.0224361972709

Velocity Variance: 0.002071053695207398

Alignment Variance: 0.03196743926093791

Arrival Variance: 553536.0

Look Variance: 0.006468016034148916

Penalty: 838

Coverage: 3667572.2720502354

Behavior Matrix and metrics for Scan Behavior on Obstacle map, result 1

1.0 0.1715671914916482 0.0 0.7640930013045517

0.6611709318287691 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 0.0 1.0
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Landscape Files/threat in path.lsc

Scan Behavior

Fitness: 2892713.801762793

Overlap: 2142525.0

Accumulated Threat: 497.47570135637466

Velocity Variance: 0.0011666430781412938

Alignment Variance: 0.02449320032800328

Arrival Variance: 592900.0

Look Variance: 0.00596021511381369

Penalty: 1242

Coverage: 3754223.815914038

Behavior Matrix and metrics for Scan Behavior on Obstacle map, result 2

1.0 0.04380753619026611 0.0 0.0

1.0 0.0 0.0 1.0

1.0 1.0 0.0 0.0

1.0 0.0 0.0 0.0

Landscape Files/threat in path.lsc

Scan Behavior

Fitness: 2871504.479494295

Overlap: 2066153.0

Accumulated Threat: 475.33689662204694

Velocity Variance: 0.0017263369962713473

Alignment Variance: 0.030782791779351924

Arrival Variance: 569270.25

Look Variance: 0.006650775052117437

Penalty: 1035

Coverage: 3696905.399244905

Behavior Matrix and metrics for Scan Behavior on Obstacle map, result 3

142



1.0 0.0 0.11407237510914824 1.0

1.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

1.0 0.14420578492083094 0.0 1.0

Landscape Files/threat in path.lsc

Scan Behavior

Fitness: 2857384.583016624

Overlap: 2071651.0

Accumulated Threat: 460.26400194269587

Velocity Variance: 0.0022438060798810728

Alignment Variance: 0.045583620581895065

Arrival Variance: 567009.0

Look Variance: 0.007185598244890342

Penalty: 676

Coverage: 3689129.8509991597

Behavior Matrix and metrics for Scan Behavior on Obstacle map, result 4

0.0 0.03190845655311623 0.0 0.0

0.0 0.0 0.0 0.0

0.0 1.0 1.0 0.0

0.35572993763855154 0.0 0.0 1.0
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Landscape Files/threat in path.lsc

Scan Behavior

Fitness: 2860266.4153340464

Overlap: 2057367.0

Accumulated Threat: 472.0130607433838

Velocity Variance: 0.0015843288172191032

Alignment Variance: 0.025772293053592826

Arrival Variance: 564752.25

Look Variance: 0.006437892779794372

Penalty: 1043

Coverage: 3681192.2062619296

Behavior Matrix and metrics for Scan Behavior on Obstacle map, result 5

A.3.3 Overlap map.

1.0 0.0 0.0 0.0

0.19974818473090017 0.0 0.0 0.0

0.0 0.0 1.0 0.7585213648013016

0.0 0.9394010698695673 0.0 0.0

Landscape Files/overlaping test.lsc

Scan Behavior

Fitness: 2737329.385060245

Overlap: 2121536.0

Accumulated Threat: 44.57505174800332

Velocity Variance: 0.0030096980009324207

Alignment Variance: 0.0565276482660111

Arrival Variance: 549822.25

Look Variance: 0.006710437555585652

Penalty: 947

Coverage: 3591302.401435874
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Behavior Matrix and metrics for Scan Behavior on Overlap map, result 1

1.0 0.056035442430221245 0.0909633195107385 1.0

1.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

0.0 1.0 1.0 0.32140566075289423

Landscape Files/overlaping test.lsc

Scan Behavior

Fitness: 2730870.5105860378

Overlap: 2178680.0

Accumulated Threat: 53.16947361477701

Velocity Variance: 0.001703109106726559

Alignment Variance: 0.03583898934026881

Arrival Variance: 562500.0

Look Variance: 0.0054187184320955645

Penalty: 1239

Coverage: 3610482.60977044

Behavior Matrix and metrics for Scan Behavior on Overlap map, result 2

0.0 0.07313941650722587 0.0 0.3722445553404776

0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

0.0 1.0 1.0 1.0
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Landscape Files/overlaping test.lsc

