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AN INTEGRAL EQUATION FORMULATION OF THE 

EQUATIONS OF MOTION OF AN INCOMPRESSIBLE FLUID 

INTRODUCTION 

In the course of various investigations it became apparent that it might be pos- 

sible to express the equations of motion of an incompressible fluid solely in terms 

of integral equations. In fact, it turns out to be possible to derive such a set of cou- 

pled integral equations in what may be called the vorticity-velocity-enthalpy formu- 

lation. This report contains a derivation of these equations and a discussion of 

their properties. 

The formulation employed here is similar to that used by Howe (reference 1) 

in his investigations of acoustic wave equations. In that work Howe employed a 

formulation in which the acoustic pressure was replaced by a stagnation enthalpy 

that included the dynamic pressure term. The present formulation generalizes the 

incompressible form of the stagnation enthalpy integral equation to include the 

viscous term and formulates the rest of the equations of motion in terms of inte- 

gral equations as well. Various mathematical manipulations are then carried out on 

these equations to render them in their final form. 

MATHEMATICAL FORMULATION 

Consider the flow of an incompressible fluid in both bounded and unbounded 

domains. The velocity may then be expressed as the sum 

Uoo + U, (1) 

where in an unbounded fluid domain u is the disturbance velocity and Uoe is the 

freestream velocity (U„ = U„(t)), and in a bounded fluid domain u is the total 

velocity and U„ may be set to zero (see figures 1 and 2 for illustrations of bounded 

and unbounded domains). The governing differential equations are then, the conti- 

nuity equation 



Figure 1.   Bounded Fluid Domain 

Figure 2.    Unbounded Fluid Domain with the "Surface at Infinity' 



V • u = 0, (2) 

and the Navier-Stokes equations 

Vp 
ffl^JJl!) +(U„+u) • V u = - ^ +vW (3) 

The Navier-Stokes equations may also be written as 

a(Uoc+u) _^yg - (U^+u) X tt = -V V X te, (4) 
dt 

where the specific stagnation enthalpy B is defined as 

B = PlPf: + i[(U„+u)-(U„+u)-U„-Uj, (5) 
P        •^ 

(6) 

and 

«a= Vxu 

is the vorticity. 

The usual conditions on the flow boundaries are the no-flux boundary condi- 

tion 

n • u = n • UR on S, (7) 

and the no-slip boundary condition 

n X u = n x UR on S, (8) 

where S is the boundary of the fluid domain V, and Ug is the velocity of the 
boundary.   For unbounded flows there is also a condition at infinity that may be 

expressed as 
3 



u = 0(i) , as r -^ 00- (9) 

The derivation of the integral equation formulation requires two integral iden- 

tities. The first identity is the vector identity (reference 2): 

)Sa = - (f) [(n-a)G-Gx(nXa)]dS 

[Gx(Vxa)-(V-a)G]dV, 

where 

f 4 = 1^ 477 in V 
o = ■<   2Tr on S, 

in Vc 

(10) 

(11) 

and G is any vector Green's function of the form 

G = - + H(r), (12) 

where H(r) is a regular vector function and r = x - g.   This identity holds for any 
vector field that is differentiable and for which the integrals exist.   For reasons 
that will become clear subsequently, it shall be assumed that the curl of G is always 

zero. 

The second integral identity is a generalization of Green's third identity (refer- 

ence 3): 

s V 

V^(/)GdV, (13) 



where G is any scalar Green's function of the form 

G = l+H(r), (14) 

and H(r) is a regular function. This identity holds for any scalar field that is differ- 
entiable and for which the integrals exist. 

The integral equations will be derived for the case of a bounded flow domain. 

If an unbounded flow domain is under consideration, care must be taken when 
considering the contribution of the flow boundary "at infinity." In that case the 
integrals over the "surface at infinity" may be eliminated by assuming that the dis- 
turbance velocity and the vorticity vanish sufficiently fast at large distances and by 
defining the stagnation enthalpy as in equation (5) so that it, too, goes to zero at 
infinity. 

