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REVIEW OF DYNAMIC WAKE MODELS 
FOR APPLICATION TO DYNAMICS AND STABILITY 

OF ROTORCRAFT 

David A. Peters 
McDonnell Douglas Professor 

Chairman, Mechanical Engineering 
Washington University 
St. Louis, MO 63130 

ABSTRACT 

Since the introduction of dynamic inflow in the early 1970's, a fair amount of attention has been 
given to rotor induced flow models that are hierarchical and can be presented in state-space form. The 
original, heuristic, 3-state models of the 1970's gave way to the Pitt-Peters models of the 1980's that 
were hierarchical and could have as many as 8 states. In the late 1980's and early 1990's, the Peters- 
He models became completely hierarchical with as many states as desired. In more recent years, the 
emphasis has been on amending the model to include curved wakes, ground effect, and previously 
neglected states. Part of this development has necessarily involved computation of flow off of the rotor 
disk by the state-space approach. This paper reviews the developments up until now. 

NOMENCLATURE 

A on-disk region 

n ^   ft 
state variable 

B off-disk resion 
C region of infinity 
D' damping matrix 

K combinatorial, Eq. (28) 

j index 
TfTm combinatorial, Eq. (27) 

L'X' influence coefficients 

m index 
Af mass matrix 
n index 
n normal vector 

P pressure/ pVj 
r index 
R disk radius, m 
s area A+B 
S area A+B+C 
t time, sec 
V velocity, m/sec 

v^ free-stream, m/sec 

x,y.z cartesian coordinates 

X 

V 
V 

v,V>W 
W 
<D 
A 

T 

^: 

X 
0) 

)o 
)e 

/Upper 

/lower 

)!! 

tan''(x/2) 

Laplace operator, non-dimensional 
nondimensional velocity, v/V„ 
ellipsoidal coordinates 
velocity potentials 
pressure potentials 
comparison functions 
stream-line coordinate 
density of air, kg/m^ 

coeffiecients, Eqs. (25-26) 

nondimentional time, VjjR 

pressure expansion coefficients 

wake skew angle 
reduced frequency, [exp(/(UT)] 
m+n odd 
m+n even 
above disk 
below disk 
double factorial, Eq. (29) 



INTRODUCTION 

Motivation 

Whenever a rotorcraft manufacturer 
wishes to increase the performance, 
affordability, reliability, maintainability, or 
maneuverability of one of its aircraft, certain 
steps must always be followed whether the 
aircraft is entirely new or whether the aircraft is 
only to be modified. In particular, someone 
must have an idea (based on science and 
engineering) of what 'might be done to the 
aircraft to effect the required improvement. 
Second, one must determine how to model the 
change to the aircraft mathematically and 
numerically. Third, one must run an evaluation 
or simulation of the system (with and without 
the proposed changes) to determine the 
effectiveness of the proposed changes and the 
technical risks involved. This implies that, 
sooner or later, either a comprehensive 
rotorcraft code, a specialized rotorcraft code, or 
some type of flight simulation must be used to 
assemble the new technology (along with the 
rest of the aircraft) and to test the utility of the 
new concept through off-line computations or 
real-time    simulations. Typically,    such 
calculations and simulations must be made 
repeatedly in a design environment in order to 
test the myriad of possibilities and to come 
either to an optimum design or to the 
conclusion that the proposed system does not 
do what it was intended to do. This is at the 
heart of rotorcraft systems design. 

It follows that the various pieces of 
physics used in such preliminary design and 
flight simulation settings must be very efficient. 
For computations, they must be efficient 
enough to allow multiple cases to be run; and, 
for flight simulation, they must be able to run in 
real time. On the other hand, the physics must 
be detailed enough to capture the important 
phenomenological response and to give realistic 
estimates of performance. Nowhere is this 
more true than in the modeling of the rotor 
wake. The rotor wake is one of the most 
important pieces of physics for performance, 
loads,    stability,    handling    qualities,    and 

maneuvering of a rotorcraft. Yet the wake is so 
complex that attempts to model it by CFD or by 
vortex lattice methods become too complicated 
to be used in repetitive dynamics and handling 
qualities applications or in real time simulation. 

