NUWC-NPT Technical Report 10,086 15 July 1992

An Integral Equation Formulation of the Equations of Motion of an Incompressible Fluid

J. S. Uhiman Jr. Submarine Warfare Systems Directorate

20030801 135

Naval Undersea Warfare Center Division Newport, Rhode Island

Approved for public release; distribution is unlimited.

PREFACE

This study was funded in part by the Chief of Naval Research's Applied Hydrodynamics Research Program (under Contract N0001491WX22031) and in part by the Naval Undersea Warfare Center's Independent Research Program (project no. A64970).

The technical reviewer for this report was J. R. Grant (Code 804).

Reviewed and Approved: 15 July 1992

Bernerf! Myers J. E. Sirmalis

J. E. Sirmalis Director, Submarine Warfare Systems

KEPUKI DU	CUMENTATION PA	GE	1	OMB No. 0704-018
Public reporting burden for this collection of inform	ation is estimated to average 3 hour per fi	sponse, including the time for formation. Send comments re	r reviewing instru- garding this burd	ctions, searching existing (en estimate or any other i
gathering and maintaining the data needed, and con collection of information, including suggestions for Davis Highway, Sulte 1204, Arlington, VA 22202-430	reducing this burden, to Washington Head 12, and to the Office of Management and 8	quarters Services, Directorate udget, Paperwork Reduction P	for information C roject (0704-0188)	perations and Reports, 12 , Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 15 July 1992	3. REPORT TYPE A	ND DATES C	OVERED
4. TITLE AND SUBTITLE			5. FUNDI	NG NUMBERS
An Integral Equation Fo Motion of an Incompress	ormulation of the Eq sible Fluid	uations of		
6. AUTHOR(S)				
J. S. Uhlman Jr.				
7. PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(ES)		8. PERFO	RMING ORGANIZAT
Naval Undersea Warfare	Center Division			
Newport, Rhode Island (02841-5047		TR I	0,086
			I	
9. SPONSORING / MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		10. SPON	SORING / MONITORI
Chief of Naval Research	h			
800 N Quincy Street Arlington, VA				
12a. DISTRIBUTION/AVAILABILITY ST Approved for public re	ATEMENT lease; distribution	is unlimited.	12b. DIS1	RIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY ST Approved for public re	ATEMENT lease; distribution	is unlimited.	12b. DIS1	RIBUTION CODE
12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words)	ATEMENT lease; distribution	is unlimited.	12b. DIST	RIBUTION CODE
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation 	ATEMENT lease; distribution integral equations i s and the continuity	is unlimited. s derived from v equation. Th	12b. DIST the inco ese equa	RIBUTION CODE
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generalized 	ATEMENT lease; distribution integral equations i s and the continuity elocity-enthalpy for ation of the Biot-Sa	is unlimited. s derived from equation. Th cmulation and a avart law for d	the inco ese equa re exact etermini	TRIBUTION CODE ompressible tions are . The equating the veloci
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression 	ATEMENT lease; distribution integral equations i s and the continuity elocity-enthalpy for ation of the Biot-Sa of the momentum equ	is unlimited. s derived from equation. Th mulation and a wart law for d ation for dete	12b. DIST	mpressible tions are . The equating the velocity
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integral equations are linear i 	ATEMENT lease; distribution integral equations i s and the continuity elocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter n each independent	is unlimited. s derived from v equation. Th mulation and a wart law for d nation for deter mining the sta variable, with	the inconstruction the inconstruction the nonl	TRIBUTION CODE ompressible tions are . The equating the velocithe the vorticity enthalpy. The inearities entities entiti
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross 	ATEMENT lease; distribution integral equations i s and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter n each independent v s terms of the vortion	is unlimited. s derived from v equation. The mulation and a avart law for d hation for determining the star variable, with bity and veloci-	12b. DIST the inconsistence is equation the nonl ty. The	TRIBUTION CODE ompressible tions are . The equating the velocity enthalpy. The inearities entry y possess a spatial der
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th 	ATEMENT lease; distribution integral equations i s and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter on each independent to s terms of the vortice properties, includin- nat the stagnation en	is unlimited. s derived from v equation. The control of the standard of the st	12b. DIST the inconsistence is equation re exact etermining ignation the nonl ty. The osence of essure, i	TRIBUTION CODE ompressible tions are . The equating the velocity the vorticity enthalpy. The inearities enthalpy. The inearities enthalpy. The spatial derest of the second the
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the 	ATEMENT lease; distribution integral equations i is and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter in each independent v is terms of the vortice properties, includin hat the stagnation en-	is unlimited. s derived from v equation. The cmulation and a avart law for determining the star variable, with city and velocing the total at other total at other total at other total at	12b. DIST the inconsistence in the inconsistence re exact extermining ignation the nonling the nonling the nonling the vor	TRIBUTION CODE ompressible tions are . The equating the velocithe vorticity enthalpy. The inearities end y possess a spatial derivations s required on ticity is is case
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the present in all volume is restricted to the re 	ATEMENT lease; distribution integral equations is and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter n each independent v s terms of the vortice properties, includin hat the stagnation en- e fluid domain. In a integrals, the domain region of nonzero vo	is unlimited. s derived from v equation. The mulation and a avart law for d lation for deter mining the sta variable, with city and velocing the total at athalpy, or pre- addition, since in of integrati rticity. All b	12b. DIST the inconsistence in the inconsistence in	TRIBUTION CODE ompressible tions are . The equating the velocity the vorticity enthalpy. The inearities end y possess a spatial der: s required on ticity is is case conditions,
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the present in all volume is restricted to the r and in particular the in the formulation. 	ATEMENT lease; distribution integral equations is and the continuity elocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter in each independent v s terms of the vortice properties, includin at the stagnation er e fluid domain. In a integrals, the domain region of nonzero vor farfield boundary co	is unlimited. s derived from y equation. The mulation and a avart law for d lation for deter mining the sta variable, with city and veloci- ng the total about the total about addition, since in of integrati- rticity. All boundition, are re-	12b. DIST the inconsistence in the inconsistence in	TRIBUTION CODE ompressible tions are . The equating the velocity the vorticity enthalpy. The inearities end y possess a spatial der: s required on ticity is is case conditions, incorporated
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the present in all volume is restricted to the r and in particular the in the formulation. 	ATEMENT lease; distribution integral equations is and the continuity elocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter in each independent v terms of the vortice properties, includin at the stagnation en- e fluid domain. In a integrals, the domain cegion of nonzero vor farfield boundary com	is unlimited. s derived from v equation. The cmulation and a avart law for d tation for detection variable, with city and velocing the total about the total py, or pre- addition, since in of integration rticity. All boundition, are r	12b. DIST the inconsistence in the inconsistence in	TRIBUTION CODE ompressible tions are . The equating the velocity enthalpy. The inearities en y possess a spatial der: s required on ticity is is case conditions, incorporated 15. NUMBER OF F
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the present in all volume is restricted to the r and in particular the in the formulation. 14. SUBJECT TERMS Fluid Dynamics	ATEMENT lease; distribution integral equations is and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter n each independent v s terms of the vortice properties, includin at the stagnation en- e fluid domain. In a integrals, the domain region of nonzero voi farfield boundary co	is unlimited. s derived from v equation. The cmulation and a avart law for determining the star variable, with city and velocing the total at other total at other total at other total at other total at the total at other total at the total at the total at the total at the total at the total at the total	12b. DIST the inconsistent re exact etermining gnation the nonl ty. The osence of essure, i the vor on in th poundary naturally	TRIBUTION CODE ompressible tions are . The equating the velocing the vorticity enthalpy. The inearities end y possess a spatial der: s required on ticity is is case conditions, incorporated 15. NUMBER OF F 30 16. PRICE CODE
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the present in all volume is restricted to the r and in particular the in the formulation. 14. SUBJECT TERMS Fluid Dynamics	ATEMENT lease; distribution integral equations is and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter in each independent v is terms of the vortice properties, includin at the stagnation en- e fluid domain. In a integrals, the domain region of nonzero voi farfield boundary co	is unlimited. as derived from v equation. The result on and a avart law for deter mining the star variable, with city and velocing the total athen thalpy, or pre- addition, since in of integration rticity. All the condition, are re-	12b. DIST the incon- esse equa- re exact etermining gnation the nonl ty. The osence of essure, i e the vor on in th ooundary naturally	TRIBUTION CODE ompressible tions are The equation ing the velocion the vorticity enthalpy. The inearities end y possess a spatial der: s required on ticity is is case conditions, incorporated 15. NUMBER OF F 30 16. PRICE CODE 20. LIMITATION O
 12a. DISTRIBUTION/AVAILABILITY ST/ Approved for public re 13. ABSTRACT (Maximum 200 words) A set of coupled Navier-Stokes equation based on a vorticity-v consist of a generaliz an integral expression and a boundary integra equations are linear i only through the cross number of interesting atives and the fact th on the boundary of the present in all volume is restricted to the r and in particular the in the formulation. 14. SUBJECT TERMS Fluid Dynamics 17. SECURITY CLASSIFICATION IB OF REPORT UNCLASSIFIED 	ATEMENT lease; distribution integral equations is and the continuity relocity-enthalpy for ation of the Biot-Sa of the momentum equ l equation for deter n each independent v terms of the vortice properties, includin hat the stagnation en- e fluid domain. In a integrals, the domain region of nonzero voi farfield boundary con- farfield boundary con-	is unlimited. as derived from y equation. The result on and an avart law for deter remining the star variable, with city and velocing the total athen thalpy, or pre- addition, since in of integration rticity. All the condition, are re- 19. SECURITY CLASS OF ABSTRACT UNCLASSIFT	12b. DIST the inconsistent of the inconsistent of the inconsistent of the inconsistence of th	TRIBUTION CODE ompressible tions are The equation the vorticity enthalpy. The inearities end y possess a spatial der: s required on ticity is is case conditions, incorporated 15. NUMBER OF F 30 16. PRICE CODE 20. LIMITATION O SAR

