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1. Introduction 

Previously, we developed a method to allow mammographic differential diagnosis based 
upon the 3-D orientation and morphology of breast calcifications. This method used a 
limited-view, binary reconstruction technique. In clinical trials, it was shown to be of 
value in instances where calcifications are associated with a mass. In such cases, we 
could distinguish between preferentially peripherally distributed calcifications that are 
predominantly benign and homogeneously distributed calcifications that are more likely 
to be mahgnant. We have also been able to elucidate the linear distribution of 
calcifications contained within a ductal system. Unfortunately, this reconstruction method 
does not allow one to image non-calcified tissues, or relate calcifications to the 
surrounding tissue. Thus, in the present study we have investigated alternative methods 
of generating 3-D images of the breast, namely stereoscopy, linear tomosynthesis, and 
micro-CT. Such methods capable of producing 3-D images of both calcifications and the 
surrounding breast tissue. 

It is our purpose to develop a method that will be clinically viable in terms of dose, image 
quality and equipment cost. We believe that these proposed developments will further 
enhance the 3-D imaging and evaluation of breast cancer by allowing the radiologist to 
view calcifications in relation to the surrounding tissue, and to allow 3-D imaging of non- 
calcified breast tissues at doses which are chnically acceptable. Stereoscopy has the value 
of providing depth perception of tissues with httle additional dose, however, often the 
small angle separating the views is insufficient to completely determine the causes of 
superposition. Tomosynthesis requires more views and potentially higher dose, but 
provides better separation of tissues. Artifacts from the reconstruction algorithms can 
blur synthetic tomograms. CT, while providing the best 3-D images requires doses that 
are not clinically acceptable. 

This report summarizes the work on this grant. 



2. Body 

2.1. Summary of Work Items 

It is useful to restate the work items listed in the original grant. They are as follows: 

Task l:Develop 3-D imaging techniques (Months 1-24) 
Subtaskla: Stereoscopy (Months 1-4) 
Subtask lb: Linear Tomosynthesis (Months 5-8) 
Subtask Ic: Limited View Reconstruction (Months 9-20) 
Subtask Id: Computed Tomography (Months 18-24) 

Task 2: Phantom Development (Months 1-24) 
Task 3:Evaluate 3-D imaging methods with phantoms (Months 1-36) 
Task 4:Acquire image datasets (Months 13-36) 
Task 5:Observer study (Months 25-36) 

2.2. Development and Evaluation of 3-D Imaging Techniques 

There has been considerable interest in imaging the breast in 3-D. This has included 
numerous radiographic methods including stereoscopy''^ tomosynthesis^ limited-view 
reconstruction of calcifications'*"^ limited-view tomography reconstruction, and 
computed tomography^. There has also been interest in 3-D ultrasound, 3-D MRI, and 
other potential methods of imaging the breast in 3-D. However, to date, there has been a 
sizeable gap between the proposed techniques and clinical feasibility. To achieve clinical 
feasibility, it is necessary to consider these techniques on the basis of dose, fundamental 
imaging physics, and technology. This grant was designed to consider 4 such methods 
and compare them, both on the basis of physical performance and chnical images. 

We had a number of difficulties completing this grant. Significant changes in clinical 
staff, clinical demands on the time of the participants of this grant, and the sale of a key 
piece of equipment by Thomas Jefferson University Hospital all served to retard progress 
on this grant, as reported previously, hi spite of these difficulties, we beUeve that we 
have considerable advanced 3-D imaging of the breast. The following report details the 
results of this grant. 

Image Acquisition Hardware 

The grant originally proposed to use two pieces of hardware for the completion of this 
grant. The first was a prototype device built in Dr. Maidment's laboratory. It consisted 
of an Eikonix 1412 linear digital camera, coupled to an x-ray image intensifier (XRII) via 
lenses. These were mounted on an optical bench with a Siemens Bil50/30/50R x-ray 
tube, coUimators, and a specimen holder mounted on a rotary motion stage. A Siemens 
Heliophos 5S generator supplied the x-ray tube. All of the components were connected 
to a 486-computer running Linux. A schematic of the imaging system is shown in 
figure 1. This system was intended for preliminary investigations. It had known image 
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Figure 1 A schematic of the imaging system. The system consists of an x-ray tube, a system of 
translation and rotation stages for positioning the specimen, an x-ray image intensifier (XRII), lenses 
and a CCD camera. Pre- and post-object coUimation is not shown. 

quality problems that would prevent it's use through the entire study. Fortunately, a 
second system existed at that time which had significantly better image quality. 

