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ANOMALOUS DEFECT DIFFUSION NEAR THE GLASS 
TRANSITION 

John. T. Bendler*, John. J. Fontanella*, Michael. F. Shlesinger* 

*Physics Department, U.S. Naval Academy, AnnapoUs, MD 21402-5026 

^Physical Sciences Division, Office of Naval Research, 800 N. Quincy St., Arlington, 
VA 22217 

ABSTRACT 

Anomalous diffusion is employed to model defect motion in materials near their 

glass transition temperature. Even though the motion of a single defect possesses no 

characteristic time scale the overall effect of a concentration of defects is to produce 

stretched exponential relaxation in the glass. This function has a well-defined time scale 

that depends on the concentration of mobile defects. In our model, the time scale 

diverges as the temperature is lowered, as well as, increasing with increasing pressure. 

We use the manner in which this time scale diverges to derive equations for conductivity, 

dielectric relaxation and viscosity as a function of temperature and pressure that are in 

good agreement with experimental data. 

I. INTRODUCTION 

In 1973, Scher and Lax [1], were investigating the ac conductivity of amorphous 

semiconductors that were used in photocopiers. They employed the fluctuation- 

dissipation theorem to express the ac diffusion constant D(co ) in terms of a velocity- 

00 

velocity correlation function for mobile charges, i.e.. Re D((D) =    \cos(mt){v(t)vP))dt . 

t=0 

While a velocity correlation can be more readily applied to situations with particles that 



are always in motion, the Scher-Lax problem involved electron hopping between traps 

with long waiting times between jumps. Focusing on the position of a particle rather 

than  on  its   velocity  they  were   able   to   rewrite  the   ac   diffusion   constant   as, 

£>(©) ^ - — J e~'     ^ [r(t) - r(0)] J dt . One should next introduce the proper quantum 

mechanical Hamiltionian for this problem and calculate P(r,t) = /o|exp(-iffl|r) the 

probability that a particle starting at an origin at time t=0 can be found at a site r at time t. 

Instead, Scher and Lax, following a suggestion by Elliott Montroll, treated the problem 

classically and used a continuous-time random walk (CTRW) to calculate the position of 

the particle. The main ingredient of the CTRW was a waiting time probability density 

function \j/ (t) governing how long a particle would be trapped prior to making a jimip. 

For a purely random process i]/ (t) would be a simple exponential decay. For the physics 

of their problem, Scher and Lax derived a \|/ (t) that was more complicated and marked 

by a slow decay that appeared to be algebraic over some time regime. 

For a related problem, Scher and Montroll [2] and Shlesinger [3] applied the 

CTRW formalism to calculate the current generated by these hopping charges when the 

above system (a thin film of width L) is placed in an electric field. The experimental 

data was fit by an unusual assumption, that the mean waiting time between jumps was 

infinite. Mathematically, one chooses for long times that \j/(f)<xr'"'* with 0<p <1. 

Scher called this "dispersive transport" to stress that many time scales entered into the 

trapping time distribution. It has also been called fractal time transport because the point 

set of times when jumps occur has a fractal dimension of p [4], Other terms are sub- 

diffusive, anomalous diffusion, or slow transport. A main result of the calculation for the 



average distance a charged particle moves by hopping, in a time t, when placed in an 

electric field E, that biases the motion in one direction, is given by 

(1) 

We will assume that r, the mean jump distance, is proportional to the electric field, E, i.e. 

r(E)ccE. hi a typical experiment, a flash of light creates electron-hole pairs that are 

pulled apart by the electric field. One set of charges is absorbed near the surface by an 

opposite polarity electrode and the opposite charged particles transport across the sample. 

After some time T, the mean position of a packet of charges will be equal to L, the sample 

width.   At that time T, 

{r(r)> = LocFr'' (2) 

or by rewriting 

1       E 
— oc — 
T    {LJ 

(3) 

The result for normal transport would be velocity V = L/T=|j.E where |a is a constant, the 

mobility of the charge. Writing eqn. (3) as 1/T=^ p. E/L we must find that n becomes a 

2_ 

function of E and L, given by (E/ L) ^ 

An effect of the anomalous transport was to break the standard random walk scaling 

of r ocr and replace it with r^ azt^. This can also be related to writing the diffusion 

equation with a fractional time derivative of order p. 

The introduction of dispersive transport / fi-actal time transport is elegant and 

produced a theory able to fit and explain a wealth of data for charge transport in thin 

films.   However, this concept did not readily appear to have general applicability in 



condensed matter physics, as it seemed specialized to a particular problem. This changed 

when fractal time transport was shown to be able to explain the ubiquitous stretched 

exponential relaxation behavior found in most glassy materials [4]. 

