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Vanessa Teles 
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Geomorphologists, geologists and hydrologists have always used models. 
Unfortunately an artificial schism between modelers and experimentalists (or 
"observationalists") commonly exists in our fields. This schism is founded on 
bias, misinterpretation, and myth. The schism is perpetuated by misuse and mis- 
representation of data and models. In this paper we have tried to address six of 
those myths and illustrate, mostly with our experiences, why we think mathematical 
models are useful and necessary tools of the trade. First we argue for a broad def- 
inition of "physical" models. Mechanistic rigor is not always possible or the best 
approach to problems. Second, verification is impossible given that reality is 
imperfectly known. We can strive for some level of confirmation of model behavior 
and this confirmation must generally be of statistical, distributional, nature. Third 
we give examples of how even unconfirmed models can be useful tools. Fourth, 
examples are given of rejected models, in a sense "failures," that have advanced 
our knowledge and led us to discoveries. Fifth, models should become progres- 
sively more complex, but this complexity commonly results in simple outcomes. 
Finally, the best models are those with outputs that challenge preconceived ideas. 
Modeling, including mathematical modeling, is a necessary tool of field 
researchers and theorists alike. 

INTRODUCTION 

Are you a modeler? That question has been heard by many 
of us in geomorphology and other Earth sciences. More 
often than not it is asked with a pejorative slant. The transla- 
tion is: are you one of those who play mathematical games 
that have little relationship to reality? Indeed, much has been 
written about the limitations of models [e.g., Oreskes et al. 

Prediction in Geomorphology 
Geophysical Monograph 135 
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1994; Beven, 1996; Haff, 1996] but very litde about their 
strengths and advantages. In a field dominated by a strongly 
empirical tradition [Rhoads and Thorn, 1996], there is a dan- 
ger that the baby will be thrown out with the bathwater. 

We believe that models in geomorphology (and we would 
venture to say in other fields) are indispensable tools of the 
trade. Models, conceptual or mental, are the basis of all 
interpretative sciences. All observations, and especially 
observations of products of past events, require interpreta- 
tions that are founded on models. Measuring instruments 
and certainly data analyses require models to link observ- 
ables to behavior and processes [Brown, 1996; Rhoads and 
Thorn, 1996]. A mathematical model is just a special kind of 

63 
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model that codifies its assumptions in symbolic language 
and logic that yields quantifiable and repeatable predictions. 

First let us define "model." Webster's dictionary is a good 
beginning. Here are a few of the more applicable definitions 
it provides: 

• a set of plans for a building 
• a copy, an image 
• a miniature representation of something 
• a description or analogy used to help visualize some 

thing that cannot be directly observed 
• a system of postulates, data, and inferences presented 

as a mathematical description of an entity or state of affairs. 

We have left out from the definition the flesh and bone 
models who show off the latest high couture. But even they 
capture the essence of what a model is: 

• an idealization of reality 
• a representation 
• a blue print of an idea 
• an aid to visualization and understanding. 

Geologists and geomorphologists observe outcomes of dif- 
ferent processes that occur largely over decades, centuries 
and millennia. We never know the initial and boundary con- 
ditions with accuracy and hence we always need models to 
interpret the observations in terms of process understanding. 
Laboratory experiments are limited because of problems with 
scaling relationships and proper representation of hetero- 
geneities. For similar reasons our field rarely can afford the 
luxury of full scale or laboratory (reduced scale) scale proto- 
types. "Afford" refers not only to the simple issue of cost 
but, more importantly, to the fact that we simply cannot 
repeat the past and control an arbitrary or created future. 
Once again, we need models that allow us to explore ideas, 
formulate initial hypotheses, and ultimately to predict 
behavior. 

In this paper we will try to address a few of the myths that 
plague all mathematical modeling and modelers. Hopefully 
we will be able to convince a few that models, like the geolo- 
gist's pick or geochemist's mass spectrometer, are tools that 
should be used or followed by all. 

1. BEHIND EVERY GOOD MODEL THERE IS A 
SOLUTION TO PARTIAL 

DIFFERENTIAL EQUATIONS 

The view of many geomorphologists and hydrologists is 
that in order for a model to be good it must be "physical" 
and in their definition that implies the following. There is a 

set of differential equations that describes the operating 
processes. The parameters used in the formulation are meas- 
urable. The parameters can be obtained from direct observa- 
tion or experiment. The above criteria for a good, "physical" 
model are appealing but we would argue that a differential 
equation is not necessarily the key to geomorphic nirvana. 
The reality is that continuum mechanics is a model that only 
works well at certain scales. Newtonian physics breaks 
down at the elementary particle scale where quantum 
physics with its "probability functions" describing particle 
behavior takes over. Quantum physics breaks down at even 
smaller scales, giving way to string theory or yet to be 
invented theories. At certain large scales, continuum 
mechanics also breaks down when nonlinearity promotes 
localization and "shocks," as in breaking waves, hydraulic 
jumps, river channels, caves, etc. Continuum mechanics 
solutions are commonly based on idealizations that only 
hold at particular scales. For example, flow in porous media 
is commonly resolved using a hydraulic gradient dependent 
velocity called Darcy's law, which only holds over some 
integrated representative volume. Darcy's law certainly does 
not describe interstitial flow in soils, for example. 

Let us think of the meaning of "measurable parameters." 
Can hydraulic conductivity be predicted from fundamental 
theory? No. Is "transmissivity" directly measurable? No. Is 
eddy viscosity a real property of the fluid? No, it is an ideal- 
ization to allow us to deal with turbulent flow. What funda- 
mental property does the Shields threshold in sediment 
transport represent? None. Is there a measurable Manning, 
Chezy or any other roughness coefficient? No. 

We do advocate models that are founded on some under- 
standing of behavior and processes. In our definition, 
though, a good physical model is one that (a) uses some 
principles that can be generalized, particularly conserva- 
tion of mass and energy, (b) depends on a minimal set of 
parameters with real units that are normally rates or thresh- 
olds and (c) can be confirmed (see next section) with some 
observations. A broad range of models are good and "phys- 
ical" under the above interpretation. Landscape evolution 
models like those of Willgoose et al. [1991a,b], Howard 
[1994], Densmore et al. [1998], Beaumont et al. [1992], and 
Kirkby [1987], Tucker et al. [2001a,b] are examples. They 
conserve mass. They represent processes in a prescriptive, 
general manner. They need to be calibrated, and although 
the parameters are for the most part not predictable from 
material and state properties, they do have intuitive physical 
meaning and appropriate values that are delimited by obser- 
vations and rough arguments based on mechanics (one 
example is the analysis of bedrock stream erosion parameters 
by Whipple et al., 2000). The advantage is that these models 
can be used as virtual realities in which experiments can be 
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Figure 1. Comparison of Muddy Creek River plan with results from the Johannesson and Parker [ 1989] and Lancaster 
and Bras [2002] models run with Muddy Creek parameters [Lancaster, 1998]. On the left, (a), (c), (e) show planform 
of the river, the Lancaster model, and the Parker model results respectively, on the right, (b), (d), (f) the corresponding 
curvature. Curvature is defined in terms of the rate of change in direction in the planform. Note that the scales are dif- 
ferent in all figures. The observed planform (a) exhibits fairly fast fluctuating directions (curvature) The distance along 
the stream visible on (b) is twice the straight-Une length of the stream segment. The Lancaster and Bras model (middle 
plots) also doubles the distance along the stream as the loops are traversed. The magnitude of the curvature seems shght- 
ly less than observed. The Johannesson and Parker model (bottom plots) produces very large meandering loops, tripUng 
the distance along the stream and exhibits much larger curvature magnitude. 

