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Physical Basis of Fragility 

J. T. Bendler,a J. J. Fontanella,^ M. F. Shlesingerb 

aphysics Department, U.S. Naval Academy, Annapolis, MD 21402-5026, USA 

^Physical Sciences Division, Office of Naval Research, 800 N. Quincy St., Arlington, 

VA 22217 

Abstract 

Fragility of glass-forming liquids in the supercooled region is considered in the 

context of a defect diffusion theory. It is shown that a necessary condition that a hquid 

be "fragile" is that there is an attractive interaction between the mobile defects i.e. that 

the defects cluster with falling temperature. The relationship between the model 

parameters and a widely used fragility index is described. Each of the model parameters 

provides a contribution to and insight into the fragility value. The behavior of 

exceptional cases, such as orientationally disordered crystals and ahphatic monohydric 

alcohols, is also naturally accounted for in terms of the model. 



Introduction 

Over the years, the concept of fragility has become a useful means of 

characterizing super-cooled liquids. The term "firagile" appears to have been introduced 

by Angell in 1985,' One way of evaluating fi-agility has been to construct graphical 

fragility plots where the logarithm of a dynamical quantity such as electrical relaxation 

time, viscosity or resistivity has been plotted vs. Tg /r where Tg is the glass transition 

temperature.' Attempts to define fi-agility quantitatively have been made with varying 

amounts of success.^"^ These definitions include both TJT^ and D where To and D are 

constants in the empirical Vogel-Fulcher-Tammann equation^ 

x = Xg exp (1) 

and X is a dynamical quantity such as electrical relaxation time, viscosity or resistivity. 

At present, it appears that the best definition of fragility is given by the slope of a 

graphical fragihty plot at r= Tg i.e. the apparent activation enthalpy at To^ 

m = 
■ ologx 

(2) 

hi this Letter, a recentiy generalized defect diffusion modef'^ (DDM) is used to 

interpret and predict the fragility of a liquid using eq. (2). The results appear to represent 

the first physical model of fragility. 

The Defect Diffusion Model 

hi the defect diffusion model, a dipole reorients or an ion jumps instantaneously 

when it is encountered by a mobile "defect." The characteristics of the dynamical 

processes, then, are determined by the flux of mobile defects, F(t), into each site. 



If N(t) is the number of distinct sites a random walking defect visits within a time t 

and Cm is the concentration of mobile defects. Fit) = c„ N(t). In the limit of a large 

number of defects, the relaxation law is 

<|)(0 = exp[-c„iV(0]. (3) 

In three dimensions. Nit) is proportional to t if the mean time between defect hops, <t>, is 

finite. However, if<t> is infinite. Nit) is proportional to fi where p < 1 is the stretched 

exponential parameter. Consequently, the relaxation law can be written 

^ it) = expi-c^kt^) ^ expi-lt/x^J) (4) 

where k is related to the dynamics of the defects. The mean dipole relaxation time can 

thus be written as 

,-1/P 

i^cJ-^=c„-^'\ (5) 

where to = X' 

If the mobile defects cluster (or correlate their motion) into immobile aggregates 

as the temperature is lowered (or as pressure increases), then the number of mobile 

(iefects will decrease as temperature decreases (or pressure increases). For simplicity, the 

assumption is made that only single defects of concentration ci are mobile. 