II.        THE CONTINUOUS-TIME RANDOM WALK (CTRW) 

The CTRW of MontroU and Weiss [5] is simply a random walk on a lattice with a 

waiting time distribution \|/(f) governing the time interval between jumps. The lattice is 

periodic, but the jump times are random. If the random walker reaches a site r at time t, 

we denote the probability density for this as Q(r,t). We can relate Q(r,t) to the previous 

jump by 

e(^'0=Zr  Q{r-s,t-x)p{s}v{t)dx+B^,B{t) (4) 

where p(s) is the probability of a jump of displacement s. The delta functions account for 

the random walk process starting at the origin at time t =o. We have written this in one 

dimension, but using vectors for the displacements allows for this equation to be valid in 

higher dimensions, Eqn (4) can be solved on a periodic lattice by Fourier transforming 

over space (r->fc) and Laplace fransforming over time (t-^u). Performing these 

operations, one has 

Q*(k,u)= ^ 
l-pik)\^'{u) 

where "tilde" represents the Fourier transformed function and "star" represents the 

Laplace transformed function.    The probability that a walker is at site r at time t needs to 



take into account the probability <1)(T ) that the walker reached r at an earher time t -x 

and the walker has not left by a time x later, i.e. 

t 
PM=    I  Q(r,t-xMT)dx (5) 

T=0 

^t) = %(x)dx  so <D*(„) = 1Z!!LM 

Using the convolution theorem for Laplace transform we can write P(r,t) as 

P {k,u) = —^- ^-^—^ (6) 
u       l-p{k)-^ {u) 

In this paper, we will be interested in the number of distinct sites S(t) that a random 

walker visits within a time t. We will consider the actual jumps to be simple nearest 

neighbor jumps, but we will allow the waiting time distribution between jumps to have a 

long tail. Specifically, at long time we will choose 

¥W°c^'"^ (t»l) (7a) 

or equivalently in Laplace space 

\|;*(M)ocl-r(l-p)MP, (u«l) (7b) 

This is the same (i that appears in eqns. (1), 

To calculate S(t) we need to take into account the number of distinct sites, Sn, 

visited after n steps and that n steps have occurred by time t. 

Sit) = f^S„lv„it-^M^)dT (8) 
1=0 0 

Setting z = n/ *(M), the Laplace transform of eqn (8) can be written as 



f^s^^.tVM^niz)l^:^M (9) 
B=0 

Since, 

then 

(11) 

where, D(z) is the generating function of $„. We can write Sn in terms of the first passage 

probability to reach site r for the first time on the nth jump, Fn(r) , as 

5„=l + i:[F.{r)+- + F„{r)] (10) 
r 

This allows us to write D(z) as 

D(z) = -i- + zj:F.{r)+...z''j:[F,{r)+... + F„(r)]+... 
1      Z ^ r 

= Y^+7^2:k.('-)+-"i^.W+-l 

where F(r,z) is the first passage time generating fimction. Denoting Pn(r) as the 

probabihty to visit site r on the nth step, we can relate Fn(r) to Pn(r) via 

m=0 

This allows one to relate F(r,z) to P(r,z) which is given in Fourier space as 

^^p(r-,z)=F(r,z)p(r = 0,z) + 5,o 

(12) 

(13) 

(14) 

(15) 

Putting this all together one finds that D(z) = z/[(l-z)^P(r=0,z)] and the Laplace transform 

of S(t), in eqn. (8) equals 



5(z) = ---i-  
u(l-z) P{r = 0,z) 

where z =\|/'(M) (16) 

Since, in three dimension P(r=0,z) is not a divergent function of z, the main result using 

eqns (7a) and (7b) is that 

S{t)^t^ (|3<l) (17) 

The P = 1 result holds when the first moment of ^^{t) is finite, and p <1 result holds 

when eqn (7b) is appropriate, i.e. the first moment is infinite. 

III.      STRETCHED TIMES 

A ubiquitous phenomenon in many glassy materials is the appearance of stretched 

exponential relaxation 

(t»(0=exp- -   ,     (p<l) 
(18) 

This relaxation law has been applied to many materials and many types of relaxation 

including dielectric, magnetic, volumetric, optical and mechanical. Since a non-integer 

exponent characterizes the relaxation it might be considered that anomalous diffiision is 

involved. To obtain anomalous results in the CTRW transport of a particle, we needed 

waiting times with infinite moments. For the stretched exponential, all of its moments are 

finite so a connection to fi-actal time transport seem to be invalidate. Nevertheless, we will 

show that the effect of the collective motion of a many particles undergoing anomalous 

transport can lead to the stretched exponential law. 



Assume a material has a finite concentration c of mobile defects, that can depend on 

temperature and pressure. We assume that a site becomes relaxed when it encounters a 

defect. You may wish to think of a defect as carrying free volume and this allows the 

material to relax at the defect site. The flux of defects into a site governs its relaxation. 

