
 0

U.S.N.A. --- Trident Scholar project report; no. 317 (2003)

EFFICIENT ACADEMIC SCHEDULING AT THE U.S. NAVAL ACADEMY

By

Midshipman David L. Zane, Class of 2003
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Advisers Approval

Assistant Professor William Traves

Department of Mathematics

(signature)

(date)

Assistant Professor Christopher Brown

Department of Computer Science

(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research & Scholarship

(signature)

(date)

USNA-1531-2

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
2 May 2003

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
 Efficient academic scheduling at the U.S. Naval Academy
6. AUTHOR(S)
 Zane, David L. |q(David Lawrence), |d1981-

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
317 (2003)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT: This research project examined academic scheduling problems at the U.S. Naval Academy. The focus was on
devising methods to construct good final exam schedules and improve existing course schedules by facilitation course changes.
The final exam scheduling problem is an example of an NP-hard problem. These difficult problems do not admit efficient
deterministic solutions. Several heuristic methods to treat these problems were considered. An approach using genetic
algorithms showed particular promise. Genetic algorithms involve mating “parent” schedules to form favorable “offspring”
schedules and then subjecting these new schedules to local mutation. A computer program implementing these ideas was
created and tested. Section changes at the Naval Academy had been done on an ad-hoc basis, but this project determined that it
could be streamlined and improved by using a centralized barter system. The barter technique accepts input listing desired
section changes and identifies multi-student section changes to accommodate their desires. A prototype computer program that
uses network flow algorithms to find such section changes was devised. In addition, a method incorporating integer
programming techniques was examined and tested.

15. NUMBER OF PAGES
8114. SUBJECT TERMS:

academic scheduling; final exams; U.S. Naval Academy; integer
programming techniques

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

 1

 ABSTRACT: “Efficient Academic Scheduling at the U.S. Naval Academy”

This Trident Scholar Independent Research Project examined academic

scheduling problems at the U.S. Naval Academy. The focus was on devising methods to
construct good final exam schedules and improve existing course schedules by
facilitating course changes.

The final exam scheduling problem is an example of an NP-hard problem. These
difficult problems do not admit efficient deterministic solutions. Several heuristic
methods to treat these problems were considered. An approach using genetic algorithms
showed particular promise. Genetic algorithms involve mating “parent” schedules to
form favorable “offspring” schedules and then subjecting these new schedules to local
mutation. A computer program implementing these ideas was created and tested.

Section changes at the Naval Academy had been done on an ad-hoc basis, but this
project determined that it could be streamlined and improved by using a centralized
barter system. The barter technique accepts input listing desired section changes and
identifies multi-student section changes to accommodate their desires. A prototype
computer program that uses network flow algorithms to find such section changes was
devised. In addition, a method incorporating integer programming techniques was
examined and tested.

 2

Acknowledgements

 I would like to thank the following people. My advisors, Assistant Professor
William Traves and Assistant Professor Chris Brown – thank you for your guidance,
expertise, and patience. In addition, I want to thank Professor Joyce Shade and the
Trident Committee, for their relentless pursuit of perfection in our projects. Finally, I
would like to thank my family. To my mother Nina, who is my inspiration – you are
everything I could have asked for and then some. To my brother Michael – thank you for
setting the standard so high and tough to reach. To my girlfriend Caroline – thank you
for keeping me happy on those difficult days and tolerating me on those instances tha t I
could not spend time with you.

 3

Table of Contents:

Abstract 1

Acknowledgements 2

Scheduling Final Examinations 4

Course Scheduling 5

 Graphs 5

Course Bartering System 9

 Network Flows 10

 Integer Programming 17

Final Exam Scheduling 20

 Genetic Algorithms 21

 Analysis 28

Recommendations 37

Bibliography 39

Appendices 41

Data Sets 68

 4

 The modern Navy faces numerous logistical problems. These resource allocation

issues come in many forms, one being the problem of efficient scheduling. Since each

problem incorporates a myriad of factors and constraints, they do not admit simple

solutions. Similar types of scheduling problems arise at the United States Naval

Academy. This Trident Scholar research project focuses on two of these problems: the

scheduling of final examinations and an aspect of course scheduling known as the course

bartering system.

Scheduling Final Examinations:

How do you form a good final examination schedule for each semester? The first

step to solving this problem is to define the factors involved. Foremost, good schedules

avoid scheduling conflicts – the situation where midshipmen are scheduled for two

examinations at once. Another important condition is to have the exams that are the most

difficult to grade given first, since all of the professors must submit final grades by a

certain date. Other problems include midshipmen taking three exams in a row or

scheduling two common technical courses consecutively, such as Plebe Chemistry and

Calculus.

Once these factors have been determined and prioritized, a schedule can be

formed. Note that there are trade-offs to be made. If fewer exam periods are used to

accommodate grading concerns, then there are many conflicts. Conversely, if the time

between exams is lengthened in hopes of producing more time to study and fewer

conflicts, then some instructors will have little time for grading (and less midshipmen

leave!).

 5

Course Scheduling:

In course scheduling at the Naval Academy, midshipmen first preregister – a

process where students request the courses they want to take. Once midshipmen are

approved for their course choices, they then register for particular sections within a

course. Each section, however, has a maximum capacity, and midshipmen are not always

placed in the section they desire. The goal of the course bartering system is to allow

midshipmen to submit the changes they would like to their schedules. Then a centralized

system inputs all of these requests and determines the course exchanges that are possible.

The key constraint in determining whether to accommodate a course exchange is the

Academic Registrar’s request to keep the section size of a course the same. Thus, the

program defines an optimal solution as accommodating the largest number of

midshipmen without changing the section size of any course.

Graphs

Graphs are a primary tool for modeling the course bartering system. [BR] A

graph is a pair G = (V, E) where V is the set of vertices, or points, and E is the set of

edges, or line segments between two vertices. Directed edges are edges with direction; in

other words, they have a start vertex and a terminal vertex.

 6

Figure 1: A Graph

 a

 e b

 d c

A typical graph with both directed edges and regular edges. Regular edges can be
thought of as edges directed in both directions.

A graph was constructed to represent the information needed to produce a course

bartering system. A vertex represented each course and section pair. A directed edge

between two vertices indicates that a midshipmen desires to move from one course and

section to another. For instance, the edge [b,c] in Figure 1 is a directed edge. A path from

a starting vertex 1 to a terminal vertex 2 involves moving along any set of edges in the

proper direction from 1 to 2 without repeating edges. In Figure 1, a path from e to c is

given by the chain of vertices e, a, b, c. A cycle in the graph is a path where the starting

vertex is also the terminal vertex. There are no directed cycles in Figure 1; however, if

the edge [d,c] is replaced by the edge [c,d] (reversing orientation), then there is a cycle

involving all of the vertices.

The vertex set of a graph G is the set of all vertices in G. The edge set is the set

of all edges in G. If all of the possible edges of a given set of vertices are present, then

the graph is called a complete graph.

 7

Figure 2: A Complete Graph on Four Vertices

A subgraph G’ of G consists of a vertex set V’ ⊆ V, where V is the vertex set of G. The

edge set of G’ consists of all of the edges between the vertices of V’ that were in the edge

set of G. A clique in G is a complete subgraph induced by a given subset of the vertex

set. Finally, the complement Gc of G is the graph with vertex set V and all of the edges

in a complete graph less the edges already present in G.

Figure 3: A Graph and Its Complement

 G Gc

Some of the scheduling problems fall into a class of problems classified as NP-

hard. [CPPS] These are computationally difficult problems, for which no fast

deterministic algorithms are known. It remains a difficult open problem to show that none

of these problems admit solution by suitably fast methods, but the consensus among the

computer science community is that these problems do not admit simple solutions. As a

 8

result, attention has been focused on finding good heuristic approaches to scheduling

problems. In fact, they are of such central importance that they have received a

tremendous amount of attention. A search on MathSciNet located over 1800 research

articles on NP-hard problems and heuristic approaches to them.

[www.ams.org/mathscinet]

 9

Course Bartering System:

 As stated earlier, in the course bartering system, midshipmen who have already

received their course schedule can submit requests for course changes. A computer

program was developed that finds any possible switches. To that end, several approaches

were examined: a deterministic greedy algorithm method, a cycle graph method, an

algorithm incorporating the depth-first search to find cycles, a network flow algorithm,

and an integer programming approach. Since the first two approaches were not

implemented, they will not be discussed.

In the course bartering system, every midshipman was permitted to declare one

switch as long as their move is to a period that is already open in their existing schedule.

With this restriction in place, the following process on a graph was developed:

An important step in this process is the simplification step. After the simplification,

there must be a cycle in the remaining graph and thus possible switches.

Steps of the Course Bartering System

1. For each course and period pair, (e.g. Electrical Engineering, 6th period)
assign a vertex.

2. For each midshipman requesting to move from one course and period to
another, draw a directed edge from the vertex associated with the current
course and period to the course the midshipmen desires to enter.

3. Remove vertices from the graph that cannot be changed. This would be a
vertex where no midshipman desires to enter or leave that course and period.
In this graph, any vertex without both incoming and outgoing edges may be
eliminated. This is due to the constraint that the section size of any course
must remain the same.

4. Apply an algorithm to look for cycles in the remaining graph. The search is for
cycles instead of paths also because of the constraint that section size of any
course must remain constant.

 10

The goal now became to search for the cycles in the graph. In light of this, a C++

program that finds a directed cycle in a graph with a depth-first search, removes it, and

searches again for another directed cycle, was constructed. It then terminates when the

graph is reduced to the null set. (i.e. when all cycles have been removed) This program

accepts a data file containing course-section pairs and midshipmen desires as input and

yields a possible collection of cycles. (See Appendices A and B for the C++ program

and an example)

The program, entitled the “Cycle-Elimination Program,” is quite efficient. Utilizing

the depth-first search allows the program to be run several times and get all of the

possible cycle combinations on small graphs. However, the task then becomes difficult

when the search transitions into finding the best collection of cycles.

Network Flows:

To deal with optimality concerns, a different algorithm that uses network flows to

implement the course bartering system was examined. [BMMN, DIMACS, OMA] The

Claim: There exists a directed cycle in a graph where all vertices have both
incoming and outgoing edges.

Assume that the graph G does not have a directed cycle and arrive at a contradiction. Start
at any vertex v1. Travel along any of its outgoing edges. Then travel to another vertex,
which is called v2. For the outgoing edge of v2, travel to any other vertex in G, except that
there is no directed edge (v2, v1) because there are no directed cycles. Continue the path to
a vertex now called v3. For the outgoing edge on v3, travel to any other vertex in G, except
v1 or v2, since (v3, v1) and (v3, v2) do not exist because there are no directed cycles. Thus,
for a given vertex vi, any of its outgoing edge can be used except ones leading to vertices
used earlier. (Or the hypothesis is violated). The path eventually includes all of the
vertices. Call the final vertex in the path in G vn. The vertex vn must have an outgoing
edge as given by the conditions of the graph G. This outgoing edge must go to one of the
previously used vertices, and thus there is a contradiction.

Q.E.D.

 11

problem background remains the same: vertices are course-section pairs and directed

edges between vertices indicate that a midshipman desires to move from one section to

another. There is still the search for cycles using a depth-first method. The combination

of cycles using the most edges possible corresponds to the optimal course change.

However, the graph is thought of as a network, and the goal becomes to flow the most

midshipmen from their current course-section pair to the one they desire. Each edge is

assigned a flow, capacity, and cost. The flow is a number that represents the movement

of midshipmen from one section to another. The capacity is the total number of

midshipmen that wish to make the section change. Each midshipman move (traversing an

edge) is assigned a cost of “-1.” The number is negative because these switches are

desired – switches correspond to a benefit. For example, two midshipmen might want to

move from a sixth period Electrical Engineering section to a fourth period section. This

leads to a directed edge in the graph with capacity 2. The objective is to find circulations

of minimum cost. A circulation, C, is a collection of directed cycles. Note that in the

collection, a directed cycle can appear more than once. In fact, for each edge in the

circulation, the number of cycles where that edge appears is limited by the capacity of

that edge. Each circulation is thought of as giving a movement of commodities; in the

course bartering system, the commodities are midshipmen as they move from one section

to another.