The need for wake modeling that can be 
efficient enough to be applied in real-time flight 
simulation, in conventional stability and control 
analyses, and in preliminary design studies has 
led to the development of inflow models based 
on states that represent inflow modes. These 
have developed over the past 50 years into 
powerful tools that are used routinely in 
rotorcraft analysis. Although these tools will 
never completely replace more computational 
methods, such as CFD and vortex lattice, they 
nevertheless have an important ecological niche 
in the competitive world of inflow 
methodologies. 

Background 
The history of dynamic wake modeling 

covers the last 55 years. In 1948, Ken Amer 
postulated that the wake responded dynamically 
to pilot pitch and roll commands, [1] but he had 
no mathematical model. Sissingh [2] 
developed a model from momentum 
considerations, but it was a cumbersome, quasi- 
steady theory. Carpenter and Fridovich 
discovered how to compute the time delay of 
the wake in 1953, but they treated only thrust 
and did not consider pitch or roll [3]. In 1957, 
Loewy developed an unsteady wake model for 
climb, but it was only in the frequency domain 
[4]. In 1964, Jones introduced an actuator-disk 
model of quasi-steady flow for edgewise flight 
[5]. This led to the more general work of 
Joglekar and Loewy [6]. In 1970, Pat Curtiss 
simplified the Sissingh approach, but it was still 
primarily a quasi-steady theory [7]. In 1972, 
Bob Ormiston had the idea for a three-state 
dynamic inflow model that would combine the 
momentum theory of Sissingh with the time 
delays of Carpenter and Fridovich. He and 
Dave Peters developed this concept into a full 
hover theory [8-9] from 1972-1974. The model 
reduced to the Curtiss results at zero frequency 
and gave excellent correlation with hover data 



over the entire frequency range. Nevertheless, 
the model was inadequate for forward flight. 

Pitt and Peters developed 3-state and 5- 
state models for forward flight from first 
principles [10-12] during 1980-1983. These 
reduced to the previous model in hover, but 
gave similarly good correlations in forward 
flight at all advance ratios and all frequencies. 
The model, however, was limited to only the 
crudest wake descriptors of uniform flow with 
two simple gradients. Thus, the model could 
not predict flow detail beyond that necessary 
for thrust, roll moment, and pitch moment. 

Beginning in 1987, Peters and his 
students at Georgia Tech showed that the entire 
rotor induced flow distribution could be found 
from dynamic, finite-state equations in terms of 
inflow mode shapes [13-15]. The theory was 
derived from the potential flow equations with 
only a few, plausible assumptions. By 1991, 
the complete theory was in a compact, closed 
form that could be immediately used for 
applications [16]. One thing, however, which 
the theory could not do adequately was to 
compute the unsteady flow everywhere in the 
flow field. Attempts were made to do this, and 
they were satisfactory at zero frequency; but 
results showed that a second set of states was 
required to compute the flow off disk [17]. 

This was the state of dynamic wake 
models in the early 1990's. Several important 
developments followed that changed the course 
of dynamic wake modeling. First, there was an 
unusual anomaly in helicopter flight mechanics 
that, during a pitching maneuver, experimental 
flight-test data showed that rotorcraft rolled 
opposite to what the simulations predicted even 
with the new wake models. Rosen, Ref. [18], 
suggested that this might be due to the effect of 
wake curvature on induced flow during the 
maneuver. 

Curtiss and coworkers investigated this 
and found that this curvature effect could 
explain part of the anomaly and that simple 
vortex and momentum considerations could 
capture the effect, Refs. [19-20]. Barocela, 
corroborated these findings in his work on 
wake distortion, Ref. [21], although some 
discrepancies were noted with the work of 

Curtiss, Ref. [22]. Barocela showed that the 
effect of wake curvature could be incorporated 
into the dynamic wake model of Pitt and Peters 
by allowing the coefficient matrices to be 
functions of both the wake skew and the wake 
curvature^ This was completed by Krothapalli, 
et. al in Ref. [23]. 