The second system consisted of a Fischer Mammotest stereotactic core biopsy system and 
a Fischer MammoVision digital x-ray detector (Fischer Imaging, Denver, CO). We have 
had a long-standing relationship with the Fischer R&D group, and Fischer had for many 
years provided technical support for this work. The Fischer system was supposed to be 
modified to include a computer-controlled rotator stage. This would allow us to mount a 
specimen holder on this stage and use the Fischer system to produce tomographic images. 
This system was being developed, in part, because of its physical location in the Breast 
Imaging Center, which is in the same building as our outpatient breast surgery center. 
We had planned to interview women prior to needle localization, including obtaining 
informed consent. Then, following their surgery, the surgical specimen would be rapidly 
imaged on the modified Fischer table. Unfortunately, the hospital sold this unit, August 
lO"", 1999, just 8 weeks after we hired a post-doc for this grant. 

Since that time, we have made a concerted effort to allow this grant to proceed. We have 
done this in two ways. First, we have altered the original imaging system by replacing 
the image intensifier and Eikonix camera with a 4" XRII (Toshiba), and an SMD (SMD, 
Fort Collins, CO) 1M30 CCD camera. The acquisition computer and electronics were 
also updated. We have characterized their performance, and used the system for 
computed tomography. Secondly, we obtained a DRC (DRC is a subsidiary of Hologic, 
Wilmington, DE) amorphous selenium active matrix detector. This system was used for 
tomosynthesis and stereoscopy. In the following sections, the performance of the various 
imaging systems is discussed. Then, a summary of the research in the four imaging 
modalities is presented, concentrating primarily on stereoscopy. 



Figure 2 Reconstructed images produced with the Eikonix detector. The left image is a wire phantom 
designed to test rotational artifacts. Note that the wire is reconstructed with different levels of success 
(they should look like dots, not crosses). Also note the circular artifacts due to the instability of the XRII. 
The image on the right is of a fresh chicken thighbone (8.8 mm x 7.4 mm), clearly showing a rmg of 
cortical bone, and details within the medullary cavity. This image still demonstrates subtle circular 
artifacts that limit the detection of low contrast structures in the bone. 

Detector Characterization 

In each of the designs discussed below, a Siemens HeUophos 5S x-ray generator and a 
Siemens Bil50/30/50R x-ray tube, a Parker computer controlled rotary stage, and a 
custom specimen/phantom holder are used. These form the basis of the imaging system 
being built. They are all mounted on a optical breadboard that is equipped with 
appropriate rails and mounting hardware. A rotate only geometry is used to acquire 
images. The setup allows acquisition of either tomographic or stereoscopic images, 
depending upon the acquisition protocol used, by varying the angle of acquisition and the 
dose per image. Each detector is capable of acquiring 2-D images, and hence 3-D 
volume reconstruction is also possible. 

Eikonix Detector 

The first detector built consisted of an Eikonix 1412 digital linear camera and a Siemens 
9"/6" x-ray image intensifier (XRII). Because this was a linear camera, true CT images 
were acquired differently than the other methods. In the limited view methods (including 
stereoscopy), 2-D images were acquired by scanning the detector at selected angles. 
However, due to time constraints, CT images were made in two different ways. Angular 
sub-sampling allowed us to acquire up to 200 images for 3-D reconstruction. 
Alternatively, 1-D images could be acquired at a greater number of angles, but only a 
single 2-D slice of the object would be reconstructed. 