A vector notation is sometimes used to describe this flow of commodities. For

each circulation C, a “flow” vector of non-negative integers is constructed. Each

component in the vector is labeled by an edge in G. The flow xij corresponding to edge

[i,j] is the number of times edge [i,j] appears in a cycle of C.

 12

Thus the vector x satisfies:

The cost, cx, of a flow x is the dot product of the flow vector and the cost vector, .xc •

Conversely, any vector of non-negative integers satisfying conditions 1 and 2 is

the vector associated with a circulation. The circulation is constructed as follows. Start at

any of the vertices (v1) that has an outgoing edge with positive flow. Traverse this edge to

another vertex, v2. Then transverse an outgoing edge of v2 to another vertex, v3. Such an

edge exists because of condition (1) above. Continuing in this manner, the path

eventually arrives at a vertex already used. This corresponds to a directed cycle. At this

point, the flow along each of the edges of this cycle must be examined. Flow around this

directed cycle as much as possible. That is, flow an amount equal to the lowest flow of

all of the edges in the cycle. Remove this flow, and the original circulation is reduced to

a smaller circulation. Continue this process of finding directed cycles in the circulation

and passing flow around them as much as possible. Ultimately, the flow vector reaches

zero and the original graph is decomposed into a collection of directed cycles.

An algorithm that uses network flows to find the optimal cycle combination in the

network G was used. [OA] First, the depth-first search finds a cycle, which induces a

flow along its edges. (Alternatively, start with the zero flow – the function that assigns

1. For each vertex i the flow into the vertex is the same as the flow
leaving the vertex:

for each i ∑ ∑=

j j
jiij xx .

2. For each edge the flow along the edge is not greater than the
 capacity of the edge.

 13

flow zero to each edge.) Then form a residual graph G(x) from the flow x. This is a new

graph, consisting of the same vertex set as G. Join vertex x to vertex y in the residual

graph if either (1) the residual capacity, the capacity of [x, y] in G minus the flow on the

edge [x, y] is positive (here we label this new edge with its residual capacity and assign it

cost -1) or (2) the flow on edge [y, x] in G is positive. In this second case, flow along the

edge [x, y] in the residual graph corresponds to reducing the flow along [y, x] in the

original network. In the second case, the new edge is assigned capacity equal to the flow

along [y, x] in G and assigned cost 1.

Once the residual graph G(x) is made, then search for a cycle in G(x) with

negative total cost. Choose that cycle and overlay it on the original graph: for each edge

[x, y] in the cycle that also appears in G, increase flow along [x, y] by 1; for each edge

[x, y] in the cycle that does not appear in G, the reverse edge [y, x] must appear in G (this

follows from the definition of the residual graph) and thus, decrease the flow by 1 along

edge [y, x] in G. Then form a new residual graph and use the depth-first search to find

another negative cost cycle. Repeat this process until there are no negative cost cycles in

the residual graph. When this is the case, a circulation in G that minimizes the total cost

has been found. This corresponds to finding the section changes that accommodate the

greatest number of midshipmen while keeping section sizes constant.

 The key mathematical concept in this algorithm is as follows: a feasible flow x

is an optimal solution of a minimum cost flow problem if and only if the residual network

G(x) contains no negative cost cycles. Below are a construction and a proof. [OMA]

 14

Proof that a feasible flow x is an optimal solution of a minimum cost flow problem if
and only if the residual network G(x) contains no negative cost cycles:

Part 1:
Suppose that x is a feasible flow and that the residual graph G(x) contains a net negative
cost cycle. Positive flow can be augmented along the negative cycle to get a new
circulation of smaller cost. Therefore, if x is an optimal flow, then G(x) does not contain
any net negative cost cycles.

 Part 2:
Suppose x is a feasible flow on G and that G(x) contains no net negative cost cycles. Let
x* be an optimal flow in G and x ≠ x*. The flow x* corresponds to a flow x’ in the
residual network G(x). Let c’ denote the costs assigned to each edge in G(x), and let c
denote the costs in G. For every directed edge [i, j] in G, c’ij = cij and c’ ji = - cij. For the
flow x*ij on edge [i, j] in the network G the cost of the associated flow x’ on the edges [i,
j] and [j, i] in G(x) is c’ ij x’ij + c’ji x’ji = c’ij (x’ij - x’ji) = c ij x*ij - cij xij .
Thus, c’x’ = cx* - cx.

The flow x’ in G(x) corresponds to the difference vector x* - x. The circulation
corresponding to x’ can be decomposed into a finite collection of cycles in G(x). But the
costs of all cycles in G(x’) are nonnegative. Therefore, cx’ = cx* - cx ≥ 0, or cx* ≥ cx.
Also, since x* is an optimal flow, cx* ≤ cx. Thus cx* = cx’, and x’ is also an optimal
flow.
 Q.E.D.

Construction: For a given flow x, every flow x* in the network G corresponds to a
flow x’ in the residual network G(x).

Define the flow vector x’ as the unique vector of non-negative integers satisfying:
 x’ij – x’ji = x*ij – xij and x’ij x’ji = 0
The second equality implies that x’ij and x’ji cannot both be positive.

If xij < x*ij, set x’ji = 0 and x’ij = x*

ij - xij. If x*ij is not greater than the capacity uij of the
edge [i,j], then x’

ij ≤ uij – xij = rij, the residual capacity on the edge [i,j]. Also x’ji = 0 so
the flow x’ satisfies the capacity constraints in G(x).

If xij = x*ij, set x’

ji = -(x*ij – xij) and x’
ij = 0. As before, the flow x’ satisfies the capacity

constraints in G(x).

Thus, if x* is a feasible flow in G, its corresponding flow x’ is a feasible flow in G(x).

 15

In short, the following is the network flow algorithm applied to the course

bartering system.

The determination on whether a net negative cycle is in the residual graph can be found

in polynomial time using Karp’s algorithm. Below is the basis behind the algorithm and

its conclusion. [KA]

Network Flows:

1. For each course and period pair, assign a vertex. (i.e. Electrical Engineering, 6th period)
2. For each midshipman requesting to move from one course and period to another, draw a

directed edge from the vertex associated with the current course and period to the vertex
the midshipmen desires to enter.

3. Simplification process – elimination of any vertex that does not have both incoming and
outgoing edges.

4. Assign to each edge an original flow of 0 and a cost of -1.
5. Form the residual graph.
6. Use Karp’s algorithm to determine if there are net negative cycles in the residual graph. If

not terminate the algorithm.
7. Search for a net negative cycle in the residual graph.
8. Overlay it on the original graph with the adjusted flow and cost values.
9. Repeat steps 5-8 until there are no net negative cycles in the residual graph.

Karp’s Algorithm: Terminology and Conclusion:

Let G = (V, E) be a graph with n vertices.
Each edge in E has weight f(e).
Given any sequence of edges s = e1, e2, … , ep:

 Let the weight of s, w(s) = ∑
=

p

i
ief

1

).(

 Let the mean weight of s, m(s) = w(s)/p

Let s be an arbitrarily chosen vertex in G. For every vertex v and every nonnegative integer k, define
Fk(v) as the minimum weight edge progression of length k from s to v.
Let ?* denote the minimum cycle mean = minc m(C) where C ranges over all directed cycles in G. Then
?* can also be computed as:

 []kn
vFvF

nkVv
kn

−
−

−<<∈=)()(max

10
min*λ .

A negative cycle exists if and only if ?* < 0.

 16

To give an example of the network flow algorithm in action, consider the “Hanging

House” network. (See Figure 4) By observation, it can be seen that the triangle and the

square are possible cycles, but since they share an edge of capacity 1, both cannot be

chosen. If the “cycle-elimination” program were run several times, it would find both

cycles. The square would then be chosen because it leads to switches that accommodate

the most number of midshipmen. However, in more complicated graphs, where there are

potentially a large number of directed cycles, it is not guaranteed that the current program

would find the best collection of directed cycles (i.e. the collection that accommodates

the most midshipmen). Thus, it is assumed in this example that the depth-first search

found the less beneficial cycle (the triangle). Then the network flow algorithm is applied.

The following graph designates that the triangle has been chosen as a flow, as represented

by the "1" values in the flow component in the ordered pair.

Figure 4: Hanging House Network Graph

(Flow, Cost) (0, -1)
All edges have capacity 1. 1

 (1, -1) 2 3 (1, -1)

 4
 (1, -1)
 5 6
 (0, -1) (0, -1)

 (0, -1)
 7

Following the algorithm, the next step is to produce the residual graph.

 17

Figure 5: Hanging House Network Residual Graph

(Residual Capacity, Cost) (1, -1)

 (1, 1) (1, 1)

 (1, 1)

 (1, -1) (1, -1)

 (1, -1)

There is a net negative cycle in the residual graph that traces around the perimeter of the

house. Choose it because it has a net negative cost of -1. Then overlay1 it on the original

graph and only the square cycle remains. Create a new residual graph from the new flow.

Since this residual graph has no net negative cycles, the optimal network flow has been

found.

Integer Programming

 Another promising approach to the course bartering system involved the use of

linear and integer programming. [S, V] Simply put, in a linear programming problem,

the goal is to maximize a certain objective function subject to known constraints. The

only extra stipulation on an integer programming problem is that some of the variables

are constrained to be integers.

 This integer programming approach was examined to see if it produced the

optimal solution to the hanging house network. The problem was modeled as follows: A

1 That is, add the vector (0,1,1,1,0,0,0) corresponding to the triangle cycle to the vector corresponding to
the perimeter (0,-1,-1,0,1,1,1).

 18

matrix, M, where the rows represented midshipmen desires and the columns were course-

section pairs, was developed. In its initial phases, all values in the matrix could either be

a -1, 0, or 1. A -1 signified a person wanting to leave a certain course and section and a 1

represented a student wanting to change to that course and section. The rest of a row

would be filled with zeros. The goal is to maximize the amount of changes that could be

made subject to the constraint that each course and section size must not increase. The

request vector w is used to determine whether a request can be accommodated.

In other words,

 





=
 made isswitch si'student if 1,

madenot isswitch si'student if ,0
iw

Thus, the values of this vector are either one or zero, the former if a change can be made

and the latter if not. The amount of requests accommodated is constrained by the

components of the resultant vector, r, which is a course’s section size. This must be less

than zero. Thus, in

w • M = r

the goal is to maximize the sum of the entries in w subject to r ≤ 0. Like in the network

flow algorithm, where it is desired to minimize costs, maximizing w also yields a solution

that accommodates the largest number of midshipmen.

 19

The matrix, M, for the hanging house network looked as follows:

 Sections of Courses

 := A













-1 1 0 0 0 0
0 -1 0 0 0 1
0 0 -1 0 0 1
0 0 1 -1 0 0
0 1 0 0 -1 0
0 0 0 1 -1 0
0 0 0 0 1 -1

This IP problem was submitted to the NEOS Server, a group of processors that

solve large-scale linear programming problems expediently. It could be given to a linear

programming solver because this example shares the properties of a transportation

problem, which always has an integral optimal solution. It is an interesting problem to

see whether the optimal solution is always integral when all scheduling requests are

made.

The NEOS Server uses a heuristic known as the simplex method. This method is

an iterative process that starts with a feasible solution that satisfies the given linear

programming problem and then looks for a better solution that produces a larger

objective function value. This process is continued until the objection function value

cannot be increased. In the case of this particular IP problem, the server did indeed find

the optimal solution of four section changes. (See Appendix C)

Midshipmen Requests

 20

Final Examination Scheduling:

 The problem of scheduling final examinations has been approached using a

variety of methods. [C, CLC, LD, MRP] However, each problem is unique since the

constraints are different. Thus, an algorithm that produces good schedules at large

civilian schools might not yield the same results at the Nava l Academy. The Naval

Academy initially scheduled final exams by hand, using a collection of magnets. When

computing facilities became available, there was a transition to the Stilwell One-Pass

algorithm [St] designed by MIDN Mahlon Stilwell. In this algorithm, the courses are

ordered and input into a software program. The computer then produces a schedule with

a small number of conflicts. For example, in the spring of 1996, 261 courses were

entered and a schedule with ninety midshipmen conflicts was produced. The Stilwell

algorithm was well suited for minimizing conflicts and its code could be adjusted.