Scan Behavior

Fitness: 2731308.667432209

Overlap: 2230841.0

Accumulated Threat: 52.011634632211226

Velocity Variance: 0.001431626010356303

Alignment Variance: 0.03536332304163298

Arrival Variance: 574564.0

Look Variance: 0.0050512795578768616

Penalty: 1472

Coverage: 3634667.5922278785

Behavior Matrix and metrics for Scan Behavior on Overlap map, result 3

1.0 0.024274831808158315 0.0 1.0

0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.4166393089363333

1.0 0.7864293318097104 0.0 1.0

Landscape Files/overlaping test.lsc

Scan Behavior

Fitness: 2711615.315866287

Overlap: 2135469.0

Accumulated Threat: 55.43105259596216

Velocity Variance: 0.002596732289760873

Alignment Variance: 0.04579055588779453

Arrival Variance: 547600.0

Look Variance: 0.006180295515668748

Penalty: 1025

Coverage: 3571769.530821514

Behavior Matrix and metrics for Scan Behavior on Overlap map, result 4
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1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.6247430865512403 0.21266254906348103

0.0 1.0 1.0 0.0

Landscape Files/overlaping test.lsc

Scan Behavior

Fitness: 2734899.108759381

Overlap: 2131818.0

Accumulated Threat: 41.896877954475244

Velocity Variance: 0.003804478800219248

Alignment Variance: 0.07417830910808453

Arrival Variance: 550564.0

Look Variance: 0.0075203045034222624

Penalty: 979

Coverage: 3593701.2238044897

Behavior Matrix and metrics for Scan Behavior on Overlap map, result 5

A.4 En-route Matrices

A.4.1 Saddle map.

0.2525583434240012 0.0 0.0 1.0

0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

0.0 0.1266232207740662 1.0 1.0
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Landscape Files/recon test.lsc

En-route Behavior

Fitness: 10.543694984679489

Overlap: 1917848.0

Accumulated Threat: 5.5436949846794885

Velocity Variance: 0.002738296127229354

Alignment Variance: 0.031051194105599922

Arrival Variance: 537289.0

Look Variance: 0.01293172975925108

Penalty: 5

Coverage: 3637854.370732692

Behavior Matrix and metrics for Enroute Mode on Saddle map, result 1

0.945253519228786 0.0 0.0 1.0

0.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

1.0 0.02788409520085891 0.31263175951435773 1.0

Landscape Files/recon test.lsc

En-route Behavior

Fitness: 10.529771379030706

Overlap: 1930392.0

Accumulated Threat: 5.529771379030706

Velocity Variance: 0.004944911345479399

Alignment Variance: 0.07339358111658822

Arrival Variance: 538022.25

Look Variance: 0.014589385368367614

Penalty: 5

Coverage: 3646662.0154699236

Behavior Matrix and metrics for Enroute Mode on Saddle map, result 2
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1.0 0.0 0.0 0.0

1.0 0.0 0.0 1.0

0.0 0.0 1.0 0.0

0.0 0.37696229144243276 0.0 1.0

Landscape Files/recon test.lsc

En-route Behavior

Fitness: 10.484784472332782

Overlap: 1929503.0

Accumulated Threat: 5.484784472332782

Velocity Variance: 0.00258569310892624

Alignment Variance: 0.02814157119931034

Arrival Variance: 538022.25

Look Variance: 0.012931229673316969

Penalty: 5

Coverage: 3634540.1448555635

Behavior Matrix and metrics for Enroute Mode on Saddle map, result 3

0.0 0.0 0.008414586153125958 0.7282782600156236

0.7417144645062954 0.0 0.0 1.0

0.0 0.0 1.0 0.7686947930351413

1.0 0.15815789138812916 0.0 1.0
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Landscape Files/recon test.lsc

