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 ABSTRACT: “Efficient Academic Scheduling at the U.S. Naval Academy” 
 
This Trident Scholar Independent Research Project examined academic 

scheduling problems at the U.S. Naval Academy. The focus was on devising methods to 
construct good final exam schedules and improve existing course schedules by 
facilitating course changes.  

The final exam scheduling problem is an example of an NP-hard problem. These 
difficult problems do not admit efficient deterministic solutions. Several heuristic 
methods to treat these problems were considered. An approach using genetic algorithms 
showed particular promise. Genetic algorithms involve mating “parent” schedules to 
form favorable “offspring” schedules and then subjecting these new schedules to local 
mutation. A computer program implementing these ideas was created and tested.   

Section changes at the Naval Academy had been done on an ad-hoc basis, but this 
project determined that it could be streamlined and improved by using a centralized 
barter system. The barter technique accepts input listing desired section changes and 
identifies multi-student section changes to accommodate their desires. A prototype 
computer program that uses network flow algorithms to find such section changes was 
devised.  In addition, a method incorporating integer programming techniques was 
examined and tested.    
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 The modern Navy faces numerous logistical problems. These resource allocation 

issues come in many forms, one being the problem of efficient scheduling.  Since each 

problem incorporates a myriad of factors and constraints, they do not admit simple 

solutions. Similar types of scheduling problems arise at the United States Naval 

Academy.  This Trident Scholar research project focuses on two of these problems: the 

scheduling of final examinations and an aspect of course scheduling known as the course 

bartering system.   

Scheduling Final Examinations: 

How do you form a good final examination schedule for each semester?  The first 

step to solving this problem is to define the factors involved.  Foremost, good schedules 

avoid scheduling conflicts – the situation where midshipmen are scheduled for two 

examinations at once.  Another important condition is to have the exams that are the most 

difficult to grade given first, since all of the professors must submit final grades by a 

certain date.  Other problems include midshipmen taking three exams in a row or 

scheduling two common technical courses consecutively, such as Plebe Chemistry and 

Calculus. 

Once these factors have been determined and prioritized, a schedule can be 

formed.  Note that there are trade-offs to be made.  If fewer exam periods are used to 

accommodate grading concerns, then there are many conflicts.  Conversely, if the time 

between exams is lengthened in hopes of producing more time to study and fewer 

conflicts, then some instructors will have little time for grading (and less midshipmen 

leave!). 
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Course Scheduling: 

In course scheduling at the Naval Academy, midshipmen first preregister – a 

process where students request the courses they want to take.  Once midshipmen are 

approved for their course choices, they then register for particular sections within a 

course.  Each section, however, has a maximum capacity, and midshipmen are not always 

placed in the section they desire.  The goal of the course bartering system is to allow 

midshipmen to submit the changes they would like to their schedules.  Then a centralized 

system inputs all of these requests and determines the course exchanges that are possible.  

The key constraint in determining whether to accommodate a course exchange is the 

Academic Registrar’s request to keep the section size of a course the same.  Thus, the 

program defines an optimal solution as accommodating the largest number of 

midshipmen without changing the section size of any course.   

Graphs 

Graphs are a primary tool for modeling the course bartering system. [BR]  A 

graph is a pair G = (V, E) where V is the set of vertices, or points, and E is the set of 

edges, or line segments between two vertices.  Directed edges are edges with direction; in 

other words, they have a start vertex and a terminal vertex. 
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Figure 1: A Graph 

                                                   a     

      e                                b 

                                                                          

 

                                                    d                                                c 

 
A typical graph with both directed edges and regular edges. Regular edges can be 
thought of as edges directed in both directions. 
 
 

A graph was constructed to represent the information needed to produce a course 

bartering system.  A vertex represented each course and section pair.  A directed edge 

between two vertices indicates that a midshipmen desires to move from one course and 

section to another. For instance, the edge [b,c] in Figure 1 is a directed edge.  A path from 

a starting vertex 1 to a terminal vertex 2 involves moving along any set of edges in the 

proper direction from 1 to 2 without repeating edges. In Figure 1, a path from e to c is 

given by the chain of vertices e, a, b, c. A cycle in the graph is a path where the starting 

vertex is also the terminal vertex.  There are no directed cycles in Figure 1; however, if 

the edge [d,c] is replaced by the edge [c,d] (reversing orientation), then there is a cycle 

involving all of the vertices.  

The vertex set of a graph G is the set of all vertices in G.  The edge set is the set 

of all edges in G.  If all of the possible edges of a given set of vertices are present, then 

the graph is called a complete graph.   
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Figure 2: A Complete Graph on Four Vertices 

 

 

 

 

 

A subgraph G’ of G consists of a vertex set V’ ⊆ V, where V is the vertex set of G.  The 

edge set of G’ consists of all of the edges between the vertices of V’ that were in the edge 

set of G.  A clique in G is a complete subgraph induced by a given subset of the vertex 

set.  Finally, the complement Gc of G is the graph with vertex set V and all of the edges 

in a complete graph less the edges already present in G.   

Figure 3: A Graph and Its Complement 

   G     Gc 

 

 

 

 

 

Some of the scheduling problems fall into a class of problems classified as NP-

hard. [CPPS] These are computationally difficult problems, for which no fast 

deterministic algorithms are known. It remains a difficult open problem to show that none 

of these problems admit solution by suitably fast methods, but the consensus among the 

computer science community is that these problems do not admit simple solutions. As a 
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result, attention has been focused on finding good heuristic approaches to scheduling 

problems. In fact, they are of such central importance that they have received a 

tremendous amount of attention. A search on MathSciNet located over 1800 research 

articles on NP-hard problems and heuristic approaches to them. 

[www.ams.org/mathscinet] 
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Course Bartering System: 
 
 As stated earlier, in the course bartering system, midshipmen who have already 

received their course schedule can submit requests for course changes.  A computer 

program was developed that finds any possible switches.  To that end, several approaches 

were examined: a deterministic greedy algorithm method, a cycle graph method, an 

algorithm incorporating the depth-first search to find cycles, a network flow algorithm, 

and an integer programming approach.  Since the first two approaches were not 

implemented, they will not be discussed. 

In the course bartering system, every midshipman was permitted to declare one 

switch as long as their move is to a period that is already open in their existing schedule.  

With this restriction in place, the following process on a graph was developed: 

 

 

 

 

 
 
 

 
 

 

An important step in this process is the simplification step.  After the simplification, 

there must be a cycle in the remaining graph and thus possible switches.   

 

 

Steps of the Course Bartering System 
 

1.  For each course and period pair, (e.g. Electrical Engineering, 6th period)  
assign a vertex.  

2. For each midshipman requesting to move from one course and period to 
another, draw a directed edge from the vertex associated with the current 
course and period to the course the midshipmen desires to enter.  

3. Remove vertices from the graph that cannot be changed.  This would be a 
vertex where no midshipman desires to enter or leave that course and period.  
In this graph, any vertex without both incoming and outgoing edges may be 
eliminated.  This is due to the constraint that the section size of any course 
must remain the same. 

4. Apply an algorithm to look for cycles in the remaining graph.  The search is for 
cycles instead of paths also because of the constraint that section size of any 
course must remain constant.   
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The goal now became to search for the cycles in the graph.  In light of this, a C++ 

program that finds a directed cycle in a graph with a depth-first search, removes it, and 

searches again for another directed cycle, was constructed.  It then terminates when the 

graph is reduced to the null set. (i.e. when all cycles have been removed) This program 

accepts a data file containing course-section pairs and midshipmen desires as input and 

yields a possible collection of cycles.  (See Appendices A and B for the C++ program 

and an example) 

The program, entitled the “Cycle-Elimination Program,” is quite efficient.  Utilizing 

the depth-first search allows the program to be run several times and get all of the 

possible cycle combinations on small graphs.  However, the task then becomes difficult 

when the search transitions into finding the best collection of cycles.     

Network Flows: 

To deal with optimality concerns, a different algorithm that uses network flows to 

implement the course bartering system was examined. [BMMN, DIMACS, OMA]  The 

Claim: There exists a directed cycle in a graph where all vertices have both 
incoming and outgoing edges. 
 
Assume that the graph G does not have a directed cycle and arrive at a contradiction. Start 
at any vertex v1.  Travel along any of its outgoing edges.  Then travel to another vertex, 
which is called v2.  For the outgoing edge of v2, travel to any other vertex in G, except that 
there is no directed edge (v2, v1) because there are no directed cycles.  Continue the path to 
a vertex now called v3.  For the outgoing edge on v3, travel to any other vertex in G, except 
v1 or v2, since (v3, v1) and (v3, v2) do not exist because there are no directed cycles.  Thus, 
for a given vertex vi, any of its outgoing edge can be used except ones  leading to vertices 
used earlier. (Or the hypothesis is violated).  The path eventually includes all of the 
vertices.  Call the final vertex in the path in G vn.  The vertex vn must have an outgoing 
edge as given by the conditions of the graph G.  This outgoing edge must go to one of the 
previously used vertices, and thus there is a contradiction.  

Q.E.D. 
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problem background remains the same: vertices are course-section pairs and directed 

edges between vertices indicate that a midshipman desires to move from one section to 

another. There is still the search for cycles using a depth-first method.  The combination 

of cycles using the most edges possible corresponds to the optimal course change.  

However, the graph is thought of as a network, and the goal becomes to flow the most 

midshipmen from their current course-section pair to the one they desire.  Each edge is 

assigned a flow, capacity, and cost.  The flow is a number that represents the movement 

of midshipmen from one section to another.  The capacity is the total number of 

midshipmen that wish to make the section change. Each midshipman move (traversing an 

edge) is assigned a cost of “-1.”  The number is negative because these switches are 

desired – switches correspond to a benefit.  For example, two midshipmen might want to 

move from a sixth period Electrical Engineering section to a fourth period section. This 

leads to a directed edge in the graph with capacity 2.  The objective is to find circulations 

of minimum cost.  A circulation, C, is a collection of directed cycles.  Note that in the 

collection, a directed cycle can appear more than once.  In fact, for each edge in the 

circulation, the number of cycles where that edge appears is limited by the capacity of 

that edge.  Each circulation is thought of as giving a movement of commodities; in the 

course bartering system, the commodities are midshipmen as they move from one section 

to another.   

A vector notation is sometimes used to describe this flow of commodities.  For 

each circulation C, a “flow” vector of non-negative integers is constructed. Each 

component in the vector is labeled by an edge in G.  The flow xij corresponding to edge 

[i,j] is the number of times edge [i,j] appears in a cycle of C.   
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Thus the vector x satisfies: 

 

 

 

 

 

 

The cost, cx, of a flow x is the dot product of the flow vector and the cost vector, .xc •  

Conversely, any vector of non-negative integers satisfying conditions 1 and 2 is 

the vector associated with a circulation. The circulation is constructed as follows. Start at 

any of the vertices (v1) that has an outgoing edge with positive flow. Traverse this edge to 

another vertex, v2.  Then transverse an outgoing edge of v2 to another vertex, v3. Such an 

edge exists because of condition (1) above. Continuing in this manner, the path 

eventually arrives at a vertex already used.  This corresponds to a directed cycle.  At this 

point, the flow along each of the edges of this cycle must be examined.  Flow around this 

directed cycle as much as possible.  That is, flow an amount equal to the lowest flow of 

all of the edges in the cycle.  Remove this flow, and the original circulation is reduced to 

a smaller circulation.  Continue this process of finding directed cycles in the circulation 

and passing flow around them as much as possible.  Ultimately, the flow vector reaches 

zero and the original graph is decomposed into a collection of directed cycles.    

An algorithm that uses network flows to find the optimal cycle combination in the 

network G was used. [OA]  First, the depth-first search finds a cycle, which induces a 

flow along its edges. (Alternatively, start with the zero flow – the function that assigns 

1. For each vertex i the flow into the vertex is the same as the flow 
leaving the vertex: 

 
for each i      ∑ ∑=

j j
jiij xx . 

