
REPORT DOCUMENTATION PAGE 

Public reporting burden for this collection of information is estimated to average 1 hour per response* ncluding the 1 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comn 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Dire 
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork F 

AFRL-SR-AR-TR-03- 

0^{ 
1. AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 

9 JULY 2003 

3.  REPORT TYPE AND UAlcauu,^..^- 

FINAL REPORT    15 APR 00 TO 14 APR 03 
4.  TITLE AND SUBTITLE 
EFFICIENT MODELING OF LARGE MOLECULES: GEOMETRY 
OPTIMIZATION, DYNAMICS AND CORRELATION ENERGY 

6.  AUTHOR(S) 

DR PETER PULAY AND DR JON BAKER 

7.  PERFORMING ORGANIZATION NAIVIE(S) AND ADDRESS(ES) 

UNIVERSITY OF ARKANSAS 
DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY 
CHEMISTRY 101 
FAYETTEVILLE, AK 72701 

9.  SPONSORING/MONITORING AGENCY NAME{S) AND ADDRESS(ES) 

AFOSR/NL 
4015 WILSON BLVD., ROOM 713 
ARLINGTON, VA 22203-1954 

5.  FUNDING NUMBERS 

F49620-00-1-0281 

3484/BS 

61103D 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVE FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The original grant proposal comprised three parts, two of which were continuations of previous successful projects. The first 
project involves more efficient optimization techniques for very large molecules (containing several thousand atoms). The 
second is the development of algorithms for molecular dynamics in internal coordinates. The third project involves the 
efficient calculation of correlation energies for large (a few hundred atoms) molecules. This report summarizes our worlc in 
all three areas. Progress has been excellent throughout. 

BEST AVAILABLE COPY 

20030731 057 
14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLAS 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLAS 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLAS 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



FINAL REPORT TO THE AIR FORCE OFFICE OF 
SCIENTIFIC RESEARCH 

DEPSCoR/2000 
Award No.:   F49620-00-1-0281 

Period:    1 August 2000 -16 April 2003 

Efficient Modeling of Large IVIolecules: Geometry Optimization, 
Dynamics and Correlation Energy 

Peter Pulay and Jon Baker 

Department of Chemistry and Biochemistry 
University of Arkansas 
Fayetteville 
Arkansas 72701 

Table of Content 

INTRODUCTION  2 

1. Efficient Geometry Optimization for Very Large Molecules  2 

2. Internal Coordinate Dynamics  3 

3. Correlation Energy in Large Molecules  6 

3.1. Second-order Moller-Plesset Theory  6 

3.1.a. An Efficient Canonical MP2 Program  6 

3.1.b. Local MP2  11 

3.1.c. Dual-Basis MP2  13 

3.2. The Fourier-Transform Coulomb (FTC) Program  14 

4. Construction of Computer Clusters  19 

5. Miscellaneous  19 

Papers Published in the Grant Period Acknowledging AFOSR Support 21 

References  23 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited BEST AVAILABLE COPY 



INTRODUCTION 

The original grant proposal comprised three parts, two of which were continuations 

of previous successful projects. The first project involves more efficient optimization 

techniques for very large molecules (containing several thousand atoms). The 

second is the development of algorithms for molecular dynamics in internal 

coordinates. The third project involves the efficient calculation of correlation energies 

for large (a few hundred atoms) molecules. This report summarizes our work in all 

three areas. Progress has been excellent throughout. 

1. Efficient Geometry Optimization for Very Large IVIolecules 

Geometry optimization of very large systems (e.g., proteins) is typically carried out in 

Cartesian coordinates, despite the fact that Cartesians are very inefficient for this 

purpose, due principally to the fairly large degree of coupling between the 

coordinates. Suitably choosen internal coordinates (stretches, bends, torsions) are 

much more efficient, at least as far as the number of optimization cycles required for 

convergence is concerned, with reductions of an order of magnitude and more 

compared to the corresponding Cartesian optimization [1-3]. Unfortunately, the 

transformation of geometries, gradients (and possibly Hessian matrices) - which are 

initially computed as Cartesian quantities - into internal coordinates (and in the case 

of the new geometry, back again to Cartesians) becomes increasingly more 

expensive as the system becomes larger, formally scaling as O(N^). Additionally, the 

memory requirement also increases; for example, the full Cartesian Hessian (or its 

inverse) for a system with 100 atoms requires less than 1 MB of double-word 

storage, for 10,000 atoms this has ballooned to a prohibitive 7.2 GB, clearly 

requiring a change of algorithm. 

There are two parts to the efficient geometry optimization of very large molecules in 

internal coordinates: (1) Cut down the CPU time required for the coordinate 

transformations; (2) Develop an optimization algorithm which makes efficient use of 

in-core memory. We have combined these two steps to produce an efficient, large- 

molecule optimizer using internal coordinates. 

