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COMBINED LINEAR AND NONLINEAR MODELING OF DATA 

INTRODUCTION 

In numerous practical applications, data are recorded for 

observation and scrutiny.  For example, several receiving 

elements of an array may be observed over a time interval of 

interest in an effort to detect the presence of a source, 

estimate its location and speed, and characterize some of its 

attributes, such as source frequency.  At the same time, there 

may be additional unknowns, such as the in-phase and quadrature 

amplitudes of multiple arrivals at the receiving elements, 

perhaps via direct and/or surface reflection paths. 

When a model of the received signal(s) in the available 

measured data from the source is specified or adopted, the model 

generally will contain some unknown linear parameters and some 

unknown nonlinear parameters.  For example, the in-phase and 

quadrature amplitudes of the received signal components will 

appear linearly in the source model waveform, while the source 

location, speed, and center frequency will appear nonlinearly in 

the particular source model waveform.  The exact nonlinear 

functions depend on the configuration and geometry of the 

situation of interest.  An example of a received signal waveform 

is A s(t-T), where amplitude A appears linearly, while delay x 

appears nonlinearly, that is, inside the function s( ). 



To determine the source characteristics, it is necessary to 

estimate all the unknown parameters from the available data; 

however, this can often be accomplished via a sequential 

approach.  For example, if the nonlinear model parameter values 

are initially hypothesized, an analytic solution for the 

conditionally-optimum linear model parameter values may be 

obtainable analytically through minimization of some error 

criterion.  The conditionally-optimum linear parameters can then 

be substituted back into the error criterion, resulting in the 

reduced-dimension conditionally-minimum error, thereby often 

significantly reducing the size of the resultant search problem 

for the best (nonlinear) parameter values of the model.  Reducing 

the dimensionality of the search space is an extremely beneficial 

step in terms of the amount of execution time required to find 

the minimum error. 

When this sequential approach to a least-magnitude-squares 

error minimization is taken, the conditionally-minimum error 

takes on a Hermitian form with dimension equal to the number of 

nonlinear model parameters in the original error definition.  To 

speed up the search for the global minimum in this (possibly) 

high-dimensional space, it is useful to be able to compute the 

gradient vector (slopes) and the Hessian matrix (curvatures) of 

the conditionally-minimum error at any point in the nonlinear 

search space.  These quantities are indicative of the direction 

and step size that the next iterate for the minimum error should 

take. 



when this task is undertaken here, the Hessian matrix is 

found to contain a "destabilizing" term.  A similar quantity for 

the brute-force minimization of the original total squared error 

is presented and discussed in reference 1 (page 683, equations 

(15.5.7) and (15.5.11)).  However, that earlier approach took no 

advantage of the fact that the linearly-appearing model 

parameters can and should be eliminated analytically, thereby 

significantly reducing the dimensionality and execution time of 

the nonlinear search for the global minimum of the specified 

error criterion.  The current modified Hessian matrix is not as 

simple as that cited in reference 1; however, once again, no 

second-order derivative terms of the basis functions are 

involved, thereby reducing the amount of analytical and computer 

effort required. 

The use of the gradient vector and the Hessian matrix of the 

conditionally-minimum error is of limited utility if the 

nonlinear search procedure does not start in the high-dimensional 

error valley containing the global minimum.  This observation 

strongly suggests that a considerable fraction of the search 

effort should be devoted initially to locating this correct error 

valley, at least coarsely, before beginning a possibly wasteful 

time-consuming fine-grained search for a local error minimum. 

This report also addresses the issue of rates of sampling in 

the various dimensions of the nonlinear model variables since 



that issue directly affects the amount of time devoted to the 

initial coarse search for the proper error valley. 



ERROR DEFINITION AND HINIHIZATION 

The measured data set is presumed to contain N values: 

d = [d^ ••• dj^]'^ , (1) 

where {d } could be complex. These N (random) data values could 

consist, for example, of N spatial samples (array elements) and 

N. time samples, in which case, N = N N.. 

The basis set of functions consists of K known complex 

functions {b, (x,e)} for k=l:K, where x is a general real location 

variable (space and t-ime) at which the data are measured; that 

is, data value d is measured at known location x„, n=l:N.  The n n 

Mxl nonlinear unknown complex parameter vector is 

e = [e^ ••• Ojj]'^ . (2) 

These basis functions are weighted and summed to form a fit to 

the measured data according to 

K 

where the Kxl unknown complex amplitude vector is 

T a = [a^ ••• a^]      . (4) 

The fitting function, equation (3), is linear in the Kxl 

amplitude vector a, but it is nonlinear in the Mxl parameter 

vector e. 



An instantaneous error between fit and data is defined as 

e^(e,a) = f^{Q,a)   -  d^  for n=l:N , (5) 

or, in vector notation, 

e(e,a) = [e^(e,a) ••• ej^(e,a)]'^ = f(e,a) - d . (6) 

By use of equation (3), the Nxl fitting vector f(e,a) can be 

expressed as 

f(e,a) - [f^(e,a) ••• fjj(0,a)]'^ = B(e) a , (7) 

where the NxK basis function matrix 3(9) is given by 

B(e) 

b^(Xj^,e) ••• bj^(x^,e) 

b^(Xj^,e) •.. bj^(Xj^,e) 

(8) 

Observe that the (9,a) dependency of f(9,a) in equation (7) has 

factored into the product of a matrix dependent only on 0 times 

the amplitude vector a. 