 
2. For each edge the flow along the edge is not greater than the     
      capacity of the edge.  
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flow zero to each edge.)  Then form a residual graph G(x) from the flow x. This is a new 

graph, consisting of the same vertex set as G.  Join vertex x to vertex y in the residual 

graph if either (1) the residual capacity, the capacity of [x, y] in G minus the flow on the 

edge [x, y] is positive (here we label this new edge with its residual capacity and assign it 

cost -1) or  (2) the flow on edge [y, x] in G is positive. In this second case, flow along the 

edge [x, y] in the residual graph corresponds to reducing the flow along [y, x] in the 

original network. In the second case, the new edge is assigned capacity equal to the flow 

along [y, x] in G and assigned cost 1.   

Once the residual graph G(x) is made, then search for a cycle in G(x) with 

negative total cost.  Choose that cycle and overlay it on the original graph: for each edge 

[x, y] in the cycle that also appears in G, increase flow along [x, y] by 1; for each edge   

[x, y] in the cycle that does not appear in G, the reverse edge [y, x] must appear in G (this 

follows from the definition of the residual graph) and thus, decrease the flow by 1 along 

edge [y, x] in G. Then form a new residual graph and use the depth-first search to find 

another negative cost cycle.  Repeat this process until there are no negative cost cycles in 

the residual graph.  When this is the case, a circulation in G that minimizes the total cost 

has been found. This corresponds to finding the section changes that accommodate the 

greatest number of midshipmen while keeping section sizes constant.  

    The key mathematical concept in this algorithm is as follows: a feasible flow x 

is an optimal solution of a minimum cost flow problem if and only if the residual network 

G(x) contains no negative cost cycles.  Below are a construction and a proof. [OMA] 
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Proof that a feasible flow x is an optimal solution of a minimum cost flow problem if 
and only if the residual network G(x) contains no negative cost cycles: 
 

Part 1:  
Suppose that x is a feasible flow and that the residual graph G(x) contains a net negative 
cost cycle.  Positive flow can be augmented along the negative cycle to get a new 
circulation of smaller cost.  Therefore, if x is an optimal flow, then G(x) does not contain 
any net negative cost cycles. 
 

 Part 2: 
Suppose x is a feasible flow on G and that G(x) contains no net negative cost cycles.  Let 
x* be an optimal flow in G and x ≠ x*.  The flow x* corresponds to a flow x’ in the 
residual network G(x). Let c’ denote the costs assigned to each edge in G(x), and let c 
denote the costs in G.  For every directed edge [i, j] in G, c’ij = cij and c’ ji = - cij.  For the 
flow x*ij on edge [i, j] in the network G the cost of the associated flow x’ on the edges [i, 
j] and [j, i] in G(x) is c’ ij x’ij + c’ji x’ji  = c’ij  (x’ij - x’ji ) = c ij x*ij - cij xij .   
Thus, c’x’ = cx* - cx. 
 
The flow x’ in G(x) corresponds to the difference vector x* - x. The circulation 
corresponding to x’ can be decomposed into a finite collection of cycles in G(x). But the 
costs of all cycles in G(x’) are nonnegative.  Therefore, cx’ = cx* - cx ≥ 0, or  cx* ≥ cx.   
Also, since x* is an optimal flow, cx* ≤ cx.  Thus cx* = cx’, and x’ is also an optimal 
flow.                                                
        Q.E.D.                                                                  

 

Construction: For a given flow x, every flow x* in the network G corresponds to a 
flow x’ in the residual network G(x). 
 
Define the flow vector x’ as the unique vector of non-negative integers satisfying: 
 x’ij – x’ji = x*ij – xij      and         x’ij x’ji = 0 
The second equality implies that x’ij and x’ji cannot both be positive. 
 
If xij < x*ij, set x’ji = 0 and x’ij = x*

ij - xij. If x*ij is not greater than the capacity uij of the 
edge [i,j], then x’

ij ≤ uij – xij = rij, the residual capacity on the edge [i,j]. Also x’ji = 0 so 
the flow x’ satisfies the capacity constraints in G(x).  
 
If xij = x*ij, set x’

ji = -(x*ij – xij) and x’
ij = 0. As before, the flow x’ satisfies the capacity 

constraints in G(x). 
 
Thus, if x* is a feasible flow in G, its corresponding flow x’ is a feasible flow in G(x). 
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In short, the following is the network flow algorithm applied to the course  

bartering system. 
 

 

 

 

 

 

 

 

 

 

The determination on whether a net negative cycle is in the residual graph can be found 

in polynomial time using Karp’s algorithm.  Below is the basis behind the algorithm and 

its conclusion. [KA] 

 

 

 

 

 

 

 

 

 

Network Flows: 
 

1. For each course and period pair, assign a vertex. (i.e. Electrical Engineering, 6th period)  
2. For each midshipman requesting to move from one course and period to another, draw a 

directed edge from the vertex associated with the current course and period to the vertex 
the midshipmen desires to enter.  

3. Simplification process – elimination of any vertex that does not have both incoming and 
outgoing edges. 

4. Assign to each edge an original flow of 0 and a cost of -1. 
5. Form the residual graph. 
6. Use Karp’s algorithm to determine if there are net negative cycles in the residual graph. If 

not terminate the algorithm.  
7. Search for a net negative cycle in the residual graph. 
8. Overlay it on the original graph with the adjusted flow and cost values. 
9. Repeat steps 5-8 until there are no net negative cycles in the residual graph.  

Karp’s Algorithm: Terminology and Conclusion: 
 
Let G = (V, E) be a graph with n vertices. 
Each edge in E has weight f(e). 
Given any sequence of edges s = e1, e2, … , ep:  

 Let the weight of s, w(s) = ∑
=

p

i
ief

1

).(  

 Let the mean weight of s, m(s) = w(s)/p 
 
Let s be an arbitrarily chosen vertex in G.  For every vertex v and every nonnegative integer k, define 
Fk(v) as the minimum weight edge progression of length k from s to v. 
Let ?* denote the minimum cycle mean = minc m(C) where C ranges over all directed cycles in G. Then 
?* can also be computed as: 

                           [ ]kn
vFvF

nkVv
kn

−
−

−<<∈= )()(max

10
min*λ . 

 
A negative cycle exists if and only if ?* < 0.  
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To give an example of the network flow algorithm in action, consider the “Hanging 

House” network. (See Figure 4)  By observation, it can be seen that the triangle and the 

square are possible cycles, but since they share an edge of capacity 1, both cannot be 

chosen.  If the “cycle-elimination” program were run several times, it would find both 

cycles.  The square would then be chosen because it leads to switches that accommodate 

the most number of midshipmen.  However, in more complicated graphs, where there are 

potentially a large number of directed cycles, it is not guaranteed that the current program 

would find the best collection of directed cycles (i.e. the collection that accommodates 

the most midshipmen). Thus, it is assumed in this example that the depth-first search 

found the less beneficial cycle (the triangle).  Then the network flow algorithm is applied.  

The following graph designates that the triangle has been chosen as a flow, as represented 

by the "1" values in the flow component in the ordered pair. 

 

Figure 4: Hanging House Network Graph 
 
(Flow, Cost)          (0, -1) 
All edges have capacity 1.                            1 
 
 
   (1, -1)        2                 3   (1, -1) 
 
                                                           4 
     (1, -1) 
       5                                               6   
   (0, -1)           (0, -1) 
 
                                                                   (0, -1) 
                                                          7 
 
 
 
Following the algorithm, the next step is to produce the residual graph. 
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Figure 5: Hanging House Network Residual Graph 

(Residual Capacity, Cost)        (1, -1) 
 
 
 
   (1, 1)    (1, 1) 
 
 
     (1, 1) 
      
   (1, -1)           (1, -1) 
 
 
     (1, -1) 
 

There is a net negative cycle in the residual graph that traces around the perimeter of the 

house.  Choose it because it has a net negative cost of -1.  Then overlay1 it on the original 

graph and only the square cycle remains.  Create a new residual graph from the new flow. 

Since this residual graph has no net negative cycles, the optimal network flow has been 

found. 

Integer Programming 

 Another promising approach to the course bartering system involved the use of 

linear and integer programming. [S, V]  Simply put, in a linear programming problem, 

the goal is to maximize a certain objective function subject to known constraints.  The 

only extra stipulation on an integer programming problem is that some of the variables 

are constrained to be integers.   

  This integer programming approach was examined to see if it produced the 

optimal solution to the hanging house network.  The problem was modeled as follows:  A 

                                                 
1 That is, add the vector (0,1,1,1,0,0,0) corresponding to the triangle cycle to the vector corresponding to 
the perimeter (0,-1,-1,0,1,1,1). 
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matrix, M, where the rows represented midshipmen desires and the columns were course-

section pairs, was developed.  In its initial phases, all values in the matrix could either be 

a -1, 0, or 1.  A -1 signified a person wanting to leave a certain course and section and a 1 

represented a student wanting to change to that course and section.  The rest of a row 

would be filled with zeros.  The goal is to maximize the amount of changes that could be 

made subject to the constraint that each course and section size must not increase.  The 

request vector w is used to determine whether a request can be accommodated.   

In other words, 

   

 





=
        made isswitch  si'student  if    1, 

madenot  isswitch  si'student  if   ,0
iw

 

Thus, the values of this vector are either one or zero, the former if a change can be made 

and the latter if not.  The amount of requests accommodated is constrained by the 

components of the resultant vector, r, which is a course’s section size.  This must be less 

than zero.  Thus, in    

w • M = r 

the goal is to maximize the sum of the entries in w subject to r ≤ 0.  Like in the network 

flow algorithm, where it is desired to minimize costs, maximizing w also yields a solution 

that accommodates the largest number of midshipmen. 
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The matrix, M, for the hanging house network looked as follows: 

     Sections of Courses 

 := A













-1 1 0 0 0 0
0 -1 0 0 0 1
0 0 -1 0 0 1
0 0 1 -1 0 0
0 1 0 0 -1 0
0 0 0 1 -1 0
0 0 0 0 1 -1

 

 

This IP problem was submitted to the NEOS Server, a group of processors that 

solve large-scale linear programming problems expediently.  It could be given to a linear 

programming solver because this example shares the properties of a transportation 

problem, which always has an integral optimal solution.  It is an interesting problem to 

see whether the optimal solution is always integral when all scheduling requests are 

made.   

The NEOS Server uses a heuristic known as the simplex method.  This method is 

an iterative process that starts with a feasible solution that satisfies the given linear 

programming problem and then looks for a better solution that produces a larger 

objective function value.  This process is continued until the objection function value 

cannot be increased.  In the case of this particular IP problem, the server did indeed find 

the optimal solution of four section changes. (See Appendix C) 

 

 

 

Midshipmen Requests 
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Final Examination Scheduling: 

 The problem of scheduling final examinations has been approached using a 

variety of methods. [C, CLC, LD, MRP]  However, each problem is unique since the 

constraints are different.  Thus, an algorithm that produces good schedules at large 

civilian schools might not yield the same results at the Nava l Academy.  The Naval 

Academy initially scheduled final exams by hand, using a collection of magnets.  When 

computing facilities became available, there was a transition to the Stilwell One-Pass 

algorithm [St] designed by MIDN Mahlon Stilwell.  In this algorithm, the courses are 

ordered and input into a software program.  The computer then produces a schedule with 

a small number of conflicts.  For example, in the spring of 1996, 261 courses were 

entered and a schedule with ninety midshipmen conflicts was produced.  The Stilwell 

algorithm was well suited for minimizing conflicts and its code could be adjusted.  

However, it responded poorly to many other constraints that were placed on the schedule. 

