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In this study, control system analysis and design techniques were developed 
to control turbulent and convective boundary layers. The design was depen- 
dant solely on the linearized governing equations of a channel flow and a layer of 
heated fluid. The three-dimensional Navier-Stokes equations of channel flow, lin- 
earized about a Poisueille profile, and Oberbeck-Boussinesq equations of a layer 
of fluid, linearized about the no motion state, were decomposed by a spectral 
decomposition involving a two-dimensional Fourier expansion and a Chebyshev- 
Galerkin projection. The resulting temporal state space model, composed of 
the coefficients of this decomposition, allowed for a multivariable feedback de- 
sign combining an array of sensors to an array of actuators. In particular, this 
spectral decomposition decouples the dynamical equations into a parallel archi- 
tecture, where each wavenumber pair sub-system could be handled individually. 
Linear Quadratic Guassian (LQG) multivariable synthesis and model reduction 
techniques are apphed to a few select wavenumber pair sub-systems, reducing the 
required computational bandwidth. Controller performance was tested on direct 
numerical simulations. Even with a limited number of controlled wavenumber 
pairs and a drastic reduction in state space size, the controllers have proven 
remarkably effective. 
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1    Introduction 

The potential benefits of controlling flows to reduce drag are significant. In its New World 
Vistas report, the Air Force identifies active flow control, boundary layer control in particular, 
as one of the essential enabling technologies for efficient cruise aircraft. Rirthermore, little 
imagination is required to see that active control of boundary layers can benefit many more 
applications. Furthermore, the suppression of the onset of convection in a boundary layer of 
fluid has potentially important applications in controlling the quality of material for certain 
manufacturing processes such as in the production of large silicon wafers and composite 
material for turbine blades. 

Due to its importance as well as its genuine intellectual challenge, flow control has at- 
tracted much attention from many fluid dynamicists. However, until recently, rraearch has 
been based primarily on the investigator's physical intuition. With the discovery of coherent 
turbulence structures within the near-wall region of turbulent boundary layers, some addi- 
tional progress has been made. Choi et al. [1], for example, report an active control scheme, 
which was designed to reduce the strength of the near-wall streamwise vortices. This active 
control scheme, which was based on observations that there are strong correlations between 
the near-wall streamwise vortices and the high skin-Mction region, is reported to reduce the 
viscot^ drag by as much as 25%. 

It is our belief, however, that much more progress can be made for more classes of 
flows and other phenomena if we can avoid the need for empirical observations and apply 
modern control theories to linear equations that approximate the non-linear phenomena. 
For fluid flows, a few examples of this approach have appeared in the recent literature. The 
foundations of applying optimal control theory to the equations governing -fluid flow were 
developed and its application to flow control was reported by Choi et al. [2], Moin and 
Bewley [3], and Lee et al. [4]. 

Our group has developed a methodology to synthesize reduced-order controllers to tar- 
get the linear mechanisn^ of a channel flow, identified from the Navier-Stokes equations, 
and Rayleigh-Benard convection in a fluid layer, identified from the Oberbeck-Boussinesq 
equations. Linearized around the Poisueille profile or the no motion state, the dynamical 
equations are further modified to allow for actuation and sensors. Spectrally decomposed, 
the governing equations can be cast into temporal state-space form to which modern control 
theories can be applied. The system equations decouple into independent sub-systems by 
wavenumbers, affording the option to design controllers for certain wavenumbers. A parallel 
architecture of compensators in wave space is thus possible [5]. 

The research began with a simple integral controller on the streamwke shear stress in 
a strictly 2 dimensional linear flow [6]. Although it was only applied to, at most, a few 
wavenumbers, it was able to control a two-dimensional finite-amplitude disturbance respon- 
sible for the secondary instability, thus suggesting that nonlinear effects could be handled 
by a linear controller. However, the main thrust of the paper was to show the importance of 
analyzing the properties of the flow dynamic equations from a control theoretic viewpoint. 
Subsequently, a controller was developed using Linear-Quadratic-Guassian (LQG) optimal 



control synthesis, producing a controller, which required less energy than the simple integral 
compensator [7]. However, the resulting state space was quite large and motivated the devel- 
opment of state reduction by a form of balanced realization for LQG design. The uncertainty 
was assumed to be emanating from the wall and was modeled as an input with the same 
input matrix as the control. For the two dimensional controller, where the system is minimal 
phase, good loop transfer recover}^ was obtained producing good stability margins for robust 
control [5,8]. 

The parallel structured controller of [5] for multiple (but not all) wavenumbers was suc- 
cessful in suppressing up to 90% of the wall shear stress in a linearized two-dimensional 
Navier-Stokes channel flow. The controller was then embedded in a direct simulation of the 
Navier-Stokes equatior^ [9]. Although controUing skin-friction drag in two dimensions can- 
not be readily extrapolated to the three-dimensional turbulence case, the Imear controller 
(using 10% of the order of the full system) applied to the bottom wall of a two-dimensional 
turbulent periodic channel flow at a Reynolds number of 1,500, managed a drag reduction 
of up to 60% with respect to the uncontrolled turbulent flow. 

Given the success with the flow equations, the same methodology was applied to the 
Rayleigh-Benard problem of delaying the onset of convection in a fluid layer heated from 
below. Due to the nature of the dsmamical equations, the application was straightforward 
and produced promising results. A hnear feedback controller is used to increase the stabil- 
ity threshold of the purely heat conductive state so that no convection occurs despite the 
presence of a large thermal gradient [10,11,12,13]. Development in this area would have 
applications in materials processing, solidification, semiconductor melts, welding, evapora- 
tive coating, and crystal p-owth. Due to the nature of the Oberbeck-Boussinesq equations 
governing the behavior of the fluid layer, it has been easier synthesizing viable controllers 
for this problem than the channel flow problem. 



2    Recent Progress 

In the past three years, the design methodology developed for the two-dimeiKional flow 
problem was extended to handle a fully three-dimensional flow field. The linearized three- 
dimensional Navier-Stokes equations were used as the basis for a new set of Mly three 
dimensional reduced-order controllers. Their initial application highlighted some new prob- 
lems never experienced with the two-dimensional controllers, requiring us to return to the 
two-dimensional controllers and buflding up to a fully three-dimensional controller in incre- 
ments. Significant success was achieved while learning some important lessors associated 
with the three-dimensional flow dynamic equations. 

With the Rayleigh-Benard convection problem, success has come more readily since the 
dynamical equations are more straightforward than the Navier-Stokes equations. Successful 
LQG controllers have been developed for both the hnear and non-linear simulation of a 
heated layer of fluid. 

2.1 A Linear Process in Wall-Bounded Shear Flows 

A linear process in wall-bounded turbulent shear flows has been investigated through numer- 
ical experiments. It is shown that the linear coupling term, which enhances non-normality 
of the linearized Navier-Stokes equation, plays an important role in fully turbulent hence, 
nonlinear flows [14, Appendix A]. Near-wall turbulence is shown to decay without the linear 
coupling term. It is also shown that near-wall turbulence structures are not formed in their 
proper scales without the non-linear terms in the Navier-Stokes equation, thus indicating 
that the formation of the commonly observed near-wall turbulence structures are essentially 
non-hnear, but the maintenance relies on the lineai process. 

This result is consistent with the analysis of Reddy and Henningson [15], who showed 
that non-normality of the linearized Navier-Stokes operator is a necessary condition for 
disturbances to grow for Reynolds number below the critical number predicted by traditional 
linear analysis. However, we believe this is the first direct demonstration that turbulence 
(non-linear disturbance) decays when the non-normality of the imderlying linear operator 
in non-hnear flows is reduced. The time scale associated with the formation is found to 
be smaller than the bursting process used in the optimal perturbation theory. The fact 
that the coupling term plays an essential role in maintaining the streamwise vortices, which 
have been foimd to be respoi^ible for high skin-friction drag in turbulent boundary layers, 
suggests that an effective control algorithm for drag reduction should be aimed at reducing 
the effect of the coupling term in the wall region. 

2.2 Application of Reduced-Order Controller to Turbulent Flows 
for Drag Reduction 

The strictly two-dimensional controllers were applied successfully to a three-dimensional 
channel flow simulation.  The controller was designed firom the linearized two-dimensional 



Navier-Stokes equations. Model reduction techniques were used to reduce the temporal state 
space representation of the dynamical equations, and then LQG/LTR control synthesK was 
used to derive controllers for several streamwise wavenumbers. Applied in parallel to 32 
spanwise locations in the channel, the controller achieved a 10% decrease in drag reduction 
[16, Appendix B]). However, since no measurements were shared in the spanwise direction, 
the resulting shear stress varied significantly in the spanwise direction. By additional blowing 
and suction proportional to the spanwise variation of the streamwise^averaged wall shear 
stress, the shear stress oscillations in the spanwise direction was removed, and the drag was 
reduced by about 16% [16, Appendix B]. 

The linearized three-dimensional Navier-Stokes equations were then used as the basis for 
Mly three-dimensional controllers. The Navier-Stokes equations were modified to include 
the control through wall-transpiration on a two-dimer^ional surface (bottom wall), and both 
spanwise and streamwise shear stress on the same two-dimensional surface was used as 
measurements. Since the dynamical equations now contained both the Orr-Sommerfield and 
Squire mod^, the question of energy amplification could now be addressed. Initial attempts 
proved problematic; however, a controller was successfully designed for several spanwise 
wavenumbeiB [17]. This controller managed a modest 5% reduction in drag in a DNS of a 
Mly turbulent channel flow. 

The study of the three-dimensional equations revealed several aspects, which were not 
apparent in the two-dimer^ional flow field. The assumption that the strictly streamwise 
wavenumber pair equations (spanwise wavenumber equaling zero) are equivalent to the two- 
dimensional flow equatioiK proved to be incorrect. The original two-dimensional controllers 
were controlling all spanwise wavenumber systems at a given streamwise wavenximber since 
they had been applied in physical space (as opposed to the wave space of the decomposed 
system equations). In contrast, the new three-dimensional compensators were only control- 
ling one specific wavenumber pair. Three different classes of wavenumber pairs were also 
discovered, each class behaving just a little differently from the others. This made it difficult 
to apply one single methodology and cost function to all wavenumbers. 

In an effort to resolve these newly discovered tesues, several spanwise three-dimensional 
compei^ators were used to augment the two-dimensional compensators developed in [9,16], 
replacing the ad-hoc scheme. This partially three-dimensional controller was able to achieve 
a 17% reduction in total drag with a power ratio of 30 (power saved vs. control power i^ed). 

Changing the uncertainty to also emanate from the entire flow field seemed to improve the 
controller. Compensators for all wavenumber pairs of the first five streamwise wavenumbers 
(0 to 4) were synthesized. This fully three-dimensional controller was able to achieve a 19% 
reduction in drag with a power ratio of 60 (Fig. 1). Efforts to improve the channel fiow 
controller performance beyond the 15% to 20% range have been very difficult. The non- 
orthogonality of the eigenmodes of the dynamical system [18,19], which the compensator in 
many ways is designed to attenuate, is hampering our progress. The non-orthogonality of 
the eigenmodes is affecting the numerical calculation of the estimator and control gains. We 
anticipate improved controller performance once these numerical issu^ are resolved. 

What is surprising is that 15% to 20% reduction in drag has been achieved even with 
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Figure 1: Controllers in DNS. 

the numerical inaccuracies. However, now that we are considering changing the control cost 
criterion from wall-shear stress (which is measured) to other values (such as total flow field 
energy), the accuracy of the estimated internal state becomes paramount. 

2.3    Robust Feedback Control of Rayleigh-Benard Convection 

Efforts with the Rayleigh-Benard convection problem have been more straightforward. Start- 
ing with a linear plant model, we use two sensing and actuating models: the planar sejKor 
model and the shadowgraph. By extending the planar sensor model to the multi-sensor 
case, a LQG controller has been developed, which stabilized the no motion state up to 14.5 
times the critical Rayleigh number [20, Appendix C]. We characterize the robi^tness of the 
controller with respect to parameter uncertainties, unmodeled dynamics. R^ults indicate 
that the LQG controller provides robust performances even at high Rayleigh numbers (Ra). 
Based on our results for Prandtl munber of 7, we have shown that the robustness of the 
controller system is improved in two aspects: (i) the controller remains stable over a larger 
range of the parameter Ra and (ii) the robmtness of the controller accommodates to a de- 



gree the unmodeled dynamics and nonlinearities, as measured by gain and phase margins 
in the Nyquist diagram. It should be noted that although only one controller needed to be 
designed at {k*, Ra*), this controller is implemented at each wavenumber k to span over the 
entire range of unstable wavenumbers. The number of sensors plays an important role in 
dramatically improving the robustness of the stabilization of the system operating at large 
Ra. Because multiple sensor planes can be easily incorporated into the planar sensor model, 
the performance of the planar ser^or model is found to be superior to that of the shad- 
owgraph sensor model, which only utilizes averaged temperature measurements. We have 
shown that the transient responses incurred at the initial time can be reduced significantly 
by increasing Ra to its operating value in small increments. This technique allows us to 
initialize the estimator at each increment of Ra and consequently avoid controller satura- 
tion. F\irthermore, by making incremental changes in Ra and using a controller designed to 
stabilize the system in a region about the design values, the value of the maximum value of 
Ra could be increased further, even though there will be unstable regions formed below the 
stable regioiM in Ra. 

We have also developed a fully non-linear, three-dimensional pseudospectral, time-splitting 
simulation of the feedback control of a layer of fluid heated from below [21, Appendix D]. 
Using a robust controller based on LQG synthesis, the initial condition, corresponding to a 
steady, large-amplitude preferred convection state at a Prandtl number of 7,0 and a Rayleigh 
number of 10.4, which is about six times the Rayleigh critical value, was stabilized to the 
zero convection state. Both sensors and ax;tuators were assumed to be thermal-based, planar, 
and continuously dMributed. The simulated results showed that the linear LQG controller 
could suppress large-amplitude steady-state convection rolls. The Green's function of the 
controller showed that the shape of the control action corresponds to a point measurement. 
E\irthermore, for Rayleigh numbers below the proportional feedback control stability limit, 
this controller was also effective in damping out steady-state convection rolls. However, 
in a region very near the proportional control stability limit, direct numerical simulatioiK 
demonstrated a subcritical g-type hexagonal convection induced by the proportional control 
action. However, well above this proportional control limit, the LQG controller was able to 
damp all convection. 

In this phase, we have assumed that the order of the controller is equal to the order 
of the plant. In full numerical simxilatioiK and experiments, controller designs based on 
reduced-order models are more practical for implementation. The assumption that actuation 
is continuously distributed needs to be relaxed since in practice it will be discrete and 
implementation issues need to be addressed. 



3    Schedule for Research Effort 

Although we have achieved some success in designing effective controllers for tinbulent chan- 
nel flows, the reseaarch to date demonstrated many lingering numerical and theoretical issues 
which deserves further investigation. The results from the study of the Rayleigh-Benard 
convection problem strongly suggests that even better results can be expected with the 
channel flow study. A more careful study of the numerical issues with the three-dimensional 
linearized Navir-Stokes equation is certainly warranted. Any further study, including more 
proper system identification, would require some confidence that the mathematics is being 
solve accurately, numerically speaking. 

Furthermore, although the development of the controller design is structured with a 
concern for practical fesues, no study has been made to what actuators and sensors could 
actually implement the controllers synthesized. The mathematics has been structured so 
that there is a great deal of parallelism built into the system, thus reducing the computation 
bandwidth required, but actuators and sensors will need to be investigated in terms of 
quantifying the uncertainties and noises associated with any mechanical device. 

Although there are many ksues which remain to be resolved and some that have been 
highlighted by this study, the current r^ults certainly promises better results. Even with the 
unanswered questions and remaining numerical concerns, the controllers designed perform 
remarkably well in reducing the drag on a wall of a turbulent channel flow. The same draign 
has certainly proven very effective (in sunulation) m reducing the convection of a heated 
fluid layer. 
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A linear process in wall-bounded turbulent shear flows has been investigated through numerical 
experiments. It is shown that the linear coupling term, which enhances non-normality of the 
linearized Navier-Stokes system, plays an important role in fully turbulent—and hence, nonlinear 
—^flows. Near-wall turbulence is shown to decay without the linear coupling term. It is also shown 
that near-wall turbulence structures are not formed in their proper scales without the nonlinear terms 
in the Navier-Stokes equations, thus indicating that the formation of the commonly observed 
near-wall turbulence structures are essentially nonlinear, but the maintenance relies on the linear 
process. Other implications of the linear process are also discussed. © 2000 American Institute of 
Physics. [S1070-6631(00)00708-X] 

The transient growth due to non-normality of the eigen- 
modes of the linearized Navier-Stokes (N-S) equations has 
received much attention during the past several yeara (see, 
for example, Refs. 1-3). It has been shown that the energy of 
certain disturbances can grow to 0(Re^) in time proportional 
to 0(Re), where Re denotes Reynolds number of the flow.^ 
It has been postulated that this transient growth, which is a 
linear process, can lead to transition to turbulence at a Rey- 
nolds number smaller than the critical Reynolds number, be- 
low which a classical linear stability theory based on the 
modal analysis predicts that all small disturbances decay 
asymptotically. As such, some investigators attribtited this 
linear process as a possible cause for subcritical transition in 
some wall-bounded shear flows, such as plane Poiseuille 
flow and Couette flow. 

Some investigatore further postulated that the same lin- 
ear process is also responsible for the observed wall-layer 
streaky structures in turbulent boundary layers.'*'* The opti- 
mal disturbance, which has the largest transient growth ac- 
cording to their optimal perturbation theory, looks similar to 
the near-wall streamwise vortices that create the streaky 
structures in turbulent boundary layers. However, this opti- 
mal disturbance occupies the entire boundary layer, in con- 
trast to the streamwise vortices in turbulent boundary layers, 
which are confined to the near-wall region. In order to relate 
their optimal perturbation theory to those structures observed 
in turbulent boundary layers, a time scale corresponding to 
the bureting process in turbulent boundary layers, which is 
essentially a nonlinear process, was introduced as an addi- 
tional parameter.* It has been argued that the Iransient 
growth in turbulent boundary layers would be disrupted by 
turbulent motions on a time scale corresponding to the burst- 
ing process, which is smaller than the viscous time scale, and 

hence, the globally optimal disturbance will never have a 
chance to grow to its maximum possible amplitude. The no- 
tion that commonly observed wall-layer structures are related 
to a linear process, although it is the nonlinear process that 
determines the proper length scale, suggests that the same 
linear process may play an important role in fully nonlinear 
turbulent boundary layera. 

Other evidence that a linear process may play an impor- 
tant role in turbulent boundary layers can be found in the 
work of Joshi et al?'*' and othera,''* who successfiiUy applied 
controllera developed based on a liner system theory to the 
nonlinear flow in their attempt to reduce the viscous drag in 
turbulent boundary layers. Bewley* applied linear optimal 
control theory to a nonlinear convection problem. Although 
it is not clear how controllers based on a linearized model 
work so well for nonlinear flows and it is a subject of fiirther 
investigation, these results suggest that the essential dynam- 
ics of near-wall turbulence may well be approximated by a 
linear model. 

Motivated by the above findings, we investigate the role 
of this linear process in fully nonlinear turbulent flows. In 
particular, we investigate the role of the linear coupling term 
(see below for its definition), which is a source of the non- 
normality of the eigeimiodes of the linearized Navier-Stokes 
equations, in wall-bounded shear flows, using a turbulent 
channel flow as an example. 

In this Letter, we shall use ix,y,z) for the streamwise, 
wall-normal, and spanwise coordinates, respectively, and 
(K,U,W) for the corresponding velocity components. Rey- 
nolds number, Re^, is b^ed on the wall-shear velocity, M^ 

= ^IT„/P, and the channel half-width, h, where T„ 

= vdU/dy\^, is the mean shear stress at the wall, and U, v, 
and p denote the mean velocity, viscosity, and density, re- 
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spectively. The superscript " + " denotes quantities nondi- 
mensionalized by v and u^. 

Representing the wall-normal velocity, v, and the wall- 
normal vorticity, a^, in terms of Fourier modes in the 
streamwise (x) and the spanwise (z) directions, the linear- 
ized N-S equations can be written in an operator form 

d 
7i 

where 

r " 1 r " 1 
V V 
, = MJ , 

[Oiyl [my\ 

[^]= 

(1) 

(2) 

and the hat denotes a Fourier-transformed quantity. Here 
ios, isq, and £c represent the Orr-Sommerfeld, Squire, and 
the coupling operators, respectively, and defined as 

L^=L-\-ik^UL + y(^(d^Uldy^) + (I/Re) A^), 

L^=-ik,(dUldy), 

(3) 

d V V \M„] 
di .%. 

=WJ 
A. 

+ 
.^«.. 

where k^ and k. are the streamwise and spanwise wave num- 
bers, respectively, A^=A^-(-t|, h. = a'-ldy^-k'^, andC/isthe 
mean velocity about which the N-S equations are linearized. 
Note that the Ml nonlinear N-S equations can be written 
also as 

(4) 

where all nonlinear terms are lumped into M„ and M,,. The 
operator A in this case, however, is a function of v and ta^, 
because U depends on v and &>„. 

It has been shown that operator A in Eq. (2) is non- 
normal, and hence, its eigenmodes are nonorthogonal, thus 
allowing a transient growth of energy even if all individual 
inodes are stable and decay asymptotically.'*^ Note that the 
coupling term L^ vanishes for two-dimensional (2-D) distur- 
bances {kj=Q), and therefore, there is no coupling between 
V and o)y for 2-D disturbances. For 3-D disturbances, how- 
ever, V evolves independently, but m^ is forced by v through 
the coupling term. It should be noted that L^ itself is not 
self-adjoint, and hence, 2-D disturbances can have a transient 
growth, but it was shown that 3-D disturbances have much 
larger transient growth due to the coupling term, which 
causes larger non-normality. In the present study, we concen- 
trate on the role of the coupling term in fully nonlinear tur- 
bulent flows, using a fully developed turbulent channel flow 
as an example. 

In order to investigate the role of the coupling term in 
fully turbulent flows, we proceed to solve the following 
modified nonlinear equations: 

d 
It 0 

0 

L sqj 
(5) 

This modified system can be viewed as representing a syn- 
thetic turbulent flow without the coupling term, or a turbu- 

im 
i» 
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FIG. I. Time evolution of mean shear at wall: , upper wall; , 
lower wall. Thick lines are for a regular channel flow, while thin lines are 
for a channel flow with l,j=0 in the upper half of the channel starting from 
«+=0. 

lent flow with control by which the coupling term is sup- 
pressed. For instance, surface blowing and suction activated 
to eliminate (reduce) the spanwise variation of v (i.e., 
dvldz) could eliminate (reduce) the effect of the coupling 
term. 

A spectral chaimel code similar to that of Kim etal}'^ 
was used to solve the above modified nonlinear equations. 
To fijrther contrast the role of the coupling term, we used the 
modified N-S equations only in the upper half of the channel 
and the regular N-S equations in the lower half of the chan- 
nel. We used the same Reynolds number (Rej= 100) and 
grid (32X65X32 in x,y,x) as Lee et al}^ 

In the first numerical experiment, we used a regular tur- 
bulent velocity field obtained by Lee et al. as our initial field. 
Starting from this initial field, we integrated in time to see 
how the turbulent flow in the upper half of the channel 
evolves in the absence of the coupling term. Time evolution 
of the mean shear at both walls is shown in Fig. 1, which 
illustrates a drastic reduction in the wall shear without the 
coupling term. Several snapshots of the velocity field are 
shown in Fig. 2, where contours of streamwise vorticity in a 

FIG. 2. Contours of streamwise vorticity iny—z plane: (a) l*=0; (b) (* 
= 20; (c) <+=200. -g0<«i,<80 with 18 contour levels. Note that £,,=0 
only in the upper-half of the channel. 
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FIG. 3. Root-mean-square turbulence intensities; , V?; , vu^; 

 ,  vw^. Thick lines are for <*=0, while thin lines are for t* 
= 180. 

y-z plane are shown to illustrate the effect of the coupling 
term on turbulence structures. It is evident that streamwise 
vortices quickly disappear without the coupling term. The 
reduction of the wall shear in conjunction with the disappear- 
ance of the streamwise vortices is a common feature of many 
drag-reduced turbulent flows." Turbulence intensities shown 
in Fig. 3 mdicate drastic reductions without the coupling 
term. 

In the second numerical experiment, we used an initial 
velocity field consisting of the same mean velocity as tiie 
first experiment but with random disturbances, and hence, 
there are no organized turbulence structures present initially. 
A divergence-fl«e white-noise spectrum was used for this 
purpose. The amplitude was chosen such that neither they 
decay too quickly (too small) nor they cause a numerical 
instability due to non-smoothness of the initial condition (too 

FIG. 4. Contours of streamwise vorticity in y—z plane at J*=20, started 
from an initial random field: (a) Case 1, regular turbulent flow; (b) Case 2, 
wifliout the linear coupling term, L^; (c) Case 3, without the nonlinear 
terms. Contour levels are the same as Fig. 2. 

FIG. 5. Contoum of streamwise vorticity in y-z plane at (''■=40, started 
from a random initial field. See figure caption in Fig. 4 for legend. 

large). Starting with the same random initial field, thiee dif- 
ferent simulations were carried out: Case 1, with the fiill 
nonlinear N-S equations (i.e., regular turbulent flow); Case 
2, with N-S equations without the linear coupling term; 
Case 3, with N-S equations without the nonlinear terms (i.e., 
linearized N-S). The purpose of these simulations is to in- 
vestigate whether the linear coupling term is indeed respon- 
sible for formation of the streamwise vortices and near-wall 
streaks, and if so, whether the time scale associated with the 
formation of these structares corresponds to the bursting pro- 
cess (<+=» 100), as hypothesized by Butler and FarrelL* 

Time evolution of the three velocity fields is shovra in 
Figs. 4-6 with streamwise vorticity contours inay—z plane. 
Organized structures are discernible in all three cases as 
early as t*=20 (Fig. 4), but they look different firom each 
other. For Case 3 (without the nonlinear terms), the struc- 
tures that appear from the structureless random initial condi- 
tion have larger spanwise scales than those in the regular 
flow (Figs. 4 and 5). For Case 2 (without the linear coupling 
term), the vortical structures appear briefly (Fig. 4) but dis- 
appear quickly, especially in the wall region (Figs. 5 and 6), 
since they cannot be maintained without the linear coupling 
term as demonstrated in the first experiment mentioned 
above. For Case 1, the time for these stnictures to appear is 
shorter than that implied by the optimal distarbance mecha- 
nism of Butler and Farrell.'' Note that the structures in Case 3 
are already substantially different fi-om those in Case 1 at 
r* = 40, indicating that the effect of nonlinear terms is felt 
much earlier than the eddy turnover time (<*=" 100) as pro- 
posed by Butler and Farrell.'' The present result is also con- 
sistent with Jimenez and Pinelli,'^ who showed that the for- 
mation of streaky structures can be prevented by damping 
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FIG. 6. Streamwise contours in y—z plane at t^^W, started from a ran- 
dom initial field. See figure caption in Fig. 4 for legend. 

(va^) [the ( ) indicates streamwise average], which is re- 
lated to the linear coupling term. While both results clearly 
demonstrate the essential role of the linear coupling term in 
the formation and maintenance of the wall-layer streaks, 
while the present work also indicates that a nonlinear mecha- 
nism is responsible for producing the proper streak spacing. 