From the integral identity (10) and the fact that 

V-to= V-(Vxu) = 0, (15) 

one immediately finds that 
rr 

/3u = - <:> [(n-u)G- Gx(: 
[[[ 

nxu)]dS- 

V 

GxttdV, (16) 

which expresses the velocity field in terms of the vorticity in the fluid domain and a 
boundary contribution. This equation is merely a generalization of the Biot-Savart 

law. Similarly, equation (3) may be rewritten as 

Vx« = (U„ xu) X « - -^^-^—- - VBj . (17) 

Therefore, the integral identity (10) yields 

T 
iSte= - C) [G(n-tt)-Gx(nXto)]dS 

jj 

+ 
JJ 

G X [^^^^^i^ - (U„+u) X « + VBldV. 
'■    3t -■ 

v 

(18) 

5 



However, since 

VBxG = Vx(BG)-BVxG, 

= Vx(BG), (19) 

where it has been assumed that the curl of the vector Green's function G is zero, 
one finds that the enthalpy is required only on the boundary of the fluid domain, 

and equation (18) becomes 

jeto=- O) [G(n-«)-Gx(nXte)]dS + i (j) BGxndS 

-fl Gx 
d(V«+n) 

V 

9t 
- (U«+u)XtoldV. (20) 

Note that the time derivative may be expressed as a material time derivative, yield- 

ing 
rr 

y34ij= .  () [G(n-to)-Gx(nXto)]dS + 1 ® BGxndS 

jj 
s 

+ -I fff e>={^^ - 1 V[(U.+n)-(U„+«)l}dV; (21) 

or, operating on the gradient term in a manner similar to that employed in equa- 

tion (19), one finds 
r 

/Sto = - C) [G(n-to) - Gx(nX«)]dS 

s 

V 

+ 1 
V 

[B-^(U„+u)-(U„-Hu)]GxndS 

G X —^=  dV. 
Dt 

(22) 

(See Hildebrand (reference 4) for the applicable vector identities.) 
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Finally, to obtain an equation for the specific stagnation enthalpy, note that if 
the divergence of equation (4) is taken, one is left with 

V^B = V-[(U„+u)Xtt]. (23) 

Similarly, equation (4) can be employed to show that on the boundary 

aB 
8n 

(24) 

Hence, employing integral identity (13) and using expressions (23) and (24) derived 
above, one finds that 

/3B + (n)B?^dS =(fl) 
on |-n • ^^^g^"^"^ + n • [(U«+u) X «] - vn • (V X to)|GdS 

V-[(U«+u)Xto]GdV. (25) 

Employing the identities 

(V| Xto)G = Vg •(«G)+VGxto, 

V| •(uXto)G = V| •[(uXto)G]+VG-(uXto), 

(26) 

and the theorems of Gauss and Stokes, one can find the third and fourth terms on 
the right-hand side of equation (25) yield 

T r rr re 
-v<:>(n-VXto)GdS = -V  (jj) n-Vx(toG)dS - C) n-(VGx to)dS , 

s s JJ 

:i -V  CD toG-dS 

c 

n-(VGXto)dS 
JJ s 

vOb n-(VGxto)dS, 

s 

(27) 
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and 

{v-[(U„+u)x«]}GdV=        V-{[(U„+u)x©]G}dV 
JJJ 

V 

VG-[(U„+u)x«]dV, 

n-{[(U,„+u)x«]G}dS 

VG-[(Ueo+u)x«]dV. (28) 

Therefore, equation (25) becomes 

iSB+djB ^dS 
^      an h a(u»+u) 

at G+vn •(VGxto)ldS 

+ VG-[(U„+u)x«]dV, (29) 

or, since 

n-(VGxtt) = -VG-(nXte), (30) 

one finally arrives at the integral equation for the enthalpy: 

rr 

jj 

/3B +(n)B?^dS = 
^      8n 

JJ s 

+ 

J„. 90[^G + vVG-(nx«)]dS 

VG-[(U„+u)Xte]dV. (31) 



Therefore, the set of coupled integral equations in the vorticity-velocity-enthalpy 

formulation is, for the case of general boundary motion, 

jSu = - (|)[(nu)G I Gx(nXu)]dS-II   GxwdV, 

and 

iS« = [G(n• «) - GX(nX «)]dS + h B(Gxii)dS 

+ i|||Gx[^^^ 

(32) 

(33) 

and 

iSB + (|1) B ?- dS = 
on [- 

3(U«+u) 
3t 

G+vVG •(nx«)ldS 

+ VG-[(U„+u)x«]dV. 