 In 1996, Professor Mark Meyerson, Chair of the United States Naval Academy’s 

Mathematics Department, researched alternative ways to produce a final examination 

schedule. [M]  He recommended that the Naval Academy transition to the Strathmann 

Schedule Expert. [SSE]  The Strathmann Schedule Expert produced a schedule for the 

spring semester of 104 conflicts.  Although this exceeded the conflict number of the 

Stilwell algorithm, the program was simpler to use, more easily adaptable, and also 

responded better to many constraints placed on the schedule.  Further, its schedule 

consisted of fewer days where midshipmen had two examinations.  The downside of the 

Strathmann Schedule Expert is that it is proprietary and thus there is no access to the 

code.  In other words, though Strathmann Associates works closely with the Registrar’s 
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Office, the Naval Academy schedulers have no idea how their algorithm works.  Other 

methods, such as the descent method, simulated annealing, and partial search methods, 

were also identified in Professor Meyerson’s research.  The descent method is an 

exhaustive search that begins at a schedule in the space of schedules and then moves to 

another schedule if it has a lower midshipmen conflict number.  It continues in this 

manner until the search leads to a local minimum, known as a valley.  The terminology of 

searching a “space of schedules” and “valleys” will be referred to.   

Genetic Algorithms: 

 Another approach to constructing good final exam schedules involves using 

genetic algorithms. [K] Applying genetic algorithms to the final examination problem is a 

two-step process.  First, mate two “parent” schedules to form “child” schedules.  Then 

subject the “child” schedule to local mutation by randomly selecting and moving courses 

from slot to slot.  If the “child” schedule is better than its parents’ schedules, keep the 

child; otherwise, discard it and perform the process again.  The example below illustrates 

the mating process. 
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Figure 6: Genetic Algorithm Example 
 
Parent 1 
 
MONDAY TUESDAY WEDNESDAY 
   
Chemistry Leadership Calculus 
Physics Naval Law Electrical Engineering 
   
Navigation  International Relations Thermodynamics 
English Political Science Methods Boats 
 

+ 
Parent 2 
 
MONDAY TUESDAY WEDNESDAY 
   
Boats Political Science Methods Physics 
Calculus Thermodynamics Navigation  
   
Electrical Engineering International Relations Naval Law 
English Leadership Chemistry 
      

= 
Child 
 
MONDAY TUESDAY WEDNESDAY 
   
Chemistry Leadership Electrical Engineering 
Physics Naval Law Political Science Methods 
   
Navigation  Boats Thermodynamics 
English Calculus International Relations 
 
 
In the example, the highlighted portion of parent 1 is carried over into the child.  The rest 

of the slots in the child schedule are then taken from parent 2 in the order that they 

appear.  In a normal genetic algorithm, the child schedule would then be subject to the 

local mutation step. 
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The benefit of the genetic algorithm is shown in the example as well.  Parent 1 is 

unfavorable because it schedules two required sophomore-year Political Science courses, 

Political Science Methods and International Relations, in the same exam slot.  Parent 2 is 

also unfavorable because it schedules two common sophomore-level courses, Physics and 

Navigation, in the same exam slot.  Their child, however, avoids both of these trouble 

areas, and thus its conflict number is probably less than both of its parents.    

A preliminary computer program that takes a possible schedule as input and 

continually applies the local mutation step was developed.  In other words, it just 

randomly changes the slot assignment for one course and sees if the conflict number has 

decreased.  If it has, it keeps the change; otherwise, it backtracks and tries again.  In the 

program, 10,000 local changes were tried.   

When the program was applied to the fall semester final exam data, it produced a 

conflict number of 24, as opposed to the conflict number of 76 obtained by the Academic 

Registrar.  Even though the Strathmann program used by the registrar takes into account 

more factors than the conflict number, genetic algorithms showed tremendous promise.   

A complete genetic algorithm was then developed to be applied to the spring 

semester exam data.  The first part of the process involves generating an initial 

population of schedules.  From the exam data, the conflict graph was formed. This graph 

depends on a parameter, ccut. The graph is made of vertices that represent courses that 

have final examinations.  Two vertices are joined by an edge if there are at least ccut 

midshipmen taking both final examinations. Then the courses are ordered by the degree 

of their vertex. 2  Since the final exam schedule consists of fifteen exam slots, the fifteen 

                                                 
2 The degree of a vertex is the number of edges incident to that vertex.  
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vertices of highest degree are chosen and placed in different exam slots.  The rest of the 

courses are filled in randomly to complete the schedule.  

After this preprocessing step, the initial population is subject to local mutation.  

To reiterate, the local mutation step makes random moves of a course to a different exam 

slot to see if the midshipman conflict number decreases.  If it does, the move is made; 

otherwise, it is discarded and the process is repeated.  Once the initial number of local 

mutations is made, the mating process is ready to begin. 

In this genetic algorithm, the following method was devised to simulate the 

mating process of two schedules.  Parent 1’s first exam slot is carried to the child.  Parent 

2 then fills in the child’s next exam slot with their second slot.  If a course in their second 

slot is already in the child schedule (from Parent 1), it is just omitted.  In other words, 

there is no chance of having the same course in the child scheduled more than once.  

Parent 1 then fills in the child’s third exam slot, Parent 2 the fourth, and so forth.  Once 

all of the child’s slots are filled, there may be courses that were not scheduled in the child 

schedule.  To ensure every course is present in the child, there is one more run through 

the exam slots.  In this run, Parent 2 contributes its first exam slot to exam slot one of the 

child, and Parent 1 fo llows suit for the child’s second exam slot.  Following this process 

all the way through the exam schedule a second time ensures that every course is 

scheduled.  An example of the intermingle mating process is provided below. 
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Figure 7: Intermingle Mating Process 

 

 

 

 

 

 

 

The population undergoes the mating process for a given number of generations.  

After each generation, the child schedules are subject to another local mutation.  The 

theory behind the local mutation process is that often in the search for an optimal 

schedule in terms of low conflict number, a local minimum can be encountered.  In other 

words, when searching the space of schedules, the lowest conflict number in a small 

region might be found, vice the smallest number overall.  In these cases, it is often 

favorable to make “jumps,” where the search can move to another region.  Although this 

PARENT 1 
 
Slot 1:  
Calculus, IR 
 
Slot 2:  
Physics, Leadership II 
 
Slot 3:  
Criminal Justice, 
Chemistry  

PARENT 2 
 
Slot 1:  
Chemistry, Dynamics 
 
Slot 2:  
Criminal Justice, 
Plebe Navigation 
 
Slot 3:  
Statistics, Weapons  

CHILD: ROUND 1 
 
Slot 1:  
Calculus, IR 
 
Slot 2:  
Criminal Justice, 
Plebe Navigation 
 
Slot 3:  
Chemistry 

CHILD: ROUND 2 
 
Slot 1:  
Calculus, IR, Dynamics 
 
Slot 2:  
Criminal Justice 
Plebe Navigation 
Physics, Leadership II 
 
Slot 3:  
Chemistry  
Statistics, Weapons 
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might lead to a higher value conflict number initially, the search in this new region may 

eventually descend to a lower va lley.  To ensure that there is not a transition to higher 

valleys, a given number of “best” schedules are kept.  In other words, after every 

generation a given number of favorable schedules, or those with the lowest conflict 

number, are passed to the next generation for more mating.  In this way, the most 

favorable schedules from previous generations are always kept and hopefully these will 

improve further with more generations.  The complete genetic algorithm was as follows: 

 

   

 

 

 

 

 

 

When the genetic algorithm program was first run on the Spring 2003 data, the 

results were extremely good.  The best schedule had nine midshipman conflicts and eight 

course conflicts.  The final exam schedule produced for this semester with the 

Strathmann Schedule Expert had well over 150 midshipmen conflicts.  These numbers 

were a little misleading, however, considering that there were many factors, such as long 

grading considerations and exams that must be taken together, that were taken into 

account in the Strathmann program.  Nonetheless, when the Strathmann program was run 

without any of these factors included, its best result was still over thirty conflicts.  This 

Genetic Algorithm 
 

1. Form initial population of schedules.  Use the conflict graph to separate the “most 
conflicted” courses and then randomly fill in the remaining courses in a given exam slot. 

2. Subject the initial population to local mutations, or random moves of courses between 
exam slots. 

3. Mate for a given number of generations.  Mating two parents involves alternatively filling 
in the consecutive exam slots with the corresponding courses from the parents. 

a. Subject the children schedules to local mutations after each generation. 
b. Produce more child schedules by mating random pairs in the current population.  

Discard the current population but keep a given number of best schedules. 
4. Subject the population to one more local mutation. 
5. Follow the process for incorporating courses with long grading concerns.  

(Explained below) 
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genetic algorithm program had produced a raw schedule with one third of the 

midshipmen conflicts. 

There were still many concerns with the initial genetic algorithm program.  In 

particular, there were three extra factors that needed to be incorporated into the genetic 

algorithm code.  The first factor was setting a limit on the amount of midshipmen 

scheduled to take an exam in a given exam slot.  The Academic Registrar currently uses 

two thousand midshipmen as a capacity for each slot.  In the Spring 2003 schedule with 

only nine midshipmen conflicts, there were exam slots with over 2800 and 3700 

midshipmen scheduled to take an exam.  Thus, the constraint that only 2400 midshipmen 

can take an exam in one exam slot was added.  If this value were exceeded, the overflow 

would be added to the conflict number, or total cost.   

The next constraint incorporated into the genetic algorithm program was the 

requests by various academic departments to have certain final exams given at the same 

time.  These “groupings” were added into the original exam data file by making any 

courses fitting this criterion into one larger course.  With the new “groupings” 

consideration and maximum exam slot capacity, the genetic algorithm program was 

tested again.  This time, the best results were twelve midshipman conflicts and twelve 

course conflicts.  Furthermore, none of the exam slots exceeded midshipman capacity.  

The number of midshipmen in each exam slot ranged from 636 to 2215, and the average 

was 1390.5.   

The final constraint added to the genetic algorithm program deals with proximity 

concerns.  Every semester, each academic department can submit requests for courses 

they feel require a long time for grading.  This list of courses was made into a data file 
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and a method to accommodate the largest amount of courses possible was devised.  The 

exam slots in the final schedule produced by the genetic algorithm program are distinct, 

and thus they can be arranged in any order.  Therefore every course with a long grading 

concern was labeled with a value one.  All of the other courses had value zero.  These 

values were summed for each exam slot.  Then the slots were placed in descending order 

so that the slots with more long grading courses went first. 

Analysis: 

 There are seven variables in the genetic algorithm program.  They include: the 

threshold in the conflict graph (“ccut”), the initial size of the population, the number of 

local mutations performed on the initial population, the number of generations, the 

number of children, the number of these children that were good schedules and kept for 

more matings, and the number of local mutations performed on the children after each 

generation.  The initial experimentation began with establishing a baseline of variable 

values (that were picked following promising initial results) and then isolating a given 

variable to see its effect on the number of midshipmen conflicts, course conflicts, and the 

time it took to produce the final schedule.  This effect was determined by changing a 

designated variable’s baseline value over successive trials while fixing all of the other 

variables.  For each part of this first set of experiments, five trials were performed for 

each value of a given variable.  The following are charts showing the results of these 

isolation experiments.  The midshipmen conflict numbers are averages of the five trials. 
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Figure 8 

Effect of Varying Threshold on 
Midshipmen Conflicts
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Figure 9 

Effect of Varying Initial Population 
Size on Midshipmen Conflicts
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Figure 10 

Effect of Varying Initial Local 
Mutations on Midshipmen Conflicts
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Figure 11 

Effect of Varying the Number of 
Children on Midshipmen Conflicts
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Figure 12 

Effect of Varying the Number of 
Generations on Midshipmen Conflicts
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Figure 13 

Effect of Varying the Number of "Best" 
Schedules Passed onto Future 

Generations
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Figure 14 

Effect of Varying the Number of 
Local Mutations 

Performed Each Generation
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In terms of pure conflict number, most of the variables did not follow a consistent 

pattern.  This displays the randomness of the genetic algorithm, which is indeed desired 

in such a scheduling problem heuristic.  Two variables, however, did show some 

correlation in their experiments.  When the “ccut” variable was increased, there was a 

gradual decline in the number of course conflicts and essentially no change in the time.  