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS.	ii
LIST OF SYMBOLS	ii
INTRODUCTION	1
MATHEMATICAL FORMULATION	1
DISCUSSION	12
SUMMARY AND CONCLUSIONS	15
APPENDIX A: DERIVATION OF VECTOR INTEGRAL IDENTITY	A- 1
APPENDIX B: DERIVATION OF SCALAR INTEGRAL IDENTITY	B-1
APPENDIX C: PROOF OF WALL VORTICITY VECTOR'S	
TANGENCY	C-1
REFERENCES	R-1

i

LIST OF ILLUSTRATIONS

Fi	Igure	Page
1	Bounded Fluid Domain	2
2	Unbounded Fluid Domain with the "Surface at Infinity"	2

LIST OF SYMBOLS

В	Specific stagnation enthalpy
G	Scalar Green's function
G	Vector Green's function
Н	Scalar regular function
\mathbf{H}	Vector regular function
n	Surface normal vector, into fluid
р	Pressure
r	Displacement vector (x - §)
r	Displacement magnitude Ix - g
S	Boundary of fluid domain
u	Velocity vector (bounded fluid domains)
u	Disturbance velocity vector (unbounded fluid domains)
$\mathbf{U}_{\mathbf{\infty}}$	Freestream velocity vector
V	Fluid domain
V^{c}	Complement of fluid domain
х	Field point position vector
μ	Absolute fluid viscosity
ν	Kinematic fluid viscosity
£	Source point position vector
ρ	Fluid density
•	Vorticity vector

AN INTEGRAL EQUATION FORMULATION OF THE EQUATIONS OF MOTION OF AN INCOMPRESSIBLE FLUID

INTRODUCTION

In the course of various investigations it became apparent that it might be possible to express the equations of motion of an incompressible fluid solely in terms of integral equations. In fact, it turns out to be possible to derive such a set of coupled integral equations in what may be called the vorticity-velocity-enthalpy formulation. This report contains a derivation of these equations and a discussion of their properties.

The formulation employed here is similar to that used by Howe (reference 1) in his investigations of acoustic wave equations. In that work Howe employed a formulation in which the acoustic pressure was replaced by a stagnation enthalpy that included the dynamic pressure term. The present formulation generalizes the incompressible form of the stagnation enthalpy integral equation to include the viscous term and formulates the rest of the equations of motion in terms of integral equations as well. Various mathematical manipulations are then carried out on these equations to render them in their final form.

MATHEMATICAL FORMULATION

Consider the flow of an incompressible fluid in both bounded and unbounded domains. The velocity may then be expressed as the sum

 $\mathbf{U}_{\infty} + \mathbf{u}, \tag{1}$

where in an unbounded fluid domain **u** is the disturbance velocity and U_{∞} is the freestream velocity ($U_{\infty} = U_{\infty}(t)$), and in a bounded fluid domain **u** is the total velocity and U_{∞} may be set to zero (see figures 1 and 2 for illustrations of bounded and unbounded domains). The governing differential equations are then, the continuity equation

1

Figure 1. Bounded Fluid Domain

Figure 2. Unbounded Fluid Domain with the "Surface at Infinity"

$$\nabla \cdot \mathbf{u} = 0, \tag{2}$$

and the Navier-Stokes equations

$$\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} + (\mathbf{U}_{\infty} + \mathbf{u}) \cdot \nabla \mathbf{u} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{u}.$$
(3)

The Navier-Stokes equations may also be written as

$$\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} + \nabla \mathbf{B} - (\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} = -\nu \ \nabla \times \boldsymbol{\omega}, \tag{4}$$

where the specific stagnation enthalpy B is defined as

$$\mathbf{B} = \frac{\mathbf{p} - \mathbf{p}_{\infty}}{\rho} + \frac{1}{2} \left[(\mathbf{U}_{\infty} + \mathbf{u}) \cdot (\mathbf{U}_{\infty} + \mathbf{u}) - \mathbf{U}_{\infty} \cdot \mathbf{U}_{\infty} \right], \tag{5}$$

and

$$\boldsymbol{\omega} = \nabla \times \mathbf{u} \tag{6}$$

is the vorticity.