En-route Behavior

Fitness: 10.10939233184681

Overlap: 1937297.0

Accumulated Threat: 5.109392331846809

Velocity Variance: 0.002737361826112453

Alignment Variance: 0.031100883098276782

Arrival Variance: 537289.0

Look Variance: 0.012926253019575586

Penalty: 5

Coverage: 3628129.870732692

Behavior Matrix and metrics for Enroute Mode on Saddle map, result 4

0.0 0.22297542775505827 0.0 0.0

0.0 0.0 1.0 1.0

0.0 0.0 1.0 0.0

0.0 1.0 0.0 0.0

Landscape Files/recon test.lsc

En-route Behavior

Fitness: 9.394079716613561

Overlap: 3249055.0

Accumulated Threat: 4.394079716613561

Velocity Variance: 0.0050492770772587285

Alignment Variance: 0.1500030364399237

Arrival Variance: 1490841.0

Look Variance: 0.008358834809046924

Penalty: 5

Coverage: 6128923.169059371

Behavior Matrix and metrics for Enroute Mode on Saddle map, result 5
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A.4.2 Obstacle map.

1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.5636087241545047

0.0 0.0 0.17470260638583232 0.7048436748193876

0.0 0.0 1.0 0.0

Landscape Files/threat in path.lsc

En-route Behavior

Fitness: 106.17521768911183

Overlap: 2372172.0

Accumulated Threat: 36.175217689111825

Velocity Variance: 0.004366112439469898

Alignment Variance: 0.09699208659483913

Arrival Variance: 856550.25

Look Variance: 0.020972073618147017

Penalty: 70

Coverage: 4649736.513308444

Behavior Matrix and metrics for Enroute Mode on Obstacle map, result 1

0.0 0.0 0.0 0.0

0.7601664183234593 0.0 0.0 0.0

0.38853449909004284 0.04507340776685054 0.0 0.0

1.0 1.0 0.0 0.0
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Landscape Files/threat in path.lsc

En-route Behavior

Fitness: 97.56504891849491

Overlap: 2224650.0

Accumulated Threat: 22.565048918494906

Velocity Variance: 0.00973273478390525

Alignment Variance: 0.2569565256035331

Arrival Variance: 866761.0

Look Variance: 0.027814004489282406

Penalty: 75

Coverage: 4811462.107608927

Behavior Matrix and metrics for Enroute Mode on Obstacle map, result 2

0.0 0.0 0.0 0.0

1.0 0.0 0.0 1.0

0.0 0.0 0.031468843755871445 1.0

1.0 0.0 1.0 0.1521563215872311

Landscape Files/threat in path.lsc

En-route Behavior

Fitness: 83.74826577389341

Overlap: 2295228.0

Accumulated Threat: 23.748265773893404

Velocity Variance: 0.005666798968453247

Alignment Variance: 0.13488450891817733

Arrival Variance: 937992.25

Look Variance: 0.020754529023550718

Penalty: 60

Coverage: 4987288.133930129

Behavior Matrix and metrics for Enroute Mode on Obstacle map, result 3
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1.0 0.0 0.0 1.0

0.0 0.0 0.0 0.46617301271822775

0.5546836564382113 0.32494560284197793 0.0 0.2796631415203416

0.0 1.0 1.0 0.0

Landscape Files/threat in path.lsc

En-route Behavior

Fitness: 133.97587516515676

Overlap: 2248942.0

Accumulated Threat: 50.97587516515675

Velocity Variance: 0.00887748701129305

Alignment Variance: 0.216518700865528

Arrival Variance: 788544.0

Look Variance: 0.02523643823168129

Penalty: 83

Coverage: 4502749.761110109

Behavior Matrix and metrics for Enroute Mode on Obstacle map, result 4

0.3290673585466336 0.0 0.0 1.0

1.0 0.0 0.0 0.0

1.0 0.21185277365431543 0.0 1.0

0.0 1.0 0.0 1.0
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Landscape Files/threat in path.lsc

En-route Behavior

Fitness: 133.845319826933

Overlap: 2247089.0

Accumulated Threat: 50.84531982693301

Velocity Variance: 0.010596204546527292

Alignment Variance: 0.25483721986841007

Arrival Variance: 786769.0

Look Variance: 0.026252781056476042

Penalty: 83

Coverage: 4511216.083478723

Behavior Matrix and metrics for Enroute Mode on Obstacle map, result 5

A.4.3 Overlap map.