The number of “best” schedules after each generation also showed a consistent response 

in the results.  When this value was increased from one to five, there was a significant 

decrease in the number of midshipmen conflicts and no effect on the time.  In other 

words, the lowest group of midshipmen conflict numbers resulted when five out of the 

ten schedules produced from each generation were “best” schedules from previous 

generations.  Throughout all of this first set of experiments, which consisted of over 175 
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trials, the best result was ten midshipmen conflicts, ten course conflicts, and a time of 471 

seconds, or roughly eight minutes.  The whole experiment took nearly 24 hours on one 

processor.  However, the genetic algorithm program can be easily run on several 

processors in parallel.  Thus, the running time would be less on the sixteen processors of 

the Beowulf cluster, which is a parallel processing network located in Chauvenet Hall.  

 The next set of experiments sought to find out whether the mating process was 

more significant than the local mutation step, or vice versa.  An age component was 

added to the genetic algorithm program.  When the experiment outputs the best schedule 

from each generation, it would now also indicate the age of the schedule.  The age of the 

schedule is the number of local mutations that have been performed to the schedule.  This 

set of experiments had fewer generations than the normal baseline and less mutations 

after each generation.  Another addition to the genetic algorithm program for this 

experiment was a part to the mutation step that would equate the number of mutations 

performed on the newly produced children schedules to the kept “best” schedules. The 

number of “best” schedules kept from previous generations was then varied.  The 

following graphs display the results of this set of experiments. 
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Figure 15 

Local Mutations v. Mating Process
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Figure 16 

Local Mutations v. Mating Process
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 This final set of experiments showed that both the mating process and the local 

mutation steps are important.  As the amount of “best” schedules was increased from zero 

to five, there was a significant decrease in the amount of midshipmen conflicts.  In fact, 

the best Spring semester schedule of ten midshipmen conflicts, nine course conflicts, and 

only 556 seconds (just under 10 minutes) was produced when five out of the ten 

schedules were “best” schedules.  When this number was further increased, the schedules 

increased in conflict number.  This correlates to the fact that when there was less of a 

significant mating process, the schedules became less favorable.  When this experiment  

was run on the Fall semester exam data, there were similar results.  This showed that the 

number of schedules kept from previous generations should be around half of the number 

of total children used in the mating process.    

 The local mutation step probably accounts for most of the genetic algorithm’s 

efficiency.  However, this step only serves to get the midshipman conflict number to the 

lowest point in the local region.  Conversely, the mating process has the potential to make 

a drastic enough change in the children schedules to move to another region and seek its 

lowest point.  By keeping a certain number of “best” schedules from previous 

generations, the algorithm does not suffer when the search moves to another region with 

a higher valley.  Therefore, the local mutation step allows the search to reach the best 

possible schedule in the local area, and keep it on record in case it is the best schedule in 

all of the areas.  The mating process is equally important because it allows the search to 

span more of the space of schedules and potentially find a region that descends to a lower 

midshipmen conflict number.  Overall, both contribute to the genetic algorithm. 
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  An important practical question is how to best take advantage of increased 

running time (for example, if the Registrar wants to run the program overnight). Several 

possibilities are: increase the initial population size, increase the number of schedules in 

each generation, increase the number of generations and increase the number of local 

mutations in each generation. However, increasing many of these variables just adds 

time, but does not decrease the midshipmen conflict number. For instance, increasing the 

number of generations does not produce better schedules, as Figure 12 shows. If more 

time is allocated, the number of local mutations in each generation should be increased. 

This assessment is supported by Figure 14, where the lowest midshipmen conflict 

number is obtained when the number of local mutations is greatest.  
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Recommendations: 

 The course bartering system is a reasonable addition to the course scheduling 

process.  The “Cycle Elimination” program is extremely efficient in finding the cycles 

that would correspond to possible course-section switches between midshipmen.  

Furthermore, network flow techniques provide an algorithm to determine the optimal 

accommodation of midshipmen.  Finally, the integer programming approach also 

provides an efficient way of finding the optimal accommodation.  This approach allows 

for midshipmen to submit more than one change to their schedule.  In addition, the model 

of the course bartering system as an integer programming problem is quite similar to 

other well-known problems that could be examined.  It is recommended that the course 

bartering system be added to the scheduling process and that either the network flow 

algorithm or integer programming approach be used. 

 In terms of final examination scheduling, the genetic algorithm program is 

extremely efficient in finding good schedules.  Its raw best schedule produced one third 

less midshipmen conflicts than the Strathmann Schedule Expert that is used today.  Many 

of the additional constraints were added into the program, such as the grouping of course 

exams where desired, early exams for those courses requiring a long grading period, and 

a maximum capacity of midshipmen for each exam slot.  Even with these additions, a 

Spring semester schedule with ten midshipmen conflicts and nine course conflicts was 

produced in roughly ten minutes.  The baseline values for the fixed variables in the 

second set of experiments should be kept the same.   The number of “best” schedules 

passed onto future generations should be half of the total children, or in this case, five.  

Note that the Strathmann Schedule Expert is still very good at producing exam statistics 
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and incorporating other constraints.  Ultimately, it is recommended that the genetic 

algorithm program be used to find an initial schedule that can be used as input into the 

Strathmann program.  Then the Strathmann software could be used to add any further 

improvements to the schedule if necessary.   
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Appendix A: Cycle Elimination Program 
 

 
Purpose: This C++ program uses an iterative process to find and remove directed 

cycles in a given graph. 
 
  
Input : A data file consisting of the course bartering system graph.  In this graph, 

vertices represent course section pairs.  Directed edges join two vertices 
when a midshipmen requests to move from one section to another. 

 
 
Description: The program first performs a simplification process whereby any vertex 

without both incoming and outgoing edges is eliminated.  It then uses a 
depth-first search to find a directed cycle in the graph.  Once a cycle is 
found, it is removed and recorded.  The process is repeated until the graph 
consists of the null set. 

 
 
Output: All of the alpha codes and corresponding switches that were made on a 

given graph. 
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/************************************ 
 ** This version takes the first 
 ** cycle it finds and removes it! 
 ************************************/ 
#include <iostream> 
#include <vector> 
#include <string> 
#include <stdlib.h> 
using namespace std; 
 
//Define new type edge 
class edge 
{ 
public: 
  bool used; 
  int weight; 
  int destination; 
  vector <string> A; 
}; 
 
//Define new type vertex 
class vertex 
{ 
public: 
  bool live; 
  vector <edge> N; 
  string course; 
  string period; 
  char color; 
}; 
 
int getindex(vector<vertex>&,string,string); 
void addedge(vector<vertex>&,int,int,string); 
void print(vector<vertex> &); 
bool are_out_edges(vector<vertex>&,int); 
bool are_in_edges(vector<vertex>&,int); 
bool simplify(vector<vertex>&); 
void deletevertex(vector<vertex>&,int); 
vector<int> findcycle(vector<vertex>&); 
void deleteedge(vector<vertex>&,int,int); 
bool nonempty(vector<vertex>&); 
void deletepath(vector<vertex>&, vector<int> &); 
int index_in_Nbrs(vector<vertex>&, int, int); 
void printcycle(vector<vertex>&,vector<int>&); 
 
int main() 
{ 
  // Read in number of vertices, and rest on first line 
  int n; 
  string temp; 
  cin >> n >> temp >> temp; 
 
  // Read vertices of course  period 
  vector<vertex> V; 
  vertex w; 
  for(int i = 0; i < n; i++) 
  { 
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    cin >> w.course >> w.period; 
    w.live = true; 
    V.push_back(w); 
  } 
 
  // Read in number of edges, and rest on line 
  int e; 
  cin >> e >> temp >> temp; 
 
  // Read and store edges! 
  for(int i = 0; i < e; i++) 
  { 
    // Read through student info, which we'll ignore for now! 
    cin >> temp; 
     
    // Read in edge info 
    string alpha, course0, period0, course1, period1; 
    cin >> alpha >> course0 >> period0 >> course1 >> period1; 
     
    // Add edge to graph 
    int s = getindex(V,course0,period0); 
    int d = getindex(V,course1,period1); 
    addedge(V,s,d,alpha); 
   } 
 
  // Print graph 
  print(V); 
  cout << endl << endl; 
 
  bool f = true; 
  while(f) 
    f = simplify(V); 
  cout << "After simplify: " << endl; 
  print(V); 
  cout << endl; 
 
  while(nonempty(V)) 
  {  
    vector<int> Cycle = findcycle(V); 
    printcycle(V,Cycle); 
    deletepath(V,Cycle); 
 
    cout << "After path delete: " << endl; print(V); 
 
    bool f = true; 
    while(f) 
      f = simplify(V); 
    cout << "After simplify: " << endl; 
    print(V); 
    cout << endl; 
   } 
  print(V); 
 return 0; 
} 
 
bool nonempty(vector<vertex>& V) 
{ 
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  for(int a = 0; a < V.size(); a++) 
    if(V[a].live == true) 
      return true; 
  return false; 
} 
 
// Gets the index in V of the vertex (course,period) 
int getindex(vector<vertex>& V,string course, string period) 
{ 
  int index = 0; 
  while(index < V.size()) 
  { 
    // Is V[index] the one we want? 
    if (V[index].course == course && V[index].period == period) 
      return index; 
    index++; 
  } 
 
  // If we ever get here, things are messed up!  We didn't find the 
vertex! 
} 
 
// Add edge assuming that such an edge is not already in the graph! 
void addedge(vector<vertex>& V,int s,int d, string alpha) 
{ 
  int k = index_in_Nbrs(V,s,d); 
  if (k > -1) 
  {  
    // Edge already exists 
    V[s].N[k].weight++; 
    V[s].N[k].A.push_back(alpha); 
  } 
  else 
  { 
    // Create the edge object to add 
    edge newedge; 
    newedge.used = false; 
    newedge.weight = 1; 
    newedge.destination = d; 
    newedge.A.push_back(alpha); 
     
    // Add edge to vector V[s].N 
    V[s].N.push_back(newedge); 
  } 
} 
 
//Print the graph with given vertices and edges! 
void print(vector<vertex> &G) 
{ 
  // loop through each vertex & print edges out of that vertex 
  for(int u = 0; u < G.size(); u++) 
  { 
    if (G[u].live)  
    { 
      for(int k = 0;  k < G[u].N.size(); k++) 
      { 
 int v = G[u].N[k].destination; 
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 cout << "Edge: (" << G[u].course << "," << G[u].period  
      << ") to (" << G[v].course << "," << G[v].period << ")" 
      << " of weight " << G[u].N[k].weight << endl; 
      } 
    } 
  } 
} 
 
 
bool are_out_edges(vector<vertex>& G, int u) 
{ 
  if (G[u].N.size() == 0) 
    return false; 
  else 
    return true; 
} 
 
bool are_in_edges(vector<vertex>& G, int u) 
{ 
  for(int a  = 0; a < G.size(); a++) 
  { 
    if (G[a].live)  
    { 
      for(int k = 0;  k < G[a].N.size(); k++) 
      { 
 if (G[a].N[k].destination == u) 
   return true; 
      }  
    } 
  } 
  return false; 
} 
 
// Simplification of graph:  
// returns true if graph was changed and false otherwise 
bool simplify(vector<vertex>& G) 
{ 
  bool found = false; 
  for(int u = 0; u < G.size(); u++) 
  { 
    if(G[u].live &&(are_out_edges(G,u) == false || are_in_edges(G,u) == 
false)) 
    { 
      //code that deletes vertex u! 
      deletevertex(G,u); 
      found = true; 
    } 
  } 
  return found; 
} 
 