The total scalar error of the complete fit is defined as 

E(9,a) = e(9,a)" e(9,a) = [B(9) a - d]" [B(9) a - d] 

a" Y(e) a - a" p(9) - p(9)" a + d" d , (9) 

where complex matrices 

Y(9) = B(9)" B(9) = Y(e)" ,   p(9) = B(9)" d (10) 



Matrix Y(6) is KxK and is positive definite, while vector 3(9) is 

Kxl.  These are relatively small matrices, at least compared to 

the dimensionality N of the measured data (d }. 
j •• n' 

ERROR MINIMIZATION 

The scalar error in equation (9) can be expressed as 

E(e,a) = [a - Y(e)"^ PO)]" Y(e) [a - Y(e)~^ p(e)] 

+ d" d - (5(9)" Y(9)"^ 3(9) . (11) 

Since matrix Y(9) is positive definite for all 9, the best 

(random) amplitude vector a to minimize E(9,a) is given by 

a(9) = Y(9)"^ P(9) , (12) 

which depends on the particular hypothesized vector value of 9. 

As nonlinear parameter vector 9 changes, this conditionally- 

optimum amplitude vector a(9) also varies. 

An equivalent form to equation (12) is 

Y(9) a(9) = 3(9)   or   B(9)" B(9) a(9) = B(9)" d ,      (13) 

which is recognized as the normal form of the equations that 

result from the least-squares procedure for the fit B(9) a ~ d. 

This result is also evident from the upper line of equation (9). 

In MATLAB notation, solution a(9) = B(9)\d instead of equation 

(12). 



Upon substitution of solution a(e) into equation (11), the 

conditionally-minimum scalar error becomes 

E(e) s E(e,a(e)) = d" d - p(e)" YO)"-^ p(e) 

= d^ d - 3(e)" a(e) . (14) 

This quantity E(e) is the minimum total scalar error for a given 

or hypothesized parameter vector value 9.  Vector 9 is presumed 

real henceforth.  E(9) must now be further minimized by choice of 

9.  This must be accomplished by a search in the M-dimensional 

space of 9.  A brute-force search directly on Hermitian form 

H    -1 P(9)  Y(9)   P(9), for its maximum in 9, is one possible 

alternative.  However, the M-dimensional search is often 

accomplished more quickly by using the gradient vector and the 

Hessian matrix of the conditionally-minimum error E(9), at least 

when the correct error valley of E(9) has already been located. 

GRADIENT VECTOR OF £(9) 

A partial derivative with respect to the m-th component 9 

of vector 9 in equation (2) will be denoted by a subscript m, 

m=l:M.  Then, there follows from equation (14), scalars 

m 

+ p(9)" Y(9)"^ Y^(9) Y(9)~^ 3(9)  for m=l:M .      (15) 



On the other hand, consider from equation (9) the quantity 

■^  E(e,a) = a" Yj„(e) a - a" &je)   -  P^(e)" a , 
m 

(16) 

where amplitude vector a still has a general (but fixed) value. 

Upon now setting general value a equal to the conditionally- 

optimum value a(0), equation (16) yields 

3e_ E(e,a) 
m a=a(e) 

= a(e)" rje)  a(e) - 2 Re(a(e)" ^m^^O   ^^^^ 

= p(e)" Y(e) ^ Y^(e) Y(e) ^ po) - 2 Re[p(e)" Y(e) ^ P^^^O- ^^^^ 

This result is identical to equation (15); that is, for all 9, 

the gradient components of E(e) satisfy 

Ejj^(e) = y|- E(e,a(e)) = g|- E(e,a) 
m m 

-1 

a=a(e) 
for m=l:M ,   (19) 

where a(e) = Y(6)   fi(Q),   and the latter quantities are given by 

equation (10).  Thus, the setting of general a to the optimum 

a(9) can be done either before or after taking the partial 

derivative of the total error E(e,a) with respect to 9 . 

The forms in equations (15) and (18) are not immediately 

useful because Y^(9) and P_.(9) have not yet been evaluated.  From 

equations (17) and (19), 

E (9) = a" Y„ a - 2 Re fa*^ B]     for m=l:M , —m     —  m —      V,—  my (20) 

where 9 has been temporarily suppressed from the right side of 

this equation.  From equation (10), however, 



Y = B" B + B" B  ,   p = B" d  for m=l:M . (21) 

At this point, define the Nxl vectors 

c  •= B  a  for m=l:M . (22) m   m — 

Then, equation (20) yields 

I 

E (9) = a" (B" B + B" B ) a - a" B" d - d" B„ a —m     —   m        m—  —  m        m — 

= c" B a + a" B" c - c" d - d" c . (23) m  —  —     mm        m 

Upon restoration of the 0 dependence, this becomes, for m=l:M, 

Ejjj(e) = g|- E(e,a(e)) = 2 Re[c^(e)" [B(e) a(e) - d]] .  (24) 
m 

An alternative form is available from equations (6) and (7) 

in terms of the conditionally-minimum error vector.* 

6(9) H e(9,a(9)) = B(9) a(9) - d , (25) 

namely, 

E (9) = 2 Refc (9)" e(9)l  for m=l:M . (26) —m V. m    —      ) 

This form may be useful computationally, in that the Nxl error 

vector e(9) is independent of m and needs to be calculated only 

once at each 9 of interest; on the other hand, Nxl vector c (9) 

depends on both m and 9. 