Let F(r,t) be the first passage time probability density function for a defect to first 

reach a site (that we designate as the origin) if the defect starts at t = o at site, r. We are 

concerned with relaxation at the origin and in this model it is given by. 

(|)(r) = exp[-(flux into origin at time t)] 

r 
= exp -c^ jF(r,x)dt 

(19) 

r   T=0 

where the sum is over all allowable sites for the defects and the integral counts all defects 

that can reach the origin by time t. Alternatively, if we start a defect at the origin (the site 

whose relaxation we monitor) and let it hop for a time t, the defect will visit a set of sites 

{r} fi-om which the defect can start and visit the origin within time t. This allows us to 

rewrite [4] eqn (19) as 

<|)(r)=exp(-cS0) (20) 

where S(t) is the number of different sites a random walker visits in a time t. For jumps 

occurring at a regular rate one finds S(t) varying linearly with time providing an 

exponential relaxation. For our fractal time process with the jumps governed by 

\l/(r)Qcr'"P one finds that S(f)<xfP {with p <l). This provides a derivation of the 

stretched exponential law as a probability limit distribution. Since any one of the defects 

can cause the relaxation, the fractal time motion of many single defects (with an infinite 

mean waiting time between single jumps) produces the finite moment relaxation law. 



In the next section, we consider ions in a glassy polymer. The ions are kicked by 

the hopping defects and this causes the ions to move. Each defect will have an algebraic 

waiting time probability, but the ions will have the stretched exponential distribution. 

IV.      DIVERGENT TIME SCALES 
In 1889, Arrhenius [6] introduced the concept of an activation energy A together 

with a law for the related characteristic reaction time T^ =V^^ &xp{A/kT) where k is 

Boltzmann's constant, T is the absolute temperature in degrees Kelvin and v^ has the 

dimensions of frequency. The Arrhenius law was later derived by Kramers in terms of the 

trajectory of a particle, in a low friction limit, successfully crossing an energy barrier of 

height, A, with an attempt frequency of Vg. However the Arrhenius law is typically not 

valid for most glass-forming materials. A corresponding law for these materials was 

proposed by Vogel [7] in 1921, for.viscosity T| in the form T]{T) =r\   i^-T^)I{T-T^) 

Vbgel used this empirical fit for viscosity experiments on mercury, water, and oils. Vogel's 

law can be written equivalently and more transparently as, 

^{T) = ^   iT-T^+T^-T,)l{T-T^ ) 
'00 

T|    exp "oo    '^ j" — T        '^ J 

Assuming that the viscosity is proportional to a relaxation time scale we can write the 

above as 

X = ^exp (21) 



where T^ is used instead of r„. This later form was proposed by Fulcher [8] in 1925, 

and Tammann and Hesse [9] in 1926. Today this is called the Vogel law or the VFT law 

or some other combination of the above. The interpretation of the parameters A, B and 

TQ is not so straightforward. First, one notices that T^ is a special temperature where the 

time scale diverges. The temperature T^ is typically well below T^, the glass transition 

temperature of the material, i.e., the relaxation dynamics are focused on Tg and not on 

Tg,   There have been several attempts to derive the Vogel law or alternative laws. 

Previously, we had derived the equation for the temperature dependence of the relaxation 

time at zero pressure [10] in the context of an anomalous defect-diffusion model: 

'^ DD  ~ ^DD ^^V 
B DD 

(T-Tj" 
(22) 

where Ajjj^,B^^and T^ are constants. We will derive of eqn. ( ) from the time scale of 

the stretched exponential relaxation law. In the defect diffusion model, the defects 

unfreeze the parts of the glass that they visit. As the temperature is lowered, defects 

.pluster, and the number of mobile defects decreases. As this occurs, the material 

becomes more viscous (rigidity begins to set in).    At T^, the defect concentration 

decreases to the point where rigidity percolates, and the glassy state is formed. 

Relaxation,.however, is still occurring, A phase transition in the number of mobile 

defects, as the temperature is lowered towards T^, creates the behavior characterized by 

eqn. (22 ). 

Equation (22) has consistently been as good as or better than the Vogel law (eqn. 

21) for fitting ionic conductivity, dielectric relaxation and viscosity data for glass- 



forming materials [11-15], The Vogel law often fails to fit data adequately near T^ and 

an Arrhenius law is sometimes used near T^, in conjunction with a Vogel law in the 

region above T^.    Equation (22) provides a consistently better fit throughout both 

regions, hi this paper we extended eqn. ( 22) to include the effect of pressure, but first 

we need to motivate employing an algebraic waiting time for the defect motion.. 