We have used several different initial conditions to de- 
termine whether the above results depend on initial condi- 
tions, but found no such evidence. It thus appears that both 
the nonlinear terms and the linear coupling term are neces- 
sary for the formation and maintaining of these structures at 
their proper scale. The nonlinear terms are necessary for the 
formation of streamwise vortices and the linear coupling 
term is necessary to generate the wall-layer streaks, the in- 
stability of which in turn strengthen the streamwise vortices 
through a nonlinear process. In the absence of either mecha- 
nism, turbulence ceases to exist. The result of this second 
experiment is consistent with Hamilton et al.^^ and Waleffe 
and Kim'* in that the formation of the streamwise vortices is 
a result of a nonlinear process. 

We have demonstrated that the linear process ^sociated 
with the coupling term plays an important role even in fiiUy 
nonlinear wall-bounded turbulent shear flows. Near-wall 
streamwise vortices, which play the essential role in the dy- 
namics of wall-bounded shear flows, are seen to be formed 
but cannot be sustained without the coupling term. 

This result is consistent with the analysis by Henningson 
and Reddy who showed that non-normality of the linear- 
ized Navier-Stokes operator is a necessary condition for dis- 
turbances to grow for Reynolds number below the critical 
Reynolds number predicted by the traditional linear stability 
analysis. However, we believe this is the first direct demon- 

stration that turbulence (nonlinear disturbance) decays when 
the non-normality of the underlying linear operator in non- 
linear flows is reduced. The time scale associated with the 
formation is found to be smaller than the bursting process 
used in the optimal perturbation theory. The fact that the 
coupling term plays an essential role in maintaining the 
streamwise vortices, which have been found to be respon- 
sible for high skin-friction drag in turbulent boundary layers, 
suggests that an effective control algorithm for drag reduc- 
tion should be aimed at reducing the effect of the coupling 
term in the wall region. In fact, the opposition control used 
by Choi et al}'' can be viewed as a control scheme trying to 
reduce the effect of the coupling term by suppressing the 
spanwise variation of v in the wall region. It should be in- 
teresting to design a control algorithm that directly accounts 
for the coupling term in a cost function to be minimized. 
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A reduced-order linear feedback controller is designed and applied to turbulent channel flow for 
drag reduction. From the linearized two-dimensional Navier-Stokes equations a distributed 
feedback controller, which produces blowing/suction at the wall based on the measured turtsulent 
streamwise wall-shear stress, is derived using model reduction techniques and linear- 
quadratic-Gaussian/loop-transfer-recovery control synthesis. The quadratic cost criterion used for 
synthesis is composed of the streamwise wall-shear stress, which includes the control effort of 
blowing/suction. This distributed two-dimensional controller developed from a linear system theory 
is shown to reduce the skin friction by 10% in direct numerical simulations of a low-Reynolds 
number tarbulent nonlinear channel flow. Spanwise shear-stress variation, not captured by the 
distributed two-dimensional controller, is suppressed by augmentation of a simple spanwise ad hoc 
control scheme. This augmented three-dimensional controller, which requires only the turbulent 
streamwise velocity gradient, results in a fiirther reduction in the skin-friction drag. It is shown that 
the input power requirement is significantly less than the power saved by reduced drag. Other 
turbulence characteristics affected by these controllers are also discussed. © 2001 American 
Institute of Physics.   [001:10.1063/1.1359420] 

I. INTRODUCTION 

Much attention has been paid to the drag reduction in 
turbulent boimdary layers. Skin friction drag constitutes ap- 
proximately 50%, 90%, and 100% of the total drag on com- 
mercial aircraft, underwater vehicles, and pipelines, 
respectively.' The decrease of skin friction, therefore, entails 
a substantial saving of operational cost for commercial air- 
craft and submarines. Recent reviews'"' summarize achieve- 
ments and open questions in boundary layer control. 

With the notion that near-wall streamwise vortices are 
responsible for high skin friction in turbulent boundary lay- 
ers, Choi et al* manipulated the near-wall turbulence by ap- 
plying various wall actuations. They achieved a 20% skin- 
friction reduction in a turbulent channel flow by applying a 
wall transpiration equal and opposite to the wall-normal ve- 
locity component measured aty*^ 10. This control is shovm 
to effectively make the streamwise vortices weaker. How- 
ever, it is not easily implementable since it is difficult to 
place sensors inside the flow field. Other attempts at weak- 
ening the near-wall streamwise vortices have been made by 
imposing spanwise oscillation of the wall' and using external 
body force.* These methods, however, require a large 
amount of input energy. A reduction in skin friction must be 
accompanied with the required input energy much less than 
the energy saved by the reduction. 

A systematic approach, not relying on physical intuition, 
has been tried in the past. A suboptimal control, which de- 
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termines the optimal control input by minimizing the cost 
functional for a short time interval, was successfully applied 
to the stochastic Burger's equation.' Bewley and Moin* ex- 
tended the suboptimal control to a turbulent chaimel flow. 
This method, however, requires information about the whole 
flow field and excessive computation, so that it is impossible 
or at best extremely difficult to implement. It is necessary to 
develop a control scheme that utilizes easily mcMurable 
quantities. 

Lee et at? developed a neural network control algorithm 
that approximates the correlation between the wall-shear 
stresses and the wall actuation and then predicts the optimal 
wall actuation to produce the minimum value of skin fric- 
tion. They also produced a simple control scheme from this 
neural network control, which determines the actuation as 
the sum of the weighted spanwise wall-shear stress, 
dwldy\^. Recently, Koumoutsakos'" reported a substantial 
drag reduction obtained by applying a feedback control 
scheme based on the measurement and manipulation of the 
wall vorticity flux. Furthermore, he showed that the strength 
of unsteady mass transpiration actuators can be derived ex- 
plicitly by inverting a system of equations. 

Other systematic controls""" have been developed by 
exploiting the tools recently developed in the control 
community.'*"^' Joshi e/a/."~" and Bewley and Liu'* de- 
veloped an integral feedback controller, a linear quadratic 
(LQ) controller, and an Wo. controller (worst-case controller) 
to successfully stabilize unstable disturbances in transitional 
flow. In particular, Cortelezzi and Speyer" introduced the 
multi-input—multi-output (MIMO) linear-quadratic-Gaussian 
(LQG)/loop-transfer-rccovery (LTR) synthesis,^^ combined 
with model reduction techniques, for designing an optimal 
linear feedback controller. This controller successfully sup- 
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pressed near-wall disturbances, thus preventing a transition 
in two-dimensional laminar channel flows. This reduced- 
order controller'* was applied to two-dimensional nonlinear 
transitional flows, illustrating that the controller designed 
from the linear model works remarkably well in nonlinear 
flows. 

Our purpose in the present study is to develop a realistic 
robust optimal controller that systematically determines the 
wall actuation, in the form of blowing and suction at the 
wall, relying only on a measured streamwise velocity gradi- 
ent to reduce skin friction in a Mly developed turbulent 
channel flow. A dynamic representation of the flow field is 
required for controller design. Due to the complexity and 
nonlinearity of the Navier-Stokes equations, it is difficult to 
derive model-based controllers. Therefore, the linearized 
Navier-Stokes equations for Poiseuille flow are used as an 
approximation of the flow field and form the basis of system 
modeling. Several investigatora (e.g., Farrel and loannou,^ 
Kim and Lim,^* to name a few) have shown that linearized 
models have a direct relevance to turbulent flows. A reduced- 
order controller has been designed based on this model and 
applied to linear and nonlinear transitional flows.'*"" En- 
couraged by these results, in this paper we apply this distrib- 
uted two-dimensional controller to a direct numerical simu- 
lation of turbulent channel flow at a low Reynolds number. 
We then augment our two-dimensional distributed controller 
by including an ad hoc control scheme to attenuate the re- 
sidual distuAances in the spanwise direction. 

In Sec. 11, we derive the state-space equations from the 
linearized two-dimensional Navier-Stokes equations. In Sec. 
Ill, we reduce the order of the stote-space equations and 
derive a reduced-order two-dimensional controller by using 
LQG/LTR synthesis. In Sec. IV, we construct and apply the 
distributed two-dimensional controller based on the linear- 
ized Navier-Stokes equations to a fully developed turbulent 
channel flow at Re^= 100, where Re, is the Reynolds num- 
ber based on the wall-shear velocity, «,, and the half- 
channel height, h. In Sec. V, this distributed two-dimensional 
controller augmented with a simple ad hoc control scheme is 
applied to the same flow. In Sec. VI, we present turbulence 
statistics associated with the controlled flows followed by 
conclusions in Sec. VII. 

In this paper, we use iu,v,w) to represent the velocity 
components in the streamwise (x), wall-normal (y), and 
spanwise (z) directions, respectively. 

II. THE STATE-SPACE EQUATIONS 

One of the goals in the present study is to reduce the size 
of the controller. A controller with a large number of states is 
of no practical interest in engineering applications because of 
the amount of hardware and computer power necessary to 
compute a real-time control law. Consequently, it is crucial 
to reduce the order of the controller. 

Figure 1 shows the configuration of the turbulent chan- 
nel flow equipped with the controller tested for our study. 
Low-order controllers are usually preferred to high-order one 
because of the lower cost of hardware constiuction as well as 
the less computation time necessary to provide the control 
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FIG. I. Schematic teptescntation of tuAulent channel flow equipped with 
sensore and actuators distributed in the streamwise direction in rach z plane. 

input. Hence, we slice the channel with xy planes equally 
spaced in the z direction in order to reduce the order of the 
controller. We then construct the distributed two- 
dimensional controller by applying the two-dimensional con- 
troller developed fi-om the linearized two-dimemional 
Navier-Stokes equations'* to each plane. It is shown'* that 
the two-dimensional controller is effectively able to reduce 
the skin-friction drag of the finite-amplitude disturbances in 
a two-dimensional channel flow. 

We follow the same derivation of the state-space equa- 
tion as given in Cortelezzi etal}^ We give a brief outline 
here for completeness; the interested reader is referred to 
Cortelezzi etal}^ for details. The waU transpiration is ap- 
plied to both top and bottom walls in a fiiUy developed tur- 
bulent channel flow. For simplicity, though, we derive the 
state-space equations assuming that blowing and suction is 
applied only at the bottom wall. The application of blowing 
and suction to both walls is a trivial extension. 

We consider two-dimensional incompressible Poiseuille 
flow in a periodic channel of streamwise length, i^, and 
channel height, 2h. The undisturbed velocity field has a 
parabolic profile with centerline velocity C4. The linearized 
two-dimensional Navier-Stokes equations can be written in 
terms of the perturbation streamfimction, ^, 

(5,+ W,)A#-£/"#,=Re-'AA#, (1) 

where all variables are normalized with U^ and h and Re 
= Vfhlv is the Reynolds number. 

To suppress perturbations evolving within the bottom 
boimdary layer, we apply blowing and suction at the bottom 
wall (see Fig. 1). For simplicity, we assume that the actuatore 
are continuously distributed. The corresponding boundary 
conditions are 
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^x Ax,t), lpy\y=*l=l/'\y=l = 0. (2) 

where the control function v^ indicates blowing and suction 
at the bottom wall. We impose the wall transpiration of zero 
net mass flux. 

To detect the near-wall disturbances, we measure the 
gradient of the streamwise disturbance velocity at given 
point x=Xi along the bottom wall (see Fig. 1), 

z{Xi,t)=lpyy\y=-l. (3) 

In other words, we measure the first term of the disturbance 
wall-shear stress, Ty^=Re~^(ifryy-1/^^^)\^^_^. The second 
term of the wall-shear stress is zero in the uncontrolled case 
and is known in the controlled case. 

We define a performance index J, or cost criterion, to 
design a controller for the LQG (W2) problem. Since we are 
interested in suppressing the disturbance wall-shear stress, 
'yx we define 

J' ■=limr^     (ig^+fyl      idxdt. 
,^a,Jt    Jo 

(4) 
Ij—ta 

The integrand represents the cost of the disturbance wall- 
shear stress, Ty,, being different from zero. Moreover, the 
integrand implicitly accounts for the cost of implementing 
the control itself. There are two reasons to minimize the cost 
of the control. In any engineering application the energy 
available to drive the controller is limited, and a large control 
action may drive the system away from the region where the 
linear model is valid. 

By using the same procedure described in Cortelezzi 
et al.,^^ Eqs, (l)-(3) are converted into the state-space equa- 
tions: 

dx 

dt 
=Ax+Bu,    z=Cx+Du, (5) 

with the initial condition x(0)=Xo, where x is the internal 
state vector, u is the control vector, z is the measurement 
vector. Matrices A,B,C contain the dynamics of the two- 
dimensional plane Poiseuille flow, actuators, and sensors, re- 
spectively. Matrix D contains the coupling between sensors 
and actuators. The cost criterion, Eq. (4), becomes 

J= lim l\z^z+uVFu}dt, 
Sf—too J t 

(6) 

where the superscript T denotes a transposed quantity. The 
matrix F is obtained by spectrally decomposing the last term 
in the cost criterion, Eq. (4). 

The advantage of the present formulation is that the 
whole problem decouples with respect to the wave number 
when Eqs. (5) and (6) are transformed into Fourier space in 
the streamwise direction. All matrices in Eqs. (5) and (6) are 
block diagonal, which allows the above state-space system 
into equivalent N state-space subsystems.^' For a given wave 
number, a, the state-space subsystem equations are 

dx„ 
-— = A„%„+B^u„,    z„=C„x„+D„u^, 
dt 

(7) 

with the initial condition x„(0) = x^. It can be shown that 
the cost criterion, Eq. (6), also decouples with respect to the 
wave number (otherwise the wave number decoupling is not 
possible while the system itself is decoupled), and we obtain 
N performance indexes. For a given wave number, a, the 
cost criterion is defined as 

J„= lim^„= lira I   [zJz„+MjFjF„u„]dr. (8) 

Consequently, the design of a two-dimensional controller for 
the system, Eq. (5), with a specified cost criterion, Eq. (6), 
has been reduced to the independent design of N single-wave 
number controllers for the subsystems, Eq. (7), along with 
Eq. (8). 

III. MODEL REDUCTION AND CONTROLLER DESIGN 

In this section we derive a lower-order two-dimensional 
controller in two steps." First, we construct a lower-order 
model of Eq. (7), and subsequently, design a single-wave 
number controller for the reduced-order model. To obtain a 
lower-order model, we transform Eq. (7) into a Jordan ca- 

nonical form. The matrices Aa,,B„,C„,D„ that describe the 
dynamics of the reduced-order model are obtained from the 
matrices, A„,Ba,C„,Do. in the Jordan canonical form by 
retaining rows and columns corresponding to equally well 
controllable and observable states. The overcaiet denotes the 
quantities associated with the reduced-order model. 

Although a rigorous mathematical framework for the de- 
sign of disturbance attenuation (H«) linear controllers is 
provided by the control synthesis theory,"'" for this study 
LQG(W2) synthesis is preferred. A brief review will be 
given in a self-contained manner to provide the necessary 
governing equations for closed-loop stability analysis.^" 

The LQG problem for each wave number a is formu- 
lated as a stochastic optimal control problem described by 
equations 

&„= A„x„-1- B„u„+ r„w„, 

z«=C„x„+D„ii„+v„, 

(9) 

(10) 

where r„ is an input matrix, w„ and v„ are both white noise 
processes with zero means and autocorrelation fimctions. 

£[w„(f)wJ(r)]=W„*(f-T), 
(11) 

where £[•] is the expectation operator averaging over all 
underlying random variables and S(t—T) is the delta fiinc- 
tion. Note that W„ and V„, the power spectral densities, will 
be chosen here as design parametere to enhance system per- 
formance. An additional comment on the controller design 
process will be given at the end of this section. 

The LQG controller is determined by finding the control 
action u„(Z,), where Z,={Z(T);0«T«4 is the measure- 
ment history, which minimizes the cost criterion. 
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J„ - lim 

XE 

tf-t 

1%'A x„+2xln„u„+nlR„vi„)dr\,  (12) 

subject to the stochastic dynamics system model equations 
Eqs. (lO)-(ll). Note that, from Eqs. (7)-(8), Q„=cjc„, 
N„=C^D„, and R„=DX+FJF„. The division by {tj 
-t) ensures that the cost criterion remains finite in the pres- 
ence of uncertainties in the infinite-time problem (rj-+oo). 
Note that Eq. (12) can include Eq. (8), where 

/„= lim 
1 

-EIJ2, (13) 

and the limit in Eq. (8) is explicitly denoted in Eq. (13). Note 
that even though the time interval is infinite, the time re- 
sponse is still measured by the eigenvalues of the closed- 
loop system. We consider the infinite-time problem with 
time-invariant dynamics because the controller gains become 
constants. 

By nesting the conditional expectation with respect to Z, 
within the unconditional expectation of Eq. (13), i.e., 
ElJ„l=E[E[JJZ,-\-l, where £[-/Z,] denotes the expecta- 
tion (•) conditioned on Z,, the cost criterion can be written 
as 

J„= lim 
1 

<(—««• If 

XE 

tf-t 

x„+ 2xXu„+ UJR„U„+ tr(P„)]rfT 

(14) 

where x„=E[x„/Z,} is the conditional mean estimate of the 
state X and P„ is the conditional error variance. This cost 
criterion is now minimized subject to the estimation equa- 
tions discussed below. Note that P„ does not depend on the 
control [see Eq. (18) below] and, therefore, does not enter 
into the optimization process. 

The solution to the regulator problem^ is a compensator 
composed of a state reconstruction process, known here as a 
filter (in the no-noise case it is known as an observer) in 
cascade with a controller (see Fig. 1, where Ej is the estima- 
tor and Cj is the controller). The state estimate (conditional 
mean) x„ is governed by the so-called Kalman filter as 

(15) 

x„= A„x„-I- B„u„-I- L„v„, 

!»„= z„-z„= C^(x„-x„) + v„. 

If the reduced-order system were the actual system, then v„ 
in Eq. (15) is correct. When the actual system is considered 
and the filter is implemented based on the reduced-state 
space, z rather than z is the measurement and the filter re- 
sidual becomes 

v„=z„ C„x„-D„u„. (16) 

The Kalman gain matrix L„, constructed to trade the accu- 
racy of the new measuremente against the accuracy of the 
state propagated from the system dynamics, is given by 

'-'a     * a'-a ^ a   » (17) 

where P„ is the error variance in the statistical problem. 
In the infinite-time stationary formulation, the error P„ is 

the solution to the algebraic Riccati equation (ARE), 

A„F„+ p^^+r„w„ri- p„civ;' c„p„=o (18) 

If the system is (ka,C„) observable and (A„,B„) control- 
lable, then P„ is positive definite. Under these assumptions, 
it can be shown that the difference between the internal state 
x„ and the estimate state x„, i.e., the error, 

e„=x„-x„, (19) 

goes to zero as time goes to infinity. In other words, the 
evolution equation, 

e„= Aye-I- t„v+ r„w, (20) 

is stable, i.e., all the eigenvalues of the matrix, 

Aj=A„-L„C„, (21) 

have a negative real part. 
Minimizing the infinite-time cost fimction /, Eq. (14) 

subject to Eq. (15) yields the following control law: 

tt„=-K„;„, (22) 

where 

K„=R;'(BX+N«), (23) 

and S„ is the solution of the algebraic Riccati equation 
(ARE), 

A„S„+ S„kl+ Q„-(S„B„+ N„)R;•(BX+ ND=0.   (24) 

It should be remarked that the control gain matrix K„ is 
determined from fimctions only of the known dynamics co- 
efficients (A„,B„) and the weighting in the cost criterion 
(Q„,Ra), and not the statistic of the input (V„, W„). Con- 
sequently, K„ is determined from a performance index as 
Eq. (12), independent of the stochastic inputs. If (Aa,B„) is 
controllable and (A„,Q^'^) observable, then the loop coeffi- 
cient matrix. 

A/.    A-„ - K„B„, (25) 

is stable and S„ is positive definite. The controllable and 
observable conditions can be weakened to stabilizable and 
detectable.^' 

When we combine the estimator and the regulator to- 
gether, the dynamic system composed of the controlled pro- 
cess and filter becomes 

A/ 0 

A. 
L„v„-i-r„w, 

L„v„ 
(26) 

Note that any choice of two between e, x„, and x„ produce 
the same dynamics because they are algebraically related by 
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Eq. (19). Under the above controllability and observability 
assumptions, Aj and A^ have only stable eigenvalues if op- 
timal gains L^ and K„ of Eqs. (17) and (23) are used. If the 
actual linear system is used, then x„ and the reduced-order 
state estimate x„ are used to form the closed-loop dynamic 
system rather than that given in Eq. (26). The eigenvalues of 
the dynamical matrix now dictate the system stability and 
will differ from the ideal case of Eq. (26). 

The parameters used in our LQG design are now ad- 
dressed. Since the power spectral density is not known, for 
simplicity of the design we consider V„ and W„ to be of the 
form V„= fil and W„= pi, where fi and p are scalar and I is 
an identity matrix. Only the ratio of 0 and p is important. 
Furthermore, by choosing r„=B3, loop-transfer recovery 
(LTR) of the LQG controller to fliU-state feedback'* guaran- 
tees that robust performance occurs when the process noise 
power spectral density goes to infinity, i.e., p—»oo, provided 
there exists no nonminimal-phase zero in the plant. In our 
case, there are no nonminimal-phase zeros and robust perfor- 
mance means approximately obtaining 60° of phase margin 
and 6 db of the gain margin. Note that the choice of r„ 
= B„ implies that the noise is generated along the wall as is 
the control and could be interpreted as due to wall roughness. 
Furthermore, the values of p and 0 were determined by tun- 
ing the controller in the presence of turbulent flow. The de- 
gree of loop transfer recovery varied from controller to con- 
troller. 

As described above using WJG/LTR assumes that the 
uncertainty is at the wall and efifecte the dynamics in the 
same way as the control. Since the system has the same 
controllability with respect to both the control and distur- 
bances, state-space reduction for controller design was 
straightforward. This is in contrast to W„ control used by 
Bewley and Liu,'* where uncertainty is assumed uniformly 
throughout the channel. Since controllability of the distur- 
bances is different from that of the control, model reduction 
may not be straightforward. Furthermore, robustness in terms 
of traditional measures of the gain and phase margin in con- 
trol engineering are also obtained by using LQG/LTR. For 
these reasons LQG/LTR is used for the present study instead 
of the unstructured uncertainty H», controllers. 

Figure 1 lirics the mathematical formulation to its com- 
putational implementation by summarizing in a block dia- 
gram the control strategy described above. The two- 
dimensional distributed controller can be programmed in a 
computer routine whose input is a matrix containing the gra- 
dients of the streamwise velocity component and whose out- 
put is a matrix containing the blowing and suction at the 
wall. Each column of the measurement matrices contains the 
gradients of the streamwise velocity component along the 
wall at a given spanwise location. Each column is processed 
in parallel by a fast Fourier transform (FFT) and converted 
into z„'s. Each single-wave number controller, Eqs. (9)- 
(10), is integrated in time by, for example, a third-order low- 
storage Runge-Kutta scheme. The u„'s are computed in par- 
allel. An inverse FFT converts u„'s into the columns of the 
matrix containing the blowing and suction at the wall along 
the streamwise direction. This routine can be embedded in 

any Navier-Stokes solver able to handle time-dependent 
boundary conditions for the control of three-dimensional 
channel flows. 

Figure 1 also provides the basic architecture for the po- 
tential implementation of the present distributed two- 
dimensional controller in practical engineering applications. 
For instance, the gradients of the streamwise velocity com- 
ponent can be measured by microelectromechanical-systems 
(MEMS) hot-film sensors.^* For each xy plane, analog-to- 
digital convertera (A/D) and digital signal processors (DSP) 
convert the measured gradients into 2„'s. Each single-wave 
number controller, Eqs. (9)-(10), is replaced by a micropro- 
cessor, and parallel computation produces u^'s. A DSP and a 
digital-to-analog converter (D/A) produce the actuating sig- 
nal in cmhxy plane. A variety of actuators, such as synthetic 
jets, microbubble actuators, and thermal actuators, can 
mimic small-amplitude blowing and suction at the wall.^* 

Although the structure of this compensator is simplified 
by the parallel computation (for all spanwise directions), it 
does require processing of all the sensor measuremente (for 
all streamwise directions). The controller is essentially cen- 
tralized because all information is tised and the actualars are 
activated spatially over the assumed channel. Controllers 
based explicitly on the spatial distribution of the control, 
suggested by Bamieh etal.^^ show that there is a spatial 
decay rate. Our controller can be constructed to represent a 
discrete form of their controller and given the spatial decay 
rate for our configuration, i.e., the size of the channel could 
be chosen consistent with that decay rate. Nevertheless, our 
representation allo\^ a significant decrease in on-line com- 
putation by identifymg the Fourier modes and the number of 
states associated with those modes that best reduce turbu- 
lence as discussed in the next section. 

IV. PERFORMANCE OF A TWO-DIMENSIONAL 
CONTROLLER 

For the purpose of testing the performance of a control- 
ler, we performed direct numerical simulations of a turbulent 
channel flow at 'Rs^= 100. A spectral code ^as used with a 
computational domain of (4ir,2,4'jr/3) and a grid resolution 
of (32,65,32) in the ix,y,z) directions. The numerical tech- 
nique used in this study is essentially the same as that of Kim 
et al.^ except that the time advancement for the nonlinear 
terms is a third-order Runge-Kutta (RK3) method. The 
second-order accurate Crank-Nieolson (CN) method is used 
for the linear terms. 

We designed a distributed two-dimensional controller in 
two steps. First, we designed reduced-order controllers for 
two-dimensional Poiseuille flow in a periodic channel of 
streamwise length ij^ = 4 ir at Re= 5000, which has the same 
mean wall-shear stress as turbulent channel flow at Re^ 
= 100. Subsequently, we fine-tuned the single-wa'W number 
reduced-order controllers in order to minimize the magnitude 
of die Fourier coefficients of the wall-shear stresses in tur- 
bulent channel flow at Rej=100. We used N=32 and M 
= 60 in this linear model flow. Controllers operate at both 
top and bottom walls in parallel. If the two-dimensional con- 
trollers without model reduction were applied at each z 
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Time 

FIG. 2. Time history of the drag for the conttolled and uncontrolled flows: 
 , controlled flow; , uncontrolled flow. 

plane, then the order of the ensemble of controllers would be 
64X3904=249 856. Using the model reduction technique 
previously described, we designed eight single-wave number 
controllers of order 12, corresponding to the eight lowest 
wave numbers. Since we use the eight lowest single-wave 
number controllers in our simulation, the combined order of 
the controllers is 64X96=6144. It represents a state-space 
reduction of about 97.5%, with respect to the full-order sys- 
tem. 

Figure 2 shows the time history of the drag in the un- 
controlled and controlled flows. Drag is measured by the 
mean value of the wall-shear stresses averaged over each top 
and bottom wall. This two-dimensional control yields about 
a 10% drag reduction. Choi et al* reported that the in-phase 
u control measured at j^* = 10 also gives a 10% drag reduc- 
tion. This in-phase streamwise velocity at the wall causes a 
similar effect, du'/dy\„==0, which is the to-be-minimized 
target of our cost criterion in our two-dimensional controller. 
Note that this observed drag reduction is a byproduct since 
our controller is designed to suppress the fluctuations of the 
streamwise wall-shear stress, not the mean wall-shear stress. 
Note also the sudden drop in the drag as soon as the control- 
ler is switched on at t=25. This transient phenomena is also 
observed in other studies.**' 

Figure 3 compares the magnitude of Fourier coeflBcients 
of the wall-shear stresses in the controlled and uncontrolled 
flows. The wall-shear stresses are measured at the bottom 
wall at a given spanwise location. Figures 3(a) and 3(b) show 
the comparisons corresponding to wave numbers t,=0.5 and 
*J:=1.0, respectively. Both figures show an order-of- 
magnitude reduction between the controlled and uncon- 
trolled cases. The magnitude of the Fourier coefficients of 
wall-shear stress decreases very quickly as soon as the con- 
troller is activated at ^=25. These results indicate that our 
distributed two-dimensional linear reduced-order controller 
suppresses disturbance wall-shear stress remarkably well, 
even in a fiilly developed turbulent flow. The high wave 
number components of the wall-shear stress in Fig. 3(c) do 
not show any reduction since only the lowest eight single- 
wave number controllers (up to k^=4.0) are used in the con- 
trol of flow. Examinations of other spanwise locations show 
similar resulte. 