This camera was used to develop the image reconstruction algorithms used for the CT 
images (discussed in detail below). In the original grant application, the CT images that 
were shown, were of very high contrast objects, and were acquired as 1-D samples to 
produce a single 2-D slice. A conventional filtered back-projection reconstruction 
algorithm was used. Since that time, we have altered our image acquisition code to allow 
2-D images to be acquired, and now use a modified Feldkemp algorithm to generate a 
stack of 2-D slices, which are rendered as 3-D volume data sets. 

Use of the Eikonix camera was discontinued due to circular and cross artifacts illustrated 
in the reconstructed images shown in figure 2. In August, 2000, we decided to change 

detector designs. 

DRC Detector 

At the time of our decision to abandon the Eikonix camera, we considered two possible 
designs. The first was based upon a DRC active matrix detector that we had in our 
laboratory. This system has very high modulation transfer function (MTF) (see figure 3), 
and excellent noise power spectra (NFS) and detective quantum efficiency (DQE). These 
data were measured in our laboratory. In support of this work, we did extensive 
modeling and experimentation. This work was reported in Medical Physics m October 
2000, a reprint (Appendix 1) of which is included with this report. The system has been 
used to acquire tomographic images. Examples are shown in figures 8 and 9 during the 
discussion of computed tomography 

The great strength of this detector is the image quality. We continue to use it for at least 
some of experiments to test individual 3-D acquisition methods. However, this detector 
is very slow, producing one image every 40 to 50 seconds. Thus, even usmg angular- 
undersampling, tomographic images produced from 200 individual views take more than 
2 hours to acquire. Thus, we had to look for a different detector to perform our CT 

research. 
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Figure 3 MTF of the DRC detector, compared with the ideal MTF of a 
sine function. Note that a small amount of edge enhancement occurs due 
to the use of an amorphous selenium photoconductor 

SMD Detector 

The second new detector design was based upon a CCD camera that was coupled with 
lenses to a phosphor screen, or to a newer 4" Toshiba XRII. This design allows us to use 
a very fast camera. The camera we chose is capable of imaging at 30 frames a second. 
This allows tomographic images to be acquired in as little as 7 seconds for 200 
projections to 34 seconds for 1000 projections. However, now we faced hmitations of 
the x-ray generator, which extend that time to a few minutes. The problem with this 
design is that it is only ever going to be useftil as a laboratory system. The use of lenses 
to couple light from a phosphor screen to a CCD camera is quite inefficient. Our 

Figure 4 A portion of a resolution phantom, 
showing a limiting resolution of 11.3 Ip/mm, 
acquired with the SMD detector, a Lanex 
phosphor screen, and 85mm:55mm relay lenses 
giving an overall field of view of 20 mm. A 
subsection of the image is enhanced for 
printing. 
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calculations have shown that as little as 2 light quanta per x-ray interaction may be 
recorded  We have shown previousl/"'" that this inefficiency can result m needing 
higher doses for the patients (or test objects). As a result, we could only image tissue 
samples and inanimate test objects. It is our expectation that a clmical system could use 
one of the newer active matrix arrays that are capable of 10 to 30 frames per second, and 
which would be dose efficient. 

We obtained a demonstration detector from the manufacturer during the period of 
December 2000 to February 2001, and finally installed the permanent system m May 
2001. During that time, we wrote the necessary software to control the camera with the 
existing x-ray system. We performed preliminary testing of the camera, and were 
satisfied with the performance. An example of a resolution pattern is shown m figure 4. 

Image Technique Optimization 

Stereoscopv 

Stereoscopy is the process by which two views of a scene, obtained at slightly different 
angles (such as that due to the displacement of our two eyes) provides the viewer with the 
perception of depth (i.e., the abihty to discern that one object is behmd another). This 
process can be applied to radiographic imaging to achieve a similar perception of depth. 
Originally, we proposed to perform a Raleigh discrimination test to determine optimal 
angular separation for radiographic imaging. However, work by others in the field, 
including Chan' led us to consider other pertinent research questions. In particular, the 
issue of dose was particularly important and previously un-addressed. We have 
expended considerable time on this question. 