10 



A quantity that plays a prominent role in the calculation of 

the gradient of E(e) is the NxK partial derivative matrix B (6) 

that arose in equation (21).  From equation (8), it follows that 

V^)  = W ■BO) = m 

30- i^i^^i'©) 
m 

3e-^i<^N'®) m 

39" ^K^^l'^) m 

m 

for m=l:M. (27) 

The basic derivatives required are 3b, (x,9)/36_ for k=l:K, m=l:M, 
K        in 

which must be evaluated at each Nxl location vector x and Mxl 

parameter vector 6 of interest.  Then, from equation (22), the 

quantities 

Cjj^(e) = Bjjj(e) a(G)  for m=l:M (28) 

can be evaluated.  Finally, their use in equation (24) allows for 

calculation of the gradient vector of E(e).  Alternatively, the 

combination of equations (26) and (28) yields 

E^{e)   = 2 Re[a(e)" Bjj^(e)" «(©))  for m=l:M . (29) 

The equality of first-order partial derivatives in equation 

(19) does not extend to second order; that is. 

m  m 
E{e,a) 

a=a(e)   ^®m ^®m 
E(e,a(e)) (30) 

For example, with N = 1, K = 1, M = 1, it follows that 

11 



e(e.,a.)   = a. b(x-,e. ) - d- s a- b - d. , 'l'"l 'I'^l 

E(ej^,aj^) = |aj^ b - d^ I  ,   a^ = d^/h   , 

E(e-) = E(e.,a.) = 0  for all 9^ (31) 

On the other hand, 

^ E(e^,a^) = a^ (a^ b - d^)* b^^ + a* (a^ b" - d^) b;^, 

ae 
^E(e^,a^) = 2 |aj2 l\l' -^ 2 Re (a, (a, b - d,)* bg^^J , 

99 
2 E(ei,a^) 

a^=aj^(9j^) 
2 |aj bg I = 2 |d^ bg /b|2 > 0. (32) 

This positive value is in contrast to all the zero derivatives 

that will result from equation (31) for all values of 9,.  Thus, 

there is no shortcut at the second-order level corresponding to 

that in equation (19) at the first-order level.  To determine the 

Hessian matrix of E(9), it is necessary to deal directly with 

forms (17), (24), (26), or (29). 

HESSIAN MATRIX OF £(0) 

Consider the second-order partial derivative of the original 

scalar error E(9,a) with respect to the components of 9; namely, 

from equation (16), 

12 



39™ 36n, m  m 
E(e,a) = a" "»'mm^®^ a - 2 Re [a" 3i^u,(e)]  for m,m=l:M. (33) 

Substitution of the optimum amplitude vector a(e) = yO)   $(9) 

at this stage then yields 

m  m 
E(e,a) 

a=a(e) 
= ^(^)" ^mm(®) ^(«) - 2 Re(a(e)« p^^(e)) = 

p(e)" YO) ^ Yj^njO) YO) ^ p(e) - 2 Re[p(e)" YO) ^ Pnun^^O <34) 

for m,m=l:M.  However, this quantity is not the m,m term of the 

Hessian matrix of conditionally-minimum error E(e) in equation 

(14), as will be seen now. 

From equations (17) and (19), suppressing 0 on the right side 

temporarily, 

Ej^(e) = -^  E( 9,3(9)) = a" Y^ a - a" pjjj - p^ a for m=l:M . (35) 
m 

Then, the m,m term of the Hessian matrix of E(9) = E(9,a(9)) is 

32 32 
-mm^^^ ^ 39_ 39 -^®^ " 39  39" m  m m  m 

E(9,a(9)) = a" y^^  a 

+ a^ Y a + a^ Y a - a^ p - p" a - a^ p  - p^ a .  (36) —m 'm —   —  'm —m   —m ^m   ^m —m   —  '^mm   '^mm —    \-"" / 

From equation (13), however. 

Y a = p ,   Y^ a + Y a^ = P„ , (37) 

and it follows that 

13 



Y a = 6 - Y a  for m=l:M . (38) 

Substitution in equation (36) and simplification results in 

E  (0) = a" Y  a - 2 Re fa" B]   - 2  Re fa" Y a^l        (39) —mm     —  ' mm —      v— '^mm j       v—m  —m; 

for m,m=l:M. There is an additional (last) term in equation (39) 

that is absent in equation (34). Thus, the attempted shortcut in 

equations (33) and (34) is incorrect. 