BEST AVAILABLE COPY 
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There are several possible internal coordinates that one could choose for an efficient 

optimization, and we have developed large-molecule algorithms that use natural 

internal [4], delocalized internal [5] or redundant primitive internal coordinates [6]. As 

system size increases however, it is clear that only the latter remain generally viable. 

There are often problems generating a full set of natural internals, especially for 

systems containing complex topologies (such as fused rings and cages); such 

problems do not occur with delocalized internal coordinates, but large storage and 

memory demands set limits on the size of system that can be investigated. We 

already have efficient, near-linear, sparse-Cholesky transformation algorithms using 

primitive internals, and these form the basis of our large-molecule optimizer [4]. 

Originally we had hoped to use the Z-matrix backtransformation that we developed 

for delocalized internal coordinates [5] to speed up the transformation of a new 

geometry in internal coordinates back to Cartesians; unfortunately, despite several 

attempts, we were not able to successfully transplant this technique to either natural 

or primitive internals. Consequently, we are using a sparse-Cholesky 

backtransformation, which has been completely rewritten. 

The optimization algorithm itself is currently based on the well known BFGS 

procedure [7]. This involves a direct update of the inverse Hessian based on current 

and previous gradients and the current displacement (step). For very large 

molecules (10,000+ atoms), the full Hessian matrix (which could have dimension 

around, say, 90,000, depending on the number of primitives) is too large to store 

and manipulate, and we have developed a limited memory BFGS algorithm which 

generates the inverse Hessian in situ (it actually forms the result of the inverse 

Hessian times the gradient) from an initial diagonal estimate and a (small) number of 

stored previous gradient and displacement vectors. Once the limit on the number of 

stored vectors is reached (e.g., 50), older vectors are simply replaced. For 90,000 

primitives, this reduces the Hessian storage requirement from almost 64 GO to just 

72 MB, a factor of 900. The algorithm that determines the actual optimization step 

requires storage for just a few vectors. 

2. Internal Coordinate Dynamics 
BEST AVAILABLE COPY 



We have developed a fully-consistent Newtonian dynamics method using either 

natural [1] or delocalized [3] /nfema/coordinates. Internal coordinates are particularly 

advantageous in low-temperature simulations, as the rigid degrees of freedom 

(stretches and most angle deformations) can be held fixed (or artificially slowed 

down) and only the low-frequency modes participate in the dynamics. As pointed out 

by Scheraga [8], this is also physically more accurate, since the rigid modes are not 

thermodynamically active in the real (quantum) system. SHAKE [9] and similar 

methods can be used to constrain bond distances but they do not work well for bond 

angles or rigid torsions, and they are much more awkward than our formulation. 

The main obstacle to using internal coordinates in Newtonian dynamics was the 

extremely complex form of previous Lagrangian formulations [8,10,11]. We have 

overcome this by using Cartesian velocities to express the generalized centrifugal 

(Coriolis) forces. The resulting equations of motion are very simple: 

d^q/d/^ = B'M'^f + v^CV 

In this equation, q, is an internal coordinate, t is the time, B' is the /-th row of the 

Wilson B matrix relating internal to Cartesian coordinates to first order, M is the 

mass matrix, f is the vector of Cartesian forces, v is the vector of Cartesian 

velocities, and C' is the second-order transformation matrix between internal and 

Cartesion coordinates according to 

Aqi = B'AX + (1/2) AX'^C'AX + .... 

In our current formalism, 0 is obtained by central-differences on the B matrix. 

In our first implementation [12], we had a minor problem with energy conservation, 

which was less accurate than in a Cartesian dynamics run using the same potential 

surface and initial conditions. This problem was traced to the propagation of 

Cartesian velocities. In order to avoid back transforming both the coordinates and 

the velocities, we propagated the Cartesian velocities independently. Numerical 



errors, accumulating slowly during the dynamics run, led to a slight inconsistency 

between the Cartesian velocities and the internal coordinates, and limited most runs 

to a relatively small number (-200,000) time steps. Our new implementation 

compares the internal velocities with the transformed Cartesian ones, and corrects 

the latter if the difference exceeds a small threshold. This has eliminated the 

problem. 

As outlined above, a major factor in developing an internal coordinate dynamics 

algorithm is to impose geometrical constraints, i.e., to freeze the rigid degrees of 

freedom. This is best handled in delocalized internal coordinates, so that the very 

powerful constraint techniques already available in geometry optimization [13] can 

be transferred directly to dynamics. So far all our applications have involved 

unconstrained dynamics in natural internals, and we have only very recently 

modified our dynamics code to handle delocalized internals. We know exactly how to 

impose constraints during a delocalized internal coordinate dynamics run, and we 

hope to obtain further funding from the AFOSR to implement constrained dynamics, 

which we believe will constitute a significant advance. 