If the free-space vector and scalar Green's functions 

G = 
r3 

and 

G = i 

(34) 

(35) 

(36) 

are employed, then the integrand of the time-derivative term in equation (33) may 

be written as 

rx|,(B„+u) 8 
Xg-^(U„-Fu), = v(i) 

(37) 

SO that 



•rx|^(U„+u) 
dV = 

fnx|(U„+u) 

r3 
.dS ■fteK (38) 

V 

Therefore, with the Green's functions given by equations (35) and (36), the set of 

coupled integral equations (32)-(34) may be written as 

/Su = - 
JJ 
s 

(n ■ u)r _ r X (n X u) dS 
r3 

dV, 

V 

(39) 

and 

rr 

i8te= - C) 
JJ 
s 

(n- te)r _ rx(nXtt) 
r3 r3 

dS + 1< B(l2ii!)dS 
r3 

+ 
f   nx|^(U„+ii) 

dS 

1 
V 

Z^® fl) + rx[(U«+u)Xto]1 ^y 
\ 3t   V^ r3 J (40) 

and 

)3B+' B|.(l)dS = -i) jn-2ffi^(i) + v£i22i*i)}d^ 

+ r-[(U„+u)Xte]^y 
r3 

V 

(41) 

In two dimensions, the free-field vector and scalar Green's functions are 

G 
r2 

(42) 

10 



and 

G = ln(l), (43) 

respectively. The corresponding integral equations in two dimensions are then 

s •'- 
" V 

r2 
dS, (44) 

and 

,«=|£2i(5^<„.i|B£^d..i||[nx|(U..u)],„@ dS 

i//{^M^ + rx[(U„+u)Xtt>] 
r2 

jdS, (45) 

and 

^B + |Bll„@dl = -|{„.|(U..„)l„@.v£:l5^}d. 

+ [j r'[(U„+u)Xtt] dS, (46) 

where, in two dimensions. 

)S = i 

217 in V 
IT on S. 

L 0 in V^ 
(47) 

11 



DISCUSSION 

The boundary conditions expressed in equations (7) and (8) may be readily 
implemented in equation (39) by substitution in the integral over the boundary, 

yielding 

/Su = (n • UB)r _ r X (n X UB) 

r3 r3 
dS- rs 

dV. (48) 

Equation (40) also includes an integral over the boundary that involves the dot and 
cross products of the surface normal and the surface vorticity. The treatment of the 

boundary terms here is not as straightforward. It is shown in appendix C that, for 

rigid body motion with a no-slip condition, the dot product of the normal and the 

vorticity can be expressed in terms of the boundary condition; that is, 

n • to = -2ii • ft. (49) 

where the boundary condition has been decomposed into its translational U and 

rotational Q parts as 

UB = U+rxO. (50) 

However, the cross product of the normal and the vorticity cannot be expressed in 
terms of the boundary conditions since it involves derivatives of the velocity field 
normal to the boundary (see appendix C). Thus, for rigid body motion, equation 
(40) becomes 

/3tt = 
I r(-2n • SI)    rX(nXte) 

r3 r3 
dS + i <m B (rxn) 

r3 
dS 

s 

+ i(t!> 
V 

''  nx|(U„+u) 
dS 

s 

f a® fl) , rx[(Uoo+u)Xte]\^v (51) 

12 



Note that equation (41) involves the same cross product boundary term and there- 
fore cannot be simplified by using the boundary conditions. 

Equations (48), (51), and (41) now represent the system of equations to be 
solved both in the interior of the fluid and on its boundary. Hov/ew&T, the nature of 
the equations changes depending on whether or not the boundary or interior is 
being considered. In the interior of the fluid the equations take the form 

rr 
(n • UB)r _ r x (n x u^) 

r3 4'7ru = - (.) ds.||J!^dv, (52) 

and 
rr 

4iTW= - (!) 
r(-2n-n)    rx(nXtt) 

r3      " r3 
jj 

vj        rs 
dS 

+ 1(0) 
V 

'^nxl(U„+u) 
dS 

JJ 

m^rx[(U^+u)Xtt]l ^^; 
^r r3 J      ' (53) 

where each equation has been written with its unknovms on the left-hand side. 
Note that no equation is needed for the stagnation enthalpy in the interior of the 
fluid since equation (53) requires the enthalpy only on the boundary. 

If one writes the equations for the boundary values in the same form one finds 
T rr rr 

27r«-()  »-x(°x«^)dS = -() ^(-^°-")dS-t-l(:)B(£^dS 
r3 r3 V 7T r3 

JJ 
s 

JJ 
s 

JJ 
s 

(U„-hu) 
.dS 

||,(lj,rx[(U„H-„)x.]|,y^       (54) 

13 



and 

2-776 + 

s s 

(55) 

Note that no equation is required for the velocities on the boundary since they are 

already specified by the boundary conditions. 

