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In this study, control system analysis and design techniques were developed
to control turbulent and convective boundary layers. The design was depen-
dant solely on the linearized governing equations of a channel flow and a layer of
heated fluid. The three-dimensional Navier-Stokes equations of channel flow, lin-
earized about a Poisueille profile, and Oberbeck-Boussinesq equations of a layer
of fluid, linearized about the no motion state, were decomposed by a spectral
decomposition involving a two-dimensional Fourier expansion and a Chebyshev-
Galerkin projection. The resulting temporal state space model, composed of
the coefficients of this decomposition, allowed for a multivariable feedback de-
sign combining an array of sensors to an array of actuators. In particular, this
spectral decomposition decouples the dynamical equations into a parallel archi-
tecture, where each wavenumber pair sub-system could be handled individually.
Linear Quadratic Guassian (LQG) multivariable synthesis and model reduction
techniques are applied to a few select wavenumber pair sub-systems, reducing the
required computational bandwidth. Controller performance was tested on direct
numerical simulations. Even with a limited number of controlled wavenumber

pairs and a drastic reduction in state space size, the controllers have proven
remarkably effective.
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1 Introduction

The potential benefits of controlling flows to reduce drag are significant. In its New World
Vistas report, the Air Force identifies active flow control, boundary layer control in particular,
as one of the essential enabling technologies for efficient cruise aircraft. Furthermore, little
imagination is required to see that active control of boundary layers can benefit many more
applications. Furthermore, the suppression of the onset of convection in a boundary layer of
fluid has potentially important applications in controlling the quality of material for certain
manufacturing processes such as in the production of large silicon wafers and composite
material for turbine blades.

Due to its importance as well as its genuine intellectual challenge, flow control has at-
tracted much attention from many fluid dynamicists. However, until recently, research has
been based primarily on the investigator’s physical intuition. With the discovery of coherent
turbulence structures within the near-wall region of turbulent boundary layers, some addi-
tional progress has been made. Choi et al. [1], for example, report an active control scheme,
which was designed to reduce the strength of the near-wall streamwise vortices. This active
control scheme, which was based on observations that there are strong correlations between
the near-wall streamwise vortices and the high skin-friction region, is reported to reduce the
viscous drag by as much as 25%.

It is our belief, however, that much more progress can be made for more classes of
flows and other phenomena if we can avoid the need for empirical observations and apply
modern control theories to linear equations that approximate the non-linear phenomena.
For fluid flows, a few examples of this approach have appeared in the recent literature. The
foundations of applying optimal control theory to the equations governing-fluid flow were
developed and its application to flow control was reported by Choi et al. [2], Moin and
Bewley [3], and Lee et al. [4].

Our group has developed a methodology to synthesize reduced-order controllers to tar-
get the linear mechanisms of a channel flow, identified from the Navier-Stokes equations,
and Rayleigh-Bénard convection in a fluid layer, identified from the Oberbeck-Boussinesq
equations. Linearized around the Poisueille profile or the no motion state, the dynamical
equations are further modified to allow for actuation and sensors. Spectrally decomposed,
the governing equations can be cast into temporal state-space form to which modern control
theories can be applied. The system equations decouple into independent sub-systems by
wavenumbers, affording the option to design controllers for certain wavenumbers. A parallel
architecture of compensators in wave space is thus possible [5].

The research began with a simple integral controller on the streamwise shear stress in
a strictly 2 dimensional linear flow [6]. Although it was only applied to, at most, a few
wavenumbers, it was able to control a two-dimensional finite-amplitude disturbance respon-
sible for the secondary instability, thus suggesting that nonlinear effects could be handled
by a linear controller. However, the main thrust of the paper was to show the importance of
analyzing the properties of the flow dynamic equations from a control theoretic viewpoint.
Subsequently, a controller was developed using Linear-Quadratic-Guassian (LQG) optimal




control synthesis, producing a controller, which required less energy than the simple integral
compensator [7]. However, the resulting state space was quite large and motivated the devel-
opment of state reduction by a form of balanced realization for LQG design. The uncertainty
was assumed to be emanating from the wall and was modeled as an input with the same
input matrix as the control. For the two dimensional controller, where the system is minimal
phase, good loop transfer recovery was obtained producing good stability margins for robust
control [5,8].

The parallel structured controller of [5] for multiple (but not all) wavenumbers was suc-
cessful in suppressing up to 90% of the wall shear stress in a linearized two-dimensional
Navier-Stokes channel flow. The controller was then embedded in a direct simulation of the
Navier-Stokes equations [9]. Although controlling skin-friction drag in two dimensions can-
not be readily extrapolated to the three-dimensional turbulence case, the linear controller
(using 10% of the order of the full system) applied to the bottom wall of a two-dimensional
turbulent periodic channel flow at a Reynolds number of 1,500, managed a drag reduction
of up to 60% with respect to the uncontrolled turbulent flow.

Given the success with the flow equations, the same methodology was applied to the
Rayleigh-Bénard problem of delaying the onset of convection in a fluid layer heated from
below. Due to the nature of the dynamical equations, the application was straightforward
and produced promising results. A linear feedback controller is used to increase the stabil-
ity threshold of the purely heat conductive state so that no convection occurs despite the
presence of a large thermal gradient [10,11,12,13]. Development in this area would have
applications in materials processing, solidification, semiconductor melts, welding, evapora-
tive coating, and crystal growth. Due to the nature of the Oberbeck-Boussinesq equations
governing the behavior of the fluid layer, it has been easier synthesizing viable controllers
for this problem than the channel flow problem.




2 Recent Progress

In the past three years, the design methodology developed for the two-dimensional flow
problem was extended to handle a fully three-dimensional flow field. The linearized three-
dimensional Navier-Stokes equations were used as the basis for a new set of fully three
dimensional reduced-order controllers. Their initial application highlighted some new prob-
lems never experienced with the two-dimensional controllers, requiring us to return to the
two-dimensional controllers and building up to a fully three-dimensional controller in incre-
ments. Significant success was achieved while learning some important lessons associated
with the three-dimensional flow dynamic equations.

With the Rayleigh-Bénard convection problem, success has come more readily since the
dynamical equations are more straightforward than the Navier-Stokes equations. Successful

LQG controllers have been developed for both the linear and non-linear simulation of a
heated layer of fluid. ‘

2.1 A Linear Process in Wall-Bounded Shear Flows

A linear process in wall-bounded turbulent shear flows has been investigated through numer-
ical experiments. It is shown that the linear coupling term, which enhances non-normality
of the linearized Navier-Stokes equation, plays an important role in fully turbulent hence,
nonlinear flows [14, Appendix A]. Near-wall turbulence is shown to decay without the linear
coupling term. It is also shown that near-wall turbulence structures are not formed in their
proper scales without the non-linear terms in the Navier-Stokes equation, thus indicating
that the formation of the commonly observed near-wall turbulence structures are essentially
non-linear, but the maintenance relies on the linear process.

This result is consistent with the analysis of Reddy and Henningson [15], who showed
that non-normality of the linearized Navier-Stokes operator is a necessary condition for
disturbances to grow for Reynolds number below the critical number predicted by traditional
linear analysis. However, we believe this is the first direct demonstration that turbulence
(non-linear disturbance) decays when the non-normality of the underlying linear operator
in non-linear flows is reduced. The time scale associated with the formation is found to
be smaller than the bursting process used in the optimal perturbation theory. The fact
that the coupling term plays an essential role in maintaining the streamwise vortices, which
have been found to be responsible for high skin-friction drag in turbulent boundary layers,
suggests that an effective control algorithm for drag reduction should be aimed at reducing
the effect of the coupling term in the wall region.

2.2 Application of Reduced-Order Controller to Turbulent Flows
for Drag Reduction

The strictly two-dimensional controllers were applied successfully to a three-dimensional
channel flow simulation. The controller was designed from the linearized two-dimensional




Navier-Stokes equations. Model reduction techniques were used to reduce the temporal state
space representation of the dynamical equations, and then LQG/LTR control synthesis was
used to derive controllers for several streamwise wavenumbers. Applied in parallel to 32
spanwise locations in the channel, the controller achieved a 10% decrease in drag reduction
[16, Appendix B]). However, since no measurements were shared in the spanwise direction,
the resulting shear stress varied significantly in the spanwise direction. By additional blowing
and suction proportional to the spanwise variation of the streamwise-averaged wall shear
stress, the shear stress oscillations in the spanwise direction was removed, and the drag was
reduced by about 16% [16, Appendix B].

The linearized three-dimensional Navier-Stokes equations were then used as the basis for
fully three-dimensional controllers. The Navier-Stokes equations were modified to include
the control through wall-transpiration on a two-dimensional surface (bottom wall), and both
spanwise and streamwise shear stress on the same two-dimensional surface was used as
measurements. Since the dynamical equations now contained both the Orr-Sommerfield and
Squire modes, the question of energy amplification could now be addressed. Initial attempts
proved problematic; however, a controller was successfully designed for several spanwise
wavenumbers [17]. This controller managed a modest 5% reduction in drag in a DNS of a
fully turbulent channel flow.

The study of the three-dimensional equations revealed several aspects, which were not
apparent in the two-dimensional flow field. The assumption that the strictly streamwise
wavenumber pair equations (spanwise wavenumber equaling zero) are equivalent to the two-
dimensional flow equations proved to be incorrect. The original two-dimensional controllers
were controlling all spanwise wavenumber systems at a given streamwise wavenumber since
they had been applied in physical space (as opposed to the wave space of the decomposed
system equations). In contrast, the new three-dimensional compensators were only control-
ling one specific wavenumber pair. Three different classes of wavenumber pairs were also
discovered, each class behaving just a little differently from the others. This made it difficult
to apply one single methodology and cost function to all wavenumbers.

In an effort to resolve these newly discovered issues, several spanwise three-dimensional
compensators were used to augment the two-dimensional compensators developed in [9,16],
replacing the ad-hoc scheme. This partially three-dimensional controller was able to achieve
a 17% reduction in total drag with a power ratio of 30 (power saved vs. control power used).

Changing the uncertainty to also emanate from the entire flow field seemed to improve the
controller. Compensators for all wavenumber pairs of the first five streamwise wavenumbers
(0 to 4) were synthesized. This fully three-dimensional controller was able to achieve a 19%
reduction in drag with a power ratio of 60 (Fig. 1). Efforts to improve the channel flow
controller performance beyond the 15% to 20% range have been very difficult. The non-
orthogonality of the eigenmodes of the dynamical system [18,19], which the compensator in
many ways is designed to attenuate, is hampering our progress. The non-orthogonality of
the eigenmodes is affecting the numerical calculation of the estimator and control gains. We
anticipate improved controller performance once these numerical issues are resolved.

What is surprising is that 15% to 20% reduction in drag has been achieved even with
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Figure 1: Controllers in DNS.

the numerical inaccuracies. However, now that we are considering changing the control cost
criterion from wall-shear stress (which is measured) to other values (such as total flow field
energy), the accuracy of the estimated internal state becomes paramount.

2.3 Robust Feedback Control of Rayleigh-Bénard Convection

Efforts with the Rayleigh-Bénard convection problem have been more straightforward. Start-
ing with a linear plant model, we use two sensing and actuating models: the planar sensor
model and the shadowgraph. By extending the planar sensor model to the multi-sensor
case, a LQG controller has been developed, which stabilized the no motion state up to 14.5
times the critical Rayleigh number [20, Appendix C]. We characterize the robustness of the
controller with respect to parameter uncertainties, unmodeled dynamics. Results indicate
that the LQG controller provides robust performances even at high Rayleigh numbers (Ra).
Based on our results for Prandtl number of 7, we have shown that the robustness of the
controller system is improved in two aspects: (i) the controller remains stable over a larger
range of the parameter Ra and (ii) the robustness of the controller accommodates to a de-




gree the unmodeled dynamics and nonlinearities, as measured by gain and phase margins
in the Nyquist diagram. It should be noted that although only one controller needed to be
designed at (k*, Rax), this controller is implemented at each wavenumber k to span over the
entire range of unstable wavenumbers. The number of sensors plays an important role in
dramatically improving the robustness of the stabilization of the system operating at large
Ra. Because multiple sensor planes can be easily incorporated into the planar sensor model,
the performance of the planar sensor model is found to be superior to that of the shad-
owgraph sensor model, which only utilizes averaged temperature measurements. We have
shown that the transient responses incurred at the initial time can be reduced significantly
by increasing Ra to its operating value in small increments. This technique allows us to
initialize the estimator at each increment of Ra and consequently avoid controller satura-
tion. Furthermore, by making incremental changes in Ra and using a controller designed to
stabilize the system in a region about the design values, the value of the maximum value of
Ra could be increased further, even though there wﬁl be unstable regions formed below the
stable regions in Ra.

We have also developed a fully non-linear, three-dimensional pseudospectral, time-splitting
simulation of the feedback control of a layer of fluid heated from below [21, Appendix D].
Using a robust controller based on LQG synthesis, the initial condition, corresponding to a
steady, large-amplitude preferred convection state at a Prandtl number of 7.0 and a Rayleigh
number of 10.4, which is about six times the Rayleigh critical value, was stabilized to the
zero convection state. Both sensors and actuators were assumed to be thermal-based, planar,
and continuously distributed. The simulated results showed that the linear LQG controller
could suppress large-amplitude steady-state convection rolls. The Green’s function of the
controller showed that the shape of the control action corresponds to a point measurement.
Furthermore, for Rayleigh numbers below the proportional feedback control stability limit,
this controller was also effective in damping out steady-state convection rolls. However,
in a region very near the proportional control stability limit, direct numerical simulations
demonstrated a subcritical g-type hexagonal convection induced by the proportional control
action. However, well above this proportional control limit, the LQG controller was able to
damp all convection.

In this phase, we have assumed that the order of the controller is equal to the order
of the plant. In full numerical simulations and experiments, controller designs based on
reduced-order models are more practical for implementation. The assumption that actuation
is continuously distributed needs to be relaxed since in practice it will be discrete and
implementation issues need to be addressed.




3 Schedule for Research Effort

Although we have achieved some success in designing effective controllers for turbulent chan-
nel flows, the research to date demonstrated many lingering numerical and theoretical issues
which deserves further investigation. The results from the study of the Rayleigh-Bénard
convection problem strongly suggests that even better results can be expected with the
channel flow study. A more careful study of the numerical issues with the three-dimensional
linearized Navir-Stokes equation is certainly warranted. Any further study, including more
proper system identification, would require some confidence that the mathematics is being
solve accurately, numerically speaking.

Furthermore, although the development of the controller design is structured with a
concern for practical issues, no study has been made to what actuators and sensors could
actually implement the controllers synthesized. The mathematics has been structured so
that there is a great deal of parallelism built into the system, thus reducing the computation
bandwidth required, but actuators and sensors will need to be investigated in terms of
quantifying the uncertainties and noises associated with any mechanical device.

Although there are many issues which remain to be resolved and some that have been
highlighted by this study, the current results certainly promises better results. Even with the
unanswered questions and remaining numerical concerns, the controllers designed perform
remarkably well in reducing the drag on a wall of a turbulent channel flow. The same design

has certainly proven very effective (in simulation) in reducing the convection of a heated
fluid layer.
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A linear process in wall-bounded turbulent shear flows has been investigated through numerical
experiments. It is shown that the linear coupling term, which enhances non-normality of the
linearized Navier—Stokes system, plays an important role in fully turbulent—and hence, nonlinear
—flows. Near-wall turbulence is shown to decay without the linear coupling term. It is also shown
that near-wall turbulence structures are not formed in their proper scales without the nonlinear terms
in the Navier—Stokes equations, thus indicating that the formation of the commonly observed
near-wall turbulence structures are essentially nonlinear, but the maintenance relies on the linear
process. Other implications of the linear process are also discussed. © 2000 American Institute of

Physics. [S1070-6631(00)00708-X]

The transient growth due to non-normality of the eigen-
modes of the linearized Navier—Stokes (N—S) equations has

received much attention during the past several years (see, -

for example, Refs. 1-3). It has been shown that the energy of
certain disturbances can grow to O(Re?) in time proportional
to O(Re), where Re denotes Reynolds number of the flow.?
It has been postulated that this transient growth, which is a
linear process, can lead to transition to turbulence at a Rey-
nolds number smaller than the critical Reynolds number, be-
fow which a classical linear stability theory based on the
modal analysis predicts that all small disturbances decay
asymptotically. As such, some investigators attributed this
linear process as a possible cause for subcritical transition in
some wall-bounded shear flows, such as plane Poiseuille
flow and Couetie flow.

Some investigators further postulated that the same lin-
ear process is also responsible for the observed wall-layer
streaky structures in turbulent boundary layers."* The opti-
mal disturbance, which has the largest transient growth ac-
cording to their optimal perturbation theory, looks similar to
the near-wall streamwise vortices that create the streaky
structures in turbulent boundary layers. However, this opti-
mal disturbance occupies the entire boundary layer, in con-
trast to the streamwise vortices in turbulent boundary layers,
which are confined to the near-wall region. In order to relate
their optimal perturbation theory to those structures observed
in turbulent boundary layers, a time scale corresponding to
the bursting process in turbulent boundary layers, which is
essentially a nonlinear process, was introduced as an addi-
tional parameter.* It has been argued that the transient
growth in turbulent boundary layers would be disrupted by
turbulent motions on a time scale corresponding to the burst-
ing process, which is smaller than the viscous time scale, and

1070-6631/2000/12(8)/1885/4/$17.00
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hence, the globally optimal disturbance will never have a
chance to grow to its maximum possible amplitude. The no-
tion that commonly observed wall-layer structures are related
to a linear process, although it is the nonlinear process that
determines the proper length scale, suggests that the same
finear process may play an important role in fully nonlinear
turbulent boundary layers.

Other evidence that a linear process may play an impor-
tant role in turbulent boundary layers can be found in the
work of Joshi et al.>€ and others,”® who successfully applied
controllers developed based on a liner system theory to the.
nenlinear flow in their attempt to reduce the viscous drag in
turbulent boundary layers. Bewley’ applied linear optimal
control theory to a nonlinear convection problem. Although
it is not clear how controllers based on a linearized model
work so well for nonlinear flows and it is a subject of further
investigation, these results suggest that the essential dynam-
ics of near-wall turbulence may well be approximated by a
linear model.

Motivated by the above findings, we investigate the role
of this linear process in fully nonlinear turbulent flows. In
particular, we investigate the role of the linear coupling term
(see below for its definition), which is a source of the non-
normality of the eigenmodes of the linearized Navier—Stokes
equations, in wall-bounded shear flows, using a turbulent
channel flow as an example.

In this Letter, we shall use (x,y,z) for the streamwise,
wall-normal, and spanwise coordinates, respectively, and
{u,v,w) for the corresponding velocity components. Rey-
nolds number, Re,, is based on the wall-shear velocity, u,,
=y7,/p, and the channel half-width, 4, where 7,
=wdU/dy|,, is the mean shear stress at the wall, and U, »,
and p denote the mean velocity, viscosity, and density, re-

© 2000 American Institute of Physics
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spectively. The superscript **+°" denotes quantities nondi-
mensionalized by v and «,. .

Representing the wall-normal velocity, v, and the wall-
normal vorticity, @, in terms of Fourier modes in the
streamwise (x) and the spanwise (z) directions, the linear-
ized NS equations can be written in an operator form

~

—[, ={A}[? : 0
dt @, @,
where
LOS
[4]= , @
[Lc qu

and the hat denotes a Fourier-transformed quantity. Here
Lys, Ly, and L represent the Orr—Sommerfeld, Squire, and
the coupling operators, respectively, and defined as

Lo=A"Y—ik UA+ik, (d*Uldy?) + (1/Re) A?),
Lyg=—ik, U+ (1/Re) A, 3
L.=—ik,{dUldy),
where k, and k; are the streamwise and spanwise wave num-
bers, respectively, kK2 =k2+ k2, A= 3%/dy?— k2, and U s the
mean velocity about which the N—8 equations are linearized.
Note that the full nonlinear N—S equations can be written
also as .

dlv o] [M
E (:)y ={A] (;}}, + Nmy 4 (‘4}

where all nonlinear terms are lumped into AV, and NV, . The’

operator A in this case, however, is a function of v arfd ,,
because U depends on v and o, . ]

It has been shown that operator 4 in Eq. (2) is non-
normal, and hence, its eigenmodes are nonorthogonal, thus
allowing a transient growth of energy even if all individual
modes are stable and decay asymptotically.!® Note that the
coupling term L vanishes for two-dimensional (2-D) distur-
bances (k,=0), and therefore, there is no coupling between
v and w, for 2-D disturbances. For 3-D disturbances, how-
ever, v evolves independently, but e, is forced by v through
the coupling term. It should be noted that L itself is not
self-adjoint, and hence, 2-D disturbances can have a transient
growth, but it was shown that 3-D disturbances have much
larger transient growth due to the coupling term, which
causes larger non-normality. In the present study, we concen-
trate on the role of the coupling term in fully nonlinear tur-
bulent flows, using a fully developed turbulent channel flow
as an example.

In order to investigate the role of the coupling term in
fully turbulent flows, we proceed to solve the following
modified nonlinear equations:

d [ v } {Lm 0 ]
dt ,;,y 0 L
This modified system can be viewed as representing a syn-
thetic turbulent flow without the coupling term, or a turbu-

v
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FIG. I. Time evolution of mean shear at wall: , upper wall; — — —,
lower wall. Thick lines are for a regular channel flow, while thin lines are
for a channel flow with L =0 in the upper half of the channel starting from
tr=0.

lent flow with control by which the coupling term is sup-
pressed. For instance, surface blowing and suction activated
to eliminate (reduce} the spanwise variation of v (ie.,
dv/dz) could eliminate (reduce) the effect of the coupling
term.

A spectral channel code similar to that of Kim ef al.'®
was used to solve the above modified nonlinear equations.
To further contrast the role of the coupling term, we used the
modified N—S equations only in the upper half of the channel
and the regular N—S equations in the lower half of the chan-
nel. We used the same Reynolds number (Re,=100) and
grid (32X 65X 32 in x,y,z) as Lee et al.!!

In the first numerical experiment, we used a regular tur-
bulent velocity field obtained by Lee ef al. as our initial field.
Starting from this initial field, we integrated in time to see
how the turbulent flow in the upper half of the channel
evolves in the absence of the coupling term. Time evolution
of the mean shear at both walls is shown in Fig. 1, which
illustrates a drastic reduction in the wall shear without the
coupling term. Several snapshots of the velocity field are
shown in Fig. 2, where contours of streamwise vorticity in a

FIG. 2. Contours of streamwise vorticity in y—z plane: (a) 17 =0; (b) ¢*
=20; (c) +¥=200. —80<w, <80 with 18 contour levels. Note that L_,=0
only in the upper-half of the channel.
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FIG. 3. Root-mean-square turbulence intensities: ——, \/uzz-; -———— \f!}:z;

, Vw2, Thick lines are for £*=0, while thin lines are for #*

y—z plane are shown to illustrate the effect of the coupling
term on turbulence structures. It is evident that streamwise
vortices quickly disappear without the coupling term. The
reduction of the wall shear in conjunction with the disappear-
ance of the streamwise vortices is a common feature of many
drag-reduced turbulent flows.!! Turbulence intensities shown
in Fig. 3 indicate drastic reductions without the coupling
term.

In the second numerical experiment, we used an initial
velocity field consisting of the same mean velocity as the
first experiment but with random disturbances, and hence,
there are no organized turbulence structures present initially.
A divergence-free white-noise spectrum was used for this
purpose. The amplitude was chosen such that neither they
decay too quickly (too small) nor they cause a numerical
instability due to non-smoothness of the initial condition (too

FIG. 4. Contours of streamwise vorticity in y—z planc at 1+ =20, started
from an initial random field: (a) Case 1, regular turbulent flow; (b) Case 2,
without the linear coupling term, L_; (c) Case 3, without the nonlinear
terms. Contour levels are the same as Fig. 2,

A linear process in wall-bounded turbulent shear flows 1887

FIG. 5. Contours of streamwise vorticity in y—z plane at £* =40, started
from a random initial field. See figure caption in Fig. 4 for legend.

large). Starting with the same random initial ficld, three dif-
ferent simulations were carried out: Case 1, with the full
nonlinear N—8 equations (i.e., regular turbulent flow); Case
2, with N-8 equations without the linear coupling term;
Case 3, with N-S equations without the nonlinear terms (i.e.,
linearized N—S). The purpose of these simulations is to in-
vestigate whether the linear coupling term is indeed respon-
sible for formation of the streamwise vortices and near-wall
streaks, and if so, whether the time scale associated with the
formation of these structures corresponds to the bursting pro-
cess (t*=100), as hypothesized by Butler and Farrell.
Time evolution of the three velocity fields is shown in
Figs. 4-6 with streamwise vorticity contours in a y — z plane.
Organized structures are discernible in all three cases as
early as t* =20 (Fig. 4), but they look different from each
other. For Case 3 (without the nonlinear terms), the struc-
tures that appear from the structureless random initial condi-
tion have larger spanwise scales than these in the regular
flow (Figs. 4 and 5). For Case 2 (without the linear coupling
term), the vortical structures appear briefly (Fig. 4) but dis-
appear quickly, especially in the wall region (Figs. 5 and 6),
since they cannot be maintained without the linear coupling
term as demonstrated in the first experiment mentioned
above. For Case 1, the time for these structures to appear is
shorter than that implied by the optimal disturbance mecha-
nism of Butler and Farrell.* Note that the structures in Case 3
are already substantially different from those in Case 1 at
t* =40, indicating that the effect of nonlinear terms is felt
much earlier than the eddy turnover time (¢* = 100) as pro-
posed by Butler and Farrell.* The present result is also con-
sistent with Jiménez and Pinelli,'> who showed that the for-
mation of streaky structures can be prevented by damping
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FIG. 6. Streamwise contours in y—z plane at t* =80, started from a ran-
dom initial field. See figure caption in Fig. 4 for legend.

{ve,) [the {) indicates streamwise average}, which is re-
lated to the linear coupling term. While both results clearly
demonstrate the essential role of the linear coupling term in
the formation and maintenance of the wall-layer streaks,
while the present work also indicates that a nonlinear mecha-
nism is responsible for producing the proper streak spacing.

We have used several different initial conditions to de-
termine whether the above results depend on initial condi-
tions, but found no such evidence. It thus appears that both
the nonlinear terms and the linear coupling term are neces-
sary for the formation and maintaining of these structures at
their proper scale. The nonlinear terms are necessary for the
formation of streamwise vortices and the linear coupling
term is necessary to generate the wall-layer streaks, the in-
stability of which in turn strengthen the streamwise vortices
through a nonlinear process. In the absence of either mecha-
nism, turbulence ceases to exist. The result of this second
experiment is consistent with Hamilton ez aZ.'* and Waleffe

and Kim'* in that the formation of the streamwise vortices is_

a result of a nonlinear process.

We have demonstrated that the linear process associated
with the coupling term plays an important role even in fully
nonlinear wall-bounded turbulent shear flows. Near-wall
streamwise vortices, which play the essential role in the dy-
namics of wall-bounded shear flows, are seen to be formed
but cannot be sustained without the coupling term.