The usual conditions on the flow boundaries are the no-flux boundary condition

$$\mathbf{n} \cdot \mathbf{u} = \mathbf{n} \cdot \mathbf{u}_{\mathrm{B}} \text{ on } \mathbf{S}, \tag{7}$$

and the no-slip boundary condition

$$\mathbf{n} \times \mathbf{u} = \mathbf{n} \times \mathbf{u}_{\mathrm{B}} \text{ on } \mathbf{S},\tag{8}$$

where S is the boundary of the fluid domain V, and \mathbf{u}_{B} is the velocity of the boundary. For unbounded flows there is also a condition at infinity that may be expressed as

$$\mathbf{u} = \mathbf{O}\left(\frac{1}{r}\right), \text{ as } r \to \infty.$$
 (9)

The derivation of the integral equation formulation requires two integral identities. The first identity is the vector identity (reference 2):

$$\beta \mathbf{a} = - \oint_{S} \left[(\mathbf{n} \cdot \mathbf{a}) \mathbf{G} \cdot \mathbf{G} \times (\mathbf{n} \times \mathbf{a}) \right] dS$$

$$- \iiint_{V} \left[\mathbf{G} \times (\nabla \times \mathbf{a}) - (\nabla \cdot \mathbf{a}) \mathbf{G} \right] dV, \qquad (10)$$

where

$$\beta = \begin{cases} 4\pi \text{ in V} \\ 2\pi \text{ on S}, \\ 0 \text{ in V}^c \end{cases}$$
(11)

and G is any vector Green's function of the form

$$\mathbf{G} = \frac{\mathbf{r}}{\mathbf{r}^3} + \mathbf{H}(\mathbf{r}),\tag{12}$$

where $\mathbf{H}(\mathbf{r})$ is a regular vector function and $\mathbf{r} = \mathbf{x} - \boldsymbol{\xi}$. This identity holds for any vector field that is differentiable and for which the integrals exist. For reasons that will become clear subsequently, it shall be assumed that the curl of **G** is always zero.

The second integral identity is a generalization of Green's third identity (reference 3):

$$\beta\phi = \iint_{S} \left(\frac{\partial\phi}{\partial n} G - \phi \frac{\partial G}{\partial n}\right) dS - \iiint_{V} \nabla^{2}\phi G dV,$$
(13)

4

where G is any scalar Green's function of the form

$$G = \frac{1}{r} + H(r), \tag{14}$$

and H(r) is a regular function. This identity holds for any scalar field that is differentiable and for which the integrals exist.

The integral equations will be derived for the case of a bounded flow domain. If an unbounded flow domain is under consideration, care must be taken when considering the contribution of the flow boundary "at infinity." In that case the integrals over the "surface at infinity" may be eliminated by assuming that the disturbance velocity and the vorticity vanish sufficiently fast at large distances and by defining the stagnation enthalpy as in equation (5) so that it, too, goes to zero at infinity.

From the integral identity (10) and the fact that

$$\nabla \cdot \boldsymbol{\omega} = \nabla \cdot (\nabla \times \mathbf{u}) = 0, \tag{15}$$

one immediately finds that

$$\beta \mathbf{u} = - \oint_{\mathbf{S}} \left[(\mathbf{n} \cdot \mathbf{u}) \mathbf{G} - \mathbf{G} \times (\mathbf{n} \times \mathbf{u}) \right] d\mathbf{S} - \iiint_{\mathbf{V}} \mathbf{G} \times \boldsymbol{\omega} \, d\mathbf{V}, \tag{16}$$

which expresses the velocity field in terms of the vorticity in the fluid domain and a boundary contribution. This equation is merely a generalization of the Biot-Savart law. Similarly, equation (3) may be rewritten as

$$\nabla \times \boldsymbol{\omega} = \frac{1}{\nu} \left[(\mathbf{U}_{\boldsymbol{\omega}} \times \mathbf{u}) \times \boldsymbol{\omega} - \frac{\partial (\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u})}{\partial t} - \nabla \mathbf{B} \right].$$
(17)

Therefore, the integral identity (10) yields

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\mathbf{G}(\mathbf{n} \cdot \boldsymbol{\omega}) - \mathbf{G} \times (\mathbf{n} \times \boldsymbol{\omega}) \right] dS + \frac{1}{\nu} \iiint_{V} \mathbf{G} \times \left[\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} - (\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} + \nabla \mathbf{B} \right] dV.$$
(18)

However, since

$$\nabla \mathbf{B} \times \mathbf{G} = \nabla \times (\mathbf{B}\mathbf{G}) - \mathbf{B}\nabla \times \mathbf{G},$$

= $\nabla \times (\mathbf{B}\mathbf{G}),$ (19)

where it has been assumed that the curl of the vector Green's function G is zero, one finds that the enthalpy is required only on the boundary of the fluid domain, and equation (18) becomes

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\mathbf{G}(\mathbf{n} \cdot \boldsymbol{\omega}) - \mathbf{G} \times (\mathbf{n} \times \boldsymbol{\omega}) \right] dS + \frac{1}{\nu} \oint_{S} \mathbf{B} \mathbf{G} \times \mathbf{n} dS$$
$$+ \frac{1}{\nu} \iiint_{V} \mathbf{G} \times \left[\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} - (\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] dV.$$
(20)

Note that the time derivative may be expressed as a material time derivative, yielding

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\mathbf{G}(\mathbf{n} \cdot \boldsymbol{\omega}) - \mathbf{G} \times (\mathbf{n} \times \boldsymbol{\omega}) \right] dS + \frac{1}{\nu} \oint_{S} \mathbf{B} \mathbf{G} \times \mathbf{n} \, dS + \frac{1}{\nu} \iiint_{V} \mathbf{G} \times \left\{ \frac{\mathbf{D}(\mathbf{U}_{\infty} + \mathbf{u})}{\mathbf{D}t} - \frac{1}{2} \nabla \left[(\mathbf{U}_{\infty} + \mathbf{u}) \cdot (\mathbf{U}_{\infty} + \mathbf{u}) \right] \right\} dV; \quad (21)$$

or, operating on the gradient term in a manner similar to that employed in equation (19), one finds

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\mathbf{G}(\mathbf{n} \cdot \boldsymbol{\omega}) - \mathbf{G} \times (\mathbf{n} \times \boldsymbol{\omega}) \right] dS$$

$$+ \frac{1}{\nu} \oint_{S} \left[\mathbf{B} - \frac{1}{2} \left(\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u} \right) \cdot \left(\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u} \right) \right] \mathbf{G} \times \mathbf{n} dS$$

$$+ \frac{1}{\nu} \iiint_{V} \mathbf{G} \times \frac{\mathbf{D}(\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u})}{\mathbf{D}t} dV. \qquad (22)$$

(See Hildebrand (reference 4) for the applicable vector identities.)

6

Finally, to obtain an equation for the specific stagnation enthalpy, note that if the divergence of equation (4) is taken, one is left with

$$\nabla^2 \mathbf{B} = \nabla \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right].$$
⁽²³⁾

Similarly, equation (4) can be employed to show that on the boundary

$$\frac{\partial \mathbf{B}}{\partial \mathbf{n}}\Big|_{\mathbf{S}} = \mathbf{n} \cdot \left[-\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} + (\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} + \nu \nabla^{2} \mathbf{u} \right],$$

$$= \mathbf{n} \cdot \left[-\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} + (\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} - \nu \nabla \times \boldsymbol{\omega} \right].$$
(24)

Hence, employing integral identity (13) and using expressions (23) and (24) derived above, one finds that

$$\beta \mathbf{B} + \oint_{S} \mathbf{B} \frac{\partial \mathbf{G}}{\partial \mathbf{n}} d\mathbf{S} = \oint_{S} \left\{ -\mathbf{n} \cdot \frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} + \mathbf{n} \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] - \nu \mathbf{n} \cdot (\nabla \times \boldsymbol{\omega}) \right\} \mathbf{G} d\mathbf{S}$$
$$- \iiint_{V} \nabla \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] \mathbf{G} d\mathbf{V}.$$
(25)