//Function that will delete a vertex! 
void deletevertex(vector<vertex>& G, int u) 
{ 
  // Set vertex u to dead 
  G[u].live = false; 
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  // Delete any edges into u 
  for(int a  = 0; a < G.size(); a++) 
  { 
    if (G[a].live)  
    { 
      for(int k = 0;  k < G[a].N.size(); k++) 
      { 
 if (G[a].N[k].destination == u) 
 { 
   int n = G[a].N.size() - 1; 
   edge t = G[a].N[n]; 
   G[a].N[n] = G[a].N[k]; 
   G[a].N[k] = t; 
   G[a].N.pop_back(); 
 } 
      }  
    } 
  } 
} 
 
bool dfvisit(vector<vertex>& G, int v, vector<int>& Path) 
{ 
  G[v].color = 'g'; 
  Path.push_back(v); 
   
  for(int i = 0; i < G[v].N.size(); i++) 
  { 
    int w = G[v].N[i].destination; 
    if (G[w].live) 
    { 
      bool cyc = false; 
      if (G[w].color == 'w') 
 cyc = dfvisit(G,w,Path); 
      else if (G[w].color == 'g') 
      { 
 Path.push_back(w); 
 cyc = true; 
      } 
       
      if (cyc) return true; 
    } 
  } 
 
  G[v].color = 'b'; 
  Path.pop_back(); 
  return false; 
} 
 
vector<int> findcycle(vector<vertex>& G) 
{ 
  //Initialize the color of all vertices to white 
  for(int i = 0; i < G.size(); i++) 
    G[i].color = 'w'; 
 
  vector<int> Path; 
 
  for(int v = 0; v < G.size() && Path.size() == 0; v++) 
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  {   
    if (G[v].color == 'w' && G[v].live) 
      dfvisit(G,v,Path); 
  } 
 
  return Path; 
} 
 
void printcycle(vector<vertex> &G, vector<int> &Path) 
{   
  if (Path.size() > 0) 
  { 
    // Find first entry of Path that matches the *last* index 
    int i = 0; 
    while(Path[i] != Path[Path.size()-1]) 
      i++; 
 
    // Print from Path[i] onwards 
    while(i < Path.size()-1) 
    { 
      // Print switch from Path[i] to Path[i+1] 
      cout << G[Path[i]].course << G[Path[i]].period << " " <<  "to" << 
" " 
    << G[Path[i+1]].course << G[Path[i+1]].period << ' '; 
 
      //Find edge from Path[i] to Path[i+1] 
      int k = index_in_Nbrs(G,Path[i],Path[i+1]); 
 
      //Print out the last alpha associated with this edge 
      cout << G[Path[i]].N[k].A[ G[Path[i]].N[k].A.size()-1 ] << endl; 
 
      i++; 
    } 
    cout << endl; 
  } 
 
} 
 
void deleteedge(vector<vertex>& G, int s, int d) 
{ 
  int a = index_in_Nbrs(G,s,d); 
 
  if (G[s].N[a].weight == 1) 
  { 
    // swap G[s].N[a] with the last element of G[s].N 
    int last = G[s].N.size() - 1; 
    G[s].N[a] = G[s].N[last]; 
    // delete the edge 
    G[s].N.pop_back(); 
  } 
  else 
  { 
    G[s].N[a].weight--; 
    G[s].N[a].A.pop_back(); 
  } 
  return; 
} 
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void deletepath(vector<vertex>& G, vector<int> &Path) 
{ 
  int n = 0; 
  while(Path[n] != Path[Path.size() - 1]) 
    n++; 
  while( n < Path.size() - 1) 
  { 
    int s = Path[n]; 
    int d = Path[n+1]; 
    deleteedge(G,s,d); 
    n++; 
  } 
} 
 
int index_in_Nbrs(vector<vertex>& V, int s, int d) 
{ 
  for(int i = 0; i < V[s].N.size(); i++) 
    if(V[s].N[i].destination == d) 
      return i; 
  return -1; 
} 
 
 
 
 
/Sample data set to be tested 
 
/6 course-period pairs 
 
SM101 1st 
SM101 3rd 
SM101 6th 
HH202 1st 
HH202 3rd 
HH202 6th 
 
 
10 Mid preferences 
 
Jones 046754 SM101 3rd SM101 6th  
Brown 037876 SM101 1st SM101 3rd  
Smith 049888 SM101 6th SM101 1st 
Thomas 031234 SM101 1st HH202 6th  
Poindexter 041234 HH202 1st HH202 6th  
Kant 056789 HH202 6th HH202 3rd  
Cohen 034567 HH202 6th SM101 6th  
Colt 057891 SM101 3rd SM101 1st  
Holmes 034657 HH202 6th SM101 1st  
Freud 051234 SM101 1st HH202 3rd  
*/ 
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Appendix B: Sample Run of the Cycle Elimination Program  
 
Data File: 
 
6 course-period pairs 
 
SM101 1st 
SM101 3rd 
SM101 6th 
HH202 1st 
HH202 3rd 
HH202 6th 
 
10 Mid preferences 
 
Jones 046754  SM101 3rd SM101 6th   
Smith 049888  SM101 6th SM101 3rd 
Thomas 031234 SM101 3rd SM101 6th  
Poindexter 041234 SM101 6th HH202 6th  
Kant 056789  HH202 6th HH202 3rd  
Cohen 034567  HH202 3rd SM101 3rd  
Colt 057891  SM101 3rd SM101 1st  
Holmes 034657 HH202 6th SM101 1st  
Freud 051234  SM101 1st HH202 3rd  
Jos 046754  SM101 3rd SM101 6th 
 
 
 
Cycle Elimination Program on Data File 
 
Edge: (SM101,1st) to (HH202,3rd) of weight 1 
Edge: (SM101,3rd) to (SM101,6th) of weight 3 
Edge: (SM101,3rd) to (SM101,1st) of weight 1 
Edge: (SM101,6th) to (SM101,3rd) of weight 1 
Edge: (SM101,6th) to (HH202,6th) of weight 1 
Edge: (HH202,3rd) to (SM101,3rd) of weight 1 
Edge: (HH202,6th) to (HH202,3rd) of weight 1 
Edge: (HH202,6th) to (SM101,1st) of weight 1 
 
After simplify:  
Edge: (SM101,1st) to (HH202,3rd) of weight 1 
Edge: (SM101,3rd) to (SM101,6th) of weight 3 
Edge: (SM101,3rd) to (SM101,1st) of weight 1 
Edge: (SM101,6th) to (SM101,3rd) of weight 1 
Edge: (SM101,6th) to (HH202,6th) of weight 1 
Edge: (HH202,3rd) to (SM101,3rd) of weight 1 
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Edge: (HH202,6th) to (HH202,3rd) of weight 1 
Edge: (HH202,6th) to (SM101,1st) of weight 1 
 
SM1013rd to SM1016th  046754 
SM1016th to SM1013rd  049888 
 
After path delete:  
Edge: (SM101,1st) to (HH202,3rd) of weight 1 
Edge: (SM101,3rd) to (SM101,6th) of weight 2 
Edge: (SM101,3rd) to (SM101,1st) of weight 1 
Edge: (SM101,6th) to (HH202,6th) of weight 1 
Edge: (HH202,3rd) to (SM101,3rd) of weight 1 
Edge: (HH202,6th) to (HH202,3rd) of weight 1 
Edge: (HH202,6th) to (SM101,1st) of weight 1 
After simplify:  
Edge: (SM101,1st) to (HH202,3rd) of weight 1 
Edge: (SM101,3rd) to (SM101,6th) of weight 2 
Edge: (SM101,3rd) to (SM101,1st) of weight 1 
Edge: (SM101,6th) to (HH202,6th) of weight 1 
Edge: (HH202,3rd) to (SM101,3rd) of weight 1 
Edge: (HH202,6th) to (HH202,3rd) of weight 1 
Edge: (HH202,6th) to (SM101,1st) of weight 1 
HH2023rd to SM1013rd  034567 
SM1013rd to SM1016th  031234 
SM1016th to HH2026th  041234 
HH2026th to HH2023rd  056789 
 
After path delete:  
Edge: (SM101,1st) to (HH202,3rd) of weight 1 
Edge: (SM101,3rd) to (SM101,6th) of weight 1 
Edge: (SM101,3rd) to (SM101,1st) of weight 1 
Edge: (HH202,6th) to (SM101,1st) of weight 1 
After simplify:  
 
Empty graph 
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Appendix C 
 
The following code was used when the course bartering system’s “Hanging House 
Network” was modeled as a linear / integer programming problem and submitted to 
NEOS Servers.  NEOS Servers can be found at www-neos.mcs.anl.gov. 
 
 
Set Students; 
Set Sections; 
 
param ADDDROP{Students, Sections) default 0; 
 
var w{Students} >= 0, <=1; # binary; 
var r{Sections} <= 0; 
 
maximize Total_Change: sum {i in Students} w[i] 
subject to Change_Section{j in Sections}: sum {i in students} w[i] *AddDrop[i,j] = r[j]; 
 
 
set Students := Cindy David Matt Jennifer Mike Will James; 
set Sections := SM112SI SM112S2 SM112S3 SM112S4 SM112S5 SM112S6; 
  
param AddDrop := 
Cindy SM112S1 -1 
Cindy SM112S2 1 
David SM112S2 -1 
David SM112S6 1 
Matt SM112S3 -1 
Matt SM112S6 1 
Jennifer SM112S3 1 
Jennifer SM112S4 -1 
Mike SM112S2 1 
Mike SM112S5 -1 
Will SM112S4 1 
Will SM112S5 -1 
James SM112S5 1 
James SM112S6 -1; 
 
 
solve;  
display w, r; 
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Appendix D: Schedule Formation Program 
 
 
Purpose:  This program provides an efficient way of recording and maintaining all 

of the statistics of a final examination schedule.  These include: number of 
midshipmen conflicts, number of course conflicts and the number of 
midshipmen that exceed the 2400-person capacity of each examination 
time slot. 

 
 
Input : A base schedule 
 
 
Description: This program essentially introduces the statistics by which a final 

examination schedule will be measured. 
 
 
Output: N/A  
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/*************************************************** 
 ** Definition of class Schedule and related functions. 
 **  
 ** A Schedule is simply a BaseSchedule augmented with 
 ** facilities for efficiently keeping track of the 
 ** total number of midshipmen and course conflicts. 
 ** The key new functions (i.e. not in BaseSchedule) 
 ** are: 
 ** 
 ** int numconflicts();         // # mid conflicts 
 ** int num_course_conflicts(); // # course conflicts 
 ** 
 ** A "mid conflict" is a tuple ({c1,c2},alpha) such 
 ** that midshipman alpha is enrolled in courses c1 
 ** and c2, and c1 and c2 are scheduled in the same 
 ** slot.  "numconflicts()" returns the number of 
 ** distinct mid conflicts.  A course conflict is 
 ** an unordered pair (c1,c2) such that course c1 and course c2 
 ** are scheduled in the same slot.  The function 
 ** "num_course_conflict" returns the number of  
 ** distinct pairs of this kind. 
 ***************************************************/ 
#include "BaseSchedule.h" 
 
extern int MaxPerSlot; 
inline void setMaxPerSlot(int M) { MaxPerSlot = M; } 
 
class Schedule : public BaseSchedule 
{ 
 public: 
  //-- NEW FUNCTIONS --------------------------------// 
  int numconflicts() { return MidConflictCount; } 
  int num_course_conflicts() { return CourseConflictCount; } 
 
  //-- REIMPLEMENTATIONS OF OLD FUNCTIONS ----------// 
  virtual void resize(int numSlots, int numCourses)  
  {  
    MidConflictCount = 0; 
    CourseConflictCount = 0; 
    OverFlowPenalty = 0; 
    BaseSchedule::resize(numSlots,numCourses);  
    StusInSlot.resize(numSlots); 
    for(int i = 0; i < numSlots; i++) 
      StusInSlot[i] = 0; 
  } 
  virtual int add(SlotIdx s, CourseIdx c, CourseList &L) 
  {  
    CourseConflictCount += course_conflicts(s,c,L); 
    int k = BaseSchedule::add(s,c,L);  
    MidConflictCount += k; 
    int contrib = max(0,StusInSlot[s] - MaxPerSlot); 
    StusInSlot[s] += L.Course[c].size(); 
    int delta = max(0,StusInSlot[s] - MaxPerSlot) - contrib; 
    OverFlowPenalty += delta; 
    return k;  
  } 
  virtual int remove(SlotIdx s, CourseIdx c, CourseList &L) 



 55 

  {  
    int k = BaseSchedule::remove(s,c,L);  
    MidConflictCount -= k; 
    CourseConflictCount -= course_conflicts(s,c,L); 
    int contrib = max(0,StusInSlot[s] - MaxPerSlot); 
    StusInSlot[s] -= L.Course[c].size();    
    int delta = max(0,StusInSlot[s] - MaxPerSlot) - contrib; 
    OverFlowPenalty += delta; 
    return k;  
  } 
  virtual int overflowpenalty() { return OverFlowPenalty; } 
  virtual int cost() { return OverFlowPenalty + MidConflictCount; } 
  virtual int cost2add(SlotIdx s, CourseIdx c, CourseList &L) 
  { 
    int conflictincrease = conflicts(s,c,L), overflowincrease; 
    if (StusInSlot[s] - MaxPerSlot >= 0) overflowincrease = 
L.Course[c].size(); 
    else overflowincrease = max(0,StusInSlot[s] + 
int(L.Course[c].size()) - MaxPerSlot); 
    return conflictincrease + overflowincrease; 
  } 
  int stusInSlot(int k) { return StusInSlot[k]; } 
 
 private: 
  //-- DATA ----------------------------------------// 
  int MidConflictCount; 
  int CourseConflictCount; 
  int OverFlowPenalty; // # of stus over MaxPerSlot summed over all 
slots 
  vector<int> StusInSlot; 
}; 
 
// This class simply provides a simple comparison of conflict objects. 
class CompSchedByMidConflicts 
{  
 public: 
  bool operator()(Schedule *a, Schedule *b)  
  {  
    return a->numconflicts() < b->numconflicts();  
  } 
}; 
 
// This class simply provides a simple comparison of cost. 
class CompSchedByCost 
{  
 public: 
  bool operator()(Schedule *a, Schedule *b)  
  {  
    return a->cost() < b->cost();  
  } 
}; 
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Appendix E: Genetic Algorithm Program 
 
 
Purpose: This C++ program produces good final examination schedules. 
 