We have also implemented a preliminary version of Fock matrix dynamics. This 

method combines the advantages of Car-Parrinello molecular dynamics (CPMD) 

with Born-Oppenheimer dynamics (BOMD). In CPMD, the wavefunction is not 

optimized but propagated using a fictitious mass. As a result it is stays close to, but 

is not identical with, the optimized wavefunction for the current geometry. The 

advantage of this procedure is that it requires only a single Fock matrix evaluation, 

instead of -10 evaluations needed to determine the optimized wavefunction in 

BOMD. Note that there are violations of the Born-Oppenheimer approximation in the 

exact description but these are much smaller than the deviations introduced in 

CPMD. CPMD requires smaller time steps than BOMD. 

Fock matrix dynamics exploits the fact that the individual Fock matrix elements in 

BOMD must be analytical functions of time, and thus can be extrapolated to the next 

time step. Fig. 1 shows the change in some Fock matrix elements during a few 

hundred steps in a typical molecular dynamics simulation. The curves appear 



exceptionally smooth. By using a suitable extrapolation polynomial, the optimized 

wavefunction can be determined by carrying out one full and 1-2 differential Fock 

matrix builds, instead of about -10 steps which are needed if one uses simply the 

(renormalized) molecular orbitals from the previous time step. It approaches the 

efficiency of CPMD but the system stays on the Born-Oppenheimer potential 

surfaces. This eliminates some artefacts and permits longer time steps. 

3. Correlation Energy in Large IVIoiecules 

Under this byline we have worked principally on two essentially independent topics, 

making excellent progress on each. Early on in the award period, we developed a 

very efficient canonical MP2 algorithm [14], which could routinely handle 1000+ 

basis functions on a standard PC; this algorithm was subsequently parallelized [15], 

and by making use of the aggregate disk storage capacity over the separate nodes, 

routinely allows calculations on systems with 2000+ basis functions. Currently, we 

are completing a canonical MP2 gradient code along similar lines. 

iVIore recently, we began developing a fast DFT code based on a plane wave 

expansion of standard Gaussian basis sets. Our approach, which we have termed 

the Fourier-Transform Coulomb (FTC) method [16,17], shares many of the goals of 

the Gaussian Augmented Plane Wave (GAPW) approach of Parrinello and 

coworkers [18], but is quite different technically. In particular, we aim at - and have 

achieved - much greater precision than is typical in methods using plane wave basis 

sets. Currently we have a successful (and parallel) first implementation for DFT 

energies which is up to 5-6 times faster than our standard all-integral code. The 

computation of the Coulomb term itself is over an order of magnitude faster. 

3.1. Second-order IVIoller-Plesset Thieory 

3.1 .a. An Efficient Canonical MP2 Program 

The closed-shell MP2 energy can be written as [19] 



EMP2  =  Zi>jeij  =  Ei>j Za.b (ai|bj)[2(ai|bj) - (bi|aj)]/(si + 8j - sa - sb) (1) 

where i and j denote doubly occupied molecular orbltals (MOs), a and b denote 

virtual (unoccupied) MOs, and the e are the corresponding orbital energies. The 

(ai|bj) are the two-electron repulsion integrals (in the usual Mulliken notation) over 

molecular orbltals. Virtually all of the computational work in calculating the canonical 

MP2 energy is associated with the evaluation of the atomic (AO) integrals (|j.vl>.a), 

and their transformation into the MO basis (ai|bj). Most existing algorithms carry out 

this transformation one index at a time, resulting in a formal fifth-order scaling with 

basis set size. Parallelization is also usually done over a single index, giving rise to a 

cubic scaling memory requirement. This often necessitates multiple passes through 

the i ntegrals, as only a limited number of electrons can be correlated at any one 

time, diminishing the efficiency of the algorithm. 

The Serial MP2 Algorithm 

Our serial MP2 algorithm is based on the Saebo-Almlof direct-integral transformation 

[20]. AO integrals are transformed via two half-transformations, involving first the two 

occupied MOs and then the two virtuals. If the integral (HV|A,CT) is considered as the 

(v,a) element of a generalized exchange matrix X*'^, then the two half- 

transformations can be formulated as 

(M)  =  \^ij  =  Zv.aC^iX»'\„C„j  =   (C^oX^^Co)ij (2a) 

(ai|bj)   =   Z«ab   =   ZMC^^aVVxCxb   =   (C^VJCv)ab (2b) 

Here Co and Cv are the occupied and virtual parts of the SCF coefficient matrix. The 

disadvantage of this approach is that the 8-fold permutational symmetry of the AO 

integrals cannot be fully utilized, increasing the integral computation burden fourfold. 