To determine the correct Hessian matrix, equation (10) is 

used to obtain the relations 

p     - B" d ,   P„„ = B"  d ,   Y„ = B" B + B" B  , •^m   m       mm   mm       mm        m 

Y = B"  B + B" B„ + B" B„ + B" B„„ . (40) mm   mm     mm   mm      mm 

Substitution in equation (39) and simplification yield the exact 

result for the terms of the Hessian matrix of E(9) as 

^mm<®) " 2 Re[(B^ a)« (B^ a)) - 2 Re((B a^)« (B a^)] 

+ 2 Re fa" B"  (B a - d)l  for m,m=l:M . (41) ^>—  mm   — J — 

From equation (13), it follows that 

B" (B a - d) = 0 (Kxl vector) . (42) 

Although this Kxl relation does not require that B a - d = 0 

(Nxl vector), it suggests that Nxl vector B a - d will be small; 

in fact, from equation (25), this Nxl vector is just the 

14 



conditionally-minimum error vector e(e) at the 9 value of 

interest.  The N component terms of e(e) can have either polarity 

and will be unrelated to the second-order partial derivatives 

{B  }, which are solely model dependent.  Therefore, the last 

scalar, that is, the bottom line of equation (41), will tend to 

average out to zero and could be dropped if desired.  This 

destabilizing term is very similar to that in reference 1 (page 

683) with relation to their simpler least-squares problem in 

equations (15.5.5) and (15.5.11).  Therefore, a reasonable 

approximation to the Hessian matrix of E(9) is afforded by 

—mm e)   = 2  Re[(Bjj^ a)" (B^^^ a)] - 2 Re[(B a^^^)" (B a^)]    (43) 

for m,m=l:M.  This result applies for all 0.  No second-order 

partial derivatives of the basis functions {b, (x,e)} are required 

to evaluate this approximate Hessian matrix (43).  Only the 

first-order partial derivatives indicated in equation (27) need 

be evaluated. 

Before the exact result (41) or approximation (43) can be 

used, the quantities {a_} for m=l:M need to be determined.  From 

equation (37), it follows that 

Y a = P - Y„ a  for m=l:M  (Kxl vectors) . (44) —m   m   m — 

Use of this relation in equation (43) yields an alternative form 

for the elements of the approximate Hessian matrix as 

15 



ii|^<e) = 2 Re((B^a)" (B^ a)] 

- 2 Re((P^ - r^ a)« y"! O^ - y^ a)] . (45) 

To summarize, the Nxl data vector d is given by equation (1) 

while the NxK basis function matrices B and B  are given by 

equations (8) and (27), respectively.  The y and |3 matrices are 

given by equation (10), while the conditionally-optimum amplitude 

vector a is presented in equation (12).  The partial derivatives 

of fi  and y are 

P^(e) = Bjj^(e)" d  for m=l:M , (46) 

and 

y^jO) = Bjjj(e)" B^e) + B(e)" B^O) = Yj^(e)"  for m=l:M .  (47) 

Each P_(9) is a Kxl vector, while each Y„,(6) is a KxK matrix. 

Here, K is the number of basis functions {b, (x,e)}, M is the size 

of nonlinear real parameter vector 6, and N is the total number 

of data points {d } to be fit. 
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SAMPLING RATES FOR PARAMETER VECTOR 9 

The derivations in the previous section for the gradient 

vector and the Hessian matrix of the conditionally-minimum error 

E(e) are useful only when the 9 valley of E(9) containing the 

global minimum has been located.  Otherwise, a fine-grained 

search in any other 9 valley yields only a local minimum of E(9), 

which could have a significantly larger value than the global 

minimum of E(9).  Therefore, a very significant fraction of the 

total search effort for the global minimum of E(9) must be 

devoted to locating the correct valley in 9, in the first place. 

Consider, first, the case of M = 1, that is, real parameter 

vector 9 has just one component 9,.  A possible sample of 

conditionally-minimum error E(9^) is depicted in figure 1. 

Parameter 9. is limited to observation interval (©a^Qh^*  ^^ 

value 9  is selected as the starting point for a fine-grained 

search in 9^^, the local minimum at 9, will be reached.  On the 

other hand, if value 9 is selected as the initial search point, 

the global minimum in interval (9 ,9, ) will be realized at 9^. 

E(ei) 

ea        ed Be ee   Of % 

Figure 1.  Conditionally-Minimum Error E(e,) 
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To guarantee that the correct valley of £(9^^) is not missed 

during the initial coarse search in 9,, it is necessary to sample 

in parameter value 9^ with an increment of the order of A,, as 

indicated in figure 1.  That is, the Nyquist rate of variation of 

E(9^) with 9, must be determined so that a sufficiently fine 

increment A. can be determined.  Too fine a choice for A- will 

result in highly-dependent function value samples for E(9,) and a 

wasteful excessive search time.  Too coarse a choice for L.   can 

cause the proper valley of E(9) to be missed entirely.  Perhaps 

the safest approach is to compute a handful of samples of E(9, ) 

with some initial guess for A, and to plot the results.  Cases of 

too fine sampling or too coarse sampling will be obvious from 

this plot, and a correction of A- in the proper direction can 

then be made.  The object is to sample as coarsely in 9, as 

possible, without missing any of the valleys of E(9^). 

For values of M larger than 1, 9 is a vector of M real 

components, and the search, initial as well as final, must take 

place in M dimensions.  Perhaps the safest approach now, during 

the initial coarse search phase, is to hold all M components of 

vector 9 fixed at some nominal values except for one component, 

say 9„.  Then, plot E(9) versus 9„ for a handful of samples in -•  m — m "^ 

9 using some initial guess for corresponding increment A and m    ^ "^ '^    ^ m 

thereby ascertain a proper value for this particular increment 

A .  Repeat this procedure sequentially for each dimension, 

m=l:M, until a complete set of acceptable increments {A } has 
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been determined.  Finally, conduct the full-scale coarse search 

in M-dimensional 9 using these increments {A } and thereby locate 

the valley containing the global minimum.  Whether this complete 

search can be accomplished in a reasonable amount of time depends 

on the size of M (the curse of dimensionality) and the extent of 

search (initial uncertainty) required on each component 6 , 

m=l:M, of vector 9. 