 
Input : Two data files: First, a data file that contains all of the courses with final 

examinations and the list of midshipmen taking each exam.  The second 
data file incorporates values for the threshold variable, initial population 
size, number of initial local mutations, number of children produced from 
each mating, number of generations, number of local mutations performed 
after each generation and number of “best” schedules passed onto future 
generations. 

 
 
Description: The program first forms an initial population of schedules using a 

preprocessing (deterministic) step and then a random assignment of 
courses to exam slots.  The program then follows a process of performing 
local mutations to the exam schedule and mating schedules.  Local 
mutations are single moves of a course exam from one slot to another 
while the mating, or combining, of two schedules follows a special 
intermingling method.   

 
 
Output: The best schedule after each generation and best overall schedule.  The 

program also produces the schedule statistics for these schedules. These 
statistics include the number of midshipmen conflicts, the number of 
course conflicts and the running time of the program to form the schedule. 
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#include "Schedule.h" 
#include <ctime> 
#include <cmath> 
#include <algorithm> 
 
int MaxPerSlot; 
 
/******************************************************* 
 ** Function Prototypes 
 *******************************************************/ 
// sets S to a random schedule of the courses in L into N exam slots 
void rand_sched(Schedule &S, CourseList &L, int N); 
 
// sets S to a schedule that's random, except that the Top Conflicts 
// are all in different slots 
void not_quite_rand_sched(Schedule &S, CourseList &L, int N, 
vector<CourseIdx> &TopConfs); 
 
// Tries to improve schedule "S" by reassigning course "course". 
// "course" is assigned to slot resulting in fewest conflicts.  If 
// there are multiple slots realizing this fewest number of conflicts, 
// one of them is chosen at random. 
 
void GreedyImproveMidConflicts(Schedule &S, CourseList &L, CourseIdx 
course); 
void GreedyImproveCost(Schedule &S, CourseList &L, CourseIdx course); 
 
Schedule* mate(Schedule &A, Schedule &B, CourseList &L); 
 
 
int main(int argc, char **argv) 
{ 
  int TStart = time(0); 
  srand(time(0)); 
 
  /*** READ IN COURSE DATA ***************************/ 
  if (argc < 4) { 
    cerr << "Insufficient arguments: <configfile> <inputfile> 
<outputfile>" << endl; 
    return 1; } 
  ifstream ConfIN(argv[1]); 
  if (!ConfIN) { 
    cerr << "File " << argv[1] << " could not be opened!" << endl; 
    return 2; } 
  ifstream IN(argv[2]); 
  if (!IN) { 
    cerr << "File " << argv[2] << " could not be opened!" << endl; 
    return 3; } 
  ofstream OUT(argv[3]); 
  if (!OUT) { 
    cerr << "File " << argv[3] << " could not be opened!" << endl; 
    return 4; } 
 
  /*** INITIALIZE ************************************/ 
  setMaxPerSlot(2400); 
  int N = 15;    // number of exam time slots 
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  int ccut = 50; // we start with looking at # of conflicts involving 
ccut or more students 
  int initsize = 1000, initimprove = 5000; 
  int restsize = 10, restimprove = 10000; 
  int generations = 200; // number of generations 
  int hold = 2;        // the top "hold" schedules get held over each 
generation 
 
  // Read parameter values config file 
  string name; 
  if (!(ConfIN >> name && name == "ccut" && ConfIN >> ccut)) { 
    cerr << "Error reading ccut from config file" << endl; return 5; } 
  if (!(ConfIN >> name && name == "initsize" && ConfIN >> initsize)) { 
    cerr << "Error reading initsize from config file" << endl; return 
5; } 
  if (!(ConfIN >> name && name == "initimprove" && ConfIN >> 
initimprove)) { 
    cerr << "Error reading initimprove from config file" << endl; 
return 5; } 
  if (!(ConfIN >> name && name == "restsize" && ConfIN >> restsize)) { 
    cerr << "Error reading restsize from config file" << endl; return 
5; } 
  if (!(ConfIN >> name && name == "restimprove" && ConfIN >> 
restimprove)) { 
    cerr << "Error reading restimprove from config file" << endl; 
return 5; } 
  if (!(ConfIN >> name && name == "generations" && ConfIN >> 
generations)) { 
    cerr << "Error reading generations from config file" << endl; 
return 5; } 
  if (!(ConfIN >> name && name == "hold" && ConfIN >> hold)) { 
    cerr << "Error reading hold from config file" << endl; return 5; } 
 
  CourseList L; // create course data structure and read in course info 
  L.read(IN); 
 
  /*** Find the "top N" courses ***/ 
  vector<CourseIdx> TopConfs; 
 
  // Find degrees 
  vector<CourseIdx> TCI; 
  for(CourseIdx i = 0; i < L.courses(); i++) 
  { 
    int d = 0; 
    for(CourseIdx j = 0; j < L.courses(); j++) 
      if (i != j && L.conflicts(i,j) >= ccut) 
 d++; 
    TCI.push_back(d*5000 + i); 
  } 
 
  // Push course indices with N highest degrees on TopConfs 
  sort(TCI.begin(),TCI.end()); 
  for(int k = 1; k < N-1; k++) 
    TopConfs.push_back(TCI[TCI.size() - k] % 5000); 
 
  /*** GENERATE AN INITIAL POPULATION OF RANDOM SCHEDULES **/ 
  vector<Schedule*> Pi; 
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  for(int i = 0; i < initsize; i++) { 
    Pi.push_back(new Schedule()); 
    not_quite_rand_sched(*(Pi.back()),L,N,TopConfs); 
  } 
 
  /*** locally improve 1st population *******************/ 
  for(int j = 0; j < Pi.size(); j++) { 
    for(int k = 0; k < initimprove; k++) 
      GreedyImproveCost(*(Pi[j]),L,L.randcourse()); 
  } 
   
  /*** Take the "restsize" best of the initial population ***/ 
  sort(Pi.begin(),Pi.end(),CompSchedByCost()); 
  vector<Schedule*> P(restsize), HallOfFame; 
  for(int i = 0; i < restsize; i++) 
    P[i] = Pi[i]; 
  for(int i = restsize; i < initsize; i++) 
    delete Pi[i]; 
  Pi.clear(); 
 
  /*** DO THE GENETIC ALGORITHM THING!   ***/ 
  for(int i = 0; i < generations; i++) 
  { 
    sort(P.begin(),P.end(),CompSchedByCost()); 
    vector<Schedule*> Old = P; 
    P.clear(); 
 
    cout << "Generation " << i << " best is " << Old[0]->cost() << ' '; 
    cout << "born = " << Old[0]->born << " age = " << Old[0]->age << ' 
'; 
    int sum = 0; 
    for(int j = 0; j < Old.size(); j++) 
      sum += Old[j]->cost(); 
    cout << "Average is " << double(sum)/Old.size() << endl; 
 
    for(int j = 0; j < hold; j++) 
      P.push_back(new Schedule(*Old[j])); 
 
    /*** mate x pairs *************************************/ 
    int M = Old.size(); 
    for(int j = 0; j < M - hold; j++) 
    { 
      int i1 = int(sqrt(double(rand()%(M*M)))), i2; 
      do { i2 = int(sqrt(double(rand()%(M*M)))); } while (i1 == i2); 
      P.push_back(mate(*Old[i1],*Old[i2],L)); 
      P[P.size()-1]->born = i + 1; 
    } 
 
    /*** locally improve new population *******************/ 
    for(int j = 0; j < P.size(); j++) { 
      for(int k = 0; k < (j < hold ? restimprove : (i+1)*restimprove); 
k++) 
      //      for(int k = 0; k < restimprove; k++) 
 GreedyImproveCost(*(P[j]),L,L.randcourse()); 
    } 
     
    /*** Save best of the Old and kill the rest ***********/ 
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    HallOfFame.push_back(new Schedule(*Old[0])); 
    for(int j = 0; j < Old.size(); j++) 
      delete Old[j]; 
  } 
 
 
  HallOfFame = P; // HACK!  Look at ending population and ignore 
HallOfFame 
  
   
  /*** One last local mutate on the hall of fame ********/ 
  for(int j = 0; j < HallOfFame.size(); j++) { 
    for(int k = 0; k < 2*restimprove; k++) 
      GreedyImproveCost(*(HallOfFame[j]),L,L.randcourse()); 
  } 
 
   
  /*** Print number of conflicts in sorted order ***********/ 
  cout << endl << endl << "Final Phase:" << endl; 
  sort(HallOfFame.begin(),HallOfFame.end(),CompSchedByCost()); 
  for(int i = 0; i < HallOfFame.size(); i++) 
    cout << "cost = " << HallOfFame[i]->cost()  
  << " born = " << HallOfFame[i]->born 
  << " age = " << HallOfFame[i]->age << endl; 
   
  /*** Write best schedule to output file ******************/ 
  cout << endl << endl << "Best schedule had " 
       << HallOfFame[0]->cost() << " cost and "  
       << HallOfFame[0]->numconflicts() << " midshipman conflicts and "  
       << HallOfFame[0]->num_course_conflicts() << " course conflicts"  
       << endl; 
  HallOfFame[0]->print(L,OUT); 
  cout << "That took " << (time(0) - TStart) << " seconds" << endl; 
   
  return 0; 
} 
 
 
/********** FUNCTIONS INVOLVING BaseSchedule **********/ 
void rand_sched(Schedule &S, CourseList &L, int N) 
{ 
  S.resize(N,L.courses()); 
  for(int i = 0; i < L.courses(); i++) 
    S.add(rand()%N,i,L); 
} 
 
void not_quite_rand_sched(Schedule &S, CourseList &L, int N, 
vector<CourseIdx> &TopConfs) 
{ 
  S.resize(N,L.courses()); 
   
  //Place list of N courses with top conflicts in different exam slots 
  for(int j = 0; j < TopConfs.size(); j++) 
    S.add(j,TopConfs[j],L); 
    
  //Randomly fill in the rest 
    for(int course_i = 0; course_i < L.courses(); course_i++) 
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    { 
      // Search for course_i in the cells of TopConfs 
      int flag = 1; 
      for(int vect_i = 0; vect_i < TopConfs.size(); vect_i++) 
 if(course_i == TopConfs[vect_i]) 
   flag = 0; 
      if(flag == 1) 
 S.add(rand()%N,course_i,L); 
    } 
} 
 
void GreedyImproveMidConflicts(Schedule &S, CourseList &L, CourseIdx 
course) 
{ 
  S.age++; 
   