performed beyond the range of space-time scales of the 
experiences that help formulate them. In contrast, a black 
box or system input-output model is far more limited by the 
data used to infer it. 

Meandering rivers have been studied as a highly non-hnear 
phenomenon from a fluid mechanics perspective. 
Meandering has been attributed to unstable behavior in fun- 
damental equations or to complicated interactions of primary 
and secondary flows [Kitanidis and Kennedy, 1984; 
Seminara and Tubino, 1992; Johannesson and Parker, 1989; 
Begin, 1981, Howard and Knutson, 1984; Sun et al, 2001 a, 
b]. These analysis tools are useful in elucidating behavior, but 

not terribly convenient or practical to use in the simulation of 
the drainage system in which meandering occurs. A contrast- 
ing approach is the work of Lancaster and Bras [2002] 
which uses observed behavior to argue for dominance of cer- 
tain fluid flow phenomena and captures those phenomena 
with simple approximations that although derivable from 
basic principles are basically heuristic formulations. The 
parameters of the Lancaster [1998] model are similar to 
those of Johannesson and Parker [1989] and have the same 
interpretation. Nevertheless, the two models give different 
results. Figure 1 shows these results of the two models as in 
an attempt to reproduce the planform of an actual river. The 
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0.00 

Figure 2. Plots of the probabilities of exceedance of contributing 
areas for networks resulting from (a) OCNs and (b) for real basins, 
derived from Digital Elevation Models (DEMs) [Rinaldo et al. 
1992]. Contributing area is defined as the area draining through a 
point in the stream network, so it increases downstream as a function 
of the pattern of aggregation. The top panel shows two OCN's 
results. The slope of the log-log plots is -0.45, implying a power 
relationship between the probability of exceedance of area and 
area. The bottom panel shows the same relationship (power law 
with exponent = -0.45) for five basins derived from DEMs. This 
type of result, consistent in nature, is reproduced by the OCNs. 

community can debate the differences and argue which 
model is best but we suspect that before the debate is over 
another "physical" formulation will come to the forefront. 
At the end of the day, the value of each model rests on the 
context in which it is proposed and intended to be used, not 
on its adherence to arbitrary mechanical purity. 

hi the other extreme, there are also "toy models" that propose 
simple empirical rules that control the evolution of rivers and 

erosion phenomena. Cellular automata [Chase, 1992; Murray 
andPaola, 1994; Segre and Deangeli, 1995; Coulthard et al, 
1997] largely, though not necessarily always, fall in this 
camp. The value of these models rests on their abiUty to rep- 
resent complex interactions in very simple ways, hence 
allowing the exploration of possible solution spaces very 
quickly. The difficulty lies in choosing the rules to accommodate 
situations for which there are no observations or experience. 

A very different type of model with no process dynamics 
is called Optimal Channel Networks (OCN) [Rodriguez- 
Iturbe et al, 1992a, b; Rigon et al, 1993]. This model postu- 
lates that nature will transport water and sediment in the 
most efficient manner, given some constraints. The model is 
static in that it resolves the drainage network that will result 
after a long-term evolution to equilibrium conditions. The 
final equilibrium does not depend on the trajectory to that 
final condition. Is that model physical? Yes, according to the 
criterion defined above, because it is based on three general 
principles of energy expenditure in the drainage network: 

1. the principle of minimum energy expenditure in any 
hnk of the network 

2. the principle of equal energy expenditure per unit area 
of channel anywhere in the network 

3. the principle of minimum energy expenditure in the 
network as a whole. 

The above are well defined from concepts of open channel 
flow dealing with velocity and shear stress. Are OCNs a good 
model? Natural channel networks exhibit a scaling invariance 
of the probabihty distribution of some of their variables, such 
as the probability of sfream length exceedance or the cumu- 
lative probability of contributing area. Those variables have a 
power law distribution over a wide range of spatial scales. 
Figure 2 shows the distiibution of contributing area from 
Digital Elevation Models (DEMs) and outputs of the OCN 
model. For nearly 4 log scales, the measured and computed 
distributions follow the same scaUng relationship than that 
found in river networks. The model also predicts most other 
scaUng behavior and self-organizing properties of river basins. 

In summary, physicality, like beauty, is in the eye of the 
beholder. Any model that obeys principles that can be gener- 
alized, maintains continuity of mass or energy, and uses 
parameters that can (potentially) be estimated, should be con- 
sidered physical. Although there is clear appeal to buildmg 
models based on fundamental equations of fluid and sediment 
flow, there are also disadvantages. In particular, these 
mechanically rigorous models often come at the price of a 
highly restricted range of space and time scales over which 
they can be implemented. Heuristic rule-based models can 
overcome scale limitations and allow us to ask whether cer- 
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Figure 3. Growth of relief difference between a base unperturbed 
simulation and perturbed simulations. Ijjasz-Vasquez et al. [1992] 
used a landscape evolution model [Willgoose et al, 1991a, b] to 
study the sensitivity of the development of a basin and its topography 
to perturbations. A basin is perturbed at different times (tp) in its 
evolutionary history. The curves have been displaced horizontally 
so that they all start from the vertical axis. The perturbations are 
arbitrary small changes in elevations at pne or more points. The 
relief difference is defined as the sum of the difference in elevations 
between the perturbed basin and the unperturbed control. A per- 
turbation in the initial condition (curve with tp=0) grows as a 
power law, until it stabilizes after the drainage channels are well 
defined. Perturbations at later times (tp= 250, 500 and 750) in the 
evolution, i.e. when the drainage network is more defined, have a 
lesser impact in the growth of relief difference. If the basin is per- 
turbed after the drainage system is well established (tp=1500), the 
relief differences do not grow and are dampened with time. 

tain patterns can emerge from a system regardless of the 
details of its internal constitutive laws. 