Employing the identities

$$(\nabla_{\boldsymbol{\xi}} \times \boldsymbol{\omega})G = \nabla_{\boldsymbol{\xi}} \cdot (\boldsymbol{\omega}G) + \nabla G \times \boldsymbol{\omega},$$

$$\nabla_{\boldsymbol{\xi}} \cdot (\mathbf{u} \times \boldsymbol{\omega})G = \nabla_{\boldsymbol{\xi}} \cdot [(\mathbf{u} \times \boldsymbol{\omega})G] + \nabla G \cdot (\mathbf{u} \times \boldsymbol{\omega}),$$
(26)

and the theorems of Gauss and Stokes, one can find the third and fourth terms on the right-hand side of equation (25) yield

$$-\nu \oint_{S} (\mathbf{n} \cdot \nabla \times \boldsymbol{\omega}) \mathrm{GdS} = -\nu \left[\oint_{S} \mathbf{n} \cdot \nabla \times (\boldsymbol{\omega} \mathrm{G}) \mathrm{dS} - \oint_{S} \mathbf{n} \cdot (\nabla \mathrm{G} \times \boldsymbol{\omega}) \mathrm{dS} \right],$$
$$= -\nu \left[\oint_{C} \boldsymbol{\omega} \mathrm{G} \cdot \mathrm{dS} - \oint_{S} \mathbf{n} \cdot (\nabla \mathrm{G} \times \boldsymbol{\omega}) \mathrm{dS} \right],$$
$$= \nu \oint_{S} \mathbf{n} \cdot (\nabla \mathrm{G} \times \boldsymbol{\omega}) \mathrm{dS}, \qquad (27)$$

and

$$\iiint \left\{ \nabla \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] \right\} \operatorname{GdV} = \iiint \nabla \cdot \left\{ \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] \operatorname{G} \right\} \operatorname{dV} - \iiint \nabla \operatorname{G} \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] \operatorname{dV}, \\ = \oint _{S} n \cdot \left\{ \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] \operatorname{G} \right\} \operatorname{dS} - \iiint \nabla \operatorname{G} \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] \operatorname{dV}.$$
(28)

Therefore, equation (25) becomes

$$\beta \mathbf{B} + \oint_{\mathbf{S}} \mathbf{B} \frac{\partial \mathbf{G}}{\partial \mathbf{n}} d\mathbf{S} = \oint_{\mathbf{S}} \left[-\mathbf{n} \cdot \frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} \mathbf{G} + \nu \mathbf{n} \cdot (\nabla \mathbf{G} \times \boldsymbol{\omega}) \right] d\mathbf{S} + \iiint_{\mathbf{V}} \nabla \mathbf{G} \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] d\mathbf{V},$$
(29)

or, since

$$\mathbf{n} \cdot (\nabla \mathbf{G} \times \boldsymbol{\omega}) = -\nabla \mathbf{G} \cdot (\mathbf{n} \times \boldsymbol{\omega}), \tag{30}$$

one finally arrives at the integral equation for the enthalpy:

$$\beta \mathbf{B} + \oint_{\mathbf{S}} \mathbf{B} \frac{\partial \mathbf{G}}{\partial \mathbf{n}} d\mathbf{S} = - \oint_{\mathbf{S}} \left[\mathbf{n} \cdot \frac{\partial (\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u})}{\partial t} \mathbf{G} + \nu \nabla \mathbf{G} \cdot (\mathbf{n} \times \boldsymbol{\omega}) \right] d\mathbf{S} + \iiint_{\mathbf{V}} \nabla \mathbf{G} \cdot \left[(\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u}) \times \boldsymbol{\omega} \right] d\mathbf{V}.$$
(31)

8

Therefore, the set of coupled integral equations in the vorticity-velocity-enthalpy formulation is, for the case of general boundary motion,

$$\beta \mathbf{u} = - \oint_{\mathbf{S}} \left[(\mathbf{n} \cdot \mathbf{u}) \mathbf{G} - \mathbf{G} \times (\mathbf{n} \times \mathbf{u}) \right] d\mathbf{S} - \iiint_{\mathbf{V}} \mathbf{G} \times \boldsymbol{\omega} \, d\mathbf{V}, \tag{32}$$

and

•

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\mathbf{G}(\mathbf{n} \cdot \boldsymbol{\omega}) - \mathbf{G} \times (\mathbf{n} \times \boldsymbol{\omega}) \right] dS + \frac{1}{\nu} \oint_{S} \mathbf{B} (\mathbf{G} \times \mathbf{n}) dS$$
$$+ \frac{1}{\nu} \iiint_{V} \mathbf{G} \times \left[\frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} - (\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right] dV, \qquad (33)$$

and

$$\beta \mathbf{B} + \oint_{\mathbf{S}} \mathbf{B} \frac{\partial \mathbf{G}}{\partial \mathbf{n}} d\mathbf{S} = - \oint_{\mathbf{S}} \left[\mathbf{n} \cdot \frac{\partial (\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u})}{\partial t} \mathbf{G} + \nu \nabla \mathbf{G} \cdot (\mathbf{n} \times \boldsymbol{\omega}) \right] d\mathbf{S} + \iiint_{\mathbf{V}} \nabla \mathbf{G} \cdot \left[(\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u}) \times \boldsymbol{\omega} \right] d\mathbf{V}.$$
(34)

If the free-space vector and scalar Green's functions

$$\mathbf{G} = \frac{\mathbf{r}}{\mathbf{r}^3} \tag{35}$$

and

$$G = \frac{1}{r}$$
(36)

are employed, then the integrand of the time-derivative term in equation (33) may be written as

$$\frac{\mathbf{r} \times \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u})}{\mathbf{r}^{3}} = \nabla \left(\frac{1}{\mathbf{r}} \right) \times \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u}),$$
$$= \nabla \times \left[\left(\frac{1}{\mathbf{r}} \right) \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u}) \right] \cdot \left(\frac{1}{\mathbf{r}} \right) \frac{\partial \boldsymbol{\omega}}{\partial t}, \tag{37}$$

so that

$$\iiint_{\mathbf{V}} \frac{\mathbf{r} \times \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u})}{\mathbf{r}^{3}} d\mathbf{V} = \oint_{\mathbf{S}} \frac{\mathbf{n} \times \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u})}{\mathbf{r}} d\mathbf{S} - \iiint_{\mathbf{V}} \frac{\partial \boldsymbol{\omega}}{\partial t} \left(\frac{1}{\mathbf{r}}\right) d\mathbf{V}.$$
(38)

Therefore, with the Green's functions given by equations (35) and (36), the set of coupled integral equations (32)-(34) may be written as

$$\beta \mathbf{u} = - \oint_{S} \left[\frac{(\mathbf{n} \cdot \mathbf{u})\mathbf{r}}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \mathbf{u})}{\mathbf{r}^{3}} \right] dS - \iiint_{V} \frac{\mathbf{r} \times \boldsymbol{\omega}}{\mathbf{r}^{3}} dV,$$
(39)

and

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\frac{(\mathbf{n} \cdot \boldsymbol{\omega})\mathbf{r}}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{3}} \right] dS + \frac{1}{\nu} \oint_{S} B \frac{(\mathbf{r} \times \mathbf{n})}{\mathbf{r}^{3}} dS$$
$$+ \frac{1}{\nu} \oint_{S} \frac{\mathbf{n} \times \frac{\partial}{\partial t} (\mathbf{U}_{\omega} + \mathbf{u})}{\mathbf{r}} dS$$
$$- \frac{1}{\nu} \iiint_{V} \left\{ \frac{\partial \boldsymbol{\omega}}{\partial t} \left(\frac{1}{\mathbf{r}} \right) + \frac{\mathbf{r} \times [(\mathbf{U}_{\omega} + \mathbf{u}) \times \boldsymbol{\omega}]}{\mathbf{r}^{3}} \right\} dV, \qquad (40)$$

and

$$\beta \mathbf{B} + \oint_{\mathbf{S}} \mathbf{B} \frac{\partial}{\partial \mathbf{n}} \left(\frac{1}{\mathbf{r}}\right) d\mathbf{S} = - \oint_{\mathbf{S}} \left\{ \mathbf{n} \cdot \frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial t} \left(\frac{1}{\mathbf{r}}\right) + \nu \frac{\mathbf{r} \cdot (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{3}} \right\} d\mathbf{S}$$
$$+ \iiint_{\mathbf{V}} \frac{\mathbf{r} \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right]}{\mathbf{r}^{3}} d\mathbf{V}.$$
(41)