This is probably why this it has not been seriously considered earlier. However, two 

important advantages of the Saebo-Almlof technique more than compensate for the 

increased integral evaluation time in larger calculations. First, the fast memory 

demand grows only quadratically with the basis sets size, allowing very large 

calculations without multiple passes. Second, it allows the use of highly efficient 



dense matrix multiplication routines. The formal scaling of the integral transformation 

is dominated by the first quarter transformation, i.e., the first matrix multiplication in 

Eq. (2a). However, prescreening techniques, borrowed from the local MP2 method, 

allow the neglect of most elements of X**^ in large molecules. In order to use efficient 

dense matrix multiplication methods, the matrices X are compacted, i.e., their zero 

rows and columns are eliminated. As each X^^ is calculated, it is immediately 

transformed and the matrices V^ are written to disk in compressed format. For the 

second half-transformation, the Y*^ (which contain all indices i, j for a given )a,X, pair) 

have to be reordered into Y*' (which contain all indices iiX for a given l,j pair). This is 

essentially the transposition of a very large matrix, and is accomplished via a 

standard Yoshimine bin sort [21]. The sorted bin files are then read back for each i,j 

pair, transformed via eq. (2b), and each pair's contribution to the correlation energy, 

Oij, is computed and summed. 

The entire scheme is straightfonward to implement, provided there is enough 

memory to store a (potentially) complete X*^ exchange matrix in core at one time, 

and enough disk space to hold all possible (compressed) Y**^ matrices. Although the 

memory demand for the first half-transformation is only O(N^) in principle (where N is 

the number of basis functions), efficiency demands that AO integrals are calculated 

in batches over whole shells. This requires s^N^ double-words of fast memory, 

where s is the maximum shell size. This is a potential bottleneck for basis sets 

containing high angular momentum basis functions and its removal (currenly 

undenway) will significantly increase the number of basis functions our MP2 program 

can handle. 

A key to the efficiency of our MP2 program is prescreening of the AO integrals 

(based on the Schwarz inequality [22] and discussed in detail in ref. 14), and the 

compacting of the AO exchange matrices X^*^ which allows the use of highly efficient 

dense matrix multiplication routines. We compute only those AO integrals that make 

a contribution above an appropriate threshold (default 1 0"^) to the pair correlation 

coefficients. Because of the efficiency of the prescreening, the second half 

transformation is often as important computationally as the first in our program. 

Symmetry can easily be utilized in the first half-transformation (this is more difficult in 



the second) by calculating only those integrals {^v\Xa) which have symmetry-unique 

shell pairs M,L where ^eM, XeL. 

The Parallel MP2 Algorithm 

Using message passing (e.g., PVM or MPI), parallelization of the first part of the 

serial algorithm is straightforward; one simply loops over the M,L shells, sending 

each shell pair to an appropriate slave. At the end of the first half-transformation, 

each slave node will contain one or more half-transformed files containing the half- 

transformed Y^'^ matrices for whichever fx,X pairs were computed on that slave. 

The second half-transformation is done in essentially the same way, i.e., divide the 

i,j pairs equally among the slaves and transform each Y matrix on the slave it is 

assigned to. Unfortunately, each Y^*^ matrix contains all i,j pairs, and so if we did a 

straightforward bin sort on each slave separately, we would have all possible i,j bin 

pairs on every slave. Consequently, we have modified the bin sort part of the 

algorithm. Our parallel bin sort starts by spawning a second process on each 

existing slave node, a "bin write" (or "bin listen") process. Whenever, during the bin 

sort, a particular bin on a given slave for a given i,j pair is full, instead of writing it to 

disk on that same slave, it is instead sent to the "bin write" process running on the 

slave the i,j pair is assigned to. The sort process knows in advance which i,j pairs 

should be sent to which slaves. The "bin write" process on the appropriate slave 

then writes the bin to its own local disk. At the end of sort all the "bin write" 

processes are killed, and each slave will have one or more sorted half-transformed 

integral files containing all \x,X pairs for a subset of the i,j pairs. 

The final half-transformation is done on each slave, and involves only the subset of 

the total number of i,j pairs that are on that slave. Each slave then computes a 

partial pair-correlation energy sum, and the partial sums are sent back to the master 

for the final summation to give the full MP2 correlation energy. 