2. A MODEL IS VERIFIED WHEN IT PREDICTS 
OBSERVED FEATURES OF LANDSCAPES 

The use of the word "verify" is strongly criticized by Oreskes 
et al. [1994] on the grounds that verification is an impossible 
goal in Earth science. Their point is that geomorphology and 
Earth sciences in general deal with complex open systems. 
In open systems the "truth" is never known. The analysis of 
open systems requires boundary conditions, initial conditions, 
time and space scales and assumptions that are sources of 
uncertainty and largely unverifiable. Furthermore, field char- 
acterization is always incomplete and that introduces uncer- 
tainties in the models. By the strictest definition of "verify," 
therefore, no model in the Earth sciences—whether concep- 
tual, mathematical, or otherwise—is verifiable. 

Oreskes etal. [1994] suggest the use of the term "confirmation" 
instead of "verification." Models could be confirmed to 

various degrees as they reproduce empirical observations. 
In our mind confirmation implies the ability to predict 
behavior beyond that used for calibration. Regressions are 
normally confirmed on split samples, data, which were not 
used for parameter estimation. "Verification" is often used 
in this looser sense, closer to Oreskes et a/.'s [1994] defini- 
tion of "confirmation." Most mathematical models in geo- 
morphology are confirmable (or "verifiable" by the defini- 
tion of many) according to the definition given above, but 
there are exceptions. A model will remain un-confirmable if 
it predicts phenomena that simply cannot be detected or 
measured, either directly or indirectly. Does this mean that 
such a model is useless? No, because a phenomenon that is 
undetectable today will not necessarily be so tomorrow. In 
fact, a model may stimulate the development of the new 
measurement techniques required to confirm or refute it. 
Consider the case of the theory of black holes, which could 
not be confirmed for years until suitable detection tech- 
niques were developed. Alternatively, a model may 
describe a phenomenon that will never be measurable, like the 
interaction of early mountain building and climate, but still 
of interest. 

Ijjasz-Vasquez et al. [1992] show that the initial conditions 
and the history of boundary conditions and forcings are 
important in the development of a landscape. They studied 
the sensitivity of a landscape evolution model to distur- 
bances during the period of transition while the drainage 
system is being established. For that, they perturbed the 
elevation field at different time during the simulations. 
Figure 3 shows the growth of relief difference between the 
perturbed simulations and a base simulation, which is not 
perturbed during the whole simulation. The model output is 
particularly sensitive to these perturbations. The difference 
grows as a power law until the channel network develops 
sufficiently to drain the whole area. At that time, a certain 
level of stability and robustness is achieved once the 
drainage system is created. The implication is that it is not 
possible to predict the exact state and location, say, of a 
river in the future or in the present from assumed initial 
conditions and forcings. As the system is increasingly con- 
strained, for example looking at the evolution of an exist- 
ing stream reach over short time, the ability to determinis- 
tically predict improves but it will never be perfect. 
Deterministic prediction of detailed geomorphic expression 
is as impossible as predicting the instantaneous energy state 
of a quark or the position of a photon. Only the probabilis- 
tic distribution of energy and position can be described. 
Hence confirmation in geomorphology must focus on test- 
ing the statistical or probabilistic expressions of models. 

What does the above imply for mathematical models in 
geomorphology? Figure 2 already shows one such example 
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where OCNs are shown to reproduce observed behavior of 
nature. In the case of landscape evolution models, the only hope 
is to reproduce properties and distributions that are not "wired" 
in the model. For example, there is no hope to predict the exact 
location of streams, but it should be possible to reproduce prop- 
erties like the drainage density (a mean quantity), the width 
function, the link concentration function (the number of links at 
a given elevation in the basin, Gupta and Mesa, 1988), the hyp- 
sometric curve, the distribution of contributing areas, the distri- 
bution of stream lengths, the slope area relationship, and the 
roughness characteristics [Bras, 1990; Moglen and Bras, 
1995a,b]. For meandering models, the significant property can 
be sinuosity, its variance and characteristic length scales 
[Lancaster and Bras, 2002]. It should be clear that certain sta- 
tistics have more power of discrimination than others. Horton 
numbers are not able to distinguish between different models. It 
is also possible to confirm or "verify", say, planar measures 
(width function) while altogether missing elevation properties 
like the link concentration function, or the slope - area relation- 
ship. 

This brings up the issue of equifinality. Can truly different 
models lead to the same outcome? We believe that would be 
very rare, if outcome is defined as the complete description of 
the physical entity being predicted. The difficulty lies in finding 
and using the appropriate discriminating statistics to distinguish 
between outcomes of different models [cf Beven, 1996]. For the 
most part, because of data limitations, tests focus on a few low 
order moments of states or outputs and don't explore the full 
distributional characteristics. That leads to the ambivalence that 
is called equifinality. Science must always seek better and better 
"microscopes" or analysis tools that will be able to "see" the dif- 
ference between the predictions that may lead to the confirma- 
tion of different models. 

To summarize, full confirmation of geomorphic models, or a 
loose interpretation of verification, could be impossible or very dif- 
ficult to achieve. For the most part "verification" needs to be based 
on the distributional properties of the outcomes of models. 
"Determinism" (in the sense of single valued predictions of fea- 
tures) is an impossible dream in most geomorphic settings. 
Difficulties with confirmation or verification should not deter us. 
Indeed, unconfirmed models can lead us to better and different 
observations that will then result in confirmation (or refutation) of 
model behavior. Unconfirmed models can also be useful in a vari- 
ety of other ways, as discussed in the next section. 

3. THE FUNCTION OF A MODEL IS TO MAKE 
QUANTITATIVE PREDICTIONS FOR 

COMPARISON WITH NATURE 

It has already been argued tiiat numerical models are large- 
ly unverifiable, if verification implies demonstrating the tiiith. 

Theta = 0.01 

Theta = 0.25 

Theta = 0.5 

Figure 4. Simulated topographies at equilibrium and corresponding 
drainage network generated by Veneziano and Niemann [2000] 
using the slope-area relationship with 6 = 0.01, 0.25, and 0.5. The 
most realistic looking topographies are obtained with theta in the 
range 0.25 - 0.75. A 6 value of around 0.5 is the most common in 
nature. Values approaching or greater than 1 also give very unrealistic 
results. OCNs predict a value of 0.5. The value of 6 is also related 
to fractal and muUifractal properties of basins. This figure also 
illustrates a very important point, the planar and relief properties of 
basins are very much related. Note that the slope-area model used is 
a statement of relief (slope) and organization yet it clearly impacts the 
planar expression of the drainage system. The bottom line is that even 
simple models clearly point out when their parameterization, or for- 
mulation, is wrong. 