In two dimensions, the free-field vector and scalar Green's functions are

$$G = \frac{\mathbf{r}}{\mathbf{r}^2},\tag{42}$$

and

$$\mathbf{G} = \ln\left(\frac{1}{\mathbf{r}}\right),\tag{43}$$

respectively. The corresponding integral equations in two dimensions are then

$$\beta \mathbf{u} = -\oint_{\mathbf{S}} \left[\frac{(\mathbf{n} \cdot \mathbf{u})\mathbf{r}}{\mathbf{r}^2} - \frac{\mathbf{r} \times (\mathbf{n} \times \mathbf{u})}{\mathbf{r}^2} \right] d\mathbf{l} - \iint_{\mathbf{V}} \frac{\mathbf{r} \times \boldsymbol{\omega}}{\mathbf{r}^2} d\mathbf{S}, \tag{44}$$

and

$$\beta \boldsymbol{\omega} = \oint_{S} \frac{\mathbf{r} \times (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{2}} d\mathbf{l} + \frac{1}{\nu} \oint_{S} B \frac{\mathbf{r} \times \mathbf{n}}{\mathbf{r}^{2}} d\mathbf{l} + \frac{1}{\nu} \iint_{V} \left[\mathbf{n} \times \frac{\partial}{\partial t} (\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u}) \right] \ln \left(\frac{1}{r}\right) dS$$
$$- \frac{1}{\nu} \iint_{V} \left\{ \frac{\partial \boldsymbol{\omega}}{\partial t} \ln \left(\frac{1}{r}\right) + \frac{\mathbf{r} \times \left[(\mathbf{U}_{\boldsymbol{\omega}} + \mathbf{u}) \times \boldsymbol{\omega} \right]}{\mathbf{r}^{2}} \right\} dS, \qquad (45)$$

and

$$\beta \mathbf{B} + \oint_{\mathbf{S}} \mathbf{B} \frac{\partial}{\partial n} \ln\left(\frac{1}{r}\right) d\mathbf{l} = - \oint_{\mathbf{S}} \left\{ \mathbf{n} \cdot \frac{\partial}{\partial t} \left(\mathbf{U}_{\infty} + \mathbf{u} \right) \ln\left(\frac{1}{r}\right) + \nu \frac{\mathbf{r} \cdot (\mathbf{n} \times \boldsymbol{\omega})}{r^{2}} \right\} d\mathbf{l}$$
$$+ \iint_{\mathbf{V}} \frac{\mathbf{r} \cdot \left[\left(\mathbf{U}_{\infty} + \mathbf{u} \right) \times \boldsymbol{\omega} \right]}{r^{2}} d\mathbf{S}, \tag{46}$$

where, in two dimensions,

$$\beta = \begin{cases} 2\pi \text{ in V} \\ \pi \text{ on S.} \\ 0 \text{ in V}^{c} \end{cases}$$
(47)

DISCUSSION

The boundary conditions expressed in equations (7) and (8) may be readily implemented in equation (39) by substitution in the integral over the boundary, yielding

$$\beta \mathbf{u} = - \oint_{S} \left[\frac{(\mathbf{n} \cdot \mathbf{u}_{B})\mathbf{r}}{r^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \mathbf{u}_{B})}{r^{3}} \right] dS - \iiint_{V} \frac{\mathbf{r} \times \boldsymbol{\omega}}{r^{3}} dV.$$
(48)

Equation (40) also includes an integral over the boundary that involves the dot and cross products of the surface normal and the surface vorticity. The treatment of the boundary terms here is not as straightforward. It is shown in appendix C that, for rigid body motion with a no-slip condition, the dot product of the normal and the vorticity can be expressed in terms of the boundary condition; that is,

$$\mathbf{n} \cdot \boldsymbol{\omega} = -2\mathbf{n} \cdot \boldsymbol{\Omega},\tag{49}$$

where the boundary condition has been decomposed into its translational U and rotational Ω parts as

$$\mathbf{u}_{\mathrm{B}} = \mathbf{U} + \mathbf{r} \times \mathbf{\Omega}. \tag{50}$$

However, the cross product of the normal and the vorticity cannot be expressed in terms of the boundary conditions since it involves derivatives of the velocity field normal to the boundary (see appendix C). Thus, for rigid body motion, equation (40) becomes

$$\beta \boldsymbol{\omega} = - \oint_{S} \left[\frac{\mathbf{r}(-2\mathbf{n} \cdot \mathbf{\Omega})}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{3}} \right] dS + \frac{1}{\nu} \oint_{S} B \frac{(\mathbf{r} \times \mathbf{n})}{\mathbf{r}^{3}} dS$$
$$+ \frac{1}{\nu} \oint_{S} \frac{\mathbf{n} \times \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u})}{\mathbf{r}} dS$$
$$- \frac{1}{\nu} \iiint_{V} \left\{ \frac{\partial \boldsymbol{\omega}}{\partial t} \left(\frac{1}{\mathbf{r}} \right) + \frac{\mathbf{r} \times [(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega}]}{\mathbf{r}^{3}} \right\} dV.$$
(51)

Note that equation (41) involves the same cross product boundary term and therefore cannot be simplified by using the boundary conditions.

Equations (48), (51), and (41) now represent the system of equations to be solved both in the interior of the fluid and on its boundary. However, the nature of the equations changes depending on whether or not the boundary or interior is being considered. In the interior of the fluid the equations take the form

$$4\pi \mathbf{u} = - \oint_{S} \left[\frac{(\mathbf{n} \cdot \mathbf{u}_{B})\mathbf{r}}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \mathbf{u}_{B})}{\mathbf{r}^{3}} \right] dS - \iiint_{V} \frac{\mathbf{r} \times \boldsymbol{\omega}}{\mathbf{r}^{3}} dV,$$
(52)

and

$$4\pi \boldsymbol{\omega} = - \oint_{S} \left[\frac{\mathbf{r}(-2\mathbf{n} \cdot \mathbf{\Omega})}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{3}} \right] dS + \frac{1}{\nu} \oint_{S} B \frac{(\mathbf{r} \times \mathbf{n})}{\mathbf{r}^{3}} dS$$
$$+ \frac{1}{\nu} \oint_{S} \frac{\mathbf{n} \times \frac{\partial}{\partial t} (\mathbf{U}_{\infty} + \mathbf{u})}{\mathbf{r}} dS$$
$$- \frac{1}{\nu} \iiint_{V} \left\{ \frac{\partial \boldsymbol{\omega}}{\partial t} \left(\frac{1}{\mathbf{r}} \right) + \frac{\mathbf{r} \times \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right]}{\mathbf{r}^{3}} \right\} dV, \tag{53}$$

where each equation has been written with its unknowns on the left-hand side. Note that no equation is needed for the stagnation enthalpy in the interior of the fluid since equation (53) requires the enthalpy only on the boundary.