In the case of a quantum-noise hmited detector, signal detection theory suggests that 
stereoradiographic images can be acquired with one half of the per-image dose needed 
for a standard radiographic projection, as information from the two stereo images can be 
combined Previously, film-screen stereoradiography has been performed using the same 
per-image dose as in projection radiography, i.e., doubling the total dose. In the resulting 
paper (Appendix 5), the assumption of a possible decrease in dose for stereoradiography 
was tested by a series of contrast-detail experiments, using phantom images acquired 
over a range of exposures. The number of visible details, the effective reduction of the 
dose and the effective decrease in the threshold SNR were determined using human 
obse^ers under several display and viewing conditions. These results were averaged over 
five observers and compared with multiple readings by a single observer and with the 
results of an additional observer with limited stereo vision. Experimental results show 
that the total dose needed to produce a stereoradiographic image pair is approximately 1.1 
times the dose needed for a single projection in standard radiography. The observed 
benefit was greatest when the images were displayed to emphasize the quantum noise, 
and decreased with increasing dose. To further this work to the more general situation of 
arbitrary objects, with varying degrees of depth perception, and for use m different 
imaging systems, it was necessary to develop a 3-D computer breast phantom. This is 
described in more detail below. 

11 



Linear Tomosvnthesis 

We have also performed preliminary experiments with regard to linear tomosynthesis, 
using the Fischer Mammovision stereotactic breast imaging system, prior to its sale. For 
each tomosynthetic data set, fifteen images were acquired as the x-ray tube was moved 
through a 30 degrees arc. The advantage of synthetic tomography over conventional 
tomography is that the set of 15 images can be used to reconstruct an arbitrary number of 
planes, while in conventional tomography each image plane requires an additional x-ray 
exposure 

.The principles of tomosynthesis are illustrated in figure 5. As the x-ray focus is moved, 
the imaging plane P is held fixed. To perform a reconstruction, each x-ray image is 
viewed as a gray-scale fimction gi defined on a region Pr of the imaging plane P, where / 
enumerates the x-ray exposure. For each plane Q parallel to P in which reconstruction 
will be performed, each projection position of the x-ray focus defines a one-to-one 
correspondence of points in the plane Q with the points in the plane P. Explicitly, for the 
i-th position of the x-ray tube, for each point q in Q, there is a line passing though the 
focus and q which meets P in a unique point/*. Thus for every i there is a "projective" 
transformation between the points of P and Q. Further, the gray-scale function gj on Pr 
can now be considered as a fimction g'i defined in the region Qi in the plane Q, and the 
value of the reconstructed gray scale image at a point q is the sum of all the g'i which are 
defined at that point. As with conventional tomography, for objects lying within the 
plane Q, the fimctions g'i add coherently to produce a focused image, while for objects 
outside the plane are blurred. An example of images of a preliminary tomosynthesis 
phantom is shown in figures 6 and 7. The phantom consists of Lucite spheres and cubes 
contained in a water-filled Lucite box. This box is superimposed upon a contrast-detail 
phantom. In figure 6, three projection images of this phantom are shown. These images 
demonstrate the overlaying "clutter" of the spheres and cubes that effectively obscure 
most of the features of the contrast-detail phantom. Even at 10 times the dose this image 
was acquired at, we could not visualize more than 5 objects of the contrast-detail 
phantom. In figure 7, we show three reconstructions of the phantom at different heights 
above the detector.   Two sections contain only the acryhc spheres. At a height of 10 
mm, however, the contrast-detail phantom can be seen. In this image, 24 contrast-detail 
elements are visible. The increase in detection is due to the reduction in the overlaying 
clutter. Thus, reduction of this structural noise results in an increase in the effective SNR 
of the contrast-detail elements, without requiring an increase in dose. 

12 



Figure 5 An x-ray tube is shown at three locations (1,2,3); the imaging plane, P, is 
held fixed. An image of the letter "A", located in a plane Q is projected to three 
different locations on the detector. Note that the individual regions Qi overlap. 

13 



Fieure 6 Three source images of a tomosynthesis phantom. The lead BB's on the top edge act as fiducial markers for 
Suing the angle of the image. The phantom consists of luctite cubes and spheres m a water bath. Attached is a 
contrast detail phantom.  The low contrast elements of the contrast detail phantom are not readily seen. 