Both the serial and parallel algorithms are highly efficient, and the parallel algorithm 

scales well with the number of processors. Full details of both algorithms are 



described in references 14 and 15. Table 1, extracted from ref. 15, presents timings 

for single-point frozen-core MP2 energies on chlorophyll, taxol and 

tetraphenolporphine (containing up to 137 atoms and 1860 basis functions). These 

are fairly typical examples of the type of system that can be handled routinely with 

ourMP2 algorithm. Calculations were performed on a 6-node Linux cluster, using 

1.2 GHz Athlon processors, 1 GB memory and 50 GB scratch storage per node; on 

more modern machines (e.g., using 2.4 GHz Xeon processors) reported timings 

would be reduced by factors of between 2 and 3. 

Table 1   Timings (min) for Single-point MP2 Energies for Chlorophyll a, Taxol and 

Tetraphenylporphine on a 6-node, 1.2 GHz Linux cluster 

Molecule Chlorophyll a Taxol Tetraphenylporphine 

# atoms 137 113 78 

symmetry Ci Ci D2h'^ 

basis VDZP 6-311G** 6-311G(2df,2pd) 

# basis funcs. 1266 1422 1860 

tsCF 143 255 143 

tl' 179 411 155 

tsort + tz" 681 814 470 

tMP2 878 1250 636 

EscF -2914.428668 -2912.569429 -1901.925096 

EMP2 -2923.570216 -2922.186323 -1909.687507 

elapsed time (minutes) for first half-transformation 
' elapsed time (minutes) for bin sort + second half-transformation 
' all four phenyl groups were perpendicular to the plane of the porphyrin ring 

10 



3.1 .b. Local MP2 

In spite of the outstanding efficiency of our new canonical MP2 program, it still 

retains, at least in the second half transformation, the steep scaling of the traditional 

MP2 method, both with the number of atoms and with the number of basis functions 

per atom. The cause of this - rather unphysical - scaling is the use of delocaiized 

canonical molecular orbitais. Local correlation methods [23,24,25], originally 

introduced by one of us [26], are free of this defect. In particular, the latest local 

correlation implementations of Werner and coworkers [25] show excellent absolute 

timings and near-linear scaling with the number of atoms at constant basis set 

quality. Nevertheless, the local correlation method is not free of problems. Its results 

differ somewhat from the canonical results. This introduces a new model chemistry, 

which is undesirable: traditional quantum chemistry already suffers from too many 

methods and basis sets, making comparisons difficult. In the past, we have argued 

that difference between canonical and local results is due, at least partly, to the 

elimination of intramolecular basis set superposition effects [23]. However, in 

delocaiized systems, there is a small but genuine error. Moreover, methods relying 

on localization can lead to artefacts when the localization changes suddenly, e.g., 

during the course of a chemical reaction. 

An alternative to the usual local correlation methods, in particular to the Pulay-Saebo 

method, is to retain essentially all contributions which contribute to the correlation 

energy. This is the philosophy of Ayala and Scuseria [27] and also our new local 

MP2 program [28]. Local and canonical MP2 energies are identical if all significant 

contributions are included. Although more expensive than the original Saebo-Pulay 

method, the method still shows near-linear scaling with system size, c.f. Table 2. We 

use in this program an integral transformation technique in which two indices are 

transformed simultaneously. This method, first suggested by Taylor [29], has an 

unfavorable 0(N®) formal scaling, versus O(N^) in the usual transformation. 

However, the sparsity of the integral list can be used more efficiently, ultimately 

resulting in better performance for very large systems. More details can be found in 

ref. 28. 
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Table 2 Scaling of the various steps for local MP2/6-31G* energy calculations on a 

series of polyglycines' a,b 

Number of (glycine)io {glycine)i5 {glycine)2o Scalel Scale2 

basis functions 638 948 1258 

correlated orbitals 114 169 224 

correlated pairs 441 656 871 

local dimension 243 257 264 

configurations 2.5x10^ 4.0x10' 5.6x10' 1.18 1.17 

AO integrals 1.9x10^ 3.1x10^ 4.4x10^ 1.23 1.22 

Transformed ints 4.3x10' 7.2x10' 10.1x10' 1.29 1.18 

Memory/MW 240 410 590 1.35 1.29 

Disk storage 440 730 1000 1.28 1.11 

^ See ref. 28 for the molecular geometries 

*" Basis uses spherical harmonic (5-component) d functions. The number of contracted basis 

functions, correlated orbitals, correlated pairs, the average local dimension of the con-elation 

space, the number of AO integrals evaluated, and the number of transformed Integrals is 

given along with virtual memory demand (in Megawords; 1 MW=8 Mbyte), and disk storage 