The nominal values at which M-1 of the components of 9 are 

held fixed should hopefully be in a fairly reasonable 

neighborhood of the (unknown) true global minimum of E(9). 

Otherwise, the selected values of increments {A } could be ' m' 

misleading, some being too large and/or some being too small. 

Each initial individual one-dimensional plot of E(9) versus 9 
— ro 

will yield some information as to whether the corresponding 

increment A^^^ is as valid at one end of the plot as it is at the 

other end of the plot.  Also, since the dimensions of the 

parameter vector components {9 } are generally different (for 

example, seconds, meters. Hertz), the proper individual 

increments {A^^} could be very different in magnitude.  Thus, this 

initial coarse search is extremely worthwhile and probably 

mandatory for efficient localization of the global minimum. 
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QUALITY OF LEAST-SQUARES ESTIMATES 

Recall from equation (1) that d is the Nxl data vector of 

received data, counting both space and time samples.  The Nxl 

fitting vector f(e,a) in equation (7) is replaced here by f(<|>), 

where the new parameter vector ^  = [9;a] incorporates all the old 

parameter variables and is of size Pxl.  In this section, it is 

presumed that the data vector d, basis function matrix B(0), 

amplitude vector a, and parameter vector 0 are all real. 

The instantaneous error vector is now e(<|>) = f(<|)) - d and is 

Nxl.  The total squared error is 

N 
E(<|.) = ei^)"^  e(4.) = XZ; e^(<j.) = [d^ - f(<t.)'^][d - f{<t.)] . (48) 

n=l 

Let ^ be a local minimum of E(<|>) and define Pxl difference vector 

A = «1) - t.  By holding ^ fixed, the total error can be expanded 

according to 

E(4)) S E(j.) + GgC*)"^ A + I A"^ Hg(j)) A for 4. near * .    (49) 

The Pxl gradient vector Gg(«)>) is zero at <|> = ^.  H_(«|)) is the PxP 

Hessian matrix of scalar error E{^)}   the value of H_ required in 

equation (49) can be calculated once ^ has been determined. 

Also, the n-th component of fitting vector f(^)   is given by 
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and  for  n=l:N,   where 

G„(*) 
if^{^) af^i*) 

-.T 

a<l>. a*, 
(51) 

is  the  Pxl  gradient vector  of  scalar   function  f   (<|)),   and 

H^(+)   = 
a^f^(«l>) 

a4>    a<t> 
p     qj 

,   p,q=l:P (52) 

is the PxP Hessian matrix of scalar function £„(<(•)•  From 

equation (50) follows the expansion: 

f( + ) 

■f^{^)- ■fid)- 
• 
• 

*** • 
+ 

K(*)J k(*)j 

G^{±)      A 

G^(±)'   A 

r»T 

^1 
n^{±)  A 

E^{±)   A 

(53) 

This expansion will now be employed in equation (48), namely. 

E((|)) = d^d - 2 f(«|))^ d + f(«f.)'^ f(<j)) . (54) 

The first term of interest is 

f(+)T d = C d^ f^(*) = C d^ fn<*) -^ ^ ^n °n(i)^ ^ 
n=i n=i n=i 

N 1 .T I C cl^ A^ Hj^(j.) A = ag + aj A + I A^ a2 A ,  (55) 
n=l 

where random variables 

^0 = C d^ fn<*) '  «1 
n»=i 

^ d^ G^d) ,  -2 - C d^ H^d). (56) 
n=l n=l 
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The second term of interest is 

N   ^       N 
f(<l')'^ f(«f>) = II] f^*) = IZ; ff (i) + GJ^)'^   A + ^ A"^ U{±)   A] 

n=l  "     n=l ^ "      ^        z    n    ; 

S 3Q + 2 pj A + A^ ^2 ^ ' (57) 

where the quantities 

"  n=l "^        -^  n=l "    " 

A r T^ 
n=l 

Substitution in equation (54) yields 

E(<fr) S [d"^ d - 2 ttQ + PQ] + 2 tPj^ - a^]'^ A + A"^ [fi^   -   a^]   A. (59) 

Since «}) = ^ is the location of a minimum of E(i>),   then 

N 
3l - «1 = IZI I^n^-^^ ~ **n^ ^n^^^ " °  ^^^^ vector) .     (60) 

n=l 

Also, 

02 - -2 = g (ffn<*) - ^nJ «n<*) ^ ^n^l^ ^n^*''') 

= C G„(i) G„(j.)^ , (61) 
n=l  "    "^ 

as will be argued shortly.  It follows that 
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.T     N E(*)   S   [d^   d  -   2   ttQ   +   PQ]   +   A^   n]   G^(j.)   G^(j.)      A 
n=l 

N 
=   [d -   f(l)]'^   [d -  f(*)]   +  A'^ XI]   Gn^^^   ^n^^^^  ^   "      ^^^^ 

Comparison of equation (62) with equation (49) yields 

N 
I Hgd) S XI] G^(±)   G^d)"^ s Q = Q"^ . (63) 

n=l 

The rank of PxP matrix Q is P because the number N of data points 

d is generally much larger than the total number P of unknown 

parameters «|>.  This result affords a method of computing the 

Hessian matrix H_(<j>) of total error E(<|>) at its minimum location 

<(> ■= ^.  It involves only the gradient vectors {G^(i|>)}, n=l:N, of 

the component basis functions {fjj(<|>)} (see equation (51)).  This 

result is similar to that in reference 1 (pages 682 - 683). 