If one writes the equations for the boundary values in the same form one finds

$$2\pi\boldsymbol{\omega} - \oint_{S} \frac{\mathbf{r} \times (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{3}} dS = - \oint_{S} \frac{\mathbf{r}(-2\mathbf{n} \cdot \mathbf{\Omega})}{\mathbf{r}^{3}} dS + \frac{1}{\nu} \oint_{S} B \frac{(\mathbf{r} \times \mathbf{n})}{\mathbf{r}^{3}} dS + \frac{1}{\nu} \oint_{S} B \frac{(\mathbf{r} \times \mathbf{n})}{\mathbf{r}^{3}} dS + \frac{1}{\nu} \oint_{S} B \frac{(\mathbf{r} \times \mathbf{n})}{\mathbf{r}^{3}} dS + \frac{1}{\nu} \int_{S} B \frac{(\mathbf{r}$$

and

$$2\pi \mathbf{B} + \oint_{\mathbf{S}} \mathbf{B} \frac{\partial}{\partial \mathbf{n}} \left(\frac{1}{\mathbf{r}}\right) d\mathbf{S} = - \oint_{\mathbf{S}} \left[\mathbf{n} \cdot \frac{\partial (\mathbf{U}_{\infty} + \mathbf{u})}{\partial \mathbf{t}} \left(\frac{1}{\mathbf{r}}\right) + \nu \frac{\mathbf{r} \cdot (\mathbf{n} \times \boldsymbol{\omega})}{\mathbf{r}^{3}} \right] d\mathbf{S}$$
$$+ \iiint_{\mathbf{V}} \frac{\mathbf{r} \cdot \left[(\mathbf{U}_{\infty} + \mathbf{u}) \times \boldsymbol{\omega} \right]}{\mathbf{r}^{3}} d\mathbf{V}.$$
(55)

Note that no equation is required for the velocities on the boundary since they are already specified by the boundary conditions.

Equations (52) through (55) represent an integral equation reformulation of the equations of motion of an incompressible fluid. These equations possess some interesting properties. First, they contain no spatial derivatives. Second, they only require knowledge of the "pressure" quantity (the specific stagnation enthalpy) on the boundary of the fluid domain. Third, if the variables $\mathbf{u}, \boldsymbol{\omega}$, and B are considered as independent, then these equations are linear in each variable, a condition one might call "pseudo-linear." Fourth, since all the volume integrals present in the equations contain the vorticity and since the farfield boundary condition is incorporated in the formulation, it is immediately apparent that the domain of interest in the fluid may be restricted solely to that region of the fluid in which the vorticity is nonzero. These facts naturally lead to speculation as to the usefulness that this formulation might have from a computational point of view. The fact that the equations contain no spatial derivatives suggests that they might not be prone to the requirement of artificial viscosity, which plagues so many finite-difference-based computational schemes. Similarly, since the integral equation formulation only requires knowledge of the "pressure" on the boundary, it may obviate the need for elaborate schemes to guarantee the convergence of the pressure calculation in the interior as is required in many differential approaches. The "pseudo-linearity" of the equations may allow the use of efficient iteration schemes for the solution of the equations. Finally, the ability to restrict the domain of consideration to only the domain of nonzero vorticity should, in typical high Reynolds number cases where the vorticity is exponentially small outside of a thin region, greatly reduce the number of nodes at which the solution must be obtained.

SUMMARY AND CONCLUSIONS

An integral formulation of the equations of motion of an incompressible fluid has been derived. The equations consist of a generalization of the Biot-Savart law for determining the velocity, an integral expression of the momentum equation for determining the vorticity, and a boundary integral equation for determining the stagnation enthalpy. The equations are linear in each independent variable, with the nonlinearities entering only through cross terms of the vorticity and velocity.

This formulation possesses several salient features, including the total absence of spatial derivatives, the fact that the stagnation enthalpy, or pressure, is required only on the boundary of the fluid domain and the fact that, since the vorticity is present in all volume integrals, the domain of integration in this case is restricted to the region of nonzero vorticity. In addition, all boundary conditions, and in particular the farfield boundary condition, are naturally incorporated in the formulation.

APPENDIX A

DERIVATION OF VECTOR INTEGRAL IDENTITY

One may start by noting that the vector identities

$$\nabla \times (\mathbf{G} \times \mathbf{u}) = (\mathbf{u} \cdot \nabla) \mathbf{G} \cdot (\mathbf{G} \cdot \nabla) \mathbf{u} + \mathbf{G} (\nabla \cdot \mathbf{u}) \cdot \mathbf{u} (\nabla \cdot \mathbf{G}),$$

$$\nabla (\mathbf{G} \cdot \mathbf{u}) = (\mathbf{G} \cdot \nabla) \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{G} + \mathbf{G} \times (\nabla \times \mathbf{u}) + \mathbf{u} \times (\nabla \times \mathbf{G})$$
(A-1)

may be added with the result that

$$\nabla \times (\mathbf{G} \times \mathbf{u}) + \nabla (\mathbf{G} \cdot \mathbf{u}) = 2(\mathbf{u} \cdot \nabla)\mathbf{G} + \mathbf{G}(\nabla \cdot \mathbf{u}) - \mathbf{u}(\nabla \cdot \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{u}) + \mathbf{u} \times (\nabla \times \mathbf{G}).$$
(A-2)

If one integrates this expression over the volume of the domain and assumes that the functions under examination are sufficiently well behaved for the integrals to exist, then one may apply the curl and gradient theorems,

$$\iiint_{V} \nabla \times \mathbf{F} \, \mathrm{dV} = \oint_{S} \mathbf{n} \times \mathbf{F} \, \mathrm{dS},$$

$$\iiint_{V} \nabla f \, \mathrm{dV} = \oint_{S} f \, \mathbf{n} \, \mathrm{dS},$$
(A-3)

to the volume integral of the left-hand side of the expression to find that

$$\iiint_{\mathbf{V}} \left[\nabla \times (\mathbf{G} \times \mathbf{u}) + \nabla (\mathbf{G} \cdot \mathbf{u}) \right] d\mathbf{V} = \oint_{\mathbf{S}} \left[\mathbf{n} \times (\mathbf{G} \times \mathbf{u}) + (\mathbf{G} \cdot \mathbf{u}) \mathbf{n} \right] d\mathbf{S}.$$
(A-4)

However, it can readily be shown that

$$\mathbf{n} \times (\mathbf{G} \times \mathbf{u}) = (\mathbf{n} \cdot \mathbf{u})\mathbf{G} \cdot (\mathbf{n} \cdot \mathbf{G})\mathbf{u},$$

(G\cdot \mathbf{u})\mathbf{n} = \mathbf{G} \times (\mathbf{n} \times \mathbf{u}) + (\mathbf{n} \cdot \mathbf{G})\mathbf{u}, (A-5)

A-1

so that

$$\iiint_{\mathbf{V}} \left[\nabla \times (\mathbf{G} \times \mathbf{u}) + \nabla (\mathbf{G} \cdot \mathbf{u}) \right] d\mathbf{V} = \oint_{\mathbf{S}} \left[(\mathbf{n} \cdot \mathbf{u}) \mathbf{G} + \mathbf{G} \times (\mathbf{n} \times \mathbf{u}) \right] d\mathbf{S}.$$
(A-6)