The work on wake curvature was 
extended to the He model in References [24-26] 
in which it was shown that the entire coefficient 
matrix (involving all harmonics) could be 
modified to account for wake curvature. 
Reference [27] demonstrated that the work of 
Curtiss could be considered a special case of 
this more general formulation, thus uniting all 
of the various formulations together. 

Another area of work on dynamic wake 
came with the need for ground effect 
calculations. The original He theory had 
included a simple ground-effect correction, but 
it became clear that something more general 
was needed in order to accommodate moving 
ground planes, inclined ground planes, and 
partial ground planes. References [28-31] 
progressed through a series of developments in 
which the He inflow model was used to treat 
ground effect. In these various approaches, 
either an image rotor or a ground plane source 
rotor was used to simulate the ground in a 
quasi-steady manner. For these cases, a second 
actuator disk (for the image rotor or ground 
rotor) was used, and the induced flow from that 
rotor needed to be computed on the primary 
rotor. This was done numerically by an off-line 
quasi-steady approach. 

From that work, it became clear that what 
was needed was a completely unsteady theory 
that could compute the induced flow of these 
secondary rotors above the disk plane and in all 
three components. The He model, however, 
was unable to do this; and, therefore, the need 
was established for a more general treatment of 
inflow dynamics. This led to an entirely new 
methodology for induced flow dynamics. 

Reference [32] outlined an approach for 
deriving dynamic wake equations in terms of 
velocity potentials rather than merely normal 
velocity components at the rotor disk. Such a 
formulation was shown to be derivable from a 



Galerkin procedure applied to the potential flow 
equations. In Reference [33], this methodology 
was successfully implemented. Reference [34] 
demonstrated that this method contained the old 
He model (and, consequently, the Pitt-Peters 
model) as a special case in which off-disk 
modes were neglected. References [35-36] 
demonstrated that the method did, indeed 
converge for all three components of flow in 
the entire half space including the plane of the 
rotor disk and the semi-sphere above it. 

This new methodology offers the 
possibility of completely unsteady ground 
effect work. Once the wake curvature terms are 
added to the new formulation, it also gives a 
unified treatment of all effects thus far 
investigated. In the sections to follow, we will 
look at the development of the new theory and 
comparisons of results under various 
assumptions and conditions. 

DEVELOPMENT 

Fluid-Dynamics Equations 

The three-dimensional potential flow 
equations (momentum and continuity 
equations) for the pressure and velocity fields P 
and V, with a free-stream velocity V»o, are 

(1) 

(2) 

These equations have been non- 
dimensionalized by defining P as pressure 
divided by pVj, v as induced velocity divided 
by Voc, and time as a reduced time T, (i.e., time 
multiplied by VJR.) The variable E, is the non- 
dimensional coordinate along the free-stream 
line, positive upstream. All lengths are divided 
by the rotor radius R. Figure 1 shows the 
coordinate system. 

From continuity, Eq. (2), it is observed 
that V can be expressed by a velocity potential 
that satisfies Laplace's equation. It can also be 
shown that P satisfies Laplace's equation. 
Therefore, P can be expressed as a summation 
of   pressure   potentials, 0;   and   v    can   be 

expressed as a summation of the gradient of 
velocity potentials, f. 

Pressure Potentials, and Velocity Potentials 

To transform Eqs. (1) and (2) by a 
Galerkin'method, it is required to expand the 
pressure potential, *, and the velocity 
potentials, W, in terms of a complete set of 
functions, each of which satisfies Laplace's 
equation. In addition, they have to fulfill the 
boundary conditions for pressure in the case of 
0, and for velocity in the case of W. 

The boundary conditions for pressure are 
given by a discontinuity across the rotor disk. 
The use of an ellipsoidal coordinate system 
[v,rj,vr], has the advantage that any odd 
function in v, will allow a representation of a 
discontinuity across the rotor disk. An 
additional advantage of using an ellipsoidal 
coordinate system is that an analytical solution 
of Laplace's equation is known and can be 
expressed as, 

^r(v,r?,vr)= C(^&0^)cos('nr)       0) 

<^r(v,^,r)= Pr^)Qn (iri)s\n{mW)        (4) 

where F„'"(v) and Qn{iri) are normalized 
associated Legendre functions of first and 
second kind. 