-/i' 

Figure 7 The tomosynthetic images of the phantom shown in figure XX. The phantom is shown at three diffierent 
depS including oneThe incorporates the contrast-detail elements (leftmost). Numerous elements are now visible 

Computed Tomography 

A computed microtomography system has been built to image breast specimens. The 
system has evaluated. As discussed above, the system has been bmlt so that it can 
accommodate two different types of detectors, a DRC active matnx detector and one 
based on a phosphor screen optically-coupled to a CCD camera. The DRC detector is 
complete, while the CCD based detector was completed in the summer of 2002. 

We evaluated both conventional and fiilly 3-D CT image acquisition methods. 
Experimentally, we have acquired images using between 200 and 1000 projections, 
rotating over an angle of 360°. Given the acquisition geometry used, there is a minimum 
number of projections that are required to avoid undersampling the projection space. 
This number depends upon many factors including the object size and detector pitch. 
However, undersampling generally only causes artifacts in very highly attenuating 
objects such as bone. Thus, given the low attenuation of breast tissues, undersamplmg is 
likely to be less of a problem. 

14 



For performing simple axial reconstructions, the projection data are reconstructed usmg a 
filtered back-projection algorithm (RECLBL, Donner Laboratory). A Hannmg filter is 
used in the reconstruction. Prior to reconstruction, the projection data are corrected for 
pixel-to-pixel variations in the detector response, fluctuations in x-ray exposure between 
projections, and error in the center of rotation. 

Numerous phantoms have been constructed and imaged. Two are shown in figure 8. 
Shown are a tomographic resolution test object and a uniformity test object. The 
resolution test object has 5 rows of holes, varying in size from 1/16" to 1/64". All are 
clearly visible. The uniformity test object (right) consists of a Lucite cylinder 1" in 
diameter. The image demonstrates a very uniform background without cupping or other 

Figure 8 Two reconstructed axial images, acquired with a CT scanner based on the DRC detector. The 
inmge on the left shows a resolution phantom, with elements of size 1/16" to 1/64' all visible. On the 
right is a uniform lucite phantom, clearly showing the image uniformity and low noise that is achievable. 

artifacts. These images show the excellent potential of using the DRC detector to 
produce tomographic images. 

Shown in figure 9 are some 3-D images of biological tissue. The 3-D images are 
rendered in two different ways,, surface rendering and volume rendering. Both show 
exquisite detail. We believe that these are the first CT images ofperiplaneta Americana. 
We chose to image this species due to it ready availability and due to the size of the 
anatomic structures.   Simply stated, this represents a hard imaging task. Attention 
should be paid to the quality of the reconstruction of the leg muscles. Note that the 
muscle fibers inside the insect's exoskeleton are clearly visible and discemable. 
Similarly, part of the exoskeleton is seen. The muscles are less than 1 mm in diameter 
and less than 200 microns separate them at their closest point. 

15 



FiEure 9 Surface rendered (left), and volume rendered (right) microtomography images of species penp/fl«eto 
Americana (common American cockroach), acquired with the DRC detector. The insect is approxunately 25 
mm long. The muscle fibers and the exoskeleton of the legs are clearly visible. 

3-D Breast Model 

The observer experiments for stereomammography, stimulated considerable interest by a 
number of groups, and motivated us to consider this problem more carefully. Much of 
the last half of the grant was spent specifically addressing the issues of the dose 
requirements for 3-D imaging of the breast. Such questions must be addressed either 
through phantom experiments or computer simulations. The number of x-ray images 
needed to perform this research solely using phantom images was prohibitive. So, we 
had to develop a suitable computer simulation of the breast. This simulation is discussed 
in detail in Appendices 2 and 3. The phantom consists of a 3-dimensional array of 
geometric objects positioned using rules developed from observing MRI and subgross 
histology specimens. The phantom can have various properties associated with it, such 
as mechanical properties, x-ray attenuation coefficients, MRI or ultrasound properties. 
To date we have only simulated x-ray imaging with breast compression. This model has 
generated more collaborative research interest than any other research project that we 
have ever worked on. Currently more than 10 research groups are using this model 

worldwide. 
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Breast Duct Analysis 