To apply these results to a practical case, a particular form 

is presumed for the received data d, namely, 

d = f («(>)+ w  for n=l:N , (64) 
n   no    n 

where «|>  is the true value of the parameter vector and {w^^} is 

additive noise. Then, equation (60) yields 

N 

n=l 

However, for high signal-to-noise ratio in equation (64), ^ is 

near ♦ , allowing for approximation 
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fn<*o) = ^n^*) ^ ^n^*)"" ^ *o " ^^ 

and, therefore, from equation (65), 

N .j, 

(66) 

n=l 

That is, 

N 
Q (*^ - i) + C w^ G^d 

n=l 
) = 0 , (68) 

or 

i = +0 + Q"^ n; w„ G^(*) , (69) 
n=l 

where matrix Q is given by equation (63). 

The location ^  of the minimum of error E(^)   in equation (48) 

is a random variable; therefore, matrix Q defined in equation 

(63) is also random.  However, for a large number N of data 

points and high input signal-to-noise ratio, minimum location + 

will not fluctuate much.  Then, a reasonable approximation in 

equation (69) is that the dominant perturbation is caused by the 

additive noise term {w }, while the quantities Q and {G^(^)} are 

relatively constant.  Under this assumption, the mean-square 

error matrix of ^ is, from equation (69), 

MSE(j>) = E{(i - ♦Q)(* - ♦^)'^} S Q"^ C G^{±)   c^^  Gj^d)"^ Q"^,(70) 
n ,m=l 
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where c  = E{w w }, n,m=l:N, are the covariance matrix elements 

of the additive noise.  Since the additive noise covariance 

matrix [c  ] can be measured apriori, and gradients {G_(<j))}, nm n — 

n=l:N, as well as matrix Q can be calculated once the solution 

point ±  for minimum E{i>)   is found, the mean-square matrix MSE(j^) 

can be evaluated at solution ^ by means of equation (70). 

For the special case of white noise {w^}, c^^^^ = cr^ &^^,   and 

it follows that 

n=l 
(71) 

upon use of equation (63).  (This result agrees with reference 1, 

equations (15.5.15) and (15.5.11); however, equation (70) is a 

more general result for any additive noise covariance matrix.) 

In particular, the mean-square error of the p-th parameter 
2 

estimate *  is 2 a  times the p-th diagonal of the inverse —p      w 
Hessian matrix of total error E(<|>) at the solution point ^. 

From equation (63), it follows that 

N T . 1 Q = H] G (♦) G^{±)     = f Hg(<!.) . (72) 
n=l 

The first form requires calculation of N Pxl gradient vectors 

{G (♦)} of signal components {f (<!>)} in equation (51), whereas 

the last form requires calculation of the PxP Hessian matrix of 

scalar error E(<f)) in equation (48).  The end result in equation 
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(72) is A  useful approximation only for white noise {w } and high 

signal-to-noise ratio in form (64). 

In equation (61), a term was dropped, namely, 

N 
H] [fj^d) - d^] H^(*) . (73) 
n=l 

For received data model (64), this term becomes 

^ I^n^i) - ^n(*o) - ^nl "n<*) ' ^^^^ n=l 

For high signal-to-noise ratio, ^ will be close to <|> , and this 

term is essentially a sum of random noise x signal terms.  (This 

is true for the general case in equation (73) as well.)  The 

remaining term in equation (61), namely, 

3n T 
TZ,   G^(i) G„(i)  ' <75) 
n=l 

is a sum of signal x signal terms.  Therefore, for high signal- 

to-noise ratio, it is expected that this latter term will 

dominate and that the approximation in equation (61) is valid 

(see also reference 1, page 683, especially equation (15.5.11), 

regarding this topic). 
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CHANNEL AND WAVEFORM CHARACTERIZATION 

TIME-VARYING IMPULSE RESPONSE 

Consider a transmitted signal consisting of a unit-impulse 

transmitted at time t^^, namely 6(t - t,), and let the received 

signal at the channel output be A S(t - t2)» where time 

t^  = f(t^) > t^.   " (76) 

The inverse function to f is f,  where 

t^ = f(t2) < t^   . (77) 

Then the time-varying impulse response of this channel at time t, 

due to a unit-impulse excitation at time t,, is 

h(t;t^) = A 8(t - f(t^)) . (78) 

More generally, for an arbitrary waveform u(t) transmitted 

through this channel, the received waveform is 

r(t) = J dt^ u(t^) h(t;t^) = A J dt^ u(t^) S(t - f(t^)) 

= A J dtj ^'(tj) u(l(t2)) 5(t - t2) = A ?Mt) u(2(t)) ,  (79) 

upon using the change of variable t, = f(t2).  Usually, to a very 

good approximation, f'(t) is constant within the observation 

interval, thereby yielding received waveform 

r(t) s A u(?(t)) , (80) 

where scaling A absorbs this constant factor.  From equation 
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(77), the inverse function satisfies the rule  ?(t) < t  for all 

t.  Thus, to find the received waveform, it is necessary to 

determine the time delay function f( ) in equation (76) and then 

find its inverse E( ) according to equation (77). 