However, it responded poorly to many other constraints that were placed on the schedule.

 In 1996, Professor Mark Meyerson, Chair of the United States Naval Academy’s

Mathematics Department, researched alternative ways to produce a final examination

schedule. [M] He recommended that the Naval Academy transition to the Strathmann

Schedule Expert. [SSE] The Strathmann Schedule Expert produced a schedule for the

spring semester of 104 conflicts. Although this exceeded the conflict number of the

Stilwell algorithm, the program was simpler to use, more easily adaptable, and also

responded better to many constraints placed on the schedule. Further, its schedule

consisted of fewer days where midshipmen had two examinations. The downside of the

Strathmann Schedule Expert is that it is proprietary and thus there is no access to the

code. In other words, though Strathmann Associates works closely with the Registrar’s

 21

Office, the Naval Academy schedulers have no idea how their algorithm works. Other

methods, such as the descent method, simulated annealing, and partial search methods,

were also identified in Professor Meyerson’s research. The descent method is an

exhaustive search that begins at a schedule in the space of schedules and then moves to

another schedule if it has a lower midshipmen conflict number. It continues in this

manner until the search leads to a local minimum, known as a valley. The terminology of

searching a “space of schedules” and “valleys” will be referred to.

Genetic Algorithms:

 Another approach to constructing good final exam schedules involves using

genetic algorithms. [K] Applying genetic algorithms to the final examination problem is a

two-step process. First, mate two “parent” schedules to form “child” schedules. Then

subject the “child” schedule to local mutation by randomly selecting and moving courses

from slot to slot. If the “child” schedule is better than its parents’ schedules, keep the

child; otherwise, discard it and perform the process again. The example below illustrates

the mating process.

 22

Figure 6: Genetic Algorithm Example

Parent 1

MONDAY TUESDAY WEDNESDAY

Chemistry Leadership Calculus
Physics Naval Law Electrical Engineering

Navigation International Relations Thermodynamics
English Political Science Methods Boats

+
Parent 2

MONDAY TUESDAY WEDNESDAY

Boats Political Science Methods Physics
Calculus Thermodynamics Navigation

Electrical Engineering International Relations Naval Law
English Leadership Chemistry

=
Child

MONDAY TUESDAY WEDNESDAY

Chemistry Leadership Electrical Engineering
Physics Naval Law Political Science Methods

Navigation Boats Thermodynamics
English Calculus International Relations

In the example, the highlighted portion of parent 1 is carried over into the child. The rest

of the slots in the child schedule are then taken from parent 2 in the order that they

appear. In a normal genetic algorithm, the child schedule would then be subject to the

local mutation step.

 23

The benefit of the genetic algorithm is shown in the example as well. Parent 1 is

unfavorable because it schedules two required sophomore-year Political Science courses,

Political Science Methods and International Relations, in the same exam slot. Parent 2 is

also unfavorable because it schedules two common sophomore-level courses, Physics and

Navigation, in the same exam slot. Their child, however, avoids both of these trouble

areas, and thus its conflict number is probably less than both of its parents.

A preliminary computer program that takes a possible schedule as input and

continually applies the local mutation step was developed. In other words, it just

randomly changes the slot assignment for one course and sees if the conflict number has

decreased. If it has, it keeps the change; otherwise, it backtracks and tries again. In the

program, 10,000 local changes were tried.

When the program was applied to the fall semester final exam data, it produced a

conflict number of 24, as opposed to the conflict number of 76 obtained by the Academic

Registrar. Even though the Strathmann program used by the registrar takes into account

more factors than the conflict number, genetic algorithms showed tremendous promise.

A complete genetic algorithm was then developed to be applied to the spring

semester exam data. The first part of the process involves generating an initial

population of schedules. From the exam data, the conflict graph was formed. This graph

depends on a parameter, ccut. The graph is made of vertices that represent courses that

have final examinations. Two vertices are joined by an edge if there are at least ccut

midshipmen taking both final examinations. Then the courses are ordered by the degree

of their vertex. 2 Since the final exam schedule consists of fifteen exam slots, the fifteen

2 The degree of a vertex is the number of edges incident to that vertex.

 24

vertices of highest degree are chosen and placed in different exam slots. The rest of the

courses are filled in randomly to complete the schedule.

After this preprocessing step, the initial population is subject to local mutation.

To reiterate, the local mutation step makes random moves of a course to a different exam

slot to see if the midshipman conflict number decreases. If it does, the move is made;

otherwise, it is discarded and the process is repeated. Once the initial number of local

mutations is made, the mating process is ready to begin.

In this genetic algorithm, the following method was devised to simulate the

mating process of two schedules. Parent 1’s first exam slot is carried to the child. Parent

2 then fills in the child’s next exam slot with their second slot. If a course in their second

slot is already in the child schedule (from Parent 1), it is just omitted. In other words,

there is no chance of having the same course in the child scheduled more than once.

Parent 1 then fills in the child’s third exam slot, Parent 2 the fourth, and so forth. Once

all of the child’s slots are filled, there may be courses that were not scheduled in the child

schedule. To ensure every course is present in the child, there is one more run through

the exam slots. In this run, Parent 2 contributes its first exam slot to exam slot one of the

child, and Parent 1 fo llows suit for the child’s second exam slot. Following this process

all the way through the exam schedule a second time ensures that every course is

scheduled. An example of the intermingle mating process is provided below.

 25

Figure 7: Intermingle Mating Process

The population undergoes the mating process for a given number of generations.

After each generation, the child schedules are subject to another local mutation. The

theory behind the local mutation process is that often in the search for an optimal

schedule in terms of low conflict number, a local minimum can be encountered. In other

words, when searching the space of schedules, the lowest conflict number in a small

region might be found, vice the smallest number overall. In these cases, it is often

favorable to make “jumps,” where the search can move to another region. Although this

PARENT 1

Slot 1:
Calculus, IR

Slot 2:
Physics, Leadership II

Slot 3:
Criminal Justice,
Chemistry

PARENT 2

Slot 1:
Chemistry, Dynamics

Slot 2:
Criminal Justice,
Plebe Navigation

Slot 3:
Statistics, Weapons

CHILD: ROUND 1

Slot 1:
Calculus, IR

Slot 2:
Criminal Justice,
Plebe Navigation

Slot 3:
Chemistry

CHILD: ROUND 2

Slot 1:
Calculus, IR, Dynamics

Slot 2:
Criminal Justice
Plebe Navigation
Physics, Leadership II

Slot 3:
Chemistry
Statistics, Weapons

 26

might lead to a higher value conflict number initially, the search in this new region may

eventually descend to a lower va lley. To ensure that there is not a transition to higher

valleys, a given number of “best” schedules are kept. In other words, after every

generation a given number of favorable schedules, or those with the lowest conflict

number, are passed to the next generation for more mating. In this way, the most

favorable schedules from previous generations are always kept and hopefully these will

improve further with more generations. The complete genetic algorithm was as follows:

When the genetic algorithm program was first run on the Spring 2003 data, the

results were extremely good. The best schedule had nine midshipman conflicts and eight

course conflicts. The final exam schedule produced for this semester with the

Strathmann Schedule Expert had well over 150 midshipmen conflicts. These numbers

were a little misleading, however, considering that there were many factors, such as long

grading considerations and exams that must be taken together, that were taken into

account in the Strathmann program. Nonetheless, when the Strathmann program was run

without any of these factors included, its best result was still over thirty conflicts. This

Genetic Algorithm

1. Form initial population of schedules. Use the conflict graph to separate the “most
conflicted” courses and then randomly fill in the remaining courses in a given exam slot.

2. Subject the initial population to local mutations, or random moves of courses between
exam slots.

3. Mate for a given number of generations. Mating two parents involves alternatively filling
in the consecutive exam slots with the corresponding courses from the parents.

a. Subject the children schedules to local mutations after each generation.
b. Produce more child schedules by mating random pairs in the current population.

Discard the current population but keep a given number of best schedules.
4. Subject the population to one more local mutation.
5. Follow the process for incorporating courses with long grading concerns.

(Explained below)

 27

genetic algorithm program had produced a raw schedule with one third of the

midshipmen conflicts.

There were still many concerns with the initial genetic algorithm program. In

particular, there were three extra factors that needed to be incorporated into the genetic

algorithm code. The first factor was setting a limit on the amount of midshipmen

scheduled to take an exam in a given exam slot. The Academic Registrar currently uses

two thousand midshipmen as a capacity for each slot. In the Spring 2003 schedule with

only nine midshipmen conflicts, there were exam slots with over 2800 and 3700

midshipmen scheduled to take an exam. Thus, the constraint that only 2400 midshipmen

can take an exam in one exam slot was added. If this value were exceeded, the overflow

would be added to the conflict number, or total cost.

The next constraint incorporated into the genetic algorithm program was the

requests by various academic departments to have certain final exams given at the same

time. These “groupings” were added into the original exam data file by making any

courses fitting this criterion into one larger course. With the new “groupings”

consideration and maximum exam slot capacity, the genetic algorithm program was

tested again. This time, the best results were twelve midshipman conflicts and twelve

course conflicts. Furthermore, none of the exam slots exceeded midshipman capacity.

The number of midshipmen in each exam slot ranged from 636 to 2215, and the average

was 1390.5.

The final constraint added to the genetic algorithm program deals with proximity

concerns. Every semester, each academic department can submit requests for courses

they feel require a long time for grading. This list of courses was made into a data file

 28

and a method to accommodate the largest amount of courses possible was devised. The

exam slots in the final schedule produced by the genetic algorithm program are distinct,

and thus they can be arranged in any order. Therefore every course with a long grading

concern was labeled with a value one. All of the other courses had value zero. These

values were summed for each exam slot. Then the slots were placed in descending order

so that the slots with more long grading courses went first.

Analysis:

 There are seven variables in the genetic algorithm program. They include: the

threshold in the conflict graph (“ccut”), the initial size of the population, the number of

local mutations performed on the initial population, the number of generations, the

number of children, the number of these children that were good schedules and kept for

more matings, and the number of local mutations performed on the children after each

generation. The initial experimentation began with establishing a baseline of variable

values (that were picked following promising initial results) and then isolating a given

variable to see its effect on the number of midshipmen conflicts, course conflicts, and the

time it took to produce the final schedule. This effect was determined by changing a

designated variable’s baseline value over successive trials while fixing all of the other

variables. For each part of this first set of experiments, five trials were performed for

each value of a given variable. The following are charts showing the results of these

isolation experiments. The midshipmen conflict numbers are averages of the five trials.

 29

Figure 8

Effect of Varying Threshold on
Midshipmen Conflicts

15.6
16.6

15.4

14.2

15.6

12
13
14
15
16
17
18
19
20

0 10 20 30 40 50 60

Threshold

M
id

sh
ip

m
en

C

o
n

fl
ic

ts

Figure 9

Effect of Varying Initial Population
Size on Midshipmen Conflicts

16.8

15.2
16

14

15.8

12

13

14
15

16

17

18

19
20

0 500 1000 1500 2000 2500

Initial Population Size

M
id

sh
ip

m
en

C

on
fli

ct
s

 30

Figure 10

Effect of Varying Initial Local
Mutations on Midshipmen Conflicts

16.416.2
15.6

15
16

12
13

14
15
16

17
18

19
20

0 2000 4000 6000 8000 10000 12000

Number of Initial Local Mutations

M
id

sh
ip

m
en

 C
o

n
fl

ic
ts

Figure 11

Effect of Varying the Number of
Children on Midshipmen Conflicts

14.2

17

15.2
16

18.4

12
13

14

15
16

17
18

19
20

0 5 10 15 20 25 30

Number of Children

M
id

sh
ip

m
en

C

o
n

fl
ic

ts

 31

Figure 12

Effect of Varying the Number of
Generations on Midshipmen Conflicts

15.8
15

16 16.2 15.8

12
13
14
15
16
17
18
19
20

0 50 100 150 200 250 300 350

Number of Generations

M
id

sh
ip

m
en

C

o
n

fl
ic

ts

Figure 13

Effect of Varying the Number of "Best"
Schedules Passed onto Future

Generations

17.2 17

15.2

13.4
12.412

14

16

18

0 1 2 3 4 5 6

Number of "Best" Schedules Kept for
Future Mating

M
id

sh
ip

m
en

C

o
n

fl
ic

ts

 32

Figure 14

Effect of Varying the Number of
Local Mutations

Performed Each Generation

19

15.8 16
17

15.4

12
13
14
15
16
17
18
19
20

0 2000 4000 6000 8000 10000 12000

Local Mutations Performed Each Generation

M
id

sh
ip

m
en

C

o
n

fl
ic

ts

In terms of pure conflict number, most of the variables did not follow a consistent

pattern. This displays the randomness of the genetic algorithm, which is indeed desired

in such a scheduling problem heuristic. Two variables, however, did show some

correlation in their experiments. When the “ccut” variable was increased, there was a

gradual decline in the number of course conflicts and essentially no change in the time.