  // Remove chosen course 
  int oldslot = S.slot(course); 
  int delta = S.remove(oldslot,course,L); 
 
  // Collect all optimal choices for assigning "course" 
  int fewestconfs = delta; 
  vector<SlotIdx> choice(L.courses()); 
  int i = 0; 
  for(SlotIdx newslot = 0; newslot < S.numslots(); newslot++) 
  { 
    int c = S.conflicts(newslot,course,L); 
    if (c < fewestconfs) 
    { 
      fewestconfs = c; 
      choice[0] = newslot; 
      i = 1; 
    } 
    else if (c == fewestconfs) 
      choice[i++] = newslot; 
  } 
 
  // Randomly choose one of the optimal assignments and make it! 
  S.add( choice[rand() % i],course,L); 
} 
 
void GreedyImproveCost(Schedule &S, CourseList &L, CourseIdx course) 
{ 
  S.age++; 
 
  // Remove chosen course 
  int oldslot = S.slot(course); 
  S.remove(oldslot,course,L); 
  int delta = S.cost2add(oldslot,course,L); 
 
  // Collect all optimal choices for assigning "course" 
  int fewestconfs = delta; 
  vector<SlotIdx> choice(L.courses()); 
  int i = 0; 
  for(SlotIdx newslot = 0; newslot < S.numslots(); newslot++) 
  { 
    int c = S.cost2add(newslot,course,L); 
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    if (c < fewestconfs) 
    { 
      fewestconfs = c; 
      choice[0] = newslot; 
      i = 1; 
    } 
    else if (c == fewestconfs) 
      choice[i++] = newslot; 
  } 
 
  // Randomly choose one of the optimal assignments and make it! 
  S.add( choice[rand() % i],course,L); 
} 
 
Schedule* mate(Schedule &A, Schedule &B, CourseList &L) 
{ 
  // Create new schedule 
  Schedule *p = new Schedule; 
  Schedule &Baby = *p; 
  Baby.resize(A.numslots(),L.courses()); 
 
  // Round one of copying! 
  for(SlotIdx i = 0; i < A.numslots(); i++) 
  {  
    // 2a. Interleave exam slots from Schedule A and B 
    if(i % 2 == 0) 
    { //Copy slot from A 
      for(set<CourseIdx>::iterator q = A[i].begin(); q != A[i].end(); 
++q) 
 if (Baby.slot4Course[*q] < 0) 
   Baby.add(i,*q,L); 
    } 
    else 
    { //Copy slot from B 
      for(set<CourseIdx>::iterator q = B[i].begin(); q != B[i].end(); 
++q) 
 if (Baby.slot4Course[*q] < 0) 
   Baby.add(i,*q,L); 
    } 
  } 
 
  // Round two! Go through slots in opposite manner & fill in left-out 
courses 
  for(SlotIdx i = 0; i < A.numslots(); i++) 
  {  
    // 2a. Interleave exam slots from Schedule A and B 
    if(i % 2 == 1) 
    { //Copy slot from A 
      for(set<CourseIdx>::iterator q = A[i].begin(); q != A[i].end(); 
++q) 
 if (Baby.slot4Course[*q] < 0) 
   Baby.add(i,*q,L); 
    } 
    else 
    { //Copy slot from B 
      for(set<CourseIdx>::iterator q = B[i].begin(); q != B[i].end(); 
++q) 
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 if (Baby.slot4Course[*q] < 0) 
   Baby.add(i,*q,L); 
    } 
  } 
   
  return p; 
}  
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Appendix F: Verification of Schedule Program 
 
 
Purpose: This C++ program establishes the validity of any final examination 

schedule produced and incorporates the proximity step. 
 
 
Input : A final examination schedule and a data file with all of the courses 

requiring a long period to grade. 
 
 
Description: This program first verifies that all of the final exams are present in the 

final examination schedule produced.  It then incorporates a proximity 
step that orders the exam slots by the number of “long grading” courses 
that each exam slot contains. 

 
 
Output: A schedule in proximity order.  In addition, it yields values for the number 

of “long grading” courses in each exam slot and the number of students 
taking an exam in each exam slot.  
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/***************************************************** 
 ** verifyshed <coursefile> <schedfile> 
 ** 
 ** Program reads data from coursefile and reads a 
 ** proposed schedule from schedfile and reports the 
 ** conflict numbers, as well as verifying that all 
 ** courses are scheduled.  It also implements the  
 ** proximity step. 
 *****************************************************/ 
#include "Schedule.h" 
#include <ctime> 
#include <cmath> 
#include <algorithm> 
 
int MaxPerSlot; 
 
Schedule* reorder(string fname, Schedule &A, CourseList &L); 
 
int main(int argc, char **argv) 
{ 
 
  /*** INITIALIZE ************************************/ 
  int N = 15; // number of exam time slots 
 
  /*** READ IN COURSE DATA ***************************/ 
  if (argc < 3) { 
    cerr << "Insufficient arguments:  <coursefile> <schedfile> 
[<orderfile> <reorderedfile>]" << endl; 
    return 1; } 
  ifstream C_IN(argv[1]); 
  if (!C_IN) { 
    cerr << "File " << argv[1] << " could not be opened!" << endl; 
    return 2; } 
  ifstream S_IN(argv[2]); 
  if (!S_IN) { 
    cerr << "File " << argv[2] << " could not be opened!" << endl; 
    return 3; } 
 
  string orderfile; 
  if (argc >= 4) 
    orderfile = string(argv[3]); 
 
  ofstream ReOUT; 
  bool reout; 
  if (reout = (argc == 5)) 
  { 
    ReOUT.open(argv[4]); 
    if (!ReOUT) { 
      cerr << "File " << argv[4] << " could not be opened!" << endl; 
      return 5; } 
  } 
 
  CourseList L; 
  L.read(C_IN); 
 
  /*** READ IN SCHEDULE ******************************/ 
  Schedule S; 
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  S.resize(N,L.courses()); 
  SlotIdx slot = -1; 
  string s; 
  while(S_IN >> s) 
  { 
    if (s == "Slot") 
    { 
      S_IN >> s; 
      slot++; 
    } 
    else 
    { 
      map<string,CourseIdx>::iterator p = L.NameIndex.find(s); 
      CourseIdx course = p->second; 
      S.add(slot,course,L); 
    } 
  } 
 
  /*** REPORT ******************************************/ 
  bool cflag = true; 
  for(CourseIdx course = 0; course < L.courses(); course++) 
  { 
    if (S.slot4Course[course] < 0 || S.slot4Course[course] > 
S.numslots()) 
    { 
      cflag = false; 
      cout << "Course with index " << course << " is not scheduled!" << 
endl; 
    } 
  } 
  if (cflag) 
    cout << "All courses are scheduled!" << endl; 
  cout << "Schedule has " << S.numconflicts() << " Mid conflicts!" << 
endl; 
  cout << "Schedule has " << S.num_course_conflicts() << " course 
conflicts!" << endl; 
 
  cout << "Students scheduled in slot: " << endl; 
  for(int i = 0; i < N; i++) 
    cout << S.stusInSlot(i) << ' '; 
  cout << endl; 
 
 
  // Order info 
  Schedule *p = 0; 
  if (orderfile != "") 
    p = reorder(orderfile,S,L); 
  if (reout) 
  { 
    p->print(L,ReOUT); 
    cout << "Reordered schedule in file " << argv[4] << endl; 
  } 
 
  return 0; 
} 
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Schedule* reorder(string fname, Schedule &A, CourseList &L) 
{ 
  // Create set of all course indices that are long grading 
  ifstream IN(fname.c_str()); 
  set<CourseIdx> EGC; 
  string s; 
  while(IN >> s) 
    EGC.insert(L.NameIndex[s]); 
 
  // Fill V with (numearlygradecourses,slotindex) 
  vector< pair<int,int> > V(A.numslots()); 
  for(int i = 0; i < A.numslots(); i++) 
  { 
    vector<int> I; 
    
set_intersection(EGC.begin(),EGC.end(),A[i].begin(),A[i].end(),back_ins
erter(I)); 
    V[i] = pair<int,int>(I.size(),i); 
  } 
 
  // Print before sort 
  cout << "Early grade courses in slots originally: " << endl; 
  for(int i = 0; i < V.size(); i++) 
    cout << V[i].first << ' '; 
  cout << endl; 
 
  sort(V.begin(),V.end()); 
 
  // Print after  sort 
  cout << "Early grade courses in slots reordered: " << endl; 
  for(int i = V.size() - 1; i >= 0; i--) 
    cout << V[i].first << ' '; 
  cout << endl; 
 
  // Create schedule by reordering A in decreasing number of early 
grading courses 
  Schedule *p = new Schedule(); 
  p->resize(A.numslots(),L.courses()); 
  for(int i = V.size()-1, j = 0; i >= 0; i--, j++) 
  { 
    int si = V[i].second; 
    for(set<CourseIdx>::iterator itr = A[si].begin(); itr != 
A[si].end(); ++itr) 
      p->add(j,*itr,L); 
 
  } 
  return p; 
} 
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Data Sets 
 

Experiment 1 
 
In this part of Experiment 1, threshold was varied and all other variable values were fixed. 
       
Varying ccut 1trial  midconf courseconf Time(s) 
initsize 1000 1 14 13 471
initimprove 5000 2 17 16 471
restsize 10 3 15 15 471
restimprove 10000 4 15 15 472
hold 2 5 17 16 471
generations 200     
       
Varying ccut 5trial  midconf courseconf time 
initsize 1000 1 16 15 470
initimprove 5000 2 14 14 470
restsize 10 3 18 15 471
restimprove 10000 4 19 17 470
hold 2 5 16 15 470
generations 200     
       
Varying ccut 10trial  midconf courseconf time 
initsize 1000 1 16 15 472
initimprove 5000 2 11 11 471
restsize 10 3 16 10 472
restimprove 10000 4 18 16 470
hold 2 5 16 15 472
generations 200     
       
Varying ccut 25trial  midconf courseconf time 
initsize 1000 1 14 11 470
initimprove 5000 2 11 11 471
restsize 10 3 14 14 471
restimprove 10000 4 14 14 472
hold 2 5 18 14 471
generations 200     
       
Varying ccut 50trial  midconf courseconf time 
initsize 1000 1 13 10 471
initimprove 5000 2 14 10 471
restsize 10 3 17 16 470
generations 10000 4 17 13 472
hold 2 5 17 12 471
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In this part of Experiment 1, the initial population size was varied and all other variable values were fixed. 
         