Although not originally part of the statement of work, there has been an interested side- 
research project, which developed from this grant. This project, based upon ramification 
matrices, originated when we found it necessary to simulate the breast ductal network for 
the breast simulation described above. We evaluated a number of galactograms to 
measure the branching properties of the ductal tree. These measurements were then used 
in modeUng the breast. However, it was noted that the measured ramification matnx 
values correlated with radiographic appearance of the galactograms. We have 
investigated this fiirther, and have shown that there is a strong correlation between ductal 
branching and disease state. This work has been published (Appendix 4). This work has 
let to more collaborative research, were we intend to look at the effect of breast ductal 
network structure as a predictive metric of breast cancer risk, both m humans and munne 

models. 

ii /I 
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2.3.  Discussion and Summary of Scientific Results 

This grant has generated significant progress toward developing an experimental and 
theoretical (computational) framework for performing 3-D imaging of the breast. The 
experimental framework consists of an x-ray generator, x-ray tube, collimators, and 
rotary stage for holding specimens or phantoms. Each of the components is under 
computer control. The framework is designed to use standard optical mounting hardware 
and an optical breadboard to allow testing of many different detectors and acqmsition 

protocols. 

We have developed and characterized two detectors that fit within this fi-amework  The 
first detector is an active matrix amorphous-selenium device, and second uses a phosphor 
screen or XRII optically coupled to a CCD camera. The first device has excellent dose 
efficiency (DOE) and resolution, but is too slow to allow easy tomographic imaging. Ihe 
latter device again has excellent resolution, but lacks the dose efficiency of the flat panel 
detector. This detector does, however, have the temporal response needed to perform 

CT. 

We have performed extensive evaluations of the reconstruction methods. In particular, 
we have concentrated on stereomammography and addressed the issue of dose m 
stereomammography. We have shown that stereomammography is possible at 
approximately the same dose as conventional projection mammography. This work 
considered the effect of x-ray quantum noise. To extend this work to other 3-D imaging 
techniques, and to consider additional effects, such as visual dispanty and depth^ 
perception, we developed an extensive 3-D computer simulation of the breast. This work 
in turn, has led to efforts in characterizing breast tissue based upon breast ductal 

branching. 
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3. Key Research Accomplishments 

The following is a list of key research accomplishments resulting from this work: 

• Developed a generic testbed for 3-D imaging research, consisting of x-ray generator, 
rotary stage, specimen/phantom holder, and detector assembly. 

• Developed three different detectors 
o    the original was based on an Eikonix linear CCD coupled to an XRII 
o    the second was based on a DRC active matrix detector 
o    the third was based on an SMD 30 fps CCD camera 

• Developed stereotactic, tomosynthetic, and volume rendering display software 

• Developed theoretical framework for measuring and calculating the physical performance 
of aliasing and non-aliasing digital x-ray detectors. 

• Performed dose optimization of stereoscopy based on experimental and theoretical 
techniques. 

• Developed a 3-D breast simulation for projection and tomographic imaging of the breast 
using x-rays (and potentially other imaging modalities). 

• Developed (as a result of the model) a method to analysis breast ductal network 
branching, and have identified a relationship to radiographic findings. 
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4. Reportable Outcomes 

a)  Published Manuscripts 

Theses 

1.        P.R. Bakic, "Breast Tissue Description and Modeling in Mammography", Lehigh 
University, Department of Electrical Engineering, Ph.D. Thesis, December 2000. 

Peer Reviewed 

1. Michael Albert, and Andrew D. A. Maidment. Linear Response Theory for 
Detectors Consisting of Discrete Arrays. Medical Physics, 27(10), 2417-2434, 
October 2000. 

2. P.R. Bakic, M. Albert, D. Brzakovic, and A.D.A. Maidment. Mammogram 
Synthesis using a 3-D simulation: I. Breast Tissue Model and the exam 
simulation. Medical Physics, 29(9), 2131-2139, September 2002. 