Simply put, we never have enough information to estabUsh 
that we have the truth. We have also argued, like Oreskes et 
al. [1994], tiiat models should be confirmed. Nevertheless, is 
a model of any use if its empirical foundations are shallow? 
Or if its predictions have not been backed up by demonstrated 
consistency with observations? We beheve so. "Unverified" 
models are useful in many different ways. 

First, mathematical models make predictions, and their 
predictions may or may not be immediately testable (and 
thus confirmable or refutable). Far from being useless, 
"unverified" models can, or should, stimulate the collection 
of data required for testing them. This deductive mode of 
operation—with models making predictions that are then 
tested by experiment or observation—is standard in physics 
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Figure 5. Simulated landscapes [Tucker and Bras, 1998] with varying hillslope processes: (a) simple competition 
between creep and runoff erosion, (b) hiUslopes dominated by simple threshold landsliding, (c) runoff production by satu- 
ration overland flow, and (d) hiUslopes dominated by pore pressure driven landslides. The "signature" of dominant process- 
es is clear. Most observers would recognize the nature of the landscapes shown. For example, the pressure driven land- 
slides are reminiscent of the Apennines in Italy, the sataration excess landscape reminds us of New England. That they 
are robust results of underlying processes is a valuable insight of an "unconfirmed", uncalibrated model that is not try- 
ing to reproduce a particular landscape. 

but a relative newcomer in most fields of the Earth sciences, 
which has a long tradition of theory following observations 
rather than the reverse. The theory of black holes, noted 
above, is one example of the usefulness of an (initially) 
unverifiable model. 

Second, many have argued that models are foremost a 
tool for organizing scientific thought [Konikow and 
Bredehoeft, 1992]. In geomorphology models are generally 
collections of process representations. The validity or level 
of confirmation of each process may be variable and the 
way they interact even more uncertain. Formulating the 
model forces the conscious choice of process representation 
and of interaction. They serve as frameworks, templates, 
that require explicit decisions and choices, and as a result. 

they force rigor in our hypotheses. For example, interpretations 
of climatic control on erosion rates are often phrased in terms 
of whether the climate was "wetter" or "drier" in the past 
[e.g., Kiefer et al, 1997]. Building a mathematical model to 
describe climate-geomorphic connections forces one to specify 
precisely what "wet" means—is it a higher mean annual rainfall 
or more intense storms? [e.g., Rinaldo et al, 1995; Tucker 
and Slingerland, 1997; Moglen et a/., 1998]. 

Third, mathematical models are also quite unforgiving 
when those choices are obviously wrong. In other words, 
wrong choices normally reflect themselves in an abysmal 
lack of confirmation. As an illustration. Figure 4 shows 
topographies and drainage networks generated by 
Veneziano and Niemann [2000]. They use the "slope-area" 
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relationship used by Ijjasz-Vazquez et al, [1993]. This 
model, a close cousin of self-organized critical analogies 
[Rigon et al, 1994] and OCNs, imposes a power relationship 
between slope and area draining through a point. This leads 
to flow aggregation and network organization. The key 
parameter is the exponent, 6, in the relationship S=aA"^, 
where S is slope, A is area, and 6 is another parameter. It is 
clear from Figure 4 that a value of 0.01 leads to unrealistic 
river networks, in contrast to values in the range of 0.25 to 
0.75 that result in networks that visually cannot be easily elim- 
inated as unreasonable [Tucker and Whipple, 2002]. With 
parameters outside of the range 0.25 to 0.75, the model is 
suspicious at best, and this tells us a lot about our assump- 
tions of the behavior of nature. 

A similar experience, in which the model points to gaps 
of understanding is given by Gasparini et al. [1999]. 
Landscape evolution models that assume soils of uniform 
grain size do not always seem to be able to reproduce the 
level of concavity of the longitudinal profile of channels that 
is observed in nature, indicating a serious deficiency in 
behavior. This experience has led to a multiple grain size 
representation, which does preserve the observed concavity 
of channel profiles. The next section will also show that 
multiple grain sizes in the sediment also lead to regularity 
and simplicity in the organization of the river network and 
its sediments. As Oreskes et al. [1994] write, the models at 
the very least guide us to further study and even challenge 
existing formulations and, we would argue, existing 
hypotheses. This last point will be expanded on later. 

A fourth role of models, even for partially confirmed 
models, is to compare relative behavior against other 
models. Note that we are not arguing to calibrate model 
against model or to seek confirmation via such comparisons 
(although we would argue that model self-consistency can be 
tested in this way). Comparison of different models can help 
us to diagnose and elucidate what elements of the various 
models lead to the observed differences. It should be clear 
that in models of geomorphic systems the interaction of 
elements is such that it is often impossible to anticipate 
what the behavior of the integrated system will be. In fact, 
the most useful mathematical models in geomorphology are 
the ones where outcomes cannot be anticipated. For example 
the meandering model of Johannesson and Parker [1989] and 
that of Lancaster and Bras [2002] lead to different behaviors, 
such as in the formation of compound bends (Figure 1). A 
related use of unconfirmed models is sensitivity analysis. Well 
designed mathematical models allow us to test the relative 
importance of elements, links, parameters and processes. 

Finally, the value of any modeling exercise is foremost as a 
virtual laboratory. The introduction to this paper argued that 
laboratory and field studies in geomorphology are limited by 

issues of unknown scaUng rules, heterogeneity of materials 
and processes, and lack of knowledge of initial and boundary 
conditions. Mathematical models, when used properly and 
carefully, serve as virtual bench-tops wherein experiments 
can be controlled and repeated, albeit subject to model 
uncertainty. The models can be simple or complicated, so 
long as they are understood and controllable. Bak and Chen 
[1991] and Bak et al [1987, 1988] built many of their ideas 
of self organized critical behavior on a very simple model of 
a sand box which allowed a variety of experiments to 
explore parameter space or more subtie issues like the role 
of local interactions. Tucker and Bras [1998] used a land- 
scape evolution model to selectively test the topographic 
imprint of various hillslope processes, i.e. Hortonian versus 
saturation from below runoff, landsliding, etc. As Figure 5 
illustrates, these processes lead to very well defined landscape 
signatures, all of which are familiar to a careful observer. In 
this example the value of the model is not in reproducing 
any particular landscape or for that matter the distributional 
characteristics of a site. The value is in helping us visualize, 
in a controlled maimer, what reasonable process representations 
do to a landscape and then set us off to confirm, in an objective 
manner, that "prediction" in nature. 

In summary, the idea that a model is only useful to quan- 
titatively predict the behavior of nature is a myth for several 
reasons. First, unconfirmed (unverified) models serve as 
deductive tools that help guide the search for new observa- 
tions. Second, the process of model-building itself is a valu- 
able exercise that forces rigor in our hypotheses and inter- 
pretations. Third, models can highlight errors of understand- 
ing and concept. Fourth, models may lead us to unanticipat- 
ed insights, and fifth, they serve as virtual laboratories. 