The number of “best” schedules after each generation also showed a consistent response

in the results. When this value was increased from one to five, there was a significant

decrease in the number of midshipmen conflicts and no effect on the time. In other

words, the lowest group of midshipmen conflict numbers resulted when five out of the

ten schedules produced from each generation were “best” schedules from previous

generations. Throughout all of this first set of experiments, which consisted of over 175

 33

trials, the best result was ten midshipmen conflicts, ten course conflicts, and a time of 471

seconds, or roughly eight minutes. The whole experiment took nearly 24 hours on one

processor. However, the genetic algorithm program can be easily run on several

processors in parallel. Thus, the running time would be less on the sixteen processors of

the Beowulf cluster, which is a parallel processing network located in Chauvenet Hall.

 The next set of experiments sought to find out whether the mating process was

more significant than the local mutation step, or vice versa. An age component was

added to the genetic algorithm program. When the experiment outputs the best schedule

from each generation, it would now also indicate the age of the schedule. The age of the

schedule is the number of local mutations that have been performed to the schedule. This

set of experiments had fewer generations than the normal baseline and less mutations

after each generation. Another addition to the genetic algorithm program for this

experiment was a part to the mutation step that would equate the number of mutations

performed on the newly produced children schedules to the kept “best” schedules. The

number of “best” schedules kept from previous generations was then varied. The

following graphs display the results of this set of experiments.

 34

Figure 15

Local Mutations v. Mating Process

28.8

15.4 15.6 14.6 15.2

12
13.2

14.6 13.8 14.2

20.6

35

22.8
21 21 20.2

16.6 16.4
18.4 17.6 18.4

24.2

10

15

20

25

30

35

0 2 4 6 8 10

Number of "Best" Schedules Kept

M
id

sh
ip

m
en

 C
o

n
fl

ic
ts

Figure 16

Local Mutations v. Mating Process

20.6

15.2
14.4 13.8 13.2

11.8
13 12.6 12.4

13.8

19.4

24

18 17.8 18.4

15.8

13.6 13

15.6 15.8 15.8

21.2

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10

Number of "Best" Schedules Kept

C
o

u
rs

e
C

o
n

fl
ic

ts

 35

 This final set of experiments showed that both the mating process and the local

mutation steps are important. As the amount of “best” schedules was increased from zero

to five, there was a significant decrease in the amount of midshipmen conflicts. In fact,

the best Spring semester schedule of ten midshipmen conflicts, nine course conflicts, and

only 556 seconds (just under 10 minutes) was produced when five out of the ten

schedules were “best” schedules. When this number was further increased, the schedules

increased in conflict number. This correlates to the fact that when there was less of a

significant mating process, the schedules became less favorable. When this experiment

was run on the Fall semester exam data, there were similar results. This showed that the

number of schedules kept from previous generations should be around half of the number

of total children used in the mating process.

 The local mutation step probably accounts for most of the genetic algorithm’s

efficiency. However, this step only serves to get the midshipman conflict number to the

lowest point in the local region. Conversely, the mating process has the potential to make

a drastic enough change in the children schedules to move to another region and seek its

lowest point. By keeping a certain number of “best” schedules from previous

generations, the algorithm does not suffer when the search moves to another region with

a higher valley. Therefore, the local mutation step allows the search to reach the best

possible schedule in the local area, and keep it on record in case it is the best schedule in

all of the areas. The mating process is equally important because it allows the search to

span more of the space of schedules and potentially find a region that descends to a lower

midshipmen conflict number. Overall, both contribute to the genetic algorithm.

 36

 An important practical question is how to best take advantage of increased

running time (for example, if the Registrar wants to run the program overnight). Several

possibilities are: increase the initial population size, increase the number of schedules in

each generation, increase the number of generations and increase the number of local

mutations in each generation. However, increasing many of these variables just adds

time, but does not decrease the midshipmen conflict number. For instance, increasing the

number of generations does not produce better schedules, as Figure 12 shows. If more

time is allocated, the number of local mutations in each generation should be increased.

This assessment is supported by Figure 14, where the lowest midshipmen conflict

number is obtained when the number of local mutations is greatest.

 37

Recommendations:

 The course bartering system is a reasonable addition to the course scheduling

process. The “Cycle Elimination” program is extremely efficient in finding the cycles

that would correspond to possible course-section switches between midshipmen.

Furthermore, network flow techniques provide an algorithm to determine the optimal

accommodation of midshipmen. Finally, the integer programming approach also

provides an efficient way of finding the optimal accommodation. This approach allows

for midshipmen to submit more than one change to their schedule. In addition, the model

of the course bartering system as an integer programming problem is quite similar to

other well-known problems that could be examined. It is recommended that the course

bartering system be added to the scheduling process and that either the network flow

algorithm or integer programming approach be used.

 In terms of final examination scheduling, the genetic algorithm program is

extremely efficient in finding good schedules. Its raw best schedule produced one third

less midshipmen conflicts than the Strathmann Schedule Expert that is used today. Many

of the additional constraints were added into the program, such as the grouping of course

exams where desired, early exams for those courses requiring a long grading period, and

a maximum capacity of midshipmen for each exam slot. Even with these additions, a

Spring semester schedule with ten midshipmen conflicts and nine course conflicts was

produced in roughly ten minutes. The baseline values for the fixed variables in the

second set of experiments should be kept the same. The number of “best” schedules

passed onto future generations should be half of the total children, or in this case, five.

Note that the Strathmann Schedule Expert is still very good at producing exam statistics

 38

and incorporating other constraints. Ultimately, it is recommended that the genetic

algorithm program be used to find an initial schedule that can be used as input into the

Strathmann program. Then the Strathmann software could be used to add any further

improvements to the schedule if necessary.

 39

Bibliography

[BEW] Burke, E.K.; Elliman, D.G. and Weare, R. A University Timetabling System
Based on Graph Colouring and Constraint Manipulation. Journal of Research on
Computing in Education 27, no. 1 (1994), 1—18.

[BMMN] Ball, M.O.; Magnanti, T.L.; Monma, C.L.; Nemhauser, G.L. Network Models.
Elsevier, Amsterdam, 1995.

[BR] Brualdi, R.A. Introductory Combinatorics, Third edition. Prentice Hall, Upper
Saddle River, NJ, 1999.

[C] Carter, Michael W. A Survey of Practical Applications of Examination Timetabling
Algorithms. Operations Research no. 2 (1986), 193 – 202.

[CLC] Carter, Michael W.; Laporte, Gilbert and Chinneck, John W. A General
Examination Scheduling System. Interfaces 24 (1994), 109—120.

[CR1] Chandru, Vijay; Rao, M. R. Integer programming. Algorithms and theory of
computation handbook, 32-1--32-45, CRC, Boca Raton, FL, 1999.

[CR2] Chandru, Vijay; Rao, M. R. Linear programming. Algorithms and theory of
computation handbook, 31-1--31-37, CRC, Boca Raton, FL, 1999.

[CCPS] Cook, W.J; Cunningham, W.H.; Pulleyblank, W.R.; Schrijver, A. Combinatorial
Optimization. John Wiley & Sons, New York, 1998.

[DIMACS] Johnson, D.S.; McGeoch, C.C., editors. Network Flows and Matching.
American Mathematical Society, Providence, RI, 1993.

[H] Hu, T.C. Combinatorial Algorithms. Addison-Wesley, Reading, MA, 1982.

[K] Kreher, Donald L.; Stinson, Douglas R. Combinatorial Algorithms: Generation,
Enumeration, and Search. CRC, Boca Raton, FL, 1999.

[KA] Karp, R.M. A Characterization of the Minimum Cycle Mean in a Digraph. Discrete
Mathematics 23 (1978), 309—311.

[KV] Korte, B.; Vygen, J. Combinatorial Optimization. Second Edition. Springer, Berlin,
2002.

[LD] Laporte, G.; Desroches, S. Examination Timetabling by Computer. Computer
Operations Research, 11 (1984), 351 – 360.

[M] Meyerson, Mark D. On the Mathematics of Exam Scheduling at USNA. Unpublished
report (1996).

 40

[MRP] Mooney, Edward L.; Radin, Ronald L. and Parmenter, W. J. Large Scale
Classroom Scheduling. IIE Transactions, 28:5 (1996).

[OA] Orlin, J.B.; Ahuja, R.K. Minimum Cost Flows. In: Handbook of Discrete and
Combinatorial Mathematics. Kenneth H. Rosen, editor. CRC, Boca Raton, FL, 2000. 673
– 682.

[OMA] Orlin, J.B.; Magnanti, T.L.; Ahuja, R.K. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[PMX] Pardalos, Panos M.; Mavridou, Thelma and Xue, Jue. The Graph Coloring
Problem: A Bibliographic Survey. Pages 331—395 In: Handbook of Combinatorial
Optimization,Vol. 2. Edited by: D-Z. Du and P.M. Pardalos (1998), Kluwer Academic
Press.

[S] Strayer, J.K.; Linear Programming and Its Applications. Springer-Verlag, New York,
1989.

[SSE] The Strathmann Schedule Expert. Software program. Strathmann and Associates.

[St] Stilwell, Mahlon F. A Computer-Assisted Examination Schedule. Unpublished report.

[V] Vanderbei, Robert J. Linear Programming: Foundations and Extensions. Kluwer
Academic, Boston, 1996.

 41

Appendix A: Cycle Elimination Program

Purpose: This C++ program uses an iterative process to find and remove directed

cycles in a given graph.

Input : A data file consisting of the course bartering system graph. In this graph,

vertices represent course section pairs. Directed edges join two vertices
when a midshipmen requests to move from one section to another.

Description: The program first performs a simplification process whereby any vertex

without both incoming and outgoing edges is eliminated. It then uses a
depth-first search to find a directed cycle in the graph. Once a cycle is
found, it is removed and recorded. The process is repeated until the graph
consists of the null set.

Output: All of the alpha codes and corresponding switches that were made on a

given graph.