One is then left with the expression

$$\oint_{S} \{(\mathbf{n} \cdot \mathbf{u})\mathbf{G} + \mathbf{G} \times (\mathbf{n} \times \mathbf{u})\} dS = \iiint_{V} [2(\mathbf{u} \cdot \nabla)\mathbf{G} + \mathbf{G}(\nabla \cdot \mathbf{u}) \cdot \mathbf{u}(\nabla \cdot \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{u}) + \mathbf{u} \times (\nabla \times \mathbf{G})] dV. \quad (A-7)$$

The divergence theorem may then be used to show that

$$\iiint_{\mathbf{V}} (\mathbf{u} \cdot \nabla) \mathbf{G} d\mathbf{V} = \oint_{\mathbf{S}} (\mathbf{n} \cdot \mathbf{u}) \mathbf{G} d\mathbf{S} - \iiint_{\mathbf{V}} (\nabla \cdot \mathbf{u}) \mathbf{G} d\mathbf{V}, \tag{A-8}$$

so that equation (A-7) becomes

$$\oint_{S} [(\mathbf{n} \cdot \mathbf{u})\mathbf{G} \cdot \mathbf{G} \times (\mathbf{n} \times \mathbf{u})] dS = \iiint_{V} \{\mathbf{G}(\nabla \cdot \mathbf{u}) + \mathbf{u}(\nabla \cdot \mathbf{G}) - \mathbf{G} \times (\nabla \times \mathbf{u}) - \mathbf{u} \times (\nabla \times \mathbf{G})\} dV. \quad (A-9)$$

Now if one lets

$$\mathbf{G} = \frac{\mathbf{r}}{\mathbf{r}(\mathbf{r} + \varepsilon)^2} + \nabla \mathbf{H},\tag{A-10}$$

where H is some function that is regular in the fluid domain, then, in the limit as ε approaches zero, one finds that

$$\iiint_{\mathbf{V}} \mathbf{u}(\nabla \cdot \mathbf{G}) d\mathbf{V} = -4\pi \mathbf{u},$$

$$\iiint_{\mathbf{V}} \mathbf{u} \times (\nabla \times \mathbf{G}) d\mathbf{V} = 0.$$
(A-11)

Hence, equation (A-9) may be written as

$$4\pi \mathbf{u} = - \oint_{\mathbf{S}} \left[(\mathbf{n} \cdot \mathbf{u}) \mathbf{G} \cdot \mathbf{G} \times (\mathbf{n} \times \mathbf{u}) \right] d\mathbf{S}$$
$$+ \iiint_{\mathbf{V}} \left[(\nabla \cdot \mathbf{u}) \mathbf{G} \cdot \mathbf{G} \times (\nabla \times \mathbf{u}) \right] d\mathbf{V}.$$
(A-12)

In general, if the field point is taken to be in the domain, on the boundary of the domain, or in the complement of the domain, then the expression becomes

$$\begin{array}{l}
4\pi \text{ in } D \\
2\pi \text{ on } S \\
0 \text{ in } D^{c}
\end{array} \left\} \mathbf{u} = - \oint_{S} \left[(\mathbf{n} \cdot \mathbf{u}) \mathbf{G} \cdot \mathbf{G} \times (\mathbf{n} \times \mathbf{u}) \right] \mathrm{dS} \\
- \iiint_{V} \left[\mathbf{G} \times (\nabla \times \mathbf{u}) \cdot (\nabla \cdot \mathbf{u}) \mathbf{G} \right] \mathrm{dV}.$$
(A-13)

If G is taken to be the free-space Green's function

$$G = \frac{r}{r^3}, \tag{A-14}$$

then equations (A-12) and (A-13) become

$$4\pi \mathbf{u} = -\oint_{S} \left[\frac{(\mathbf{n} \cdot \mathbf{u})\mathbf{r}}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \mathbf{u})}{\mathbf{r}^{3}} \right] dS$$
$$-\iiint_{V} \left[\frac{\mathbf{r} \times (\nabla \times \mathbf{u})}{\mathbf{r}^{3}} - \frac{(\nabla \cdot \mathbf{u})\mathbf{r}}{\mathbf{r}^{3}} \right] dV, \qquad (A-15)$$

and

$$2\pi \mathbf{u} = - \oint_{S} \left[\frac{(\mathbf{n} \cdot \mathbf{u})\mathbf{r}}{\mathbf{r}^{3}} - \frac{\mathbf{r} \times (\mathbf{n} \times \mathbf{u})}{\mathbf{r}^{3}} \right] dS$$
$$- \iiint_{V} \left[\frac{\mathbf{r} \times (\nabla \times \mathbf{u})}{\mathbf{r}^{3}} - \frac{(\nabla \cdot \mathbf{u})\mathbf{r}}{\mathbf{r}^{3}} \right] dV.$$
(A-16)

A-3/A-4 Reverse Blank

APPENDIX B

DERIVATION OF SCALAR INTEGRAL IDENTITY

One may begin this derivation with Green's second identity (see reference 3):

$$\iiint_{\mathbf{V}} (\phi \nabla^2 \mathbf{G} - \mathbf{G} \nabla^2 \phi) d\mathbf{V} = \oint_{\mathbf{S}} \left(\phi \, \frac{\partial \mathbf{G}}{\partial \mathbf{n}} - \mathbf{G} \, \frac{\partial \phi}{\partial \mathbf{n}} \right) d\mathbf{S}. \tag{B-1}$$

Now let

$$G = \frac{1}{(r+\varepsilon)} + H, \tag{B-2}$$

where H is some function that is regular in the fluid domain. Then it can be shown that

$$\lim_{\varepsilon \to 0} \iiint_{\mathbf{V}} \nabla^2 \left(\frac{1}{\mathbf{r} + \varepsilon} \right) d\mathbf{V} = -4\pi, \tag{B-3}$$

so that, in the limit as ε approaches zero, one finds that

$$4\pi\phi = \oint_{S} \left(\frac{\partial\phi}{\partial n}G - \phi \frac{\partial G}{\partial n}\right) dS - \iiint_{V} \nabla^{2}\phi G dV, \qquad (B-4)$$

and, in general, if the field point is in the domain, on the boundary of the domain, or in the complement of the domain, this becomes

$$\begin{cases}
4\pi \text{ in } D \\
2\pi \text{ on } S \\
0 \text{ in } D^{c}
\end{cases}
\begin{cases}
\phi = \oint_{S} \left(\frac{\partial \phi}{\partial n} G - \phi \frac{\partial G}{\partial n}\right) dS - \iiint_{V} \nabla^{2} \phi G dV.
\end{cases}$$
(B-5)

B-1

If G is taken to be the free-space Green's function

$$G = \frac{1}{r}, \tag{B-6}$$

then equations (B-4) and (B-5) take on the usual forms of Green's third identity:

$$4\pi\phi = \oint_{S} \left[\frac{\partial\phi}{\partial n}\frac{1}{r} - \phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)\right] dS - \iiint_{V} \frac{\nabla 2\phi}{r} dV, \qquad (B-7)$$

and

$$2\pi\phi = \oint_{S} \left[\frac{\partial\phi}{\partial n}\frac{1}{r} - \phi\frac{\partial}{\partial n}\left(\frac{1}{r}\right)\right] dS - \iiint_{V} \frac{\nabla 2\phi}{r} dV.$$
(B-8)