Contours of the disturbance wall-shear stresses at the 

FIG. 3. Time history of the magnitude of the Fourier coefficiente of the 
wall-shear stresses measured at &e bottom wall at a given spanwise location 
for the controlled and uncontrolled flows; , uncontrolled flow; , 
controlled flow, (a) *^=0.5, (b) *,= 1.0. and (c) k,=6.0. 

bottom wall in the controlled and tmcontroUed flows at t 
= 30 are shown in Fig. 4. Contoure for the uncontrolled flow 
show the usual elongated regions of low- and high-shear 
stress. Note that contours for the controlled flow show the 
dramatic effect of the distributed two-dimensional controller. 
The long streaky wall-shear stress region spans almost the 
entire streamwise direction, indicating that the low wave 
number components (except the zero wave number that we 
do not control) are completely suppressed, which is consis- 
tent with Fig. 3. The remaining spanwise variatioM, i.e., the 
alternating regions of high- and low-shear stress, are due to 

(a) 

N 

(b) 

N 

FIG. 4. 
= 30: (E 
dashed. 

Contours of disturbance wall-shear stresses at the bottom wall at t 
) uncontrolled flow; (b) 2-D-controlled flow. Negative contours are 
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the fact that the two-dimensional controllers distributed 
along the streamwise direction are operated independently 
from one z plane to another. 

The above results demonstrate that our distributed two- 
dimensional controller designed from the linear model works 
remarkably well in suppressing near-wall disturbances in the 
fully developed turbulent flow. The reduction of fluctuating 
wall-shear stress led to drag induction. However, this distrib- 
uted two-dimensional controller has a limited impact on the 
total drag since it cannot control the spanwise variation of 
the wall-shear stress. In the next section an augmentation to 
the distributed two-dimensional controller is presented and 
implemented. 

V. AUGMENTED THREE-DIMENSIONAL CONTROLLER 

In the pluvious section, successful control of ftiUy devel- 
oped turbulent channel flow has been obtained by applying a 
distributed two-dimensional controller. However, it has been 
observed that this controller does not account for the span- 
wise variations of fluid motion. An augmentation to the dis- 
tributed two-dimensional controller that accommodates the 
three-dimensional characteristics of a fully developed turbu- 
lent flow is developed in this section. 

A simple ad hoc control augmentation scheme is intro- 
duced in an attempt to capture the remaining spanwise varia- 
tions of the controlled flow. This additional control, which 
generates blowing/suction to attenuate the spanwise variation 
of the wall-shear stress, is given as follows: 

, du du 

'ay 

where dulByf^/'^ and SulByf^ are the streamwise velocity 
gradients averaged over the xz plane and the x direction, 
respectively, and C is a constant to be adjusted for the best 
performance. The subscript ad indicates the ad hoc control, 
and VsA is a fiinction of only z. Therefore, the new control 
input is defined by 

V^{X,Z) = V^+V2.U, (28) 

where Vj.xt is the actuation velocity generated by the distrib- 
uted two-dimensional controller used in the previous section. 

Using the distributed two-dimensional controller aug- 
mented with this ad hoc control scheme, the control of the 
fully developed turbulent flow with Re^= 100 increased drag 
reduction to about 17%, as shown in Fig. 5. As before, the 
turijulent flow is left free to evolve without any wall actua- 
tion until t=25. As soon as the controller is activated at t 
= 25, the drag drops sharply within a very small time period. 
The constant, C, in Eq. (27) is adjusted such that the root- 
mean-square (rms) value of the actuation is maintained at 
0.1«y, where «, is the wall-shear velocity for the uncon- 
trolled flow. We have found empirically that C between 
0.05M ,. and 0.2K ^ gives a similar performance. An introduc- 
tion of this simple control augmentation enhances the drag 
reduction, indicating that more sophisticated controllers that 
best take into accoimt the three-dimensionality of turbulent 
flow may produce even more efficient suppression of skin- 
friction drag. 

FIG. 5. Time history of the drag for the controlled and uncontrolled flows: 
 , uncontrolled flow; , 2-D-controlled flow; • • •, orf Aoc-controUed 
flow. 

Figure 6 presents the comparison of contours of the dis- 
turbance wall-shear stresses at the bottom wall between the 
ad hoc controlled flow and the uncontrolled flow at ^=30. 
Compared to Fig. 4, additional effort in the spanwise direc- 
tion, Ugj, removes the pronounced peak-valley variation of 
the wall-shear stress that is observed in the controlled flow 
with the distributed two-dimensional confroUers [see Fig. 
4(b)]. Note that the high wave number components of the 
wall-shear stress are persistently sustained because of the 
lowest eight single-wave number controllers adopted in the 
control of flow. 

(27)       VI. TURBULENCE STATISTICS 

Some turbulence statistics of the flow field associated 
with the two controllers applied in this paper were examined 
to investigate the effect of the controllers on turbulence. All 
statistical quantities were averaged over a sufficiently long 
interval of time as well as over the planes parallel to the wall. 
For simplicity, flie flows controlled by the distributed two- 
dimensional   controller   only   and   the   distributed   two- 

FIG. 6. Contours of disturbance wall-shear sitesses at the bottom wall at t 
= 30: (a) uncontrolled flow; (b) ad Aoc-controlled flow. Negative contours 
are dashed. 
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FIG. 7. Mean-velocity profiles: ••% ad tec-conttoUed flow; , 2-D- 
controUed flow; , uncontrolled flow. 

dimensional controller augmented with the ad hoc control 
scheme are called "2-D-controlIed" and "ad hoc- 
controlled" flows, respectively. 

The mean veloeily profiles normalized by the actual 
wall-shear velocities are shown in Fig. 7 for three different 
channel flows. These profiles show the same trend shown in 
the Choi et al* drag-reduced flow: the slope of the log law 
for controlled flows remains the same while the mean veloc- 
ity itself is shifted upward in the log-law region. 

The root-mean-square (rms) values of turbulent velocity 
fluctuations are shovm in Fig. 8 and compared to those of the 

FIG. 8. Root-mean-squaie values of turtjulent velocity fluctuations normal- 
ized by the wall-shear velocity, », for the uncontrolled flow: , un- 
controlled flow; , 2-D-controlled flow; • •% arf Aoc-controlled flow. 

FIG. 9. Root-mean-square values of vortici^ fluctoations nonnalized by the 
wall-shear velocity in wall cooriinates: , uncontolled flow; , 
2-D-controlled flow; •••, arf Aoc-controlled flow. 

uncontrolled flow. Note that all quantities in this figure are 
normalized by the wall-shear velocity of the tmcontroUed 
flow. The controllers reduce the value of turbulent intCMity 
significantly throughout the channel, especially for the wall- 
normal and spanwise components. The reduction of these 
quantities in the ad Aoc-controlled flow is greater than that in 
the 2-D-controlled flow. The increase in p^^ very near the 
wall is due to the control input. A similar feature is also 
observed by Choi etal.* and Lee etal.^ Both eontroUera 
mitigate the rms of spanwise velocity fluctuation throughout 
the channel compared to that in uneontrolied flow. However, 
the introduction of v^ in Eq. (27) causes this value to in- 
crease very close to the wall, which also leads to an increase 
in the streamwise vortieity at the wall. 

Root-mean-square values of vortieity fluctuations for the 
controlled flows are compared with those for the uncon- 
trolled flow in Fig. 9. All components of vortieity fluctua- 
tions are significantly reduced throughout the channel. Very 
close to the wall, however, the increase of streamwise vor- 
tieity in the ad Aoc-controlled flow is due to the streamwise 
vortieity built at the wall by the ad hoc controller. The high 
streamwise vortieity at the wall slows the sweeping motion 
of high-momentum fluid induced by the streamwise vortieity 
away fi-om the wall, thus resulting in a significant reduction 
in skin friction. A similar feature is also observed in Lee 
et al? Note that the streamwise vortieity at the wall for the 
2-D-controlled flow, however, is less than that for the imcon- 
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FIG. 10. A comparison of sfreamwise vorticity contours in a yz plane be- 
tween controlled and uncontrolled flows: (a) uncontrolled flow; (b) 2-D- 
controlled flow; (c) ad Aoc-controlled flow. Negative contouis are dashed. 

trolled flow. The reduction of m^ is a direct consequence of 
the controller, which was designed to rcduee du'/dy\„. The 
reduction of a>y also indicates that our controlletB weaken the 
strength of near-wall streaks. This also decreases the streak 
instability, which is shown to be responsible for regenerating 
the near-wall streamwise vortices.^'*'" 

Figure 10 compares the streamwise vorticity fields in the 
uncontrolled and controlled flows. The strength of the near- 
wall streamwise vorticity for the controlled flows are greatly 
attenuated due to the wall transpiration produced by the con- 
trollers. It is discernible that the ad hoc controller diminishes 
the streamwise vorticity substantially more. The reduction of 
the strength of the streamwise vorticity has also been ob- 
served by Lee et al.^ While Lee et al.^ suppressed the 
streamwise vorticity field with the physical understanding 
that the control based on the weighted sum of dw/dy\„ can 
prevent the physical eruption at the wall, the present control- 
leiB attenuate the streamwise vorticity strength by minimiz- 
ing the streamwise disturbance wall-shear stress systemati- 
cally. The present results fiirther support the notion that a 
successfiil attenuation of the near-wall streamwise vortices 
results in a significant reduction in skin-fiiction drag.* 

VII. CONCLUSIONS 

A reduced-order linear feedback control based on a dis- 
tributed two-dimensional controller design is applied to a 

turbulent channel flow. A controller based on a reduced 
model of the linearized Navier-Stokes equations for a lami- 
nar Poiseuille flow was designed by using LQG {W2)/LTR 
synthesis. This controller was implemented using input mea- 
surements that are the gradients of the streamwise distur- 
bance velocity and output controls that are the blowing and 
suction at the wall. 

First, we applied the distributed two-dimensional con- 
troller to both walls of a turbulent channel flow at Re^ 
= 100. Eight single-wave number controllers corresponding 
to eight lowest wave numbere, reducing the order of the con- 
troller about 2.5% of the order of the full size system, are 
applied to attain a skin-fiiction reduction of 10% with re- 
spect to the uncontrolled turbulent flow. Next, a simple ad 
hoc augmented control scheme of the distributed two- 
dimensional controller is introduced to capture the three- 
dimensionality of turbulent flow. The control of fiiUy devel- 
oped turbulent flow by the distributed two-dimensional 
controller augmented by the ad hoc control scheme produces 
a 17% reduction in skin-fiiction drag. Motivated by this re- 
sult, we are currently developing controllers to more effi- 
ciently account for the three-dimensionality of turbulent 
flow. 

It should be noted that the present controller, which is 
based on a reduced-order linear system, has achieved its de- 
sign objective, i.e., minimization of the wall-shear stress dis- 
turbances, quite remarkably when applied to the nonlinear 
flow. It was anticipated that the reduction of disturbances 
would also lead to a substantial reduction of the mean wall- 
shear stress. Unfortunately, fliis turned out not to be the case, 
suggesting that some other cost fimctions should be ex- 
plored. By comparing with our previous results,'*'' it was 
found that the present controller is not as effective in dimin- 
ishing the strength of the streamwise vortices in the buffer 
layer, which was the primary target for other controllers, but 
achieved its design goal by mainly affecting the region very 
close to the wall. In this regaixi, minimization of the total 
disturbance energy in the flow field'^ or minimization of the 
linear coupling term^* appears to be a good candidate to be 
explored. Whether either of these cost criterion is indeed 
controllable in nonlinear flows, however, remains to be in- 
vestigated. 

This study is carried out at low Reynolds number. 
Whether our controller, based on the reduced-order linear 
model, would work in other turbulent flows, should be drawn 
from real experiments or simulations at high Reynolds num- 
ber. However, we expect that it should work equally well for 
high Reynolds number flow since our controller, derived 
from LQG/LTR synthesis, recovers the robustness of LQR, 
whose characteristics have been partially tested over the dif- 
ferent Reynolds number flows.'*' 

The statistics of controlled and imcontrolled flows are 
compared. The mean velocity profile is shifted upward in the 
log region, a typical characteristic of drag-reduced flow. Ve- 
locity and vorticity fluctuatioiB as well as Reynolds shear 
stress (not shown) are significantly reduced due to the 
blowing/suction generated by the controller. However, a ma- 
jor change is confined to the wall region. Instantaneous flow 
fields show that the distributed two-dimensional controller 
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attenuates and modifies the streaky structure of the boundary 
layer. Streaks are observed to span the entire streamwise 
direction with velocity variations in the spanwise direction. 
These variations are substantially reduced by the augmented 
controller. 

The three-dimensional aspect of the distributed two- 
dimensional controller by the augmentation of the ad hoc 
control finther reduced the skin-friction drag. This three- 
dimensional controller produces secondary streamwise vor- 
ticity at the wall, which slows the sweeping motions of high- 
momentum fluid induced by the streamwise vorticity away 
fi-om the wall. This induced retarding of the primary stream- 
wise vorticity leads to additional drag reduction, which was 
also observed in Choi et al* 

Regarding the scaling factor C in Eq. (27), we found an 
optimal value of C that yields the blowing/suction of 0.1«^. 
With this optimal C, the augmented controller generates wall 
transpiration with a rms value of about 0.12M j. The required 
power input per unit area to the system, p„^>„+O.Spvl 
'^O.lpul, is significantly less than the power saved from the 
drag reduction, AC//C/f„£/e«3.2p«J, where/;«., P. C/, 
r„, and U^ are the wall pressure, density, skin-friction co- 
efficient, averaged wall-shear stress, and the centerline ve- 
locity, respectively. 

Although the present two-dimensional controller aug- 
mented by an ad hoc three-dimensional controller has shown 
a promising result, it is apparent that we need to develop a 
three-dimensional controller using the same formulation pre- 
sented in this paper. Extensions of LQG(W2)/LTR design by 
using three-dimensional channel flow models are in 
progress.^ "^ 3435 
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We investigate the application of linear-quadratic-Gaussian (LQG) feedback control, 
or, in modern terms, M'j control, to the stabilization of the no-motion state against the 
onset of Rayleigh-Benard convection in an infinite layer of Boussinesq fluid. We use 
two sensing and actuating methods: the planar sensor model (Tang & Bau 1993,1994), 
and the shadowgraph model (Howie 1997a). By extending the planar sensor model 
to the multi-sensor case, it is shown that a LQG controller is capable of stabilizing 
the no-motion state up to 14.5 times the critical Rayleigh number. We characterize 
the robustness of the controller with respect to parameter uncertainties, unmodelled 

"dynamics. Results indicate that the LQG controller provides robust performances 
even at high Rayleigh numbers. 

1. Introduction 
When a layer of fluid at rest is heated from below, fluid motion will develop 

into well-organized convection patterns if the temperature difference across the layer 
is sufficiently large (Cross & Hohenberg 1993). For certain industrial applications, 
developing a temperature gradient across the fluid layer is unavoidable but at the 
same time preventing convective fluid motions is desirable. Some examples involving 
undesirable eff^ects of convection are materials processing, solidification, semiconduc- 
tor melts, welding, evaporative coating and crystal growth. Our aim is to use robust 
modern control methodologies to inhibit the onset of convection while permitting a 
large thermal gradient across the layer of fluid. 

The idea of stabilizing the fluid layer against the onset of cellular motions has been 
advanced by Tang & Bau (1993, 1994, 1998a, fc) and Howie (1997a-<, 2000). Tang & 
Bau assumed that the temperature field can be measured continuously on a horizontal 
plane in x,y and ( (see figure 1). The measurements are then used to control the 
temperature at the lower wall, in order to cancel the thermal disturbances in the 
fluid that drive the overturning motions. Howie (1997a) investigated a similar control 
problem, except in his case the measurements consist of shadowgraph images of the 
fluid. The shadowgraph images capture the horizontal distribution of the vertical- 
mean temperature. Moreover, in Howie's model, heat flux rather than temperature 
is prescribed at the lower wall. Both types of sensor and actuator models will be 
considered in this study using a more sophisticated form of control synthesis. 

Based on proportional feedback control, the results of Tang & Bau and Howie 
show that both sensor models exhibit a maximal achievable stable value of Rayleigh 
number Ra, beyond which this simple controller is ineffective for stabilization. For the 
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T'(4 + 0;{x,y,zmt) 

X       Infinite l^er of 
Boussinesq fluid y.'^^) + 8' (x,y, z<'>, t) 

T^'+6^(x,y,l) 

FIGURE 1. Planar sensor model. 

planar-sensor model Tang & Bau (1993, 1994) showed that the controller can inhibit 
convection up to a maximum of about 3,8 times Ra^ at Pr = 7, where Ra^ = 1707.76 
is the uncontrolled critical value. This value is Fr-dependent. Furthermore, they (Tang 
& Bau 1994) considered a velocity actuator which inhibits convection up to 10 times 
the critical Rayleigh number. For the shadowgraph sensor model this maximum 
is about 3,13 times Roeo = 1295,78, In §4 the differences in performance between 
the two sensor models using only the thermal actuators, and the limitations of the 
proportional feedback control will be discussed. 

The degree of stabilization can be improved significantly by using synthesis methods 
for multiple-input/multiple-output systems which produce dynamic compensators. 
However, in this study a distributed single-input/multiple-output strategy will be 
considered, since normal modes of different wavenumbers decouple and each normal 
mode can be controlled individually. 

One such synthesis method is known as the linear-quadratic-Gaussian (LQG) 
control (Bryson & Ho 1969), or, in modern terms, 3^2 control Other methods such as 
Jf 00 synthesis (Rhee & Speyer 1991) could also be applied, but we suspect with similar 
results. The LQG approach allows us to consider a nominal design Rayleigh number 
(Ra*) significantly higher than that considered in the previous studies. For values of 
Ra sufficiently near Ra', stabilization with the LQG controller appears always to be 
achievable. Moreover, for Ra' below a certain threshold, the complete range of Ra 
up to a critical value can be stabiU^d, In this study, we show that the system can 
be stabilized up to Ra — 14.8Raco. In this range the first even and odd modes of 
convection can become unstable. However, these two modes are damped by the LQG 
controller. The higher modes are naturally damped within this range of Ra. Our aim 
is to ensure stability over the entire range of Ra up to a maximum critical Rayleigh 
number, without the formation of isolated unstable regions within this range. This 
requires the determination of the value of Ra' to produce this maximum critical 
Rayleigh number. 

Unlike the proportional control method, the LQG synthesis method requires some 
elaboration. This synthesis method consists of two steps: (i) a reconstruction of the 
internal states of the plant based on the measured information, and (ii) a regulation 
of the plant states in order to drive the estimated perturbations to a zero level. To 
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accomplish these two steps, the LQG controller is formed by a Kalman filter and an 
optimal regulator in cascade. 

The LQG synthesis method has recently been used in the study of drag reduction 
in channel flow by Joshi, Speyer & Kim (1999) and by Cortelezzi & Speyer (1998) 
based on Joshi, Speyer & Kim (1997) who first introduced the system theory approach. 
Cortelezzi & Speyer (1998) presented a framework suited to practical implementations 
and demonstrated the performance of the design in numerical simulations. Following 
this framework, our investigations focus on a robust stability analysis of the closed- 
loop system as applied to Rayleigh-Benard convection. Design parameters of the 
filter and regulator are carefully chosen to enhance the robustness of the stabilization. 
Several integrated design aspects are discussed. 

This study is intended to provide a design of controllers for future experiments. 
The design goal is to maximire the stability range of Rayleigh number. This implies 
designing controllers at the highest possible design value Ra', without causing an 
unstable, isolated region to form below Ra'. Since the controllers are implemented 
at each wavenumber and only Ra is being varied, one form of robustness being 
demonstrated is the robustness of the system with respect to variations in Ra away 
from Ra'. Another form of robustness is concerned with uncertainties in the system 
apart from the mismatch in Ra, for example uncertainties due to nonlinearities or 
unmodelled dynamics. The objective of this paper is to produce a robust design based 
on classical relative stability measures of gain and phase margins that accommodates 
to a degree unmodelled dynamics and nonlinearities. Nonlinear simulation is required 
to validate the design. We will show that the gain and phase margins depends crucially 
on the number of sensors used. More measurements implies better knowledge about 
the internal states of the system. In this study we are interested in determining 
the minimum number of sensor planes, as well as their locations, for achieving a 
reasonable degree of robustness. From a theoretical point of view, the planar sensor 
model appears to be more effective and accurate than the shadowgraph sensor model, 
mainly because a multiple planar sensor configuration can be readily incorporated. As 
the results wDl show, increasing the number of sensors, i.e. the measured information 
about the internal states, is crucial for achieving the desirable robustness. 

We now proceed to §2 to derive the standard state-space equations for both sensor 
models. In §3, we review the theory of the LQG optimal control synthesis. In §4, the 
results are discussed and in §5, we conclude the paper. 

2. State-space formulation 
In this Section, we derive the state-space equations. Following the framework pre- 

sented by Cortelezzi & Speyer (1998), we start from the governing equations and 
subsequently transform them into a set of ordinary differential equations expressed 
in state-space form. This procedure includes a transformation of variables, a spec- 
tral decomposition of the resulting equations and expressing these equations in the 
standard state-space form. 

2.1. Governing equations 
We consider an infinite layer of Boussinesq fluid heated from below, which is parallel 
to the (x,y)-plane and bounded by non-permeable walls at z = ±d/l (see figure 1). 
Our aim is to compare the performance of the LQG controller with the performance of 
the proportional feedback control method based on two known models. Therefore, in 
our formulation the boundary conditions used in these two models will be preserved. 
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For both models, the upper wall is assumed to be infinitely conductive at constant 
temperature T,'. For the planar sensor model (Tang & Bau 1993, 1994, 1998fl,fe) 
temperature is measured on an interior plane (see figure 1, T'{z) denotes the basic 
state). These measurements are used to modify the constant lower wall temperature T2 
with the actuator temperature 0'{x,y,t). For the shadowgraph sensor model (Howie 
1997a, fc) measurements of the vertical-mean temperature distribution are obtained in 
the form of a shadowgraph. These measurements are used to modify the constant heat 
flux Q* at the lower wall with the actuator heat flux q'(x,y,t). Different actuators are 
used to allow direct comparisons between the performances of the LQG controllers 
and the proportional controllers used in the original models. 

We scale length, time, velocity, pressure relative to the hydrostatic pressure, and 
temperature, respectively, by d, #/K, K/d, pvx/d^ and (Tj* - T,') or Q'd/K depending 
on the model chosen, where p, K, V and K are, respectively, density, thermal diffusivity, 
kinematic viscosity and thermal conductivity of the fluid. The linear stability equa- 
tions for the vertical perturbation velocity wix,y,z,t) and perturbation temperature 
0(x,y,z,t) are 

(Pr-^d, - V^W^w = RaVle, (2.1) 

(5,-V')fl = w, (2.2) 
where ?| = ?2 - d„ (e.g. Chandrashekhar 1961). The Prandtl number is Pr = V/K. 
The Rayleigh number for the planar and shadowgraph cases are defined, respectively, 
as Ra = ag(T2 - Tl)d^/vK and Ra = agQ'd^/KvK, where « is the coefiicient of 
volume expansion and g is the gravitational acceleration. 

The boundary conditions on velocity are 

w(x, y, +1/2, t) = 5,w(x, y, +1/2, t) = 0. (2.3) 

For the thermal boundary conditions, the upper wall is considered isothermal so that 
the perturbation temperature must satisfy 

0(x,p,l/2,f) = O, (2,4) 

Based on the planar and shadowgraph sensor models (Tang & Bau 1993,1994; Howie 
1997a), we apply a continuous time-dependent control temperature along the lower 
wall for the planar sensor case, 

0(x,y,-l/2,() = 0,(x,y.(), (2.5) 

while for the shadowgraph model we apply a continuous time-dependent heat flux qc 
instead, 

dMx, y, -1/2, t) = q,ix, y, t). (2.6) 
The planar sensor model measures the temperature distribution at a number / of 

(x,y)-planes located at z = zf € [-1/2,1/2], where i = 1,2,...,J. The measurement 
equations are 

ef(x,y,t) = e(x,y,zf,t),        j=l,2„..,i, (2.7) 
where zf is the z-coordinate of the ith sensor plane. The shadowgraph model 
measures the average density over the whole layer, Ps, which is expressed in terms of 
temperature by 

,1/2 
Ps(x,y,t)= I     V\B(x,y,z,t)iz, (2.8) 

j-i/i 
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where p^ is the measurement function in density. We refer readers to Howie (1997a) 
for the derivations of this integral expression. 

2.2. Transformation of dependent variables and cost criterion 
We transform the perturbation temperature so that equations (2.1H2.8) have hom- 
ogeneous thermal boundary conditions. The perturbation velocity remains unchanged. 
With the perturbation temperature as 0 = # + {, we obtain for both sensor models 

(Pr-^d, - V^W^w - «a?i# = ^cVi^ (2.9) 

(a,-V2)#-w = -(a,-?2){, (2.10) 
subject to the boundary conditions 

w(x, y,+1/2, t) = dMx, y, +1/2, t) = ^(x, y, 1/2, t) = 0. (2.11) 

Furthermore, for the planar sensor model ^ must satisfy the boundary condition 

<l)(x,y,-l/2,t) = 0, (2.12) 

while for the shadowgraph sensor model ^ must satisfy the boundary condition 

dMx,y,-l/2,t) = 0. (2,13) 

The forcing function { satisfies a non-homogeneous boundary condition at the 
lower wall and a homogeneous boundary condition at the upper wall. For the planar 
case these conditions are 

{(x. y, -1/2, t) = e,(x, y, t),       {(x, y, 1/2, r) = 0, (2.14) 

and for the shadowgraph case we have instead 

d^i(x,y,-l/2,t) = q,(x,y,t),       {(x,y,l/2,t) = 0. (2.15) 

The two set of measurement equations in terms of the new variables for the planar 
and shadowgraph cases become 

ef(x,y,t) = <f>(x,y,zf,t) + Ux,y,zf,t),       i = 1,2....J, (2.16) 

and 

pAx,y,t)= /     Vl((l)(x,y,z,t) + Ux,y,z,t))dz. (2.17) 
J-l/2 

Note that the sensore could be located at discrete points in the (x,j')-plane, but to be 
consistent with Tang & Bau (1993,1994) we have considered continuously distributed 
sensors. Furthermore, Tang & Ban's (1998a) experiment using discrete sensors and 
actuators shows consistency with their theoretical work using continuously distributed 
sensors and actuators. 

Finally, we introduce the cost criterion. Our goal is to design a controller able 
to drive the measured perturbation temperature to zero, without using unnecessarily 
large control action, hopefully resulting in little saturation of the actuators. Thus, the 
performance index includes weighting on the control. We consider a layer of fluid 
with large aspect ratios L^ and Lj, with periodic boundary conditions (see figure 1), 
assuming that the influence of the lateral boundary conditions in a finite layer of fluid 
is negligible. The LQG controller is determined by finding the control action which 
minimizes the cost criterion. For the planar sensor model we define the cost criterion 
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dx dy } dT, 
T  f   ft,    fh. 