3. P.R. Bakic, M. Albert, D. Brzakovic, and A.D.A. Maidment. Mammogram 
Synthesis using a 3-D simulation: II. Evaluation of Synthetic Mammogram 
Texture. Medical Physics, 29(9), 2140-2151, September 2002. 

4. P.R. Bakic, M. Albert, and A.D.A. Maidment. Classification of Galactograms 
using Ramification Matrices: Preliminary Results. Academic Radiology, 10(2), 
In Press, February 2003. 

5. A.D.A. Maidment, P.R. Bakic, and M. Albert. Effects of quantum noise on dose 
and contrast sensitivity in stereoradiography. Submitted to Medical Physics, 
September 18,2002. 

Proceedings Papers 

1. P. Bakic, M. Albert, D. Brzakovic, A.D.A. Maidment, "Generation and 
Evaluation of Physically hispired Synthetic Mammograms", CD-ROM 
Proceedings of the Worid Congress on Medical Physics and Biomedical 
Engineering, 4, July 23-28, 2000. 

2. P. Bakic, M. Albert, A.D.A. Maidment, and B. Reljin, "Experiment with 3-D 
Mammography and their Possible Applications in Telemammography," Annals of 
the Academy of Studenica, 4, 67-69 (2001). 

3. P.R. Bakic, M. Albert, D. Brzakovic, A.D.A. Maidment. Evaluation of a 
Mammography Simulation, hi IWDM 2000 5th International Workshop on 
Digital Mammography, edited by M.J. Yaffe, Medical Physics Publishing, 
Madison WI, 681-687 (2001). 
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4.        P.R. Bakic, M. Albert, and A.D.A. Maidment. Dose Requirements in 
Stereoradiography. In Physics of Medical Imaging edited by L. Antonuk and M. J. 
Yaffe, Proceedings of the SPIE, 4682,126-137 (2002). 

5 A.D.A. Maidment, P.R. Bakic, and M. Albert. Is Stereomammography Possible 
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Mammography, edited by H-0 Peitgen, hi press (2002). 

6 P.R. Bakic, M. Albert, and A.D.A. Maidment,. Evaluation of Breast Ductal 
Networks Using Ramification Matrices, hi IWDM 2002, 6* hitemational 
Workshop on Digital Mammography, edited by H-0 Peitgen, hi press (2002). 

b) Abstracts and Presentations 

Abstracts 

1. A.D.A. Maidment, 3-D Imaging of the Breast. Program for the "6th hitemational 
Cambridge Conference on Breast Cancer Screening", April 1999. 

2. A.D.A. Maidment. "3-D hnaging of the female breast". Program for "Imaging 
2000", June 2000. 

3. A.D. A. Maidment, and M. Albert. "A Clinical Study of Calcifications hnaged by 
2-D and 3-D Digital Mammography". Program for "DOD Era of Hope", Vol. 1, 
p. 212, June 2000. 

4. A.D.A. Maidment, and M. Albert. "3-D Digital Mammography: An Automated 
Method of Image Reconstraction". Program for "DOD Era of Hope", Vol. 1, p. 
213, June 2000. 

5. AD.A. Maidment, P. Bakic and M.Albert. "3-D Digital Mammography: A 
Comparison of hnage Reconstmction Methods". Program for "DOD Era of 
Hope", Vol. 1, p. 214, June 2000. 

6. A.D. A. Maidment, M. Albert. Automated Reconstmction of 3-D Calcifications. 
Program for "IWDM 2000 - 5th hitemational Workshop on Digital 
Mammography", p. 26, June 2000. 

7 P.R. Bakic, M. Albert, D. Brzakovic, A.D.A. Maidment. Evaluation of a 
Mammography Simulation. Program for "IWDM 2000 - 5th hitemational 
Workshop on Digital Mammography", p. 123, June 2000. 