Equations (52) through (55) represent an integral equation reformulation of 

the equations of motion of an incompressible fluid. These equations possess some 

interesting properties. First, they contain no spatial derivatives. Second, they only 
require knowledge of the "pressure" quantity (the specific stagnation enthalpy) on 
the boundary of the fluid domain. Third, if the variables u, a, and B are consid- 
ered as independent, then these equations are linear in each variable, a condition 
one might call "pseudo-linear." Fourth, since all the volume integrals present in the 
equations contain the vorticity and since the farfield boundary condition is incorpo- 
rated in the formulation, it is immediately apparent that the domain of interest in 
the fluid may be restricted solely to that region of the fluid in which the vorticity is 
nonzero. These facts naturally lead to speculation as to the usefulness that this for- 
mulation might have from a computational point of view. The fact that the equa- 
tions contain no spatial derivatives suggests that they might not be prone to the 
requirement of artificial viscosity, which plagues so many finite-difference-based 
computational schemes. Similarly, since the integral equation formulation only re- 
quires knowledge of the "pressure" on the boundary, it may obviate the need for 
elaborate schemes to guarantee the convergence of the pressure calculation in the 
interior as is required in many differential approaches. The "pseudo-linearity" of 
the equations may allow the use of efficient iteration schemes for the solution of 
the equations. Finally, the ability to restrict the domain of consideration to only the 
domain of nonzero vorticity should, in typical high Reynolds number cases where 
the vorticity is exponentially small outside of a thin region, greatly reduce the num- 

ber of nodes at which the solution must be obtained. 

14 



SUMMARY AND CONCLUSIONS 

An integral formulation of the equations of motion of an incompressible fluid 
has been derived. The equations consist of a generalization of the Biot-Savart law 
for determining the velocity, an integral expression of the momentum equation for 
determining the vorticity, and a boundary integral equation for determining the 
stagnation enthalpy. The equations are hnear in each independent variable, with 
the nonlinearities entering only through cross terms of the vorticity and velocity. 

This formulation possesses several salient features, including the total absence 
of spatial derivatives, the fact that the stagnation enthalpy, or pressure, is required 
only on the boundary of the fluid domain and the fact that, since the vorticity is 
present in all volume integrals, the domain of integration in this case is restricted 
to the region of nonzero vorticity. In addition, all boundary conditions, and in par- 
ticular the farfield boundary condition, are naturally incorporated in the formula- 
tion. 

15/16 
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APPENDIX A 

DERIVATION OF VECTOR INTEGRAL IDENTITY 

One may start by noting that the vector identities 

Vx(Gxu) = (u-V)G-(G-V)u + G(V-u)-u(V-G), 
V(G-u) = (G-V)u + (u-V)G+Gx(Vxu) + ux(VxG) 

(A-1) 

may be added with the result that 

Vx(Gxu) + V(G-u) = 2(u-V)G+G(V-u)-u(V-G) 
+ G X (V X u) + u X (V X G). (A-2) 

If one integrates this expression over the volume of the domain and assumes that 
the functions under examination are sufficiently well behaved for the integrals to 
exist, then one may apply the curl and gradient theorems, 

T re 

VxFdV = dDnxFdS, I JJj 
V 

\\\ JJJ 
V 

T 
VfdV = OfndS, 

to the volume integral of the left-hand side of the expression to find that 

V 
JJ s 

However, it can readily be shown that 

(A-3) 

[V x (G x u) + V(G • u)]dV = 0 [n X (G X u) + (G • u)n]dS. (A-4) 

nx(Gxu) =(n-u)G-(ii-G)u, 
(G • u)n = G X (n X u) + (n • G)u, 

(A-5) 

A-1 



so that 

[Vx(Gxu) + V(G-u)]dV = ( > [(n-u)G + Gx(nxii)]dS. (A-6) 

V s 

One is then left with the expression 

{(n-u)G + Gx(nxu)}dS= [2(u • V)G + G(V ■ u)-u(V • G) 

V 

+ Gx(Vxu) + ux(VxG)]dV. (A-7) 
s 

The divergence theorem may then be used to show that 

(u-V)GdV = (:)(ii-u)GdS- [[{ (V-u)GdV, 
JJj 

V 

so that equation (A-7) becomes 

[(ii-u)G-Gx(nxu)]dS = {G(V-II)+U(V.-G) 

JJ- 
V 

-Gx(Vxii)-ux(VxG)}dV. 