This result is consistent with the analysis by Henningson
and Reddy'® who showed that non-normality of the lincar-
ized Navier—Stokes operator is a necessary condition for dis-
turbances to grow for Reynolds number below the critical
Reynolds number predicted by the traditional linear stability
analysis. However, we believe this is the first direct demon-

J. Kim and J. Lim

stration that turbulence (nonlinear disturbance) decays when
the non-normality of the underlying linear operator in non-
linear flows is reduced. The time scale associated with the
formation is found to be smaller than the bursting process
used in the optimal perturbation theory. The fact that the
coupling term plays an essential role in maintaining the
streamwise vortices, which have been found to be respon-
sible for high skin-friction drag in turbulent boundary layers,
suggests that an effective control algorithm for drag reduc-
tion should be aimed at reducing the effect of the coupling
term in the wall region. In fact, the opposition control used
by Choi ef al.'® can be viewed as a control scheme trying to
reduce the effect of the coupling term by suppressing the
spanwise variation of v in the wall region. It should be in-
teresting to design a control algorithm that directly accounts
for the coupling term in a cost function to be minimized.
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ematical Sciences at Cambridge University. This work has
been supported by the Air Force Office of Scientific Re-
search (F49620-97-10276, Dr. Marc Jacobs). The computer
time has been provided by the San Diego Supercomputer
Center.

YJauthor to whom  comespondence should be  addressed.
Telephone: (310)825-4393; Fax: (310)206-4830. Electronic mail:
jkim@seas.ucla.edu
K. M. Butler and B. F. Farrell, ““Three-dimensional optimal perturbations
in viscous shear flow,”” Phys. Fluids A 4, 1637 (1992).

%B. F. Farrell and P. J. Ioannou, “‘Stochastic forcing of the linearized
Navier—Stokes equations,” Phys. Fluids A 5, 2600 (1993).

38. C. Reddy and D. S. Henningson, *Energy growth in viscous channel
flows,” J. Fluid Mech. 252, 209 {1993).

4K. M. Butler and B. F. Farrell, ““Optimal perturbations and streak spacing
in wall-bounded turbulent shear flow,”” Phys. Fluids A 5, 774 (1993).

58. 8. Joshi, J. L. Speyer, and J. Kim, ‘A systems theory approach to the
feedback stabilization of infinitesimal and finite-amplitude disturbances in
plane Poiseuille flow,”" J. Fluid Mech. 332, 157 (1997).

68, 8. Joshi, I. L. Speyer, and J. Kim, *‘Finite dimensional optimal control
of Poiseuille flow,” J. Guid. Control Dyn. 22, 340 (1999).

L. Cortelezzi, K. H. Lee, 1. Kim, and J. L. Speyer, “*Skin-friction drag
reduction via robust reduced-order linear feedback control,” Int. J. Comp.
Fluid Dyn. 11, 79 (1998).

8K. H. Lee, A Systems Theory Approach to Control of Transitional and
Turbulent Flows, Ph.D. dissertation, University of California at Los An-
geles (1999).

°T. R. Bewley, “‘Lincar control and estimation of nonlinear chaotic con-
vection: Hamessing the butterfly effect,”” Phys. Fluids 11, 1169 (1999).

193 Kim, P. Moin, and R. K. Moser, “*Turbulence statistics in fully devel-
oped channel flow at low Reynolds number,”’ J. Fluid Mech. 177, 133
{1987).

¢, Lee, J. Kim, D. Babcock, and R. Goodman, “‘Application of neural
networks to turbulence control for drag reduction,” Phys. Fluids 9, 1740
(1997). )

123 Jimenez and A. Pinelli, ““The autonomous cycle of near-wall turbu-
lence,” J. Fluid Mech. 389, 335 (1999).

35, M. Hamilton, J. Kim, and F. Waleffe, ““Regeneration mechanisms of
near-wall turbulence structures,”” J. Fluid Mech. 287, 317 (1995).

ME, Waleffe and J. Kim, **How streamwise rofls and streaks self-sustain in
a shear flow,” in Self-Sustaining Mechanisms of Wall Turbulence, edited
by R. L. Panton {Computational Mechanics Publications, Southampton,
UK and Boston, USA, 1997), pp. 309-332.

5D, S. Henningson and S. C. Reddy, **On the role of linear mechanism in
transition to turbulence,”” Phys. Fluids 6, 1396 (1994).

16H. Choi, P. Moin, and 1. Kim, ““Active turbulence control for drag reduc-
tion in wall-bounded flows,”” J. Fluid Mech. 262, 75 (1994).




' APPENDIX B:
Application of Robust Controller
to Turbulent Flows for Drag Reduction




PHYSICS OF FLUIDS

VOLUME 13, NUMBER 5 MAY 2001

Application of reduced-order controller to turbulent flows
for drag reduction
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A reduced-order linear feedback controller is designed and applied to turbulent channel flow for
drag reduction. From the linearized two-dimensional Navier—Stokes equations a distributed
feedback controller, which produces blowing/suction at the wall based on the measured turbulent
streamwise wall-shear stress, is derived using model reduction techniques and linear-
quadratic-Gaussian/loop-transfer-recovery control synthesis. The quadratic cost criterion used for
synthesis is composed of the streamwise wall-shear stress, which includes the control effort of
blowing/suction. This distributed two-dimensional controller developed from a linear system theory
is shown to reduce the skin friction by 10% in direct numerical simulations of a low-Reynolds
number turbulent nonlinear channel flow. Spanwise shear-stress variation, not captured by the
distributed two-dimensional controller, is suppressed by augmentation of a simple spanwise ad hoc
control scheme. This augmented three-dimensional controller, which requires only the turbulent
streamwise velocity gradient, results in a further reduction in the skin-friction drag. It is shown that
the input power requirement is significantly less than the power saved by reduced drag. Other
turbulence characteristics affected by these controllers are also discussed. © 2001 American

Institute of Physics. [DOI: 10.1063/1.1359420]

1. INTRODUCTION

Much attention has been paid to the drag reduction in
turbulent boundary layers. Skin friction drag constitutes ap-
proximately 50%, 90%, and 100% of the total drag on com-
mercial aircraft, underwater wvehicles, and pipelines,
respectively.! The decrease of skin friction, therefore, entails
a substantial saving of operational cost for commercial air-
craft and submarines. Recent reviews'™ summarize achieve-
ments and open questions in boundary layer control.

With the notion that near-wall streamwise vortices are
responsible for high skin friction in turbulent boundary lay-
ers, Choi ef al.* manipulated the near-wall turbulence by ap-
plying various wall actuations. They achieved a 20% skin-
friction reduction in a turbulent channel flow by applying a
wall transpiration equal and opposite to the wall-normal ve-
locity component measured at y* = 10. This control is shown
to effectively make the streamwise vortices weaker. How-
ever, it is not easily implementable since it is difficult to

place sensors inside the flow field. Other attempts at weak- -

ening the near-wall streamwise vortices have been made by
imposing spanwise oscillation of the wall® and using external
body force.® These methods, however, require a large
amount of input energy. A reduction in skin friction must be
accompanied with the required input energy much less than
the energy saved by the reduction.

A systematic approach, not relying on physical intuition,
has been tried in the past. A suboptimal control, which de-

*Present  address: Department of Mechanical Engincering, McGill
University,  Montreal, Quebec, Canada; electronic  mail:
crtlz@ametista mecheng.megill.ca

SAuthor to whom correspondence should be addressed. Telephone: (310)
825-4393; fax: (310) 206-4830; electronic mail: jkim{@seas.ucla.edu

1070-6631/2001/13(5)/1321/10/$18.00

termines the optimal control input by minimizing the cost
functional for a short time interval, was successfully applied
to the stochastic Burger’s equation.” Bewley and Moin® ex-
tended the suboptimal control to a turbulent channel flow.
This method, however, requires information about the whole
flow field and excessive computation, so that it is impossible
or at best extremely difficult to implement. It is necessary to
develop a control scheme that utilizes easily measurable
quantities.

Lee et al.’ developed a neural network control algorithm
that approximates the correlation between the wall-shear
stresses and the wall actuation and then predicts the optimal
wall actuation to produce the minimum value of skin fric-
tion. They also produced a simple control scheme from this
neural network control, which determines the actuation as
the sum of the weighted spanwise wall-shear stress,
owldy|,,. Recently, Koumoutsakos'® reported a substantial
drag reduction obtained by applying a feedback control
scheme based on the measurement and manipulation of the
wall vorticity flux. Furthermore, he showed that the strength
of unsteady mass transpiration actuators can be derived ex-
plicitly by inverting a system of equations.

Other systematic controls'’™!” have been developed by
exploiting the tools recently developed in the control
community.'*2! Joshi ef al.''"'* and Bewley and Liu'* de-
veloped an integral feedback controller, a linear quadratic
{LQ) controller, and an H., controller (worst-case controller)
to successfully stabilize unstable disturbances in transitional
flow. In particular, Cortelezzi and Speyer' introduced the
multi-input—multi-output (MIMO) linear-quadratic-Gaussian
(LQG)/loop-transfer-recovery (LTR) synthesis,?> combined
with model reduction techniques, for designing an optimal
linear feedback controller. This controller successfully sup-

1321 © 2001 American Institute of Physics
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pressed near-wall disturbances, thus preventing a transition
in two-dimensional laminar channel flows. This reduced-

order controller'® was applied to two-dimensional nonlinear

transitional flows, illustrating that the controller designed
from the linear model works remarkably well in nonlinear
flows.

Our purpose in the present study is to develop a realistic
robust optimal controller that systematically determines the
wall actuation, in the form of blowing and suction at the
wall, relying only on a measured streamwise velocity gradi-
ent to reduce skin friction in a fully developed turbulent
channel flow. A dynamic representation of the flow field is
required for controller design. Due to the complexity and
nonlinearity of the Navier—Stokes equations, it is difficult to
derive model-based controllers. Therefore, the linearized
Navier-Stokes equations for Poiseuille flow are used as an
approximation of the flow field and form the basis of system
modeling. Several investigators (e.g., Farrel and Ioannou,?
Kim and Lim,?* to name a few) have shown that linearized
models have a direct relevance to turbulent flows. A reduced-
order controller has been designed based on this model and
applied to linear and nonlinear transitional flows.'>"!7 En-
couraged by these results, in this paper we apply this distrib-
uted two-dimensional controller to a direct numerical simu-
lation of turbulent channel flow at a low Reynolds number.
We then augment our two-dimensional distributed controller
by including an ad hoc control scheme to attenuate the re-
sidual disturbances in the spanwise direction.

In Sec. II, we derive the state-space equations from the
linearized two-dimensional Navier—Stokes equations. In Sec.
I, we reduce the order of the state-space equations and
derive a reduced-order two-dimensional controller by using
LQG/LTR synthesis. In Sec. IV, we construct and apply the
distributed two-dimensional controller based on the linear-
ized Navier-Stokes equations to a fully developed turbulent
channel flow at Re,= 100, where Re, is the Reynolds num-
ber based on the wall-shear velocity, u,, and the half-
channel height, /. In Sec. V, this distributed two-dimensional
controller augmented with a simple ad hoc control scheme is
applied to the same flow. In Sec. VI, we present turbulence
statistics associated with the controlled flows followed by
conclusions in Sec., VII

In this paper, we use (u,v,w) to represent the velocity
components in the streamwise (x), wall-normal (y), and
spanwise (z) directions, respectively.

Ii. THE STATE-SPACE EQUATIONS

One of the goals in the present study is to reduce the size
of the controlier. A controlier with a large number of states is
of no practical interest in engineering applications because of
the amount of hardware and computer power necessary to
compute a real-time control law. Consequently, it is crucial
to reduce the order of the controller.

Figure 1 shows the configuration of the turbulent chan-
nel flow equipped with the controller tested for our study.
Low-order controllers are usually preferred to high-order one
because of the lower cost of hardware construction as well as
the less computation time necessary to provide the control

Lee of al.
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FIG. 1. Schematic representation of turbulent channel flow equipped with
sensors and actuators distributed in the streamwise direction in each z plane,

input. Hence, we slice the channel with xy planes equally
spaced in the z direction in order to reduce the order of the
controller. We then construct the distributed two-
dimensional controller by applying the two-dimensional con-
troller developed from the linearized two-dimensional
Navier—Stokes equations'® to each plane. It is shown!® that
the two-dimensional controller is effectively able to reduce
the skin-friction drag of the finite-amplitude disturbances in
a two-dimensional channel flow.

We follow the same derivation of the state-space equa-
tion as given in Cortelezzi ef al.'® We give a brief outline
here for completeness; the interested reader is referred to
Cortelezzi et al.'® for details. The wall transpiration is ap-
plied to both top and bottom walls in a fully developed tur-
bulent channel flow. For simplicity, though, we derive the
state-space equations assuming that blowing and suction is
applied only at the bottom wall. The application of blowing
and suction to both walls is a trivial extension.

We consider two-dimensional incompressible Poiseuille
flow in a periodic channel of streamwise length, L,, and
channel height, 2. The undisturbed velocity field has a
parabolic profile with centerline velocity U, . The linearized
two-dimensional Navier—Stokes equations can be written in
terms of the perturbation streamfunction, ¢,

(8,+U3,)Ay—U"¢,=Re™'AAy, 8))

where all variables are normalized with U/, and % and Re
=U_h/v is the Reynolds number.

To suppress perturbations evolving within the bottom
boundary layer, we apply blowing and suction at the bottom
wall {see Fig. 1). For simplicity, we assume that the actuators
are continuously distributed. The corresponding boundary
conditions are
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lf]xE}'=—i=—ﬂw{xsf)! &}’¥y=:§=¢1y=l=es (2)

where the control function v, indicates blowing and suction
at the bottom wall. We impose the wall transpiration of zero
net mass flux.

To detect the near-wall disturbances, we measure the
gradient of the streamwise disturbance velocity at given
point x=x; along the bottom wall (see Fig. 1),

Z(xi ’t)= li’yyg_v= —1- (3) )

In other words, we measure the first term of the disturbance
wall-shear stress, 7,,=Re™ (4, z,ﬁrxx}fv:_; The second
term of the wall-shear stress is zero in the uncontrolleti case
and is known in the controlled case.

We define a performance index 7, or cost criterion, to
design a controller for the LQG (H,) problem. Since we are
interested in suppressing the disturbance wall-shear stress,

Tyy, We define
F= hm f f {q&f},v },__idxdf 4
o

The integrand represents the cost of the disturbance wall-
shear stress, 7,r, being different from zero. Moreover, the
integrand implicitly accounts for the cost of implementing
the control itself. There are two reasons to minimize the cost
of the control. In any engineering application the energy
available to drive the controller is limited, and a large control

- action may drive the system away from the region where the

linear model is valid.
By using the same procedure described in Cortelezzi

et al.,'® Eqgs. (1)-(3) are converted into the state-space equa-
tions:

dt

with the initial condition x(0)=x,, where x is the internal
state vector, u is the control vector, z is the measurement
vector. Matrices A,B,C contain the dynamics of the two-
dimensional plane Poiseuille flow, actuators, and sensors, re-
spectively. Matrix D contains the coupling between sensors
and actuators. The cost criterion, Eq. (4), becomes

7= lim j [z'z+u"F Fulds, &)
tj‘—‘m

where the superscript T denotes a transposed quantity. The
matrix F is obtained by spectrally decomposing the last term
in the cost criterion, Eq. (4).

The advantage of the present formulation is that the
whole problem decouples with respect to the wave number
when Egs. (5) and (6) are transformed into Fourier space in
the streamwise direction. All matrices in Egs. (5) and (6) are
block diagonal, which allows the above state-space system
into equivalent N state-space subsystems.?* For a given wave
number, o, the state-space subsystem equations are

dx,
—=AX,+B.u,,

z,=C.x,+D,u,, 7N
dt :

dx '
——=Ax+Bu, z=Cx+Duy, &3
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with the initial condition x,(0)=x,¢. It can be shown that
the cost criterion, Eq. (6), also decouples with respect to the
wave number (otherwise the wave number decoupling is not
possible while the system itself is decoupled), and we obtain
N performance indexes. For a given wavé number, «, the
cost criterion is defined as

H
Fo= lim 7,= lim | [z, +u"FF u,]dr. ®)
o L

Consequently, the design of a two-dimensional controller for
the system, Eq. (5), with a specified cost criterion, Eq. (6),
has been reduced to the independent design of N single-wave
number controllers for the subsystems, Eq. (7), along with

Eq. (8).

1il. MODEL REDUCTION AND CONTROLLER DESIGN

In this section we derive a lower-order two-dimensional
controller in two steps.' First, we construct a lower-order
model of Eq. (7), and subsequently, design a single-wave
number controller for the reduced-order model. To obtain a
lower-order model, we transform Eq. (7) into a Jordan ca-

nonical form. The matrices ﬁa,ﬁa,émﬁa that describe the
dynamics of the reduced-order model are obtained from the
matrices, A,,B,,C,,D, in the Jordan canonical form by
retaining rows and columns corresponding to equally well
controllable and observable states. The overcaret denotes the
quantities associated with the reduced-order model.

Although a rigorous mathematical framework for the de-
sign of disturbance attenuation (H.,) linear controllers is
provided by the control synthesis theory,'®!® for this study
LQG(H,) synthesis is preferred. A brief review will be
given in a self-contained manner to provide the necessary
governing equations for closed-loop stability analysis. 2’

The LQG problem for each wave number « is formu-
fated as a stochastic optimal control problem described by
equations

2, =A%+ B +T,w,, ©)
¢

Kot D, +v,, (10)

where I, is an input matrix, w, and v, are both white noise
processes with zero means and autocorrelation functions,

E[wa()wo(D)]=W,(t—1),

E[v ()Ve(1)]=V,8(1— 1),

where E[-] is the expectation operator averaging over all
underlying random variables and 8(¢—7) is the delta func-
tion. Note that W, and V,, the power spectral densities, will
be chosen here as design parameters to enhance system per-
formance. An additional comment on the controller design
process will be given at the end of this section.

The LQG controller is determined by finding the control
action u,(Z,), where Z,={z(7);0< =<t} is the measure-
ment history, which minimizes the cost criterion,

(1
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. 1
Jp=lim ——

[[—)GD ff“"t
H

xg( j /(K1Qu%,+ 23N, +uR u)dr), (12)
H

subject to the stochastic dynamics system model equations
Egs. (10)—(11). Note that, from Egs. (7)—(8), Q,=C¢,,
N,=CID,, and R,=D'D,+F’F,. The division by (¢
— £} ensures that the cost criterion remains finite in the pres-
ence of uncertainties in the infinite-time problem (/).
Note that Eq. (12) can include Eq. (8), where

i
J= lim —E[7,], (i3)
tyow tf—t

and the limit in Eq. (8) is explicitly denoted in Eq. (13). Note

that even though the time interval is infinite, the time re-
sponse is still measured by the eigenvalues of the closed-
loop system. We consider the infinite-time problem with
time-invariant dynamics because the controller gains become
constants.

By nesting the conditional expectation with respect to Z,
within the unconditional expectation of Eq. (13), ie.,
E[J,)=E[E[J,/Z,]], where E[-/Z,] denotes the expecta-
tion () conditioned on Z,, the cost criterion can be written
as

Jo= lim ——
;f_-,m !f_f

. ,
XE( f f{xiQ&x&-i-Esz&ug-i-ﬁiRaua.-i—tr{Pa}}dT ,
t

(14)

where X,=E[X,/Z,] is the conditional mean estimate of the
state x and P, is the conditional error variance. This cost
criterion is now minimized subject to the estimation equa-
tions discussed below. Note that P, does not depend on the

control {see Eq. (18) below] and, therefore, does not enter .

into the optimization process.

The solution to the regulator problem® is a compensator
composed of a state reconstruction process, known here as a
filter (in the no-noise case it is known as an observer) in
cascade with a controller {see Fig. 1, where E; is the estima-
tor and C; is the controller). The state estimate (conditional

mean) X,, is governed by the so-called Kalman filter as

X, =AX,+B
A e e~ (1%)
V,=z,—Z2,=C(X,—X,)+v,.
If the reduced-order system were the actual system, then v,

in Eq. (15} is correct. When the actual system is considered
and the filter is implemented based on the reduced-state

space, z rather than Z is the measurement and the filter re-
sidual becomes

v,=z,—C,X,—Du,. (16)

Lee ef al.

The Kalman gain matrix L, constructed to trade the accu-

racy of the new measurements against the accuracy of the

state propagated from the system dynamics, is given by
L,=p,CTv! a7

- Sl - S 4

where P, is the error variance in the statistical problem.
In the infinite-time stationary formulation, the error P, is
the solution to the algebraic Riccati equation (ARE),

AP +PAL+T, W IT—P CTV,IC,P,=0. (18)

If the system is (A,,C,) observable and (A,,B,) control-
lable, then P, is positive definite. Under these assumptions,
it can be shown that the difference between the internal state
§,I and the estimate state Ea,, ie., the error,

~ —

,=X,—X,, (19

goes to zero as time goes to infinity. In other words, the
evolution equation,

e,= Apt L v+T,w, (20)
is stable, i.e., all the eigenvalues of the matrix,

A=A, ~L.E,, @)
have a negative real part.

Minimizing the infinite-time cost function J, Eq. (14)
subject to Eq. (15) yields the following control law:

A

u,=—Kx,, o (22)
where
K,=R;!(BTs,+N,), (23)

and S, is the solution of the algebraic Riccati equation
(ARE),

AS,+S,AT+Q,—(S,B,+N,)R;(BIS,+N))=0. (24)

It should be remarked that the control gain matrix K, is
determined from functions only of the known dynamics co-
efficients (A,,B,) and the weighting in the cost criterion
(Q4,R,), and not the statistic of the input (V,, W,). Con-
sequently, K, is determined from a performance index as
Eq. (12), independent of the stochastic inputs. If (A,,B,) is

controllable and {ﬁa,th"‘?‘) observable, then the loop coeffi-
cient matrix,

A= Aa— K{!ﬁﬂ’ 3 (25}

is stable and S, is positive definite. The controllable and
observable conditions can be weakened to stabilizable and
detectable.?!

When we combine the estimator and the regulator to-

gether, the dynamic system composed of the controlled pro-
cess and filter becomes

e A 0 [
(j&) _| A ]( eg) . ( La,v,:+ l’ew&) . 26)
xa’

i’txérx AC Eﬂ’ Lzz‘!&
Note that any choice of two between e, X,,, and X, produce
the same dynamics because they are algebraically related by
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Eq. (19). Under the above controllability and observ&hiiityi

assumptions, Ar and A, have only stable eigenvalues if op-
timal gains L, and K, of Egs. (17) and (23) are used. If the
actual linear system is used, then x, and the reduced-order
state estimate X, are used to form the closed-loop dynamic
system rather than that given in Eq. (26). The eigenvalues of
the dynamical matrix now dictate the system stability and
will differ from the ideal case of Eq. (26).

The parameters used in our LQG design are now ad-
dressed. Since the power spectral density is not known, for
simplicity of the design we consider V,, and W, to be of the
form V,= Bl and W_=pl, where B and p are scalar and I is
an identity matrix. Only the ratio of 8 and p is important.
Furthermore, by choosing I',=B,, loop-transfer recovery
(LTR) of the LQG controller to full-state feedback'® guaran-
tees that robust performance occurs when the process noise
power spectral density goes to infinity, i.e., p—co, provided
there exists no nonminimal-phase zero in the plant. In our
case, there are no nonminimal-phase zeros and robust perfor-
mance means approximately obtaining 60° of phase margin
and 6 db of the gain margin. Note that the choice of T',
=B, implies that the noise is generated along the wall as is

the control and could be interpreted as due to wall roughness.

Furthermore, the values of p and B were determined by tun-
ing the controller in the presence of turbulent flow. The de-
gree of loop transfer recovery varied from controller to con-
troller. ‘

As described above using LQG/LTR assumes that the
uncertainty is at the wall and effects the dynamics in the
same way as the control. Since the system has the same
controllability with respect to both the control and distur-
bances, state-space reduction for controlier design was
straightforward. This is in contrast to H,, control used by
Bewley and Liu,!* where uncertainty is assumed uniformly
throughout the channel. Since controliability of the distur-
bances is different from that of the control, model reduction
may not be straightforward. Furthermore, robustness in terms
of traditional measures of the gain and phase margin in con-
trol engineering are aiso obtained by using LQG/LTR. For
these reasons LQG/LTR is used for the present study instead
of the unstructured uncertainty ., controllers.

Figure 1 links the mathematical formulation to its com-
putational implementation by summarizing in a block dia-
gram the control strategy described above. The two-
dimensional distributed controller can be programmed in a
computer routine whose input is a matrix containing the gra-

dients of the streamwise velocity component and whose out- -

put is a matrix containing the blowing and suction at the
wall. Each column of the measurement matrices contains the
gradients of the streamwise velocity component along the
wall at a given spanwise location. Each column is processed
in parallel by a fast Fourier transform (FFT) and converted
into z,’s. Each single-wave number controller, Eqs. (9)—
(10), is integrated in time by, for example, a third-order low-
storage Runge—Kutta scheme. The u,’s are computed in par-
allel. An inverse FFT converts u,,’s into the columns of the
matrix containing the blowing and suction at the wall along
the streamwise direction. This routine can be embedded in
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any Navier—Stokes solver able to handle time-dependent
boundary conditions for the control of three-dimensional
channel flows.

Figure 1 also provides the basic architecture for the po-
tential implementation of the present distributed two-
dimensional controller in practical engineering applications.
For instance, the gradients of the streamwise velocity com-
ponent can be measured by microelectromechanical-systems
(MEMS) hot-film sensors.”® For each xy plane, analog-to-
digital converters {A/D) and digital signal processors (DSP)
convert the measured gradients into z,’s. Each single-wave
number controller, Eqs. (9)—(10}, is replaced by a micropro-
cessor, and parallel computation produces u,’s. ADSPand a
digital-to-analog converter (D/A) produce the actuating sig-
nal in each xy plane. A variety of actuators, such as synthetic
jets, microbubble actuators, and thermal actuators, can
mimic small-amplitude blowing and suction at the wall.2®

Although the structure of this compensator is simplified
by the parallel computation (for all spanwise directions), it
does require processing of all the sensor measurements (for
all streamwise directions). The controller is essentially cen-
tralized because all information is used and the actuators are
activated spatially over the assumed channel. Controllers
based explicitly on the spatial distribution of the control,
suggested by Bamich ez al,?’ show that there is a spatial
decay rate. Our controller can be constructed to represent a
discrete form of their controller and given the spatial decay
rate for our configuration, i.e., the size of the channel could
be chosen consistent with that decay rate. Nevertheless, our
representation allows a significant decrease in on-line com-
putation by identifying the Fourier modes and the number of
states associated with those modes that best reduce turbu-
lence as discussed in the next section.