(in Mbytes). Scalel of a quantity Q is log(Qi5/Qio)/log(Ni5/N2o) where Qis and Qio are the 

values in the (glycine)i5and (glycine)io calculations, respectively and N15 and N10 denote the 

number of contracted basis functions. Scale2 is the analogous quantity for 

(glycine)2o/(glycine)i5 

12 



3.1 .c. Dual-Basis MP2 

We have also implemented a dual-basis l\/IP2 method [30], originally proposed by 

Jurgens-Lutovskyand Almlof [31]. SCF and IVIP2 calculations have different basis 

set requirements, and the highly oscillatory functions (of higher angular momentum) 

needed to describe close-range dynamical correlation are not necessary at the SCF 

level. In the dual-basis method, these high angular momentum functions can be 

omitted at the SCF level and included only in the MP2. Local correlation methods 

eliminate the steep scaling of explicit correlation (in this case MP2) calculations with 

the number of atoms, but do not improve the scaling with the number of basis 

functions for the same system. The dual-basis method has a significant impact here, 

and can easily give savings of up to an order of magnitude and more over the same 

calculation using the full basis throughout, with only a marginal loss of accuracy. 

This is illustrated in Table 3 (taken from ref. 30), which reports energies and timings 

for a number of calculations on the water trimer. The dual basis calculation is over 9 

times faster than the full aug-cc-pV5Z basis calculation, and has an error of only 15 

\ih. Our original serial dual-basis code [30] has recently been fully parallelized. 

Table 3 SCF and MP2 energies and elapsed time (min.) for calculations on the 

water trimer (on a single 2.4 GHz Xeon processor) 

Basis # basis funcs. EsCF TsCF ETOI Tjot 

aug-cc-pVTZ 276 -228.196708 25 -229.012934 45 

aug-cc-pVQZ 516 -228.212679 469 -229.081399 709 

aug-cc-pV5Z 861 -228.216499 2953 -229.106077 5060 

aug-cc-pV5Z(T1)'/ 
aug-cc-pV5Z dual 

345/861 -228.215440 
-228.216456" 

50 
183 

-229.106092 549 

^ T1 basis is a subset of tiie full aug-cc-pV5Z basis obtained by removing 1d, 2f and all g & h functions 

from O, and 1p, 2d and all f & g functions from H 

" includes "MP1" correction to SCF energy 

13 



3.2. The Fourier-Transform Coulomb (FTC) Program 

There are several DPT codes that are significantly faster than the traditional integral- 

based programs developed by quantum chemists. The main reason for the increase 

in speed is that these codes use alternative ways of computing the Coulomb term, 

avoiding the calculation of the four-center integrals. Examples are the RI-DFT 

method - an old favorite of DFT researchers [32] - which uses an expansion of the 

density in an intermediate basis set, and the pseudospectral method developed 

principally by Friesner and coworkers from about 1 983 onwards [33]. Additionally, 

several widely used DFT programs are based either fully (Delley's DMol [34]) or 

partially (ADF from Barends and coworkers [35]) on numerical solution of the 

Poisson equation. However, these alternative approaches usually introduce some 

level of approximation In the Coulomb energy, and speed is gained at the expense 

of accuracy. 

We have developed a fast and accurate DFT program based on a (partial) 

expansion of standard gaussian basis sets in plane waves [16,17]. Plane waves 

have several disadvantages in molecular quantum chemistry, but also a number of 

tremendous advantages - the principal one being the ease of evaluation of the 

Coulomb potential - and we believe that the latter outweigh the former. In the past, 

the most prominent plane wave applications have been Car-Parrinello molecular 

dynamics (CPMD) and solid-state DFT, both with pseudopotentials and at a limited 

level of accuracy. Recently, Parrinello and coworkers have introduced the Gaussian 

Augmented Plane Wave (GAPW) approach [18], to which our FTC method is similar 

in spirit although quite different technically, as we are aiming at a much greater level 

of accuracy. 

The basic idea behind the FTC method is to expand as much of the original basis 

set as possible in terms of plane waves, compute the electronic density on a direct- 

space grid, transform to momentum space to compute the Coulomb potential, 

transform back to the real space grid, and determine the Fock matrix elements (in 

the space of the original gaussian basis set) by numerical quadrature. 

14 



In general, typical gaussian basis sets cannot be expanded fully in plane waves as 

basis functions with large exponents (those representing the core region) cannot be 

represented sufficiently accurately in a plane wave basis. Consequently, we partition 

the 0 riginal gaussian basis functions i nto two classes depending on the exponent 

value; those with small exponents (which we term diffuse, d) and those with large 

exponents (which we term compact, c). The exponent cutoff depends somewhat on 

the angular momentum (i.e., S, P, D etc..) of the basis function, and also on the 

quality of the grid (i.e., the number of plane waves in the expansion) but is around 

3.0 ao"^. Partitioning the basis in this way results in the following classes of integrals 

that need to be evaluated (using the Mulliken notation): 

(1)<cc|cc>; (2)<cc|cd>; (3)<cd|cd>; (4)<cc|dd>; (5)<cd|dd>; (6)<dd|dd> 

Compact basis functions cannot be properly expanded in plane waves and so we 

treat the first four integral types using a variant of our standard integral package, i.e., 

essentially in exactly the same way as in a "normal" SCF integral code. Integrals of 

type (6) can be fully handled In plane wave space, as can those of type (5) (because 

the high momentum components of the charge density <cd> do not interact with the 

diffuse charge density <dd>). In theory, integrals of type (4) can also be taken over 

into plane waves, but we have not yet done this. 