4. A REJECTED MODEL IS A FAILED EXPERIMENT 

If this myth were true, science would be littered with bodies 
of "has been" colleagues and their theories. Accepting the 
premise that "truth" is never perfectly known leads to the 
expectation that today's model and theory will sooner or later 
be superseded by other models that exhibit a greater degree of 
confirmation. Science is by nature incremental. We owe 
everything to those that came before us and led us, con- 
sciously or unconsciously, to the issues and inspirations of 
today. Geomorphology is not an exception. There are vast 
numbers of rejected but useful models. The well-known 
Horton's characterization [Bras, 1990] of the river basin in 
terms of bifurcation ratios, length ratios and area ratios is weak 
and non-discriminating [e.g., Kirchner, 1993]. 

Many networks which otherwise make unrealistic river 
basins have reasonable Horton numbers. Yet Horton's thinking 
opened the way to the characterization of fluvial networks by 



BRASETAL.   71 

revealing the regularity of drainage patterns, challenging scien- 
tists to explain the physics behind the regularity. Until 20 years 
ago Horton's numbers were the only way to look at these regu- 
larities. His "failed model" was a great teacher and probe of 
deep questions. 

Shreve's [1966, 1967] topologically random network is 
another wonderful "failure". It is hard to imagine a more ele- 
gant construct to capture the origins and properties of drainage 
networks. It explained Horton's observations and more. Many 
will now argue that the topologically random model is intrinsi- 
cally flawed because it ignores the inseparable nature of the 
planar expression of the basin from its third dimension [Gupta 
et al, 1986] and because the dynamics of basin evolution are 
not random in the sense assumed by Shreve. 

Willgoose et al. [1991a, b] argued that the value of modem 
landscape evolution models resides in recognizing that the chan- 
nels and hillslopes are part of an integrated system. Studying 
channels alone or hillslopes alone is severely limiting because 
they result from competing processes that cannot be viewed in 
isolation. Geomoiphologic literature is nevertheless full of 
attempts, past and present, to model hillslopes or channels alone. 
We argue that there was value in those efforts. They were need- 
ed before increased knowledge and computational power 
allowed us to tackle the integrated problem and, not insignifi- 
cantly, they were also useful in engineering applications. 

We would argue that it is healthy to have competing models, 
even though chances are that sooner or later one of them will 
fall out of favor because it fails to represent a yet to be speci- 
fied observation as well as some other model. This schizophre- 
nia of models and theories can occur even within research 
groups and individuals and certainly exists among the authors 
of this paper. For example, do channels begin when certain well 
defined process thresholds occur [Montgomery and Dietrich, 
1994] and are processes in channels and hillslopes correspond- 
ingly different [Willgoose et al, 1991a, b]? Or is there a con- 
tinuum, modulated by heterogeneities and "randomness," 
between channels and hillslopes where the landform shaping 
processes are essentially the same [Tucker and Bras, 1998; 
Tucker et al, 2001a,b]? It is hard to tell. The two hypotheses 
might not be mutually exclusive or they may indeed be mutu- 
ally exclusive. The authors are unable to be definitive about one 
hypotheses or the other. In the meantime we are happy schizo- 
phrenics and will continue to explore both ideas until the dust 
settles. 

5. COMPLEX MODELS MUST YIELD 
COMPLEX RESULTS 

Most Earth systems are complex. Here we define com- 
plexity in the sense that Earth systems generally involve 
many different processes. These processes are typically con- 

nected via intricate feedbacks and operate across a wide 
range of space and time scales. Consider the example of 
weathering and erosion in a mountain drainage basin. 
Bedrock may be broken down through an array of processes 
including stress release fracturing, chemical attack by water 
circulating through fractures, stresses imposed by the 
growth of root systems, and breakage during episodes of 
mass movement near the surface. The breakdown products 
might be transported downslope by any combination of 
processes, such as gravitational mass movement (fast or 
slow), overland flow during storms, and soil dislocation 
through plant growth and decay or animal activity, to name 
a few. Most of these processes interact: for example, formation 
of stress-release fractures increases permeability, which 
may increase rock-dissolution rates leading to further stress 
release. Some processes involve many frequent, small 
events—such as a rodent excavating soil from a burrow— 
while others involve large but rare events—such as a deep- 
seated landslide that carries most soil and near-surface rock 
to the valley below. 

Given this bewildering array of processes and space-time 
scales, most of which are laundry-Usted in any geomorphology 
textbook, can one really hope to be able to understand 
mountain hillslopes to the level of being able to quantita- 
tively model their behavior as sediment-producers or as 
evolving landforms? We believe most practitioners would 
agree that we can and should do so. Many or most practic- 
ing geomorphologists, whether or not they acknowledge it, 
proceed with the tacit assumption that beneath the apparent 
complexity of geomorphic systems we can find simple prin- 
ciples and behaviors that can be deciphered if only we ask 
the right questions and apply the proper tools. In other 
words, most of us seem to proceed with the faith that the 
highly complex systems we study ultimately produce simple 
patterns, at least when those systems are considered on 
space or time scales that are larger than the characteristic 
scales of the processes concerned. The fact that many non- 
linear, highly dissipative systems display regularity and 
robust behavior on such scales lends support to this idea. 

That complex systems can yield simple and, many times, 
highly organized solutions has strong intellectual roots. 
Such behavior is to be expected in highly dissipative, non 
linear, systems. In geomorphology the prime motivator is 
the observed regularity of landforms. There are numerous 
examples of such regularity. River networks, despite their 
variability in pattern, possess many common properties 
worldwide [Rodriguez-lturbe and Rinaldo, 1997] regardless 
of variations in geologic setting. Glacial erosion produces 
U-shaped valley forms that are so characteristic that the 
existence of Quaternary alpine glaciation can be deduced 
simply from the shapes of valleys. In semi-arid parts of at 
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Figure 6. Slope-area relationships resulting from a landscape evolution 
model using homogeneous or heterogeneous (mixed sand and gravel) 
sediment [Gasparini, 1998; Gasparini et al, 1999]. The top panel 
shows how the B value changes with different homogeneous sedi- 
ments. Finer sediments produce less concave (small 6) profiles than 
coai-ser sediments. Natural rivers exhibit more consistent concavity witii 
values generally fluctuating between 0.3 and 0.5 implying significant con- 
cavity in the profiles. The bottom panel shows slope-area relationship 
from basins developing in heterogeneous sediment substrates. 
Results are shown for substrates that have 10%, 50% or 90% sand of 
the same median size (balance is gravel), and for the end members, 
all gravel (coarse, 0%) or all sand (100%). It is interesting to note tiiat 
any heterogeneous substrate results in a slope area relationship with 
values close to 0.4. In tiie case of the 90% sand, tiiere is a downstream 
region of sand dominated surface layer resulting in a less concave (6 
= 0.25) region. This is observed in nature. The model with heteroge- 
neous substrate adjusts its surface (erodable) layer and slope to 
remove tiie supplied (via uplift) substrate sediment and to achieve tiiis 
equilibrium. The slope changes with contributing area so that the con- 
cavity corresponds to that observed in nature, with little variability. 

least three different continents, arroyos and arroyo-like gullies 
with rectilinear cross-sections have formed in historic time, 
despite many differences in the details of vegetation, soils, 
and climate. These are just a few of many examples in 
which a complex array of processes produces landforms that 
are in certain respects distinctive and independent of many 
of the governing details. This regularity of form, and the 
belief that it is explicable, is one of the fundamental guiding 
assumptions in geomorphology. 