(A-8) 

(A-9) 

Now if one lets 

G 
r(r + e)2 

+ VH, (A-10) 

where H is some function that is regular in the fluid domain, then, in the limit as e 
appror.ches zero, one finds that 

I 
V 

u(V • G)dV = - ATTU, 

u x (V X G)dV = 0. 
(A-11) 

A-2 



Hence, equation (A-9) may be written as 

ATTU = [(n-u)G-Gx(nxu)]dS 

fC 

[(V-u)G-Gx(Vxu)]dV. (A-12) 

In general, if the field point is taken to be in the domain, on the boundary of 
the domain, or in the complement of the domain, then the expression becomes 

rr 4'7r in D 
2TronS    > u = - (|j) [(n-u)G-Gx(nXu)]dS 
0 in DC    J ^j 

s 

[Gx(Vxu)-(V-u)G]dV. 
u. 
V 

If G is taken to be the free-space Green's function 

(A-13) 

r3 
(A-14) 

then equations (A-12) and (A-13) become 

47ru = -(|)fe_E)£-£2ii^ldS 

rrx(Vxu) _ (VjOrl^y^ 
(A-15) 

and 

27ru = - (;) 
f(n • tt)r _ rx(nxu)"[^g 

r3     " r3      J 

[ 
r X (V X u) _ (V 

r3 
-l^ldV. r3   J (A-16) 

A-3/A-4 
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APPENDIX B 

DERIVATION OF SCALAR INTEGRAL IDENTITY 

One may begin this derivation with Green's second identity (see reference 3): 

(B-1) (c^V^G - GVV)dV = I (0 ^ - G ^ )dS. 

V s 

Now let 

G = (F+l) +H, (B-2) 

where H is some function that is regular in the fluid domain. Then it can be shown 
that 

lim 
e-*0 

JJ 
'Ir^)"^ = -'^' (B-3) 

SO that, in the limit as e approaches zero, one finds that 

/30^     . 3G\ 
T 

4'Tr(f) = O 
\dn 

-,^as. V^0GdV, (B-4) 
JJ 

and, in general, if the field point is in the domain, on the boundary of the domain, 
or in the complement of the domain, this becomes 

4TT in D 
27ronS 
OinDc 

>i^ = 
rr 

f^G-0^)dS- 
\9n 3n/ 

JJ 
s 

V20GdV. 

JJJ 
V 

(B-5) 

B-1 



If G is taken to be the free-space Green's function 

G = l, (B-6) 

then equations (B-4) and (B-5) take on the usual forms of Green's third identity: 

re 

^-^=o[|i-.|(i)]as 
JJ 
S 

V20 
dV, (B-7) 

and 

rr 

-*=''[|^i-.|(i)]as 
jJ 
S 

V20 
dV. (B-8) 

B-2 



APPENDIX C 

PROOF OF WALL VORHCTTY VECTOR'S TANGENCY 

For any two orthogonal unit vectors tangent to the boundary tj and Sj, the unit 

vector normal to the boundary may be expressed as 

Hi = SijktjSk , (C-1) 

where ey^ is the alternating tensor. Since the vorticity is defined as (see Jeffreys 

(reference 5)) 

the normal component of the vorticity at the wall may be written as 

^Um^ 
Hi^i =  (eijktjSk) (fiilm ^j , 

3u 

=  (SjjSkm - SjmSM)tjSk-^- , 

Each of the last two terms represents a directional derivative tangent to the 
boundary. If one assumes that the boundary motion is rigid, then on the boundary 

Uj = Uj + Sij^XjOk, (C-4) 

where Uj is the translational motion of the boundary and llj is its rotational motion 
about the origin of coordinates. With this representation one finds that 

C-1 



3ui _        _ 

= ni(sillk) - Si(nkOk), (C-5) 

and 

'  =ti(nA)-ni(tA), (C-6) 

so that 

riiWi   = Sk(tjSkjinft„) - tj(SkSjkm^m), 

~  2ejq-„)Sjj.tjiijr, ^ 

= -2n„n^. (C-7) 

Thus, for rigid boundary motion, the normal component of the vorticity may be 

determined from the velocity boundary conditions. 

The cross product of the normal and the vorticity at the wall may be 

determined in a similar manner. The cross product is defined as 

epnjWk. (C-8) 

If one employs equation (C-2), this expression becomes 

c-2 



so that 

/  3ui 9ui 8uj   \       9ui 
s^^, = n,^t,^^t, + s,^^s, f n,-^n,j - n^-, 

= nj[(nj sjl^ - Sj nknk)ti + (tfi^^^ - njtj^k)Si] 

/    dUi dUk    \ 

[{sA)U - (ti^k)Si] - ("j ^ - nkiij ^iii) ; (C-10) 

hence, the components of the cross product are 

tiCeijkHjWk) = Sk^k - tjHj ^, 

Si(eyknjO)k) = -tA - Siiij ^, (C-11) 

niCsij-kiijCOk) = 0. 

Since, for rigid boundary motion, the cross product of the boundary normal vector 

and the boundary vorticity contains derivatives of the velocity in the direction 

normal to the boundary, this cross product cannot be determined from the 

boundary conditions alone. 
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