Since P„'"(v) with n+m odd is an odd 
function of v as well as a function that satisfies 
Laplace's equation, it has a dicontinuity across 
the disk. Therefore, Eqs. (3) and (4) can be 
used as the expansion functions for the pressure 
potentials. On the other hand, P„'"(v) with n+m 
even is an even function of v, but its derivative 
with respect to z is an odd function of v on the 
disk. Such functions can be used to represent 
mass sources at the rotor disk. Therefore, P can 
be written as a summation of terms that 
includes both pressure discontinuities and 
mass-sources terms. Additionally, it can be 
shown that the pressure potentials €>'^ result in 
velocity distributions with infinite kinetic 
energy. Therefore, these are not included in the 
pressure expansion. 



(< /' = -!   ^K'^T^^T^. 
m=0 n=m+l 

r) (5) 

The boundary conditions for the velocity field 
are: (1) the velocity field far upstream from the 
rotor is equal to zero, and (2) there is a velocity 
discontinuity any place a vortex or vortex sheet 
exists in the flow field. These discontinuities 
only exist at the rotor blades and within the 
rotor wake. 

If the velocity-field computational 
domain is limited to the infinite upper-half 
volume above the fiotor disk (Fig.2) the 
functions to be used in the velocity expansion 
do not have to fulfill any discontinuity 
conditions. It is important to note that, in the 
case of perfectly edgewise flow, the wake is 
located on the rotor disk plane. Thus no 
convergence of this methodology is expected 
on the trailing region off the rotor disk for 
edgewise flow, since the assumption for the 
velocity potentials is no longer valid in this 
region. 

In order to strongly satisfy the upstream 
boundary condition for the velocity field, the 
velocity potentials are defined as 

m ■0,1,2, — ,°°;   n = m,m + l,m + 2,...,°° (6) 

This strongly ensures a zero velocity upstream. 
As I approaches infinity, ¥'„'" approaches zero. 

The velocity v is taken as 

(7) 
m=On=m 

mc + b^V% T) 

where T^ and «F„"" are defined by Eq. (6). 
Substitution of Eqs. (5) and (7) into (1), 

and because a^, b^, C'and T^are functions 

of T ; and fT. ^„"", ^T ^ and <!>T are 
functions of the spatial coordinates, x, y, and z, 
Eq. (1) can be written for cosine terms as 

1 1 
m=0n=m 

^,j,mc<^n      ^^"Pn" 

dx 3<? 
a„ 

(8) 

m=On=m+l 

Only the cosine terms are listed, since sine and 
cosine   completely   decouple.   However,   an 

identical set of equations can be written for the 
sine terms. 

Galerkin Approach 

If a Galerkin approach is applied to solve 
the conservation of momentum equation, Eq. 
(8) is pre-multiplied by the gradient of each one 
of some test functions, A, integrated over the 
domain; and the integrals are set to zero. In a 
Galerkin methodology, the test functions are 
defined from the same set of functions used to 
expand the pressure potential, €>, and the 
velocity potentials, W, 

r = 0,1.2....,«>;   j = r.r + l.r + 2.....oo (9) 

When the Galerkin approach is applied, the 
conservation of momentum equation, Eq. (8), 
becomes 

oo       oo 

JlM'll 
m=On=m 

oo oo 

V4" 
dT d^ 

(10) 
V m=On=m+l 

r = 0,1,2....,oo;   j = r,r + l,r + 2,...,oo 

The Divergence Theorem allows volume 
integrals to be expressed as surface integrals. 
Fig. 2. Therefore, if this theorem is applied to 
Eq. (10), and because Aj, W^", and *r all 

fulfill Laplace's equation, Eq. (10) becomes 

SXJJ 
m=On=m 5 

^    dn     dr       ■'    and^        I 

11 JjAr^^c 
m=On=m+l 5 

r = 0.1.2.....00;   j = r.r + l.r + 2..... 

or 
(11) 