 42

/************************************
 ** This version takes the first
 ** cycle it finds and removes it!
 ************************************/
#include <iostream>
#include <vector>
#include <string>
#include <stdlib.h>
using namespace std;

//Define new type edge
class edge
{
public:
 bool used;
 int weight;
 int destination;
 vector <string> A;
};

//Define new type vertex
class vertex
{
public:
 bool live;
 vector <edge> N;
 string course;
 string period;
 char color;
};

int getindex(vector<vertex>&,string,string);
void addedge(vector<vertex>&,int,int,string);
void print(vector<vertex> &);
bool are_out_edges(vector<vertex>&,int);
bool are_in_edges(vector<vertex>&,int);
bool simplify(vector<vertex>&);
void deletevertex(vector<vertex>&,int);
vector<int> findcycle(vector<vertex>&);
void deleteedge(vector<vertex>&,int,int);
bool nonempty(vector<vertex>&);
void deletepath(vector<vertex>&, vector<int> &);
int index_in_Nbrs(vector<vertex>&, int, int);
void printcycle(vector<vertex>&,vector<int>&);

int main()
{
 // Read in number of vertices, and rest on first line
 int n;
 string temp;
 cin >> n >> temp >> temp;

 // Read vertices of course period
 vector<vertex> V;
 vertex w;
 for(int i = 0; i < n; i++)
 {

 43

 cin >> w.course >> w.period;
 w.live = true;
 V.push_back(w);
 }

 // Read in number of edges, and rest on line
 int e;
 cin >> e >> temp >> temp;

 // Read and store edges!
 for(int i = 0; i < e; i++)
 {
 // Read through student info, which we'll ignore for now!
 cin >> temp;

 // Read in edge info
 string alpha, course0, period0, course1, period1;
 cin >> alpha >> course0 >> period0 >> course1 >> period1;

 // Add edge to graph
 int s = getindex(V,course0,period0);
 int d = getindex(V,course1,period1);
 addedge(V,s,d,alpha);
 }

 // Print graph
 print(V);
 cout << endl << endl;

 bool f = true;
 while(f)
 f = simplify(V);
 cout << "After simplify: " << endl;
 print(V);
 cout << endl;

 while(nonempty(V))
 {
 vector<int> Cycle = findcycle(V);
 printcycle(V,Cycle);
 deletepath(V,Cycle);

 cout << "After path delete: " << endl; print(V);

 bool f = true;
 while(f)
 f = simplify(V);
 cout << "After simplify: " << endl;
 print(V);
 cout << endl;
 }
 print(V);
 return 0;
}

bool nonempty(vector<vertex>& V)
{

 44

 for(int a = 0; a < V.size(); a++)
 if(V[a].live == true)
 return true;
 return false;
}

// Gets the index in V of the vertex (course,period)
int getindex(vector<vertex>& V,string course, string period)
{
 int index = 0;
 while(index < V.size())
 {
 // Is V[index] the one we want?
 if (V[index].course == course && V[index].period == period)
 return index;
 index++;
 }

 // If we ever get here, things are messed up! We didn't find the
vertex!
}

// Add edge assuming that such an edge is not already in the graph!
void addedge(vector<vertex>& V,int s,int d, string alpha)
{
 int k = index_in_Nbrs(V,s,d);
 if (k > -1)
 {
 // Edge already exists
 V[s].N[k].weight++;
 V[s].N[k].A.push_back(alpha);
 }
 else
 {
 // Create the edge object to add
 edge newedge;
 newedge.used = false;
 newedge.weight = 1;
 newedge.destination = d;
 newedge.A.push_back(alpha);

 // Add edge to vector V[s].N
 V[s].N.push_back(newedge);
 }
}

//Print the graph with given vertices and edges!
void print(vector<vertex> &G)
{
 // loop through each vertex & print edges out of that vertex
 for(int u = 0; u < G.size(); u++)
 {
 if (G[u].live)
 {
 for(int k = 0; k < G[u].N.size(); k++)
 {
 int v = G[u].N[k].destination;

 45

 cout << "Edge: (" << G[u].course << "," << G[u].period
 << ") to (" << G[v].course << "," << G[v].period << ")"
 << " of weight " << G[u].N[k].weight << endl;
 }
 }
 }
}

bool are_out_edges(vector<vertex>& G, int u)
{
 if (G[u].N.size() == 0)
 return false;
 else
 return true;
}

bool are_in_edges(vector<vertex>& G, int u)
{
 for(int a = 0; a < G.size(); a++)
 {
 if (G[a].live)
 {
 for(int k = 0; k < G[a].N.size(); k++)
 {
 if (G[a].N[k].destination == u)
 return true;
 }
 }
 }
 return false;
}

// Simplification of graph:
// returns true if graph was changed and false otherwise
bool simplify(vector<vertex>& G)
{
 bool found = false;
 for(int u = 0; u < G.size(); u++)
 {
 if(G[u].live &&(are_out_edges(G,u) == false || are_in_edges(G,u) ==
false))
 {
 //code that deletes vertex u!
 deletevertex(G,u);
 found = true;
 }
 }
 return found;
}

//Function that will delete a vertex!
void deletevertex(vector<vertex>& G, int u)
{
 // Set vertex u to dead
 G[u].live = false;

 46

 // Delete any edges into u
 for(int a = 0; a < G.size(); a++)
 {
 if (G[a].live)
 {
 for(int k = 0; k < G[a].N.size(); k++)
 {
 if (G[a].N[k].destination == u)
 {
 int n = G[a].N.size() - 1;
 edge t = G[a].N[n];
 G[a].N[n] = G[a].N[k];
 G[a].N[k] = t;
 G[a].N.pop_back();
 }
 }
 }
 }
}

bool dfvisit(vector<vertex>& G, int v, vector<int>& Path)
{
 G[v].color = 'g';
 Path.push_back(v);

 for(int i = 0; i < G[v].N.size(); i++)
 {
 int w = G[v].N[i].destination;
 if (G[w].live)
 {
 bool cyc = false;
 if (G[w].color == 'w')
 cyc = dfvisit(G,w,Path);
 else if (G[w].color == 'g')
 {
 Path.push_back(w);
 cyc = true;
 }

 if (cyc) return true;
 }
 }

 G[v].color = 'b';
 Path.pop_back();
 return false;
}

vector<int> findcycle(vector<vertex>& G)
{
 //Initialize the color of all vertices to white
 for(int i = 0; i < G.size(); i++)
 G[i].color = 'w';

 vector<int> Path;

 for(int v = 0; v < G.size() && Path.size() == 0; v++)

 47

 {
 if (G[v].color == 'w' && G[v].live)
 dfvisit(G,v,Path);
 }

 return Path;
}

void printcycle(vector<vertex> &G, vector<int> &Path)
{
 if (Path.size() > 0)
 {
 // Find first entry of Path that matches the *last* index
 int i = 0;
 while(Path[i] != Path[Path.size()-1])
 i++;

 // Print from Path[i] onwards
 while(i < Path.size()-1)
 {
 // Print switch from Path[i] to Path[i+1]
 cout << G[Path[i]].course << G[Path[i]].period << " " << "to" <<
" "
 << G[Path[i+1]].course << G[Path[i+1]].period << ' ';

 //Find edge from Path[i] to Path[i+1]
 int k = index_in_Nbrs(G,Path[i],Path[i+1]);

 //Print out the last alpha associated with this edge
 cout << G[Path[i]].N[k].A[G[Path[i]].N[k].A.size()-1] << endl;

 i++;
 }
 cout << endl;
 }

}

void deleteedge(vector<vertex>& G, int s, int d)
{
 int a = index_in_Nbrs(G,s,d);

 if (G[s].N[a].weight == 1)
 {
 // swap G[s].N[a] with the last element of G[s].N
 int last = G[s].N.size() - 1;
 G[s].N[a] = G[s].N[last];
 // delete the edge
 G[s].N.pop_back();
 }
 else
 {
 G[s].N[a].weight--;
 G[s].N[a].A.pop_back();
 }
 return;
}

 48

void deletepath(vector<vertex>& G, vector<int> &Path)
{
 int n = 0;
 while(Path[n] != Path[Path.size() - 1])
 n++;
 while(n < Path.size() - 1)
 {
 int s = Path[n];
 int d = Path[n+1];
 deleteedge(G,s,d);
 n++;
 }
}

int index_in_Nbrs(vector<vertex>& V, int s, int d)
{
 for(int i = 0; i < V[s].N.size(); i++)
 if(V[s].N[i].destination == d)
 return i;
 return -1;
}

/Sample data set to be tested

/6 course-period pairs

SM101 1st
SM101 3rd
SM101 6th
HH202 1st
HH202 3rd
HH202 6th

10 Mid preferences

Jones 046754 SM101 3rd SM101 6th
Brown 037876 SM101 1st SM101 3rd
Smith 049888 SM101 6th SM101 1st
Thomas 031234 SM101 1st HH202 6th
Poindexter 041234 HH202 1st HH202 6th
Kant 056789 HH202 6th HH202 3rd
Cohen 034567 HH202 6th SM101 6th
Colt 057891 SM101 3rd SM101 1st
Holmes 034657 HH202 6th SM101 1st
Freud 051234 SM101 1st HH202 3rd
*/

 49

Appendix B: Sample Run of the Cycle Elimination Program

Data File:

6 course-period pairs

SM101 1st
SM101 3rd
SM101 6th
HH202 1st
HH202 3rd
HH202 6th

10 Mid preferences

Jones 046754 SM101 3rd SM101 6th
Smith 049888 SM101 6th SM101 3rd
Thomas 031234 SM101 3rd SM101 6th
Poindexter 041234 SM101 6th HH202 6th
Kant 056789 HH202 6th HH202 3rd
Cohen 034567 HH202 3rd SM101 3rd
Colt 057891 SM101 3rd SM101 1st
Holmes 034657 HH202 6th SM101 1st
Freud 051234 SM101 1st HH202 3rd
Jos 046754 SM101 3rd SM101 6th

Cycle Elimination Program on Data File

Edge: (SM101,1st) to (HH202,3rd) of weight 1
Edge: (SM101,3rd) to (SM101,6th) of weight 3
Edge: (SM101,3rd) to (SM101,1st) of weight 1
Edge: (SM101,6th) to (SM101,3rd) of weight 1
Edge: (SM101,6th) to (HH202,6th) of weight 1
Edge: (HH202,3rd) to (SM101,3rd) of weight 1
Edge: (HH202,6th) to (HH202,3rd) of weight 1
Edge: (HH202,6th) to (SM101,1st) of weight 1

After simplify:
Edge: (SM101,1st) to (HH202,3rd) of weight 1
Edge: (SM101,3rd) to (SM101,6th) of weight 3
Edge: (SM101,3rd) to (SM101,1st) of weight 1
Edge: (SM101,6th) to (SM101,3rd) of weight 1
Edge: (SM101,6th) to (HH202,6th) of weight 1
Edge: (HH202,3rd) to (SM101,3rd) of weight 1

 50

Edge: (HH202,6th) to (HH202,3rd) of weight 1
Edge: (HH202,6th) to (SM101,1st) of weight 1

SM1013rd to SM1016th 046754
SM1016th to SM1013rd 049888

After path delete:
Edge: (SM101,1st) to (HH202,3rd) of weight 1
Edge: (SM101,3rd) to (SM101,6th) of weight 2
Edge: (SM101,3rd) to (SM101,1st) of weight 1
Edge: (SM101,6th) to (HH202,6th) of weight 1
Edge: (HH202,3rd) to (SM101,3rd) of weight 1
Edge: (HH202,6th) to (HH202,3rd) of weight 1
Edge: (HH202,6th) to (SM101,1st) of weight 1
After simplify:
Edge: (SM101,1st) to (HH202,3rd) of weight 1
Edge: (SM101,3rd) to (SM101,6th) of weight 2
Edge: (SM101,3rd) to (SM101,1st) of weight 1
Edge: (SM101,6th) to (HH202,6th) of weight 1
Edge: (HH202,3rd) to (SM101,3rd) of weight 1
Edge: (HH202,6th) to (HH202,3rd) of weight 1
Edge: (HH202,6th) to (SM101,1st) of weight 1
HH2023rd to SM1013rd 034567
SM1013rd to SM1016th 031234
SM1016th to HH2026th 041234
HH2026th to HH2023rd 056789

After path delete:
Edge: (SM101,1st) to (HH202,3rd) of weight 1
Edge: (SM101,3rd) to (SM101,6th) of weight 1
Edge: (SM101,3rd) to (SM101,1st) of weight 1
Edge: (HH202,6th) to (SM101,1st) of weight 1
After simplify:

Empty graph

 51

Appendix C

The following code was used when the course bartering system’s “Hanging House
Network” was modeled as a linear / integer programming problem and submitted to
NEOS Servers. NEOS Servers can be found at www-neos.mcs.anl.gov.

Set Students;
Set Sections;

param ADDDROP{Students, Sections) default 0;

var w{Students} >= 0, <=1; # binary;
var r{Sections} <= 0;

maximize Total_Change: sum {i in Students} w[i]
subject to Change_Section{j in Sections}: sum {i in students} w[i] *AddDrop[i,j] = r[j];

set Students := Cindy David Matt Jennifer Mike Will James;
set Sections := SM112SI SM112S2 SM112S3 SM112S4 SM112S5 SM112S6;

param AddDrop :=
Cindy SM112S1 -1
Cindy SM112S2 1
David SM112S2 -1
David SM112S6 1
Matt SM112S3 -1
Matt SM112S6 1
Jennifer SM112S3 1
Jennifer SM112S4 -1
Mike SM112S2 1
Mike SM112S5 -1
Will SM112S4 1
Will SM112S5 -1
James SM112S5 1
James SM112S6 -1;

solve;
display w, r;

 52

 53

Appendix D: Schedule Formation Program

Purpose: This program provides an efficient way of recording and maintaining all

of the statistics of a final examination schedule. These include: number of
midshipmen conflicts, number of course conflicts and the number of
midshipmen that exceed the 2400-person capacity of each examination
time slot.