.1=1 

and for the shadowgraph sensor model it is 

rT  f   ftx    l-L,    fT 

Jt    [Jo   Jo 

ph sensor mo 

/ = ^  {I'I'I (Pl+yq^c)dxdy\d 

(2.18) 

(2.19) 

2.3. Modal decomposition 
A periodic boundary condition permits us to perform a Fourier decomposition in 
the horizontal coordinates. The vertical dependence of the flow field and thermal 
field is constrained by the upper and lower wall boundary conditions. The vertical 
dependence will be decomposed separately in §2.4. We describe an infinitesimal three- 
dimensional disturbance to the no-motion state. Consequently, we have a double sum 
of the Fourier normal modes for the disturbances: 

M      N 

wix,y,z,t) = J2 S^{l[W'r^(2.t) + iW,^(z,t)]e('*''+*>y^ + C.C.}, 
m=I  n=l 
M     N 

4>(x,y,z,t) = Y, |]{|[*r^(z,t) + i*M».(z,«)]e«"*-==+'*'^> +c,c.}. 
m=^\  11=1 
M     N 

.   i(x,y,z, f) = 53 V{i[S,^(z, t) + iS,-.„„(z, r)]e«»*'-+'*.J') + c.c.}, 

(2.20) 

where c.c. denotes the complex conjugate. The measurement and control functions 
are represented by 

M      N 

Bfix,y,t) = Y. E{|t®E«W + i0l.„(O]e«"*'='+'*''> + C.C.},    j = 1,....J, 
m=l  s=l 
U      N 

m=l   11=1 
M      N 

edx,y,t)  =Y E^S[0-^»(O + i0d.«„(t)]e«**+'*''» + C.C.}, 
'm=l   11=1 

M      N 

qc(x,y,t)  =E E{l[fi"^W + 'fi".»"(')le""*''^"*'''+C-C-}. 
m=l   n=t 

(2.21) 

where the subscripts r and i indicate real and imaginary parts, respectively. The 
two fundamental wavenumbers are fe, = 2n/Lx and ky = 2n/Ly. From the classical 
theory without control, a normal mode disturbance is unstable in the region above a 
neutral curve Rao(k) (Chandrashekhar 1961), where ROQ is the Rayleigh number at 
neutral stability in the open-loop system and fe = Jk^ + kj is the magnitude of the 
wavevector. We truncate the infinite series above to M x JV horizontal modes, which 
span the unstable range. Sinre the basic equations depend only on the horizontal 
Laplacian V|, the wavenumbers appear only in even powers and can be described 
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in terms of an internal parameter k(m,n), where k{m,n) = Jm^kl + n%j. We further 

substitute (2,20) and (2.21) into equations (2.9H2.17) and separate the real and 
imaginary parts. It should be remarked that the Unear structure includes all patterns 
at the onset. Certain realizable patterns, such as rolls and hexagons, will be selected 
when the nonlinear and symmetry-breaking effects are included in the model. The 
paper is focused on the stabilization of the no-motion state. Suppression of selected 
convection patterns and return to the no-motion state will be addressed by applying 
our LQG controller to a direct numerical simulation of convection. 

Since the governing equations contain only even derivatives with respect to x or 
y, the real and imaginary parts of the dependent variables decouple and satisfy the 
same set of equations. Furthermore, since the problem is linear, we can consider each 
normal mode separately. For simplicity of notation, we drop the indices of the Fourier 
coefficients, and define W = W^^ = Wi^„, # = ^,^ = 9^^, 3 = 2^^ = 3^, 0, = 
&cr,mn = ©ci.™, Qc = Qcr^ = Qcijmn, @f = @%„ = O^S^m and R, = R^^ = R^^. The 
governing equations are reduced as follows: 

[Pr-^(d^, - k^)d, - (5| - k^fl W + Rafc^tf = -Ra1^S, (2.22) 

[d, - {d^, - k^)]0 -W^ -[S, - (3j - fc^)]S. (2.23) 
The boundary conditions are homogeneous. For the planar case we have 

W(±l/2, t) = d, W(±l/2, t) = #(+1/2, t) = 0, (2.24) 

and for the shadowgraph sensor model we have instead 

W(±l/2, t) = d, W{±l/2, t) = #(1/2, t) = 0,    a.*(-l/2, t) = 0. (2.25) 

The forcing function 3 satisfies the non-homogeneous boundary condition at the 
lower wall and the homogeneous boundary condition at the upper wall. For the 
planar case the forcing function is given by 

3(-l/2,t) = 0S),    S(l/2,t) = 0. (2.26) 

and the corresponding measurement functions are 

elHt) = 0(zf,t) + 3(zl%t),    i = 1,2,...,/. (2.27) 

For the shadowgraph sensor model, the forcing function 3 is 

dM-y2,t) = QS),    S(l/2,f) = 0, (2.28) 

and the corresponding measurement function is 
,1/2 

Rs(t) = -k^ \     (#(z, t) -I- S(z, ()) dz. (2.29) 
J-l/2 

In our approach, each distinct horizontal normal mode is controlled by a separate 
controller. Therefore, for the implementation M x N controllers are required. As a 
simple illustration for the analysis, consider an aspect ratio L^/d and Ly/d equal to 
20B:. In this case, the only wavenumbers present are the fundamental wavenumber 
kf = 2n/L = 0.05, and its harmonics: for Ra up to ISRa^), the wavenumbers are 
from fc = fcj to k = 12 (equal to 240fe/). These wavenumbers represent the ensemble 
of normal modes used to represent the convection field. 

In a physical implementation of the planar sensor model, both the measurements 
and control action occur in physical space but the controllers operate in the Fourier 
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RGURE 2. (a) Schematic for the physical implementation of the multi-wavenumber controller: R^, 
regulator; F„, filter; and FFT, fast Fourier transform, (b) Block diagram of the control loop for a 
single wavennmber. 

space. Sensors and actuators are interfaced to the controllers by fast Fourier trans- 
forms (FFT). Figure 2(a) links with simplicity the mathematical formulation to its 
computational implementation by summarizing in a block diagram the control strat- 
egy described above. The controllers can be programmed in a computer routine whose 
inputs are the arrays containing the temperatures measured by the planar sensors 
and whose output is an array containing the temperatures to be applied at the 
bottom the wall. The temperature measurements obtained by the planar sensors are 
converted by a fast Fourier transform into a set of modal sensor variables. Each pair 
of estimator and control blocks is integrated in time, ferallel computation produces 
the modal control variables. An inverse FFT converts the modal control variables 
into the actuating temperature at the bottom wall. This routine can be embedded in 
any Navier-Stokes solver able to handle time-dependent boundary conditions for the 
control of more realistic simulations of Rayleigh-Benard convection. 

Figure 2(a) also provides the basic architecture for the potential implementation 
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of the present controller in an experiment and, eventually, in practical engineering 
applications. The temperature distribution at a given plane (zf) (i = 1,2,,..,/) 
could be measured by a planar sensor constructed with an array of micro-electro- 
mechanical-system (MEMS) diode sensors (see Tang & Bau 199Sa,b). Analog to 
digital converters (A/D) and digital signal processors (DSP) would convert the 
measured temperatures zf into the modal sensor variables. Each pair of estimator 
and control blocks would be replaced by a microprocessor, and a parallel computation 
produces the modal control variables. A DSP and a digital to analog converter (D/A) 
would produce the actuating signal. Finally, an array of MEMS heaters would provide 
the temperature distribution at the bottom wall (Tang & Bau 1998a, fc), 

2,4, State-space representation of temporal dynamics 

In this subsection, we consider a numerical procedure to represent the vertical depen- 
dence of the velocity and thermal field. We use the Galerkin approach (Gottlieb & 
Orszag 1981) for the representation of the vertical dependence of the normal modes. 
The beam functions {(p„} are used as the basis functions for W which has to satisfy 
four boundary conditions. On the other hand the sinusoidal functions {P„} are used 
as basis functions for # which only has to satisfy two boundary conditions. In our 
numerical computations, we truncate the infinite set to the first N^ terms for both 
W and 0. We use the same truncation number for both fields mainly for numerical 
convenience. 

In general the Chebyshev polynomials have good convergence properties. How- 
ever, in our application an individual polynomial does not satisfy the homogeneous 
boundary conditions. In contrast, individual beam functions do satisfy the homo- 
geneous boundary conditions naturally and they converge reasonably fast for our 
stability analysis. Also, since we have transformed the thermal boundary condition at 
the lower wall to a homogeneous form, our results are not affected by Gibb's phe- 
nomenon in the vertical dependence. In practical applications when realistic lateral 
boundary conditions are incorporated, Gibb's phenomenon can affect the horizontal 
dependence (at small wavenumbers) and therefore the performance of the controller. 
However, the detrimental effects of Gibb's phenomenon can be substantially reduced 
using appropriate windowing techniques. 

The Fourier coefficients for the vertical velocity W(z,t) are expanded as follows: 

-^ ' sinh(flMZ + imit/2)     sin (a„z-|-mit/2) W(Z, t) = J2AUt)<Pm(z) = Y,Mt) 
i«=l m=l 

sinh (o„ -I- iBMc/2)       sin (a„ + mn/2) 

(2.30) 

Since the thermal boundary conditions for the planar sensor model and shadowgraph 
sensor model are different, the sinusoidal basis functions {p„} are different for the 
two cases. For the planar sensor model we let 

#(z, t) = J2B„(t)P„(z) = J^B„(t)^sm [wMt(z -I-1/2)], (2.31) 
111=1 m=l 

and for the shadowgraph sensor model we have instead 

N. W, 

#(z, t) = YlB„(t)P„(z) = 53B„(t)^sin [(m - l/2)it(z - 1/2)]. (2,32) 
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A convenient choice for S which satisfies the appropriate boundary conditions of the 
planar sensor case is 

S(z,t) = {1/2-2)0,(0, (2.33) 

and one which satisfies the boundary conditions of the shadowgraph sensor case is 

S(z,t) = (z-l/2)QM- (2.34) 

For the planar case, we now substitute (2.30), (2.31) and (2.33) into (2.22) and 
(2.23), and perform the Galerkin projection. The following equations are obtained: 

Pr~'J2iVh (5f - k^)Vn,}A„ = J^((pj, (aj - k'fcpMm 
m=l m=i 

W. 

-k^RaY,{<Pj,P„)B„-k^Ra((pj,(l/2-z))0,,     (2.35) 
m=l 

m=t m=l 

-iPj. (1/2 - z))0c + iPj, (af - fc^)(l/2 - z))0„    (2.36) 

where the index J runs from 1 to JV^ and the inner product {,) denotes integration 
over z € [—1/2,1/2]. The corresponding equations for the shadowgraph model can 
be obtained from (2.35), (2,36) by replacing ©, by Qc and (1/2 - z) by (z -1/2), 
Therefore the shadowgraph model equations will not be presented explicitly. 

After substituting (2.31) and (2.33) into (2.27), we obtain I measurement equations 
for the planar case, 

N. 

®?(t) = £B„(t)^„(zf) + (1/2 - zP)0,,    ,■ = 1,2,.... /. (2.37) 

For the shadowgraph case, upon substitution of (2.32) and (2.34) into (2.29), we have 
a single measurement equation 

N, ,1/2 ,1/2 

R,(t) = y]B„(f) /    (-k^)PM dz + Qj    (-k^)(z -1/2) dz. (2,38) 
,„=!       J-m J-m 

As a final step, we construct a state vector X by arranging the coefficients A„ and 
B„ as follows: 

X = [AUA2,...,AN„BUB2,...,BN,]', (2,39) 
where superscript' denotes the transpose. Equations (2,35) and (2,36) can be rewritten 
in state-space form as 

X = AX + Bi0, + B20c, (2.40) 
while the measurement equation (2.37) can be re-written as 

0, = CX + Dj0c. (2,41) 

In order to cast the matrix equation in a standard state-space form we can choose 
either #, or its time derivative as the control action variable. Here we define u = 0c. 
The term 0c can be eliminated from (2,40) by defining a new state vector x = X—B20c- 
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Upon transformation, the state-space equations can be written as 

x = Ax + Bu, (2.42) 

z = Cx + Du, (2.43) 
where B = Bi +AB2, D = D3+CB2, B = #, and z = 0,. Matrices 4, B, and C contain 
the dynamics of the plant, actuators, and sensors, respectively. Matrix D contains the 
direct coupling between sensors and actuators. 

The cost function of each wavenumber can be minimized individually, because of 
the orthogonality between pairs of Fourier modes. From (2,18), (2.19). following the 
normal decomposition, the cost function in state-space form for wavenumber k is 

f(k) = / (2'z -I-!«'«) dt. (2.44) 

In §4, we allow z to be a vector but restrict « to a scalar quantity u. 

3. Optimal control theory 
In this section we describe the basic theory of the LQG control (Bryson & Ho 1969), 

or, in modern terms, ^2 control. A brief review will be given in a self-contained 
manner to provide the necessary governing equations for the closed-loop stability 
analysis. 

The LQG problem is formulated as a stochastic optimal control problem described 
by equations 

x = Ax + Bu + rw, (3.1) 

z = Cx + Du-hv, (3.2) 
where F is an input matrix, w and v are both white noise processes with rero means 
and auto-correlation functions 

EMt)w'(t)] = W5(t-t),    E[v(t)v'(t)] = V5(t-x), (3.3) 

where £[•] is the expectation operator averaging over all underlying random variables 
and d(t—T) is the delta function. Note that W and V, the power spectral densities, will 
be chosen here as design parameters to enhance system performance. In our case F 
will be taken as B, implying that the disturbances, in a manner similar to the control, 
enter the system dynamics at the wall. 

The LQG controller is determined by finding the control action «(Z,), where 
Z, = {Z(T);0 < T < t} is the measurement history, which minimiffis the cost criterion 

J = lim —— 
r-.oo T - 

I   (j^Qx + 2x'Nu + i/Ru)d% (3.4) 

subject to the stochastic dynamic system model equations (3.1) and (3,2). The division 
by (T—() ensures that the cost criterion remains finite in the presence of uncertainties 
in the infinite-time problem (T ^ 00). Note that (3.4) can include (2.44) where 

•' = &r^^t/(fc)]. (3.5) 

Note also that even though the time interval is infinite, time response is still measured 
by the eigenvalues of the closed-loop system. We consider the infinite-time problem 
with a time-invariant dynamics system because the controller gains become constants. 
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For Q and N chosen to be consistent with the cost criterion (2.44) (see (3,18)), the 
cost criterion will remain positive definite (see Bryson & Ho (1969) for necessary and 
sufficient conditions for optimality with general 0 and W). 

By nesting the conditional expectation with respect to Z, within the uncondi- 
tional expectation of (3.4), i.e. E[/(fc)] = £I£[/(fc)/Z,]] where E['/Z,] denotes the 
expectation (•) conditioned on Z,, the cost criterion can be written as 

1    rr^ 
[xQx + 2xNu + i/Ru + tr(P)] dt (3.6) 

where x = E[x/Z,] is the conditional mean estimate of the state x. The term tr(P) 
is the trace of the error variance matrix which naturally occurs as a result of taking 
the conditional expectation into the integrand of the cost criterion. This cost criterion 
is now minimized subject to the estimation equations discussed below. Note that P 
does not depend on the control (see (3.9) below) and therefore does not enter into 
the optimization process. 

The solution to the regulator problem (Bryson & Ho 1969) is a compensator 
composed of a state reconstruction process, known here as a filter (in the no-noise 
case it is known as an observer) in cascade with a controller (see figure 2b). The state 
estimate (conditional mean) is called the Kalman filter, and is governed by 

k = A*x + B'u + KfV,    v=z-i = C'(x-x) + v, (3,7) 

where the matrices with asterisk superscripts correspond to the nominal point 
{k',Ra'). The Kalman gain matrix Kf, constructed to trade the accuracy of the 
new measurements against the accuracy of the state propagated from the system 
dynamics, is given by 

Kf = PC"V-\ (3.8) 
where P is the error variance in the statistical problem. In the infinite-time stationary 
formulation, the error variance P is the solution to the algebraic Riccati equation 
(ARE), 

A'P+PA" + rwr'-PC"V-*C'P = 0. (3.9) 
If the system is (A*, C) observable and (A*, F) controllable, then P is positive definite. 
Under these assumptions, it can be shown that the difference between the internal 
state X and the estimated state x, i.e. the error 

e = x-x, (3,10) 

goes to zero as time goes to infinity. In other words, the evolution equation 

c = 4/e + KfV + rw, (3.11) 

is stable, i.e. all the eigenvalues of the matrix 

Af=A'- KfC (3.12) 

have negative real part. 
Minimizing the infinite-time cost function J, (3,6) subject to (3,7) yields the following 

control law: 

« = -K,x, (3.13) 
where 

KC = R-HB"S+N% (3,14) 
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and S is the solution of the algebraic Riccati equation (ARE) 

A"S +SA'+Q- {SB' + W)fl-'(B*'S + N') = 0. (3.15) 

It should be remarked that the control gain matrix Kc is determined from functions 
only of the known dynamic coefficients (A',B*) and weightings in the cost criterion 
(Q, R), and not the statistics of the input (V, W). Consequently, If,, is determined from 
a performance index such as (3.4), independent of the stochastic inputs. If (A\B') is 
controllable and (4*,Q'/^) observable, then the loop coefficient matrix 

A, = A'-KcB' (3.16) 

is stable. The controllable and observable conditions can be weakened to stabilizable 
and detectable (Kwakernaak & Sivan 1972). 

When we combine the estimator and the regulator, the dynamic system composed 
of the controlled process and filter becomes 

Note that any choice of two among e, x and x produces the same dynamics because 
they are algebraically related by (3.10). Under the above controllability and observ- 
ability assumptions, Aj and Ac have only stable eigenvalues if optimal gains Kf and 
Kc of (3,12), (3.16) are used. Other schemes such as ^a, could be proposed (Rhee 
& Speyer 1991), but from experience these schemes seem to produce only secondary 
modifications to the system performance over our LQG controller. 

The infinite-time stationary formulation will be used in our study. The LQG control 
loop is shown in the block diagram of figure 2(b). Note that the cost function (2.44) 
can be expressed in the standard form (3.4), if we let 

Q = C"C*,    W = C"D*,    R=(y/+0"D'). (3.18) 

Since the power spectral density is not known, for simplicity of the design we consider 
V and W to be of the form V =a.l and W = fil where a and fi are scalar and / is a 
unity matrix. Only the ratio of a with fi is important. 

The process noise spectral density P and the weighting y in the cost function are 
considered design parameters. The case where y ^ 0 corresponds to unlimited control 
authority of the full-state feedback controller. The choice T = B* allows for loop- 
transfer recovery (Doyle & Stein 1979), Loop-transfer recovery of the LQG controller 
to full-state feedback guarantees that robust performance occurs when the process 
noise goes to infinity, i,e, ^ -^ oo, provided there exists no non-minimal-phase zero in 
the plant. In our case, there are non-minimal-phase z&tos, but a partial recovery is 
still shown to be possible (Turan, Mingori & Goodwin 1994). 

As we have noted in §2, the analysis will be based on a single normal-mode 
model because the normal modes decouple. Although only one controller is needed at 
(Ra*,k*), it is implemented for different fc' over a range of wavenumbers. The design 
point is determined so that when the controller is implemented, no unstable region 
appears below the neutral curve. Although the plant has multiple outputs, the system 
can be analysed in terms of robustness as a single-input/single-output (SISO) system 
by breaking the loop at the plant input (see figure 2b). We denote the output « of the 
controller by HQ and the input«to the plant by u,-. The open-loop system of equations 
formed by breaking the loop at the input to the plant is 

X„ = AaXa + Bflttf,      Mo = C^X^ + D„Ui, (3.19) 
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where the augmented state composed of the plant and compensator in cascade is 
Xa = [x',x]'. The coefficient matrices are given by 

4„ = A 0 
KfC   (A' - B*K, - KfC + KfD'K,) B„ 

B 
KfD 

C, = [0,-lfJ,    0„=O. 

The evolution equation for the closed-loop feedback system is 

A -KBK, 
KfC   (A'-KfC'-B*Kc + Kf(D'-KD)Kc) 

(3.20) 

(3.21) 

where «,- = KUQ. In the above equation, matrices with an asterisk superscript corre- 
spond to the design parameters k' and Ra'. Note that in the particular case when 
the plant operates at nominal design condition, i.e. k = fc*, Ra = Ra' and K = 1, the 
closed-loop poles will correspond to the ensemble of eigenvalues of 4/ and of Ac. In 
other words, (3.21) reduces to (3.17) and the filter poles and regulator poles decouple. 
One can show this from the transformation 

I    I 
0   / (3,22) 

where / is an identity matrix. 
In general, the plant does not operate at the nominal design condition. Conse- 

quently, there is a mismatch between the parameters {k',Ra') used to design the 
controller and the operating parameters {k,Ra). Our analysis uses two methods to 
characterize the robustness of the stabilized system: neutral curves and gain and phase 
margins. In the first method, we select the nominal points (fc*, Ra') and construct the 
region of stability of the dynamics system (3,21) as Ra and fc vary with K = 1. The 
boundary of this region is where the real part of the least-stable closed-loop pole of 
(3.21) becomes zero. This boundary curve in the (fc,Ra)-plane is called the neutral 
curve. We identify the minimum of Ra with respect to wavenumber on the neutral 
curve, so that the range of Ra from zero to this minimum, along with the whole range 
of wavenumbers, is stable. By robustness we mean constructing the largest range of 
Ra from zero up to this minimum. 

The second method used to estimate robustness is the classical gain and phase 
margins approach. This approach allows us to characterize robustness with respect 
to more general uncertainties, such as unmodelled dynamics. To obtain the gain and 
phase margins, we consider an error model K = \K\^ (see figure 2b), with the plant 
operating at the nominal parameters fc = fc* and Ra = Ra'. The shifts of \K\ and ^ 
from these nominal values (|K| = 1, ^ = 0) to where the system becomes unstable are 
essentially the gain and phase margins, respectively. Their values can be determined 
from accompanying Nyquist plots. The gain and phase margins are defined explicitly 
in §4,2.1 where these values indicate the amount of gain and phase change that the 
system can tolerate due to uncertainties in the system dynamics. 

4. Results 
In this paper, we consider the condition of Pr = 7 which enables us to compare 

our numerical results with those of Tang & Bau (1994,1998&) and Howie (1997a), In 
their experiments, however, Howie (1997fc,c) used a high-Pr fluid (Pr » 200) whereas 



Feedback control of Rayleigh-Benard convection 189 

in Tang & Bau (1998a) the Pr value of their testing fluid was not given. It should be 
noted that while the stability properties in the uncontrolled case are independent of 
Pr, they are Pr dependent in the controlled case. 

Our numerical results have been obtained using N^ = 26 (see §2.4) which appears to 
be adequate for our stability analysis. For example, consider the closed-loop eigenvalue 
problem of (3.21) with controller design values Ra' = M.gRorf, and fc* = 3.15 and 
the system evaluated at fc = 5.5 and Ra = 14.52 which lies on the neutral curve (see 
figure 8(d)), the norm of eigenvector (square root of the mean-square sum of entries) 
of the neutral eigenvalue of the coefficient matrix of (3.21) appears well converged. 
When JVj = 26 is increased to 52, this norm changes only by less than 0.7%. 

4.1. Proportional feedback control 
For convection in a layer of fluid bounded by rigid walls with prescribed tempera- 
tures, it is well known that the critical Rayleigh number Ra^ = 1707.76 occurs at 
wavenumber fc^o = 3,117 (Chandrasekhar 1961). Instead, when heat flux is prescribed 
at the lower wall, the critical value Raa « 1295.78 occurs at fc^ = 2.552. 

In the case of proportional feedback control, the control law is « = —K^z, 
where Kp is a constant proportional gain. We consider the planar sensor model 
to illustrate the eff'ects of feedback control upon stability, and the results are shown in 
figure 3(a). 

In this figure three neutral curves are shown: each curve consists of a heavy 
and a thin solid line, representing a monotonic mode and an oscillatory mode of 
convection, respectively. The oscillatory mode corresponds to a complex conjugate 
pair of eigenvalues. The three curves correspond to three sensor locations: Zj = 0 at 
the mid-plane and z, = +0,1, The offset with respect to the mid-plane is 10% of the 
thickness of the fluid layer and gives a substantial shift in stability properties. The 
unstable and stable regions are separated by a neutral curve and are identified by the 
letters U and S, respectively. In each case the maximum Ra achievable corresponds 
to the crossing point between the heavy and thin line. 

For Zs = 0, the monotonic mode is the lowest even mode of convection since the 
first odd mode is unobservable. In fact, in this case the sensor plane coincides with the 
node of the first odd mode. As Kp increases beyond the crossing point the critical Ra 
decreases. With this in mind, a pole-aro map and a root locus diagram are helpful 
to understand the stability behaviour. Figure 3(fc) shows the open-loop poles (x) and 
zeros (o) and figure 3(c) the corresponding root locus diagram. For a given Ra, as Kp 
increases from zero the unstable pole moves to the left while a stable pole moves to 
the right. Subsequently, the two poles coalesce. After coalescence a pair of complex 
conjugate poles (corresponding to the oscillatory mode) break off the real axis. The 
break-away point (where the coalescence occurs) moves to the right as Ra increases. 
The crossing point in figure 3(a) corresponds to the coalescence at the origin in 
figure 3(c). As Ra increases and keeping Kp constant, the closed-loop poles move to 
the right. 

From the root locus of figure 3(c), the results of figure 3(o) can be interpreted as 
follows. For Ra above the crossing point, the system is unstable for any gain Kp. For 
Ra below the crossing point, there exists a finite range of gain Kp in which the system 
is stable. The lower end point of the range corresponds to the minimal value of Kp 
required in order to move the monotonic pole to left-half s-plane. The upper end 
point of the range corresponds to the maximal value of Kp that can be used before 
the pair of complex conjugate modes become unstable. 

The stability diagram for the shadowgraph sensor model can be found in Howie 
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FIGURE 3. (a) Neutral curves for the planar sensor model using the proportional feedback control, 
corresponding to z, = ^.1,0 and 0.1 (heavy and thin lines indicate monotonic and oscillatory onset, 
respectively), (ft) Pole-zero diagram of the plant for k = 4.4, Ra = 3.5i?Ojo and (c) corresponding 
root loci for Kp varied between 0 and 2000. 

(1997a). In this case there are no unstable complex conjugate modes. As Kp increases 
to 00, the critical Ra increases monotonically to about 3.13 times ROCQ. 

4.2, LQG (^t) control 

The limitation in the performance of proportional feedback control provides the 
motivation for developing LQG controllers. We will apply the LQG synthesis method 
to both planar sensor and shadowgraph sensor models. We first seek to reduce the 
number of design parameters in our analysis. For a given set of physical parameters 
we examine the closed-loop eigenvalues and observe that for a stable system the real 
part of the least-stable eigenvalue has its largest magnitude when y -^ 0 and fi -KX). 

Since the observed improvements become less significant for y < 0,1 and P > 1(X), we 
let y = 0.1 and P = 100. 
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FIGURE 4. Stability diagrams for the planar sensor model with one sensor, using the LQG control. 
The nominal condition (k',Ra') is denoted by a solid circle. The heavy and thin lines correspond 
to the monotonic and oscillatory onsets, respectively. (a,b,f) z, =0.15 and (c,d) z, = -0.15. (o-c) 
VM' = 5Raco and fc* = 5.3 and (/) Ka' = 10Ra,<, and the same fc*. In (e) the sensitivity about z, = 0 
with respect to z, is shown. In (f) a vast lower unstable region developed at a sufficiently high to' 
is showa 

4.2.1. Planar sensor model 

(i) One-sensor control 
The one-sensor model is especially convenient for understanding the closed-loop 

stability properties of the system. Once the qualitative properties of this case are 
understood, the performance of the controller will be improved by adding additional 
sensors. 