0.0 0.0 0.4581020579944739 1.0

0.027793737069750662 0.0 0.8128024777302806 0.4273907525695184

0.0 0.0 1.0 1.0

0.0 0.4116735402659337 0.0 0.0
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Landscape Files/overlap test.lsc

En-route Behavior

Fitness: 137.50425122977109

Overlap: 3196202.0

Accumulated Threat: 132.50425122977109

Velocity Variance: 0.005158287497942786

Alignment Variance: 0.1659331283627535

Arrival Variance: 1572516.0

Look Variance: 0.006486697044156371

Penalty: 5

Coverage: 6384057.614240663

Behavior Matrix and metrics for Enroute Mode on Overlap map, result 1

1.0 0.0 0.0 0.7178184725515154

1.0 0.0 0.2778435755570541 0.0

0.0 0.0 1.0 0.0

0.0 1.0 1.0 1.0

Landscape Files/overlap test.lsc

En-route Behavior

Fitness: 117.64762866825414

Overlap: 1799358.0

Accumulated Threat: 112.64762866825414

Velocity Variance: 0.008191792257053718

Alignment Variance: 0.18313543470497778

Arrival Variance: 644809.0

Look Variance: 0.011136609416188378

Penalty: 5

Coverage: 4224886.93653579

Behavior Matrix and metrics for Enroute Mode on Overlap map, result 2
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0.041203173485482546 0.0 0.11221027671891412 1.0

1.0 0.0 0.3179010994471243 0.040013223049817026

0.0 0.0 1.0 1.0

0.8258249564558802 1.0 0.0 0.0

Landscape Files/overlap test.lsc

En-route Behavior

Fitness: 91.12285350487511

Overlap: 1893319.0

Accumulated Threat: 86.12285350487511

Velocity Variance: 0.009949610424931535

Alignment Variance: 0.27820908654500204

Arrival Variance: 775280.25

Look Variance: 0.011550268302525857

Penalty: 5

Coverage: 4723286.921198887

Behavior Matrix and metrics for Enroute Mode on Overlap map, result 3

0.20446049553399312 0.0 0.0 1.0

0.0 0.0 0.0782366324527285 0.0

0.0 1.0 0.5191518750632823 1.0

0.0 0.6927750866211326 1.0 0.0
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Landscape Files/overlap test.lsc

En-route Behavior

Fitness: 145.71058058069144

Overlap: 1846471.0

Accumulated Threat: 80.71058058069143

Velocity Variance: 0.010963287338782383

Alignment Variance: 0.25460160673653515

Arrival Variance: 604506.25

Look Variance: 0.013620281089035692

Penalty: 65

Coverage: 4050533.989163482

Behavior Matrix and metrics for Enroute Mode on Overlap map, result 4

0.0 0.0 0.0 0.0

0.35841976067492076 0.0 0.14789883559764594 0.4326835294119389

1.0 1.0 0.0 1.0

1.0 1.0 0.0 0.0

Landscape Files/overlap test.lsc

En-route Behavior

Fitness: 136.7181645619211

Overlap: 1916818.0

Accumulated Threat: 71.7181645619211

Velocity Variance: 0.01002023564955549

Alignment Variance: 0.2242033369569116

Arrival Variance: 588289.0

Look Variance: 0.01291685712238723

Penalty: 65

Coverage: 3929909.1689858367

Behavior Matrix and metrics for Enroute Mode on Overlap map, result 5
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Appendix B. Behavior Matrix Comparison
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Figure 54 Comparison of matrices evolved for the Scan Mode on the the Saddle map
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Figure 55 Comparison of matrices evolved for the Scan Mode on the the Obstacle map
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Figure 56 Comparison of matrices evolved for the Scan Mode on the the Overlap map
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Figure 57 Comparison of matrices evolved for the En-route Mode on the the Saddle map
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Figure 58 Comparison of matrices evolved for the En-route Mode on the the Obstacle
map
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Figure 59 Comparison of matrices evolved for the En-route Mode on the the Overlap
map
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