K^c  T,Tf mc        ^ 

dn     "    dr      dn    dE,     " 
iS = ESJJ 

m=On=m S 

m=On=m+l 5 

r = 0.1.2.....oo,-   j = r.r + l,r + 2,...,oo (12) 

where 5 represents the surface area of the 
upper-half inflow volume V, including the rotor 
disk plane, dS represents a differential area 
element; and H is a unit-vector, outward normal 



to dS. The surface S can be subdivided into 
three areas: two of them are located on the rotor 
disk plane (z=0), s, and correspond to the on- 
disk area, A, and the off-disk area, B; and the 
third one corresponds to the area on the infinite 
dome, C (Fig.2). Therefore, 

s = A + B\    S = s+C (13) 
The   pressure   potentials,   <&^%   velocity 

potentials, "F„'"S and test functions,  Af, are 

such that all the integrals over the dome 
surface, C, become zero. Therefore, the surface 
of integration becomes the rotor disk plane 
iz=0), s, and the normal outward vector is 
along the z axis. Therefore, 

i- = i- (14) 
dH    dz 

If Eq. (14) is substituted into Eqs. (11) and 
(12), together with the definition of the velocity 
potentials and the test functions, Eqs.   (6) and 
(9), they become 

(d'- Y.^\\^l TJ^''^^ 
m-On=m s dz 

.^,, 
dz 

ds = 

m-On~m+\ s dz 

r = 0,1,2....,oo;   j = r,r + l,r + 2,..., 

m=On=m ^    "^   (^ 0 

OO OO f)^^f 

m=On=m+l s 

(15) 

ds = 

dz 

r = 0,7,2,...,oo;   j = r,r + l,r + 2,. (16) 

where ds is a differential area on z=0. 
It should be noted that the terms with m=n 

for $" result in some infinite integrals. This is 

because the steady velocity field due to T" 

mass sources result in infinite kinetic energy as 
T->oo. Therefore, in this formulation, we 
cannot yet treat mass source terms for which 
m=n. 

Equations (15) and (16) constitute two 
different forms of the momentum equation. 
Each one is a set of ordinary differential 
equations for the velocity potential coefficients 
in terms of the pressure coefficients. From Eqs. 
(15) and (16), it is observed that, for these sets 
of functions, the application of the Divergence 
Theorem allows one to move the derivative 

with respect to the unit-outward normal 
direction,  d/dz, from the velocity potentials, 

T^ (or from the pressure potentials, 0^"^) to 

the test functions,  A'J.    At this point, it is 

important to note that the 0^ with n+m odd are 
zero on the z=0 plane off the disk (5), whereas 
the z derivatives of 0^ with n+m even are zero 
on region B. Because of this, the Divergence 
theorem can be utilized with appropriate choice 
of d/dz position such that all integrals are zero 
on region B. The result is a set of integrals that 
need only be evaluated on region A (on-disk) 
for which they can be evaluated in closed form. 
The expression obtained after applying this 
procedure can be condensed in the following 
equation. 

[e]{a?}.[D']{a:}.[D']{c}        <") 
where ()* = d( )/dt and where each one of the 
elements of the P and D'' matrices are known 
in closed form. The expressions are shown in 
the Appendix. 

Equation (17) is valid for any skew angle j, 
which appears in the equation in the 
expressions for the wake influence coefficient 
matrix L". This equation can be further 
partitioned into two row-groups and two 
column-groups such that m+n (or j+r) is odd 
and m+n (or j+r) is even. These matrices are 
organized in the following way 

j + r = odd, 
n + m = odd_^ 
j + r = even, 

n + m = odd 

{« + fft = odd} 
{/I + m = even} 

(18) 

j + r = odd, 
n + m = even 
j + r = even, 
n + m = even_ 

If Eq. (17) is organized as suggested in Eq. 
(18), it can be partitioned as 

Si 
\D\,O I [D\o.e fell 

m (19) 

Potential Function Expansions 

The  non-dimensional  pressure  drop  and 
mass flow added to the velocity field (both 



across the disk), and the velocity everywhere in 
the upper-half plane can be computed for the 
cosine terms as 

-[n 'lower     "upper Jj}=0 

2E        i        ?:{v){xZ\cos{rmi) 
(20) 

=0n=m+l,m+3,.. 