Figure 4{fl-/) shows the neutral stability diagram in the (fc,iia)-plane for a controller 
designed at the nominal values k* and Ra'. The nominal point (k',Ra*) is indicated 
by a solid circle in the figures. The thin line and heavy line curves correspond to 
the neutrally stable oscillatory and monotonic modes, respectively. In figure 4(a,b) 
the sensor plane is located at Zj = 0.15, We use a larger sensor displacement with 
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respect to the mid-plane than the one used for the proportional feedback control to 
emphasize the effect on the neutral curve. Figure 4(a) shows the neutral curves for a 
controller designed at the nominal point Ra' = SRaco and k* = 5.3. The neutral curves 
have two minima, and the value k* = 5.3 has been chosen to make the minima nearly 
the same. The controller stabilizes the system for any Ra < Ra'. To characterize the 
stability of the controlled system with respect to Ra', we re-design the controller for 
Ra* = SRoco while maintaining fc* fixed. Figure 4{b) shows a dramatic change in the 
neutral curve: the banana-shaped branch moves downward giving rise to an unstable 
region below Ra'. 

To further characterize the stability of the controlled system with respect to the 
location of the sensor, we move the sensor plane at z^ = —0.15. We design a controller 
for fc* = 5.3, as before, and Ra' = SRa^ (figure 4c) and Ra' = TRa^ (figure 4(d)). 
Figures 4(c) and 4(d) show similar stability characteristics as those in figures 4(a) 
and 4(b). However, the two branches of the neutral stabiUty curves switch roles. The 
left branch now represents the monotonic onset while the right branch represents the 
oscillatory onset. 

The role switch in relation to the location of the sensor plane deserves a closer 
examination. We consider a smaller perturbation of the sensor location with respect 
to the mid-plane. Figure 4(e) shows the stability Umits for three very close sensor 
locations. At Zj = 0 (solid lines), the neutral curve is composed of an oscillatory 
segment on the left and a monotonic segment on the right. At z^ = 0.005 (dashed- 
dotted lines), the monotonic segment of the neutral curve retreats rightward while 
the oscillatory segment dominates the range. At z^ = —0.005 (dashed lines), the 
opposite effect occurs: the oscillatory segment of the neutral curve retreats to the 
left. These results are consistent with the results presented in figures 4(o-d). Since 
significant distortions and shifts of the stability limits have occurred within a very 
small perturbation of Zj, sensitivity to sensor location becomes an important factor 
for the practical implementation of the sensors. As subsequent results will show, this 
type of sensitivity is no longer present if three sensors are incorporated. 

In order to show that the lower unstable region will become much larger with 
further increase of Ra', we design a controller at the nominal values Ra' = lORa^ 
and k' = 5.3 and place the sensor plane at z^ = 0.15 for an illustration. Figure 4(f) 
shows a thin island of stabUity in the unstable region. This stable region is bounded by 
two neutral curves which coalesce on the right and intersect on the left. Figure 4(a-/) 
reveals the occurrence of an unstable region at Ra < Ra' which severely restricts the 
achievable degree of stabilization. 

The results of proportional feedback control have demonstrated the significance of 
the sensor location at z, = 0. This location gives the maximum range of stabilization 
even for the LQG controller. We observe that Ra' can be raised to lORoco at properly 
chosen values of k* (see figure 5a-c) without inducing a large lower unstable region, 
if the sensor is placed at the mid-plane. At this Ra', the system is stable up to the 
critical Ra of the first odd mode (Rag « lO.ilRoto and kc = 5.36, see Chandrasekhar 
1961), since the first odd mode is not stabilizable because it is unobservable. 

Hence, there is no reason to place Ra' above lO.SiRoco. Below this value, however, 
the critical point of the neutral curve lies to the right of the nominal point if k' is 
sufficiently small, or to the left of the nominal point if fc' is sufficiently large. For this 
case, we can use two nominal points to lift the overall neutral curve to coincide with 
the neutral curve of the first odd mode. 

Consider Ra' = lORoco, just below the Roc of the first odd mode. We choose the 
two nominal fc* on both sides of k^ = 5.36. The values fc* = 4 and 6 (marked by solid 
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FIGURE 5. Stability diagrams for the planar sensor model with a single mid-plane sensor: (a) neutral 
curve for the nominal condition k" = 4 and Ra' = lORaK,; (t) neutral curve for the nominal 
conditions fc' = 6 and Ra" = 10^0^; (c) the resulting neutral curve by incorporating the two sets of 
nominal conditions. This curve coincides with the neutral curve of the flret odd mode of convection 
in the uncontrolled case. 

circles) produce small dips in the unstable region and are reasonable to use as nominal 
points. Figure 5(a-c) illustrates how the stability limit is determined by the principle of 
superposition. The nominal point at fc' = 4 in figure 5(a) corresponds to the unstable 
region delimited by the heavy solid lines which has a minimum Ra « 8.4J?a£0. For 
fc < 5.9, the stability limit corresponds to the neutral curve of the first odd mode. 
Similarly, in figure 5{b) the second nominal point at fc* = 6 corresponds to the 
unstable region delimited by the thin and heavy solid lines which has a minimum at 
about 9.5Raco. The thin curve corresponds to an oscillatory onset. The heavy curve 
coincides with a segment of the neutral curve of the odd mode. If both nominal 
points are used for the controllers, then the overall stability limit coincides with the 
neutral curve of the first odd mode upon superposition. The controllers designed at 
the first nominal point k* = 4 operate over the band 0 < fc < fc,, « 5,36, while the 
controller designed at fc* = 6 operates over the wavenumbers greater than kc. 

The result shows that the degree of stabilization is significantly higher than that 
achievable with the proportional control. Unfortunately, the one-sensor design is not 
sufficiently robust with respect to the location of the sensor plane. This problem 
is significant because a perfect sensor placement is not achievable in practice. To 
demonstrate the sensitivity, in figure 6(a) we consider a planar sensor at Zji = 0.01, i.e, 
slightly off the mid-plane, and re-design the controller for Ra' = lORa^o and k' = 4. 
Figure 6(a) shows the presence of a thin stable region in the middle of the unstable 
region. This stable region is bounded from above by a neutral curve of an oscillatory 
mode (thin line) and below by a neutral curve of a monotonic mode (heavy solid 
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FIGURE 6. (a) Stability diagram for the one-sensor model with a small offset z, = 0.01. Results show 
a vast lower unstable region below Ra' = lORa^. The heavy (thin) solid line corresponds to a 
monotonic (oscillatory) onset. (6) Stability diagram for the two-sensor model, with a second sensor 
positioned at z, = —0.01. As a result, the lower unstable region is eliminated. 

line). The stable region exists for k < 3, As fc increases it becomes a very narrow strip 
which eventually terminates at fc as 7.1, similar to the behaviour in figure 4(f), For 
comparison the neutral curve for the Zj = 0 case (thin dashed line) is also included 
in figure 6(a). Comparing figure 6(c) to figure 5(c), we see a dramatic difference in 
stability properties due to a small shift of sensor location of 0,01, Fortunately, this 
sensitivity can be significantly reduced by introducing a second sensor located close 
to the mid-plane. Figure 6{b) shows the stability diagram when a second sensor is 
included. This case will be discussed in the next subsection. 

To characterire the robustness of the controlled system with respect to plant 
uncertainties we compute gain and phase margins at Ra = Ra and k = fe*. In all 
the cases considered, the open-loop system has one unstable pole so that for closed- 
loop stability the Nyquist locus encircles (counter-clockwise) the point (—1,0) once. 
Because of this property, in general there exists an upper and lower value for each gain 
and phase margin. The upper and lower gain margins are designed to measure how 
much the gain K can be decreased, or increased, before the system becomes unstable 
(figure 2b). Likewise, the upper and lower phase margins are designed to measure how 
much the phase can be decreased, or increased, before the system becomes unstable. 
Accordingly, the lower and upper gain margins are defined as 201og,o(l/X|) (dB) 
and 201og,o(X2) (dB), respectively, where Xi (\Xi\ < 1) and X2 (IX2I > 1) are the 
smaller and larger x-distances of the two crossing points of the Nyquist locus with 
the X-axis. Since the angle is measured positive in the counter-clockwise direction, 
the lower phase margin is defined as 180° — sin~'(Fi) and the upper phase margin 
is defined as sin~'(y2) — 180°, where Yi (positive) and Jj (negative) are, respectively, 
the y-coordinates of the intersecting points between the Nyquist locus and the unit 
circle centred at origin. 

For the one-sensor model, the gain and phase margins are too small. At Ra = Ra' = 
lORa^, for example, the margins are typically about 0.5 dB and 4°. In engineering 
applications, margins below 3dB and 10° are often considered marginal. Therefore, 
we conclude that as the system is stabilized for higher values of Ra, the magnitude 
of the gain increases, increasing the sensitivity, as indicated by the very small gain 
and phase margins. Sensitivity can be reduced by implementing multiple sensors, as 
indicated by the improved gain and phase margins (see next subsections). 
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(ii) Two-sensor control 
To eliminate the lower unstable region shown in figure 6(a), we place two sensors 

on opposite sides of the mid-plane at Zj = +0.01, It is crucial that both sensors are 
close to the mid-plane. Placement of one sensor or both away from the mid-plane 
will give rise to a lower unstable region. 

In the two-sensor model we re-design the controller at the nominal condition used 
for the case shown in figure 6(a). The two-sensor model result is shown in figure 6(b), 
in which the same dashed curve as in figure 6(a) is included for comparison. We 
observe that the lower unstable region has disappeared. The neutral curve of the 
monotonic mode (heavy solid line) terminates at fc » 7.3. Beyond this wavenumber 
the neutral curve of an oscillatory mode replaces the stability limit (thin solid line). If 
we allow 2j to tend to zero, then the solid curve in figure 6(b) will approach the dashed 
curve. The gap between the two curves indicates that there is a trade-off between the 
large pole shifts due to the small sensor-plane offset, and the information gained by 
adding one more sensor near to the mid-plane. The gain and phase margins increase 
by roughly 10% to 20% by adding the second sensor. However, the improvements 
are still too small to be considered acceptable. 

Better gain and phase margins (over 1(X)% increase) can be obtained with sensors 
placed further away from the mid-plane. The sensors located at about Zj = +0.25 
appear to give the best result. However, in this case a lower unstable region forms. 
The two-sensor model is still not suited for practical implementation. For this reason, 
we shall not devote more effort to analysing this case. Instead, we proceed to the 
three-sensor model. 

(iii) Three-sensor control 
When three sensors are used, we can improve gain and phase margins by placing 

two outer sensors further away from the mid-plane without inducing any lower 
unstable region, provided that the remaining sensor is placed at the mid-plane. With 
two sensors placed significantly away from the mid-plane, it is observed that the 
sensor located at the mid-plane is no longer sensitive to a small offset. To determine 
the best sensor locations, we first observe that a lower unstable region always occurs 
when no sensor is placed at or very close to the mid-plane. With a mid-plane sensor in 
place, then by fixing one outer sensor and moving the other, it appeare that the best 
locations are when the two outer sensors are at equal distance from the mid-plane. 
The best locations are determined in terms of the minimum of the real part of the 
least-stable closed-loop pole. Hence, for our design, we let the three sensor locations 
be zP = -z„ z« = 0 and zf = z,. 

In order to improve gain and phase margins, we consider the Nyquist plots for 
various values of z,. In the subsequent results conc»ming the stability limit of the 
controlled system (see figure 8), a good nominal condition is found to be fc* = 3.15 
and Ra* = 14.8. For this nominal condition, figure 7(a) shows the Nyquist curves 
for Zj = 0.1 (dotted), 0.2 (dashed) and 0.3 (solid). Figure 7(b) provides a magnified 
view of figure 7(a) near the point (—1,0). The case z^ = 0.3 presents no lower phase 
margin but has an upper phase margin of about 20.5°. The upper and lower gain 
margins are about 3.3 dB and 4.4 dB, respectively. These values of gain and phase 
margins are quite satisfactory, A slight improvement of the margins is still possible 
by increasing Zj further, at the expense of increasing the real part of the least-stable 
pole closer to zero, thus making the system less stable. Thus, Zj = 0.3 appears to be 
our best choice. It is desirable to see how changing the values of k' and Ra' will 
affect the gain and phase margins for Zj = 0.3. In figure 7(c) we compare the Nyquist 
curves for three different nominal conditions: fc* = 3,15 and Ra' — 14.8Raco (solid), 
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FIGURE 7. Nyquist plots for the three-sensor model: (o) at nominal condition fc" = 3.15 and 
Ra' = 14.5Raco and sensor locations are z, = 0.1 (dashed), 0.2 (dotted) and 0.30 (solid); (b) 
magnified view of (a); (c) at z, = 0.3 and nominal conditions with k' = 3.15 and Ra' = U.SRoco 
(solid), fc* = 4.5 and Ra' = ILSRa^ (dashed) and k' = 6.5 and Ra' = ISRa^ (dotted); {d) magnified 
view of (c). 

k' = 4,5 and Ra' = ILSRa^ (dashed) and fc* = 6,5 and Ra' = ISRa^ (dotted). This 
choi(» of nominal points is based on the subsequent analysis of the stability limit of 
the controlled system. As shown in the magnified view of figure 7(d), the upper phase 
margin and the upper and lower gain margins for the three nominal conditions are 
quite close, suggesting that these margins are not sensitive to the values of k* and 
Ra'. However, the lower phase margin decreases rapidly as fc* and Ra' increase, as 
shown by the dotted line. The gain and phase margins for the design case (solid) are 
within values used in practice. 

Now, we consider the stability Umit of the controlled system. In order to understand 
how the choice of the nominal condition {k*,Ra') affects stability, we present the 
results for each set of nominal condition in figures 8(o)-8(c), 

For each nominal point the stable region is delimited by the neutral curve. Our 
goal is to maximize the minimum of the neutral curve by appropriately choosing 
the nominal point. In figure 8(fl) we consider fc* = 3 and Ra' = ISRoco. There is no 
unstable region to the left of this nominal point and the neutral curve to its right 
corresponds to an oscillatory mode. The neutral curve in figure 8(5) corresponds to 
fc* = 4,5 and Ra' = ll.SRoco. An unstable banana-shaped region (monotonic onset) is 
present on each side of the main unstable region. The minimum of the main unstable 
region is about Ra « 14.5^aco. We have decreased Ra' from ISRa^) to 12,5^0^0 
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FIGURE 8. The stability diagrams for the three-sensor model with sensor planes located at z, = —0.3, 
0 and 0.3, and nominal conditions at (o) fc* = 3 and Ro" = ISRoco, (b) k' — 4.5 and Ra' — VLSKa^ 
(c) ft* = 6.5 and Ro' = 15Ra^. (d) k' = 3.15 and Ra' = U.ma^ (the design conditions). 

because at Ra' = ISRoco (not shown) the two banana-shaped unstable regions have 
merged generating a vast lower unstable region. However, because of the formation 
of an unstable region on each side, this nominal point is not desirable. Figure 8(c) 
shows the neutral curve for the system controlled by controllers designed at nominal 
condition k* = 6.5 and Ra' = ISRoco. The banana-shaped region on the left of the 
nominal point has disappeared, but the region on the right remains. 

By considering additional nominal points to the right of the first nominal point 
it seems that there is no significant improvement in stability. In other words, when 
the nominal wavenumber fc* is larger than a certain value, the controllers become 
ineffective in stabilizing the entire region up to Ra = Ra*, even though better local 
stabilization is always possible. Based on the results of figures 8(a)-8(c), it appears 
that nominal points to the right of the first point do not improve the situation. In 
fact, we have tried more cases involving different locations of the nominal points, but 
none seems to raise the minimum Ra of the unstable region. To achieve a maximum 
Ra for the stable range, we fine-tune the first nominal point and obtain fc* = 3,15 
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and Ra' = MMROCQ. For this point the stability diagram is shown in figure 8(d). 
Stabilization up to Ra « li.SRoco is achievable by using controllers designed at only 
one nominal point. The neutral curve is formed by an oscillatory mode (thin solid 
Hne) and a monotonic mode (heavy solid line). To illustrate the degree of stabilization 
with respect to the uncontrolled system, we include in the figure the neutral curve 
(dashed line) for the uncontrolled convection. Without feedback control, the region 
above the dashed curve is unstable to convection. Below the solid curves, however, 
the region is stabihzed by the LQG control. 

In § 2, we described how in the practical implementation a controller is responsible 
for stabilizing an unstable normal mode whose wavenumber is indicated by a point 
on the fc-axis in figure 8(d). Results suggest that we can use the design condition 
k* = 3.15 and Ra* = l4.SRaco for all controllers. Coincidentally, we note that the 
design wavenumber, k' » 3,15, is quite close to the critical wavenumber of the 
uncontrolled convection, fe^o « 3,12. 

We conclude the analysis of the planar sensor model by discussing the time response 
of the closed-loop system. Our design condition is at k* = 3,15 and Ra* = MMRa^. 
For high operating values of Ra, if we turn on the controller at this design condition 
with no initialization of the estimator, the transient response of the controlled system 
induces a large actuator signal u{t), which will produce actuator saturation in practical 
applications. Therefore, in practical applications, the operating Ra value should be 
achieved in increments of Ra, so that for each increment the estimator remains 
initialized. For example, consider a controller operating at fe = fc^ w 5.5. Assume 
that we have increased the operating Ra value gradually up to Ra = llRa^ so that 
the .closed-loop system remains at the no-motion equilibrium. When approaching 
equilibrium, both the plant internal states and the estimator states tend to zsro. As 
an example, we increase Ra from Ra = 12^0^) by an increment of IRa^i to the 
operating value Ra = 14Raco. Figure 9 shows the transient time responses for this 
case. In particular, figure 9(a) shows the temperatures measured by the planar sensors 
as functions of time, while figure 9{b) shows the control action signal u(t). The initial 
transient disappears and the system settles to a new no-motion equilibrium. If we 
use a smaller increment than IRa^, an even better result can be expected in terms of 
smaller overshoot and a faster approach to equiUbrium. 

It is important to consider the parameters in a physical set up to see if the LQG 
controller can be applied to an experiment. We note that t is in the unit of diffusive 
time, d^/K. For example, in the case of a layer of water of thickness d — 0.8 cm, 
this unit is about 438 s. A mildly supercritical condition Ra » 1800 corresponds 
to AT* = 0,14 °C, while for Ra = 14J?aco, the basic temperature difference is about 
1.86 °C. Thus, the physical quantities are reasonably easy to achieve in practice. 

Comparison between the stability achievable by the proportional feedback control 
(Tang & Bau 1993, 1994 as well as our figure 3a) and the LQG control is possible 
only from a qualitative point of view. The LQG controller is more complex, due 
to the additional filter dynamics. The neutral curve structure is complex because 
the unstable regions can occur above and below the design value Ra'. However, a 
local stable region about Ra* can always be maintained. In contrast, for proportional 
feedback there is no stable region beyond a certain value of Ra, regardless of the 
gain Kp, 

4,2,2, Shadowgraph sensor model 
We now turn to the shadowgraph sensor model. The maximum Ra achievable over 

the stable range for the proportional feedback control is about SASRa^. We attempt 
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to increase the stable region using the LQG method. However, for this sensor model 
our results indicate a significantly weaker stabiHzation. We have first designed a 
controller for Ra* « lOROco but encountered a vast lower unstable region. The second 
convection mode, which is closest to the imaginary axis, is destabilized in the control 
process. As a result, we gradually decreased the nominal condition Ra', down to a 
value of SRaco. The drop in performance in the critical Rayleigh number with respect 
to the planar sensor model is probably due to the nature of the shadowgraph sensor, 
which only measures the averaged temperature of the fluid layer. Figure 10(a) shows 
the stability diagram when controllers designed at five nominal points are used. The 
nominal points have same Ra* while k* increases by a factor Afe* = 1. The results 
show that, except for the first nominal point {k* = 1), each nominal point is enclosed 
by a left and a right stability limit (thin line for oscillatory mode and heavy line for 
monotonic mode). The stable range of wavenumbers associated with each nominal 
point is typically small. Figure 10(a) reveals two depressed unstable regions that reach 
below Ra = Ra' (near k = 2.4 and k == 3.4). To demonstrate how these dips can be 
removed, we add two more nominal points: one is chosen at fc* = 2.4 and the other 
at k' = 3.3, both with a slightly higher Ra' = SAROao. The improved result is shown 
in figure 10(5), which indicates that the minimum Ra of the unstable region is now 
above SRoco. 

Unlike the planar sensor model, the minimum Ra of the neutral curve obtained by 
applying a controller designed at a sin^e nominal point over the whole wavenumber 
range is not that much higher than the value obtained using proportional feedback 
control. There may be further improvements on the LQG controller to be made, but 
we will not attempt further design in this study. 
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FIGURE 10. (a) The stability diagram for the shadowgraph sensor model showing the stability limit 
corresponding to five equally spaced nominal points at Ra' = SROco. (b) An improved design with 
two nominal points added. Stabilization for the entire range of wavenumbers up to Ra' = SRa,^ is 
achievable for this improved case. 

5. Conclusion 

We have investigated the LQG (^2) controller design for two sensor models (planar 
sensor model and shadowgraph sensor model) studied by previous authors (Tang & 
Bau 1994; Howie 1997a) using proportional controllers. Based on our results for 
Pr = 7, we have shown that the robustness of the controlled system is improved in 
two aspects: (i) the controller remains stable over a larger range of the parameter 
Ra, and (ii) the robustness of the controller accommodates to a degree unmodelled 
dynamics and nonlinearities, as measured by gain and phase margins on the Nyquist 
diagram. It should be noted that although only one controller is needed to be designed 
at (fc*, Ra'), this controller is implemented at each wavenumber k to span the entire 
range of unstable wavenumbers. 

The number of sensors plays an important role in dramatically improving the 
robustness of the stabilization of the system operating at large Ra. Because multiple 
sensor planes can be easily incorporated into the planar sensor model, the performance 
of the planar sensor model is found to be superior to that of the shadowgraph sensor 
model, which only utilizes averaged temperature measurements. By using three planar 
sensors, it is possible to stabilire the no-motion state up to Ra « H.SRoco. The 
controller has 3 dB of gain margin and 20° of phase margin at the design parameter 
values. Beyond this value of Ra, stabiUzation in the region near to a nominal point 
can still be achieved, but an unstable region forms for Ra below Ra'. It should be 
noted that in our design procedure, we designed the controllers to span the whole 
range of unstable wavenumbers and at the same time demanded that the whole Ra 
range from zero up to 14.5^0^ be stable. 



defined as the value of temperature gradient at either upper or lower wall, 

N 

Nu = l + J2emn^^U=o,i, 
n,=0 

dz 
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(3.1) 

where the first 2 zero indices of ^oon correspond to fc = m = 0 so that the sum represents 

the temperature gradient averaged over the horizontal plane. In the absence of internal 

heat source the values of Nu evaluated at z = 0 and z = 1 should be equal. Our open-loop, 

steady state solutions are obtained at truncation niunbers if = 16, M = 8 and N = 16, 

for tta: = 3.117 and % = 0 (transverse rolls). In Table 1 the values published in Clever 

& Busse (1974) are shown in parenthesis. In all cases, the difference between our and 

their values is less than 0.4%. For valu^ of wavenumber a^ = 2.2 and 2.6, respectively, 

where Pr = 7 and Ra = 10000, we obtain Nu = 2.465 and 2.548 versus their values 

2.473 and 2.557. We further note that Nu should not depend on the orientation of rolls. 

As a consistency check, we compare the Nu of our solutiora between the longitudinal 

{ox = 0,ay ^ 0) and transverse rolls {a^ ^ 0,ay = 0). The difference of the Nu values is 

foimd less than 0.02%. 

Ra Pr=0.71 Pr=7.0 

2000 1.210 (1.212) 1.214 (1.214) 

2500 1.472 (1.475) 1.475 (1.475) 

10000 2.653 (2.661) 2.608 (2.618) 

Table 1; Nusselt Number Values for 2D rolls 

(b) proportional feedback control 

We now turn to the proportional feedback control problem. ^R-om the results of Tang 

& Bau (1994) and our results in Or et al. (2001) the oscillatory convection occurs when 

the proportional gain Kp becomes sufficiently large. At Kp = 6, for instance, the linear 
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FIGURE 2. Nusselt number of Oscillatory Convection 

theory at Pr = 7 predicts that an oscillatory iiatability is more preferred than the steady 

state rolls. The closed-loop threshold of stability is Oc = 3.73 and Ra = 3.63JtecO, with 

the frequency of oscillation equal to 20.4. For the same values of Ra and wavenumber we 

me the steady state 2D rolls as the initial conditions for our time-domain simulation. Our 

results appear to be consistent with the prediction of linear theory. Figure 2 shows the 

behavior of Nu of the closed-loop solutioiM at ifp = 6 for two values of Ra/Raai: at 3.55 

(solid) and 3.65 (dashed). In both curves, the open-loop steady, 2D rolls are used as the 

initial condition. These rolls are obtained at Ra/Raco = 3.65 and a^ = 3.73 which yield 

Nu = 2.273. In Fig. 2 the solid curve shows stable behavior whereas the dashed ciu^e is 

unstable. The neutral curve has Ra/Ra^ approximately equal to 3.60. This value is in 

close agreement with the result of linear theory. Furthermore, the oscillatory behavior in 

the curves indicate a frequency of about 40.3, again consistent with eigenvalue prediction 

of 2 X 20.4 of the linear theory. It is noted that Nu has a harmonic frequency equal to 2 

times the fundamental frequency. 
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The oscillatory convection appears to have a 2D roll planform. The more interesting 

finding according to the numerical simulations is that this oscillatory solution is not 

unique for the given set of external parameters. It turns out when we prescribe an addi- 

tional small perturbation field in the y-dependence, for the same values of Kp, Ra and 

a,!, the closed-form solution will not settle at the 2D oscillatory branch if the cross-roll 

perturbation is not small. For sufficiently large cross-roll perturbations, the solution will 

settle down at a subcritical branch. In this case the horizontal planform solution is three- 

dimensional, which resembles the g-type hexagons (Or & Kelly, 2001). Depending on the 

asymmetry in the perturbation temperature, hexagon cells with sinking motion near the 

center of the cell and rising motion near the cell wall is referred to as the g-type. For the 

£-type hexagons the opposite is true. In Pig. 3, we show (a) the planform corresponding 

to temperature at the lower wall {z = 0) and (b) the planform corresponding to horizon- 

tal velocity components at horizontal plane 2: = 0.1 (the velocity components vanish at 

the lower wall due to a non-slip boundary condition). The 3D hexagonal convection is a 

steady state pattern and corresponds to Nu — 1.4352. The hexagonal solution induced 

by the controller action has been studied in considerable detail (see Shortis & Hall 1996, 

Or & Kelly 2001) based on weakly nonlinear analysis. Here, we actually obtain the so- 

lution from a direct numerical simulation. We summarize several important conclusions 

based on the results presented: (i) The solutions obtained from our fiiUy nonlinear, 3D 

pseudospectral plant model have been checked and agree reasonably well against known 

published results from other independent methods, (ii) The proportional feedback con- 

troller induce a subcritical range of g-type hexagonal convection, which appears to be 

captured in the nonlinear simulations. Near the stability threshold of the closed-loop 

system with sufficiently large gain, both 2D oscillatory convection and 3D steady-state 

hexagonal convection can co-exist in the same parameter region. Next, we consider the 
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FIGURE 3. Closed-Loop Solution: g-Type Hexagon Pattern 

closed-loop simulation using the LQG controller. 

(c) Closed-loop simulations using the LQG controller 

We investigate the closed-loop system with an operating condition of the plant model at 

Pr = 7.0 and Ra = 10*. In the setup, the controller gains K/ and Kc are steady-states 

precomputed and stored. The actual controller and the nonlinear plant models are im- 

plemented in FORTRAN and MATLAB . This controller is implemented according to 

the description of subsection 2(c). 