IV. PERFORMANCE OF A TWO-DIMENSIONAL
CONTROLLER

For the purpose of testing the performance of a control-
fer, we performed direct numerical simulations of a turbulent
channel flow at Re,=100. A spectral code was used with a
computational domain of (47,2,47/3) and a grid resolution
of (32,65,32) in the (x,y,z) directions. The numerical tech-
nique used in this study is essentially the same as that of Kim
et al.®® except that the time advancement for the nonlinear
terms is a third-order Runge—Kutta (RK3) method. The
second-order accurate Crank—Nicolson (CN) method is used
for the linear terms.

We designed a distributed two-dimensional controller in
two steps. First, we designed reduced-order controllers for
two-dimensional Poiseuille flow in a periodic channel of
streamwise length L, =47 at Re= 5000, which has the same
mean wall-shear stress as turbulent channel flow at Re,
=100. Subsequently, we fine-tuned the single-wave number
reduced-order controllers in order to minimize the magnitude
of the Fourier coefficients of the wall-shear stresses in tur-
bulent channel flow at Re,=100. We used N=32 and M
=60 in this linear model flow. Controllers operate at both
top and bottom walls in parallel. If the two-dimensional con-
trollers without model reduction were applied at each z
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FIG. 2. Time history of the drag for the controlled and uncontrolled flows:
~-——, controlled flow; , uncontrolled flow.

plane, then the order of the ensemble of controllers would be
64X3904=249 856. Using the model reduction technique
previously described, we designed eight single-wave number
controllers of order 12, corresponding to the eight fowest
wave numbers. Since we use the eight lowest single-wave
number controllers in our simulation, the combined order of
the controliers is 64X96=6144. It represents a state-space
reduction of about 97.5%, with respect to the full-order sys-
tem.

Figure 2 shows the time history of the drag in the un-
controlled and controlled flows. Drag is measured by the
mean value of the wall-shear stresses averaged over each top
and bottom wall. This two-dimensional control yields about
a 10% drag reduction. Choi ef al.* reported that the in-phase
u control measured at y* =10 also gives a 10% drag reduc-

tion. This in-phase streamwise velocity at the wall causes a

similar effect, du'/dy |,=0, which is the to-be-minimized
target of our cost criterion in our two-dimensional controller.
Note that this observed drag reduction is a byproduct since
our controller is designed to suppress the fluctuations of the
streamwise wall-shear stress, not the mean wall-shear stress.
Note also the sudden drop in the drag as soon as the control-
ler is switched on at £=25. This transient phenomena is also
observed in other studies.®®

Figure 3 compares the magnitude of Fourier coefficients
of the wall-shear stresses in the controlled and uncontrolled
flows. The wall-shear stresses are measured at the bottom
wall at a given spanwise location. Figures 3(a) and 3(b) show
the comparisons corresponding to wave numbers k,=0.5 and
k,=1.0, respectively. Both figures show an order-of-
magnitude reduction between the controlled and uncon-
trolled cases. The magnitude of the Fourier coefficients of
wall-shear stress decreases very quickly as soon as the con-
troller is activated at £=25. These results indicate that our
distributed two-dimensional linear reduced-order controlier
suppresses disturbance wall-shear stress remarkably well,
even in a fully developed turbulent flow. The high wave
number components of the wall-shear stress in Fig. 3(c) do
not show any reduction since only the lowest eight single-
wave number controllers (up to k,=4.0) are used in the con-
trol of flow. Examinations of other spanwise locations show
similar results.

Contours of the disturbance wall-shear stresses at the

Lee ef 2l
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| dwdy, | (k=1.0)
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FIG. 3. Time history of the magnitude of the Fourier coefficients of the
wall-shear stresses measured at the bottom wall at a given spanwise location
for the controlied and uncontrolled flows: , uncontrolled flow; ——-,
controlled flow. (a) £,=0.5, (b) k,=1.0, and (c) k,=6.0.

bottom wall in the controlled and uncontrolled flows at ¢
=30 are shown in Fig. 4. Contours for the uncontrolled flow
show the usual elongated regions of low- and high-shear
stress. Note that contours for the controlled flow show the
dramatic effect of the distributed two-dimensional controller.
The long streaky wall-shear stress region spans almost the
entire streamwise direction, indicating that the low wave
number components {except the zero wave number that we
do mot control) are completely suppressed, which is consis-
tent with Fig. 3. The remaining spanwise variations, i.e., the
alternating regions of high- and low-shear stress, are due to

(a) e
N R e P
TR rr s L
(b)
N

0 SXITIT Ter PR 1 P F R A

z 3 N 10 12
FIG. 4. Contours of disturbance wall-shear stresses at the bottom wall at ¢

=30: {a) uncontrolled flow; (b) 2-D-controlled flow. Negative contours are
dashed.
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the fact that the two-dimensional controilers distributed
along the streamwise direction are operated independently
from one z plane to another.

The above results demonstrate that our distributed two-
dimensional controlier designed from the linear model works
remarkably well in suppressing near-wall disturbances in the
fully developed turbulent flow. The reduction of fluctuating
wall-shear stress led to drag reduction. However, this distrib-
uted two-dimensional controller has a limited impact on the
total drag since it cannot control the spanwise variation of
the wall-shear stress. In the next section an augmentation to
the distributed two-dimensional controller is presented and
implemented.

V. AUGMENTED THREE-DIMENSIONAL CONTROLLER

In the previous section, successful control of fully devel-
oped turbulent channel flow has been obtained by applying a
distributed two-dimensional controlier. However, it has been
observed that this controller does not account for the span-
wise variations of fluid motion. An augmentation to the dis-
tributed two-dimensional controller that accommodates the
three-dimensional characteristics of a fully developed turbu-
lent flow is developed in this section.

A simple ad hoc control augmentation scheme is intro-
duced in an attempt to capture the remaining spanwise varia-
tions of the controlled fiow. This additional control, which
generates blowing/suction to attenuate the spanwise variation
of the wall-shear stress, is given as follows:

ou|®?  gu
Uad(z}=c(§; ~%

&

X
), @7
w w
where du/ay|$? and du/dyl%, are the streamwise velocity
gradients averaged over the xz plane and the x direction,
respectively, and C is a constant to be adjusted for the best
performance. The subscript ad indicates the ad hoc control,
and v, is a function of only z. Therefore, the new control
input is defined by

v,{x,2)=v,4+Vsp, (28

where v,.p is the actuation velocity generated by the distrib-
uted two-dimensional controller used in the previous section.

Using the distributed two-dimensional controller aug-
mented with this ad hoc control scheme, the control of the
fully developed turbulent flow with Re,= 100 increased drag
reduction to about 17%, as shown in Fig. 5. As before, the
turbulent flow is left free to evolve without any wall actua-
tion until £=25. As soon as the controller is activated at ¢
=25, the drag drops sharply within a very small time period.
The constant, C, in Eq. (27) is adjusted such that the root-
mean-square (rms) value of the actuation is maintained at
0.1u,, where u, is the wall-shear velocity for the uncon-
trolled flow. We have found empirically that C between
0.05u, and 0.2u4, gives a similar performance. An introduc-
tion of this simple control augmentation enhances the drag
reduction, indicating that more sophisticated controllers that
best take into account the three-dimensionality of turbulent
flow may produce even more efficient suppression of skin-
friction drag.
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FIG. 5. Time history of the drag for the controlled and uncontrolied flows:
, uncontrolled flow; ———, 2-D-controlled flow; - -+, ad hoc-controlled

flow.

Figure 6 presents the comparison of contours of the dis-
turbance wall-shear stresses at the bottom wall between the
ad hoc controlled flow and the uncontrolled flow at ¢=30.
Compared to Fig. 4, additional effort in the spanwise direc-
tion, v,y, removes the pronounced peak—valley variation of
the wall-shear stress that is observed in the controlled flow
with the distributed two-dimensional controliers [see Fig,
4(b)]. Note that the high wave number components of the
wall-shear stress are persistently sustained because of the
lowest eight single-wave number controllers adopted in the
control of flow.

VL. TURBULENCE STATISTICS

Some turbulence statistics of the flow field associated
with the two controllers applied in this paper were examined
to investigate the effect of the controllers on turbulence. All
statistical quantities were averaged over a sufficiently long
interval of time as well as over the planes parallel to the wall,
For simplicity, the flows controlled by the distributed two-
dimensional controller only and the distributed two-
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FIG. 6. Contours of disturbance wall-shear stresses at the bottom wall at ¢
=30: (a) uncontrolled flow; (b) ad hoc-controlled flow. Negative contours
are dashed.
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20r

FIG. 7. Mean-velocity profiles: -+, ad hoc-controlled flow; ———, 2-D-
controlled flow; -, uncontrolled flow,

dimensional controller augmented with the ad hoc control
scheme are called *‘2-D-controlled”” and “‘ad hoc-
controlied”” flows, respectively.

The mean velocity profiles normalized by the actual
wall-shear velocities are shown in Fig. 7 for three different
channel flows. These profiles show the same trend shown in
the Choi et al.* drag-reduced flow: the slope of the log law
for controlled flows remains the same while the mean veloc-
ity itself is shifted upward in the log-law region.

The root-mean-square (rms) values of turbulent velocity

fluctuations are shown in Fig. 8 and compared to those of the
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FIG. 8. Root-mean-square values of turbulent velocity fluctuations normal-
ized by the wall-shear velocity, u, for the uncontrolled flow: , un-

controlled flow; ——~, 2-D-controlled flow; - -+, ad hoc-controlled fiow.
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FIG. 9. Root-mean-square values of vorticity fluctuations normalized by the
wall-shear velocity in wall coordinates: , uncontrolled flow; ———,
2-D-controlled flow; ---, ad hoc-controlled flow.

uncontrolled flow. Note that all quantities in this figure are
normalized by the wall-shear velocity of the uncontrolled
flow. The controllers reduce the value of turbulent intensity
significantly throughout the channel, especially for the wall—
normal and spanwise components. The reduction of these
quantities in the ad hoc-controlied flow is greater than that in
the 2-D-controlled flow. The increase in v, very near the
wall is due to the control input. A similar feature is also
observed by Choi et al® and Lee et al® Both controllers
mitigate the rms of spanwise velocity fluctuation throughout
the channel compared to that in uncontrolied flow. However,
the introduction of v, in Eq. (27) causes this value to in-
crease very close to the wall, which also leads to an increase
in the streamwise vorticity at the wall.

Root-mean-square values of vorticity fluctuations for the
controlled flows are compared with those for the uncon-
trolled flow in Fig. 9. All components of vorticity fluctua-
tions are significantly reduced throughout the channel. Very
close to the wall, however, the increase of streamwise vor-
ticity in the ad hoc-controlled flow is due to the streamwise
vorticity built at the wall by the ad hoc controller. The high
streamwise vorticity at the wall slows the sweeping motion
of high-momentum fluid induced by the streamwise vorticity
away from the wall, thus resulting in a significant reduction
in skin friction. A similar feature is also observed in Lee
et al.® Note that the streamwise vorticity at the wall for the
2-D-controlied flow, however, is less than that for the uncon-
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FIG. 10. A comparison of streamwise vorticity contours in a yz plane be-
tween controlled and uncontrolled flows: (a) uncontrolled flow; (b) 2-D-
controlled flow; (c) ad hoc-controlled flow. Negative contours are dashed.

trolied flow. The reduction of w, is a direct consequence of
the controller, which was designed to reduce du'/dy|,,. The
reduction of w, also indicates that our controllers weaken the
strength of near-wall streaks, This also decreases the streak
instability, which is shown to be responsible for regenerating
the near-wall streamwise vortices.2**°

Figure 10 compares the streamwise vorticity fields in the
uncontrolled and controlied flows. The strength of the near-
wall streamwise vorticity for the controlled flows are greatly
attenuated due to the wall transpiration produced by the con-
trollers. It is discernible that the ad hoc controller diminishes
the streamwise vorticity substantially more. The reduction of
the strength of the streamwise vorticity has also been ob-
served by Lee efal® While Lee efal’ suppressed the
streamwise vorticity field with the physical understanding
that the control based on the weighted sum of dw/dy|,, can

prevent the physical eruption at the wall, the present control-

lers attenuate the streamwise vorticity strength by minimiz-
ing the streamwise disturbance wall-shear stress systemati-
cally. The present results further support the notion that a
successful attenuation of the near-wall streamwise vortices
results in a significant reduction in skin-friction drag.*

Vil. CONCLUSIONS

A reduced-order linear feedback control based on a dis-
tributed two-dimensional controller design is applied to a
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turbulent channel flow. A controller based on a reduced
model of the linearized Navier—Stokes equations for a lami-
nar Poiseuille flow was designed by using LQG (H,)/LTR
synthesis, This controller was implemented using input mea-
surements that are the gradients of the streamwise distur-
bance velocity and output controls that are the blowing and
suction at the wall.

First, we applied the distributed two-dimensional con-
troller to both walls of a turbulent channel flow at Re,
=100. Eight single-wave number controllers corresponding
to eight lowest wave numbers, reducing the order of the con-
troller about 2.5% of the order of the full size system, are
applied to attain a skin-friction reduction of 10% with re-
spect to the uncontrolled turbulent flow. Next, a simple ad
hoc augmented control scheme of the distributed two-
dimensional controller is introduced to capture the three-
dimensionality of turbulent flow. The control of fully devel-
oped turbulent flow by the distributed two-dimensional
controller augmented by the ad Aoc control scheme produces
a 17% reduction in skin-friction drag. Motivated by this re-
sult, we are currently developing controllers to more effi-
ciently account for the three-dimensionality of turbulent
flow.

It should be noted that the present controller, which is
based on a reduced-order linear system, has achieved its de-
sign objective, i.e., minimization of the wall-shear stress dis-
turbances, quite remarkably when applied to the nonlinear
flow. It was anticipated that the reduction of disturbances
would also lead to a substantial reduction of the mean wall-
shear stress. Unfortunately, this turned out not to be the case,
suggesting that some other cost functions should be ex-
plored. By comparing with our previous results, ™! it was
found that the present controller is not as effective in dimin-
ishing the strength of the streamwise vortices in the buffer
layer, which was the primary target for other controllers, but
achieved its design goal by mainly affecting the region very
close to the wall. In this regard, minimization of the total
disturbance energy in the flow field? or minimization of the
linear coupling term®* appears to be a good candidate to be
explored. Whether either of these cost criterion is indeed
controllable in nonlinear flows, however, remains to be in-
vestigated.

This study is carried out at low Reynolds number.
Whether our controller, based on the reduced-order linear
model, would work in other turbulent flows, should be drawn
from real experiments or simulations at high Reynolds num-
ber. However, we expect that it should work equally well for
high Reynolds number flow since our controller, derived
from LQG/LTR synthesis, recovers the robustness of LQR,
whose characteristics have been partially tested over the dif-
ferent Reynolds number flows. >

The statistics of controlled and uncontrolled flows are
compared. The mean velocity profile is shifted upward in the
log region, a typical characteristic of drag-reduced flow. Ve-
locity and vorticity fluctuations as well as Reynolds shear
stress (not shown) are significantly reduced due to the
blowing/suction generated by the controller. However, a ma-
jor change is confined to the wall region. Instantaneous flow
fields show that the distributed two-dimensional controller
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attenuates and modifies the streaky structure of the boundary
layer. Streaks are observed to span the entire streamwise
direction with velocity variations in the spanwise direction.
These variations are substantially reduced by the augmented
controller.

The three-dimensional aspect of the distributed two-
dimensional controller by the augmentation of the ad hoc
control further reduced the skin-friction drag. This three-
dimensional controller produces secondary streamwise vor-
ticity at the wall, which slows the sweeping motions of high-
momentum fluid induced by the streamwise vorticity away
from the wall. This induced retarding of the primary stream-
wise vorticity leads to additional drag reduction, which was
also observed in Choi et al.*

Regarding the scaling factor € in Eq. {27), we found an
optimal value of C that yields the blowing/suction of 0.1x,.
With this optimal C, the augmented controller generates wall
transpiration with a rms value of about 0.12u,. The required
power input per unit area to the system, p,v,+0.5pu>

w

=~{.1 puf, » is significantly less than the power saved from the
drag reduction, AC;/C;7,U,~3.2pu>, where p,,, p, (oF
7w, and U, are the wall pressure, density, skin-friction co-
efficient, averaged wall-shear stress, and the centerline ve-
locity, respectively.

Although the present two-dimensional controller aug-
mented by an ad hoc three-dimensional controller has shown
a promising result, it is apparent that we need to develop a
three-dimensional controller using the same formulation pre-
sented in this paper. Extensions of LQG(H,)/LTR design by
using three-dimensional channel flow models are in
progress. 343
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We investigate the application of linear-quadratic-Gaussian (LQG) feedback control,
or, in modern terms, #’; control, to the stabilization of the no-motion state against the
onset of Rayleigh-Bénard convection in an infinite layer of Boussinesq fluid. We use
two sensing and actuating methods: the planar sensor model (Tang & Bau 1993, 1994),
and the shadowgraph model (Howle 19974). By extending the planar sensor model
to the multi-sensor case, it is shown that a LQG controller is capable of stabilizing
the no-motion state up to 14.5 times the critical Rayleigh number. We characterize
the robustness of the controller with respect to parameter uncertainties, unmodelled

“dynamics. Results indicate that the LQG controller provides robust performances
even at high Rayleigh numbers.

1. Introduction

When a layer of fluid at rest is heated from below, fluid motion will develop
into well-organized convection patterns if the temperature difference across the layer
is sufficiently large (Cross & Hohenberg 1993). For certain industrial applications,
developing a temperature gradient across the fluid layer is unavoidable but at the
same time preventing convective fluid motions is desirable. Some examples involving
undesirable effects of convection are materials processing, solidification, semiconduc-
tor melts, welding, evaporative coating and crystal growth. Our aim is to use robust
modern control methodologies to inhibit the onset of convection while permitting a
large thermal gradient across the layer of fluid.

The idea of stabilizing the fiuid layer against the onset of cellular motions has been
advanced by Tang & Bau (1993, 1994, 1998a,b) and Howle (1997a—c, 2000). Tang &
Bau assumed that the temperature field can be measured continuously on a horizontal
plane in x,y and ¢ (see figure 1}. The measurements are then used to control the
temperature at the lower wall, in order to cancel the thermal disturbances in the
fluid that drive the overturning motions. Howle (1997a) investigated a similar control
problem, except in his case the measurements consist of shadowgraph images of the
fluid. The shadowgraph images capture the horizontal distribution of the vertical-
mean temperature. Moreover, in Howle’s model, heat flux rather than temperature
is prescribed at the lower wall. Both types of sensor and actuator models will be
considered in this study using a more sophisticated form of control synthesis.

Based on proportional feedback control, the results of Tang & Bau and Howle
show that both sensor models exhibit a maximal achievable stable value of Rayleigh
number Ra, beyond which this simple controller is ineffective for stabilization. For the
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FiGure 1. Planar sensor model.

planar-sensor model Tang & Bau (1993, 1994) showed that the controller can inhibit
convection up to a maximum of about 3.8 times Ra, at Pr = 7, where Ray = 1707.76
is the uncontroiled critical value. This value is Pr-dependent. Furthermore, they (Tang
& Bau 1994) considered a velocity actuator which inhibits convection up to 10 times
the critical Rayleigh number. For the shadowgraph sensor model! this maximum
is about 3.13 times Rayo = 1295.78. In §4 the differences in performance between
the two sensor models using only the thermal actuators, and the limstatlons of the
proportional feedback control will be discussed.

The degree of stabilization can be improved significantly by using synthesis methods
for multiple-input/multiple-output systems which produce dynamic compensators.
However, in this study a distributed single-input/multiple-output strategy will be
considered, since normal modes of different wavenumbers decouple and each normal
mode can be controlled individually.

One such synthesis method is known as the linear-quadratic-Gaussian (LQG)
control (Bryson & Ho 1969), or, in modern terms, 3, control. Other methods such as
H# ' synthesis (Rhee & Speyer 1991) could also be applied, but we suspect with similar
results. The LQG approach allows us to consider a2 nominal design Rayleigh number
(Ra") significantly higher than that considered in the previous studies. For values of
Ra sufficiently near Ra", stabilization with the LQG controller appears always to be
achievable. Moreover, for Ra" below a certain threshold, the complete range of Ra
up to a critical value can be stabilized. In this study, we show that the system can
be stabilized up to Ra = 14.8Ra,. In this range the first even and odd modes of
convection can become unstable. However, these two modes are damped by the LQG
controller. The higher modes are naturally damped within this range of Ra. Qur aim
is to ensure stability over the entire range of Ra up to a maximum critical Rayleigh
number, without the formation of isolated unstable regions within this range. This
requires the determination of the value of Ra™ to produce this maximum critical
Rayleigh number.

Unlike the proportional control method, the LQG synthesis method requires some
elaboration. This synthesis method consists of two steps: (i) a reconstruction of the
internal states of the plant based on the measured information, and (ii} a regulation
of the plant states in order to drive the estimated perturbations to a zero level. To
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accomplish these two steps, the LQG controller is formed by a Kalman filter and an
optimal regulator in cascade.

The LQG synthesis method has recently been used in the study of drag reduction
in channel flow by Joshi, Speyer & Kim (1999) and by Cortelezzi & Speyer (1998)
based on Joshi, Speyer & Kim (1997) who first introduced the system theory approach.
Cortelezzi & Speyer (1998) presented a framework suited to practical implementations
and demonstrated the performance of the design in numerical simulations. Following
this framework, our investigations focus on a robust stability analysis of the closed-
loop system as applied to Rayleigh-Bénard convection. Design parameters of the
filter and regulator are carefully chosen to enhance the robustness of the stabilization.
Several integrated design aspects are discussed.

This study is intended to provide a design of controllers for future experiments.
The design goal is to maximize the stability range of Rayleigh number. This implies
designing controllers at the highest possible design value Ra®, without causing an
unstable, isolated region to form below Ra®. Since the controllers are implemented
at each wavenumber and only Ra is being varied, one form of robustness being
demonstrated is the robustness of the system with respect to variations in Ra away
from Ra’. Another form of robustness is concerned with uncertainties in the system
apart from the mismatch in Ra, for example uncertainties due to nonlinearities or

“unmodelled dynamics. The objective of this paper is to produce a robust design based
on classical relative stability measures of gain and phase margins that accommodates
to a degree unmodelled dynamics and nonlinearities. Nonlinear simulation is required
to validate the design. We will show that the gain and phase margins depends crucially
on the number of sensors used. More measurements implies better knowledge about
the internal states of the system. In this study we are interested in determining
the minimum number of sensor planes, as well as their locations, for achieving a
reasonable degree of robustness. From a theoretical point of view, the planar sensor
model appears to be more effective and accurate than the shadowgraph sensor model,
mainly because a multiple planar sensor configuration can be readily incorporated. As
the results will show, increasing the number of sensors, i.e. the measured information
about the internal states, is crucial for achieving the desirable robustness.

We now proceed to §2 to derive the standard state-space equations for both sensor
models. In § 3, we review the theory of the LQG optimal control synthesis. In §4, the
results are discussed and in § 5, we conclude the paper.

2. State-space formulation

In this Section, we derive the state-space equations. Following the framework pre-
sented by Cortelezzi & Speyer (1998), we start from the governing equations and
subsequently transform them into a set of ordinary differential equations expressed
in state-space form. This procedure includes a transformation of variables, a spec-

tral decomposition of the resulting equations and expressing these equations in the
standard state-space form.

2.1. Governing equations

We consider an infinite layer of Boussinesq fluid heated from below, which is parallel
to the (x, y)-plane and bounded by non-permeable walls at z = +d/2 (see figure 1).
Our aim is to compare the performance of the LQG controller with the performance of
the proportional feedback control method based on two known models. Therefore, in
our formulation the boundary conditions used in these two models will be preserved.
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For both models, the upper wall is assumed to be infinitely conductive at constant
temperature T7. For the planar sensor model (Tang & Bau 1993, 1994, 19984,b)
temperature is measured on an interior plane (see figure 1, T"(z) denotes the basic
state). These measurements are used to modify the constant lower wall temperature T,
with the actuator temperature 8.(x, y, t). For the shadowgraph sensor model (Howle
1997a,b) measurements of the vertical-mean temperature distribution are obtained in
the form of a shadowgraph. These measurements are used to modify the constant heat
flux Q" at the lower wall with the actuator heat flux g’(x, y, t). Different actuators are
used to allow direct comparisons between the performances of the LQG controilers
and the proporticnal controllers used in the original models.

We scale length, time, velocity, pressure relative to the hydrostatic pressure, and
temperature, respectively, by d, d*/x, x/d, pvi/d® and (T; — T;) or Q°d/K depending
on the model chosen, where p, k, v and K are, respectively, density, thermal diffusivity,
kinematic viscosity and thermal conductivity of the fluid. The linear stability equa-
tions for the vertical perturbation velocity w(x, y,z,) and perturbation temperature
0(x,y,z,t) are

(Pr718, — V2)V?w = RaV3 8, @1

@ —-VH8=w, (2.2)
where V] = V2 —9,, (e.g. Chandrashekhar 1961). The Prandtl number is Pr = v/x.
The Rayleigh number for the planar and shadowgraph cases are defined, respectively,
as Ra = ag(T; — T;)d*/vk and Ra = «gQ°d*/Kvk, where a is the coefficient of
volume expansion and g is the gravitational acceleration.
The boundary conditions on velocity are

wix,y,+1/2,t) = d,w(x,y,+1/2,t) = 0. (2.3)

For the thermal boundary conditions, the upper wall is considered isothermal so that
the perturbation temperature must satisfy ‘

8(x,y,1/2,1)=0. 24)

Based on the planar and shadowgraph sensor models (Tang & Bau 1993, 1994; Howle
1997a), we apply a continuous time-dependent control temperature along the lower
wall for the planar sensor case,

6(3(’ ¥, -1 /’2, t} = ee{x’ Y, t}’ (2'5}

while for the shédowgr&ph model we apply a continuous time-dependent heat flux g,
instead,

azg{x’ys—if!29 t) = QC{x!ya t) {2'6)
The planar sensor model measures the temperature distribution at a number I of

(x,y)-planes located at z = z{) € [—1/2,1/2], where i = 1,2,...,I. The measurement
equations are

GSJ(xs}’ﬁ t} - 9{x93,szf}s {), i = 1’29"‘3'{’ (2.?}

where z{) is the z-coordinate of the ith sensor plane. The shadowgraph model
measures the average density over the whole layer, p;, which is expressed in terms of
temperature by
1/2
ps(x,y,t) = V26(x,y,z2,1)dz, 2.8)
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where p; is the measurement function in density. We refer readers to Howle (1997a)
for the derivations of this integral expression.