ccut 50 trial  midconf courseconf time   
varying initsize 100 1  19 19 385   
initimprove 5000 2  14 14 385   
restsize 10 3  20 16 386   
restimprove 10000 4  15 12 386   
hold 2 5  16 16 387   
generations 200        
         
ccut 50 trial  midconf courseconf time   
varying initsize 250 1  14 11 402   
initimprove 5000 2  14 14 401   
restsize 10 3  13 11 402   
restimprove 10000 4  16 16 401   
hold 2 5  19 16 402   
generations 200        
         
ccut 50 trial  midconf courseconf time   
varying initsize 500 1  18 18 424   
initimprove 5000 2  15 14 424   
restsize 10 3  16 13 425   
restimprove 10000 4  17 16 424   
hold 2 5  14 14 424   
generations 200        
         
ccut 50 trial  midconf courseconf time   
varying initsize 1000 1  16 11 471   
initimprove 5000 2  12 11 471   
restsize 10 3  13 12 472   
restimprove 10000 4  15 12 472   
hold 2 5  14 14 471   
generations 200        
         
ccut 50 trial  midconf courseconf time   
varying initsize 2000 1  12 11 564   
initimprove 5000 2  14 10 563   
restsize 10 3  18 17 564   
restimprove 10000 4  18 18 564   
hold 2 5  17 13 565   
generations 200        
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In this part of Experiment 1, the amount of initial mutations was varied and all other variable values were 
fixed. 
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  18 16 387   
varying initimprove 500 2  18 15 388   
restsize 10 3  14 11 387   
restimprove 10000 4  15 12 388   
hold 2 5  17 16 387   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  18 8 397   
varying initimprove 1000 2  12 9 396   
restsize 10 3  18 16 397   
restimprove 10000 4  20 19 396   
hold 2 5  13 12 397   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  13 13 425   
varying initimprove 2500 2  20 16 425   
restsize 10 3  11 11 425   
restimprove 10000 4  18 17 426   
hold 2 5  16 10 425   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  18 16 470   
varying initimprove 5000 2  15 14 470   
restsize 10 3  13 13 471   
restimprove 10000 4  14 11 470   
hold 2 5  15 14 472   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  18 16 564   
varying initimprove 10000 2  17 16 563   
restsize 10 3  16 15 564   
restimprove 10000 4  15 15 563   
hold 2 5  14 14 563   
generations 200        
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In this part of Experiment 1, the amount of children allowed was varied and all other variable values were 
fixed. 
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  15 15 282   
initimprove 5000 2  15 14 283   
varying restsize 5 3  12 12 282   
restimprove 10000 4  15 12 282   
hold 2 5  14 14 283   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  17 16 472   
initimprove 5000 2  16 13 471   
varying restsize 10 3  16 16 471   
restimprove 10000 4  18 14 472   
hold 2 5  18 16 471   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  14 13 660   
initimprove 5000 2  17 15 659   
varying restsize 15 3  14 10 661   
restimprove 10000 4  14 11 661   
hold 2 5  17 14 660   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  15 11 849   
initimprove 5000 2  16 14 851   
varying restsize 20 3  15 15 850   
restimprove 10000 4  17 14 849   
hold 2 5  17 13 848   
generations 200        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1  20 18 1037   
initimprove 5000 2  18 17 1037   
varying restsize 25 3  22 19 1037   
restimprove 10000 4  15 14 1037   
hold 2 5  17 16 1038   
generations 200        
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In this part of Experiment 1, the amount of generations was varied and all other variable values were fixed. 
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1 15 14 143   
initimprove 5000 2 16 16 144   
restsize 10 3 14 13 143   
varying generation 25 4 16 16 144   
hold 2 5 18 17 143   
restimprove 10000        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1 18 17 190   
initimprove 5000 2 14 14 190   
restsize 10 3 15 15 190   
varying generation 50 4 13 13 190   
hold 2 5 15 12 190   
restimprove 10000        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1 15 14 284   
initimprove 5000 2 16 14 283   
restsize 10 3 18 14 284   
varying generation 100 4 16 15 284   
hold 2 5 15 15 284   
restimprove 10000        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1 12 9 471   
initimprove 5000 2 19 18 472   
restsize 10 3 16 15 471   
varying generation 200 4 17 12 471   
hold 2 5 17 14 470   
restimprove 10000        
         
ccut 50 trial  midconf courseconf time   
initsize 1000 1 13 13 659   
initimprove 5000 2 16 13 659   
restsize 10 3 17 16 658   
varying generation 300 4 14 14 659   
hold 2 5 19 16 659   
restimprove 10000        
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In this part of Experiment 1, the amount of "best" schedules kept was varied & all other variables were 
fixed. 
         
ccut 50trial  midconf courseconf time   
initsize 1000 1  21 21 471   
initimprove 5000 2  19 14 471   
restsize 10 3  17 16 472   
generations 200 4  15 14 470   
varying hold 1 5  14 10 471   
restimprove 10000       
         
ccut 50trial  midconf courseconf time   
initsize 1000 1  19 18 472   
initimprove 5000 2  22 16 471   
restsize 10 3  16 12 471   
generations 200 4  13 13 471   
varying hold 2 5  15 13 471   
restimprove 10000       
         
ccut 50trial  midconf courseconf time   
initsize 1000 1  17 16 472   
initimprove 5000 2  17 13 472   
restsize 10 3  16 14 471   
generations 200 4  10 10 471   
varying hold 3 5  16 16 470   
restimprove 10000       
         
ccut 50trial  midconf courseconf time   
initsize 1000 1  15 15 471   
initimprove 5000 2  13 12 471   
restsize 10 3  11 11 472   
generations 200 4  14 14 471   
varying hold 4 5  14 13 471   
restimprove 10000       
         
ccut 50trial  midconf courseconf time   
initsize 1000 1  15 10 470   
initimprove 5000 2  11 11 471   
restsize 10 3  13 12 470   
generations 200 4  11 11 470   
varying hold 5 5  12 11 471   
restimprove 10000       
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In this part of Experiment 1, the amount of mutations following each mating was 
varied  
and all other variable values were fixed.     
       
ccut 50 trial  midconf courseconf time 
initsize 1000 1  15 15 132 
initimprove 5000 2  19 18 131 
restsize 10 3  15 14 131 
generations 200 4  21 21 132 
hold 2 5  25 22 131 
varying restimprove 1000      
       
ccut 50 trial  midconf courseconf time 
initsize 1000 1  15 15 188 
initimprove 5000 2  16 15 188 
restsize 10 3  22 17 188 
generations 200 4  13 12 188 
hold 2 5  13 12 188 
varying restimprove 2500      
       
ccut 50 trial  midconf courseconf time 
initsize 1000 1  13 13 282 
initimprove 5000 2  13 12 283 
restsize 10 3  17 16 283 
generations 200 4  19 16 282 
hold 2 5  18 18 283 
varying restimprove 5000      
       
ccut 50 trial  midconf courseconf time 
initsize 1000 1  18 18 377 
initimprove 5000 2  14 11 377 
restsize 10 3  19 15 377 
generations 200 4  14 12 377 
hold 2 5  20 20 376 
varying restimprove 7500      
       
ccut 50 trial  midconf courseconf time 
initsize 1000 1  12 12 471 
initimprove 5000 2  17 16 472 
restsize 10 3  15 13 471 
generations 200 4  15 11 471 
hold 2 5  18 17 473 
varying restimprove 10000      
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  Average Results - Experiment 1   
 MidConf CourseConf Time    
CCUT        

1 15.6 15 471.2  Baseline  
5 16.6 15.2 470.2    

10 15.4 13.4 471.4  CCUT 50 
25 14.2 12.8 471  initsize 1000 
50 15.6 12.2 471  initimprove 5000 

     restsize 10 
initsize      generations 200 

100 16.8 15.4 385.8  hold 2 
250 15.2 13.6 401.6  restimprove 10000 
500 16 15 424.2    

1000 14 12 471.4    
2000 15.8 13.8 564    

       
initimprove       

500 16.4 14 387.4    
1000 16.2 12.8 396.6    
2500 15.6 13.4 425.2    
5000 15 13.6 470.6    

10000 16 15.2 563.4    
       
restsize       

5 14.2 13.4 282.4    
10 17 15 471.4    
15 15.2 12.6 660.2    
20 16 13.4 849.4    
25 18.4 16.8 1037.2    

       
generations       

25 15.8 15.2 143.4    
50 15 14.8 190    

100 16 14.4 283.8    
200 16.2 13.6 471    
300 15.8 14.4 658.8    

       
hold       

1 17.2 15 471    
2 17 14.4 471.2    
3 15.2 13.8 471.2    
4 13.4 13 471.2    
5 12.4 11 470.4    
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restimprove 

1000 19 18 131.4    
2500 15.8 14.2 188    
5000 16 15 282.6    
7500 17 15.2 376.8    

10000 15.4 13.8 471.6    
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Experiment 2 
 
  Experiment 2 - Spring Semester   
       
  Local Mutations v. Mating Process   
Varying the Number of "Best" Schedules Kept with Lower Baseline Values for Other Variables  
 MidConf CourseConf Time    
Varying Hold - T1     CCUT 50 

0 23 20 957  initsize 1000 
1 15 15 861  initimprove 5000 
2 13 13 773  restsize 10 
3 12 12 695  generations 100 
4 13 13 612  restimprove 1000 
5 10 9 528    
6 12 12 466    
7 15 15 377    
8 13 10 288    
9 14 14 198    

10 22 19 108    
       
Varying Hold - T2       

0 32 19 949    
1 17 16 863    
2 17 15 778    
3 14 13 694    
4 17 16 610    
5 13 13 527    
6 11 11 460    
7 14 10 358    
8 14 14 272    
9 17 15 188    

10 19 18 103    
       
Varying Hold - T3       

0 24 15 949    
1 16 16 863    
2 17 16 778    
3 15 13 694    
4 16 10 611    
5 13 13 525    
6 14 14 441    
7 14 10 357    
8 12 12 272    
9 15 15 188    

10 21 20 103    
       
 
       



 78 

Varying Hold - T4 

0 38 30 944    
1 14 14 862    
2 14 14 780    
3 16 15 694    
4 13 12 608    
5 12 12 526    
6 13 13 441    
7 15 14 357    
8 15 12 273    
9 12 12 187    

10 19 18 104    
       
Varying Hold - T5       

0 27 19 947    
1 15 15 860    
2 17 14 781    
3 16 16 694    
4 17 15 610    
5 12 12 526    
6 16 15 451    
7 15 14 357    
8 15 14 272    
9 13 13 188    

10 22 22 103    
Averages       

0 28.8 20.6 949.2    
1 15.4 15.2 861.8    
2 15.6 14.4 778    
3 14.6 13.8 694.2    
4 15.2 13.2 610.2    
5 12 11.8 526.4    
6 13.2 13 451.8    
7 14.6 12.6 361.2    
8 13.8 12.4 275.4    
9 14.2 13.8 189.8    

10 20.6 19.4 104.2    
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AllStar1 Best Values from Experiment 1   CCUT 25 
1 22 16 43  initsize 1000 
2 17 17 44  initimprove 1000 
3 22 21 43  restsize 10 
4 25 21 43  generations 50 
5 22 18 43  hold 5 

     restimprove 2500 
       
AllStar2 Keeping the Number of "Best" Schedules = 5  CCUT 50 

1 14 13 472  initsize 1000 
2 11 11 471  initimprove 5000 
3 12 12 472  restsize 10 
4 12 12 471  generations 200 

     hold 5 
     restimprove 10000 
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  Experiment 2 - Fall Exam Data   
       
  Local Mutations v. Mating Process   
Varying the Number of "Best" Schedules Kept with Lower Baseline Values for Other Variables 
 MidConflicts CourseConflicts Time    
       
Varying Hold - T1    CCUT 50 

0 33 28 934  initsize 1000 
1 26 20 852  initimprove 5000 
2 23 22 769  restsize 10 
3 23 19 686  generations 100 
4 21 18 603  restimprove 1000 
5 18 17 520    
6 16 14 437    
7 19 14 354    
8 18 14 270    
9 16 15 185    

10 27 22 102    
       
Varying Hold - T2      

0 45 21 935    
1 21 18 852    
2 20 16 768    
3 21 20 686    
4 18 15 603    
5 18 13 521    
6 14 11 438    
7 20 16 352    
8 19 16 269    
9 20 13 185    

10 23 23 101    
       
Varying Hold - T3      

0 36 21 935    
1 21 20 852    
2 18 14 769    
3 20 19 684    
4 23 18 602    
5 15 13 520    
6 18 13 438    
7 19 16 353    
8 18 18 269    
9 23 19 185    

10 26 20 102    
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Varying Hold - T4      

0 29 24 934    
1 23 14 851    
2 23 18 767    
3 22 19 687    
4 19 13 602    
5 16 12 522    
6 16 14 438    
7 15 14 357    
8 16 14 270    
9 13 13 188    

10 22 22 103    
       
Varying Hold - T5      

0 32 26 937    
1 23 18 852    
2 21 19 767    
3 19 15 687    
4 20 15 603    
5 16 13 520    
6 18 13 436    
7 19 18 353    
8 17 17 268    
9 20 19 185    

10 23 19 101    
       
       
Averages       

0 35 24 935    
1 22.8 18 851.8    
2 21 17.8 768    
3 21 18.4 686    
4 20.2 15.8 602.6    
5 16.6 13.6 520.6    
6 16.4 13 437.4    
7 18.4 15.6 353.8    
8 17.6 15.8 269.2    
9 18.4 15.8 185.6    

10 24.2 21.2 101.8    
 