In Pig. 4 we provide a sketch of the stability diagram of the uncontrolled dynamics at 

Pr = 7 (see Busse & Clever 1979, Pig. 1 for the original plot). The stability boundary 

of the purely conduction (static) state is the lowest parabolic-shape curves. At each Ra 

above the minimum of this neutral curve (supercritical) the linear theory predicts an outer 

band of wavenumbers in which the basic state is unstable. However, at each supercritical 

Ra the stable inite-amplitude convection occurs in a narrower band of wavenumbers. 
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WA^CNUMBER 

FIGURE 4. A Sketch of the Stability Boundaries for the Uncontrolled Layer at Pr = 7.0 

At Pr = 7 the stable finite-amplitude coirvection in the inner band corresponds to 

steady 2D convection rolls. For Ra = 10* (the dashed line in Fig. 4), the inner band 

of wavenumbers is bounded on the lower side by the cross-roll instability at a w 1.75 and 

on the higher side by the skew-vaxicose instability at a « 3.5. At this Ra the inner band 

of wavenumbers is significantly smaller than the outer band obtained from the linear 

theory, which gives approximately 0.74 and 9.0, respectively. The stability boundaries 

are in general Pr dependent. 

The stable 2D convection rolls sa-e characterized by a single wavenumber but it can be 

any value within the inner band. Laboratory experiments (see Cross & Hohenberg 1993) 

using different initial conditions had demonstrated that the stable pattern can have non- 

unique wavenumber. On the other hand, certain experiments performed by letting Ra 

vary either as a slow fimction of time or by inducing a spatial ramp in the layer thickness 

indicate that the rolls are realized with a unique wavenumber. Since oiu' goal here is to 

eliminate the convection pattern, the detailed properties of the nonlinear solution do not 

concern us other than as the initial condition for our closed-loop solutions. 
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The closed-loop simulation is demanding computationally in the sense that the entire 

outer band of wavenumber should be covered in the stabiHzation of the basic state. In our 

simulation, the fundamental wavenumbers a^ and ay are selected so that the expansion 

covers the entire inner band but short of the outer band. We argue that this arrangement 

is reasonable and we use the truncation numbers if = M = iV = 32. The nonlinearity 

has the role of limiting the wavenumber of the convection pattern to the inner band. 

As the initial condition for the closed-loop simulation, we let ccx = 1.0 in the open-loop 

run with appropriate initial condition. We obtain a steady, two-dimensional roll pattern 

with a wavenumber of 3.0. In the closed-loop simulation, we add in a small perturbation 

of cross-rolls superimposed on the steady finite amplitude rolls. The added perturbation 

asstires that the initial condition used is three-dimensional. 

The closed-loop simulation results are shown in Pigs. 5(a)-(g). Since the transition is 

two-dimensional, it sufHces to reveal the flow fields by showing the cross-sectional view 

in the z-x plane. In Figs. 5(a)-(c), we show the transient pattern of the perturbation 

isotherms in the x - z plane (with basic temperature subtracted). The three isotherm 

patterns (a)-(c) of the disturbance field are snapshots obtained at t = 0, 0.05, and 

0.2 diffusive time units, respectively. Note that the upper and lower wall both are the 

perturbation isotherm of zero temperature. The solid (dashed) lines indicate positive 

(negative) increments of temperature. The same increment of temperature applies to all 

three panels. The upper panel (a) shows the cross section of the steady-state convection 

rolls used as the initial condition at t = 0. Shortly after the controller is turned on 

at t = 0, the middle panel (b) shows a steep thermal boundary-layer pattern develops 

near the lower wall at t = 0.05. This boundary temperature perturbation possesses an 

opposite sign to the perturbation in the bulk of the layer of fluid, and therefore exerts 

a cancelation effect, which tends to drive the fluid towards an isothermal state. The 
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sponding velocity quivers of the fiow patterns; (g) Time response of Nusselt numbers at 

the lower and upper wall {Ra = 10* and Pr = 7.0) 

lower panel (c) shows at a later instant (at t = 0.2) that the isotherm pattern indeed 

settles towards a static state. Here the isotherms correspond to a residual temperature 

distribution of about 1.5% of the temperature shown in the upper panel. The residual 

temperature continues to approach zero asymptotically in time. 

In the right colimm of panels, Figs. 5(d)-(f) we show the quiver plots of the velocity 

field corresponding to the left column of panels of isotherms. The arrow sizes in Figs. 
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5(e)-(f) are according to the true relative scale. For illustration of the flow field we 

deliberately magnify the arrows in Fig. 5(f). Note that the velocity rolls are shifted by 

a phase of TT/2 relative to the isotherm rolls. The upward (downward) motion of fluid is 

associated with the positive (negative) isotherms, as indicated in the figures. R-om the 

middle panel 5(e), we observe that the upweUing and downwelling regions are significantly 

perturbed by the control action. As a result a secondary row of vortices near the lower 

wall is apparent. In the lower panel, the convective motion becomes so weak that the 

vortex structure is no longer visible. Finally, we show the two Nusselt numbers in Fig. 

5(g) in time as the indicator for convective heat transport. The lower (solid) and upper 

(dashed) curves are based on the horizontal-mean temperature gradient at the lower and 

upper walls, respectively. The gradient is computed normal to the walls. As the thermal 

actuator action is switched on, a large transient perturbation develops near the lower 

wall, indicating an increase in local heat flux from the actuator action. The lower Nusselt 

niunber shoots up considerably higher than the upper Nusselt number initially for a brief 

duration. Subsequently to this the upper Nusselt number is greater than the lower value, 

as the heat in the bulk of fluid is transferred away. Between t = 0 and t = 0.474, we 

determined through integration that the area under the curves are 0.5635 (soUd line) and 

0.5628 (dashed line). The two integral values will converge to the same value in time, as 

a constraint of the conservation of heat. 

For a related drag reduction control problem, Cortelezzi and Speyer (1998) developed 

a robust reduced-order controller. It is beyond the present scope to consider a reduced- 

order controller for this nonlinear simulation. Here, on the other hand we determine the 

spatial roll-off characteristic of the controller based on the Green's function approach. 

The roll-off characteristics will shed light on the spatial resolution of the arrays of discrete 

sensors and actuators required for a successful control. A good spatial roll-off implies that 
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a relatively few measured points are needed to achieve an effective control (see Bamieh 

& Dahleh 2001). We refer to the description in section 2(d). Consider the same case 

in the numerical simulation for Pr = 7 and Ra = 10* and a length scale of the layer 

corresponding to tti = 1 and a^, = 1. Figure 6(a) shows the contour of the Green's 

function G{x,y,tlxp,yp,tp), which is the response temperature on the actuator plane 

z = 0 due to an impulse temperature S(x — Xp)6{y — yp)S{t — tp) on the sensor plane 

Zs = 0.3. Here we let Xp = 1.5, yp = 1.5 and tp = 0, f* = 20At with At = lO'^. Figure 

6(b) shows the response temperature profile as a function oix — Xp along the dashed Une 
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designated in Fig. 6(a). The response temperature corresponds to G{x,yp,t*\xp,yp,tp) 

(with t* > tp). The result shows that the fiinction has a negative minimum, here denoted 

by Gmin- The minimum is collocated horizontally with the sensor impulse. The negative 

temperature generated is intended to cancel the disturbance temperature created by the 

impulsive temperature. Of particular significance is to notice how steep the response 

curve (in V-shaped) is, implying that the influence zone about the sensor point is small. 

R-om Pig. 6(b), the base width of the V-shape ciu-ve is about the width of one roll, 

assimaing that the length scale of the roll does not differ significantly from its critical 

value. In order for the controller to stabilize the convective disturbance, the spacing 

between successive points in the array cannot be greater than the efEective width of the 

response temperature. 

The plots in Pig. 6(a)-(b) represent a snapshoot at t = t*. We observed that as t* 

increases from 0, the shape and width of the temperature profile (see Fig. 6(b)) have 

change little, but the magnitude of the minimum decreases rapidly. In Pig. 6(c), we show 

the change of the temperature at the minimum, Gmin, with f. The large dot in Pig. 6(c) 

denotes the point corresponding to the snapshoot of Figs. 6(a)-(b). Since the system is 

diffiisive, the response temperature decays monotonically in time, as expected. 

4. Experimentgd ConsideratioiK 

Por implementation of the LQG feedback control design an experiment of RBC is 

considered. This effort will be guided by the result of the nonlinear simulation, modified 

for air at room temperature (with Pr w 0.7) as the working fluid. Although the closed- 

loop numerical results presented earlier in the paper is for the case Pr = 7.0 only, our 

supplementary analysis completed only recently at Pr = 0.71 has revealed that there is 
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no significant difference in the closed-loop response between the 2 Prandtl numbers for 

the condition Ra = 10*. 

For RBC, previous experiments demonstrate that the initial and onset conditions, as 

well as the realized convection pattern are well predictable under controlled experimen- 

tal conditions (Cross and Hohenberg, 1993). Complex situations in applications such as 

variations of material properties, occurrence of concentration gradient and solutal con- 

vection, presence of horizontal basic temperature gradient, side-wall effects, defects in 

pattern, etc., are not included. 

In the experimental apparatus the upper and lower walls will be two iypes of material 

with a large range of heat conductivity. The two walls have large aspect ratio to the 

layer depth, and may have different thermal boimdary conditions. Miniature strain gage 

type heaters will be strategically placed at the lower wall as actuator (with separation 

between heaters determined by the wavelength of the pattern to be controlled). For air, 

it is convenient to use the holographic interferometry as the sensing technique. Such a 

sensor can detect temperature differential to high precision. Our LQG controller design 

has been validated using simulated seimor data. Eventually, for implementation in the 

experiment, a reduced-order LQG controller will be developed. The 3D pseudrepectral 

model will be modified to accommodate the spatial and temporal dynamics of the sensors 

and actuators, guided hy laboratory observations and the experimental data. 

5. Conclusion 

The goal achieved in this study is a successful demonstration through numerical sim- 

ulations that a fully nonlinear, steady and preferred state of convection in a horizontal 

layer of fluid can be reverted to the no-motion state by closed-loop controller action. The 

simulated results here show the performance of the LQG controller at IJo = 10* and 
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Pr = 7. At this Ra the proportional feedback controller is ineffective as according to the 

linear theory. For even higher values of Ra, stabilization is likely to be achievable with 

the LQG controller by using higher spatial resolution in the simulation, but we have not 

pushed for that result. The reason is that for realistic modeling at high Ra the effects of 

the discrete actuator and actuator delay are important considerations as well. Although 

a general stability proof cannot be inferred from the nonlinear simulation of a few initial 

conditions, the results do indicate that the linear controller appears quite response in 

suppressing important finite disturbances. 

The numerical method used here to develop the nonlinear plant model is pseudospectral 

spatially. The integration of the model dynamics equation is performed by a time-splitting 

technique. We have adopted the conventional scheme developed in Marcus (1984) (also 

see Canuto et al. 1986). However, since some significant modification of the scheme has 

been made, we validate our fully nonhnear, three-dimensional plant model by performing 

a number of check cases to compare against published results, in particular, from Clever 

& Busse (1974) and Busse & Clever (1979). The agreement appears reasonably good. 

Moreover, the direct simulation verifies the results of the weakly nonlinear analysis (Or & 

Kelly 2001) about the presence of the controUed-induced subcritical g-hexagon solution. 

We have also examined the shape fimction of the actuator response by computing the 

Green's function of the LQG controller. The shape of the actuation temperature deter- 

mines the order of the horizontal distance between points of the sensor/actuator arrays 

in term of the layer gap thickness d. This information is of critical importance when the 

more realistic pointwise sensor and actuator are used instead of the continuous ones. 
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Control of Turbulent Boundary Layers' 

John Kim 
Department of Mechanical and Aerospace Engineering 
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The objective of this paper is to give an overview of recent progress on boundary layer control 

made by the author's research group at UCLA. A primary theme is to highhght the importance 

of a certain linear mechanism and its contribution to skin-friction drag in turbulent boundary 

layers - and the implication that significant drag reduction can be achieved by altering this linear 

mechanism. Examples that first led to this realization are presented, followed by applications of 

linear optimal control theory to boundary-layer control. Results from these apphcations, in which 

the linear mechanism in turbulent channel flow was targeted, indirectly confirm the importance of 

Unear mechanisms in turbulent - and hence, nonlinear - flows. Although this new approach has 

thus far been based solely on numerical experiments and are yet to be verified in the laboratory, 

they show great promise and represent a fundamentally new approach for flow control. The success 

and limitations of various controllers and their implications are also discussed. 

*This paper is a written version of the author's 2001 Otto Laporte Award Lecture pr^ented at the 54th Annual 
APS/DFD Meeting in San Diego, CA, November 16-18, 2001 



1    INTRODUCTION 

Control of turbulent flows, turbulent boundary layers in particular, has been a subject of much 

interest owing to the high potential benefits. Skin-friction drag, for example, constitutes a large 

fraction of the total drag on commercial aircrafts and cargo ships, and any reduction entails substan- 

tial savings of the operational cost for commercial airlines and cargo-shipping industries.^ Enhanced 

mijdng in combustion engines, enhanced heat transfer in heat exchangers, or reduced heat transfer 

to gas-turbine blades are only a few examples that also illustrate the immediate benefits of turbu- 

lence control. Successful control, however, requires both a thorough understanding of the underlying 

physics of turbulent flow and an efficient control algorithm, the current state of which leaves much 

room for improvement. 

Significant progress has been made recently by combining computational fiuid dynamics, control 

theories, and sensor/actuator technologies. Direct numerical simulation (DNS) and large-eddy 

simulation (LES), despite being limited to relatively simple and moderate Reynolds-number flo^, 

have provided much needed detailed information, from which insight into turbulent flow physics 

can be gained. Our understanding of the physics of turbulent boimdary layers and free-shear flows 

has been significantly improved in large part due to DNS and LES of these fiows over the past two 

decades,^ 

Most early attempts of turbulence control were based on the investigator's intuition and/or 

on a trial-and-error basis. Several investigators have recently started applying more systematic 

approaches to controller design. These approaches are significantly different from previous ones 

in that modern control theories are incorporated into the controller design. Some of th^e new 

approaches and their relationships to each other will be dkcussed below. 

Properly designed controllers require appropriate sensors and actuators. This has been a critical 

issue for turbulence control, boundary-layer control in particular, because the time and length 

scales associated with the turbulent eddies to be controlled are extremely small at the Reynolds 

numbers of engineering applications, thus requiring a large number of small sensors and actuators 

with high-frequency response. Micro-electro-mechanical systems (MEMS) technology will play an 

essential role in producing arrays of a large number of sensors and actuators at a reasonable cost. 

The possibility of utilizing MEMS technology in producing such sensors and actuators has been 

demoiKtrated recently by the UCLA-Caltech group. They were able to fabricate sensors, actuators, 



and simple control logic onto a chip, thus illustrating, at least in principle, that MEMS technology 

can produce the large number of sensors and actuators necessary for turbulence control. Interested 

readers are referred to Tsao et al.^ and Ho and Tai*, for applications of MEMS technology to 

boundary layer control and general fluid dynamics, respectively. 

The objective of this paper is to provide an overview of recent progress made by the author's 

research group at UCLA. Particular emphasis is upon nontraditional approaches using modern 

control theory (see, for example, Zhou et al.^). Other research groups (UCSD, UCSB, Stanford m 

the US, and KTH in Sweden, to name a few) are conducting similar research, but they are not 

discussed here as they were outside the scope of the lecture upon which this paper is based. I 

mention in passing that the work carried out by researchers at UCSD, UCSB and KTH is very 

closely related to that described in Section 4.4, while that by the Stanford group is similar to those 

described in Section 4.1 and 4.3. 

This paper is organized as follows. A brief account of the history of an early numerical simulation 

of turbulent channel flow, which is viewed by many as a starting point for establishing numerical 

simulation of turbulent flows as a viable tool for turbulence research, is given in Section 2. In 

Section 3 a brief disci^sion of the skin-friction drag in turbulent boimdary layers is given. Various 

approaches aimed at reducing the skin-friction drag, especially from the perspective of controlling a 

key linear mechanism, are presented in Section 4. Issues and limitations associated with turbulence 

control, and a concluding remark, are given in Section 5. 

In this paper, I shall use ix,y,z) for the streamwise, wall-normal, and spanwise directions, 

respectively, and («,«, w) for the corresponding velocity components unless stated otherwise. The 

superscript -I- denotes flow quantities non-dimensionalized by the wall-shear velocity, «r, and the 

kinematic viscosity, y. 

2    ILLIAC IV AND TURBULENT CHANNEL SIMULA- 
TIONS 

The direct numerical simulation of turbulent channel flow presented in this paper as examples of 

varioi^ control experiments has its origin in the late 1970s, when I began working at NASA Ames 

Researdi Center. The original computations^ were carried out on a very unique computer called 

ILLIAC IV, whidi had just been brought into NASA Ames Research Center from the University of 



Illinois J The ILLIAC IV was, to the best of my knowledge, the first large-scale parallel computer 

with 64 processors (called proc^sing elements or PEs). Although it was huge and required an entire 

building to house it, the computer had very limited power by present-day standards. For example, 

it had the total of only one megabyte of memory (each PE had 2,048 64-bit words of memory). 

AsynchronoiM data transfer between the core memory and external memory, which consisted of 13 

4-foot diameter disks, each with 9.8 megabytes of memory (128 megabytes in total), was designed 

and used for 'large-scale' computations. Homemade compilers were written by Ames scientists Bob 

Rx>gallo (CFD) and Alan Wray (Vectoral) to replace the compiler supplied with the machine, since 

it was so unreliable. The ILLIAC IV typically ran with the clock at 12.5 MHz, and an optimized 

code like our plane-channel solver could achieve about 20 Mflops in 64-bit mode and 30 Mflops in 

32-bit mode.8 

With this then-powerful and unique computer, we performed the large-eddy simulation (LES) of 

turbulent channel flow.® At first, it was not very well received, especially by experimentalists, despite 

the fact that computed turbulence statistics were in good agreement with measured ones. In order 

to convince the skeptics, and perhaps to some extent ourselv^, we produced computer-generated 

motion-picture visualizations from the simulated flow field, which closely mimicked laboratory vi- 

sualizations using hydrogen-bubble wires in water^ (see Pig. 1). This visualization, now common in 

computational fluid dynamics, was unusual at the time, and was instrumental in convincing many 

experimentalists who had previously been skeptical of the vaUdity of numerical simulations. This 

computer-generated movie thas helped establish large-scale computations as an equal partner with 

laboratory experiments as a,turbulence research tool. 

3    SKIN-FRICTION DRAG IN TURBULENT BOUND- 
ARY LAYERS 

Although it has been common knowledge in fluid mechanics that the skin-friction drag in turbulent 

boundary layers is much higher than that in laminar boundary layers, it was not until recently that 

we began to understand why this was the case. Since the underlying physics of high skin-Mction 

drag were not known, most attempts to reduce the drag were on a trial-aad-error basis. 

Existence of well-organized turbulence structures and the recognition that th^e structure play 

important roles in the wall-layer dynamics are among the major advances in turbulent boundary 



layer r^earch during the past several decades. The ubiquitous structural features in this region are 

low- and high-speed "streaks," which consist mostly of a spanwise modulation of the streamwise ve- 

locity. These streaks are created by streamwise vortices, which are roughly aligned in the streamwise 

direction. It has now been recognized, in large part due to numerical investigations, that streamwise 

vortices are also r^ponsible for the high skin-friction drag.^°>" These vortices are primarily found 

in the buffer layer {y+ = 10 - 50) with their typical diameter in the order of d+ = 20 - 50.^^ There 

is strong evidence that most high skin-friction regions in turbulent boundary layers are induced 

by nearby streamwise vortices (Pig. 2). Thrae vortices are formed and maintained autonomously 

(independent of the outer layer) by a self-sustaining process, which involves the wall-layer streaks 

and an instability associated with them.^^"^^ 

In light of this description, we asked the following question for the purpose of boundary-control 

for drag reduction: 

Can we suppress (or mitigate) the formation of these streamwise vortices through an 

actuation at the wall, and if so, would it lead to a significant reduction of the skin-friction 

drag? 

The remainder of this paper addresses this question by reviewing various approaches that have been 

i^ed in an attempt, directly or indirectly, to reduce the impact of streamwise vortices on the skin- 

friction drag in turbulent boundary layers. In particular, we examine a Hnear mechanism associated 

with these streamwise vortices, and prraent controllers designed to suppress the linear mechanism. 

The succras of these controllers demonstrates that this linear mechanism plays an important role, 

although the boundary layer on the whole is governed by nonlinear dynamics. 

This paper discusses active feedback control, which involves actuation and seizing, nominally 

at the wall. We mention here in passing that passive control, which requires no actuation (i.e., 

no external energy input), has also been tried. One succ^sful example, which has been shown to 

reduce the skin-friction drag (a maximum on the order of 5-7%), involves riblets. These are surfaces 

with narrow grooves aligned in the streamwise direction. It is noteworthy that the riblet surface also 

reduces the skin-friction drag by interfering with the interactions between the streamwise vortices 

and the wall.^° The interested reader is referred to Choi et al. and the references therein. 



4    NUMERICAL EXPERIMENTS 

All examples presented in this paper, unless stated otherwise, have been obtained in a turbulent 

channel with unsteady blowing and suction at the wall as control input, which was determined by 

various feedback control laws. Details of the numerical methods^'' can be found in Kim et alP 

All numerical experiments have been performed at very low Reynolds numbers, iJe^ = 100 - 200, 

where i2e^ denotes the Reynolds number based on the wall-shear velocity and channel half-width. 

Implications related to the low Reynolds number flows are addressed in Section 5. 

4.1 Opposition Control 

In an attempt to mitigate the effect of streamwise vortices in the buffer layer, Choi et al}^ used 

blowing and suction at the wall equal and opposite to the wall-normal component of velocity at 

V^ = 10 (Fig. 3). They showed that this simple control, now known as opposition control}^ resulted 

in approximately 25-30% drag reduction in a turbulent channel flow. The computed flow fields were 

examined to determine the mechanism by which the drag reduction was achieved. The most salient 

feature of the controlled flow field was that the strength of the near-wall streamwise vortices was 

substantially reduced, and consequently most of the high skin-friction regions were suppressed, 

resulting in the mean drag reduction. 

Although the method employed in opposition control is impractical, as the information at y+ = 

10 is normally not available, it conveys a significant message for our purpose: it demonstrates that 

manipulation of the near-wall streamwise vortices do^ indeed lead to substantial reduction of the 

skin-friction drag in tiu-bulent boundary layers. Opposition control has been used as a reference 

case to which other control schemes can be compared. 

4.2 Adaptive Inverse Model 

In order to circumvent the problem associated with opposition control, Lee et alP used wall ac- 

tuation, which depends only on flow quantities that can be measured at the wall. They designed 

and trained a neural network, which served as an adaptive inverse model of the plant represented 

by the Navier-Stokes equations (Fig. 4). The network was trained to predict actuation at the wall 

(control input) for given outputs at the wall. Once properly trained, %\m inverse model network 

was used as a controller to predict an optimal control input for a d^ired output, i.e., reduced skin- 



friction drag. A schematic illustrating a neural network representing an adaptive inverse model of 

the Navier-Stokes equations is shown in Fig, 4. 

Details of their neural network are given in Lee et alP The functional form of the final neural 

network is: 

Vjk = Wa tanh        V      Wj ^— 
•       ^ dy 

-W,\-W,, (1) 
j,k+i I 

1 < i < iV^ and  1 < A < iV^ , 

where W denote weight, N is the total number of input weights, and the subscripts j and k denote 

the numerical grid point at the wall in, respectively, the streamwise and spanwise directions. N^ 

and N:, are the number of computational grid points in each direction. The summation k done over 

the spanwise direction. Seven neighboring points (iV = 7), including the point of interest, in the 

spanwise direction (corresponding to approximately 90 wall units) were found to provide enough 

information to adequately train aad control the near-wall structures responsible for the high skin 

friction. Note that the input to the neural network is dw/dy at the wall, not du/dy. Initially du/dy 

and dw/dy at the wall at several instances of time were used as input data fields, and the actuation 

at the wall was used for the output data of the network. Experimentally we found that only dw/dy 

at the wall from the current time was necessary for successful network performance. 

Applying this control scheme to a turbulent channel flow at low Reynolds numbers resulted 

in about 20% drag reduction. The computed flow fields were examined and it was found that 

instantaneoiK flow patterns were very simUar to those observed in the opposition-controlled channel, 

i.e., the strength of the near-wall streamwise vortices was substantially reduced (Pigs. 5-6). This 

result further substantiates the notion that successful suppression of streamwise vortices leads to a 

significant reduction in the skin-friction drag. It is worth mentioning here, however, that there may 

be other flow quantities that have a more direct link to the reduced skin-friction drag, but these we 

have not yet explored. 

An examination of the weight distribution from the on-line neural network led to a very simple 

control scheme that worked equally well while being computationally more efiicient. This simple 

control scheme indicated that the optimum blowing and suction at the wall should be in the form. 

d dw 

dz ay (2) 



where the overbar represents a local spatial average with high wavenumber components properly re- 

duced (see Lee et al.^ for details). The converged weight distribution can be expressed analytically, 

thus making the implementation of this control scheme relatively easy. 

The simple pattern of the weight distribution derived from the nonlinear network suggests the 

possibility of using a linear network. A Mnear neural network, identical to that of Eqn. (1) without 

the hyperbolic tangent function, was applied to the same problem. This linear network resulted in 

almost identical drag reduction with instantaneous flow patterns very similar to those obtained by 

the original nonlinear network. The success of this linear network suggests that the flow dynamics 

of interest, i.e., those relevant to high-skin friction, can be approximated by a linear model, the 

implication of which will be further explored in the remainder of this paper. 

4.3    Adjoint-Based Sup-Optimal Control 

As mentioned in the introduction, most previous control work has been rather ad-hoc, in that it was 

primarily based on the investigator's intuition and insight into the flow physics under coi^ideration. 

The opposition control is a good example. More systematic approaches, relying on the equations 

that govern the problem imder control, have appeared recently. One such approach is adjoint-based 

optimization.^^"^* In this approach the control objective is to minimize a cost functional, J(^), of 

control input, ^. Once the sei^itivity of the cost functional with respect to the control input is 

known, it can be minimized by using any gradient-based iteration scheme. For example, 

J(#*+i) = Jm + ||(#'=+i - #) , (3) 

where DJ/D(f> m the FVechet differential of J, representing the sei^itivity of the cost functional to 

the control input. More advanced iterative schemes, such as a conjugate-gradient method, could 

also be used, instead of the simple gradient method shown here. A key step is how to evaluate 

the seiKitivity functional. A popular approach has been to express it in terms of properly defined 

adjoint flow variables, which can be obtained by solving adjoint governing equations. In general, one 

has to solve the Navier-Stokes equations and the adjoint Navier-Stokes equations simultaneously. 

Interested readers are referred to the references given above for further details. 

Bewley et al?* applied an adjoint-based optimal control, in which a control objective was min- 

imized over a finite time period, to a turbulent channel at i2er=100. Their approach led to flow 

laminarization with a drag reduction of over 50%.   However, this algorithm requires solving the 



Navier-Stokes equations and their adjoint equations iteratively over a finite time period (referred 

to as finite-time horizon); while the adjoint equations are integrated backward in time, the Navier- 

Stokes equations are integrated forward in time, during which the control input, which in turn de- 

pends on the adjoint variables, is required. This procedure is computationally expensive, and more 

importantly, impossible to implement in practice. Nevertheless, this is an important accomplish- 

ment on several accounts. For example, it demonstrates that a control algorithm derived rigorously 

from a control theory independent of flow physics can outperform intuition-based controls. Also, 

notwittetanding its practical limitation, it establishes the best possible control process, from which 

physical insight may be gained by examining the manner in which the laminarization occurred. The 

adjoint-based approach may also be useful for off-Mne optimization applications, where the iterative 

optimization te done off-line once and the result is applied in an open-loop control. 