There are several ways in which one can arrive at an algebraic waiting time probabihty 

density fiinction. If one relates a time scale to overcoming a free energy barrier as 

follows: t = t^ exp(- (A - TS)lkT) then the distributions of energy barriers, A, entropies, 

S, and prefactors, to, can each generate a distribution \|/ if) of waiting times between 

jumps. Consider first that only S is a random variable and the distribution of 

environments produces is f{s) = Sl\ exp(-S/So). Then ^^{t)dt = f{s)dS leads at long 

times to \|;(r)«l/r''" with p ^k/S^. When S<SQ, p < 1. For this case, for a single 

defect, the mean waiting time between jumps, is infinite. If, instead, one places all the 

randomness in the energy term a sirhilar stretched exponential decay arises, but with the 

"exponent being temperature dependent. In general, both mechanisms can be expected. 

Since only the defects are mobile in the model, as the temperature is lowered, the 

defects cluster (or correlate their motion) to lower the system entropy. We now make the 

assumption that single defects, of concentration c,, are more mobile than a cluster of 

defects. We therefore replace c in eq. (20) by c,, To have a single (isolated) defect at a 

site, one must first have a defect there with probability c and also have all of the z 

neighbor sites within its correlation volume unoccupied, i.e. 



c, =c(l-c)^ (23) 

with z = ^/df, where |  is the defect-defect correlation length, and d is the nearest- 

neighbor lattice spacing,   hi a mean field lattice gas model, the correlation length § 

between   the   defects    grows   near   and    above    a   critical   temperature, T^,    as 

§(r)«i 
r j.   ^"2 

KT-T.J 
where i is a constant and Tc is the temperature at which single 

defects disappear and below which only defect clusters exist. With increasing pressure, 

the    nearest-neighbor    spacing    d    is    assumed    to    decrease    isotropically    as 

d' =d,\\-h{T,P)) where l-h{T,P) = V{T,P)IV{Tfi) is the fractional volume 

change of the material as pressure increases and do is the mean lattice spacing separation 

at zero pressure. The time scale in the stretched exponential can now be expressed as 

[14-15], 

r 
-i/p -i/p. T^ «ci   *^to =c   "^Xoexp 

BT 3/2 

{T-T^f\\-h{T,P)) 
(24) 

where B = -(L/dof ln(l-c)/p. Note that =l/f5 rescales the prefactor, c, of the exponential. 

Equation (24) represents a new relaxation law that is Vogel-like, but with a 3/2 

temperature exponent and the inclusion of pressure effects. Note that Tc is a function of 

P. The frequency 1/t directly provides information about the peak frequency in 

dielectric relaxation as a function of temperature and pressure. 

In an ion-containing polymeric glass-forming material, as described by our model, 

ion transport is controlled by the defects and it is assumed that the relaxation times for 

ionic conductivity are the same as those for dielectric relaxation. Consequently, a model 



of conductivity can be developed as follows. Althou^ an individual defect has an 

infinite waiting time between jumps, the ion, hit by a flux of defects, has the stretched 

exponential waiting time distribution. All the temporal moments of the stretched 

exponential are finite, including the first moment, which we label as TI. Since, the 

diffusion constant is of the formD = , employing the Nemst-Einstein relation 
6r, 

CT = 
£nD_ 

kT 
, where q is the charge on an ion and n is the ion concentration 

a(T,P): 
2„j2_i/r q nl c 
6kTx, 

-exp 
■BT 3/2 

(T-Tj'^l-b) 
(25) 

Basically, as the pressure is increased, defects are pushed closer together and become 

more clustered leaving fewer single (mobile) defects. This will decrease the defect flux, 

increasing the time scale t, and thus decreasing the conductivity a. 

An   equation   for   the   viscosity,   T],   follows   by   applying   the   Stokes-Einstein 

kT 
equationri = , where ro is the effective ion radius. 
,,.  . 6!tDr„ 

V. CONCLUSIONS 

A defect diffusion model has been developed that is capable of describing the 

temperature and pressure variation of several dynamical processes in glass-forming 

materials. The individual defects undergo anomalous diffusion. However, the overall 

effect of a concentration of defects is normal transport. The basic principle of the model 

is that electrical relaxation or ionic conduction occurs when a defect encounters a dipole 

or ion.   Each of the parameters in the theory has a clear, physical interpretation. There is 



an underlying temperature that represents the temperature below which no defects are 

mobile. There is a dimensionless constant in the exponent that depends upon the 

correlation length, separation and concentration of the defects. For dielectric relaxation, 

the pre-exponential is a product of a characteristic relaxation time (taken to be about that 

for a lattice vibration) and the defect concentration. The pre-exponentials for ionic 

conduction and viscosity contain the expected additional terms. Comparison of theory 

and experiment reveal an excellent representation of the data over a wide range of 

temperatures and pressures. 
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