2.2. Transformation of dependent variables and cost criterion
We transform the perturbation temperature so that equations (2.1)~(2.8) have hom-
ogeneous thermal boundary conditions. The perturbation velocity remains unchanged.
With the perturbation temperature as 8 = ¢ -+ £, we obtain for both sensor models

(Pr~'8, — V*)V*w — RaV2 ¢ = RaV3¢, 2.9)
(8, — VA —w = —(3, — V?)¢, (2.10)
subject to the boundary conditions
wix,y,£1/2,t) = 3,w(x,y,+1/2,t) = ¢(x,y,1/2,t) = 0. (2.11)
Furthermore, for the planar sensor model ¢ must satisfy the boundary condition
¢(x,y,—1/2,8) =90, {2.12)
while for the shadowgraph sensor model ¢ must satisfy the boundary condition
0.9{x,y,—1/2,t) = 0. ; {2.13)

The forcing function ¢ satisfies a non-homogeneous boundary condition at the
lower wall and a homogeneous boundary condition at the upper wall. For the planar
case these conditions are

E(x,y,—1/2,t) = 8{x, 3,1}, Ex,9,1/2,1)=0, (2.14)
and for the shadowgraph case we have instead
0:8(x,y,—1/2,) = q(x,3,t),  &(x,3,1/2,5)=0. (2.15)

The two set of measurement equations in terms of the new variables for the planar
and shadowgraph cases become

gii}{x)ys t) = ¢(xxy’z§-as t) + ‘:(x,y,i’?a t): i= 1; 23'--)13 {216}
and

i/2
P,y 1) = f ViU 2.0 + £z, 0)dz. 217)

Note that the sensors could be located at discrete points in the (x, y)-plane, but to be
consistent with Tang & Bau (1993, 1994) we have considered continuously distributed
sensors. Furthermore, Tang & Bau’s {19984) experiment using discrete sensors and
actuators shows consistency with their theoretical work using continuously distributed
sensors and actuators.

Finally, we introduce the cost criterion. Our goal is to design a controller able
to drive the measured perturbation temperature to zero, without using unnecessarily
large control action, hopefully resulting in little saturation of the actuators. Thus, the
performance index includes weighting on the control. We consider a layer of fluid
with large aspect ratios L, and L, with periodic boundary conditions (see figure 1},
assuming that the influence of the lateral boundary conditions in a finite layer of fluid
is negligible. The LQG controller is determined by finding the control action which
minimizes the cost criterion. For the planar sensor model we define the cost criterion
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as
x 'y i
= f ! { / - / ) [E{&f’)z-{-yﬁf} dxdy} dr, (2.18)
t 0 ki

i=1

and for the shadowgraph sensor model it is

s= ' { / - / ” / " +vad) fixdy} . @19)

2.3. Modal decomposition

A periodic boundary condition permits us to perform a Fourier decomposition in
the horizontal coordinates. The vertical dependence of the flow field and thermal
field is constrained by the upper and lower wall boundary conditions. The vertical
dependence will be decomposed separately in §2.4. We describe an infinitesimal three-
dimensional disturbance to the no-motion state. Consequently, we have a double sum
of the Fourier normal modes for the disturbances:

5

M N

WL, 2,8) =Y Y {3 Wom(z, ) + iWipm(z, )]0 4 g},
m=1 n=1
M N

P61.2,8) =D Y {3[Brnlz,1) + iBin(z, Ol L ce, b (220)
=1 n=1 ’
WN

6150 =YY (LB m(z, 1) + Bz, ]t +cc),

m=1 n=1 2

where c.c. denotes the complex conjugate. The measurement and control functions
are represented by

M N 3
09, y,1) =Y > (3[09),,() +i0L, ()]emton L e}, j=1,...,1,
m=1 n=1
. M N
ps(e s t) = Y {3 [Romnlt) + iRy ()] elmxtmho) 4 e},
m=1t n=1 3
M N .
0%, 3,8) =D Y {4[Ocrmlt) +iOcimn(t)] ™87 ¢},
: ‘m=1 n=1
M N :
2530 =D 3 {3 Qermn(t) + Qi) 4 ¢,
m=1 n=1 /

(221)

where the subscripts r and i indicate real and imaginary parts, respectively. The
two fundamental wavenumbers are k, = 2n/L, and k, = 2n/L,. From the classical
theory without control, a normal mode disturbance is unstable in the region above a
neutral curve Rag(k) (Chandrashekhar 1961), where Rap is the Rayleigh number at

neutral stability in the open-loop system and k = ,/k2 + k2 is the magnitude of the

wavevector. We truncate the infinite series above to M x N horizontal modes, which
span the unstable range. Since the basic equations depend only on the horizontal
Laplacian V2, the wavenumbers appear only in even powers and can be described
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in terms of an internal parameter k(m,n), where k(m,n) = , /m?k2 + n?k2. We further

substitute (2.20) and (2.21) into equations (2.9)~2.17) and separate the real and
imaginary parts. It should be remarked that the linear structure includes all patterns
at the onset. Certain realizable patterns, such as rolls and hexagons, will be selected
when the nonlinear and symmetry-breaking effects are included in the model. The
paper is focused on the stabilization of the no-motion state. Suppression of selected
convection patterns and return to the no-motion state will be addressed by applying
our LQG controller to a direct numerical simulation of convection.

Since the governing equations contain only even derivatives with respect to x or
¥, the real and imaginary parts of the dependent variables decouple and satisfy the
same set of equations. Furthermore, since the problem is linear, we can consider each
normal mode separately. For simplicity of notation, we drop the indices of the Fourier
coefficients, and define W = W, = Wi, & = Dryn = i E = Eppun = S, @ =
@cr,mn = @cx',mm 0.= ch,nm = Qcﬁmns @s(i) = @5{9‘"&; = @g}.,m and R, = Rsr,mn = Rsz‘,mu- The
governing equations are reduced as follows:

[Pr (82 — k)8, — (8* — k*)*|W + Rak®*® = —Rak’E, (222)
[0 — (@2 — k)] D — W = —[9, — (? — k?) 5. (2.23)
The boundary conditions are homogeneous. For the planar case we have
W(E1/2,0) =8, W(£1/2,8) = &(+1/2,6) =0, (2.24)
and for the shadowgraph sensor mode! we have instead
W(x1/2,t) = 0,W(£1/2,8) = $(1/2,) =0, 8,8(—1/2,t) =0. {2.25)

~

The forcing function £ satisfies the non-homogeneous boundary condition at the
lower wall and the homogeneous boundary condition at the upper wall. For the
planar case the forcing function is given by

E{(-1/2,6y=6.{1), E(1/2,=0, {2.26)
and the corresponding measuremeﬁt functions are
o) =20, t)+ 2200, i=12,...,1. 227
For the shadowgraph sensor model, the fqrcing function & is '
3;8(=1/2,t) = Q.(t), E(1/2,t) =0, (2.28)
and the corresponding measurement function is
R{t) = —k? j;{@(z, t) + 5(z, 1)) dz. (2.29)

In our approach, each distinct horizontal normal mode is controlled by a separate
controller. Therefore, for the implementation M x N controllers are required. As a
simple illustration for the analysis, consider an aspect ratio L,/d and L,/d equal to
20m. In this case, the only wavenumbers present are the fundamental wavenumber
k; = 2n/L = 0.05, and its harmonics: for Ra up to 15Ra, the wavenumbers are
from k = k; to k = 12 (equal to 240k;). These wavenumbers represent the ensemble
of normal modes used to represent the convection field.

In a physical implementation of the planar sensor model, both the measurements
and control action occur in physical space but the controllers operate in the Fourier
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FIGURE 2. (a) Schematic for the physical implementation of the multi-wavenumber controller: R,,
regulator; F,, filter; and FFT, fast Fourier transform. (b} Block diagram of the control loop for a
single wavenumber.

space. Sensors and actuators are interfaced to the controllers by fast Fourier trans-
forms (FFT). Figure 2(a) links with simplicity the mathematical formulation to its
computational implementation by summarizing in a block diagram the control strat-
egy described above. The controllers can be programmed in a computer routine whose
inputs are the arrays containing the temperatures measured by the planar sensors
and whose output is an array containing the temperatures to be applied at the
bottom the wall. The temperature measurements obtained by the planar sensors are
converted by a fast Fourier transform into a set of modal sensor variables, Each pair
of estimator and control blocks is integrated in time. Parallel computation produces
the modal control variables. An inverse FFT converts the modal control variables
into the actuating temperature at the bottom wall. This routine can be embedded in
any Navier-Stokes solver able to handle time-dependent boundary conditions for the
contro! of more realistic simulations of Rayleigh-Bénard convection.

Figure 2(a) also provides the basic architecture for the potential implementation
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of the present controller in an experiment and, eventually, in practical engineering
applications. The temperature distribution at a given plane (z®) (i = 1,2,...,I)
could be measured by a planar sensor constructed with an array of micro-electro-
mechanical-system (MEMS) diode sensors (see Tang & Bau 19984,b). Analog to
digital converters (A/D) and digital signal processors (DSP) would convert the
measured temperatures z{) into the modal sensor variables. Each pair of estimator
and control blocks would be replaced by a microprocessor, and a parallel computation
produces the modal control variables. A DSP and a digital to analog converter (D /A)
would produce the actuating signal. Finally, an array of MEMS heaters would provide
the temperature distribution at the bottom wall (Tang & Bau 19984, b).

24. State-space representation of temporal dynamics

In this subsection, we consider a numerical procedure to represent the vertical depen-
dence of the velocity and thermal field. We use the Galerkin approach (Gottlieb &
Orszag 1981) for the representation of the vertical dependence of the normal modes.
The beam functions {,} are used as the basis functions for W which has to satisfy
four boundary conditions. On the other hand the sinusoidal functions {Bn} are used
as basis functions for @ which only has to satisfy two boundary conditions. In our
numerical computations, we truncate the infinite set to the first N, terms for both
W and @. We use the same truncation number for both fields mainly for numerical
convenience. ‘

In general the Chebyshev polynomials have good convergence properties. How-
ever, in our application an individual polynomial does not satisfy the homogeneous
boundary conditions. In contrast, individual beam functions do satisfy the homo-
geneous boundary conditions naturally and they converge reasonably fast for our
stability analysis. Also, since we have transformed the thermal boundary condition at
the lower wall to a homogeneous form, our results are not affected by Gibb’s phe-
nomenon in the vertical dependence. In practical applications when realistic lateral
boundary conditions are incorporated, Gibb’s phenomenon can affect the horizontal
dependence (at small wavenumbers) and therefore the performance of the controller.
However, the detrimental effects of Gibb’s phenomenon can be substantially reduced
using appropriate windowing techniques.

The Fourier coefficients for the vertical velocity W(z,t) are expanded as follows:

X X sinh (a,z +imn/2)  sin(anz + mn/2)
W(z,t) = Ant)pn(z) = ;Am(‘) { sinh (@, +imn/2) ~ sin(a, + mn/2) } '

m=1

(2.30)

Since the thermal boundary conditions for the planar sensor model and shadowgraph
sensor model are different, the sinusoidal basis functions {B,} are different for the
two cases. For the planar sensor model we let

LA N,
B(z,t) = > Bu()u(z) = > _Bu(t)/2sin [mn(z + 1/2)], (231)
m=1

m=1

and for the shadowgraph sensor model we have instead

N, N
D(z,8) = D _Bu(t)ulz) = D _Bu(t)/2sin [(m — 1/2)m(z — 1/2)]. (2.32)
m=]

m=1
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A convenient choice for £ which satisfies the appropriate boundary conditions of the
planar sensor case is

E(z,0) = (1/2 = 2)O.(1), (233)
and one which satisfies the boundary conditions of the shadowgraph sensor case is
Bz, 1) = (z — 1/2)Q(1). (234)

For the planar case, we now substitute (2.30), (2.31) and (2.33) into (2.22) and
{2.23), and perform the Galerkin projection. The following equations are obtained:

N, N, N
P*‘“‘Z(%’, (5§ - kl}@m)ﬁm = Z(@f: (62 - kz)zge‘m}Am

m=1 m=1

N,
~K*Ra) (0}, pn)Bn ~ K*Ra{p;,(1/2-2))0.,  (235)

m=1

N: N.
Bu=2 (B1(@2 —K)Bu)Bu+ Y _{Bj> Om)An

m=1 m=1
(B (1/2 = 2))O. + (B, (0 —k*)(1/2 — 2))€., (2.36)
where the index j runs from 1 to N, and the inner product {,} denotes integration
over z € [—1/2,1/2]. The corresponding equations for the shadowgraph model can
be obtained from (2.35), (2.36) by replacing @, by Q. and (1/2 —z) by {(z — 1/2).

Therefore the shadowgraph model equations will not be presented explicitly.

After substituting (2.31) and (2.33) into (2.27), we obtain I measurement equations
for the planar case, :

N,
000) = Y Bu0hule) + (122000 i=12.0l  230)

m=1

For the shadowgraph case, upon substitution of (2.32) and (2.34) into {2.29), we have
a single measurement equation

N, 1/2 1/2
R = Bat0) [ | (KBa(e)dz + 0. / =1 03

. m=1

As a final step, we construct a state vector X by arranging the coefficients 4,, and
B,, as follows:

X= EAI’A2’-*-3AN}$ Bis -82)'*'9‘83\5:},) (2'39)

where superscript ' denotes the transpose. Equations (2.35) and (2.36) can be rewritten
in state-space form as

X =AX + B0, .+ B,0,, (2.40)
while the measurement equation (2.37) can be re-written as
0, =CX 4 D;0.. (2.41)

In order to cast the matrix equation in a standard state-space form we can choose
either @, or its time derivative as the control action variable. Here we define u = @..
The term @, can be eliminated from (2.40) by defining a new state vector x = X—B,0..
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Upon transformation, the state-space equations can be written as
* = Ax+ Bu, {2.42)

z=Cx+Du, (2.43)
where B = By +AB;, D = D3;+CB), u = @, and z = @,. Matrices A, B, and C contain
the dynamics of the plant, actuators, and sensors, respectively. Matrix D contains the
direct coupling between sensors and actuators.

The cost function of each wavenumber can be minimized individually, because of
the orthogonality between pairs of Fourier modes. From (2.18), (2.19), following the
normal decomposition, the cost function in state-space form for wavenumber k is

Fk)y= / T(z?z + yiu)dr. (2.44)

In §4, we allow z to be a vector but restrict u to a scalar quantity w.

3. Optimal control theory

In this section we describe the basic theory of the LQG control (Bryson & Ho 1969),
or, in modern terms, #, control. A brief review will be given in a self-contained
manner to provide the necessary governing equations for the closed-loop stability
analysis. :

The LQG problem is formulated as a stochastic optimal control problem described
by equations .

X=Ax+Bu+TIw, (3.1)

z =Cx+ Du-y, (3.2)

where I' is an input matrix, w and v are both white noise processes with zero means
and auto-correlation functions

Elwt)w'(0)] = Wé(t—1), E[(t)'(x)] = Vé(t—1), - {3.3)

where E[] is the expectation operator averaging over all underlying random variables
and 6(¢—7) is the delta function. Note that W and V, the power spectral densities, will
be chosen here as design parameters to enhance system performance. In our case I'
will be taken as B, implying that the disturbances, in 2 manner similar to the control,
enter the system dynamics at the wall.

The LQG controller is determined by finding the control action u(Z,), where
Z, = {z(7);0 < 7 < t} is the measurement history, which minimizes the cost criterion

1 T

J=lim —/—— [f {(¥Qx + 2x'Nu + #/Ru) d’:] (34)
T T —t '

subject to the stochastic dynamic system model equations (3.1) and (3.2). The division

by (T —t) ensures that the cost criterion remains finite in the presence of uncertainties

in the infinite-time problem (T — o). Note that (3.4) can include (2.44) where

1
J = lim —EL#(K)]. (3.5)

Note also that even though the time interval is infinite, time response is still measured
by the eigenvalues of the closed-loop system. We consider the infinite-time problem
with a time-invariant dynamics system because the controller gains become constants.
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For @ and N chosen to be consistent with the cost criterion (2.44) (see (3.18)), the
cost criterion will remain positive definite (see Bryson & Ho (1969) for necessary and
sufficient conditions for optimality with general @ and N).

By nesting the conditional expectation with respect to Z, within the uncondi-
tional expectation of (3.4), ie. E[#(k)] = E[E[#(k)/Z,]] where E[-/Z,] denotes the
expectation () conditioned on Z,, the cost criterion can be written as

T
J=lim L { / [¥Q% + 2%'Nu+ o/Ru + tr(P)] dt] , (3.6)
Too T —1t :

where ¥ = E[x/Z,] is the conditional mean estimate of the state x. The term tr{P)
is the trace of the error variance matrix which naturally occurs as a result of taking
the conditional expectation into the integrand of the cost criterion. This cost criterion
is now minimized subject to the estimation equations discussed below. Note that P
does not depend on the control (see (3.9) below) and therefore does not enter into
the optimization process.

The solution to the regulator problem (Bryson & Ho 1969) is a compensator
composed of a state reconstruction process, known here as a filter (in the no-noise
case it is known as an observer) in cascade with a controller {see figure 2b). The state
estimate (conditional mean) is called the Kalman filter, and is governed by

P=A%+Bu+Kyv, v=z—2=C"(x—%)+v, 3.7

where the matrices with asterisk superscripts correspond to the nominal point
(k*,Ra"). The Kalman gain matrix K;, constructed to trade the accuracy of the
new measurements against the accuracy of the state propagated from the system
dynamics, is given by

Ky =pPC'V, (3.8)
where P is the error variance in the statistical problem. In the infinite-time stationary
formulation, the error variance P is the solution to the algebraic Riccati equation

(ARE),
AP +PA" +TWI —PCVIC*P =0. 39)
If the system is (A*, C*) observable and (A", I') controllable, then P is positive definite.

Under these assumptions, it can be shown that the difference between the internal
state x and the estimated state %, ie. the error

e=x—%, (3.10)
goes to zero as time goes to infinity. In other words, the evolution equation
e=Are+Kpv+TI'w, (3.11)

is stable, i.e. all the eigenvalues of the matrix
A =A"—K;C" (3.12)

have negative real part.
Minimizing the infinite-time cost function J, (3.6) subject to {3.7) yields the following
control law:
u=—K.2X, (3.13)
where

K.=RY(B''S +N), (3.14)
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and § is the solution of the algebraic Riccati equation (ARE)
A"S +8A°+Q —(SB"+N)R'(B”S +N') =0. (3.15)

It should be remarked that the control gain matrix K. is determined from functions
only of the known dynamic coefficients (A", B*) and weightings in the cost criterion
(Q,R), and not the statistics of the input (V, W). Consequently, K, is determined from
a performance index such as (3.4), independent of the stochastic inputs. If (4", B*) is
controllable and (A%, Q!/2) observable, then the loop coefficient matrix

A=A —K.B' (3.16)

is stable. The controllable and observable conditions can be weakened to stabilizable
and detectable (Kwakernaak & Sivan 1972).

When we combine the estimator and the regulator, the dynamic system composed
of the controlled process and filter becomes

(1)L 21()+ (). om

Note that any choice of two among e, & and x produces the same dynamics because
they are algebraically related by (3.10). Under the above controllability and observ-
ability assumptions, A; and A, have only stable eigenvalues if optimal gains K; and
K. of (3.12), (3.16) are used. Other schemes such as #,, could be proposed (Rhee
& Speyer 1991), but from experience these schemes seem to produce only secondary
modifications to the system performance over our LQG controller.

The infinite-time stationary formulation will be used in our study. The LQG control
loop is shown in the block diagram of figure 2(b). Note that the cost function (2.44)
can be expressed in the standard form (3.4), if we let

Q@=c'c’, N=C"D’, R=(/+D"D"). (3.18)

Since the power spectral density is not known, for simplicity of the design we consider
V and W to be of the form V = of and W = BI where o and f are scalar and I is a
unity matrix. Only the ratio of « with f is important.

The process noise spectral density f and the weighting y in the cost function are
considered design parameters. The case where y — 0 corresponds to unlimited control
authority of the full-state feedback controller. The choice I' = B* allows for loop-
transfer recovery (Doyle & Stein 1979). Loop-transfer recovery of the LQG controller
to full-state feedback guarantees that robust performance occurs when the process
noise goes to infinity, i.e. f — oo, provided there exists no non-minimal-phase zero in
the plant. In our case, there are non-minimal-phase zeros, but a partial recovery is
still shown to be possible (Turan, Mingori & Goodwin 1994).

As we have noted in §2, the analysis will be based on a single normal-mode
model because the normal modes decouple. Although only one controller is needed at
(Ra’, k%), it is implemented for different k* over a range of wavenumbers. The design
point is determined so that when the controller is implemented, no unstable region
appears below the neutral curve. Although the plant has multiple outputs, the system
can be analysed in terms of robustness as a single-input/single-output (SISO) system
by breaking the loop at the plant input (see figure 2b). We denote the output u of the
controller by up and the input u to the plant by u;. The open-loop system of equations
formed by breaking the loop at the input to the plant is

X, = Asx, + B, ug = C.x, + D,u;, {319}
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where the augmented state composed of the plant and compensator in cascade is
x, = [x',&]". The coefficient matrices are given by

A = A 0 B — B
a= K}FC {A* —B’K. -—K_{C‘ +KID‘KC} ’ a= KfD ’ & 20)

c,= {0: _Kc}a D, =0

The evolution equation for the closed-loop feedback system is

x\_[ A —KBK, x 321)
2 )T | K€ (A=K C'—B'K.+K;(D*—KD)K.) |\ & )° :

where w; = Kug. In the above equation, matrices with an asterisk superscript corre-
spond to the design parameters k* and Ra". Note that in the particular case when
the plant operates at nominal design condition, i.e. Xk =k*, Ra = Ra" and K =1, the
closed-loop poles will correspond to the ensemble of eigenvalues of A; and of A.. In
other words, (3.21) reduces to (3.17) and the filter poles and regulator poles decouple.
One can show this from the transformation

(;>=“’§M;) (322)

where I is an identity matrix.

In general, the plant does not operate at the nominal design condition. Conse-
quently, there is a mismatch between the parameters (k*, Ra’) used to design the
controller and the operating parameters (k, Ra). Our analysis uses two methods to
characterize the robustness of the stabilized system: neutral curves and gain and phase
margins. In the first method, we select the nominal points (k*, Ra") and construct the
region of stability of the dynamics system (3.21) as Ra and k vary with K = 1. The
boundary of this region is where the real part of the least-stable closed-loop pole of
(3.21) becomes zero. This boundary curve in the (k, Ra)-plane is called the neutral
curve. We identify the minimum of Ra with respect to wavenumber on the neutral
curve, so that the range of Ra from zero to this minimum, along with the whole range
of wavenumbers, is stable. By robustness we mean constructing the largest range of
Ra from zero up to this minimum. '

The second method used to estimate robustness is the classical gain and phase
margins approach. This approach allows us to characterize robustness with respect
to more general uncertainties, such as unmodelled dynamics. To obtain the gain and
phase margins, we consider an error model K = [K|e™ (see figure 2b), with the plant
operating at the nominal parameters k =k and Ra = Ra". The shifts of |K| and ¢
from these nominal values (|K| = 1, ¢ = 0) to where the system becomes unstable are
essentially the gain and phase margins, respectively. Their values can be determined
from accompanying Nyquist plots. The gain and phase margins are defined explicitly
in §4.2.1 where these values indicate the amount of gain and phase change that the
system can tolerate due to uncertainties in the system dynamics.

4. Results

In this paper, we consider the condition of Pr = 7 which enables us to compare
our numerical results with those of Tang & Bau (1994, 19985b) and Howle (19974). In
their experiments, however, Howle {1997b,¢) used a high-Pr fluid (Pr ~ 200) whereas
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in Tang & Bau (1998a) the Pr value of their testing fluid was not given. It should be
noted that while the stability properties in the uncontrolled case are independent of
Pr, they are Pr dependent in the controlled case.

Our numerical results have been obtained using N, = 26 (see § 2.4) which appears to
be adequate for our stability analysis. For example, consider the closed-loop eigenvalue
problem of {3.21) with controller design values Ra" = 14.8Ra, and k* = 3.15 and
the system evaluated at k = 5.5 and Ra = 14.52 which lies on the neutral curve (see
figure 8(d)), the norm of eigenvector (square root of the mean-square sum of entries)
of the neutral eigenvalue of the coefficient matrix of (3.21) appears well converged.
When N, = 26 is increased to 52, this norm changes only by less than 0.7%.

4.1. Proportional feedback control

For convection in a layer of fluid bounded by rigid walls with prescribed tempera-
tures, it is well known that the critical Rayleigh number Ra,q = 1707.76 occurs at
wavenumber ko = 3.117 (Chandrasekhar 1961). Instead, when heat flux is prescribed
at the lower wall, the critical value Rag ~ 1295.78 occurs at k, = 2.552.

In the case of proportional feedback control, the control law is u = —K,z,
where K, is a constant proportional gain. We consider the planar sensor model
to illustrate the effects of feedback control upon stability, and the results are shown in
figure 3(a).

In this figure three neutral curves are shown: each curve consists of a heavy
and a thin solid line, representing a monotonic mode and an oscillatory mode of
convection, respectively. The oscillatory mode corresponds to a complex conjugate
pair of eigenvalues. The three curves correspond to three sensor locations: z, = 0 at
the mid-plane and z, = $0.1. The offset with respect to the mid-plane is 10% of the
thickness of the fluid layer and gives a substantial shift in stability properties. The
unstable and stable regions are separated by a neutral curve and are identified by the
letters U and §, respectively. In each case the maximum Ra achievable corresponds
to the crossing point between the heavy and thin line.

For z, = 0, the monotonic mode is the lowest even mode of convection since the
first odd mode is unobservable. In fact, in this case the sensor plane coincides with the
node of the first odd mode. As K, increases beyond the crossing point the critical Ra
decreases. With this in mind, a pole-zero map and a root locus diagram are helpful
to understand the stability behaviour. Figure 3(b) shows the open-loop poles (x) and
zeros (0) and figure 3(c) the corresponding root locus diagram. For a given Ra, as K,
increases from zero the unstable pole moves to the left while a stable pole moves to
the right. Subsequently, the two poles coalesce. After coalescence a pair of complex
conjugate poles (corresponding to the oscillatory mode) break off the real axis. The
break-away point (where the coalescence occurs) moves to the right as Ra increases.
The crossing point in figure 3(a) corresponds to the coalescence at the origin in
figure 3(c). As Ra increases and keeping K, constant, the closed-loop poles move to
the right.

From the root locus of figure 3(c), the results of figure 3(a) can be interpreted as
follows. For Ra above the crossing point, the system is unstable for any gain K,. For
Ra below the crossing point, there exists a finite range of gain K, in which the system
is stable. The lower end point of the range corresponds to the minimal value of K,
required in order to move the monotonic pole to left-half s-plane. The upper end
point of the range corresponds to the maximal value of K, that can be used before
the pair of complex conjugate modes become unstable.

The stability diagram for the shadowgraph sensor model can be found in Howle
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FiGure 3. (g} Neutral curves for the planar sensor model using the proportional feedback control,
corresponding to z, = —0.1, 0 and 0.1 (heavy and thin lines indicate monotonic and oscillatory onset,
respectively). (b) Pole-zero diagram of the plant for k = 4.4, Ra = 3.5Ra, and (c) corresponding
root loci for K, varied between 0 and 2000

(19974). In this case there are no unstable complex conjugate modes. As K, increases
to oo, the critical Ra increases monotonically to about 3.13 times Ra.