Input : A base schedule

Description: This program essentially introduces the statistics by which a final

examination schedule will be measured.

Output: N/A

 54

/***
 ** Definition of class Schedule and related functions.
 **
 ** A Schedule is simply a BaseSchedule augmented with
 ** facilities for efficiently keeping track of the
 ** total number of midshipmen and course conflicts.
 ** The key new functions (i.e. not in BaseSchedule)
 ** are:
 **
 ** int numconflicts(); // # mid conflicts
 ** int num_course_conflicts(); // # course conflicts
 **
 ** A "mid conflict" is a tuple ({c1,c2},alpha) such
 ** that midshipman alpha is enrolled in courses c1
 ** and c2, and c1 and c2 are scheduled in the same
 ** slot. "numconflicts()" returns the number of
 ** distinct mid conflicts. A course conflict is
 ** an unordered pair (c1,c2) such that course c1 and course c2
 ** are scheduled in the same slot. The function
 ** "num_course_conflict" returns the number of
 ** distinct pairs of this kind.
 ***/
#include "BaseSchedule.h"

extern int MaxPerSlot;
inline void setMaxPerSlot(int M) { MaxPerSlot = M; }

class Schedule : public BaseSchedule
{
 public:
 //-- NEW FUNCTIONS --------------------------------//
 int numconflicts() { return MidConflictCount; }
 int num_course_conflicts() { return CourseConflictCount; }

 //-- REIMPLEMENTATIONS OF OLD FUNCTIONS ----------//
 virtual void resize(int numSlots, int numCourses)
 {
 MidConflictCount = 0;
 CourseConflictCount = 0;
 OverFlowPenalty = 0;
 BaseSchedule::resize(numSlots,numCourses);
 StusInSlot.resize(numSlots);
 for(int i = 0; i < numSlots; i++)
 StusInSlot[i] = 0;
 }
 virtual int add(SlotIdx s, CourseIdx c, CourseList &L)
 {
 CourseConflictCount += course_conflicts(s,c,L);
 int k = BaseSchedule::add(s,c,L);
 MidConflictCount += k;
 int contrib = max(0,StusInSlot[s] - MaxPerSlot);
 StusInSlot[s] += L.Course[c].size();
 int delta = max(0,StusInSlot[s] - MaxPerSlot) - contrib;
 OverFlowPenalty += delta;
 return k;
 }
 virtual int remove(SlotIdx s, CourseIdx c, CourseList &L)

 55

 {
 int k = BaseSchedule::remove(s,c,L);
 MidConflictCount -= k;
 CourseConflictCount -= course_conflicts(s,c,L);
 int contrib = max(0,StusInSlot[s] - MaxPerSlot);
 StusInSlot[s] -= L.Course[c].size();
 int delta = max(0,StusInSlot[s] - MaxPerSlot) - contrib;
 OverFlowPenalty += delta;
 return k;
 }
 virtual int overflowpenalty() { return OverFlowPenalty; }
 virtual int cost() { return OverFlowPenalty + MidConflictCount; }
 virtual int cost2add(SlotIdx s, CourseIdx c, CourseList &L)
 {
 int conflictincrease = conflicts(s,c,L), overflowincrease;
 if (StusInSlot[s] - MaxPerSlot >= 0) overflowincrease =
L.Course[c].size();
 else overflowincrease = max(0,StusInSlot[s] +
int(L.Course[c].size()) - MaxPerSlot);
 return conflictincrease + overflowincrease;
 }
 int stusInSlot(int k) { return StusInSlot[k]; }

 private:
 //-- DATA --//
 int MidConflictCount;
 int CourseConflictCount;
 int OverFlowPenalty; // # of stus over MaxPerSlot summed over all
slots
 vector<int> StusInSlot;
};

// This class simply provides a simple comparison of conflict objects.
class CompSchedByMidConflicts
{
 public:
 bool operator()(Schedule *a, Schedule *b)
 {
 return a->numconflicts() < b->numconflicts();
 }
};

// This class simply provides a simple comparison of cost.
class CompSchedByCost
{
 public:
 bool operator()(Schedule *a, Schedule *b)
 {
 return a->cost() < b->cost();
 }
};

 56

Appendix E: Genetic Algorithm Program

Purpose: This C++ program produces good final examination schedules.

Input : Two data files: First, a data file that contains all of the courses with final

examinations and the list of midshipmen taking each exam. The second
data file incorporates values for the threshold variable, initial population
size, number of initial local mutations, number of children produced from
each mating, number of generations, number of local mutations performed
after each generation and number of “best” schedules passed onto future
generations.

Description: The program first forms an initial population of schedules using a

preprocessing (deterministic) step and then a random assignment of
courses to exam slots. The program then follows a process of performing
local mutations to the exam schedule and mating schedules. Local
mutations are single moves of a course exam from one slot to another
while the mating, or combining, of two schedules follows a special
intermingling method.

Output: The best schedule after each generation and best overall schedule. The

program also produces the schedule statistics for these schedules. These
statistics include the number of midshipmen conflicts, the number of
course conflicts and the running time of the program to form the schedule.

 57

#include "Schedule.h"
#include <ctime>
#include <cmath>
#include <algorithm>

int MaxPerSlot;

/***
 ** Function Prototypes
 ***/
// sets S to a random schedule of the courses in L into N exam slots
void rand_sched(Schedule &S, CourseList &L, int N);

// sets S to a schedule that's random, except that the Top Conflicts
// are all in different slots
void not_quite_rand_sched(Schedule &S, CourseList &L, int N,
vector<CourseIdx> &TopConfs);

// Tries to improve schedule "S" by reassigning course "course".
// "course" is assigned to slot resulting in fewest conflicts. If
// there are multiple slots realizing this fewest number of conflicts,
// one of them is chosen at random.

void GreedyImproveMidConflicts(Schedule &S, CourseList &L, CourseIdx
course);
void GreedyImproveCost(Schedule &S, CourseList &L, CourseIdx course);

Schedule* mate(Schedule &A, Schedule &B, CourseList &L);

int main(int argc, char **argv)
{
 int TStart = time(0);
 srand(time(0));

 /*** READ IN COURSE DATA ***************************/
 if (argc < 4) {
 cerr << "Insufficient arguments: <configfile> <inputfile>
<outputfile>" << endl;
 return 1; }
 ifstream ConfIN(argv[1]);
 if (!ConfIN) {
 cerr << "File " << argv[1] << " could not be opened!" << endl;
 return 2; }
 ifstream IN(argv[2]);
 if (!IN) {
 cerr << "File " << argv[2] << " could not be opened!" << endl;
 return 3; }
 ofstream OUT(argv[3]);
 if (!OUT) {
 cerr << "File " << argv[3] << " could not be opened!" << endl;
 return 4; }

 /*** INITIALIZE ************************************/
 setMaxPerSlot(2400);
 int N = 15; // number of exam time slots

 58

 int ccut = 50; // we start with looking at # of conflicts involving
ccut or more students
 int initsize = 1000, initimprove = 5000;
 int restsize = 10, restimprove = 10000;
 int generations = 200; // number of generations
 int hold = 2; // the top "hold" schedules get held over each
generation

 // Read parameter values config file
 string name;
 if (!(ConfIN >> name && name == "ccut" && ConfIN >> ccut)) {
 cerr << "Error reading ccut from config file" << endl; return 5; }
 if (!(ConfIN >> name && name == "initsize" && ConfIN >> initsize)) {
 cerr << "Error reading initsize from config file" << endl; return
5; }
 if (!(ConfIN >> name && name == "initimprove" && ConfIN >>
initimprove)) {
 cerr << "Error reading initimprove from config file" << endl;
return 5; }
 if (!(ConfIN >> name && name == "restsize" && ConfIN >> restsize)) {
 cerr << "Error reading restsize from config file" << endl; return
5; }
 if (!(ConfIN >> name && name == "restimprove" && ConfIN >>
restimprove)) {
 cerr << "Error reading restimprove from config file" << endl;
return 5; }
 if (!(ConfIN >> name && name == "generations" && ConfIN >>
generations)) {
 cerr << "Error reading generations from config file" << endl;
return 5; }
 if (!(ConfIN >> name && name == "hold" && ConfIN >> hold)) {
 cerr << "Error reading hold from config file" << endl; return 5; }

 CourseList L; // create course data structure and read in course info
 L.read(IN);

 /*** Find the "top N" courses ***/
 vector<CourseIdx> TopConfs;

 // Find degrees
 vector<CourseIdx> TCI;
 for(CourseIdx i = 0; i < L.courses(); i++)
 {
 int d = 0;
 for(CourseIdx j = 0; j < L.courses(); j++)
 if (i != j && L.conflicts(i,j) >= ccut)
 d++;
 TCI.push_back(d*5000 + i);
 }

 // Push course indices with N highest degrees on TopConfs
 sort(TCI.begin(),TCI.end());
 for(int k = 1; k < N-1; k++)
 TopConfs.push_back(TCI[TCI.size() - k] % 5000);

 /*** GENERATE AN INITIAL POPULATION OF RANDOM SCHEDULES **/
 vector<Schedule*> Pi;

 59

 for(int i = 0; i < initsize; i++) {
 Pi.push_back(new Schedule());
 not_quite_rand_sched(*(Pi.back()),L,N,TopConfs);
 }

 /*** locally improve 1st population *******************/
 for(int j = 0; j < Pi.size(); j++) {
 for(int k = 0; k < initimprove; k++)
 GreedyImproveCost(*(Pi[j]),L,L.randcourse());
 }

 /*** Take the "restsize" best of the initial population ***/
 sort(Pi.begin(),Pi.end(),CompSchedByCost());
 vector<Schedule*> P(restsize), HallOfFame;
 for(int i = 0; i < restsize; i++)
 P[i] = Pi[i];
 for(int i = restsize; i < initsize; i++)
 delete Pi[i];
 Pi.clear();

 /*** DO THE GENETIC ALGORITHM THING! ***/
 for(int i = 0; i < generations; i++)
 {
 sort(P.begin(),P.end(),CompSchedByCost());
 vector<Schedule*> Old = P;
 P.clear();

 cout << "Generation " << i << " best is " << Old[0]->cost() << ' ';
 cout << "born = " << Old[0]->born << " age = " << Old[0]->age << '
';
 int sum = 0;
 for(int j = 0; j < Old.size(); j++)
 sum += Old[j]->cost();
 cout << "Average is " << double(sum)/Old.size() << endl;

 for(int j = 0; j < hold; j++)
 P.push_back(new Schedule(*Old[j]));

 /*** mate x pairs *************************************/
 int M = Old.size();
 for(int j = 0; j < M - hold; j++)
 {
 int i1 = int(sqrt(double(rand()%(M*M)))), i2;
 do { i2 = int(sqrt(double(rand()%(M*M)))); } while (i1 == i2);
 P.push_back(mate(*Old[i1],*Old[i2],L));
 P[P.size()-1]->born = i + 1;
 }

 /*** locally improve new population *******************/
 for(int j = 0; j < P.size(); j++) {
 for(int k = 0; k < (j < hold ? restimprove : (i+1)*restimprove);
k++)
 // for(int k = 0; k < restimprove; k++)
 GreedyImproveCost(*(P[j]),L,L.randcourse());
 }

 /*** Save best of the Old and kill the rest ***********/

 60

 HallOfFame.push_back(new Schedule(*Old[0]));
 for(int j = 0; j < Old.size(); j++)
 delete Old[j];
 }

 HallOfFame = P; // HACK! Look at ending population and ignore
HallOfFame

 /*** One last local mutate on the hall of fame ********/
 for(int j = 0; j < HallOfFame.size(); j++) {
 for(int k = 0; k < 2*restimprove; k++)
 GreedyImproveCost(*(HallOfFame[j]),L,L.randcourse());
 }