Given that we expect complex natural geomorphic sys- 
tems to yield simple forms, it would be natural to expect that 
models of these systems would behave the same way. There 
is a common tendency in model-building to begin with a 
highly simplified description of a system, and then itera- 
tively add components in search of greater realism. 

Is this trend toward increasing model complexity war- 
ranted? We believe that it is, so long as the level of com- 
plexity in a model does not exceed our ability to understand 
it. The process of model-building inevitably involves a 
trade-oif between fidelity (to nature) and parsimony (low 
parameter space and ease of understanding). By adding suc- 
cessive layers of detail, one is effectively hypothesizing that 
there will come a point at which no further details are need- 
ed. In other words, building models of complex geomorphic 
systems is one way to test our faith in the ultimate simpUc- 
ity of these systems. If this hypothesis is correct, we should 
be able to reach a point where adding extra processes and 
corresponding parameters to a given model either no longer 
has a significant influence on the behavior in which we are 
interested, or actually simplifies a model's behavior. One 
could also proceed by successively pruning away from a 
model those aspects that have little or no influence on the 
outcomes. In either case, for any given model and any given 
behavior of interest, there should exist a point of "optimum 
complexity." Optimum complexity would correspond to the 
minimum set of equations and parameters for which the 
addition of extra feedbacks, processes, or parameters pro- 
duces negligible influence on the behavior of interest. Note 
that there is no guarantee that for any particular geomorphic 
system the optimal model will involve a small number of 
components or parameters, though given the nonlinear, dis- 
sipative nature of geomorphic systems this is a likely out- 
come for many. Once identified, an optimally complex 
model should explain the origins of regularity in the system 
of interest. 

There are at least two ways in which a natural complex 
geomorphic system can yield simplicity and/or regularity. 
The first and most obvious is the case in which the system's 
behavior is dominated by just a handful of its components. 
This is the assumption, for example, behind the concept of 
a transport-limited hillslope [Carson and Kirkby, 1972]. If 



BRASETAL.   73 

the rate of regolith production on a hillslope is at least as 
fast as its removal, then the removal of regolith should (at 
least according to this theory) no longer depend on the 
processes responsible for generating that material, however 
complex such processes and their feedback may be. In such 
cases, the necessary and sufficient conditions for a given 
outcome (e.g., the shape of a hillslope) encompass only a 
limited subset of the conditions that actually exist in a par- 
ticular situation. Mathematical models in geomorphology 
can play an important role illuminating physically plausible 
necessary and sufficient conditions for a given phenomenon 
(see, for example, the study of meandering river avulsion by 
Slingerland and Smith, 1998). 

The second, and less intuitive, possibility is that simple 
outcomes of a geomorphic system arise not in despite of, but 
because of a large number of interacting processes. This con- 
cept has been widely explored in the context of nonlinear 
systems analysis and to some extent in geomorphology [e.g., 
Phillips, 1996; Slingerland, 1990; Rodriguez-Iturbe and 
Rinaldo, 1997; Favis-Mortlock et al., 2000]. There is no 
point in reviewing that Uterature here. Instead, we simply 
wish to draw attention to a related concept that has poten- 
tially important impUcations for how and why we use models 
in geomorphic research. 

Recent research in nonlinear systems tells us that there 
are potential cases in which increasing the number of 
processes in a system can, paradoxically, lead to a reduction 
in the range of potential outcomes. One example of this in a 
geomorphic system is the analysis by Gasparini [1998] of 
the role of river sediment sorting in drainage basin evolu- 
tion. Until the late 1990's, most mathematical models of 
river basin evolution assumed, for the sake of simplicity, 
uniform sediment size. These models were formulated with 
the reasonable but untested working assumption that sedi- 
ment size variations are a detail that exerts only a minor 
influence on large-scale drainage basin morphology and 
dynamics. 

Gasparini [1998] examined the implications of this 
assumption by incorporating Wilcock's [1997, 1998] sand- 
gravel bedload transport formula within a model of drainage 
basin evolution (the model is described by Gasparini et al, 
1999). For cases in which the substrate is homogeneous 
(either all sand or all gravel), the analysis predicted that the 
resultant longitudinal river profile concavity should depend 
strongly on relative grain size (Figure 6a). (Note that this 
result is not unique to the Wilcock transport model but 
applies generally for any transport relationship in which 
total transport rate varies as a near-linear function of slope 
and discharge over and above a threshold for entrainment; 
for discussion and derivations, see Howard, 1980, 1994; 
Tucker and Bras, 1998). In cases with heterogeneous sedi- 

ment, however, the model predicted a much narrower range 
of possible morphologic outcomes (Figure 6b). The addition 
of complexity—the potential for adjustment in bed texture 
in addition to gradient at each point—led to a reduction in 
the dynamic range of predicted channel concavity values, 
compared with either the uniform case or with models in 
which texture change was simply imposed as a boundary 
condition [e.g.. Snow and Slingerland, 1987; Sinha and 
Parker, 1996]. The physical explanation lies in a trade-oif 
between entrainment of the gravel fraction (favoring high 
concavity) and equal transport of the sand fraction (favoring 
lower concavity), and the fact that gradient is only one of 
two (model) variables that can adjust. At each point in the 
network, gradient and grain-size composition adjust to pro- 
vide the correct (imposed) transport rate of both size-frac- 
tions [Gasparini et al, 1999]. In headwaters, where shear 
stress is lower, the gravel fraction must be larger to provide 
sufficient rates of gravel transport. Further downstream, 
under higher discharges, higher shear stresses lead to a 
lower transport capacity differential between the two sizes, 
and therefore the gravel fraction in bed sediment decreases. 
The reduction in mean grain size downstream results in a 
moderate degree of longitudinal profile concavity [Snow 
and Slingerland, 1987; Sinha and Parker, 1996]. This 
behavior holds regardless of the relative fractions of the two 
sizes in transport. 