MOVING SOURCE AND MOVING RECEIVING ELEMENTS 

Let the source be at location x(t), y(t), z(t) at time t, 

while receiving element m of an array is at ^^^^(t), yi^(t), ^^^^(t). 

Then, for a direct path, straight-line transmission of an impulse 

at time t, and speed of propagation c, it follows that 

c^ (t2 - t^)^ = [x(t^) - x^(t2)]^ + [y(t^) - Yj^it^)]^ 

+ [z(t^) - Zi„(t2)]^ . (81) 

The left side of this equation is the square of the distance 

traveled by an emitted impulse between transmission at time t. 

and reception at time t-.  The right side is the square of the 

distance between the source location at emission time t^  and the 

m-th receiving element location at reception time t-. 

To solve equation (81) for t, in terms of tj, it is necessary 

to specify the forms of source location functions x(t), y(t), 

z(t), as well as the location functions of the m-th receiving 

element.  For a constant-depth source with constant velocity, it 

follows that 
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x(t) = X + X t ,  y(t) = y + y t ,  z(t) = z , (82) 

where all five parameters are unknown.  For a receiving array 

moving in the direction of the x-axis, at constant depth and 

velocity, it follows for the m-th element that 

x^(t) = x^ + V t ,  y„(t) = y^ ,  z^(t) = z^ , (83) m      m m      mm      m 

where all these parameters are presumed known at the receiver. 

Substitution of equations (82) and (83) in equation (81) yields 

2 2* 2 
c  (t2 - t^)  = (x + X t^ - Xj^ - V t2) 

+ (y + y t, - y„)2 + (z - z)^   . (84) '1  ■'m m 

That is, 

t2 a - 2 t^ Pm<4) + ^m^^^ " ^ ' <85) 

where 

2   -2   -2 a = c  - X  - y  , 

3jjj(t) = c^ t + X (X - x^ - V t) + y (y - y^jj) , 

r^(t) = c2 t2 - q^(t) , 

q^(t) = (X - Xj^ - V t)2 + (y - yj^  + (z - zj^   . (86) 

Since equation (85) is quadratic in t^^, it has explicit solution 

t^^ = - , (87) 

where the negative square root must be taken to ensure that 
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t,  < t-.  The dependence of time t, on element number m is made 

explicit here.  Therefore, from equation (77), the m-th inverse 

function is 

m 
Pm(^) - (Pm(^) - ^ ^J^^y for all m (88) 

At this point, it is useful to generalize and also include a 

surface bounce path as well as a bottom bounce path.  Thus, ?j„(t) 

will be denoted by d (t) for a direct path, by s (t) for a m' m 

surface path, and by b (t) for a bottom path.  The function d (t) m 

uses argument z - z  in the last term of Qj^^t), as already 

indicated in the bottom line of equation (86), whereas Sjj^(t) uses 

arqument z + z  instead, and b_(t) uses argument z + z„ - 2 d, ' mm m 

where d is the water depth.  Also, define 

X„(t) = X - x„ - V t ,   Y = y - y  , 
m m m  ■*   ■* m 

rz - z 

m 

m 

z + z m 

for direct path ' 

for surface path 

,z + z  -2d  for bottom path , m 

(89) 

Then, by canceling c  terms to maintain significance, the 

discriminant in equation (88) becomes 

2 2 
D„(t) . e^lt) . „ ^___,t) . c2 (X„(t) + i t) *   c^    [Y^^i   t) 

while, from equations (86) and (89), 
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fijt)   = c^ t + i X^(t) + y Yj^ , (91) 

which is independent of Z . By combining these results, equation 

(88) can be expressed in its final form as 

c^ t + X X„(t) + y Y„ - D„(t)*^ 

with Z^  and D^^^Ct) given by equations (89) and (90), respectively, 

for the case of interest.  In these results, there are no 

assumptions about x, y, or v being small relative to sound speed 

c.  However, to order 1/c, 

^t) = t - F [K^t) + i t]\ (Y^ f y t]\ zl]\ (93) 

if an approximation is desired. 

As a special case, a stationary source has x = y = 0, giving 

exactly 

a = c^ , fi^(t)   = c^ t ,  Yi^(t) = c^ t^ - qjjj(t) , 

Vt) = -' %(^)   '     V^) = t -^q^(t)'^ . (94) 

The quantity qj„(t) follows from equation (86) as 

^m(t) = (X - x^ - V t)2 + (y - y^)2 ^ z2 , (95) 

where Z  is given generally by equation (89). 
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TRANSMITTED AND RECEIVED WAVEFORMS 

The transmitted waveform is taken as 

u(t) = e(t - T) g cos(oi) t + p) 

= e(t - T) [I cos(w t) + Q sin(w t)] , (96) 

where I, Q, T, co are unknown to the receiver.  It is presumed 

that envelope e(t) of u(t) is known, at least approximately.  The 

envelope duration is L seconds. Also, without loss of generality, 

envelope e(t) starts at zero at time t = 0, and max{e(t)} = 1. 