Am 

'pvl 
~ V lower ■*■ "upper JL_Q 

2X I        P. 
m=0 n=m+2,m+4,.. 

•^'"(vfc'lc'^^C'^r) 

v= i: Ea^v'Fr= s s«^v me 

m=0 n=m m=0 n=m 

(21) 

(22) 

From Eq. (22), it is seen that, to compute 
the velocity field, it is required to compute the 
velocity potentials, 'F„'", by a numerical 
integration 

K=l^Td^ (23) 
I 

To avoid numerical integration and in order 
to be able to express the velocity potentials in 
terms of potentials known everywhere in the 
flow field, a change of variable from a^ to a^ 
is introduced 

The constants CT™ and g^ are chosen such that 
the new velocity potential will give no 
singularities when gradients of it are taken. 

c'" = 
c^K-^)p-') 

;n¥=m 

where 

^n={% 
H n+m 

HZ 

Hn  = 
(n + m-l)!!(n-m-l)!! 

{n + m)\^J{n-m)\\ 

(26) 

(27) 

(28) 

and 

{n)!! = {n){n-2){n-4)...{2),n = even 

{n)!.' = {n){n-2){n-4)...{l),n = odd 

{0)!! = 1;   {-!)!! = 1;   (-2)// = ~;   {-3)!! = -l 

If a Galerkin approach is applied to Eq. 
(24), the following relationship can be obtained 

where 

and where [L'^J is the same matrix as defined in 
Eq. (17) and in the Appendix. 

Equation (24) can be used to express the 
velocity potentials in axial flow. [ ] If Eq. (24) 
is substituted into Eq. (22), it yields 

(32) 

(33) 

«/i V\CT„ 4>„+/ +?„ 'P„_]) 
+1 

OWn^n+]+^n'Pn-l)_ 

m=0 n=m+l 

Since 

dz 
^^,n>m 

the axial component of the velocity is given by 

v,= £    lallK' (34) 
m=0 n=m+l 

If Eq. (30) is substituted into Eq. (17), 
the set of ordinary differential equations for the 
velocity coefficients in terms of the pressure 
coefficients for skewed flow becomes. 

In axial flow, this equation becomes. 

Thus, the equation presented in previous work 
for axial flow [32] is a particular case of Eq. 
(35) when x = 0. 

RESULTS 
In this section, we look at some of the 

results from the newest inflow methodology as 
compared with the older approach. We will 
consider results both in the frequency domain 
and in the time domain. In the frequency 
domain there are closed-form numerical 
expressions based on the convolution integral 
that can be used to compare the solutions with a 
known result. There are also closed-form 
solutions in the time domain to a step input. 
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With these, we can determine the accuracy and 
convergence properties of the methods. 

Figure 3 shows results in the plane of the 
rotor disk, through the y=0 center-line both on 
the disk (-l<x <+l) and up to one radial length 
off the disk (-2<x<+2). The normal component 
of flow is plotted for an elliptical pressure 
distribution at zero frequency. The wake skew 
angle is zero, corresponding to purely axial 
flow as in hover or climb. The "exact" 
convolution result is compared with both the 
newer Galerkin approach and the older He 
model. For this case, all three results are 
identical. Only the real portion is present 
because of the zero frequency. Figure 4 shows 
the same results but at a reduced frequency of 
2.3. Here, the new approach and the 
convolution have identical real and imaginary 
parts, but the older He model shows some error 
(of the order of 10%). This is the worst case for 
discrepancy between the old and new models. 
The difference is due to the coupling with off- 
disk inflow modes that are neglected in the He 
approach. 

Figure 5 shows the same result, but for a 
cyclic pressure input and at a wake sew angle 
of 45° and zero frequency. Once again, the 
convolution approach, the He model, and the 
new model are identical. Figure 6 takes the 
same case but adds a reduced frequency of 4.0. 
Some error begins to show up in the new model 
downstream since convergence is slower for 
that case, and only ten shape functions are 
included in these results. The He method gives 
results only on the disk (not off); but it, too 
starts to deteriorate in accuracy toward the rear 
of the disk. 