The molecule is placed in a box sufficiently large to contain essentially all the 

electron density. For simplicity, the box can be considered as a cube of sides L but 

in the actual program it is a parallelepiped, adapted to the molecular dimensions. 

We introduce a standard rectangular grid in our box, whose grid density, d - the 

number of plane waves in one Cartesian direction per atomic unit - characterizes the 

plane wave basis. The grid spacing is h = d'"* and the grid points range from -L/2, - 

L/2 + h, ... , L/2 - h, L/2 in each Cartesian direction. The efficiency of Fourier 

transform and plane wave methods derives from the fast Fourier transform (FFT), 

which allows almost effortless switching between the momentum and coordinate 

representations. For quantities which can be exactly represented by the plane wave 

basis, the two descriptions are isomorphic. Note that we have already presented a 

method for eliminating errors due to the presence of periodic images [16,36]. 
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Evaluation of the Coulomb potential in plane waves is extremely fast, and so we 

want as many basis functions as possible to be partitioned into the plane wave part 

of our space. Normally integrals of types (5) and (6) will dominate, especially in 

larger basis sets containing high angular-momentum and diffuse functions. 

Having partioned the basis set, the steps followed to compute the Coulomb Fock 

matrix elements during each SCF cycle are as follows: 

1. For those integrals of types (1) through (4), determine the Fock matrix 

elements In the normal way, i.e., specifically compute the integrals and 

contract them with the appropriate density matrix elements. This is done in a 

fully direct manner, using essentially the same code as in our standard all- 

integral program. 

2. Compute the Coulomb contribution arising from the <dd|dd> integrals. This 

involves the following steps (order with respect to system size shown in 

parentheses): 

• Calculation of the "diffuse" density on the real space grid 0{N) 

i.e., at each grid point (r): p(r) = I dapg''a(r)g*'p(r), d = density matrix 

• Fast Fourier transform (FFT) to momentum space O(NlogN) 

• Calculation of the potential in momentum space 0(N) 

• Reverse FFT back to real space O(NlogN) 

• Computation of Fock matrix elements by numerical quadrature   0(N) 

3. Compute the Coulomb contribution arising from the <cd|dd> integrals. This 

involves essentially the same steps as in 2, above, except that the "mixed" 

density p(r) = Z dapg*'a(r)g*'p(r) is constructed, where one of the indices (a) 

corresponds to a compact gaussian function. In practice several steps from 2 

and 3 are combined in the interests of program efficiency. 

As indicated in 2, the scaling of the various steps is either 0(N) or O(NlogN) for the 
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Fourier transform steps. In practice, tlie FFT steps are very fast; we use the 

excellent FFTW package of Frigo and Johnson [37]. The rectangular nature of our 

grid allows for very efficient screening and precomputation of many quantities. 

The exchange-correlation part of the calculation is currently handled in the same 

way as in our integral-driven DFT code, i.e., by numerical quadrature over spherical, 

atom-centered grids, using techniques pioneered in this context by Becke [38]. We 

have already improved this part of the code (see, e.g., [39]), but we plan a further 

overhaul with a noticeably different quadrature allowing us to use much of the grid 

already generated and in place for the Coulomb term. 

Table 4 presents a comparison of the job times for single-point DFT energies (using 

several different functionals) between our standard all-electron SCF code and the 

new FTC code using the 6-311G(2df,2pd) basis. All jobs were run in parallel on four 

2.4 GHz PIV Xeon processors. As can be seen, the FTC code is significantly faster 

overall for all systems, by a factor of 3.7 for aspirin (the smallest molecule) rising to 

6.0 for taxol. (There is a slight falloff for chlorophyll a, as other parts of the 

calculation, principally the diagonalization, now take proportionally longer.) Looking 

at the Coulomb contribution alone (the Ta-ei row in the all-integral calculation and the 

sum of the T2-e\ and Tpw rows in the FTC calculation), the factors are even greater, 

ranging from 5.7 for aspirin up to 10.8 for chlorophyll a. 