Lee et alP took a slightly different approach. Instead of searching for the optimal state over a 

finite time period, which requires solving the Navier-Stokes and their adjoint equations iteratively, 

they looked for a suboptimal state, in which a control objective w minimized in the limit of the 

time horizon approaching zero. This adjoint-based suboptimal control does not require solving the 

governing equatioi^ iteratively. Rirthermore, they showed that a wise choice of the control objective, 

coupled with a particular adjoint formulation (which involved taking an adjoint of only the linear 

part of the discretized Navier-Stokes equations), could lead to a more simple and practical control 

law. In this approach, the desired control input was expressed in terms of adjoint flow quantities at 

the wall, which could be evaluated without solving the adjoint equations explicitly. Minimization 

of a cost functional involving dw/dy led to (see Lee et alP for the detailed procedure): 

d dw   \ 
(4) ^az ay 

where <> represents a local spatial average. Note that this expression is very similar to Eqn, (2), 

which was obtained by the adaptive neural network. The only difference in the two expressions 

M how high wavenumber components are reduced when the spatial average is performed; see Lee 

et dP for details. Application of Eqn. (4) to the turbulent channel resulted in almost identical 

results to those discussed in Subsection 4.2, in that the computed flow fleld contained fewer strong 

near-wall streamwise vorticra and skin-friction drag was reduced. 

Although the two control schemes discussed in Subsections 4.2 and 4.3 were derived from totally 

different approaches, they yielded very similar feedback control laws. It is worth mentioning here 



that the adaptive nonlinear network could be approximated well by a linear network, and that the 

final form of the adjoint-based suboptimal control was derived without including the nonlinear part 

of the discretized Navier-Stokes equations when the adjoint operation was performed. It appears 

that whatever physics that are relevant to skin-friction drag reduction in turbulent boundary layers 

can be adequately approximated by a linear model. 

4.4    Systems Control Theoretic Approaches 

Many advances have been made in hnear optimal control theory over the past several decades. Un- 

fortunately, applications of this modern control theory to flow-control problems, turbulence control 

in particular, have been rare. It is in large part due to the common belief that turbulent flows are 

nonlinear, and hence, there is very little chance that lineax control theory is applicable to turbu- 

lence control. The other deterring factor might have been the fact that turbulent flows have a large 

number of degrees of freedom, and require analysis of a very high-dimensional system. It shall be 

shown here that both concent can be overcome for control of the skin-friction drag in turbulent 

boundary layers. 

Since the pioneering work by Joshi et al.^^ in which they demonstrated that transition to 

turbulence (including transition due to finite-amplitude, hence nonlinear, disturbances) can be 

suppressed by a linear integral feedback controller, there has been a flurry of activity reporting 

successful applications of linear optimal control to turbulent and transitional flows.^^"^^ We briefly 

review some fundamenta,k of linear optimal control theory here before we proceed to present our 

results. The reader m ako referred to a recent paper by Bewley,^^ for an excellent introduction to 

linear optimal control theory as applied to fluid mechanics problen^. 

4.4.1    Linear Optimal Control and State-Space Representation 

Lineax optimal control theory starts with a state-space representation of the dynamical system to 

be controlled. A state-space representation of a dynamical system can be written as 

§ = ^x-^Bu, (5) 
at 

where x represents the state vector of the system and u denotes the control input. The system 

matrix A contains the system dynamic, and B denote an input matrix, which depends on the 

particular type of actuation. In linear quadratic regulator (LQR) synthesis, a cost function to be 
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minimized is written in the following quadratic form, 

J = lim 1/(7 x*Qx + u*Ru) dt , (6) 
1 —too 1  Jo ^   ' 

where the superscript * denotes conjugate transpose and 7 is a control parameter. The matrices Q 

and iJ, respectively, represent a particular form of the control objective and how the cost of control 

should be accounted for. A large weighting on the cost of control (small 7) signifies a high cost of 

control, and vice versa. The optimal control input u minimizing the cost function is found in the 

following form, 

u = -Kx , (7) 

where K is the control gain matrix, which is to be determined. The optimal K minimizes the cost 

function, and is obtained by solving an algebraic Riccati equation involving matrices A, B, Q, R and 

the control parameter 7: 

AP + PA + jQ-PBR-^B*P = 0, (8) 

from which K = R~^B*P is determined. 

Note that in the LQR synthesis, the optimal control input requires complete information of the 

state vector. In most practical situations, complete system information, x, is not known, and it 

must be estimated based on limited measurements. This leads to linear quadratic Gaussian (LQG) 

synthesis, and the following dynamical system representation: 

— =   Ax + Bu + Tw (9) 
at ^ ' 

z   =   Cx + Du + v (10) 
dx 
— =   Ax + Bu + £(z-z) (11) 

u   =   -Kyi, (12) 

where x denote an estimated state vector, w and v, respectively, represent system and measurement 

noise, which in LQG synthesis are assumed to be white Gaussian process^, z = Cx + DM + v 

denotes the actual observation, and z = Cx + DM is the observation based on the estimated state. 

Matrices C, D, F, respectively, represent the measurement, feed-through, and input matrices. The 

Kalman gain matrix L, which is designed to minimize the error associated with the estimated state, 

is determined in the same manner as the control gain matrix K, by solving an algebraic Riccati 

equation involving matrices A, C, V. The ratio of the power spectral densities of the noise mentioned 
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above enters as a design parameter. In control terminology, Eqn. (11) is referred to as a "system 

estimator" and Eqn. (12) a "controller," and together they are referred to as a "compensator." In 

general, the system dynamics may contain many unobservable and/or uncontrollable modes, and 

they are neither desirable nor necessary to include in the estimator. A reduced-order model for the 

estimator is therefore used. This model reduction step is especially critical for turbulence control, 

since the original system is a very high-dimensional system, many modes of which are unobservable 

and uncontrollable as we normally limit our sensing and actuation to the wall. In the study to be 

described in Section 4,4,5, we used a balanced-realization model-reduction method, in which the 

original high dimensional system is reduced by considering controllability and observabiUty. The 

reader is referred to Lee et al.^^ for the model-reduction techniques used in the present study. 

4.4.2    State-Space Representation of the Navier-Stokes Equations 

Representing the wall-normal velocity, v, and the wall-normal vorticity, ojy, in terms of Fourier 

modes in the streamwise (x) and the spanwise (z) directions, the linearized Navier-Stokes (N-S) 

equations can be written in an operator form 

where 

d ■ V ■   [A] 
■ V 

■ 

dt [<^yl Lt^y J 

[A = 0 ■ 

(13) 

(14) 

and the () denotes a Fourier-transformed quantity.    Here Los, Lgq and L^ represent the Orr- 

Sommerfeld, Squire, and the coupling operators, respectively, which are defined as 

Los   =   A-i I -ik^UA + ifccc-j-y + 15-A^ 
dy^      Re 

Lsa   =   -ikM + A 

ay 

(15) 

(16) 

(17) 

where fc^ and k^ are the streamwise and spanwise wavenumbers, respectively, fc   = fc| + fcf, A = 

B^Jdy^ — fc^, and U is the mean velocity about which the Navier-Stokes equations are linearized, 

Eqn, (13) is then already in the state-space representation form 

f = Ax, (18) 

12 



where the state vector x consists of the wall-normal velocity and wall-normal vorticity expressed 

in terms of their expansion coefficients. Any polynomial expansion or collocation representation of 

the state vector can be used for this purpose. Having written the Navier-Stokes equations in this 

form, we are now in a position to design an optimal controller for this linear system. 

4.4.3    Application to a Linear System 

Before designing and applying a linear controller to the nonhnear problem of interest, the turbulent 

channel, we first considered the following linear problem. 

The transient growth due to non-normality of the operator associated with hnearized Navier- 

Stokes equations has received much attention during the past several years.^^"^'' It has been shown 

that certain disturbances can grow to ©(iJe^) in time proportional to OiRe).^'^"^ It has been sug- 

gested that this transient growth, which is due to a linear mechanwm, can lead to a transition to 

turbulence at a Reynolds number smaller than the critical Reynolds number, below which classical 

Hnear stability theory, based on modal analysis, predicts that all small disturbances decay asymp- 

totically. Some investigators have proposed that this linear process is respoMible for subcritical 

transition in some wall-bounded shear flows, such as plane Poiseuille flow and Couette flow. Some 

investigators further postulated that the same linear process is also r^ponsible for the wall-layer 

streaky structures observed in turbulent boundary layers.^^'^^ 

Since this transient growth is due to a linear mechanism, it should be affected by a properly 

designed linear optimal controller, based on the linear system described in Subsection 4.4.2. The 

so-called 'optimal' disturbance^^ was constructed in a manner similar to that described by Butler 

and FarrelP^ for Rcc = 5,000, where Rcc denotes the Reynolds number based on the centerline 

velocity and channel half-width. Note that this is a subcritical Reynolds number with no ui^table 

eigenmodes, but this 'optimal' disturbance consists of a special combination of decaying eigenmodes. 

Due to the non-normality of the linearized Navier-Stokes operator, some of these eigenmodes are 

almost parallel to each other, and the energy associated with this 'optimal' disturbance can grow 

initially before it ultimately decays. 

An LQR controller, which minimizes the total disturbance energy, was constructed and applied 

to the linear system with the 'optimal' disturbance as the initial condition. Fig, 7 shows the effect 

of the LQR controller. Also shown in the figure is a result obtained with opposition control. It 

should be noted that the LQR controller utilizes complete internal state information, whereas the 
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opposition control uses the information at a particular wall-normal location only. This explains 

why the LQR controller performed better than the opposition control. 

4.4.4    LQR Control of l^rbulent Channel 

It was not too surprising to see that a linear optimal controller worked well when applied to a linear 

problem. A more challenging question is whether a controller based on the linearized system would 

work at all in turbulent chaanel flow, which is obviously a nonlinear system. There are several 

reasons we expected a positive result in spite of the fact that turbulent channel flow is certainly 

beyond the scope of linear controllers. First, we saw in Subsections 4.2 and 4.3 that the wall-layer 

dynamics responsible for high skin-friction drag in turbulent boundary layers can be approximated 

well by a hnear model. Second, both the transient growth mechankm in transitional boundary 

layers and the self-sustaining mechanism of near-wall turbulence structures in turbulent boundary 

layers are at least in part due to the linear mechanism described in Subsection 4.4.3. Consequently, 

we should be able to model this Hnear mechanism in terms of the linear state-space representation, 

and a controller based on this linear model should be able to affect the linear mechanism. 

Several LQR controllers were constructed, to minimize 1) wall-shear stress fluctuations, 2) tur- 

bulent kinetic energy, and 3) the linear coupling term (see Subsection 4.5 below). Results are shown 

in Figs. 8-10. A common feature for all of these drag-reduced flow fields is weakened stregmwfee 

vortic^ (Fig. 9), resulting in reduced high skin-friction extrema at the wall (Fig. 10). In some cases, 

specially for case 1), the controller met its design objective (i.e., it reduced fluctuating wall-shear 

stresses) quite dramatically, but it did not lead to similarly dramatic mean drag reduction. A 

further examination of the computed flow field revealed that, in contrast to opposition control, the 

control effect is confined to the near-wall.^^. Apparently, we need a cost function, whose minimiza- 

tion affects turbulence structures away from the wall. Nevertheless, all of these linear controllers 

worked remarkably well in the nonlinear flow. 

The success of these linear controllers confirms, once again, the notion that a linear mechantem 

plays an important role in turbulent boundary layers. In a true linear system, the base (i.e., mean) 

flow about which the system is linearized does not evolve in time, and the system matrix A is 

independent of time. In a nonlinear system, however, as the state vector evolves in time, it affects 

the mean flow and thus A is not constant in time. One way to account for this nonlinearity is to 

recompute the system matrix A as the mean flow evolves.  A new gain matrix K m obtained as 
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the mean flow evolves. This can be viewed as a type of gain scheduling^ An example of LQR 

control with gain scheduHng is shown in Fig, 11, which yields complete laminarization at ^6^=100, 

However, we have observed that this result was very sensitive to the manner by which the gain 

scheduling was implemented.^^ But this sensitivity notwithstanding, this result illustrates that a 

further fine tuning of linear controllers can lead to substantial improvements for nonlinear flows. 

4,4.5    LQG Control of Turbulent Channel 

As mentioned in Subsection 4.4.1, in most practical applicatioi^, complete state information is not 

available and mi:^t be estimated from Umited measurements. Furthermore, the estimation must 

be carried out based on a reduced-order model for various reason. Lee et alP constructed a two- 

dimensional reduced-order model of the linearized Navier-Stokes system, based on controllability 

and observability considerations. The size of the reduced-order estimator (ie,, the number of 

independent modes or the length of the state vector representing the reduced-order estimator) 

was less than 2.5% of the original system. This two-dimensional reduced-order compei^ator (i.e,, 

estimator plus controller) was applied to the turbulent channel, but Lee et alP observed that a 

fully three-dimensional controller was needed; otherwise, the resulting flow patterns show substantial 

spanwise variations of wall-shear stress fluctuations, and they had to employ an additional ad-hoc 

controller to remove the remaining spanwise variations. Lim et al}^ applied an improved three- 

dimensional version of this LQG controller to the turbulent channel, and obtained about 20% drag 

reduction. The flow patterns show the same trend as those observed in the turbulent channel with 

LQR controllers, but the effect is confined to the near-wall region. 

The performance of LQG-controUers largely depends on the performance of the estimator. We 

examined how well the estimator tracfa the actual measurement (i.e., how small z — z in Eqn. 11 

lgj 40,39 Q^j, estimator produced excellent tracking, but the ^timated internal state ranged from 

good (near the wall) to poor (away from the wall). Development of an improved reduced-order 

estimator is key to successful applications of LQG controllers, and we are cmrently working toward 

achieving this goal. 

4.5    Reduction of Non-Normality in Turbulent Channel 

The success of linear optimal controllers in the turbulent channel was somewhat unexpected, al- 

though we have shown some evidence that a linear mechanism plays an important role in turbulent 
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boundary layers.   In order to further address this question, we turn to a numerical experiment 

performed by Kim and Lim.^^ 

They recognized that the primary reason for non-normahty of the hnearized Navier-Stokes sys- 

tem is due to Lc in Eqn. (14). Although L03 itself is not self-adjoint (non-normal), it is Lc (referred 

to as the coupling term because v and tUy are coupled through this term) that makes the operator A 

non-normal. Since eigenmodes of a non-normal operator are not orthogonal to each other, they allow 

transient growth of energy even if the individual modes are stable and decay asymptotically. Some 

investigators^^ suggest that this non-normal transient growth is responsible for near-wall turbulence 

structures in turbulent boundary layers. Kim and Lim^^ investigated the role of the coupling term 

in a fully nonlinear turbulent flow, by coi^idering the following modified nonlinear system: 

_d p • 
dt [ufy. 

Los     0 
0     L sqi 

+ (19) 

This modified system can be viewed as representing a virtual turbulent flow with no coupling term, 

or a turbulent flow with control ty which the coupling term is suppressed (see below). 

Starting from an initial field obtained from a regular turbulent channel simulation, the above 

modified nonlinear system was integrated in time and was compared with a nonlinear simulation 

with the coupling term. It was found that without the coupling term the near-wall structures first 

disappeared and the flow became laminar(Figs. 12-13). This demor^trates that the linear coupling 

term plays an essential role in maintaining turbulence in nonlinear flows. 

Motivated by the above results, an LQR controller designed to minimize the coupling term was 

constructed and applied to the channel. Note that this controller can reduce the coupling term but 

not completely suppress it in contrast to the virtual flow above. The coupling term in the LQR- 

controUed flow was substantially reduced, and the strength of near-wall turbulence substantially 

weakened, resulting in about a 20% drag reduction.^^ An LQG controller designed to minimize the 

coupling term is currently under construction. 

4.6    Beyond Turbulent Channel Flows 

The successful applications of hnear controllers in the turbulent channel led us to consider more 

complex flows. Control of separated flow over an airfoil at a large angle of attack has been studied 

by many investigators owing to its technological importance. When the angle of attack is increased 

beyond the stall angle, the flow becomes fully separated, resulting in significant loss of lift. In many 
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previous studies, periodic blowing and suction at a certain frequency, determined by trial and error, 

has been used to prevent or minimize stall at high angles of attack. 

We plan to develop a control algorithm for the above-mentioned separated flow using the linear 

control theory discussed in Subsection 4.4. Unlike the turbulent channel or turbulent boundary 

layer, however, turbulent flow over an airfoil cannot be easily converted into a state-space repre- 

sentation, since the required system information (matrices A, B, C and D) is difficult to obtain. 

In a situation like this, system identification approaches can be i^ed to model the input/output 

relatioiKhip of the system. Once an approximate model for this complex flow is identifled, the same 

procedure used in channel flow control can be used to design optimal controllers. The underlying 

assumption here, of course, is that some key dynamics of the separated flow can be captured by a 

linear model. Whether this assumption is valid, and how successful the approximate model obtained 

via system identification techniques turns out to be, remains to be seen. 

5    ISSUES, LIMITATIONS AND CONCLUSION 

I have presented a few successful applications of controllers that are fundamentally different from 

many existing ones in that they were derived firom linear control theory, which has not been widely 

embraced by the fiuid mechanics community. These success^ are quite promising, as they suggest 

a new approach for turbulence control, a topic which has been viewed by many as beyond the 

scope of finear control theory. It turns out that in wall-bounded shear flows a linear mechanism 

plays an important role in near-wall turbulence dynamics, specially from the perspective of skin- 

friction drag. This linear mechanism, which exists in the presence of other ftmdamental nonlinear 

processes, can be captured by a Mnear model, and much can be accompHshed by utilizing linear 

control theory. There is some evidence that further fine tuning may lead to even better performance 

than that shown here. However, there are many outstanding issues that mast be resolved before 

this approach can be fully implemented. Some of these issues are listed below. They are neither in 

any particular order, nor exhaustive; they simply reflect issues that have come to light during the 

course of this work. 

1. Model reduction. An improved model reduction technique is key to successful applications 

of linear control theory to flow control in general, and turbulence control in particular. Cur- 

rently we use a balanced-realization model-reduction approach, in which the original high- 
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dimensional system is reduced by considering controllability and observability. A reduced- 

order model should retain the essential features of the original dynamical system. Most 

existing model-reduction technique, including ours, aim at reproducing the input-output re- 

lationship of the original system, thus accounting for controllability and observability, but 

they do not account for the control objective. This is certainly not desirable, as it may leave 

out some important system dynamics, which are relatively less observable or controllable, but 

nevertheless may contribute significantly to the control objective. Ideally, all three aspects 

(control objective, controllability and observability) should receive proper weight during the 

model reduction stage. In this regard, it is worth mentioning that a model reduction purely 

based on POD (proper orthogonal decomposition) modes may not be appropriate since it 

gives no consideration to controllability and observability, and perhaps (at least not directly) 

to the control objective, either. 

2. Control objective (or cost function). For the purpose of drag reduction, we have considered 

several control ftmctions to be minimized (note that the drag itself, which is a mean quantity, 

cannot be incorporated directly into the cost function), but they are not necessarily the most 

appropriate ones. In fact, in some examples given here, controllers performed extremely well 

from the point of minimizing the given cost function - in other words, the controllers met 

the design objective - but unfortunately they did not lead to correspondingly significant 

reduction in the mean drag. Whether this implies an inherent limitation of linear controllers 

for nonlinear flows or simply calls for different cost ftmctions has not yet been determined. 

3. Localized control. All examples shown in this paper used controllers designed and applied 

in wavenumber spa^je. Measurements from distributed sensoK are collected and converted 

into Fourier space, where control input (actuation) is determined and applied (actuation itself 

can be applied in physical space by converting the control input back to physical space, but 

that is beside the point). The primary reason behind this approach was that the linearized 

Navier-Stokes system completely decouples for each wavenumber, thus converting a large linear 

system into a small linear system for each wavenumber. However, this procedure, which is 

sometimes referred to as a centralized approactf^ (since it requires central processing of data), 

requires global sensor information for each actuator, A more desirable approach would be one 

in which the control input for each actuator is determined solely by information obtained by 



neighboring sensors, as in 

u(a;, z,t) = j G{x -(„z- rj) z(e, r), t) d^drj , (20) 

where G denotes a control kernel in physical space. A key consideration of this approach 

(referred to as localized or decentralized control) is how well the control kernel can be localized 

in physical space, which allows determination of the control input, u{x,z,t), based on local 

z{x,z,t). There is some evidence that this is indeed possible,^^'^^ but it requires further 

investigation. 

4. Actuator. In our numerical experiments, we have used the wall-shear stresses as measurements 

(sensing) and surface blowing and suction as control input (actuation). Shear-stress sensors 

are currently available and pose no practical problen^, but actuators that can deliver the same 

type of blowing and suction at the wall are not yet available.*^ Rirthermore, in our numerical 

experiments, we have not accounted for any time delay between sensing and actuation, whereas 

m practice there will be a finite delay due to both actuator response time and data proc^sing 

time. 

5. Numerical issues. Although this is not a control issue, it is worth mentioning here that 

the system matrix we have to deal with is extremely poorly conditioned (i.e., it has a high 

condition number) and all computatioiM (e.g., traiKforming into a Jordan form for model 

reduction, solving the Riccati equations for the control and estimator gain matrices, etc.) 

involving the system matrix must be done with care. The effect of under-resolved mod^ (due 

to a finite-dimension representation of the infinite-dimension system) and the effect of spurious 

modes (due to a particular state-space representation) are other examples that require special 

attention. Some of these modes can be very controllable and/or observable, and therefore can 

adversely affect the controller design and its performance, 

6. Reynolds number. All successful examples thus far, including those conducted by other inves- 

tigators and not presented here, have been at very low Reynolds numbers. Some investigatore 

believe that there are fundamental changes in the turbulent transport processes in turbulent 

boundary layers at high Reynolds numbers.*^ Therefore, all current approaches that control 

near-wall turbulence structures, which according to these investigators are only relevant to low 

Reynolds number flows, may not be applicable to turbulent boundary layers at high Reynolds 
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numbers. This remains to be seen. It is worth noting, however, that the riblet surface, which 

also affects near-wall turbulence structures, has been proven to reduce skin-friction drag dur- 

ing a flight test of a commercial aircraft - an example illustrating that what worked at low 

Reynolds numbers (both in numerical and laboratory experiments) also worked at a high 

Reynolds number. 

7. Beyond simple flows. It wiU be extremely interesting to see how far we can push the current 

approach toward more realistic and complex flows for which we do not have complete system 

information. The system identification approach is one way to tackle this problem, but it 

remains to be seen how robust this approach will be, especially for nonlinear flows. 

In simxmary, I have shown that applications of linear control theory to a particular problem 

of turbulence control result in quite promising results. This is in due large part to the important 

role of certain linear mechanisn^ in wall-bounded shear flows. Exploitation of linear mechanisms 

in other flows may also lead to successful results. Although control theory has emerged as a viable 

and powerful tool for flow-control probleuM, there remain many outstanding issues. I expect that 

further coUaboratioi^ between control theoreticians and fluid dynamicists will lead to even greater 

progress in the future, 
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Figure Captions 

Figure 1. Marker particles in a motion picture of a simulated flow (left) and hydrogen bubbles in a 

laboratory experiment by Kline et al^ (right). 

Figure 2, Skin-friction in turbulent boundary layers. Plan view of contours of spanwise vorticity at 

the wall, showing high skin-friction regions indicated by blue and green (top). Cross section view 

of the high skin-friction region marked by the straight line in the top figure (lower right corner), 

showing a pair of streamwise vortices in the wall region. Colors denote the magnitude of streamwise 

vorticity while the vectors indicate the wall-normal and spanwise components of the velocity in the 

plane (bottom). 

Figure 3. A schematic illustrating opposition control. 

Figure 4. A schematic illustrating a neural network representing an adaptive inverse model of the 

Navier-Stokes plant. 

Figure 5, Contours of streamwise wall-shear stress in (x, z)-plane in regular (top) and NN-controUed 

(bottom) channel. 

Figure 6. Contours of streamwise vorticity in {y, z)-plane in regular channel (top) and NN-controUed 

channel (bottom). 

Figure 7, Time evolution of an 'optimal' disturbance with and without control: , uncontrolled; 

 , opposition control; , an LQR controller. 

Figure 8. Time evolution of mean wall-shear stress (normalized by its value when control started) 

in turbulent channel:  , uncontrolled; others, various LQR controllers. 

Figure 9. Contours of streamwise vorticity in (t/, 0)-plane in regular channel (top) and in channel 

with an LQR-controUer, which minimizes wall-shear stress fluctuations (bottom). 

Figure 10. Contours of wall-shear stress in (a;, z)-plane in regular channel (top) and in channel with 

an LQR-controUer, which minimizes wall-shear stress fluctuations (bottom). 

Figure 11 Time evolution of mean wall-shear stress (normalized by its value when control started) in 

channel with an LQR controller, which accounts for the change of the mean flow: , uncontrolled; 

others, with a gain-scheduled LQR controller. Both gain-scheduled LQR controllers led to complete 

laminarization. 
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Figure 12. Time evolution of mean wall-shear stress (normalized by its value when control started) 

with and without the linear coupling term:    , regular channel; , channel without the 

coupling term. 

Figure 13. Contours of streamwise vorticity in {y - 2;)-plane: (a) t+ = 0; (b) t+ = 20; c) t+ = 200. 

Note that Lc = 0 only in the upper-half of the channel. 
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Figure 1: Marker particles in a motion picture of a simulated flow (left) and hydrogen bubbles in a 
laboratory experiment by Kline et al.^ (right). 

Figure 2: Skin-friction in turbulent boundary layers. Plan view of contours of spanwise vorticity at 
the wall, showing high skin-friction regioi^ indicated by blue and green (top). Cross section view 
of the high skin-friction region marked by the straight line in the top figure (lower right corner), 
showing a pair of streamwise vortices in the wall region. Colors denote the magnitude of streamwise 
vorticity while the vectors indicate the wall-normal and spanwise components of the velocity in the 
plane (bottom). 
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blowing suction 

Figure 3: A schematic illustrating opposition control. 
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Figure 4: A schematic illustrating a neural network representing an adaptive inverse model of the 
Navier-Stokes plant. 
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Figure 5: Contours of streamwise wall-shear stress in (s, 2;)-plane in regular (top) and NN-controUed 
(bottom) channel. 
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Figure 7: Time evolution of an 'optimal' disturbance with and without control: 
 , opposition control; , an LQR controller. 
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Figure 8: Time evolution of mean wall-shear stress (normalized by its value when control started) 
in turbulent channel:  , uncontrolled; others, various LQR controllers. 
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Figure 9: Contours of streamwise vorticity in (|/, 2)-plane in regular channel (top) and in channel 
with an LQR-controUer, which minimizes wall-shear stress fluctuations (bottom). 
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Figure 11: Time evolution of mean wall-shear stress (normalized by its value when control started) in 
channel with an LQR controller, which accounts for the change of the mean flow: , uncontrolled; 
others, with a gain-scheduled LQR controller. Both gain-scheduled LQR controllers led to complete 
laminarization. 
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Figure 12: Time evolution of mean wall-shear str^s (normalized by its value when control started) 
with and without the Mnear coupling term:    , regular channel; —-, channel without the 
coupling term. 
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Figure 13: Contours of streamwise vorticity in {y - 2;)-plane: (a) t+ = 0; (b) t+ = 20; c) i+ = 200. 
Note that Lc = 0 only in the upper-half of the channel. 
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Feedback control of Rayleigh-Benard convection 201 

We have also shown that the transient responses incurred at the initial time 
can be reduced significantly by increasing Ra to its operating value in small incre- 
ments. This technique allows us to initialize the estimator at each increment of Ra 
and consequently avoid controller saturations. Furthermore, by making incremental 
changes in Ra and using a controller designed to stabilize the system in a region 
about the design values, the value of the maximum value of Ra could be increased 
further, even though there will be unstable regions formed below stable regions in 
Ra. 