4.2. LQG (3#;) control

The limitation in the performance of proportional feedback control provides the
motivation for developing LQG controllers. We will apply the LQG synthesis method
to both planar sensor and shadowgraph sensor models. We first seek to reduce the
number of design parameters in our analysis. For a given set of physical parameters
we examine the closed-loop eigenvalues and observe that for a stable system the real
part of the least-stable eigenvalue has its largest magnitude when y — 0 and § — .
Since the observed improvements become less significant for y < 0.1 and g > 100, we
let y =0.1 and g = 100.
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FIGURE 4. Stability diagrams for the planar sensor model with one sensor, using the LQG control.
The nominal condition (", Ra") is denoted by a solid circle. The heavy and thin lines correspond
to the monotonic and oscillatory onsets, respectively. (4,5, f) z, = 0.15 and (¢, d) z, = —0.15. (a—e)
Ra" =5Ray and k" = 5.3 and (f) Ra" = 10Ra, and the same k*. In (e) the sensitivity about z, =0

with respect to z, is shown. In {f) a vast lower unstable region developed at a sufficiently high Re’
is shown.

4.2.1. Planar sensor model

(i) One-sensor control

The one-sensor model is especially convenient for understanding the closed-loop
stability properties of the system. Once the qualitative properties of this case are
understood, the performance of the controller will be improved by adding additional
Sensors.

Figure 4(a—f) shows the neutral stability diagram in the (k, Ra)-plane for a controller
designed at the nominal values k* and Ra’. The nominal point (k*, Ra’) is indicated
by a solid circle in the figures. The thin line and heavy line curves correspond to
the neutrally stable oscillatory and monotonic modes, respectively. In figure 4(a, b)
the sensor plane is located at z, = 0.15. We use a larger sensor displacement with
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respect to the mid-plane than the one used for the proportional feedback control to
emphasize the effect on the neutral curve. Figure 4(a} shows the neutral curves for a
controller designed at the nominal point Ra® = 5Ra and k* = 5.3. The neutral curves
have two minima, and the value k* = 5.3 has been chosen to make the minima nearly
the same. The controller stabilizes the system for any Ra < Ra". To characterize the
stability of the controlled system with respect to Ra®, we re-design the controller for
Rd" = 6Ray while maintaining k* fixed. Figure 4(b) shows a dramatic change in the
neutral curve: the banana-shaped branch moves downward giving rise to an unstable
region below Ra’.

To further characterize the stability of the controlled system with respect to the
location of the sensor, we move the sensor plane at z; = —0.15. We design a controller
for k* = 5.3, as before, and Ra® = 5Ra (figure 4c) and Ra® = TRay {(figure 4(d)).
Figures 4(c) and 4(d) show similar stability characteristics as those in figures 4(a)
and 4(b). However, the two branches of the neutral stability curves switch roles. The
left branch now represents the monotonic onset while the right branch represents the
oscillatory onset.

The role switch in relation to the location of the sensor plane deserves a closer
examination. We consider a smaller perturbation of the sensor location with respect
to the mid-plane. Figure 4(e) shows the stability limits for three very close sensor
locations. At z, = 0 (solid lines), the neutral curve is composed of an oscillatory
segment on the left and a monotonic segment on the right. At z; = 0.005 (dashed-
dotted lines), the monotonic segment of the neutral curve retreats rightward while
the oscillatory segment dominates the range. At z; = —0.005 (dashed lines), the
opposite effect occurs: the oscillatory segment of the neutral curve retreats to the
left. These results are consistent with the results presented in figures 4(a-d). Since
significant distortions and shifts of the stability limits have occurred within a very
small perturbation of z,, sensitivity to sensor location becomes an important factor
for the practical implementation of the sensors. As subsequent results will show, this
type of sensitivity is no longer present if three sensors are incorporated.

In order to show that the lower unstable region will become much larger with
further increase of Ra®, we design a controller at the nominal values Ra® = 10Ray
and k* = 5.3 and place the sensor plane at z, = 0.15 for an illustration. Figure 4(f)
shows a thin island of stability in the unstable region. This stable region is bounded by
two neutral curves which coalesce on the right and intersect on the left. Figure 4(a—f)
reveals the occurrence of an unstable region at Ra < Ra" which severely restricts the
achievable degree of stabilization.

The results of proportional feedback control have demonstrated the significance of
the sensor location at z; = 0. This location gives the maximum range of stabilization
even for the LQG controller. We observe that Ra® can be raised to 10Ra, at properly
chosen values of k* (see figure S5a—c) without inducing a large lower unstable region,
if the sensor is placed at the mid-plane. At this Ra®, the system is stable up to the
critical Ra of the first odd mode {Ra, = 10.31Ra, and k. = 5.36, see Chandrasekhar
1961), since the first odd mode is not stabilizable because it is unobservable.

Hence, there is no reason to place Ra" above 10.31Ra. Below this value, however,
the critical point of the neutral curve lies to the right of the nominal point if k* is
sufficiently small, or to the left of the nominal point if k* is sufficiently large. For this
case, we can use two nominal points to lift the overall neutral curve to coincide with
the neutral curve of the first odd mode.

Consider Ra” = 10Ra, just below the Ra, of the first odd mode. We choose the
two nominal k* on both sides of k. = 5.36. The values k* = 4 and 6 {marked by solid
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FIGURE 5. Stability diagrams for the planar sensor model with a single mid-plane sensor: (a) neutral
curve for the nominal condition k* = 4 and Ra" = 10Ray; (b) neutral curve for the nominal
conditions k" = 6 and Ra" = 10Ra.; (c) the resulting neutral curve by incorporating the two sets of

nominal conditions. This curve coincides with the neutral curve of the first odd mode of convection
in the uncontrolled case.

circles) produce small dips in the unstable region and are reasonable to use as nominal
points. Figure 5{a—c) illustrates how the stability limit is determined by the principle of
superposition. The nominal point at k* = 4 in figure 5(a) corresponds to the unstable
region delimited by the heavy solid lines which has a minimum Ra ~ 8.4Ra. For
k < 5.9, the stability limit corresponds to the neutral curve of the first odd mode.
Similarly, in figure 5(b) the second nominal point at k* = 6 corresponds to the
unstable region delimited by the thin and heavy solid lines which has a minimum at
about 9.5Raq. The thin curve corresponds to an oscillatory onset. The heavy curve
coincides with a segment of the neutral curve of the odd mode. If both nominal
points are used for the controllers, then the overall stability limit coincides with the
neutral curve of the first odd mode upon superposition. The controllers designed at
the first nominal point k* = 4 operate over the band 0 < k < k., =~ 5.36, while the
controller designed at k* = 6 operates over the wavenumbers greater than k.

The result shows that the degree of stabilization is significantly higher than that
achievable with the proportional control. Unfortunately, the one-sensor design is not
sufficiently robust with respect to the location of the sensor plane. This problem
is significant because a perfect sensor placement is not achievable in practice. To
demonstrate the sensitivity, in figure 6(a) we consider a planar sensor at z;; = 0.01, i.e.
slightly off the mid-plane, and re-design the controller for Ra® = 10Ray and k> = 4.
Figure 6(a) shows the presence of a thin stable region in the middle of the unstable
region. This stable region is bounded from above by a neutral curve of an oscillatory

~mode (thin line} and below by a neutral curve of a monotonic mode (heavy solid
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FIGURE 6. (a) Stability diagram for the one-sensor model with a small offset z, = 0.01. Results show
a vast lower unstable region below Ra" = 10Raq. The heavy (thin) solid line corresponds to a
monotonic (oscillatory) onset. (b) Stability diagram for the two-sensor model, with a second sensor
positioned at z; = —0.01. As a result, the lower unstable region is eliminated.

line). The stable region exists for k < 3. As k increases it becomes a very narrow strip
which eventually terminates at k & 7.1, similar to the behaviour in figure 4(f). For
comparison the neutral curve for the z; = 0 case (thin dashed line) is also included
in figure 6(a). Comparing figure 6(a) to figure 5(c), we see a dramatic difference in
stability properties due to a small shift of sensor location of 0.01. Fortunately, this
sensjtivity can be significantly reduced by introducing a second sensor located close
to the mid-plane. Figure 6(b) shows the stability diagram when a second sensor is
included. This case will be discussed in the next subsection.

To characterize the robustness of the controlled system with respect to plant
uncertainties we compute gain and phase margins at Ra = Ra” and k = k", In all
the cases considered, the open-loop system has one unstable pole so that for closed-
loop stability the Nyquist locus encircles (counter-clockwise) the point (—1,0) once.
Because of this property, in general there exists an upper and lower value for each gain
and phase margin. The upper and lower gain margins are designed to measure how
much the gain K can be decreased, or iricreased, before the system becomes unstable
{figure 2b). Likewise, the upper and lower phase margins are designed to measure how
much the phase can be decreased, or increased, before the system becomes unstable.
Accordingly, the lower and upper gain margins are defined as 20log,,(1/X;) (dB)
and 201log,4(X>) (dB), respectively, where X; (|X;| < 1) and X, (jXa] > 1) are the
smaller and larger x-distances of the two crossing points of the Nyquist locus with
the x-axis. Since the angle is measured positive in the counter-clockwise direction,
the lower phase margin is defined as 180° — sin~!(Y;) and the upper phase margin
is defined as sin~!(Y;) — 180°, where ¥, (positive) and Y, (negative) are, respectively,
the y-coordinates of the intersecting points between the Nyquist locus and the unit
circle centred at origin,

For the one-sensor model, the gain and phase margins are too small. At Ra = Rg* =
10Ra., for example, the margins are typically about 0.5dB and 4°. In engineering
applications, margins below 3dB and 10° are often considered marginal. Therefore,
we conclude that as the system is stabilized for higher values of Ra, the magnitude
of the gain increases, increasing the sensitivity, as indicated by the very small gain
and phase margins. Sensitivity can be reduced by implementing multiple sensors, as
indicated by the improved gain and phase margins (see next subsections).
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(ii) Two-sensor control

To eliminate the lower unstable region shown in figure 6(a), we place two sensors
on opposite sides of the mid-plane at z;, = +0.01. It is crucial that both sensors are
close to the mid-plane. Placement of one sensor or both away from the mid-plane
will give rise to a lower unstable region.

In the two-sensor model we re-design the controller at the nominal condition used
for the case shown in figure 6(a). The two-sensor model result is shown in figure 6(b),
in which the same dashed curve as in figure 6(a) is included for comparison. We
observe that the lower unstable region has disappeared. The neutral curve of the
monotonic mode {heavy solid line) terminates at k ~ 7.3. Beyond this wavenumber
the neutral curve of an oscillatory mode replaces the stability limit (thin solid line). If
we allow z; to tend to zero, then the solid curve in figure 6(b) will approach the dashed
curve. The gap between the two curves indicates that there is a trade-off between the
large pole shifts due to the small sensor-plane offset, and the information gained by
adding one more sensor near to the mid-plane. The gain and phase margins increase
by roughly 10% to 20% by adding the second sensor. However, the improvements
are still too small to be considered acceptable.

Better gain and phase margins {over 100% increase) can be obtained with sensors
placed further away from the mid-plane. The sensors located at about z, = +0.25
appear {o give the best result. However, in this case a lower unstable region forms.
The two-sensor model is still not suited for practical implementation. For this reason,

we shall not devote more effort to analysmg this case. Instead, we proceed to the
three-sensor model,

(iii) Three-sensor control

When three sensors are used, we can improve gain and phase margins by placing
two outer sensors further away from the mid-plane without inducing any lower
unstable region, provided that the remaining sensor is placed at the mid-plane. With
two sensors placed significantly away from the mid-plane, it is observed that the
sensor located at the mid-plane is no longer sensitive to a small offset. To determine
the best sensor locations, we first observe that a lower unstable region always occurs
when no sensor is placed at or very close to the mid-plane. With a mid-plane sensor in
place, then by fixing one outer sensor and moving the other, it appears that the best
locations are when the two outer sensors are at eq%:aa} distance from the mid-plane.
The best locations are determined in terms of the minimum of the real part of the
least-stable closed-loop pole. Hence, for our design, we let the three sensor locations
be z{) = -z, 2® =0 and z® = z,.

In order tc improve gain and phase margins, we consider the Nyquist plots for
various values of z,. In the subsequent results concerning the stability limit of the
controlled system (see figure 8), a good nominal condition is found to be k* = 3.15
and Ra" = 14.8. For this nominal condition, figure 7(a) shows the Nyquist curves
for z; = 0.1 (dotted), 0.2 (dashed) and 0.3 (solid). Figure 7(b) provides a magnified
view of figure 7(a) near the point (—1, {}} The case z; = 0.3 presents no lower phase
margin but has an upper phase margin of about 20.5°. The upper and lower gain
margins are about 3.3dB and 4.4dB, respectively. These values of gain and phase
margins are quite satisfactory. A slight improvement of the margins is still possible
by increasing z, further, at the expense of increasing the real part of the least-stable
pole closer to zero, thus making the system less stable. Thus, z; = 0.3 appears to be
our best choice. It is desirable to see how changing the values of k* and Ra® will
affect the gain and phase margins for z; = 0.3. In figure 7(c) we compare the Nyquist
curves for three different nominal conditions: k* = 3.15 and Ra” = 14.8Ra (solid),
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FiGURE 7. Nyquist plots for the three-sensor model: (¢) at nominal condition k* = 3.15 and

Ra" = 14.5Ray and sensor locations are z; = 0.1 (dashed), 0.2 {dotted) and 0.30 (solid); (b}

magnified view of (a); (c) at z; = 0.3 and nominal conditions with k* = 3.15 and Ra" = 14.5Ra,

(solid), k* = 4.5 and Ra" = 12.5Ra, (dashed) and k* = 6.5 and Ra" = 15Ra, (dotted); (d) magnified
view of {c).

k™ =4.5 and Ra” = 12.5Ra (dashed) and k* = 6.5 and Ra" = 15Ra, (dotted). This
choice of nominal points is based on the subsequent analysis of the stability limit of
the controlled system. As shown in the magnified view of figure 7{d), the upper phase
margin and the upper and lower gain margins for the three nominal conditions are
quite close, suggesting that these margins are not sensitive to the values of k* and
Ra*. However, the lower phase margin decreases rapidly as k* and Ra" increase, as
shown by the dotted line. The gain and phase margins for the design case (solid) are
within values used in practice.

Now, we consider the stability limit of the controlled system. In order to understand
how the choice of the nominal condition (k*, Ra") affects stability, we present the
results for each set of nominal condition in figures 8(a)-8{c).

For each nominal point the stable region is delimited by the neutral curve. Our
goal is to maximize the minimum of the neutral curve by appropriately choosing
the nominal point. In figure 8(a) we consider k> = 3 and Ra® = 15Ra,. There is no
unstable region to the left of this nominal point and the neutral curve to its right
corresponds to an oscillatory mode. The neutral curve in figure 8(b) corresponds to
k* = 4.5 and Ra” = 12.5Ra,. An unstable banana-shaped region (monotonic onset) is
present on each side of the main unstable region. The minimum of the main unstable
region is about Ra ~ 14.5Ra,. We have decreased Ra' from 15Ras to 12.5Ray
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Ficure 8. The stability diagrams for the three-sensor model with sensor planes located at z, = —03,
0 and 0.3, and nominal conditions at (a) k* = 3 and Ra" = 15Ra, (b) k* = 4.5 and Ra" = 12.5Ra,,
() k* =65 and Ra® = 15Ray. (d) k* = 3.15 and Ra" = 14.8Ra, (the design conditions).

because at Ra" = 15Ra, (not shown) the two banana-shaped unstable regions have
merged generating a vast lower unstable region. However, because of the formation
of an unstable region on each side, this nominal point is not desirable. Figure 8(c)
shows the neutral curve for the system controlled by controllers designed at nominal
condition k* = 6.5 and Ra" = 15Ra,. The banana-shaped region on the left of the
nominal point has disappeared, but the region on the right remains.

By considering additional nominal points to the right of the first nominal point
it seems that there is no significant improvement in stability. In other words, when
the nominal wavenumber k* is larger than a certain value, the controllers become
ineffective in stabilizing the entire region up to Ra = Ra’, even though better local
stabilization is always possible. Based on the results of figures 8(a)-8(c), it appears
that nominal points to the right of the first point do not improve the situation. In
fact, we have tried more cases involving different locations of the nominal points, but
none seems to raise the minimum Ra of the unstable region. To achieve a maximum
Ra for the stable range, we fine-tune the first nominal point and obtain k* = 3.15
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and Ra" = 14.8Ray. For this point the stability diagram is shown in figure 8(d).
Stabilization up to Ra = 14.5Ra is achievable by using controliers designed at only
one nominal point. The neutral curve is formed by an oscillatory mode (thin solid
line) and a monotonic mode (heavy solid line). To illustrate the degree of stabilization
with respect to the uncontrolied system, we include in the figure the neutral curve
(dashed line) for the uncontrolled convection. Without feedback control, the region
above the dashed curve is unstable to convection. Below the solid curves, however,
the region is stabilized by the LQG control.

In §2, we described how in the practical implementation a controller is responsible
for stabilizing an unstable normal mode whose wavenumber is indicated by a point
on the k-axis in figure 8(d). Results suggest that we can use the design condition
k* = 3.15 and Ra" = 14.8Ra, for all controllers. Coincidentally, we note that the
design wavenumber, k* ~ 3.15, is quite close to the critical wavenumber of the
uncontrolled convection, kg ~ 3.12.

‘We conclude the analysis of the planar sensor model by discussing the time response
of the closed-loop system. Our design condition is at k* = 3.15 and Ra” = 14.8Ra..
For high operating values of Raq, if we turn on the controller at this design condition
with no initialization of the estimator, the transient response of the controlled system
induces a large actuator signal u(t), which will produce actuator saturation in practical
applications. Therefore, in practical applications, the operating Ra value should be
achieved in increments of Ra, so that for each increment the estimator remains
initialized. For example, consider a controlier operating at k = k. ~ 5.5. Assume
that we have increased the operating Ra value gradually up to Rga = 12Ra so that
the closed-loop system remains at the no-motion equilibrium. When approaching
equilibrium, both the plant internal states and the estimator states tend to zero. As
an example, we increase Ra from Ra = 12Ra, by an increment of 2Ra, to the
operating value Ra = 14Ray. Figure 9 shows the transient time responses for this
case. In particular, figure 9(a) shows the temperatures measured by the planar sensors
as functions of time, while figure 9(b) shows the control action signal u(t). The initial
transient disappears and the system settles to a new no-motion equilibrium. If we
use a smaller increment than 2Ra,, an even better result can be expected in terms of
smaller overshoot and a faster approach to equilibrium.

It is important to consider the parameters in a physical set up to see if the LQG
controller can be applied to an experiment. We note that ¢ is in the unit of diffusive
time, d?/x. For example, in the case of a layer of water of thickness d = 0.8cm,
this unit is about 438 s. A mildly supercritical condition Ra =~ 1800 corresponds
to AT* = 0.14°C, while for Ra = 14Ra., the basic temperature difference is about
1.86°C. Thus, the physical quantities are reasonably easy to achieve in practice.

Comparison between the stability achievable by the proportional feedback control
{Tang & Bau 1993, 1994 as well as our figure 3a) and the LQG control is possible
only from a qualitative point of view. The LQG controller is more complex, due
to the additional filter dynamics. The neutral curve structure is complex because
the unstable regions can occur above and below the design value Ra®. However, a
local stable region about Ra” can always be maintained. In contrast, for proportional

feedback there is no stable region beyond a certain value of Rg, regardless of the
gain K.

4.2.2. Shadowgraph sensor model

We now turn to the shadowgraph sensor model. The maximum Ra achievable over
the stable range for the proportional feedback control is about 3.13Ra.4. We attempt
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Figure 9. The time response of (4) the three measurements and (b) the control action u(s), in the
three-sensor model with the nominal condition k* = 3.15 and Ra" = 14.8Ra,. The convection mode
considered is at Ra = 14Ra, and the least-stable wavenumber about k = 5.5.

to increase the stable region using the LQG method. However, for this sensor model
our results indicate a significantly weaker stabilization. We have first designed a
controlier for Ra® = 10Rac but encountered a vast lower unstable region. The second
convection mode, which is closest to the imaginary axis, is destabilized in the control
process. As a result, we gradually decreased the nominal condition Ra®, down to a
value of 5Ray. The drop in performance in the critical Rayleigh number with respect
to the planar sensor model is probably due to the nature of the shadowgraph sensor,
which only measures the averaged temperature of the fluid layer. Figure 10(a) shows
the stability diagram when controllers designed at five nominal points are used. The
nominal points have same Ra” while k* increases by a factor Ak® = 1. The results
show that, except for the first nominal point (k* = 1), each nominal point is enclosed -
by a left and a right stability limit (thin line for oscillatory mode and heavy line for
monotonic mode). The stable range of wavenumbers associated with each nominal
point is typically small. Figure 10(a) reveals two depressed unstable regions that reach
below Ra = Ra" (near k = 2.4 and k = 3.4). To demonstrate how these dips can be
removed, we add two more nominal points: one is chosen at k* = 2.4 and the other
at k* = 3.3, both with a slightly higher Ra® = 5.4Ra,. The improved result is shown
in figure 10(b), which indicates that the minimum Ra of the unstable region is now
above 5Rag.

Unlike the planar sensor model, the minimum Ra of the neutral curve obtained by
applying a controller designed at a single nominal point over the whole wavenumber
range is not that much higher than the value obtained using proportional feedback
control. There may be further improvements on the LQG controller to be made, but
we will not attempt further design in this study.
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FiGuRE 10. (g} The stability diagram for the shadowgraph sensor model showing the stability limit
corresponding to five equally spaced nominal points at Ra" = 5Ra. (b) An improved design with
two nominal points added. Stabilization for the entire range of wavenumbers up to Ra’ = 5Rayq is
achievable for this improved case.

5. Conclusion

‘We have investigated the LQG (3#,) controller design for two sensor models (planar
sensor model and shadowgraph sensor model) studied by previous anthors {Tang &
Bau 1994; Howle 1997a) using proportional controllers. Based on our results for
Pr =7, we have shown that the robustness of the controlled system is improved in
two aspects: (i) the controller remains stable over a larger range of the parameter
Ra, and (ii) the robustness of the controller accommodates to a degree unmodelled
dynamics and nonlinearities, as measured by gain and phase margins on the Nyquist
diagram. It should be noted that although only one controller is needed to be designed
at {k*, Ra"), this controller is implemented at each wavenumber k to span the entire
range of unstable wavenumbers.

The number of sensors plays an important role in dramatically improving the
robustness of the stabilization of the system operating at large Ra. Because multiple
sensor planes can be easily incorporated into the planar sensor model, the performance
of the planar sensor model is found to be superior to that of the shadowgraph sensor
model, which only utilizes averaged temperature measurements. By using three planar
sensors, it is possible to stabilize the no-motion state up to Ra ~ 14.5Ray. The
controller has 3dB of gain margin and 20° of phase margin at the design parameter
values. Beyond this value of Ra, stabilization in the region near to a nominal point
can still be achieved, but an unstable region forms for Ra below Ra’. It should be
noted that in our design procedure, we designed the controllers to span the whole
range of unstable wavenumbers and at the same time demanded that the whole Ra
range from zero up to 14.5Ra be stable.
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defined as the value of temperature gradient at either upper or lower wall,
N
dT.(z)
Nu =1 Ooon———|2=01 , 3.1
U + E 00 iz l 0,1 ( )

n=0

where the first 2 zero indices of fgg,, correspond to k = m = 0 so that the sum represents
the temperature gradient averaged over the hﬁrizontai plane. In the absence of internal
heat source the values of Nu evaluated at z = 0 and z = 1 should be equal. Qur open-loop,
steady state solutions are obtained at truncation numbers K = 16, M = 8 and N = 18,
for o = 3.117 and ey, = O {transverse rolls}. In Table 1 the values published in Clever
& Busse (1974) are shown in parenthesis. In all cases, the difference between our and
their values is less than 0.4%. For values of wavenumber o, = 2.2 and 2.6, respectively, ‘
where Pr = 7 and Ra = 10000, we obtain Nu = 2.465 and 2.548 versus their values
2.473 andA 2.557. We further note that Nu should not depend on the orientation of rolls.
As a consistency check, we compare the Nu of our solutions between the longitudinal
(cz = 0,c¢y # 0) and transverse rolls (o, # 0,0, = 0). The difference of the Nu values is

found less than 0.02%.

Ra | Pr=071 | Pr=7.0

2000 |1.210 (1.212) |1.214 (1.214)
2500 |1.472 (1.475) | 1.475 (1.475)

10000 | 2.653 (2.661) | 2.608 (2.618)

Table 1: Nusselt Number Values for 2D rolls

(b) proportional feedback control

‘We now turn to the proportional feedback control problem. ;From the results of Tang

& Bau (1994) and our results in Or et al. (2001) the oscillatory convection occurs when

the proportional gain K, becomes sufficiently large. At K, = 6, for instance, the linear
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FIGURE 2. Nusselt number of Oscillatory Convection

theory at Pr = 7 predicts that an oscillatory instability is more preferred than the steady
state rolls. The closed-loop threshold of stability is @, = 3.73 and Ra = 3.63Ra.o, with
the frequency of oscillation equal to 20.4. For the same values of Ra and wavenumber we
use the steady state 2D rolls as the initial conditions for our time-domain simulation. Our
results appear to be consistent with the prediction of linear theory. Figure 2 shows the
behavior of Nu of the closed-loop solutions at K, = 6 for two values of Ra/Ra: at 3.55
(solid) and 3.65 (dashed). In both curves, the open-loop steady, 2D rolls are used as the
initial condition. These rolls are obtained at Ra/Ra.y = 3.65 and a, = 3.73 which yield
Nu = 2.273. In Fig. 2 the solid curve shows stable behavior whereas the dashed curve is
unstable. The neutral curve has Ra/Ra.s approximately equal to 3.60. This value is in
close agreement with the result of linear theory. Furthermore, the oscillatory behavior in
the curves indicate a frequency of about 40.3, again consistent with eigenvalue prediction

of 2 x 20.4 of the linear theory. It is noted that Nu has a harmonic frequency equal to 2

times the fundamental frequency.
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The oscillatory convection appears to have a 2D roll planform. The more interesting
finding according to the numerical simulations is that this oscillatory solution is not
unique for the given set of external parameters. It turns out when we prescribe an addi-
tional small perturbation field in the y-dependence, for the same values of K,, Ra and
0z, the closed-form solution will not settle at the 2D oscillatory branch if the cross-roll
perturbation is not small. For sufficiently large cross-roll perturbations, the solution will
settle down at a subcritical branch. In this case the horizontal planform solution is three-
dimensional, which resembles the g-type hexagons {Or & Kelly, 2001). Depending on the
asymmetry in the perturbation temperature, hexagon cells with sinking motion near the
center of the cell and rising motion near the cell wall is referred to as the g-type. For the
£-type hexagons the opposite is true. In Fig. 3, we show (a) the planform corresponding
to temperature at the lower wall (z = 0) and (b) the planform corresponding to horizon-
tal velocity components at horizontal plane z = 0.1 {the velocity components vanish at
the lower wall due to a non-slip boundary condition). The 3D hexagonal convection is a
steady state pattern and corresponds to Nu = 1.4352. The hexagonal solution induced
by the controller action has been studied in cansiéerabie detail (see Shortis & Hall 1996,
Or & Kelly 2001) based on weakly nonlinear analysis. Here, we actually obtain the so-
lution from a direct numerical simulation. We summarize several important conclusions
based on the results presented: (i) The solutions obtained from our fuﬁy nonlinear, 3D
pseudospectral plant model have been checked and agree reasonably well against known
published results from other independent methods. (ii) The proportional feedback con-
troller induces a subcritical range of g-type hexagonal convection, which appears to be
captured in the nonlinear simulations. Near the stability threshold of the closed-loop

system with sufficiently large gain, both 2D oscillatory convection and 3D steady-state

hexagonal convection can co-exist in the same parameter region. Next, we consider the
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closed-loop simulation using the LQG controller.
{c) Closed-loop simulations using the LQG controller

‘We investigate the closed-loop system with an operating condition of the plant model at
Pr =70 and Ra = 10%. In the setup, the controller gains K 7 and K. are steady-states
precomputed and stored. The actual controller and the nonlinear plant models are im-
plemented in FORTRAN and MATLAB . This controller is implemented according to
the description of subsection 2{c).