 /*** Print number of conflicts in sorted order ***********/
 cout << endl << endl << "Final Phase:" << endl;
 sort(HallOfFame.begin(),HallOfFame.end(),CompSchedByCost());
 for(int i = 0; i < HallOfFame.size(); i++)
 cout << "cost = " << HallOfFame[i]->cost()
 << " born = " << HallOfFame[i]->born
 << " age = " << HallOfFame[i]->age << endl;

 /*** Write best schedule to output file ******************/
 cout << endl << endl << "Best schedule had "
 << HallOfFame[0]->cost() << " cost and "
 << HallOfFame[0]->numconflicts() << " midshipman conflicts and "
 << HallOfFame[0]->num_course_conflicts() << " course conflicts"
 << endl;
 HallOfFame[0]->print(L,OUT);
 cout << "That took " << (time(0) - TStart) << " seconds" << endl;

 return 0;
}

/********** FUNCTIONS INVOLVING BaseSchedule **********/
void rand_sched(Schedule &S, CourseList &L, int N)
{
 S.resize(N,L.courses());
 for(int i = 0; i < L.courses(); i++)
 S.add(rand()%N,i,L);
}

void not_quite_rand_sched(Schedule &S, CourseList &L, int N,
vector<CourseIdx> &TopConfs)
{
 S.resize(N,L.courses());

 //Place list of N courses with top conflicts in different exam slots
 for(int j = 0; j < TopConfs.size(); j++)
 S.add(j,TopConfs[j],L);

 //Randomly fill in the rest
 for(int course_i = 0; course_i < L.courses(); course_i++)

 61

 {
 // Search for course_i in the cells of TopConfs
 int flag = 1;
 for(int vect_i = 0; vect_i < TopConfs.size(); vect_i++)
 if(course_i == TopConfs[vect_i])
 flag = 0;
 if(flag == 1)
 S.add(rand()%N,course_i,L);
 }
}

void GreedyImproveMidConflicts(Schedule &S, CourseList &L, CourseIdx
course)
{
 S.age++;

 // Remove chosen course
 int oldslot = S.slot(course);
 int delta = S.remove(oldslot,course,L);

 // Collect all optimal choices for assigning "course"
 int fewestconfs = delta;
 vector<SlotIdx> choice(L.courses());
 int i = 0;
 for(SlotIdx newslot = 0; newslot < S.numslots(); newslot++)
 {
 int c = S.conflicts(newslot,course,L);
 if (c < fewestconfs)
 {
 fewestconfs = c;
 choice[0] = newslot;
 i = 1;
 }
 else if (c == fewestconfs)
 choice[i++] = newslot;
 }

 // Randomly choose one of the optimal assignments and make it!
 S.add(choice[rand() % i],course,L);
}

void GreedyImproveCost(Schedule &S, CourseList &L, CourseIdx course)
{
 S.age++;

 // Remove chosen course
 int oldslot = S.slot(course);
 S.remove(oldslot,course,L);
 int delta = S.cost2add(oldslot,course,L);

 // Collect all optimal choices for assigning "course"
 int fewestconfs = delta;
 vector<SlotIdx> choice(L.courses());
 int i = 0;
 for(SlotIdx newslot = 0; newslot < S.numslots(); newslot++)
 {
 int c = S.cost2add(newslot,course,L);

 62

 if (c < fewestconfs)
 {
 fewestconfs = c;
 choice[0] = newslot;
 i = 1;
 }
 else if (c == fewestconfs)
 choice[i++] = newslot;
 }

 // Randomly choose one of the optimal assignments and make it!
 S.add(choice[rand() % i],course,L);
}

Schedule* mate(Schedule &A, Schedule &B, CourseList &L)
{
 // Create new schedule
 Schedule *p = new Schedule;
 Schedule &Baby = *p;
 Baby.resize(A.numslots(),L.courses());

 // Round one of copying!
 for(SlotIdx i = 0; i < A.numslots(); i++)
 {
 // 2a. Interleave exam slots from Schedule A and B
 if(i % 2 == 0)
 { //Copy slot from A
 for(set<CourseIdx>::iterator q = A[i].begin(); q != A[i].end();
++q)
 if (Baby.slot4Course[*q] < 0)
 Baby.add(i,*q,L);
 }
 else
 { //Copy slot from B
 for(set<CourseIdx>::iterator q = B[i].begin(); q != B[i].end();
++q)
 if (Baby.slot4Course[*q] < 0)
 Baby.add(i,*q,L);
 }
 }

 // Round two! Go through slots in opposite manner & fill in left-out
courses
 for(SlotIdx i = 0; i < A.numslots(); i++)
 {
 // 2a. Interleave exam slots from Schedule A and B
 if(i % 2 == 1)
 { //Copy slot from A
 for(set<CourseIdx>::iterator q = A[i].begin(); q != A[i].end();
++q)
 if (Baby.slot4Course[*q] < 0)
 Baby.add(i,*q,L);
 }
 else
 { //Copy slot from B
 for(set<CourseIdx>::iterator q = B[i].begin(); q != B[i].end();
++q)

 63

 if (Baby.slot4Course[*q] < 0)
 Baby.add(i,*q,L);
 }
 }

 return p;
}

 64

Appendix F: Verification of Schedule Program

Purpose: This C++ program establishes the validity of any final examination

schedule produced and incorporates the proximity step.

Input : A final examination schedule and a data file with all of the courses

requiring a long period to grade.

Description: This program first verifies that all of the final exams are present in the

final examination schedule produced. It then incorporates a proximity
step that orders the exam slots by the number of “long grading” courses
that each exam slot contains.

Output: A schedule in proximity order. In addition, it yields values for the number

of “long grading” courses in each exam slot and the number of students
taking an exam in each exam slot.

 65

/***
 ** verifyshed <coursefile> <schedfile>
 **
 ** Program reads data from coursefile and reads a
 ** proposed schedule from schedfile and reports the
 ** conflict numbers, as well as verifying that all
 ** courses are scheduled. It also implements the
 ** proximity step.
 ***/
#include "Schedule.h"
#include <ctime>
#include <cmath>
#include <algorithm>

int MaxPerSlot;

Schedule* reorder(string fname, Schedule &A, CourseList &L);

int main(int argc, char **argv)
{

 /*** INITIALIZE ************************************/
 int N = 15; // number of exam time slots

 /*** READ IN COURSE DATA ***************************/
 if (argc < 3) {
 cerr << "Insufficient arguments: <coursefile> <schedfile>
[<orderfile> <reorderedfile>]" << endl;
 return 1; }
 ifstream C_IN(argv[1]);
 if (!C_IN) {
 cerr << "File " << argv[1] << " could not be opened!" << endl;
 return 2; }
 ifstream S_IN(argv[2]);
 if (!S_IN) {
 cerr << "File " << argv[2] << " could not be opened!" << endl;
 return 3; }

 string orderfile;
 if (argc >= 4)
 orderfile = string(argv[3]);

 ofstream ReOUT;
 bool reout;
 if (reout = (argc == 5))
 {
 ReOUT.open(argv[4]);
 if (!ReOUT) {
 cerr << "File " << argv[4] << " could not be opened!" << endl;
 return 5; }
 }

 CourseList L;
 L.read(C_IN);

 /*** READ IN SCHEDULE ******************************/
 Schedule S;

 66

 S.resize(N,L.courses());
 SlotIdx slot = -1;
 string s;
 while(S_IN >> s)
 {
 if (s == "Slot")
 {
 S_IN >> s;
 slot++;
 }
 else
 {
 map<string,CourseIdx>::iterator p = L.NameIndex.find(s);
 CourseIdx course = p->second;
 S.add(slot,course,L);
 }
 }

 /*** REPORT **/
 bool cflag = true;
 for(CourseIdx course = 0; course < L.courses(); course++)
 {
 if (S.slot4Course[course] < 0 || S.slot4Course[course] >
S.numslots())
 {
 cflag = false;
 cout << "Course with index " << course << " is not scheduled!" <<
endl;
 }
 }
 if (cflag)
 cout << "All courses are scheduled!" << endl;
 cout << "Schedule has " << S.numconflicts() << " Mid conflicts!" <<
endl;
 cout << "Schedule has " << S.num_course_conflicts() << " course
conflicts!" << endl;

 cout << "Students scheduled in slot: " << endl;
 for(int i = 0; i < N; i++)
 cout << S.stusInSlot(i) << ' ';
 cout << endl;

 // Order info
 Schedule *p = 0;
 if (orderfile != "")
 p = reorder(orderfile,S,L);
 if (reout)
 {
 p->print(L,ReOUT);
 cout << "Reordered schedule in file " << argv[4] << endl;
 }

 return 0;
}

 67

Schedule* reorder(string fname, Schedule &A, CourseList &L)
{
 // Create set of all course indices that are long grading
 ifstream IN(fname.c_str());
 set<CourseIdx> EGC;
 string s;
 while(IN >> s)
 EGC.insert(L.NameIndex[s]);

 // Fill V with (numearlygradecourses,slotindex)
 vector< pair<int,int> > V(A.numslots());
 for(int i = 0; i < A.numslots(); i++)
 {
 vector<int> I;

set_intersection(EGC.begin(),EGC.end(),A[i].begin(),A[i].end(),back_ins
erter(I));
 V[i] = pair<int,int>(I.size(),i);
 }

 // Print before sort
 cout << "Early grade courses in slots originally: " << endl;
 for(int i = 0; i < V.size(); i++)
 cout << V[i].first << ' ';
 cout << endl;

 sort(V.begin(),V.end());

 // Print after sort
 cout << "Early grade courses in slots reordered: " << endl;
 for(int i = V.size() - 1; i >= 0; i--)
 cout << V[i].first << ' ';
 cout << endl;

 // Create schedule by reordering A in decreasing number of early
grading courses
 Schedule *p = new Schedule();
 p->resize(A.numslots(),L.courses());
 for(int i = V.size()-1, j = 0; i >= 0; i--, j++)
 {
 int si = V[i].second;
 for(set<CourseIdx>::iterator itr = A[si].begin(); itr !=
A[si].end(); ++itr)
 p->add(j,*itr,L);

 }
 return p;
}

 68

Data Sets

Experiment 1

In this part of Experiment 1, threshold was varied and all other variable values were fixed.

Varying ccut 1trial midconf courseconf Time(s)
initsize 1000 1 14 13 471
initimprove 5000 2 17 16 471
restsize 10 3 15 15 471
restimprove 10000 4 15 15 472
hold 2 5 17 16 471
generations 200

Varying ccut 5trial midconf courseconf time
initsize 1000 1 16 15 470
initimprove 5000 2 14 14 470
restsize 10 3 18 15 471
restimprove 10000 4 19 17 470
hold 2 5 16 15 470
generations 200

Varying ccut 10trial midconf courseconf time
initsize 1000 1 16 15 472
initimprove 5000 2 11 11 471
restsize 10 3 16 10 472
restimprove 10000 4 18 16 470
hold 2 5 16 15 472
generations 200

Varying ccut 25trial midconf courseconf time
initsize 1000 1 14 11 470
initimprove 5000 2 11 11 471
restsize 10 3 14 14 471
restimprove 10000 4 14 14 472
hold 2 5 18 14 471
generations 200

Varying ccut 50trial midconf courseconf time
initsize 1000 1 13 10 471
initimprove 5000 2 14 10 471
restsize 10 3 17 16 470
generations 10000 4 17 13 472
hold 2 5 17 12 471

 69

In this part of Experiment 1, the initial population size was varied and all other variable values were fixed.

ccut 50 trial midconf courseconf time
varying initsize 100 1 19 19 385
initimprove 5000 2 14 14 385
restsize 10 3 20 16 386
restimprove 10000 4 15 12 386
hold 2 5 16 16 387
generations 200

ccut 50 trial midconf courseconf time
varying initsize 250 1 14 11 402
initimprove 5000 2 14 14 401
restsize 10 3 13 11 402
restimprove 10000 4 16 16 401
hold 2 5 19 16 402
generations 200

ccut 50 trial midconf courseconf time
varying initsize 500 1 18 18 424
initimprove 5000 2 15 14 424
restsize 10 3 16 13 425
restimprove 10000 4 17 16 424
hold 2 5 14 14 424
generations 200

ccut 50 trial midconf courseconf time
varying initsize 1000 1 16 11 471
initimprove 5000 2 12 11 471
restsize 10 3 13 12 472
restimprove 10000 4 15 12 472
hold 2 5 14 14 471
generations 200

ccut 50 trial midconf courseconf time
varying initsize 2000 1 12 11 564
initimprove 5000 2 14 10 563
restsize 10 3 18 17 564
restimprove 10000 4 18 18 564
hold 2 5 17 13 565
generations 200