So far, we have assumed that the order of the controller is equal to the order of 
the plant. In full numerical simulations and experiments, controller designs based 
on reduced-order models are more practical for implementation (see, for example, 
Cortelezzi & Speyer 1998; Armaou & Christofides 2000). In our current model the 
actuation is assumed to be distributed continuously. In practice it will be discrete and 
implementation issues need to be addressed. 

This research is supported by a grant from United States Air Force (Grant no. 
F49620-93-1-0332), and also by NASA Microgravity Physics Program (NAG3-1819) 
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We study by a fiiUy nonlinear, three-dimensional pseudospectral, time-splitting simu- 

lation the feedback control of a layer of fluid heated from below. The initial condition 

corresponds to a steady, large-amplitude, preferred convection state obtained at Prandtl 

number of 7.0 and Rayleigh number of 10*, which is about six times the Rayleigh caiti- 

cal -ralue. A robust controller based on the LQG (Linear-Quadratic-Gaussian) synthesis 

method is used. Both sensors and actuator axe thermal-based, planar, amd assumed to be 

continuously distributed. The simulated results show that large-amplitude steady-state 

convection rolls can be suppressed by the linear LQG controller action. The Green's 

fimction of the controller gives the shape of the control action corresponding to a point 

measurement. In addition, for Rayleigh mmibers below the proportional feedback con- 

trol stability limit, this controller appeared to be effective in damping out steady-state 

convection rolls as well. However, in a region very near the proportional control stability 

limit, proportional control action induces subcritical g-type hexagonal convection, which 

is obtained here through direct simulations. Note that well above this proportional con- 

trol limit, the LQG still damps out all convection. Check cases to validate the nonlinear 

plant model are also performed by comparison with published results. 
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1. Introduction 

Active suppression of onset of convection in a layer of fluid has potentially important 

applications in improving the material that goes through soUdification in a mould. For 

instance, during the growth phase of large silicon wafers or composite materials, a large 

thermal gradient typically causes undesirable convective motions in the melt. To under- 

stand the active control of the reaJistic manufactinring process, an idealized system is an 

important starting point. To this end Rayleigh-Benard convection is ideal for vigorous 

theoretical analysis. 

Considerable theoretical studies have employed the linear feedback control to increase 

the stability threshold of the purely heat conductive state so that no convection occurs 

despite the prraence of a large thermal gradient (Tang & Bau 1993, Tang & Bau 1994, 

Tang & Bau 1998a,b, Howie 1997a,b,c, Howie, 2000, Or et al. 2001). These studies used 

the linear plant model and employed a simple controller using the proportional feedback. 

The implantable sensor and actuator are assumed to be of the thermal type and con- 

tinuously distributed spatially on the horizontal plane. Analysis as well as experimental 

results in general indicate that the proportional controller will stabilize the basic state 

up to Rayleigh number (Ra) of 3 to 4 times its critical value of the basic state (see Tang 

& Bau 1994, Howie 1997a). Furthermore, as shown in Tang and Bau (1994), a controller- 

induced osciUatory instability occurs at a large gain. A linear-quadratic-gaussian (LQG) 

controller has also been studied (Or et al. 2001) to increase the region of stabilization 

and with a higher margin of robustness. First, the stability limit can be raised to about 

14 times the critical value of Ra. Second, the gain and phase margins about the design 

point of the controller appear adequate for practical implementation. 

To develop a control design to be implementable for applicational processes (such as 

for crystal growth or a melt), it is crucial to understand the control process for simpler 
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geometry and material properties. We have been focused on an Oberbeck-Boussinesq 

model for a horizontal layer of fluid. The plant dynamics is known as Rayleigh-Benard 

convection (RBC) (Cross and Hohenberg, 1993). As a first step the performance of the 

linear controller design for the linear plant dynamics is reported in Or et al. (2001). In 

this paper, as a step further the focus is turned to the performance of the linear controller 

design for the fully nonlinear plant dynamics. 

It is well known that in a large layer of heated fluid, convection occurs as a steady 

pattern of two-dimensional rolls. The two-dimensional convection rolls and the stability 

properties were investigated in detail by Clever & Bmse (1974) and BiMse & Clever 

(1979). For the heated layer corresponding to JJo > iJoco (iJocO is computed theoretically 

to have value 1707.762 up to 3 decimal places), the stable roll pattern occurs only within a 

band of wavenmnber centered approximately about the critical wavenumber Oc = 3.117. 

Within the stable band the rolls realized do not necessarily have a preferred length scale. 

Indeed, their wavelength appears to be dictated by the initial conditions used to select 

the rolls and by the manner that the basic state temperature is prescribed spatially and 

temporally. The band is bounded on both sides by instabilities that pertains to changing 

the wavelength of the rolls but not changing the planform. As the induced rolk acquire a 

wavelength too large or too small, an instability will occur to shift their length scale back 

to a value close to the critical value. As the value of Ra, increases, the rolk will at some 

point becomes unstable and the convection structure will converge to a pattern with 

more complex spatial or temporal structure. The exact value of Ra that the transition 

occurs is wavenumber dependent. For Prandtl number (Pr) of 7.0, for instance, the two- 

dimensional rolls become unstable to a three-dimensional bimodal convection at roughly 

Ra « 25Raco at the wavenumber about 2.0 (see the experimental observations presented 

in Fig. 11, Busse & Clever (1979). The transition highlights a sufficiently strong thermal 
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boundary layer effect, made possible at Rxi values. The transition to three-dimensional 

convection occurs at a significantly higher ite threshold than the closed-loop stability 

limit of 14.5iiacO based on the Hnear LQG controller (Or et al. 2001). For our control 

analysis here, therefore, we only need to consider the two-dimensional rolls as the initial 

state of convection to be controlled. 

Our present control problem can be investigated most effectively by the use of time- 

domain analysis. A three-dimensional, fully nonlinear pseudospectral model using time- 

splitting integration method is developed, based on the Oberbeck-Boussinesq equations. 

The proportional feedback control controller is easily implementable. This case provides 

the check cases for code validation purposes. Certain flow patterns that are known to be 

induced by the controller effects, such as the mcillation mode (Tang & Ban 1994) and 

the g-lype hexagons (Or & Kelly 2001), can be obtained here from the direct numerical 

simulations and compared with those reported from previous analyzes. In Section 2, the 

nonlinear plant model and the LQG controller will be briefly described. The results will 

be presented in Section 3, followed by the conclusion in Section 4. 

2. Mathematical Formulation 

(a) Nonlinear Plant Model and Numerical Solution 

The nonlinear plant model is governed by the Oberbeck-Boussinesq equations for a hori- 

zontal layer of fluid. In the nondimensional form d, IP/K, n/d, n/d^, p{K/d)^ and AT are 

used as the scales of length, time, velocity, vorticity, pressure and temperature, where d 

is the layer thickness, K and p are the mean thermal diffusivity and density of the fluid, 

and AT is the temperature difference between the upper and lower wall in the purely 



conductive basic state. The governing nondimensional equations are, 

Pr-%^r = Pr-^v x w + kRaO -Vir + V^v , (2.1) 

dtO =   -V'Ve + w + V^9 , (2.2) 

V • V = 0 , (2.3) 

where v = (tt, v, w) is the velocity vector field, w = V x v is the vorticity, w = p + v v/2 

is the pressure head, 0 is the pert\irbation temperature and k is unit vector in the z- 

direction. The two external parameters are Rayleigh and Prandtl numbers, given by 

EM = gAT(fi/uK and Pr = V/K where v is the mean kinematic viscosity. The continuity 

equation (2.3) applies only when the iow is incompressible. 

The velocity field is assumed to be nonpermeable and non-slip at the upper and lower 

walls, thus subject to 

v{x,y,0,t) = 0,   v(a:,j/,l,t) = 0. (2.4) 

The temperature field, on the other hand, is assumed to satisfy the isothermal condition 

at the upper wall. The lower wall is non-isothermal due to the action of the thermal 

actuation. It is assumed that a control temperature 0c(x, y, t) can be imposed. The upper 

and lower thermal boundary conditions for the perturbation field are therefore 

e(x,y,l,t) = 0,     e(x,y,0,t) = 0cix,y,t). (2.5) 

In order to perform the feedback control, the perturbation temperature field has to be 

measured in the fluid. In our model three sensor planes are embedded hi the layer at 

carefully chosen levels at z = z^ (with s = 1,2,3). For analysis purpose these sensor 

planes are assumed to exert no blockage effects on the flow field. They measure the 

planar temperature distribution in the layer, 

9{x,y,Zs,t) = es(x,y,t) ,   s= 1,2,3. (2.6) 
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Assuming a continuous-distributed sensor, 0s{x,y,t) are known at sampled points and 

time. 

In the numerical scheme the dependent variables u, v, w, p and 6 are expressed by the 

following truncated, triple sums, 

w {x,y,z,t) = EB< 
N    K M 

EE E 
n=0 fc=0 m=-M+l 

'^kmn 

^kmn 

Pkmn 

^kmn 

(t) Tn(z) e*(*"«=»+'«««!') }     (2.7) 

where Re denotes the real part of the sum, Ux and Oy are the fundamental wavenumbers 

in the x and y directions, respectively. The asymmetric treatment of the indices k and m 

reduces tfie number of coefficients by half because the -TOlocity, pressure and temperature 

are real dependent variables (see Marcus, 1984). These two parameters are prescribed in 

the model. The functions T„(«) {n = 0,1,..) denote the Chebyshev polynomials. Note 

that a linear coordinate transformation is implicitly assumed to convert the Chebyshev 

fimction domain between ±1 to our physical range 0 < « < 1. The actuator and sensor 

temperatures, 0c and Os {s = 1,2,3), are planar (two-dimensional). They are expanded 

in double series in a similar fashion, 

0s(z2,t) 

0Mt) 

ix,y,t) = Ee< 
K M 

E E 
fc=Om=-M+l 

Okm,,a(zi,t) 

Okm,a(Zi,t) 

6km,s(z3-,t) 

9km,c(0, t) 

Uka^x+mocyy) } .     (2.8) 

In our terminology, the lower thermal boundary condition (2.5) and the sensor equations 

(2.6) are, respectively, the input to and output from the nonlinear plant model. 

The nonlinear equations, together with the boimdary and the continuity equatioiM are 
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then solved numerically by using the pseudospectral, time-splitting integration technique 

(Gottlieb & Orszag 1977, Canute et al. 1986, Bodenschatz et al. 2000). Marcus (1984) 

provided a detailed description of the implementation of the method for the Taylor-vortex 

flow simulations. Using the time-splitting method, an integration time step is split into 3 

fractional steps. The first is a nonlinear fractional step, typically done using an explicit, 

second-order Adams-Bashforth scheme, 

v"+^/3=v^ + At|[v^xw^ + Pri?ae^k]-Ati[v^-ix«Jv-i+Pri?o9^-ik] . (2.9) 

gN+i/3 ^gN_ ^J^^N . ^gN _ ^iV] ^ Ati[v^-i. W^-i - w^-i] . (2.10) 
^ 2 

The superscript N here denotes the time step and is not to be confused with the trunca- 

tion mmaber for the vertical dependence. A significant fraction of the total computation 

load occurs in computing the nonlinear terms. In the collocation space the nonlinear 

terms are computed spatially by point-by-point multiphcations. However, fast Fourier 

transforms (FPT) and inverse fast Fourier transforms (IFPT) have to be used to convert 

the field back and forth between the collocation and the Chebyshev-Pourier spaces. The 

fast Fourier transform (FFT) and inverse fast Poiu-ier transform (IFFT) routines are 

obtained from the library of the Numerical Recipes (Press et al. 1992), with some mi- 

nor modifications. For validation, these routines have been diecked against the standard 

Matlab PPT and IFPT functions and match up to 15 decimal places. For typical flow 

fields the truncation errors from FFT and IFPT due to aliasing are substantially small 

(Marcus 1984, Press et al, 1992). We note that, however, the PPT method can still be 

computationally demanding for high resolution solutions. The pseudospectral method is 

generally known to be efficient. There also exists other efficient methods not using the 

transforms, for imtance, the reduced-order Galerkin method (Howie, 1996). 

After obtaining the (JV + 1/3)*'' fractional step with the Adams-Basforth scheme, we 
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compute the {N + if* step from the following equation, 

(1 - PrAtV^)v'^+^ = vJ^+i/3 _ PrAtVir , (2.11) 

subject to V . v^+i = 0. It is noted that in general V • v^+^Z^ ^ o. The most straight 

forward procedure for solving Eki.(2,ll) appears to be splitting the equation into a pres- 

sure step and a viscous step (we refer to it as the direct approach). In the pressure step 

the flow field subject to a no normal-flow boundary condition at the walls can be solved 

from a Poisson equation, based on the property that the pressure field is irrotational and 

the flow ield satisfies the continuity constraint (2.3). Next, a diffusive fractional step 

completes the solution of the fractional velocity and temperature fields by prescribing 

the no-slip and thermal boundary conditions at the walls. As simple as it appeared, the 

scheme had problems computing the correct flow field. In his numerical simulation of Tay- 

lor vortex flow, Marcus (1984) reported large boundary errors using this direct approach. 

In his discussions it was argued that the shear may play a role and it is not clear whether 

a similar problem will occur for RBC. In our study we have apphed the direct scheme in 

our preliminary simulations and observed large errors even for the open-loop simulations. 

Thus, it appears that the problem is common to both Taylor vortex flows as well as RBC. 

For more detail about the cause of the large boimdary errors in the direct approach, we 

refer to Marcus (1984). Marcus identified the source of errors and developed a procedure 

to correct it. His remedy is to further split the fractional solution into a complementary 

and a pMticular solution so that the boundary conditions and the continuity equations 

are satisfled numerically. The procedure, however, involves the additional computation 

of several Green's fimctiom and seems elaborate. Since the boundary-value problem cor- 

responding to Eki.(2.11) is linear, we anticipate there are simpler alternative approach to 

resolve the numerical difficulty. Here, we solve the problem involving the pressure and 

viscous forces as a single step, without splitting the pressure and viscous terms. First, we 
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use the continuity equation as the constraint and eliminate the two horizontal velocity 

components in favor of the vertical component. Second, we obtain the solution of the 

boundary-value problem for w and 0. Finally, we recover u and v from w, Fourier mode 

by Fourier mode, using again the continuity equation. This scheme seems significantly 

simpler and has been tested here to be effective. Because of the simplicity, it is worth 

the description as an alternative approadi to the time-splitting procedure. 

By eliminating pressure from the Eq.(2.11), we obtain a single scalar equation govern- 

ing w, 

(1 - PrAtv2)v2a,w^+i = Vla^w^+i/3 - C(5,«^+V3 ^ g^^N+i/3^ ^2.12) 

The equation above is integrated in z, this gives 

(1 - PrAtV^)V^w^+^ = Vl«;^+i/3 - (dl,u'^+^/^ + &i^v^+^l^) . (2.13) 

The integration constant is zero because of the non-slip boundary condition. (This con- 

stant will depend on the initial conditions when the case of free-slip boundary conditions 

is considered). The above equation is of fourth-order spatially. It has to satisfy four 

boundary conditions, as follows, 

w^+^  =0,    and   d^w^^^ = 0,atz = 0,l. (2.14) 

The fourth-order boimdary-value problem Eq.(2.12) determines w^+'^. After we have ob- 

tained w^+i, the horizontal velocity components corresponding to w^+^ can be obtained 

by inverting the continuity and Helmholtz equations Fourier mode by Fourier mode. In 

the expansion, w^^^ is given by 

(KM s 

«;^+i(a;,y,^,t) = Ile<^     5Z     wfi'H^.*) e*^*"'"^'""'''''  > • (2.15) 
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Similarly, the horizontal velocity components are 

uN+Hx,y,z,t) 

vN+^x,y,z,t) 

= Re< 
K M 

E E 
fc=0 m=-M+l ^r^'M 

^i{ka^x+mayy) > .    (2.16) 

Each pair of coefficients {uf.* , «£^ ) now satisfies a Helmholtz equation 

vl km 

km 

2 
,,N+1 

,.N+1 
"km 

(2.17) 

where Ukm = [ikax)^+{may)^}^^^. The Helmholtz equation together with the continuity 

equation allows us to solve for v|JJ^ in terms of w^^, provided that akm # 0. The 

condition akm ¥" 0 can occur in the case of free-slip wall but not in the case of no- 

slip wall. We refer to the discussion (on P.970) of Cross and Hohenberg (1993). The 

perturbation temperature field, on the other hand, is not constrained to have zero mean 

field. Using the continuity equation, we obtain the horizontal velocity components, 

„N+1   _   _J_a^ ...N+l N+1   _   _i_a2      N+1 
^2    "z^Wfem     '    %m      —    _,2    "yz^km km (2.18) 
•'fejn km. 

(b) The Proportional Feedback Controller 

In the proportional feedback control, a proportional relationship is coiKtructed between 

the input and output of the plant. As in the cases studied by Tang and Bau (1994) and 

Or et al. (2001), only one sensor plane is used and the control law in this case is 

ecio,t) = -Kpe,(z,,t) (2.19) 

where Kp is a constant gain and Zg is the vertical height of the sensor plane. The con- 

troller is very simple for this case. 

(c) The LQG Controller 
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The theory and design of the LQG controller was described in (Or et al. 2001), so we 

refer the readers to the paper for the detailed description. In brief, the linear stability 

equations of the Fourier-decomposed system of convection and the measurement equation 

are given in matrix form, respectively, by 

X = Ax + Bu ,    z = Cx , (2.20) 

where the entries of the state vector x are the Chebyshev coefficients of velocity and 

temperature perturbations; u (measured at plane z = 0) and z (measured at planes 

^i,'22.'S3) are, respectively, the Fourier coefficients of the planar control and measured 

temperatures. Note that the Fourier-decomposed equations correspond to wavenumber 

Ofcm and Rayleigh number Ra. The following modifications to the original formulation 

of the controller model (Or et al. 2001) have been made here: (i) the vertical dependence 

is expanded in terms of the Chebyshev polynomials instead of the beam fanctions as the 

basis fiinctions. The expansion procedure, originally b^ed on the Galerkin method, has 

been converted to the tau method. In the improved numerical procedure, we obtain the 

exact condition D = 0, in contrast to the previous condition that D ^ 0 only as JV ^^ oo. 

(ii) We no longer consider the wavenumber as a prescribed parameter here. Instead, an 

individual modal controller is developed for each set of wavenumbers {kaxjTmXy). There 

is a set of state-space equations for each wavevector. In total, there are 2{K + 1)M sets 

of A, B smd C matrices to be processed. 

The LQG controller is comprised of a Kalman filter and an optimal regulator. The 

Kalman filter equation and the optimal regulator equation corresponding to the state- 

space equations (2.20) above are, respectively, 

i = A*x + B*u + K/(z-z) ,     z = C*x,    u =-KcX , (2.21) 

where x is the estimate state vector. We distinguish the matrices with asterisk super- 
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scripts to highlight that the system is computed at a nominal (designed) wavenumber 

and Rayleigh number, (a|„,iia*). The Kalman gain vector K/ and the optimal gain 

vector Kc are determined from separate steady-state algebraic Riccati equations. The 

Kalman filter is used here as a state observer rather than as an estimator since no noises 

are injected into the system simulation. The cost functional, weighting and filter param- 

eters chosen for controller design are described in detail in Or et al. (2001) which will 

not be repeated here. For robustne^ consideration, in the design the Kalman filter input 

matrix G has been set equal to the control input matrix B, a step known as the loop 

transfer recovery to recover the full-state feedback performance of the optimal regulator. 

The weights for the objective functioia, as well as the filter parameters and the loop 

transfer recovery are described in Or, et al. 2001. 

It is wdrth noting that the LQG controller is a variant of the Hoo controller when 

the distiffbance attenuation bound is infinite (see Rhee and Speyer, 1991). In Or et al. 

2001, robustness is demonstrated classically by having large gain and phase margins in 

the closed-loop response. F^uthermore, if a full loop transfer recovery is achieved, the 

Ml-state feedback LQ regulator performance will have a robustness of ±60 deg. phase 

msffgin and 6 db to infinite gain margin. Since our system is non-minimal phased, only 

partial recovery is expected. Since large gain and phase margins were obtained for the 

linear system, the performance of the LQG controller in terms of robustness should not 

be expected to be significantly different from that of the ffoo controller. 

In Fig. 1, we show the three-dimensional nonlinear plant model. The control input and 

measurement output of the model are Pourier-Chebyshev coefficients rather than their 

collocation point values. On the other hand, in the physical plant (such as in laboratory 

experiments) the input and output are physical temperature distributioiB. Since the 

LQG controller is formulated in the modal spaxie, when the upper block represents the 
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FIGURE 1. The LQG Control Loop Diagram 

plant instead of the model, a FFT and an IPFT have to be performed, respectively, 

at the input and output of the controller. In our case, the LQG controller takes the 

measurements from the 3D nonlinear plant model (Fourier coefficients at sensor planes) 

as input and determines a control action (Fourier coefficients at actuator plane) as output. 

The estimate state vector represents the vertical structure and the state matrices A*, B*, 

C* and D* are computed in terms of the designed values of wavenumber and Rayleigh 

number, aj^ and Ra*. (see Ekj.(3.7) of Or et al. (2001)). 

The truncation numbers (if = 32, M = 32, JV = 32 +1) considered here are of moder- 

ate size. It is still convenient to compute and pre-store the steady-state Kahnan gain K/ 

and regulator gain, Kc. However, it is not feasible to pre-store the state matrices A* for 

all the wavenumbers. Instead, we compute A* for each set of wavenumbers at each time 

step in the time loop. At each time step, the three sensor plane temperatures, in modal 

coefficients, OkmA'^i^*) (* = 1.2,3) (see Eq.(2.8), are exported from the nonlinear plant 

model. There are 6{K + 1)M of such coefficients, corresponding to wavenumbers 0 to 

if ttaj in the x dependence and (-M + l)ay to May in the y dependence. Thrae values 

are then fed into the controller which consists of the Kalman filter and the regulator. 

The controller processes the mformation based on the measured data and determines the 

control output in terms of a set of 2(ii:+l)M modal coefficients for flfcm,c(0, t). These val- 

ues are then inputed into the nonhnear model through the lower-wall boundary condition. 
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(d) Green's Function For Point Sensors and Actuators 

In some experimental implementations (Tang & Ban 1998a) the sensors and actuators 

are discrete rather than continuous. For the low-resolution point sensors and actuators 

(typically with spacing between array points of 0{d)), it is desirable to stack the arrays 

of sensor and actuator points vertically on top of each other. Indeed, our result will show 

that the maximal effect of actuation camed by an impulse on the seiMor plane occurs 

as a point collocated horizontally with the impulse. For a linear system the controller 

input-to-output relationship can be expressed in the following integral form, 

0cix, y,t) =  j f j G{x,y,t\x', y', t')e,{x', y', t')dx'dy'dt' (2.22) 

where 6c(x,y,t) and Bg{x',y',t') are, respectively, the planar actuator and sensor tem- 

perature fields. Here {x,y) and (x',j/) denote coordinates for the actuator and sensor 

planes, respectively. The kernel G(x,y,t, |a;',y',t') is a Green's fimction (or an influence 

function). The first 3 arguments in G represent the effect and the last 3 represent the 

cause. 

In principle, the input and output of the LQG controller can be represented by a linear 

differential operator L. The precise form of L needs not be specified here, since for oin 

purpose the Green's function will be computed spectrally. In terms of L, we can describe 

some general properties of Green's function. The input and output temperatures to the 

controller is governed by LOc = As, subject to appropriate lateral boundary condition 

in x,y. The Green's formula for any two arbitrary functions u{x,y,t) and v{x,y,t) can 

be written as the sum of an integral / / J(uLv — vL'^u)dx'dy'dt' and a number of terms 

evaluated at the lateral boundaries x = 0,2iT/ax and y = 0,2w/ay. In the formula 

L+ is the adjoint operator of L. Now if further restriction are imposed on u and v, 

the Green's formula produces some important property about the Green's fimction. Let 
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u = G{x,y,t\xi,yi,t') and w = G+{x,y,t\x2,y2,t') where G and G+ satisfy, respectively, 

LG(x,y,t\xi,yi,t') = 6{x-xi)6(y-yi)5{t-t'), L+G+(x,y,t\x2,y2,t') = 5ix-X2)Siy-y2)S{t-t' 

(2.23) 

In addition, G and G+ satisfy the appropriate lateral boundary conditions and adjoint 

boundary conditions so that the boundary terms in the Green's formula mnish. The 

Green's formula becomes 

/ f f(G+LG - GL+G+)dx'dy'dt' = 0 . (2.24) 

Substituting (2.23) in (2.24) we obtain Maxwell's reciprocity relationship G{x2, y2, tNi, t/i, t') = 

G'^ixi,yi,t\x2,y2,t')- In our problem the lateral boundary conditions are periodic. The 

differential operators in x and y are even in d^ and dy. The linear operator L is self- 

adjoint, i.e., L = L+ and the symmetric relationship holds, 

G(x2,y2,t\xi,yi,t') = G{xi,yi,tlx2,y2,t') . (2.25) 

The sjrmmetry relationship above can be interpreted as follows: at a given time t > t^ an 

actuator output of the controller at (x2,y2) due to a unit impulsive sensor input of the 

controller at (a;i,s/i) and time t' is equal to the actuator output at {xi,yi) due to a imit 

impulse sensor input at {x2, ^2) and time t'. 

Of particular interrat here is the shape of the actuator temperature Sdx, y, t) generated 

by a unit impulse temperature at a sensor point {xp, j/p), say, at t = tp. The spatial roll off 

of the actuator temperature affects the spatial resolution of the spacing between sensor 

points. Let the impulsive measurement be 

e,(x', y', t') = S{x' - Xp)S(y' - yp)S{t' - tp) , (2.26) 

from Eq.(2.22) we obtain the Green's function 

e^x,y,t) = G(x,y,t\xp,yp,tp) . (2.27) 
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For each Fourier mode that corresponds to the wave vector {ka^jinay) (where -K/2 ^ 

k < Kl2 and —M/2 < m < M/2), the coefficient represent an entry of measurement 

vector z in the filter equation (2.21). We then have 

u{z,ka^,may,t) = [ e<^*-^^^*5('-^)z(T)dT . (2.28) 
Jo 

Note that the homogeneous solution due to the initial condition decays rapidly and 

does not contribute for sufficiently large t. After the z and u of all the Fourier modes 

are computed, a FFT will transform the two sets of coefficients to 0s{x,y,Za,t) and 

6c(x,y,0,t), respectively. When 0^{x,y,Zs,t) is impulsive according to Eq.(2.26), then 

Eq.(2.28) gives the Green's fimction. 

3. Numerical Results 

(a) Nonlinear convection 

Above the value Ra — itejo f« 1707.76, the no-motion state gives rise to steady, two- 

dimeiKional convection rolb. Depending on the value of Pr, these rolls in tmn will become 

unstable at still higher values of Ra, making transitions to two-dimensional oscillatory 

convection or steady three-dimensional convection depending on the value of Prandtl 

number. Considerable detail about the bifiu-cation diagram is documented in Cross & 

Hohenberg (1993). 

Before engaging in the closed-loop numerical simulations, it is worthwhile to perform 

some comparison to known results, as check cases for validating the nonlinear plant 

model. In Clever and Busse (1974) selective Nusselt number values for the two dimen- 

sional convection solution were published. Table 1 shows the values of Nusselt number, 

JVu, for several different values of Ra at Pr = 0.71 and 7.0 for two-dimensional rolls at 

Ox = 3.117 (ttj, = 0). The Nusselt number is a measure of the convective heat transfer. 