Consequently, c^ is identified with a in eq, (5). To have a single defect at a site, one 

must first have a defect there with probabiUty c (c is the total defect concentration,) and 

also have none of the z sites within a correlation volume simuhaneously occupied, i.e. 

c, =c(l-c)^ (6) 

with z^^/df, where | is the defect-defect pair correlation length, and d is the nearest 

neighbor lattice spacing. In a mean field lattice gas model, the correlation length, §, 



grows near and above the critical temperature T^ as % (r) «ll —^ 
T-T, 

\.Sy 

where £ is the 
c j 

second moment of the direct correlation function C(r) between the defects' (i.e. the short- 

range Omstein Zemike correlation length), Tc is the temperature at which single defects 

condense to form a defect hquid and y is a constant that describes local field effects. In 

the present formulation, it is assumed that a divergence of § occurs for any value of the 

defect concentration, c, and not just the "critical" value c = 0.5. Finally, it is assumed 

that d is given hy d^ = rf/ (1 -5 (r,P)) for isotropic materials where 8 {T,P) is the 

fi-actional decrease in the volume of the material as pressure increases or temperature 

decreases and d^ is the mean lattice spacing at zero pressure and an arbitrary reference 

temperature. The time scale in the stretched exponential can now be expressed as. 

■ DD 
-I/p l/P. c,   ^^^0=0   *^Toexp 

BTl'' 

{T-TcY'{\-hiT,P)) 
(7) 

and B is given by 

B = - 
XMnQ-c) 

(8) 

If To (and hence V) and c may be assumed constant, eq. (7) can be written as 

^DD =4exp 
BT'c'' 

(T-TcYHl-h) 
(9) 

where A^ is a constant. Eq. (9) has been applied to dielectric relaxation and ionic 

conductivity data.  '    These equations are valid for processes in the region close to and 

above Tg. For many materials, it appears that a change in dynamics occurs at about 1.2 



12 
Tg   and thus the present formulation would not be expected to apply above 1,2 Tg in 

those cases. 

When the mobile defects do not attract each other and hence do not cluster, then 

eqs, (7) or (9) are no longer appropriate. In this case, the concentration of mobile defects, 

c„„ is constant and the relaxation is dominated by the dynamics of the defects. The model 

assumes that the defects jump over a distribution of barriers having a minimum height AQ. 

The fastest jump frequency of the defects,/, is given by the usual expression 

/ = /o exp - 
kT 

(10) 

Bendler and Shlesinger have shown that this gives rise to the following relaxation law'^ 

'-c„sminP)iftf 
^ (t) = exp 

G(o,i)7tpr(i+p) (11) 

where G(0,1) is a constant depending on the lattice structure. Comparison of eqs. (4), (5) 

and (11) leads to the following expression for %DD 

c„sin(7iP) 

G(0,l)jtpr(l+p) /" (12) 

which can be rewritten as 

^00=^0™ exp 
kT 

(13) 

Consequently, when the defects do not cluster, the DDM leads to an Arrhenius 

expression for XDD. 



The Defect Diffusion Model and Fragility 

We now consider fragile liquids where eq. (9) applies. Ignoring small 

temperature effects in (1-5), substitution of eq. (9) into eq. (2) with x = XDD yields the 

following equation for the fragility of a supercooled liquid near Tg 

0.651^''By 

J.1.5Y 

g 
1-^ 

T  , K        s J 

(14) 

Another useftil form can be obtained by substituting eq. (8) into eq. (14) 

0.65r^-'^lMn(l-c)y 

^dX'Al-t^ 
\ 

Z 

1+1.5y   • (15) 

g J 

(When X corresponds to viscosity or resistivity, the equation for fragility will be sHghtly 

modified because of temperature dependencies appearing in the pre-exponential factor for 

those quantities.) 

From eqs. (14) and (15), fragility is seen to be directly related to the critical 

temperature, To The central assumption of the DDM is that the fluid contains mobile 

single defects. When these mobile single defects attract each other, they form immobile 

clusters as temperature falls or pressure increases and eventually complete aggregation is 

achieved at Tc. Tc is a thermodynamic defect transition and is the temperature at which 

the number of single defects falls to zero. A real fluid never reaches Tc because the glass 

transition intervenes.' In the Bragg-Williams approximation (with equal occupation of A 

and B sites) for a nearest neighbor lattice gas, the critical temperature is^'"* 

V As 
T 

4k, 
(16) 



where v is the number of near neighbors, As is the attractive interaction energy between 

the defects and kgis Boltzmann's constant. Consequently, if all other terms in eqs. (14) 

and (15) are constant, the more strongly the defects attract one another, the higher is Tc 

and the more fragile is the liquid. 