For a direct, surface, and bottom path, the model of the 

received signal waveform at the m-th receiving element, m=l:M, is 

taken as 

'J^^   -  ^K(t) - ^] K '^^^^ ^m^^O ^ Qd ^H""  ^m^^O] 

+ e(s^(t) - T] [ig cos((o s^(t)] + Qg sin((o s^(t)]] 

+ e[bjjj(t) - T] [IJ^ COS[(O bjjj(t)] + Qj^ sin[w bjjj(t)]] (97) 

where I-, Q,, I , Q , I, , Qj^, T, w are unknown, in addition to 

the source parameters x, y, z, x, y that appear in (cl (t)}, 

{s (t)}, and {t> (t)}.  These latter three sets of functions are 

available from equations (92) and (90), when combined with the 

corresponding {Z } parts of equation (89).  The receiving array 

parameters {x }, {y_.}/ tz } for m=l:M and receiver speed v are 

assumed known, as is sound speed c (see equation (83)). 
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Let t = 0 correspond to the beginning of the first signal 

arrival (direct path) at element number 1 of the receiving array. 

Then, e(0) = 0 yields dj^(O) - T = 0, or T = 6^(0)   <   0, giving 

•^m(t) = ^K<t) - ^1<00 K ^^^'^ ^m^t)] + Q^ sin(a) d^(t)]] 

+ e(s^(t) - d^(0)) [l^ cos(a, s^(t)] + Q^ sin(a, s^(t)]] 

+ e[bjjj(t) - d^(0)] [ij^ cos[w bjjj(t)] + Qj^ sin[w bm^t)]] (98) 

for m=l:M.  Unknowns I^, Q^, I , Q , I. , Q, appear linearly, 

while unknowns x, y, z, x, y, w appear nonlinearly in modeled 

received signals {rj^(t)} through the {djjj(t)}, {Sj^^lt)}, and 

{b (t)} functions. 

The modeled received data are sampled at times t = nA for 

n=l:N, giving model data 

rjj^(nA) - e^djj^(nA) - d^(A)J [l^ cos ^w d^^^CnA)! + Q^ sinfw dj^^CnA)]] 

+  e^Sj^(nA)   -  d^(A)J    [ig  cosfco s^^^inA)!   +  Q^  sinfw Sjj^(nA)l] 

+  e[bjj^(nA)   -  dj^(A)j    [ij^  cos [w bj^UA)]   +  Qj^  sinfw bj|j(nA)]l 

(99) 

for m=l:M and n=l:N.  This model is to be fit to the actual 

measured data {p (nA)} at element number m and time nA, by 

choosing the following quantities: 
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Ijj, Q^,   Ig, Qg/ I^' Qf ^' V' 2' X, y, w . (100) 

The first six variables are to be eliminated analytically, as 

indicated in an earlier section.  This elimination reduces the 

number of search dimensions from 12 to 6, a very worthwhile 

procedure.  A numerical search on the remaining six variables in 

equation (100) is then required. 

When estimates of x, y, z, x, y become available after data 

processing, they constitute position and velocity estimates of 

the source at the time t = 0 (see equation (82)) when the 

direct-path signal first arrived at element number 1.  This 

analysis presumes that the source kept a steady course from the 

initiation of its transmission at time T (see equation (96)) 

until time t = 0.  The quantity T = d,(0) is negative and is 

available from equations (89) through (92) in the form 

X (X - X, ) + y (y - y. ) - D- (0)** 
T = d,(0) ^ -2 :T^   '       (101) 

c  - X - y 

with 

D^(0) = c^ (X - x^)2 + c^ (y - y^)^ (102) 

- [y (x - X.) - X (y - y.)]  + (c  - x  - y ) (z - z-) 

The array positions {x„}, {y„}, {z„} are the locations of the a c-        ^ m'  ^-'m   ^ m' 

receiving elements at time t = 0 (see equation (83)). 
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The time estimate T is available once x, y, z, x, y are 

available.  The estimated source position at time T (<0) is 

P(T) s[x+xT,  y+yT, z]   . (103) 

This source position estimate at time T, namely P(T), is the only 

reliable description of the actual source path because the actual 

source path could have deviated from the straight-line assumption 

utilized in equation (82), both before and after the emission 

time T.  Since there was no emission from the source before time 

T or after time T+L, there is no information about the actual 

source path at times other than those in the time interval 

[T,T+L].  Source position estimates at other times are only 

projections based on the constant heading assumption. 
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SUMMARY 

A method for reducing the dimensionality of the search for a 

minimum in several parameters has been derived for the case where 

some of the parameters appear linearly in the model of the 

observed data.  The remaining nonlinearly-appearing parameters in 

the model must still be searched in multidimensional space.  The 

advantages in execution time achieved by this approach can easily 

be several orders of magnitude. 

Elimination of the linearly-appearing parameters 

significantly complicates the conditionally-optimum total squared 

error, resulting in a Hermitian form that must be extremized. 

For efficient searching in the resultant space, the gradient 

vector and the Hessian matrix of this Hermitian form must be 

calculated.  Expressions for both of these quantities have been 

derived. 

The Hessian matrix was found to contain a destabilizing term, 

just as there is for the standard least-squares approach on all 

the parameters.  The form of this term, however, is different 

from that encountered in the simpler standard approach. 

Nevertheless, no second-order derivatives of the basis functions 

need be computed, thereby significantly reducing the amount of 

computer effort required to evaluate the Hessian matrix. 
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