No doubt one could criticize the details of this particular 
study, but the lesson remains that there may well be many 
cases in geomorphology in which mutual adjustments 
among multiple variables lead to simple, "emergent" out- 
comes [e.g., Hajf, 1996; Favis-Mortlock et al, 2000]. Such 
"emergent simplicity" may in fact be partly or even largely 
responsible for the apparent regularity of many landforms. 

One could argue that there is a risk in this process of end- 
ing up with "optimally complex" models that are at once too 
complex to understand (too many parameters) yet are still 
too simple to adequately explain nature—in other words (to 
paraphrase a colleague), we risk ending up with two things, 
rather than one thing (nature), that we do not understand. 
Indeed this is a risk, but we contend that nonetheless the 
trend toward increasing sophistication in geomorphic mod- 
els is not only valuable but necessary to progress. 
Obviously, to construct a model that defies understanding is 
an empty exercise. But to go to the limits of model com- 
plexity—to build models that are as sophisticated as we can 
hope to deal with and still make sense of their behavior—^is 
the one of the only pathways through which we can rigor- 
ously challenge our preconceptions about which details are 
likely to matter, through which we can hunt for instances of 
emergent, counter-intuitive behavior that would have been 
difficult or impossible to predict a priori, and through which 
we can identify new testable predictions. 
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Figure 7. Two drainage basins colored by the proportion of sand 
(vs. gravel) in the surface layer. Light colors indicate more sand. 
The 10% and 90% labels in the two figures indicate the proportion 
of sand in the substrate material and hence the initial surface content 
of sand [Gasparini et al., 1999]. Both basins, regardless of substrate 
mix result in downstream fining. Upper reaches of the basins are 
coarser than downstream reaches. In the case with a substrate 
which has 10% sand (top panel), the majority of the surface layer 
is finer (has a higher sand fraction than the supplied substrate) but 
still the downstream is finer than the upstream (24% vs. 10% 
sand). In the case of a sandy substrate (bottom panel), the surface 
layer coarsens overall but still fines downstream with the bottom at 
90% sand and the top at 40% sand. This downstream fining occurs 
in an experiment where the basin is in equilibrium; there is no 
abrasion and no net deposition contrary to previously held beliefs 
about the causes of downstream fining. 

6. COMPLEX MATHEMATICAL MODELS RESULTS 
SHOULD AGREE WITH GUIDING 

PRINCIPLES OF BEHAVIOR 

Most research in geomorphology, as in other disciplines, 
is underpinned by what Brown [1996] calls guiding assump- 
tions. These are essentially models (either conceptual or 
quantitative) that underlie the types of questions we ask, and 

Drainage area (m ) 

Figure 8. Relationship between proportion of sand in the surface 
layer and drainage area in five basins with different substrate textures 
(labels indicating 10% to 90%) [Gasparini et al. 1999]. This figure 
reinforces the results discussed in figure 7. Downstream fining 
always occurs in the surface layer of a computer simulated equilibrium 
erosional environment, no matter what the mixture of sand and 
gravel is. The figure also shows that for large enough basins relative 
to the proportion of sand in the substrate there is a point where the 
reach becomes sand dominated and the fining occurs at fast rate. A 
corresponding break in the slope area relationship will be 
observed, as was shown in Figure 6. The results shown in Figure 6 
and 8 can be predicted analytically. 

the way we interpret the results. To take a geomorphic 
example, Davis' geographical cycle provided the guiding 
model for a lot of geomorphologic research in the first half 
of the 20* century. Such guiding assumptions are crucial to 
progress, providing the framework within which we pose 
questions, design research strategies, and interpret observations 
[Rhoads and Thorn, 1996]. In the context of modelling, one 
often expects mathematical models to be consistent with 
their guiding assumptions. Indeed, one of the most common 
uses of models in geomorphology and geophysics, quite 
reasonably, is to provide numbers to support a given argument 
(e.g., the use of a lithosphere flexure model by Watts et al. 
[2000] to make a case for erosion-driven isostatic uplift in 
southern Britain, to name just one example). Models used in 
this way serve in a sense as quantitative expressions of our 
guiding assumptions (e.g., that flexural isostasy is an important 
source of epeirogenic movements), and their behavior is 
therefore consistent with those assumptions. At the same 
time, however, clearly one of the most important modes of 
scientific progress consists of refining or undermining guiding 
assumptions [Brown, 1996; Kuhn, 1962], and mathematical 
models can play a valuable role in this process as well. 
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Guiding assumptions in geomorphology are often conceptu- 
al and qualitative in nature. Sometimes they are well-known 
and carefully articulated theories (like the geographical cycle 
example); in other cases, they are unspoken but widely held 
ideas that influence the way in which most of us interpret 
evidence and the questions we choose to ask. Mathematical 
models in geomorphology can and should play a vital role in 
challenging both types of guiding assumptions. 

How can a mathematical model challenge guiding 
assumptions? Consider the study by Slingerland et al. 
[1996] of paleo-ocean circulation in the Cretaceous western 
interior seaway. This shallow seaway extended northward 
into the interior of North America from the Gulf of Mexico, 
reaching the Boreal Ocean during the highest sea level 
stands. Before their study, the prevailing view was that cir- 
culation within the seaway must have been clockwise, just 
as it is in the Atlantic and Pacific today. The apparently sen- 
sible assumption of clockwise circulation functioned, in 
effect, as a guiding assumption behind interpretations of 
sedimentary strata deposited in the seaway. Yet when 
Slingerland et al. [1996] ran a series of simulations with an 
ocean circulation model using the reconstructed seaway pale- 
ogeography, they found that the model suggested counter- 
clockwise circulation. In retrospect, the differences between 
the seaway and modem oceans were easy to understand: the 
seaway was about 40 times shallower and 3 times narrower 
than the modem northern hemisphere ocean basins, and, 
most importantly, the freshwater influx would have been a 
much greater proportion of the total ocean volume. The 
numerical modeUing led to a new and radically different 
guiding assumption about seaway circulation. In the 
process, like any good model, it provided an explanation for 
certain observations—paleo-current orientations and the 
distribution of tropical foraminifera—for which the earlier 
model could not account. 