Finally, as shown above, when the defects do not attract, but repel, the DDM 

leads to Airhenius behavior and this is characteristic of a "strong" liquid.* Thus, in the 

framework of generalized Vogel theory, a liquid is "fragile" if there is an atfractive 

interaction between the defects i.e. the defects begin to cluster as temperature is lowered. 

Of course, it is also clear from eqs. (14) and (15) that other quantities influence 

the fragility. For example, the value of Tg affects m. This is important because it shows 

that the fragility depends upon the definition of Tg, e.g. calorimetric values vs. the 

temperature at which the relaxation time has a specified value, etc. 

Next, it is significant that the values of Tg have an effect on m opposite to that of 

Tc e.g. T^-^ appears in the numerator while T^^'' appears in the denominator, etc. This 

resuh lends support to the usage of the coefficient D in eq. (1) and TJTg as indicators of 

the fragility.^ Specifically, when j = 2/3, the Vogel-Fulcher equation is obtained. In that 

case, D =B, and it is apparent from eq. (14) that the fragility is proportional to B. In 

addition, when y = 2/3, Tc = To and it is clear from eq. (14) that m increases as the ratio 

TgfTg increases. 

Perhaps most importantly, in generaUzed Vogel theory B, and hence D, has a 

physical basis via eq, (8). The effect of the lengths is reasonable since a larger L and a 

smaller do axe expected to lead to a greater fragility. A larger L impUes that the defects 

interact over a longer distance (i.e., they are more cooperative in their motion) thereby 



increasing the fragility. A smaller do leads to the same effect. Also, the higher the total 

concentration of defects, the greater is the fragility. This is also reasonable since a higher 

total concentration of defects will increase the probability of clustering and raise the 

fragility. Finally, eq. (15) illustrates that the smaller the sfretched exponential parameter, 

the greater is the fragility. 

The Model Applied to Real Systems 

Attempts to understand fragility in the context of real systems have been made by 

many authors.   ' -'^"'^ For example, Bohmer et al. have evaluated various types of data 

for about 70 glass formers.^ They established the following empirical relationship 

between P and m 

mempiricdl = 250-320p (17) 

Thus, the smaller the stretched exponential parameter, p, the greater is the fragility, m. 

As discussed above, this is the general trend predicted by the DDM. However, as is 

evident from eq. (15), the DDM predicts a different mathematical dependence of m on p. 

The decrease of m as P increases is hyperbolic rather than linear. However, hyperbolic 

behavior is predicted only if the quantities other than m and p in eq. (15) are constant i.e. 

material independent. This would not be expected in general since the defect 

concentration, correlation length, etc. should be material dependent. Consequently, the 

DDM does not predict universahty. This is in accord with the results of the analysis by 

Bohmer et al, who noted a large number of "exceptions" to the empirical result of eq. 

(17).' 



For example, certain alcohols are well outside the range of applicability of eq. 

(17),   In the DDM picture, there is no causal connection between m and p. Non-Debye 

behavior is due to spatial heterogeneity in the barrier hopping distribution encountered by 

the defects.   The aliphatic monohydric alcohols are Debye-like in their relaxation 

behavior (i.e,, p is large, approaching 1.0), but are found to be rather fragile in their 

specific heat jumps and less so in their relaxation properties. This is easy to interpret in 

the DDM, The barrier distribution is narrow in these hydrogen bonded alcohols, so that 

the defects do not find themselves in long-Uved trapping sites. On the other hand, the 

defects attract each other weakly, exhibit a weak tendency to cluster, and thus display 

moderate values of the fragility. 