 70

In this part of Experiment 1, the amount of initial mutations was varied and all other variable values were
fixed.

ccut 50 trial midconf courseconf time
initsize 1000 1 18 16 387
varying initimprove 500 2 18 15 388
restsize 10 3 14 11 387
restimprove 10000 4 15 12 388
hold 2 5 17 16 387
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 18 8 397
varying initimprove 1000 2 12 9 396
restsize 10 3 18 16 397
restimprove 10000 4 20 19 396
hold 2 5 13 12 397
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 13 13 425
varying initimprove 2500 2 20 16 425
restsize 10 3 11 11 425
restimprove 10000 4 18 17 426
hold 2 5 16 10 425
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 18 16 470
varying initimprove 5000 2 15 14 470
restsize 10 3 13 13 471
restimprove 10000 4 14 11 470
hold 2 5 15 14 472
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 18 16 564
varying initimprove 10000 2 17 16 563
restsize 10 3 16 15 564
restimprove 10000 4 15 15 563
hold 2 5 14 14 563
generations 200

 71

In this part of Experiment 1, the amount of children allowed was varied and all other variable values were
fixed.

ccut 50 trial midconf courseconf time
initsize 1000 1 15 15 282
initimprove 5000 2 15 14 283
varying restsize 5 3 12 12 282
restimprove 10000 4 15 12 282
hold 2 5 14 14 283
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 17 16 472
initimprove 5000 2 16 13 471
varying restsize 10 3 16 16 471
restimprove 10000 4 18 14 472
hold 2 5 18 16 471
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 14 13 660
initimprove 5000 2 17 15 659
varying restsize 15 3 14 10 661
restimprove 10000 4 14 11 661
hold 2 5 17 14 660
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 15 11 849
initimprove 5000 2 16 14 851
varying restsize 20 3 15 15 850
restimprove 10000 4 17 14 849
hold 2 5 17 13 848
generations 200

ccut 50 trial midconf courseconf time
initsize 1000 1 20 18 1037
initimprove 5000 2 18 17 1037
varying restsize 25 3 22 19 1037
restimprove 10000 4 15 14 1037
hold 2 5 17 16 1038
generations 200

 72

In this part of Experiment 1, the amount of generations was varied and all other variable values were fixed.

ccut 50 trial midconf courseconf time
initsize 1000 1 15 14 143
initimprove 5000 2 16 16 144
restsize 10 3 14 13 143
varying generation 25 4 16 16 144
hold 2 5 18 17 143
restimprove 10000

ccut 50 trial midconf courseconf time
initsize 1000 1 18 17 190
initimprove 5000 2 14 14 190
restsize 10 3 15 15 190
varying generation 50 4 13 13 190
hold 2 5 15 12 190
restimprove 10000

ccut 50 trial midconf courseconf time
initsize 1000 1 15 14 284
initimprove 5000 2 16 14 283
restsize 10 3 18 14 284
varying generation 100 4 16 15 284
hold 2 5 15 15 284
restimprove 10000

ccut 50 trial midconf courseconf time
initsize 1000 1 12 9 471
initimprove 5000 2 19 18 472
restsize 10 3 16 15 471
varying generation 200 4 17 12 471
hold 2 5 17 14 470
restimprove 10000

ccut 50 trial midconf courseconf time
initsize 1000 1 13 13 659
initimprove 5000 2 16 13 659
restsize 10 3 17 16 658
varying generation 300 4 14 14 659
hold 2 5 19 16 659
restimprove 10000

 73

In this part of Experiment 1, the amount of "best" schedules kept was varied & all other variables were
fixed.

ccut 50trial midconf courseconf time
initsize 1000 1 21 21 471
initimprove 5000 2 19 14 471
restsize 10 3 17 16 472
generations 200 4 15 14 470
varying hold 1 5 14 10 471
restimprove 10000

ccut 50trial midconf courseconf time
initsize 1000 1 19 18 472
initimprove 5000 2 22 16 471
restsize 10 3 16 12 471
generations 200 4 13 13 471
varying hold 2 5 15 13 471
restimprove 10000

ccut 50trial midconf courseconf time
initsize 1000 1 17 16 472
initimprove 5000 2 17 13 472
restsize 10 3 16 14 471
generations 200 4 10 10 471
varying hold 3 5 16 16 470
restimprove 10000

ccut 50trial midconf courseconf time
initsize 1000 1 15 15 471
initimprove 5000 2 13 12 471
restsize 10 3 11 11 472
generations 200 4 14 14 471
varying hold 4 5 14 13 471
restimprove 10000

ccut 50trial midconf courseconf time
initsize 1000 1 15 10 470
initimprove 5000 2 11 11 471
restsize 10 3 13 12 470
generations 200 4 11 11 470
varying hold 5 5 12 11 471
restimprove 10000

 74

In this part of Experiment 1, the amount of mutations following each mating was
varied
and all other variable values were fixed.

ccut 50 trial midconf courseconf time
initsize 1000 1 15 15 132
initimprove 5000 2 19 18 131
restsize 10 3 15 14 131
generations 200 4 21 21 132
hold 2 5 25 22 131
varying restimprove 1000

ccut 50 trial midconf courseconf time
initsize 1000 1 15 15 188
initimprove 5000 2 16 15 188
restsize 10 3 22 17 188
generations 200 4 13 12 188
hold 2 5 13 12 188
varying restimprove 2500

ccut 50 trial midconf courseconf time
initsize 1000 1 13 13 282
initimprove 5000 2 13 12 283
restsize 10 3 17 16 283
generations 200 4 19 16 282
hold 2 5 18 18 283
varying restimprove 5000

ccut 50 trial midconf courseconf time
initsize 1000 1 18 18 377
initimprove 5000 2 14 11 377
restsize 10 3 19 15 377
generations 200 4 14 12 377
hold 2 5 20 20 376
varying restimprove 7500

ccut 50 trial midconf courseconf time
initsize 1000 1 12 12 471
initimprove 5000 2 17 16 472
restsize 10 3 15 13 471
generations 200 4 15 11 471
hold 2 5 18 17 473
varying restimprove 10000

 75

 Average Results - Experiment 1
 MidConf CourseConf Time
CCUT

1 15.6 15 471.2 Baseline
5 16.6 15.2 470.2

10 15.4 13.4 471.4 CCUT 50
25 14.2 12.8 471 initsize 1000
50 15.6 12.2 471 initimprove 5000

 restsize 10
initsize generations 200

100 16.8 15.4 385.8 hold 2
250 15.2 13.6 401.6 restimprove 10000
500 16 15 424.2

1000 14 12 471.4
2000 15.8 13.8 564

initimprove

500 16.4 14 387.4
1000 16.2 12.8 396.6
2500 15.6 13.4 425.2
5000 15 13.6 470.6

10000 16 15.2 563.4

restsize

5 14.2 13.4 282.4
10 17 15 471.4
15 15.2 12.6 660.2
20 16 13.4 849.4
25 18.4 16.8 1037.2

generations

25 15.8 15.2 143.4
50 15 14.8 190

100 16 14.4 283.8
200 16.2 13.6 471
300 15.8 14.4 658.8

hold

1 17.2 15 471
2 17 14.4 471.2
3 15.2 13.8 471.2
4 13.4 13 471.2
5 12.4 11 470.4

 76

restimprove

1000 19 18 131.4
2500 15.8 14.2 188
5000 16 15 282.6
7500 17 15.2 376.8

10000 15.4 13.8 471.6

 77

Experiment 2

 Experiment 2 - Spring Semester

 Local Mutations v. Mating Process
Varying the Number of "Best" Schedules Kept with Lower Baseline Values for Other Variables
 MidConf CourseConf Time
Varying Hold - T1 CCUT 50

0 23 20 957 initsize 1000
1 15 15 861 initimprove 5000
2 13 13 773 restsize 10
3 12 12 695 generations 100
4 13 13 612 restimprove 1000
5 10 9 528
6 12 12 466
7 15 15 377
8 13 10 288
9 14 14 198

10 22 19 108

Varying Hold - T2

0 32 19 949
1 17 16 863
2 17 15 778
3 14 13 694
4 17 16 610
5 13 13 527
6 11 11 460
7 14 10 358
8 14 14 272
9 17 15 188

10 19 18 103

Varying Hold - T3

0 24 15 949
1 16 16 863
2 17 16 778
3 15 13 694
4 16 10 611
5 13 13 525
6 14 14 441
7 14 10 357
8 12 12 272
9 15 15 188

10 21 20 103

 78

Varying Hold - T4

0 38 30 944
1 14 14 862
2 14 14 780
3 16 15 694
4 13 12 608
5 12 12 526
6 13 13 441
7 15 14 357
8 15 12 273
9 12 12 187

10 19 18 104

Varying Hold - T5

0 27 19 947
1 15 15 860
2 17 14 781
3 16 16 694
4 17 15 610
5 12 12 526
6 16 15 451
7 15 14 357
8 15 14 272
9 13 13 188

10 22 22 103
Averages

0 28.8 20.6 949.2
1 15.4 15.2 861.8
2 15.6 14.4 778
3 14.6 13.8 694.2
4 15.2 13.2 610.2
5 12 11.8 526.4
6 13.2 13 451.8
7 14.6 12.6 361.2
8 13.8 12.4 275.4
9 14.2 13.8 189.8

10 20.6 19.4 104.2

 79

AllStar1 Best Values from Experiment 1 CCUT 25
1 22 16 43 initsize 1000
2 17 17 44 initimprove 1000
3 22 21 43 restsize 10
4 25 21 43 generations 50
5 22 18 43 hold 5

 restimprove 2500

AllStar2 Keeping the Number of "Best" Schedules = 5 CCUT 50

1 14 13 472 initsize 1000
2 11 11 471 initimprove 5000
3 12 12 472 restsize 10
4 12 12 471 generations 200

 hold 5
 restimprove 10000

 80

 Experiment 2 - Fall Exam Data

 Local Mutations v. Mating Process
Varying the Number of "Best" Schedules Kept with Lower Baseline Values for Other Variables
 MidConflicts CourseConflicts Time

Varying Hold - T1 CCUT 50

0 33 28 934 initsize 1000
1 26 20 852 initimprove 5000
2 23 22 769 restsize 10
3 23 19 686 generations 100
4 21 18 603 restimprove 1000
5 18 17 520
6 16 14 437
7 19 14 354
8 18 14 270
9 16 15 185

10 27 22 102

Varying Hold - T2

0 45 21 935
1 21 18 852
2 20 16 768
3 21 20 686
4 18 15 603
5 18 13 521
6 14 11 438
7 20 16 352
8 19 16 269
9 20 13 185

10 23 23 101

Varying Hold - T3

0 36 21 935
1 21 20 852
2 18 14 769
3 20 19 684
4 23 18 602
5 15 13 520
6 18 13 438
7 19 16 353
8 18 18 269
9 23 19 185

10 26 20 102

 81

Varying Hold - T4

0 29 24 934
1 23 14 851
2 23 18 767
3 22 19 687
4 19 13 602
5 16 12 522
6 16 14 438
7 15 14 357
8 16 14 270
9 13 13 188

10 22 22 103

Varying Hold - T5

0 32 26 937
1 23 18 852
2 21 19 767
3 19 15 687
4 20 15 603
5 16 13 520
6 18 13 436
7 19 18 353
8 17 17 268
9 20 19 185

10 23 19 101

Averages

0 35 24 935
1 22.8 18 851.8
2 21 17.8 768
3 21 18.4 686
4 20.2 15.8 602.6
5 16.6 13.6 520.6
6 16.4 13 437.4
7 18.4 15.6 353.8
8 17.6 15.8 269.2
9 18.4 15.8 185.6

10 24.2 21.2 101.8