The aforementioned study of Gasparini et al. [1999] on 
the origins of downstream fining provides a second example. 
Downstream fining refers to the conunon tendency for the 
mean size of river-bed sediment to decrease systematically 
downstream [Stemberg, 1875; Yatsu, 1955]. During the 
1990's the origins of downstream fining attracted wide- 
spread research interest, partly because of its importance to 
interpreting ancient sedimentary rocks [Paola et al., 1992; 
Hoey and Ferguson, 1997; Seal and Paola, 1995; Robinson 
and Slingerland, 1998a, b]. One of us (GT) first became 
acquainted with the problem in discussions with two col- 
leagues who were working on the subject in the early 
1990's. At the time, it was believed that the one case where 
downstream fining of bed sediment would not occur was for 
a steady flow of sediment through a river system in which 
the relative proportions of size-fractions in transport 

remained uniform downstream (e.g., the proportion of sand- 
sized material in transport was constant along a channel), 
assuming clast abrasion was negUgible. In the mid-1990's, 
when together with N. Gasparini we incorporated multiple sed- 
iment size-fractions within an existing model of drainage basin 
evolution, the research aims had nothing to do with down- 
stream fining. The goal was sunply to add a potentially impor- 
tant component, not addressed in prior models, in support of a 
study of climate change impacts on watershed geomorphology. 
One of the first exercises with the new model was to run a test 
case in which a substi-ate composed of a spatially uniform mix 
of sand and gravel fi-actions was subjected to a steady rate of 
baselevel fall at the outlet point of a simulated drainage basin— 
very much like the test case that we thought we already under- 
stood (Figure 7). After a period of time under these conditions, 
a model of this sort will reach a state of equilibrium in which 
the rate of erosion at each point exactly balances the rate of 
baselevel fall. This condition logically unplies two other con- 
ditions: first, that the size-distribution of the sediment flux is 
equal at all points in the drainage network, and second, that sand 
and gravel are entrained and eroded in proportions equal to their 
relative proportions in the underlying substrate at all points in the 
basin. To our surprise, the model still produced clear, systematic 
downstream fining in the active transport layer, even though 
both conditions were met (Figure 8). 

This simple "numerical thought experiment" revealed 
flaws in our original reasoning. We had implicitly assumed 
that uniformity of size-fractions in the sediment flux impUed 
uniformity in the bed-sediment composition. But there is no 
logical reason why tiiis should necessarily be true. Where 
size-dependent entraiimient thresholds exist, bedload-trans- 
port theory (in this case, Wilcock's 1997,1998 model) implies 
that relative entiainment rates among grains of different sizes 
should depend on two things: bed shear stress and bed-sedi- 
ment composition. If bed shear stiess varies systematically 
downsti-eam, then bed-sediment composition must also vary 
if relative entrainment and transport rates are to remain uni- 
form. The earlier thought experiment had ignored down- 
stream changes in bed shear stress due to increasing dis- 
charge. The model alerted us to the fact that the null hypoth- 
esis - that downstream fining of bed sediment can occur inde- 
pendently of any of controls that are widely believed necessary 
for it (abrasion, selective entrainment, and selective deposi- 
tion)—could not be rejected as easily as many had assumed. 

These examples illush-ate how the process of formulating 
and "playing with" a mathematical model can generate unan- 
ticipated surprises that reveal errors in conceptual reasoning. 
By predicting new types of behavior, such "surprises" help to 
enhance insight and generate new hypotheses. 

Should model results always "make sense?" In retrospect, 
of course they should. Should we expect them to support our 
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initial ideas, and be disappointed when they fail to do so? 
We definitely should not react that way. One of the best 
things a mathematical model can do is to surprise us and 
challenge our ideas. 

CONCLUSIONS 

Scientists have always relied on models. Observations, data 
interpretation and analysis depend on a context, a series of ref- 
erences, and a body of knowledge that are models of some 
type or another. Science cannot occur in the absolute, its 
progress is always relative to existing ideas and concepts. 
Conceptual and mental models are quite common, many times 
implicit in our actions, sometime explicit. Mathematical mod- 
els are just another expression of the need to idealize, repre- 
sent and visualize reality. 

Geomorphologists, geologists and hydrologists have always 
used models. They must use models to make progress, and 
that includes mathematical models. Unfortunately an artificial 
schism between modelers and experimentalists (or "observa- 
tionalists") exists in our fields and in many other scientific 
endeavors that are founded on data interpretation and observa- 
tion. This schism is founded on bias, misinterpretation, and 
myth. The schism is perpetuated by misuse and misrepresen- 
tation of data and models. In this paper we have tried to 
address six of those myths and illustrate, mostly with our 
experiences, why we think mathematical models are useful 
and necessary tools of the trade. For the time being, geomor- 
phologists may not have to use mathematical models directly 
but they cannot afford to ignore them and their users. 

We predict that in the not too distant future all geomorphol- 
ogists will be users of mathematical models at some level. 
Modeling will be a necessary tool of field researchers and the- 
orists alike. 

We always want to use "physically based" models. We have 
tried to argue for a broad definition of physical models, away 
from sometimes misleading mechanistic rigor. The argument 
is that few physical principles are immutable and absolute. We 
do argue for models based on principles and processes that can 
be generalized and that depend on parameters that have an 
observable interpretation. 

It could be argued that verification is impossible given that 
reality is imperfectiy known. Certainly models accept more or 
less confirmation with existing data, limited by our abiUty to 
observe. Beyond that problem with semantics, we argue that 
our field is such that determinisfic verification of any model 
outcome is nearly impossible. We can hope to confirm the 
behavior of the constituent processes of models and to confirm 
model output in a distributional, statistical, sense. We can pre- 
serve behavior and general features expressed as moments of 
distributions, but it is almost impossible to exactiy reproduce 

a feature of namre that is the outcome a highly non linear sys- 
tem having poorly known initial and boundary conditions. 

Even unconfirmed or partially confirmed or "verified" 
models can be useful. First, unverified models serve as deduc- 
tive tools that help guide the search for new observations. Second, 
the process of model-building itself is a valuable exercise that 
forces rigor in our hypotheses and interpretations. Third, models 
can highlight errors of understanding and concept. Fourth, 
models may lead us to unpredictable insights, and fifth, they 
serve as virtual laboratories. 

Rejected models are not necessarily a waste of time or a 
failure. In fact the nature of science progress is such that all 
models will, hopefully, be proven less than ideal as our knowl- 
edge increases. The literature is full of "failures" that have 
been invaluable in terms of guiding our thinking and framing 
our search for new knowledge. In a sense rejected models are 
stages of maturation for our science. 

We believe that models must progressively become more 
complex as we codify increased knowledge and observations. 
But complexity of constiaict does not necessarily imply com- 
plexity of output. In fact, we subscribe to the idea that nature's 
expression is simple, although the result of many complex 
interactions between processes at all time and space scales. 
The complexity of our models should be modulated by our 
ability to understand their behavior. 

Finally, the best models are those with outputs that chal- 
lenge our preconceived ideas. Models should be didactic tools. 
Their output should not be constrained to reproduce existing 
ideas. If their output challenges existing ideas, then it 
behooves us to look deeper into the results before rejecting the 
model as nonsense. We should always be ready to admit we 
were wrong. 

In summary, in response to the loaded question: are you a 
modeler? We answer a resounding "yes" and argue that all 
should answer similarly. 
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