To illustrate that eq. (15) is capable of reproducing the data quantitatively, it was 

assumed that all of the quantities except p on the right hand side are constants, 

independent of the material and that the constants together lead to a value of 42. Again, 

this does not capture the spirit of the DMM since each material should have a different 

set of constants. Nonetheless, the curve represented by WDD = 42/p and all of the data for 

polymers and alcohols from Ref 6 are plotted in Fig, 1, It is clear that the general trend 

of the data is reproduced by this appUcation of the defect diffusion model. 

To show that order of magnitude is reasonable, the following estimates were 

considered. First, it was assumed that Tc/T'g « 0,75, This is supported by results for six 

different materials,' Next, the usual assumption was made that y = 1. With these 

assumptions, it follows that moo « 13,5B. Consequently, it follows that 

£Mn(l-c) 
-3.1 (18) 

«0 



A reasonable set of parameters that satisfies this condition (and thus reproduces the data) 

isc«0.1 and£Mo«3.1. 

It is clear from the data in Ref. 6 and the trend shown by the curve in Fig. 1 of the 

present Letter that for orientationally disordered glasses (ODICs), "complex" molecules, 

"simple" molecules, mohen salts and networks, a single curve cannot reproduce the 

results. This is consistent with the DMM theory since it is expected that parameters such 

as the defect concentration, Debye length, nearest neighbor distance, and the ratio TdT^ 

will be different for different materials. For example, it was pointed out in Ref 6 that 

ODICs exhibit very non-Debye behavior (i.e., small p) but little fragility. Again, in the 

DMM theory non-Debye behavior is caused by spatial heterogeneity in the barrier 

hopping distribution encountered by the defects.* ODICs may have significant barrier 

heterogeneity (i.e., small p), but httle or no attraction between defects and thus they will 

belong to the class of "strong" liquids. 

It is interesting to speculate on the nature of the defect-defect interactions. 

Noteworthy early theoretical treatments of the interaction between lattice defects have 

been given by MontroU and Potts.'''^° to the earlier paper, they showed that "like" 

defects attract and "unlike" defects repel. Experimental studies of dipolar defects in rare 

earth doped calcium fluoride have proved the existence of clusters of defects,^' On the 

other hand, no evidence of clusters is found in alkali metal doped alkahne earth 

fluorides.^^ (In the alkaline earth fluorides, the simple defects are also immobile.) These 

are a few examples of an extensive literature that exists concerning defects in solids and 

their interactions. 

10 



An example of a specific polymer defect has been given previously.   Detailed 

studies of the polycarbonate molecule suggest that a mobile carbonate unit (CO3) is one 

defect whose motion contributes to the mechanical, dielectric and nuclear magnetic 

relaxation in the glassy state?^'^^ Other types of defects have not been identified to date. 

However, it is interesting to speculate on the nature of the defects in other materials. 

Defects may either be neutral or charged. In the case of neutral defects, the interaction 

may be Van der Waals in nature, for example. In that case, the defect-defect interaction 

would be attractive and thus clustering would be expected. The case of charged defects is 

particularly intriguing. For example, it may be that defects in materials such as SiOa or 

GeOa repel one another because they are charged. This would eliminate clustering 

thereby making the materials "strong" glass-formers. 

Summary 

The definition of fragility is considered in the context of defect diffusion theory. 

It is shown that a necessary condition that a liquid be "fragile" is that there is an attractive 

OTteraction between the defects i.e. that the defects cluster. The relationship between the 

model parameters and a widely used fragility index is also described. Each of the model 

parameters contributes to the fragility in a reasonable manner. The behavior of 

exceptional cases, such as orientationally disordered crystals and aliphatic monohydric 

alcohols, is also naturally accounted for in terms of the model. 

11 
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Figure 1,        Fragility, m, vs. the stretched exponential parameter, p, for the data for 

"    ' polymers and alcohols from ref. 6. Also shown is the representative 

curve, m = 42/p which is consistent with the DDM, 
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