In Fig. 4 we provide a sketch of the stability diagram of the uncontrolled dynamics at
Pr = 7 (see Busse & Clever 1979, Fig. 1 for the original plot). The stability boundary
of the purely conduction (static) state is the lowest parabolic-shape curves. At each Ra
above the minimum of this neutral curve (supercritical) the linear theory predicts an outer

band of wavenumbers in which the basic state is unstable. However, at each supercritical

Ra the stable finite-amplitude convection occurs in a narrower band of wavenumbers.




21

- SKEWED:....
VARICOSE

i STABLE STATIC STATE :

PP I H i i i i . :

1 2 3 4 5 ] 7 8 9
WAVENUMBER

FIGURE 4. A Sketch of the Stability Boundaries for the Uncontrolled Layer at Pr = 7.0
At Pr = 7 the stable finite-amplitude convection in the inner band corresponds to
steady 2]? convection rolls. For Ra = 10* (the dashed line in Fig. 4), the inner band
of wavenumbers is bounded on the lower side by the cross-roll instability at o ~ 1.75 and
on the higher side by the skew-varicose instability at @ = 3.5. At this Ra the inner band
of wavenumbers is significantly smaller than the outer band obtained from the linear
theory, which gives approximately 0.74 and 9.0, respectively. The stability boundaries
are in general Pr dependent.

The stable 2D convection rolls are e:haracterized by a single wavenumber but it can be
any value within the inner band. Laboratory experiments (see Cross & Hohenberg 1993)
using different initial conditions had demonstrated that the stable pattern can have non-
unique wavenumber. On the other hand, certain experiments performed by letting Ra
vary either as a slow function of time or by inducing a spatial ramp in the layer thickness
indicate that the rolls are realized with a unique wavenumber. Since our goal here is to

eliminate the convection pattern, the detailed properties of the nonlinear solution do not

concern us other than as the initial condition for our closed-loop solutions.
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The closed-loop simulation is demanding computationally in the sense that the entire
outer band of wavenumber should be covered in the stabilization of the basic state. In our
simulation, the fundamental wavenumbers o, and ay, are selected so that the expansion
covers the entire inner band but short of the cuter band. We argue that this arrangement
is reasonable and we use the truncation numbers K = M = N = 32. The nonlinearity
has the role of limiting the wavenumber of the convection pattern to the inner band.
As the initial condition for the closed-loop simulation, we let a; = 1.0 in the open-loop
run with appropriate initial condition. We obtain a steady, two-dimensional roll pattern
with a wavenumber of 3.0. In the closed-loop simulation, we add in a small perturbation
of cross-rolls superimposed on the steady finite amplitude rolls. The added perturbation
assures that the initial condition used is three-dimensional.

The closed-loop simulation results are shown in Figs. 5(a)-(g). Since the transition is
two-dimensional, it suffices to reveal the flow fields by showing the cross-sectional view
in the z — z plane. In Figs. 5(a})-(c), we show the transient pattern of the perturbation
isotherms in the z — z plane (with basic temperature subtracted). The three isotherm
patterns (a)-(c) of the disturbance field are snapshots obtained at ¢ = 0, 0.05, and
0.2 diffusive time units, respectively. Note that the upper and lower wall both are the
perturbation isotherm of zero temperature. The solid (dashed) lines indicate positive
(negative) increments of temperature. The same increment of temperature applies to all
three panels. The upper panel (a) shows the cross section of the steady-state convection
rolls used as the initial condition at ¢ = 0. Shortly after the controller is turned on
at ¢ = 0, the middle panel {b) shows a steep thermal boundary-layer pattern develops
near the lower wall at ¢ = 0.05. This boundary temperature perturbation possesses an
oppasite sign to the perturbation in the bulk Qf the layer of fluid, and therefore exerts

a cancelation effect, which tends to drive the fluid towards an isothermal state. The
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FIGURE 5. (a)-(c) Transient patterns of isotherm under controller action; (d)-(f) corre-
sponding velocity quivers of the flow patterns; (g) Time response of Nusselt numbers at
the lower and upper wall (Ra = 10* and Pr = 7.0)
lower panel {c) shows at a later instant (at ¢ = 0.2) that the isotherm pé.ttem indeed
settles towards a static state. Here the isotherms correspond to a residual temperature
distribution of about 1.5% of the temperature shown in the upper panel. The residual

temperature continues to approach zero asymptotically in time.

In the right column of panels, Figs. 5(d)-{f) we show the quiver plots of the velocity

field corresponding to the left column of panels of isotherms. The arrow sizes in Figs.
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5(e)-(f) are according to the true relative scale. For illustration of the flow field we
deliberately magnify the arrows in Fig. 5(f). Note that the velocity rolls are shifted by
a phase of m/2 relative to the isotherm rolls. The upward (downward) motion of fluid is
associated with the positive (negative) isotherms, as indicated in the figures. From the
middle panel 5(e), we observe that the upwelling and downwelling regions are significantly
perturbed by the control action. As a result a secondary row of vortices near the lower
wall is apparent. In the lower panel, the convective motion becomes so weak that the
vortex structure is no longer visible. Finally, we show the two Nusselt numbers in Fig,
5(g) in time as the indicator for convective heat transport. The lower {solid) and upper
(dashed) curves are based on the horizontal-mean temperature gradient at the lower and
upper walls, respectively. The gradient is computed normal to the walls. As the thermal
actuator action is switched on, a large transient perturbation develops near the lower
wall, indicating an increase in local heat flux from the actuator action. The lower Nusselt
number shoots up considerably higher than the upper Nusselt number initially for a brief
duration. Subsequently to this the upper Nusselt number is greater than the lower value,
as the heat in the bulk of fluid is transferred away. Between £ = 0 and ¢ = 0.474, we
determined through integration that the area under the curves are 0.5635 (solid line) and
0.5628 (dashed line). The two integral values will converge to the same value in time, as
a constraint of the conservation of heat. |

For a related drag reduction control problem, Cortelezzi and Speyer (1998) developed
a robust reduced-order controller. It is beyond the present scope to consider a reduced-
order controller for this nonlinear simulation. Here, on the other hand we determine the
spatial roll-off characteristic of the controller based on the Green’s function approach.

The roll-off characteristics will shed light on the spatial resolution of the arrays of discrete

sensors and actuators required for a successful control. A good spatial roll-off implies that
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FIGURE 8. (a) isotherms of the response of temperature on the actuator plane due to an impulse
source temperature on the sensor plane; (b) variation of the response temperature along the
dashed line of Fig. 6(a); {c) change of Gmin with t*

a relatively few mea;ured points are needed to achieve an effective control (see Bamieh
& Dahleh 2001). We refer to the description in section 2(d). Consider the same case
in the numerical simulation for Pr = 7 and Ra = 10* and a length scale of the layer
corresponding to o; = 1 and @, = 1. Figure 6{a)} shows the contour of the Green’s
function G(z, y,i§:r,p,yp,t,;}, which is the response temperature on the actuator plane
z = 0 due to an impulse temperature §(z — z,)8(y — y»)8(t — t,) on the sensor plane

zs = 0.3. Here we let z, = 1.5, y, = 1.5 and ¢, = 0, t* = 20A¢ with At = 10~3. Figure

6(b) shows the response temperature profile as a function of z — z,, along the dashed line
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designated in Fig. 6(a). The response temperature corresponds to G(z, yp, t* [Zp, Up, tp)

(with t* > ¢;). The result shows that the function has a negative minimum, here denoted
by Gmin. The minimum is collocated horizontally with the sensor impulse. The negative
temperature generated is intended to cancel the disturbance temperature created by the
impulsive temperature. Of particular significance is to notice how steep the response
curve (in V-shaped) is, implying that the influence zone about the sensor point is small.
From Fig. 6(b), the base width of the V-shape curve is about the width of one roll,
assuming that the length scale of the roll does not differ significantly from its critical
value. In order for the controller to stabilize the convective disturbance, the spacing
between successive points in the array cannot be greater than the effective width of the
response temperature.

The plots in Fig. 6(a)-(b) represent a snapshoot at ¢ = t*. We observed that as ¢*
increases from 0, the shape and width of the temperature profile (see Fig. 6(b)) have
change little, but the magnitude of the minimum decreases rapidly. In Fig. 6{c), we show
the change of the temperature at the minimum, Gyin, with t*. The large dot in Fig. 6(c)
denotes the point corresponding to the snapshoot of Figs. 6(a)-(b). Since the system is

diffusive, the response temperature decays monotonically in time, as expected.

4. Experimental Considerations

For implementation of the LQG feedback control design an experiment of RBC is
considered. This effort will be guided by the result of the nonlinear simulation, modified
for air at room temperature {(with Pr & 0.7) as the working fiuid. Although the closed-
loop numerical results presented earlier in the paper is for the case Pr = 7.0 only, our

supplementary analysis completed only recently at Pr = 0.71 has revealed that there is
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no significant difference in the closed-loop response between the 2 Prandtl numbers for
the condition Ra = 10%,

For RBC, previous experiments demonstrate that the initial and onset conditions, as
well as the realized convection pattern are well predictable under controlled experimen-
tal conditions (Cross and Hohenberg, 1993). Complex situations in applications such as
variations of material properties, occurrence of concentration gradient and solutal con- k
vection, presence of horizontal basic temperature gradient, side-wall effects, defects in
pattern, etc., are not included.

In the experimeﬁﬁai apparatus the upper :«m{i lower walls will be two types of material
with a large range of heat conductivity. The two walls have large aspect ratio to the
layer depth, and may have different thermal boundary conditions. Miniature strain gage
type heaters will be strategically placed at the lower wall as actuator (with separation
between heaters determined by the wavelength of the pattern to be controlled). For air,
it is convenient to use the holographic interferometry as the sensing technique. Such a
sensor can detect temperature differential to high precision. Our LQG controller design
has been validated using simulated sensor data. Eventually, for implementation in the
experiment, a reduced-order LQG controller will be developed. The 3D pseudospectral
model will be modified to accommodate the spatial and temporal dynamics of the sensors

and actuators, guided by laboratory observations and the experimental data.

5. Conclusion

The goal achieved in this study is a successful demonstration through numerical sim-
ulations that a fully nonlinear, steady and preferred state of convection in a horizontal
layer of fluid can be reverted to the no—matidn state by closed-loop controller action. The

simulated results here show the performance of the LQG controller at Ra = 10 and
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Pr =17. At this Ra the proportional feedback controller is ineffective as according to the

linear theory. For even higher values of Ra, stabilization is likely to be achievable with
the LQG controller by using higher spatial resclution in the simulation, but we have not
pushed for that result. The reason is that for realistic modeling at high Ra the effects of
the discrete actuator and actuator delay are important considerations as well. Although
a general stability proof cannot be inferred from the nonlinear simulation of a few initial
conditions, the results do indicate that the linear controller appears quite response in
éuppressing important finite disturbances.

The numerical method used here to develop the nonlinear plant model is pseudospectral
spatially. The integration of the model dynamics equation is performed by a time-splitting
technique. We have adopted the conventional scheme developed in Marcus (1984) (also
see Canuto et al. 1986). However, since some significant modification of the scheme has
been made, we validate our fully ﬁoniinears three-dimensional plant model by performing
a number of check cases to compare against published results, in particular, from Clever
& Busse (1974) and Busse & Clever (1979). The agreement appears reasonably good.
Moreover, the direct simulation verifies the results of the weakly nonlinear analysis Or&
Kelly 2001) about the presence of the controlled-induced subcritical g-hexagon solution.

We have also examined the shape function of the actuator response by computing the
Green’s function of the LQG controller. The shape of the actuation temperature deter-
mines the order of the horizontal distance between points of the sensor/actuator arrays
in term of the layer gap thickness d. This information is of critical importance when the

more realistic pointwise sensor and actuator are used instead of the continuous ones.
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Control of Turbulent Boundary Layers*

John Kim
Department of Mechanical and Aerospace Engineering
University of California, Los Angeles, CA 90095-1597

The objective of this paper is to give an overview of recent progress on boundary layer control
made by the author’s research group at UCLA. A primary theme is to highlight the importance
of a certain linear mechanism and its contribution to skin-friction drag in turbulent boundary
layers — and the implication that significant drag reduction can be achieved by altering this linear
mechanism. Examples that first led to this realization are presented, followed by applications of
linear optimal control theory to boundary-layer control. Results from these applications, in which
the linear mechanism in turbulent channel flow was targeted, indirectly confirm the importance of
linear mechanisms in turbulent — and hence, nonlinear — flows. Although this new approach has
thus far been based solely on numerical experiments and are yet to be verified in the laboratory,
they show great promise and represent a fundamentally new approach for flow control. The success

and limitations of various controllers and their implications are also discussed.

*This paper is a written version of the author’s 2001 Otto Laporte Award Lecture presented at the 54th Annual
APS/DFD Meeting in San Diego, CA, November 16-18, 2001
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1 INTRODUCTION

Control of turbulent flows, turbulent boundary layers in particular, has been a subject of much
interest owing to the high potential benefits. Skin-friction drag, for example, constitutes a large
fraction of the total drag on commercial aircrafts and cargo ships, and any reduction entails substan-
tial savings of the operational cost for commercial airlines and cargo-shipping industries.! Enhanced
mixing in combustion engines, enhanced heat transfer in heat exchangers, or reduced heat transfer
to gas-turbine blades are only a few examples that also illustrate the immediate benefits of turbu-
lence control. Successful control, however, requires both a thorough understanding of the underlying

physics of turbulent flow and an efficient control algorithm, the current state of which leaves much

room for improvement.

Significant progress has been made recently by combining computational fluid dynamics, control
theories, and sensor/actuator technologies. Direct numerical simulation (DNS) and large-eddy
simulation (LES), despite being limited to relatively simple and moderate Reynolds-number flows,
have provided much needed detailed information, from which insight into turbulent flow physics
can be gained. Our understanding of the physics of turbulent boundary layers and free-shear flows

has been significantly improved in large part due to DNS and LES of these flows over the past two
decades.?

Most early attempts of turbulence control were based on the investigator’s intuition and/or
" on a trial-and-error basis. Several investigators have recently started applying more systematic
approaches to controller design. These approaches are significantly different from previous ones
in that modern control theories are incorporated into the controller design. Some of these new

approaches and their relationships to each other will be discussed below.

Properly designed controllers require appropriate sensors and actuators. This has been a critical
issue for turbulence control, boundary-layer control in particular, because the time and length
scales associated with the turbulent eddies to be controlled are extremely small at the Reynolds
numbers of engineering applications, thus requiring a large number of small sensors and actuators
with high-frequency response. Micro-electro-mechanical systems (MEMS) technology will play an
essential role in producing arrays of a large nurﬁber of sensors and actuators at a reasonable cost.
The possibility of utilizing MEMS technology in greéﬂcing such sensors and actuators has been
demonstrated recently by the UCLA-Caltech group. They were able to fabricate sensors, actuators,




and simple control logic onto a chip, thus illustrating, at least in principle, that MEMS technology
can produce the large number of sensors and actuators necessary for turbulence control. Interested
readers are referred to Tsao et al® and Ho and Tai4, for applications of MEMS technology to

boundary layer control and general fluid dynamics, respectively.

The objective of this paper is to provide an overview of recent progress made by the author’s
research group at UCLA. Particular emphasis is upon nontraditional approaches using modern
control theory (see, for example, Zhou et al.). Other research groups (UCSD, UCSB, Stanford in
the US, and KTH in Sweden, to name a few) are conducting similar research, but they are not
discussed here as they were outside the scope of the lecture upon which this paper is based. 1
mention in passing that the work carried out by researchers at UCSD, UCSB and KTH is very

closely related to that described in Section 4.4, while that by the Stanford group is similar to those
described in Section 4.1 and 4.3.

This paper is organized as follows. A brief account of the history of an early numerical simulation
of turbulent channel flow, which is viewed by many as a starting point for establishing numerical
simulation of turbulent flows as a viable tool for turbulence research, is given in Section 2. In
Section 3 a brief discussion of the skin-friction drag in turbulent boundary layers is given. Various
approaches aimed at reducing the skin-friction drag, especially from the perspective of controlling a
- key linear mechanism, are presented in Section 4. Issues and limitations associated with turbulence

control, and a concluding remark, are given in Section 5.

In this paper, I shall use (z,y,2) for the streamwise, wall-normal, and spanwise directions,
respectively, and (u,v,w) for the corresponding velocity components unless stated otherwise. The

superscript + denotes flow quantities non-dimensionalized by the wall-shear velocity, u,, and the

kinematic viscosity, v.

2 ILLIAC IV AND TURBULENT CHANNEL SIMULA-
TIONS

The direct numerical simulation of turbulent channel flow presented in this paper as examples of
various control experiments has its origin in the late 1970s, when I began working at NASA Ames
Research Center. The original computations® were carried out on a very unique computer called

ILLIAC IV, which had just been brought into NASA Ames Research Center from the University of




Illinois.” The ILLIAC IV was, to the best of my knowledge, the first large-scale parallel computer
with 64 processors (called processing elements or PEs). Although it was huge and required an entire
building to house it, the computer had very limited power by present-day standards. For example,
it had the total of only one megabyte of memory (each PE had 2,048 64-bit words of memory).
Asynchronous data transfer between the core memory and external memory, which consisted of 13
4-foot diameter disks, each with 9.8 megabytes of memory (128 megabytes in total), was designed
and used for ‘large-scale’ computations. Homemade compilers were written by Ames scientists Bob
Rogallo (CFD) and Alan Wray (Vectoral) to replace the compiler supplied with the machine, since
it was so unreliable. The ILLIAC IV typically ran with the clock at 12.5 MHz, and an optimized

code like our plane-channel solver could achieve about 20 Mflops in 64-bit mode and 30 Mflops in
32-bit mode.?

With this then-powerful and unique computer, we performed the ia;ge-eddjr simulation (LES) of
turbulent channel flow.® At first, it was not very well received, especially by experimentalists, despite
the fact that computed turbulence statistics were in good agreement with measured ones. In order
- to convince the skeptics, and perhaps to some extent ourselves, we produced computer-generated
motion-picture visualizations from the simulated flow field, which closely mimicked laboratory vi-
sualizations using hydrogen-bubble wires in water® (see Fig. 1). This visualization, now common in
computational fluid dynamics, was unusual at the time, and was instrumental in convincing many
experimentalists who had previously been skeptical of the validity of numerical simulations. This
computer-generated movie thus helped establish large-scale computations as an equal partner with

laboratory experiments as a _turbulence research tool.

3 SKIN-FRICTION DRAG IN TURBULENT BOUND-
ARY LAYERS

Although it has been common knowledge in fluid mechanics that the skin-friction drag in turbulent
boundary layers is much higher than that in laminar boundary layers, it was not until recently that
we began to understand why this was the case. Since the underlying physics of high skin-friction

drag were not known, most attempts to reduce the drag were on a trial-and-error basis.

Existence of well-organized turbulence structures and the recognition that these structures play

important roles in the wall-layer dynamics are among the major advances in turbulent boundary




layer research during the past several decades. The ubiquitous structural features in this region are
low- and high-speed “streaks,” which consist mostly of a spanwise modulation of the streamwise ve-
locity. These streaks are created by streamwise vortices, which are roughly aligned in the streamwise
direction. It has now been recognized, in large part due to numerical investigations, that streamwise
vortices are also responsible for the high skin-friction drag.!%'! These vortices are primarily found
in the buffer layer (y* = 10 — 50) with their typical diameter in the order of d* = 20 — 50.12 There
is strong evidence that most high skin-friction regions in turbulent boundary layers are induced
by nearby streamwise vortices (Fig. 2). These vortices are formed and maintained autonomously

(independent of the outer layer) by a self-sustaining process, which involves the wall-layer streaks

and an instability associated with them.13-16

In light of this description, we asked the following question for the purpose of boundary-control
for drag reduction:

'Can we suppress (or mitigate) the formation of these streamwise vortices through an

actuation at the wall, and if so, would it lead to a significant reduction of the skin-friction

drag?

The remainder of this paper addresses this question by reviewing various approaches that have been
used in an attempt, directly or indirectly, to reduce the impact of streamwise vortices on the skin-
friction drag in turbulent boundary layers. In particular, we examine a linear mechanism associated
with these streamwise vortices, and present controllers designed to suppress the linear mechanism.
The success of these controllers demonstrates that this linear mechanism plays an important role,

although the boundary layer on the whole is governed by nonlinear dynamics.

This paper discusses active feedback control, which involves actuation and sensing, nominally
at the wall. We mention here in passing that passive control, which requires no actuation (ie.,
no external energy input), has also been tried. One successful example, which has been shown to
reduce the skin-friction drag (a maximum on the order of 5-7%), involves riblets. These are surfaces

with narrow grooves aligned in the streamwise direction. It is noteworthy that the riblet surface also

reduces the skin-friction drag by interfering with the interactions between the streamwise vortices

and the wall.!® The interested reader is referred to Choi et al. and the references therein.




4 NUMERICAL EXPERIMENTS

All examples presented in this paper, unless stated otherwise, have been obtained in a turbulent
channel with unsteady blowing and suction at the wall as control input, which was determined by
various feedback control laws. Details of the numerical methods!” can be found in Kim et al.}?
All numerical experiments have been performed at very low Reynolds numbers, Re, = 100 — 200,
where Re, denotes the Reynolds number based on the wall-shear velocity and channel half-width.

Implications related to the low Reynolds number flows are addressed in Section 5.

4.1 Opposition Control

In an attempt to mitigate the effect of streamwise vortices in the buffer layer, Choi et al.'® used
blowing and suction at the wall equal and opposite to the wall-normal component of velocity at
y* = 10 (Fig. 3). They showed that this simple control, now known as opposition control,'® resulted
in approximately 25-30% drag reduction in a turbulent channel flow. The computed flow fields were
examined to determine the mechanism by which the drag reduction was achieved. The most salient
feature of the controlled flow field was that the strength of the near-wall streamwise vortices was
substantially reduced, and consequently most of the high skin-friction regions were suppressed,

resulting in the mean drag reduction.

Although the method employed in opposition control is impractical, as the information at y+ =
10 is normally not aﬁﬁable, it conveys a significant message for our purpose: it demonstrates that
manipulation of the near-wall streamwise vortices does indeed lead to substantial reduction of the
skin-friction drag in turbulent boundary layers. Opposition control has been used as a reference

case to which other control schemes can be compared.

4.2 Adaptive Inverse Model

In order to circumvent the problem associated with opposition control, Lee et al.?® used wall ac-
tuation, which depends only on flow quantities that can be measured at the wall. They designed
and trained a neural network, which served as an adaptive inverse model of the plant represented
by the Navier-Stokes equations (Fig. 4). The network was trained to predict actuation at the wall
(control input) for given outputs at the wall. Once properly trained, this inverse model network

was used as a controller to predict an optimal control input for a desired output, i.e., reduced skin-




friction drag. A schematic illustrating a neural network representing an adaptive inverse model of

the Navier-Stokes equations is shown in Fig. 4.

Details of their neural network are given in Lee et al2° The functional form of the final neural

network is:

(N-1)/2 Ow
Vjk = Wa tanh Z VV‘:Z = - Wb - Wc 3 (1)
i=—(N—-1)/2 dy ki

I<j<N, and 1<k<N,,

where W denotes weight, N is the total number of input weights, and the subscripts j and k denote
the numerical grid point at the wall in, respectiver, the streamwise and spanwise directions. N,
and N, are the number of computational grid points in each direction. The summation is done over
the spanwise direction. Seven neighboring points (N = 7), including the point of interest, in the
spanwise direction (corresponding to approximately 90 wall units) were found to provide enough
information to adequately train and control the near-wall structures responsible for the high skin
friction. Note that the input to the neural network is dw /08y at the wall, not du/dy. Initially du/dy
and Ow/0y at the wall at several instances of time were used as input data fields, and the actuation
at the wall was used for the output data of the network. Experimentally we found that only dw/8y

at the wall from the current time was necessary for successful network performance.

Applying this control scheme to a turbulent channel flow at low Reynolds numbers resulted
in about 20% drag reduction. The computed flow fields were examined and it was found that
instantaneous flow patterns were very similar to those observed in the opposition-controlled channel,
Le., the strength of the near-wall streamwise vortices was substantially reduced (Figs. 5-6). This
result further substantiates the notion that successful suppression of streamwise vortices leads to a
significant reduction in the skin-friction drag. It is worth mentioning here, however, that there may

be other flow quantities that have a more direct link to the reduced skin-friction drag, but these we

have not yet explored.

An examination of the weight distribution from the on-line neural network led to a very simple
control scheme that worked equally well while being computationally more efficient. This simple

control scheme indicated that the optimum blowing and suction at the wall should be in the form,

J dw
Uy ~ — —

2
azayw? ()

7




where the overbar represents a local spatial average with high wavenumber components properly re-
duced (see Lee et al.? for details). The converged weight distribution can be expressed analytically,

thus making the implementation of this control scheme relatively easy.

The simple pattern of the weight distribution derived from the nonlinear network suggests the
possibility of using a linear network. A linear neural network, identical to that of Eqn. (1) without
the hyperbolic tangent function, was applied to the same problem. This linear network resulted in
almost identical drag reduction with instantaneous flow patterns very similar to those obtained by
the original nonlinear network. The success of this linear network suggests that the flow dynamics
of interest, i.e., those relevant to high-skin friction, can be approximated by a linear model, the

implication of which will be further explored in the remainder of this paper.