Figure 7 gives a more detailed 
examination of convergence with number of 
even terms added to the old He model. The 
graph gives an error norm (based on the square 
of velocity errors either on the rotor disk, 
-l<x<+l, or off-disk, -2<X<-H2) for the normal 
component of velocity in axial flow. Ten terms 
are included in the old He shape functions 
(n+m odd), and the number of new terms (n+m 
even) is varied from zero to twelve. (Note, 
since terms come in alternating values of odd or 
even subscripts, there are half as many odd or 

even terms as the number of the highest 
subscript.) One can see how the error quickly 
converges to zero both on disk and off disk. 
However, if too many even terms or added, 
numerical il-conditioning can cause the error to 
climb back up. Therefore, an optimum 
approach is to take only 3/4 as many even terms 
as there are odd terms. 

Figure 8 demonstrates convergence for 
flow off the disk. The skew angle is a 
relatively steep 75°. Flow is plotted one rotor 
radius above the disk along the disk centerline 
both on and off of the disk. The normal 
component of velocity is computed for 10 odd 
and 10 even terms and also for the optimized 10 
odd and only 7 even terms. One can see that 
there is improved convergence when fewer 
m+n even terms are included than there are 
m+n odd terms. The reason for this is that, 
while the m+n odd terms (the old He theory) 
are very-well conditioned, the m+n even terms 
are poorly conditioned. Thus, round-off errors 
build more rapidly in these new terms. 
Fortunately, the on-disk terms give a good 
on-disk result, so that only a few off-disk are 
needed. The optimum combination is about Vi 
to VA as many even terms as odd. Then flow 
both on the disk and off the disk is satisfactory. 

Similar results are obtained for the other 
two velocity components (azimuthal and 
radial), as shown in Fig. 9, which gives all three 
components of flow for a cyclic input at zero 
degrees skew angle. Peters-He results are only 
shown for the z component since that is the 
only component for which the model can 
produce results. 

In addition to the above frequency 
domain results, correlations have also been 
done in the time domain. Figures 10 and 11 
show results in the time domain for a step input 
in pressure. The normal component of flow is 
plotted for the case of axial flow and for a 
reduced time up to t=7. The exact solution is 
compared to the finite-state results with 10 even 
and 10 odd terms. Flow is plotted at the disk 
center, one-half radius out from the center and 
one radius out from the center. Virtually exact 
agreement is obtained. Figure 10 compares this 
result with that of the old Peters-He model at 



the rotor center and at the rotor edge. The 
Peters-He model does very well for this case. 

The Pitt-Peters and Peters-He models 
involve the wake skew angle in the equations of 
motion. The skew angle appears in the form of 
X = tan(9c/2) where % is the skew • angle. 
Interestingly, in the coupling between the m-th 
and r-th harmonic, X appears only to the 
powers (m+r) and (m-r). It is envisioned that 
the wake curvature angle will appear in a 
similar way. However, since the wake 
curvature is small, only terms to the first power 
in K are used. These have been determined to 
involve only the cross-coupling between the 
zeroeth and first harmonics, and this has been 
done for the He model but not, as yet, for the 
newer Morillo model. 
Conclusions and Recommendations 

The development of the finite-state wake 
models has continuously left the previous 
theory as embedded within the new (as a 
special case). Results continue to correlate well 
with known solutions. Several things are left to 
complete the theory: 

1. The forcing functions in the new theory 
presently do not include T", a uniform mass 
source. This will need to be added to complete 
what is necessary for ground effect work. 

Figures 

X     W = Tt 

Fig.l Coordinate system. 

Fig.2 Volume and area of integration. 

2. The wake curvature terms need to be 
determined for the new model. 

3. Convergence of down-stream flow must be 
improved for the limit of edgewise flow. 

4. A study needs to be done of the feasibility of 
computing inflow below the plane of the rotor 
disk and within the rotor wake. 
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