Unlike some approaches, such as the continuous fast multipole method developed 

by Gill and Head-Gordon [40], the FTC method gives savings even with small 

molecules, such as aspirin (which would offer no savings at all with the fast multipole 

method as it is simply too small). The scaling, both with increasing system size at 

"constant" basis set size, and increasing basis set size at constant system size, is 

very favorable, and in the latter case - very important but often ignored - the scaling 

is genuinely linear, an achievement unequalled by any other non-plane wave 

approach. Furthermore, the accuracy is very high, with differences in energy 

between the FTC and all-integral codes in the ^ih range. For aspirin and yohimbine 

the total error is 1 ^h or less, while for taxol and chlorophyll a the total error of a few 

tens of )ih represents an error of less than 0.2 ]xh per atom. 
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Table 4 Timings (min) for Single-point DFT Energies for Aspirin, Yohimbine, Taxol 

and Chlorophyll a on a 4-node, 2.4 GHz Linux cluster 

Aspirin Yohimbine Taxol Chloroph^ 

Formula C9H8O4 C21H26N2O3 C47H51NO1 4       C55H72N4O 

# atoms 21 52 113 137 

Density functional        BLYP BLYP BVWN OLYP 

# basis funcs. 555 1275 2860 3309 

TDFT 3.9 23.4 108.5 97.6 

T        " ■ mlsc 0.4 3.4 35.9 68.8 

T2.^' 33.2 239.9 1678 1539 

Tclassical 37.5 266.7 1823 1705 

Eclasslcal -648.719612 -1150.970847     -2952.295540 -2934.349474 

Tpw 3.1 9.1 24.1 29.4 

T2^l 2.7 16.7 136.0 112.6 

TFTC° 10.1 52.6 304.5 308.4 

EFTC -648.719612 -1150.970848    -2952.295565 -2934.349448 

^ elapsed time for calculation of exchange-correlation (DFT) energy 

^ elapsed time for all other steps (mainly Fock-matrix diagonalization) 

*^ elapsed time for classical 2-el integral contribution to Fock matrix 

'^ total elapsed time to compute SCF energy using classical all-integral algorithm 

® elapsed time for all plane wave manipulations in FTC algorithm 

' elapsed time for remaining classical integral contribution in FTC algorithm 

^ total elapsed time to compute SCF energy using FTC algorithm 
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3.3. Construction of Computer Clusters 

To carry out the large-scale computations, we have constructed two connected 

computer clusters. We have used the experience gained with our older (1997) 

cluster, constructed with NSF funding. The cluster constructed In the first phase 

(2000) consists of five dual-processor nodes (800 MHz Pentium III, 512 MB of ECO 

memory, fast Ethernet), and two dual-processor nodes with larger memory (1 GB) 

and disk storage (in one case 180 GB of striped high-speed disks). This hardware 

was state of the art at its time. We jave later added two high-speed single-processor 

nodes (1.7 GHz Pentium IV and 1.33 GHz Athlon), for a total of 16 processors. It is 

running under the latest Linux operating system, and is very stable. Its performance 

has exceeded our expectations. In the second phase, we added 5 dual-processor 

and 4 single-processor large-memory (2 GB) nodes. All nodes in the second phase 

use 2.4 GHz Pentium 4 processors, and are connected by 1 Gigabit Ethernet 

network. For long-term stability, the cluster is powered by two 5 kVA uninterruptible 

power supplies. The total raw computing power of the current cluster (30 

processors) is about 50 Gigaflops/s. 

3.4. Miscellaneous 

In addition to the above, we have also carried out a number of studies in related 

areas, principally involving density functional theory. 

We have investigated the recently defined OLYP and 03LYP functionals [41,42] of 

Handy and Cohen, and their general applicability for studying organic reactions [43] 

and systems involving first-row transition metals [44]. The OLYP functional is 

especially promising - it was found to outperform the popular B3LYP functional for 

predicting bond lengths, heats of reaction and barrier heights for organic molecules 

[43] - and being a "pure" density functional (i.e., a non-hybrid, having no Hartree- 

Fock exchange), it can be used advantageously with our new fast DFT FTC code. 

During the course of our investigations of the 0LYP/03LYP functionals [44], it 

became apparent that the standard 6-31G* basis set, recently extended to first-row 
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transition metals by Rassolov and coworkers [45], performed poorly for many 

transition metals, particularly those towards the end of the series (Co, Ni, and 

especially Cu). This was tracked down to the lack of a sufficiently diffuse outer d- 

function in the original 6-31G* basis, and we have developed an improved 6-31G* 

basis, which we have termed m6-31G* [46], which provides results of consistent 

quality across the entire first-row transition metal series, and far better than the 

original basis for the higher members. 

We have also completed several NMR applications projects, including two 

collaborations with other groups. A full list of all papers published and pending 

supported by this grant, and in which Air Force support has been acknowledged, is 

given below. 
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