4.3 Adjoint-Based Sup-Optimal Control

As mentioned in the introduction, most previous control work has been rather ad-hoc, in that it was
primarily based on the investigator’s intuition and insight into the flow physics under consideration.
The opposition control is a good example. More systematic approaches, relying on the equations
that govern the problem under control, have appeared recently. One such approach is adjoint-based
optimization.?!~2* In this approach the control objective is to minimize a cost functional, J(¢), of
control input, ¢. Once the sensitivity of the cost functional with respect to the control input is

known, it can be minimized by using any gradient-based iteration scheme. For example,

T = I+ T8 - 8, 3)
where DJ/D¢ is the Fréchet differential of J, representing the sensitivity of the cost functional to
the control input. More advanced iterative schemes, such as a conjugate-gradient method, could
also be used, instead of the simple gradient method shown here. A key step is how to evaluate
the sensitivity functional. A popular approach has been to express it in terms of properly defined
adjoint flow variables, which can be obtained by solving adjoint governing equations. In general, one
has to solve the Navier-Stokes equations and the adjoint Navier-Stokes equations simultaneously.

Interested readers are referred to the references given above for further details.

Bewley et al.?* applied an adjoint-based optimal control, in which a control objective was min-
imized over a finite time period, to a turbulent channel at Re,=100. Their approach led to flow

laminarization with a drag reduction of over 50%. However, this algorithm requires solving the

8




Navier-Stokes equations and their adjoint equations iteratively over a finite time period (referred
to as finite-time horizon); while the adjoint equations are integrated backward in time, the Navier-
Stokes equations are integrated forward in time, during which the control input; which in turn de-
pends on the adjoint variables, is required. This procedure is computationally expensive, and more
importantly, impossible to implement in practice. Nevertheless, this is an important accomplish-
ment on several accounts. For example, it demonstrates that a control algorithm derived rigorously
from a control theory independent of flow physics can outperform intuition-based controls. Also,
notwithstanding its practical limitation, it establishes the best possible control process, from which
physical insight may be gained by examining the manner in which the laminarization occurred. The
adjoint-based approach may also be useful for off-line optimization applications, where the iterative

optimization is done off-line once and the result is applied in an open-loop control.

Lee et al.?? took a slightly different approach. Instead of searching for the optimal state over a
finite time period, which requires solving the Navier-Stokes and their adjoint equations iteratively,
they looked for a suboptimal state, in which a control objective is minimized in the limit of the
time horizon approaching zero. This adjoint-based suboptimal control does not require solving the
governing equations iteratively. Furthermore, they showed that a wise choice of the control objective,
coupled with a particular adjoint formulation (which involved taking an adjoint of only the linear
part of the discretized Navier-Stokes equations), could lead to a more simple and practical control
law. In this approach, the desired control input was expressed in terms of adjoint flow quantities at
the wall, which could be evaluated without solving the adjoint equations explicitly. Minimization

of a cost functional involving dw/dy led to (see Lee et al.?? for the detailed procedure):

9z Oy
where <> represents a local spatial average. Note that this expression is very similar to Eqn. (2),

which was obtained by the adaptive neural network. The only difference in the two expressions

is how high wavenumber components are reduced when the spatial average is performed; see Lee
et al.?® for details. Application of Eqn. (4) to the turbulent channel resulted in almost identical
results to those discussed in Subsection 4.2, in that the computed flow field contained fewer strong

near-wall streamwise vortices and skin-friction drag was reduced.

Although the two control schemes discussed in Subsections 4.2 and 4.3 were derived from totally

different approaches, they yielded very similar feedback control laws. It is worth mentioning here
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that the adaptive nonlinear network could be approximated well by a linear network, and that the
final form of the adjoint-based suboptimal control was derived without including the nonlinear part
of the discretized Navier-Stokes equations when the adjoint operation was performed. It appears
that whatever physics that are relevant to skin-friction drag reduction in turbulent boundary layers

can be adequately approximated by a linear model.

4.4 Systems Control Theoretic Approaches

Many advances have been made in linear optimal control theory over the past several decades. Un-
fortunately, applications of this modern control theory to flow-control problems, turbulence control
in particular, have been rare. It is in large part due to the common belief that turbulent flows are
nonlinear, and hence, there is very little chance that linear control theory is applicable to turbu-
lence control. The other deterring factor might have been the fact that turbulent flows have a large
number of degrees of freedom, and require analysis of a very high-dimensional system. It shall be

shown here that both concerns can be overcome for control of the skin-friction drag in turbulent

boundary layers.

Since the pioneering work by Joshi et al.,”® in which they demonstrated that transition to
turbulence (including transition due to finite-amplitude, hence nonlinear, disturbances) can be
suppressed by a linear integral feedback controller, there has been a flurry of activity reporting
successful applications of linear optimal control to turbulent and transitional flows.26-3! We briefly
review some fundamentals of linear optimal control theory here before we proceed to present our
results. The reader is also referred to a recent paper by Bewley,?® for an excellent introduction to

linear optimal control theory as applied to fluid mechanics problems.

4.4.1 Linear Optimal Control and State-Space Representation

Linear optimal control theory starts with a state-space representation of the dynamical system to

be controlled. A state-space representation of a dynamical system can be written as

dx
M 5
n Ax+ Bu, ()

where x represents the state vector of the system and u denotes the control input. The system
matrix A contains the system dynamics, and B denotes an input matrix, which depends on the

particular type of actuation. In linear quadratic regulator (LQR) synthesis, a cost function to be

10




minimized is written in the following quadratic form,
.1 (T . " ‘
J:gggo-ffa (v x*Qx + u*Ru) dt, (6)

where the superscript * denotes conjugate transpose and 7 is a control parameter. The matrices Q
and R, respectively, represent a particular form of the control objective and how the cost of control
should be accounted for. A large weighting on the cost of control (small +) signifies a high cost of
control, and vice versa. The optimal control input u minimizing the cost function is found in the
following form,

u=-Kx, (7)

where K is the control gain matrix, which is to be determined. The optimal K minimizes the cost
function, and is obtained by solving an algebraic Riccati equation involving matrices A, B, Q, R and
the control parameter «: ‘

AP+PA+~yQ—PBR'B*P=0, (8)
from which K = R-1B*P is determined.

Note that in the LQR synthesis, the optimal control input requires complete information of the
state vector. In most practical situations, complete system information, x, is not known, and it
must be estimated based on limited measurements. This leads to linear quadratic Gaussian (LQG)

synthesis, and the following dynamical system representation:

i—’; = Ax+ Bu+Tw (9)
z = Cx+Du+v (10)
% — A%+ Bu+L(z—3) (11)
u = —K%, (12)

where % denotes an estimated state vector, w and v, respectively, represent system and measurement
noise, which in LQG synthesis are assumed to be white Gaussian processes, z = Cx + Du + v
denotes the actual observation, and 2 = C% 4+ Du is the observation based on the estimated state.
Matrices C, D, T', respectively, represent the measurement, feed-through, and input matrices. The
Kalman gain matrix L, which is designed to minimize the error associated with the estimated state,
is determined in the same manner as the control gain matrix K, by solving an algebraic Riccati

equation involving matrices A, C,I". The ratio of the power spectral densities of the noise mentioned
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above enters as a design parameter. In control terminology, Eqn. (11) is referred to as a “system
estimator” and Eqn. (12) a “controller,” and together they are referred to as a “compensator.” In
general, the system dynamics may contain many unobservable and/or uncontrollable modes, and
they are neither desirable nor necessary to include in the estimator. A reduced-order model for the
estimator is therefore used. This model reduction step is especially critical for turbulence control,
since the original system is a very high—éimensiohal system, many modes of which are unobservable
and uncontrollable as we normally limit our sensing and actuation to the wall. In the study to be
described in Section 4.4.5, we used a balanced-realization model-reduction method, in which the
original high dimensional system is reduced by considering controllability and observability. The

reader is referred to Lee et al.®® for the model-reduction techniques used in the present study.

4.4.2 State-Space Representation of the Navier-Stokes Equations

Representing the wall-normal velocity, v, and the wall-normal vorticity, wy, in terms of Fourier
modes in the streamwise (z) and the spanwise (z) directions, the linearized Navier-Stokes (N-S)

equations can be written in an operator form

APARICIPY 03
where
-l 2] o

~

and the () denotes a Fourier-transformed quantity. Here Lgs, L, and L. represent the Orr-

Sommerfeld, Squire, and the coupling operators, respectively, which are defined as

' U 1
= R iky—— + —A2 15
Lo A ( ik, UA + ik, T ReA) (15)
. 1
Ly = —ik,U+ ‘é‘éA ‘ ~ (16)
L = —ikzg , (17)
dy

where k, and k, are the streamwise and spanwise wavenumbers, respectively, k* = k2 + k2, A =

0%/8y* — k%, and U is the mean velocity about which the Navier-Stokes equations are linearized.

Eqn. (13) is then already in the state-space representation form

dx :
= A 18
dt X (18)
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where the state vector x consists of the wall-normal velocity and wall-normal vorticity expressed
in terms of their expansion coefficients. Any polynomial expansion or collocation representation of
the state vector can be used for this purpose. Having written the Navier-Stokes equations in this

form, we are now in a position to design an optimal controller for this linear system.
4.4.3 Application to a Linear System

Before designing and applying a linear controller to the nonlinear problem of interest, the turbulent

channel, we first considered the following linear problem.

The transient growth due to non-normality of the operator associated with linearized Navier-
Stokes equations has received much attention during the past several years.32=37 It has been shown
that certain disturbances can grow to O(Re?) in time proportional to O(Re).**37 It has been sug-
gested that this transient growth, which is due to a linear mechanism, can lead to a transition to
turbulence at a Reynolds number smaller than the critical Reynolds number, below which classical
linear stability theory, based on modal analysis, predicts that all small disturbances decay asymp-
totically. Some investigators have proposed that this linear process is responsible for subcritical
transition in some wall-bounded shear flows, such as plane Poiseuille flow and Couette flow. Some
investigators further postulated that the same linear process is also responsible for the wall-layer

streaky structures observed in turbulent boundary layers.3%:33

Since this transient growth is due to a linear mechanism, it should be affected by a properly
designed linear optimal controller, based on the linear system described in Subsection 4.4.2. The
so-called ‘optimal’ disturbance® was constructed in a manner similar to that described by Butler
and Farrell® for Re, = 5,000, where Re, denotes the Reynolds number based on the centerline
velocity and channel half-width. Note that this is a subcritical Reynolds number with no unstable
eigenmodes, but this ‘optimal’ disturbance consists of a special combination of decaying eigenmodes.
Due to the non-normality of the linearized Navier-Stokes operator, some of these eigenmodes are
almost parallel to each other, and the energy associated with this ‘optimal’ disturbance can grow

initially before it ultimately decays.

An LQR controller, which minimizes the total disturbance energy, was constructed and applied
to the linear system with the ‘optimal’ disturbance as the initial condition. Fig. 7 shows the effect
of the LQR controller. Also shown in the figure is a result obtained with opposition control. It

should be noted that the LQR controller utilizes complete internal state information, whereas the
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opposition control uses the information at a particular wall-normal location only. This explains

why the LQR controller performed better than the opposition control.

4.4.4 LQR Control of Turbulent Channel

It was not too surprising to see that a linear optimal controller worked well when applied to a linear
problem. A more challenging question is whether a controller based on the linearized system would
work at all in turbulent channel flow, which is obviously a nonlinear system. There are several
reasons we expected a positive result in spite of the fact that turbulent channel ﬂew is certainly
beyond the scope of linear controllers. First, we saw in Subsections 4.2 and 4.3 that the wall-layer
dynamics responsible for high skin-friction drag in turbulent boundary layers can be approximated
well by a linear model. Second, both the transient growth mechanism in transitional boundary
layers and the self-sustaining mechanism of near-wall turbulence structures in turbulent boundary
layers are at least in part due to the linear mechanism described in Subsection 4.4.3. Consequently,
we should be able to model this linear mechanism in terms of the linear state-space representation,

and a controller based on this linear model should be able to affect the linear mechanism.

Several LQR controllers were constructed, to minimize 1) wall-shear stress fluctuations, 2) tur-
bulent kinetic energy, and 3) the linear coupling term (see Subsection 4.5 below). Results are shown
in Figs. 8-10. A common feature for all of these drag-reduced flow fields is weakened streamwise
vortices (Fig. 9), resulting in reduced high skin-friction extrema at the wall (Fig. 10). In some cases,
especially for case 1), the controller met its design objective (i.e., it reduced fluctuating wall-shear
stresses) quite dramatically, but it did not lead to similarly dramatic mean drag reduction. A
further examination of the computed flow field revealed that, in contrast to opposition control, the
control effect is confined to the near-wall.3® Apparently, we need a cost function, whose minimiza-
tion affects turbulence structures away from the wall. Nevertheless, all of these linear controllers

worked remarkably well in the nonlinear flow.

The success of these linear controllers confirms, once again, the notion that a linear mechanism
plays an important role in turbulent boundary layers. In a true linear system, the base (i.e., mean)
flow about which the system is linearized does not evolve in time, and the system matrix A is
independent of time. In a nonlinear system, however, as the state vector evolves in time, it affects
the mean flow and thus A is not constant in time. One way to account for this nonlinearity is to

recompute the system matrix A as the mean flow evolves. A new gain matrix K is obtained as
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the mean flow evolves. This can be viewed as a type of gain scheduling.?® An example of LQR
control with gain scheduling is shown in Fig. 11, which yields complete laminarization at Re,=100.
However, we have observed that this result was very sensitive to the manner by which the gain
scheduling was implemented.?® But this sensitivity notwithstanding, this result illustrates that a

further fine tuning of linear controllers can lead to substantial improvements for nonlinear flows.
4.4.5 LQG Control of Turbulent Channel

As mentioned in Subsection 4.4.1, in most practical applications, complete state information is not
available and must be estimated from limited measurements. Furthermore, the estimation must
be carried out based on a reduced-order model for various reasons. Lee et al.3° constructed a two-
dimensional reduced-order model of the linearized Navier-Stokes system, based on controllability
and observability considerations. The size of the reduced-order estimator (i.e., the number of
independent modes or the length of the state vector representing the reduced-order estimator)
was less than 2.5% of the original system. This two-dimensional reduced-order compensator (i.e.,
estimator plus controller) was applied to the turbulent channel, but Lee et al.30 observed that a
fully three-dimensional controller was needed; otherwise, the resulting flow patterns show substantial
spanwise variations of wall-shear stress fluctuations, and they had to employ an additional ad-hoc
controller to remove the remaining spanwise variations. Lim et al3? applied an improved three-
dimensional version of this LQG controller to the turbulent channel, and obtained about 20% drag
reduction. The flow patterns show the same trend as those observed in the turbulent channel with
LQR controllers, but the effect is confined to the near-wall region.

The performance of LQG-controllers largely depends on the performance of the estimator. We
examined how well the estimator tracks the actual measurement (i.e., how small z — % in Eqn. 11
is).4%% Our estimator produced excellent tracking, but the estimated internal state ranged from
good (near the wall) to poor (away from the wall). Development of an improved reduced-order

estimator is key to successful applications of LQG controllers, and we are currently working toward
achieving this goal.

4.5 Reduction of Non-Normality in Turbulent Channel

The success of linear optimal controllers in the turbulent channel was somewhat unexpected, al-

though we have shown some evidence that a linear mechanism plays an important role in turbulent
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boundary layers. In order to further address this question, we turn to a numerical experiment

performed by Kim and Lim.3¢

They recognized that the primary reason for non-normality of the linearized Navier-Stokes sys-
tem is due to L. in Eqn. (14). Although L, itself is not self-adjoint (non-normal), it is L, (referred
to as the coupling term because v and w, are coupled through this term) that makes the operator A
non-normal. Since eigenmodes of a non-normal operator are not orthogonal to each other, they allow
transient growth of energy even if the individual modes are stable and decay asymptotically. Some
investigators® suggest that this non-normal tfaﬁsieﬁt growth is responsible for near-wall turbulence
structures in turbulent boundary layers. Kim and Lim3® investigated the role of the coupling term
in a fully nonlinear turbulent flow, by considering the following modified nonlinear system:

ala) =[5 el 19

¥
This modified system can be viewed as representing a virtual turbulent flow with no coupling term,

or a turbulent flow with control by which the coupling term is suppressed (see below).

Starting from an initial field obtained from a regular turbulent channel simulation, the above
modified nonlinear system was integrated in time and was compared with a nonlinear simulation
with the coupling term. It was found that without the coupling term the near-wall structures first
disappeared and the flow became laminar(Figs. 12-13). This demonstrates that the linear coupling

term plays an essential role in maintaining turbulence in nonlinear flows.

Motivated by the above results, an LQR controller designed to minimize the coupling term was
constructed and applied to the channel. Note that this controller can reduce the coupling term but
not completely suppress it in contrast to the virtual flow above. The coupling term in the LQR-
controlled flow was substantially reduced, and the strength of near-wall turbulence substantially
weakened, resulting in about a 20% drag reduction.?® An LQG controller designed to minimize the

coupling term is currently under construction.

4.6 Beyond Turbulent Channel Flows

The successful applications of linear controllers in the turbulent channel led us to consider more
complex flows. Control of separated flow over an airfoil at a large angle of attack has been studied
by many investigators owing to its technological importance. When the angle of attack is increased

beyond the stall angle, the flow becomes fully separated, resulting in significant loss of lift. In many
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previous studies, periodic blowing and suction at a certain frequency, determined by trial and error,

has been used to prevent or minimize stall at high angles of attack.

We plan to develop a control algorithm for the above-mentioned separated flow using the linear
control theory discussed in Subsection 4.4. Unlike the turbulent channel or turbulent boundary
layer, however, turbulent flow over an airfoil cannot be easily converted into a state-space repre-
sentation, since the required system information (matrices A, B,C and D) is difficult to obtain.
In a situation like this, system identification approaches can be used to model the input/éutput
relationship of the system. Once an approximate model for this complex flow is identified, the same
procedure used in channel flow control can be used to design optimal controllers. The underlying
assumption here, of course, is that some key dynamics of the separated flow can be captured by a
linear model. Whether this assumption is valid, and how successful the approximate model obtained

via system identification techniques turns out to be, remains to be seen.

5 ISSUES, LIMITATIONS AND CONCLUSION

I have presented a few successful applications of controllers that are fundamentally different from
many existing ones in that they were derived from linear control theory, which has not been widely
embraced by the fluid mechanics community. These successes are quite promising, as they suggest
a new approach for turbulence control, a topic which has been viewed by many as beyond the
scope of linear control theory. It turns out that in wall-bounded shear flows a linear mechanism
plays an important role in near-wall turbulence dynamics, especially from the perspective of skin-
friction drag. This linear mechanism, which exists in the presence of other fundamental nonlinear
processes, can be captured by a linear model, and much can be accomplished by utilizing linear
control theory. There is some evidence that further fine tuning may lead to even better performance
than that shown here. However, there are many outstanding issues that must be resolved before
this approach can be fully implemented. Some of these issues are listed below. They are neither in

any particular order, nor exhaustive; they simply reflect issues that have come to light during the

course of this work.

1. Model reduction. An improved model reduction technique is key to successful applications
of linear control theory to flow control in general, and turbulence control in particular. Cur-

rently we use a balanced-realization model-reduction approach, in which the original high-
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dimensional system is reduced by considering controllability and observability. A reduced-
order model should retain the essential features of the original dynamical system. Most
existing model-reduction techniques, including ours, aim at reproducing the input-output re-
lationship of the original system, thus accounting for controllability and observability, but
they do not account for the control objective. This is certainly not desirable, as it may leave
out some important system dynamics, which are relatively less observable or controllable, but
nevertheless may contribute significantly to the control objective. Ideally, all three aspects
(control objective, controllability and observability) should receive proper weight during the
model reduction stage. In this regard, it is worth mentioning that a model reduction purely
based on POD (proper orthogonal decomposition) modes may not be appropriate since it
gives no consideration to controllability and observability, and perhaps (at least not directly)

to the control objective, either.

. Control objective (or cost function). For the purpose of drag reduction, we have considered

several control functions to be minimized (note that the drag itself, which is a mean quantity,
cannot be incorporated directly into the cost function), but they are not necessarily the most
appropriate ones. In fact, in some examples given here, controllers performed extremely well

from the point of minimizing the given cost function — in other words, the controllers met

the design objective — but unfortunately they did not lead to correspondingly significant

reduction in the mean drag. Whether this implies an inherent limitation of linear controllers

for nonlinear flows or simply calls for different cost functions has not yet been determined.

. Localized control. All examples shown in this paper used controllers designed and applied

in wavenumber space. Measurements from distributed sensors are collected and converted
into Fourier space, where control input (actuation) is determined and applied (actuatiozz itself
can be applied in physical space by converting the control input back to physical space, but
that is beside the point). The primary reason behind this approach was that the linearized
Navier-Stokes system completely decouples for each wavenumber, thus converting a large linear
system into a small linear system for each wavenumber. However, this procedure, which is
sometimes referred to as a centralized approach?? (since it requires central processing of data),
requires global sensor information for each actuator. A more desirable approach would be one

in which the control input for each actuator is determined solely by information obtained by




neighboring sensors, as in

u(z,2,t) = [Glo— &2 1) a(g,n,1) dedn, (20)

where G denotes a control kernel in physical space. A key consideration of this approach
(referred to as localized or decentralized control) is how well the control kernel can be localized
in physical space, which allows determination of the control input, u(z, z,t), based on local

z(z,2,t). There is some evidence that this is indeed possible,*3? but it requires further

investigation.

. Actuator. In our numerical experiments, we have used the wall-shear stresses as measurements
(sensing) and surface blowing and suction as control input (actuation). Shear-stress sensors
are currently available and pose no practical problems, but actuators that can deliver the same
type of blowing and suction at the wall are not yet available.4! Furthermore, in our numerical
experiments, we have not accounted for any time delay between sensing and actuation, whereas

in practice there will be a finite delay due to both actuator response time and data, processing

time.

. Numerical issues. Although this is not é. control issue, it is worth mentioning here that
the system matrix we have to deal with is extremely poorly conditioned (i.e., it has a high
condition number) and all computations (e.g., transforming into a Jordan form for model
reduction, solving the Riccati equations for the control and estimator gain matrices, etc.)
involving the system matrix must be done with care. The effect of under-resolved modes (due
to a finite-dimension representation of the infinite-dimension system) and the effect of spurious
modes (due to a particular state-space representation) are other examples that require special
attention. Some of these modes can be very controllable and /or observable, and therefore can

adversely affect the controller design and its performance.

- Reynolds number. All successful examples thus far, including those conducted by other inves-
tigators and not presented here, have been at very low Reynolds numbers. Some investigators
believe that there are fundamental changes in the turbulent transport processes in turbulent
boundary layers at high Reynolds numbers.*? Therefore, all current approaches that control
near-wall turbulence structures, which according to these investigators are only relevant to low

Reynolds number flows, may not be applicable to turbulent boundary layers at high Reynolds
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numbers. This remains to be seen. It is worth noting, however, that the riblet surface, which
also affects near-wall turbulence structures, has been proven to reduce skin-friction drag dur-
ing a flight test of a commercial aircraft — an example illustrating that what worked at low

Reynolds numbers (both in numerical and laboratory experiments) also worked at a high

Reynolds number.

7. Beyond simple flows. It will be extremely interesting to see how far we can push the current
approach toward more realistic and complex flows for which we do not have complete system
information. The system identification approach is one way to tackle this problem, but it

remains to be seen how robust this approach will be, especially for nonlinear flows.

In summary, I have shown that applications of linear control theory to a particular problem
of turbulence control result in quite promising results. This is in due large part to the important
role of certain linear mechanisms in wall-bounded shear flows. Exploitation of linear mechanisms
in other flows may also lead to successful results. Although control theory has emerged as a viable
and powerful tool for flow-control problems, there remain many outstanding issues. I expect that
further celiabor&:,tiaﬁs between control theoreticians and fluid dynamicists will lead to even greater

progress in the future.
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Figure Captions

Figure 1. Marker particles in a motion picture of a simulated flow (left) and hydrogen bubbles in a

laboratory experiment by Kline et al.® (right).

Figure 2. Skin-friction in turbulent boundary layers. Plan view of contours of spanwise vorticity at
the wall, showing high skin-friction regions indicated by blue and green (top). Cross section view
of the high skin-friction region marked by the straight line in the top ﬁgﬁre (lower right corner),
showing a pair of streamwise vortices in the wall region. Colors denote the magnitude of streamwise

vorticity while the vectors indicate the wall-normal and spanwise components of the velocity in the

plane (bottom).
Figure 3. A schematic iilustfatiﬁg opposition control.

Figure 4. A schematic illustrating a neural network representing an adaptive inverse model of the
Navier-Stokes plant.

Figure 5. Contours of streamwise wall-shear stress in (z, z)-plane in regular (top) and NN-controlled
(bottom) channel.

Figure 6. Contours of streamwise vorticity in (y, z)-plane in regular channel (top) and NN-controlled
channel (bottom).

Figure 7. Time evolution of an ‘optimal’ disturbance with and without control:

----, opposition control; —-—, an LQR controller.

, uncontrolled;

Figure 8. Time evolution of mean wall-shear stress (normalized by its value when control started)
in turbulent channel:

, uncontrolled; others, various LQR controllers.

Figure 9. Contours of streamwise vorticity in (y, z)-plane in regular channel (top) and in channel

with an LQR-controller, which minimizes wall-shear stress fluctuations (bottom).

Figure 10. Contours of wall-shear stress in (z, z)-plane in regular channel (top) and in channel with

an LQR-controller, which minimizes wall-shear stress fluctuations (bottom).

Figure 11 Time evolution of mean wall-shear stress (normalized by its value when control started) in
channel with an LQR controller, which accounts for the change of the mean flow: , uncontrolled;

others, with a gain-scheduled LQR controller. Both gain-scheduled LQR controllers led to complete
laminarization.
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Figure 12. Time evolution of mean wall-shear stress (normalized by its value when control started)

with and without the linear coupling term: , regular channel; ~---, channel without the

coupling term.

Figure 13. Contours of streamwise vorticity in (y — z)-plane: (a) t* = 0; (b) t* = 20; ¢) t*+ = 200.
Note that L. = 0 only in the upper-half of the channel.




Figure 1: Marker particles in a motion picture of a simulated flow (left) and hydrogen bubbles in a
laboratory experiment by Kline et al.® (right).

Figure 2: Skin-friction in turbulent boundary layers. Plan view of contours of spanwise vorticity at
the wall, showing high skin-friction regions indicated by blue and green (top). Cross section view
of the high skin-friction region marked by the straight line in the top figure (lower right corner),
showing a pair of streamwise vortices in the wall region. Colors denote the magnitude of streamwise

vorticity while the vectors indicate the wall-normal and spanwise components of the velocity in the
plane (bottom).
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Figure 4: ‘A schematic illustrating a neural network representing an adaptive inverse model of the
Navier-Stokes plant.