APPENDIX C

з

PROOF OF WALL VORTICITY VECTOR'S TANGENCY

For any two orthogonal unit vectors tangent to the boundary t_i and s_i , the unit vector normal to the boundary may be expressed as

$$\mathbf{n}_{i} = \varepsilon_{ijk} \mathbf{t}_{j} \mathbf{s}_{k} \,, \tag{C-1}$$

where ε_{ijk} is the alternating tensor. Since the vorticity is defined as (see Jeffreys (reference 5))

$$\omega_{i} = \varepsilon_{ijk} \frac{\partial u_{k}}{\partial x_{j}}, \qquad (C-2)$$

the normal component of the vorticity at the wall may be written as

$$\begin{split} n_{i}\omega_{i} &= \left(\varepsilon_{ijk}t_{j}s_{k}\right)\left(\varepsilon_{ilm}\frac{\partial u_{m}}{\partial x_{l}}\right),\\ &= \left(\varepsilon_{ijk}\varepsilon_{ilm}\right)t_{j}s_{k}\frac{\partial u_{m}}{\partial x_{l}},\\ &= \left(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}\right)t_{j}s_{k}\frac{\partial u_{m}}{\partial x_{l}},\\ &= t_{j}s_{k}\left(\frac{\partial u_{k}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{k}}\right),\\ &= s_{k}\left(t_{j}\frac{\partial u_{k}}{\partial x_{j}}\right) - t_{j}\left(s_{k}\frac{\partial u_{j}}{\partial x_{k}}\right). \end{split}$$
(C-3)

Each of the last two terms represents a directional derivative tangent to the boundary. If one assumes that the boundary motion is rigid, then on the boundary

$$\mathbf{u}_{\mathbf{i}} = \mathbf{U}_{\mathbf{i}} + \varepsilon_{\mathbf{i}\mathbf{j}\mathbf{k}}\mathbf{x}_{\mathbf{j}}\Omega_{\mathbf{k}} , \qquad (C-4)$$

where U_i is the translational motion of the boundary and Ω_i is its rotational motion about the origin of coordinates. With this representation one finds that

C-1

$$t_{j}\frac{\partial u_{i}}{\partial x_{j}} = \varepsilon_{ijk}t_{j}\Omega_{k},$$

= $n_{i}(s_{k}\Omega_{k}) - s_{i}(n_{k}\Omega_{k}),$ (C-5)

and

$$s_{j}\frac{\partial u_{i}}{\partial x_{j}} = \varepsilon_{ijk}s_{j}\Omega_{k} ,$$

= $t_{i}(n_{k}\Omega_{k}) - n_{i}(t_{k}\Omega_{k}),$ (C-6)

so that

$$n_{i}\omega_{i} = s_{k}(t_{j}\varepsilon_{kjm}\Omega_{m}) - t_{j}(s_{k}\varepsilon_{jkm}\Omega_{m}),$$

$$= 2\varepsilon_{kjm}s_{k}t_{j}\Omega_{m},$$

$$= -2n_{m}\Omega_{m}.$$
 (C-7)

Thus, for rigid boundary motion, the normal component of the vorticity may be determined from the velocity boundary conditions.

The cross product of the normal and the vorticity at the wall may be determined in a similar manner. The cross product is defined as

 $\varepsilon_{ijk} n_j \omega_k$. (C-8)

If one employs equation (C-2), this expression becomes

. . .

$$\begin{split} \varepsilon_{ijk} n_{j} \omega_{k} &= \varepsilon_{ijk} \varepsilon_{klm} n_{j} \frac{\partial u_{m}}{\partial x_{l}}, \\ &= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) n_{j} \frac{\partial u_{m}}{\partial x_{l}}, \\ &= n_{j} \left(\frac{\partial u_{j}}{\partial x_{i}} - \frac{\partial u_{i}}{\partial x_{j}} \right), \end{split}$$
(C-9)

C-2

so that

· .

$$\begin{split} \varepsilon_{ijk} n_{j} \omega_{k} &= n_{j} \Big(t_{k} \frac{\partial u_{j}}{\partial x_{k}} t_{i} + s_{k} \frac{\partial u_{j}}{\partial x_{k}} s_{i} + n_{k} \frac{\partial u_{j}}{\partial x_{k}} n_{i} \Big) - n_{j} \frac{\partial u_{i}}{\partial x_{j}} ,\\ &= n_{j} \Big(t_{k} \frac{\partial u_{j}}{\partial x_{k}} t_{i} + s_{k} \frac{\partial u_{j}}{\partial x_{k}} s_{i} \Big) - \Big(n_{j} \frac{\partial u_{i}}{\partial x_{j}} - n_{k} n_{j} \frac{\partial u_{k}}{\partial x_{j}} n_{i} \Big) ,\\ &= n_{j} \Big[(n_{j} s_{k} \Omega_{k} - s_{j} n_{k} \Omega_{k}) t_{i} + (t_{j} n_{k} \Omega_{k} - n_{j} t_{k} \Omega_{k}) s_{i} \Big] \\ &- \Big(n_{j} \frac{\partial u_{i}}{\partial x_{j}} - n_{k} n_{j} \frac{\partial u_{k}}{\partial x_{j}} n_{i} \Big) ,\\ &= \Big[(s_{k} \Omega_{k}) t_{i} - (t_{k} \Omega_{k}) s_{i} \Big] - \Big(n_{j} \frac{\partial u_{i}}{\partial x_{j}} - n_{k} n_{j} \frac{\partial u_{k}}{\partial x_{j}} n_{i} \Big) ; \end{split}$$
(C-10)

hence, the components of the cross product are

$$\begin{split} t_{i}(\varepsilon_{ijk}n_{j}\omega_{k}) &= s_{k}\Omega_{k} - t_{i}n_{j}\frac{\partial u_{i}}{\partial x_{j}}, \\ s_{i}(\varepsilon_{ijk}n_{j}\omega_{k}) &= -t_{k}\Omega_{k} - s_{i}n_{j}\frac{\partial u_{i}}{\partial x_{j}}, \\ n_{i}(\varepsilon_{ijk}n_{j}\omega_{k}) &= 0. \end{split}$$

$$(C-11)$$

Since, for rigid boundary motion, the cross product of the boundary normal vector and the boundary vorticity contains derivatives of the velocity in the direction normal to the boundary, this cross product cannot be determined from the boundary conditions alone.

REFERENCES

Э

- 1. M. S. Howe, "Contributions to the Theory of Aerodynamic Sound, with Application to Excess Jet Noise and the Theory of the Flute," *Journal of Fluid Mechanics*, vol. 71, pp. 625-673, 1975.
- 2. P.M. Morse and H. Feshbach, *Methods of Theoretical Physics*, McGraw-Hill, New York, 1953.
- 3. G.F. Carrier and C.E. Pearson, *Partial Differential Equations*, Academic Press, New York, 1976.
- 4. F.B. Hildebrand, *Advanced Calculus for Applications*, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- 5. H. Jeffreys, Cartesian Tensors, Cambridge University Press, New York, 1931.

INITIAL DISTRIBUTION LIST

Addressee	No. of Copies
Chief of Naval Research (OCNR-11J. Fein, E. Rood, P. Purtell, R. Lau)	4
Naval Surface Warfare Center, Carderock Division (Code 1905.1W. Blake)	1
Defense Advanced Research Projects Agency (Attn: G. Jones)	1
Defense Technical Information Center	12
Applied Research Laboratory, Penn State (Attn: D. Thompson)	1
Center for Naval Analyses	1