Figure 5: Contours of streamwise wall-shear stress in (z, z)-plane in regular (top) and NN-controlled
(bottom) channel.
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Figure 7: Time evolution of an ‘optimal’ disturbance with and without control: — , uncontrolled;
----, opposition control; —-—, an LQR controller.
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Figure 8: Time evolution of mean wall-shear stress (normalized by its value when control started)
in turbulent channel: , uncontrolled; others, various LQR controllers.
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Figure 9: Contours of streamwise vorticity in (y, z)-plane in regular channel (top) and in channel
with an LQR-controller, which minimizes wall-shear stress fluctuations (bottom).
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Figure 10: Contours of wall-shear stress in (z, z)-plane in regular channel (top) and in channel with
an LQR-controller, which minimizes wall-shear stress fluctuations (bottom).
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We have also shown that the transient responses incurred at the initial time
can be reduced significantly by increasing Ra to its operating value in small incre-
ments. This technique allows us to initialize the estimator at each increment of Ra
and consequently avoid controller saturations. Furthermore, by making incremental
changes in Ra and using a controller designed to stabilize the system in a region
about the design values, the value of the maximum value of Ra could be increased
further, even though there will be unstable regions formed below stable regions in
Ra.

So far, we have assumed that the order of the controller is equal to the order of
the plant. In full numerical simulations and experiments, controller designs based
on reduced-order models are more practical for implementation (see, for example,
Cortelezzi & Speyer 1998; Armaou & Christofides 2000). In our current model the
actuation is assumed to be distributed continuously. In practice it will be discrete and
implementation issues need to be addressed.

This research is supported by a grant from United States Air Force (Grant no.
F49620-93-1-0332), and also by NASA Microgravity Physics Program (NAG3-1819)
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We study by a fully nonlinear, three-dimensional pseudospectral, time-splitting simu-
lation the feedback control of a layer of fluid heated from below. The initial condition
corresponds to a steady, large-amplitude, preferred convec£ion state obtained at Prandt]
number of 7.0 and Rayleigh number of 104, which is about six times the Rayleigh criti-
cal value. A robust controller based on the LQG (Linear-Quadratic-Gaussian) synthesis
method is used. Both sensors and actuator are thermal-based, planar, and assumed to be
continuously distributed. The simulated results show that large-amplitude steady-state
convection rolls can be suppressed by the linear LQG controller action. The Green’s
function of the controller gives the shape of the control action corresponding to a point
measurement. In addition, for Rayleigh numbers below the proportional feedback con-
trol stability limit, this controller appeared to be effective in damping out steady-state
convection rolls as well. However, in a region very near the proportional control stability
limit, proportional control action induces subcritical g-type hexé,genal convection, which
is obtained here through‘ direct simulations. Note that well above this proportional con-
trol limit, the LQG still damps out all convection. Check cases to validate the nonlinear

plant model are also performed by comparison with published results.
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1. Introduction

Active suppression of onset of convection in a layer of fluid has potentially important
applications in improving the material that goes through solidification in a mould. For
instance, during the growth phase of large silicon wafers or composite materials, a lafge
thermal gradient typically causes undesirable convective motions in the melt. To under-
stand the active control of the realistic manufacturing process, an idealiéed system is an
important starting point. To this end Rayleigh-Bénard convection is ideal for vigorous
theoretical analysis.

Considerable theoretical studies have employed the linear feedback control to increase
the stability threshold of the purely heat conductive state so that no convection occurs
despite the presence of a large thermal gradient (Tang & Bau 1993, Tang & Bau 1994,
Tang & Bau 1998a,b, Howle 1997a,b,c, Howle, 2000, Or et al. 2001). These studies used
the linear plant model and employed a simple controller using the proportional feedback. _
The implantable sensor and actuator are assumed to be of the thermal type and con-
tinuously distributed spatially on the horizontal plane. Analysis as well as experimental
results in general indicate that the propertiorsél controller will stabilize the basic state
up to Rayleigh number (Ra) of 3 to 4 times its critical value of the basic state (see Tang
& Bau 1994, Howle 1§9?a}. Furthermore, as shown in Tang and Bau (1994), a controller-
induced oscillatory instability occurs at a large gain. A linear-quadratic-gaussian (LQG)
controller has also been studied (Or et al. 2001) to increase the region of stabilization
and with a higher margin of robustness. First, the stability limit can be raised fo about
14 times the critical value of Ra. Second, the gain and phase margins about the design
point of the controller appear adequate for practical implementation.

To develop a control design to be implementable for applicational processes (such as

for crystal growth or a melt), it is crucial to understand the control process for simpler
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geometry and material properties. We have been focused on an Oberbeck-Boussinesq

model for a horizontal layer of fluid. The plant dynamics is known as Rayleigh-Bénard
convection (RBC) (Cross and Hohenberg, 1993). As a first step the performance of the
linear controller design for the linear plant dynamics is reported in Or et al. (2001). In
this paper, as a step further the focus is turned to the performance of the linear controller
design for the fully nonlinear plant dynamics.

It is weﬁ known that in a large layer of heated fluid, convection occurs as a steady
pattern of two-dimensional rolls. The two-dimensional convection rolls and the stability
properties were investigated in detail by Clever & Busse (1974) and Busse & Clever
{1979). For the heated layer correspoﬁdiﬁg to Ra > Rac (Racp is computed theoretically
to have value 1707.762 up to 3 decimal places), the stable roll pattern occurs only within a
band of wavenumber centered approximately about the critical wavenumber a, = 3.117.
Within the stable band the rolls realized do not necessarily have a preferred length scale.
Indeed, their wavelength appears to be dictated by the initial conditions used to select
the rolls and by the manner that the basic state temperature is prescribed spatially and
temporally. The band is bounded on both sides by instabilities that pertains to changing
the wavelength of the rolls but not changing the planform. As the induced rolls acquire a
wavelength too large or too small, an instability will occur to shift their length scale back
to a value close to the critical value. As the value of Ra increases, the rolls will at some
point becomes unstable and the convection structure will converge to a pattern with
more Cf)mplex spatial or temporal structure. The exact value of Ra that the transition
occurs is wavenumber dependent. For Prandt! number (Pr) of 7.0, for instance, the two-
dimensional rolls become unstable to a three-dimensional bimodal convection at roughly

Ra =2 25Ra.p at the wavenumber about 2.0 (see the experimental observations presented

in Fig. 11, Busse & Clever (1979). The transition highlights a sufficiently strong thermal
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boundary layer effect, made possible at Ra values. The transition to three-dimensional
convection occurs at a significantly higher Ra threshold than the ciosed-li}op stability
limit of 14.5Raco based on the linear LQG controller (Or et al. 2001). For our control
analysis here, therefore, we only need to consider the two-dimensional rolls as the initial
sté,te of convection to be controlled.

Our present control problem can be investigated most effectively by the use of time-
domain analysis. A three-dimensional, fully nonlinear pseudospectral model using time-
splitting integration method is developed, based on the Oberbeck-Boussinesq equations.
The proportional feedback control controller is easily implementable. This case provides
the check cases for code validation purposes. Certain flow patterns that are known to be
induced by the controller effects, such as the oscillation mode (Tang & Bau 1994); and
the g-type hexagons (Or & Kelly 2001), can be obtained here from the direct numerical
simulations and compared with those reported from previous analyzes. In Section 2, the
nonlinear plant model and the LQG controller will be briefly described. The results will

be presented in Section 3, followed by the conclusion in Section 4.

2. Mathematical Formulation

{a) Nonlinear Plant Model and Numerical Solution

The nonlinear plant model is governed by the Oberbeck-Boussinesq equations for a hori-
zontal layer of fluid. In the nondimensional form d, d?/x, x/d, k/d?, p(x/d)? and AT are
used as the scales of length, time, velocity, vorticity, pressure and temperature, where d

is the layer thickness, x and p are the mean thermal diffusivity and density of the fluid,

and AT is the temperature difference between the upper and lower wall in the purely
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conductive basic state. The governing nondimensional equations are,
Pr719,v = Pr7lv x w +kRa — V7 + V2v | (2.1)
&0 = —v-VO+w+V2, (2.2)
V.v=20, (2.3)

where v = (u, v, w) is the velocity vector field, w = V x v is the vorticity, r = p+v-v /2
is the pressure head, 6 is the perturbaf;ien temperature and k is unit vector in the 2-
direction. The two external parameters are Rayleigh and Prandtl numbers, given by
Ra = gATd® /v and Pr = v/ where v is the mean kinematic viscosity. The continuity
equation (2.3) applies only when the flow is incompressible.

The velocity field is assumed to be nonpermeable and non-slip at the upper and lower

walls, thus subject to

. V{ﬂ:, y) G) t) = B ¥ v($3 y’ 1’t) = 0 - (2'4)

The temperature field, on the other hand, is assumed to satisfy the isothermal condition
at the upper wall. The lower wall is non-isothermal due to the action of the thermal
actuation. It is assumed that a control temperature 6.(z,y, t) can be imposed. The upper

and lower thermal boundary conditions for the perturbation field are therefore
0(z,y,1,t) = 0, 6(z,9,0,t) = 6.(z,u,t) . (2.5)

In order to perform the feedback control, the perturbation temperature field has to be
measured in the fluid. In our model three sensor planes are embedded in the layer at
carefully chosen levels at z = 2, (with s = 1,2,3). For analysis purpose these sensor
planes are assumed to exert no blockage effects on the flow field. They measure the

planar temperature distribution in the layer,

9(3‘:3 y7 zs’t) = 85($} y’ t) 7 §= 11 273 - (2'6)
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Assuming a continuous-distributed sensor, 8,(z,y,t) are known at sampled points and

time.

In the numerical scheme the dependent variables u, v, w, p and 8 are expressed by the

following truncated, triple sums,

( " 1 Y

uw Ukmn

v Vkmn
M

N K
w | @yznt)=ReS > 3" S |y | @) Tu(z) e=mtman) & (a7)
n=0 k=0 m=—M+1

P Prmn

g 9kmn

L - L3 L o s

where Re denotes the real part of the sum, o, and a, are the fundamental wavenumbers
in the z and y directions, respectively. The asymmetric treatment of the indices k and m
reduces the number of coefficients by half because the velocity, pressure and temperature
are real dependent variables (see Marcus, 1984). These two parameters are prescribed in
the model. The functions T(z) (n = 0,1,..) denote the Chebyshev polynomials. Note
that a linear coordinate transformation is implicitly assumed to convert the Chebyshev
function domain between +1 to our physical range 0 € z < 1. The actuator and sensor
temperatures, 0. and 8, (s = 1,2,3), are planar (two-dimensional). They are expanded

in double series in a similar fashion,

9,{31,15) ’ Skm,s(zlvt)

05(22,1) K M Okm,s(22,8) | . '
{z,y,t) = Re Z Z e gilkaszztmayy) . (2.8)

g, {23, &‘5) k=0m=—M+1 gkm,s{ES; t}

90{3; t} gkm,c{ﬂ} t}

In our terminology, the lower thermal boundary condition (2.5) and the sensor equations
(2.6) are, respectively, the input to and output from the nonlinear plant model.

The nonlinear equations, together with the boundary and the continuity equations are
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then solved numerically by using the pseudospectral, time-splitting integration technique
(Gottlieb & Orszag 1977, Canuto et al. 1986, Bodenschatz et al. 2000). Marcus (1984)
provided a detailed description of the implementation of the method for the Taylor-vortex
flow simulations. Using the time-splitting method, an integration time step is split into 3
fractional steps. The first is a nonlinear fractional step, typically done using an explicit,

second-order Adams-Bashforth scheme,

vHLE N +At%{v~ x w¥ + PrRagVK] —At%[\rN'l x w1+ PrRag™ K] . (2.9)

oN+L/3 — gN _ &tgivN VN — N+ At—;—{v‘v‘l VNI N1 (2.10)

The superscript N here denotes the time step and is not to be confused with the trunca-
tion number for the vertical dependence. A significant fraction of the total computation
load occurs in computing the nonlinear terms. In the collocation space the nonlinear
terms are computed spatially by point-by-point multiplications. However, fast Fourier
transforms (FFT) and inverse fast Fourier transforms (IFFT) have to be used to convert
the field back and forth between the collocation &I;é the Chebyshev-Fourier spaces. The
fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) routines are
obtained from the library of the Numerical Recipes (Press et al. 1992), with some mi-
nor modifications. For validation, these routines have been checked against the standard
Matlab FFT and IFFT functions and match up to 15 decimal places. For typical flow
fields the truncation errors from FFT and IFFT due to aliasing are substantially small
(Marcus 1984, Press et al., 1992). We note that, however, the FFT method can still be
computationally demanding for high resolution solutions. The pseudospectral method is
generally known to be efficient. There also exists other efficient methods not using the
transforms, for instance, the reduced-order Galerkin method (Howle, 1996).

After obtaining the (VN + 1/3)** fractional step with the Adams-Basforth scheme, we
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compute the (N + 1)®* step from the following equation,

(1 = PrAtv2)vN+l = yN+1/3 _ prAtvr (2.11)

subject to V- v¥+! = 0. It is noted that in general V - vV+1/3 =L 0. The most straight
forward procedure for solving Eq.(2.11) appears to be splitting the equation into a pres-
sure step and a viscous step (we refer to it as the direct approach). In the pressure step
the flow field subject to a no normal-flow boundary condition at the walls can be solved
from a Poisson equation, based on the property that the pressure field is irrotational and
the flow field satisfies the continuity constraint (2.3). Next, a diffusive fractional step
completes the solution of the fractional velocity and temperature fields by prescribing
the no-slip and thermal boundary conditions at the walls. As simple as it appeared, the
scheme had problems computing the correct flow field. In his numerical simulation of Tay-
lor vortex flow, Marcus (1984) reported large boundary errors using this direct approach.
In his discussions it was argued that the shear may play a role and it is not clear whether
a similar problem will occur for RBC. In our study we have applied the direct scheme in
our preliminary simulations and observed large errors even for the open-loop simulations.
Thus, it appears that the problem is common to both Taylor vortex flows as well as RBC.
For more detail about the cause of the large boundary errors in the direct approach, we
refer to Marcus (1984). Marcus identified the source of errors and developed a procedure
to correct it. His remedy is to further split the fractional solution into a complementary
and a particular solution so that the boundary conditions and the continuity equations
are satisfied numerically. The procedure, however, involves the additional computation
of several Green’s functions and seems elaborate. Since the boundary-value problem cor-
responding to Eq.(2.11) is linear, we anticipate there are simpler alternative approach to

resolve the numerical difficulty. Here, we solve the problem involving the pressure and

viscous forces as a single step, without splitting the pressure and viscous terms. First, we
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use the continuity equation as the constraint and eliminate the two horizontal velocity
components in favor of the vertical component. Second, we obtain the solution of the
boundary-value problem for w and 8. Finally, we recover u and v from w, Fourier mode
by Fourier mode, using again thé continuity equation. This scheme seems significantly
simpler and has been tested here to be effective. Because of the simplicity, it is worth
the description as an alternative approach to the time-splitting procedure.

By eliminating pressure from the Eq.(2.11), we obtain a single scalar equation govern-

ing w,
(1 - PrAtv?)V2a,wN*! = V2 0,wN+1/3 — 82, (8,uV /3 + 90N +1/3) | (2.12)
The equation above is integrated in z, this gives
(1 = Pratv?) V2w *t = V3 wN+1/3 (92 yN+1/3 4 g2 yN+1/3) (2.13)
The integration constant is zero because of thé non-sip boundary condition. (This con-

stant will depend on the initial conditions when the case of free-slip boundary conditions

is considered). The above equation is of fourth-order spatially. It has to satisfy four

boundary conditions, as follows,
wh¥*! = 0, and 8wt =0, atz=0,1. (2.14)

The fourth-order boundary-value problem Eq.(2.12) determines w™*+1. After we have ob-
tained w™¥+1, the horizontal velocity components corresponding to w¥+1 can be obtained

by inverting the continuity and Helmholtz equations Fourier mode by Fourier mode. In

the expansion, wV+! is given b
P s g Y

: K M
WV (z,y,2,t) = Re{z Z wh (2, 1) eilkasztmayy) } . (2.15)

k=0m=—M+1
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Similarly, the horizontal velocity components are

uN*i(z,y,2,1) U (2, 1)

I
)

K M
”N+l (.'E, U, 2, t) k=0m=-M+1 Ui\fgl(z, t}
'\

Each pair of coefficients (uf:;: 1 uiv

gitkazztmayy) L (2 16)

"*1) now satisfies a Helmholtz equation

HN~E-1 E§+E
km m
vi = oi, (2.17)
N+1 N+1
Vkm Vkm

where agm = {(kaz)?+(may)?}/2. The Helmholtz equation together with the continuity

Qi: 1 in terms of wif: 1 provided that agm # 0. The

equation allows us to solve for v
condition oy, # 0 can occur in the case of free-slip wall but not in the case of no-
slip wall. We refer to the discussion (on P.970) of Cross and Hohenberg (1993). The

perturbation temperature field, on the other hand, is not constrained to have zero mean

field. Usi:ig the continuity equation, we obtain the horizontal velocity components,

N+t _ L e N1 oN41 _ L o Ny
Uy = 5 O0n, Wi, Vpm = —5—0,,Weo . (2.18)
km km

(b) The Proportional Feedback Controller

In the proportional feedback control, a proportional relationship is constructed between
the input and output of the plant. As in the cases studied by Tang and Bau (1994) and

Or et al. (2001), only one sensor plane is used and the control law in this case is
0:(0,t) = — Kp8s(zs,1) (2.19)

where K, is a constant gain and z, is the vertical height of the sensor plane. The con-

troller is very simple for this case.

(c) The LQG Controller
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The theory and design of the LQG controller was described in (Or et al. 2001), so we

refer the readers to the paper for the detailed description. In brief, the linear stability
equations of the Fourier-decomposed system of convection and the measurement equation

are given in matrix form, respectively, by
x=Ax+Bu, z=0Cx, (2.20)

where the entries of the state vector x are the Chebyshev coefficients of velocity and
temperature perturbations; u (measured at plane z = 0) and z (measured at planes
21, 22,23) are, respectively, the Fourier coefficients of the planar control and measured
temperatures. Note that the Fourier-decomposed equations correspond to wavenumber
Qg and Raylgigh number Ra. The following modifications to the original formulation
of the controller model (Or et al. 2001) have been made here: (i) the vertical dependence
is expanded in terms of the Chebyshev polynomials instead of the beam functions as the
basis functions. The expansion procedure, originally based on the Galerkin method, has
been converted to the tau method. In the improved numerical procedure, we obtain the
exact condition D = 0, in contrast to the previous condition that D — 0 only as N — co.
(if) We no longer consider the wavenumber as a prescribed parameter here. Instead, an
individual modal controller is developed for each set of wavenumbers (ka, may, ). There
is a set of state-space equations for each wavevector. In total, there are 2(K + 1)M sets
of A, B and C matrices to be processed.

The LQG controller is comprised of a Kalman filier and an optimal regulator. The
Kalman filter equation and the optimal regulator equation corresponding to the state-

space equations (2.20) above are, respectively,
=A% +B*u+Ks(z—2), 2=C'%, u=-K&, (2.21)

where x is the estimate state vector. We distinguish the matrices with asterisk super-




12 A. C. Orand J. L. Speyer
scripts to highlight that the system is computed at a nominal (designed) wavenumber

and Rayleigh number, (of,,, Ra*). The Kalman gain vector Ky and the optimal gain
vector K. are determined from separate steady-state algebraic Riccati equations. The
Kalman filter is used here as a state observer rather than as an estimator since no noises
are injected into the system simulation. The cost functional, weighting and filter param-
eters chosen for controller design are described in detail in Or et al. (2001) which will
not be repeated here. For robustness consideration, in the design the Kalman filter input
matrix G has been set equal to the control input matrix B, a step known as the loop
transfer recovery to recover the full-state feedback performance of the optimal regulator.
The weights for the objective functions, as well as the filter parameters and the loop
transfer recovery are described in Or, et al. 2001.

It is worth noting that the LQG controller is a variant of the H,, controller when
the disturbance attenuation bound is infinite (see Rhee and Speyer, 1991). In Or et al.
2001, robustness is demonstrated classically by having large gain and phase margins in
the closed-loop response. Furthermore, if a full loop transfer recovery is achieved, the
full-state feedback LQ regulator performance will have a robustness of +60 deg. phase
margin and 6 db to infinite gain margin. Since our system is non-minimal phased, only
partial recovery is expected. Since large gain and phase margins were obtained for the
linear system, the performance of the LQG controller in terms of robustness should not
be expected to be significantly different from that of the H,, controller.

In Fig. 1, we show the three-dimensional nonlinear plant model. The control input and
measurement output of the model are Fourier-Chebyshev coefficients rather than their
collocation point values. On the other hand, in the physical plant (such as in laboratory

experiments) the input and output are physical temperature distributions. Since the

LQG controller is formulated in the modal space, when the upper block represents the
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FIGURE 1. The LQG Control Loop Diagram

plant instead of the model, a FFT and an IFFT have to be performed, respectively,
at the input and output of the controller. In our case, the LQG controller takes the
measurements from the 3D nonlinear plant model (Fourier coefficients at sensor planes)
as input and determines a control action (Fourier coefficients at actuator plane) as output.
The estimate state vector represents the vertical structure and the state matrices A* B*,
C* and D* are computed in terms of the designed values of wavenumber and Rayleigh
number, of,,, and Ra*. (see Eq.(3.7) of Or et al. (2001)).

The truncation mumbers (K =32, M =32, N =32+1) cm;tsidered here are of moder-
ate size. It is still convenient to compute and pre-store the steady-state Kalman gain K f
and regulator gain, K. However, it is not feasible to pre-store the state matrices A* for
all the wavenumbers. Instead, we compute A* for each set of wavenumbers at each time
step in the time loop. At each time step, the three sensor plane temperatures, in modal
coefficients, Oxm,s(2:,t) (i = 1,2,3) (see Eq.(2.8), are exported from the nonlinear plant
model. There are 6(K + 1)M of such coefficients, corresponding to wavenumbers 0 to
Koy in the z dependence and (—M + 1)oy, to May, in the y dependence. These values
are then fed into the controller which consists of the Kalman filter and the regulator.
The controller processes the information based on the measured data and determines the
control output in terms of a set of 2(K +1)M modal coefficients for O, (0, t). These val-

ues are then inputed into the nonlinear model through the lower-wall boundary condition.
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(d) Green’s Function For Point Sensors and Actuators

In some experimental implementations (Tang & Bau 1998a) the sensors and actuators
are discrete rather than continuous. For the low-resolution point sensors and actuators
(typically with spacing between array points of O(d)), it is desirable to stack the arrays
of sensor and actuator points vertically on top of each other. Indeed, our result will show
that the maximal effect of actuation caused by an ixx;puise on the sensor plane occurs
as a point collocated horizontally with the impulse. For a linear system the controller

input-to-output relationship can be expressed in the following integral form,

bu(z3,t) = [ ] f Gl tla', o, )06 of ) do’ dy/ (2.22)

where 0.(z,y,t) and 65(z',y',t’) are, respectively, the planar actuator and sensor tem-
perature fields. Here (z,y) and (z’,7) denote coordinates for the actuator and sensor
planes, respectively. The kernel G(z,y,1,|z’,3/,t') is a Green’s function (or an influence
function). The first 3 arguments in G represent the effect and the last 3 represent the
cause.

In principle, the input and output of the LQG controller can be represented by a linear
differential operator L. The precise form of L needs not be specified here, since for our
purpose the Green’s function will be computed spectrally. In terms of L, we can describe
some general properties of Green’s function. The input and cutput temperatures to the
controller is governed by L8, = §,, subject to appropriate lateral boundary conditions
in z,y. The Green’s formula for any two arbitrary functions u(z,y,t) and v(z,y,t) can
be written as the sum of an integral [ [ [(uLv —vL*u)dz'dy'dt’ and a number of terms
evaluated at the lateral boundaries z = 0,2n/a, and ¥y = 0,27/a,. In the formula

L* is the adjoint operator of L. Now if further restriction are imposed on u and v,

the Green’s formula produces some important property about the Green’s function. Let




15

- u = G(z,y,t|z1,y1,t') and v = G*(x, y, |2, y2, ') where G and G satisfy, respectively,
LG($> Y, t[mla Y1, tg) = 5($~$1}5(y_y1)5{t_t’} H L+G+{CE,3}, tl$31y2>t') = 5($_$2)5(y_y2}5(t—t1) -

{(2.23)

In addition, G and G* satisfy the appropriate lateral boundary conditions and adjoint

boundary conditions so that the boundary terms in the Green’s formula vanish. The

Green’s formula becomes

/ / / (GYLG — GL*G*)ds'dy'dt' =0 . (2.24)

Substituting (2.23) in (2.24) we obtain Maxwell’s reciprocity relationship Gz, y2, tlzs, 11, ) =
G*(z1,y1,t|w2,2,'). In our problem the lateral boundary conditions are periodic. The
differential operators in z and y are even in 8, and 8y. The linear operator L is self-

. adjoint, i.e., L = L* and the symmetric relationship holds,

G($2: Yz, tlmi: v, t’) = G(m;, U1, i;fﬁz, Yz, ti) . {225)

The symmetry relationship above can be interpreted as follows: at a given time t > ¢/ an
actuator output of the controller at (z2,y2) due to a unit impulsive sensor input of the
controller at (z1,%:) and time ¢’ is equal to the actuator output at {z1,71) due to a unit
impulse sensor input at (z3,y2) and time ¢/,

Of particular interest here is the shape of the actuator temperature 0.(z,y,1t) generated
by a unit impulse temperature at a sensor point (zp, Yp), 53y, at t = t,,. The spatial roll off
of the actuator temperature affects the spatial resolution of the spacing between sensor

points. Let the impulsive measurement be

URER ?l:t!} = 5{55/ - xp)g(yg - 99}5(tf - t;,} s (2.26)

from Eq.(2.22) we obtain the Green’s function

sc{xsysi) = G(z, yaﬂsz Yps tp) . (2-27}
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For each Fourier mode that corresponds to the wave vector (ka, may) (where —K/2 <
k < K/2 and —M/2 < m < M/2), the coefficient represent an entry of measurement

vector z in the filter equation (2.21). We then have
£
u(z, kog, may, t) = f A K CNt=T) g (1) dr . (2.28)
0

Note that the homogeneous solution due to the initial condition decays rapidly and
does not contribute for sufficiently large t. After the z and u of all the Fourier modes
are computed, a FFT will transform the two sets of coefficients to 8,(z,¥, z,,t) and
8.(z,y,0,1}, respectively. When 8,(z,v, z,,t) is impulsive according to Eq.(2.26), then

Eq.(2.28) gives the Green’s function.

3. Numerical Results

{a) Nonlinear convection

Above the value Ra = Rac ~ 1707.76, the no-motion state gives rise to steady, two-
dimensional convection rolls. Depending on the value of Pr, these rolls in turn will become
unstable at still higher values of Ra, making transitions to two-dimensional oscillatory
convection or steady three-dimensional convection depending on the value of Prandtl
number. Oonsiderable detail about tﬁe bifurcation diagram is documented in Cross &
Hohenberg (1993).

Before engaging in the closed-loop numerical simulations, it is worthwhile to perform
some comparison to known :results, as check cases for validating the nonlinear plant
model. In Clever and Busse (1974) selective Nusselt number values for the two dimen-
sional convection solution were published. Table 1 shows the values of Nusselt number,

Nu, for several different values of Ra at Pr = 0.71 and 7.0 for two-dimensional rolls at

g = 3.117 {ey = 0). The Nusselt number is s measure of the convective heat transfer,