8.        A.D.A. Maidment. "3-D hnaging of the female breast". Program for "hnaging 
2000", June 2000. 
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6th 

9 A.D.A. Maidment, and M. Albert, "Automated 3-D Limited-View Binary 
Reconstruction of Breast Calcifications", CD-ROM Proceedings of the World 
Congress on Medical Physics and Biomedical Engineering, 4 , July 23-28,2UUU. 

10 PR. Bakic, M. Albert, and A.D.A. Maidment. Dose Requirements in 
Stereoradiography. Program for "Physics of Medical Imaging', p. 36, February 

2002. 

11 ADA. Maidment, P.R. Bakic, and M. Albert. Is Stereomammography Possible 
■ Without hicreased Dose. IWDM 2002 Program & Abstracts - 6th International 

Workshop on Digital Mammography, p. 27 June 2002. 

12 PR Bakic, M. Albert, and A.D.A. Maidment. Evaluation of Breast Ductal 
■ Networks Using Ramification Matrices. IWDM 2002 Program & Abstracts 

International Workshop on Digital Mammography, p. 78, June 2002. 

13 ADA. Maidment, P.R. Bakic, and M. Albert. Dose Requirements in 
■ Stereomammography. The Department of Defense Breast Cancer Research 

Program Meeting - Era of Hope Proceedings. Volume II, p. 30-6, September 

2002. 

14 ADA. Maidment, P.R. Bakic, and M. Albert. 3-Dimensional hnaging of the 
■ Breast  The Department of Defense Breast Cancer Research Program Meeting - 

Era of Hope Proceedings. Volume II, p. 30-7, September 2002. 

15.      P.R. Bakic, M. Albert and A.D.A. Maidment. "Quantum Noise and Dose in 
Digital Stereomammography: A 2-AFC Observer Study", Radiology, 225(P), 644 

(2002). 

Presentations 

ADA Maidment, M. Albert, E.F. Conant, and S.A. Feig. Three-Dimensional 
Visualization of Breast Cancer. 4th hitemational Workshop on Digital 
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ADA. Maidment, and M. Albert. "3-D Digital Mammography: An Automated 
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2002. 
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5. Conclusions 
An experimental framework for performing 3-D imaging of the breast has been 
developed. This framework consists of an x-ray generator, x-ray tube, colhmators, and 
rotary stage for holding specimens or phantoms. Each of the components is under 
computer control. The framework is designed to use standard optical mounting hardware 
and an optical breadboard to allow testing of many different detectors and acquisition 

protocols. 

We have developed and characterized three detectors. The first is now obsolete. The 
second detector is an active matrix amorphous-selenium device, and third uses a 
phosphor screen or an XRII optically coupled to a CCD camera. The second device has 
excellent dose efficiency (DQE) and resolution, but is too slow to allow easy 
tomographic imaging. The third device again has excellent resolution, but lacks the dose 
efficiency of the flat panel detector. This detector does, however, have the temporal 
response needed to perform CT. 

We have performed extensive evaluations of the reconstruction methods. In particular, 
we have concentrated on stereomammography and addressed the issue of dose in 
stereomammography. We have shown that stereomammography is possible at 
approximately the same dose as conventional projection mammography. This work 
considered the effect of x-ray quantum noise. To extend this work to other 3-D imaging 
techniques, and to consider additional effects, such as visual disparity and depth 
perception, we developed an extensive 3-D computer simulation of the breast. This work 
in turn, has led to efforts in characterizing breast tissue based upon breast ductal 
branching. 
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Linear response theory for detectors consisting of discrete arrays 
Michael Albert and Andrew D. A. Maidment^^ 
Thomas Jefferson University, Department of Radiology, Suite 3390, Gibbon Building, 
111 South 11th Street, Philadelphia, Pennsylvania 19107-5563 

(Received 17 March 2000; accepted for publication 5 May 2000) 

The optical transfer function (OTF) and the noise power or Wiener spectrum are defined for 
detectors consisting of a lattice of discrete elements with the assumptions of linear response, 
Gaussian statistics, and stationarity under the discrete group of translations which leave the lattice 
fixed. For the ideaUzed classification task of determining the presence or absence of a signal under 
signal known exactly/background known exactly (SKE/BKE) conditions, the Wiener spectrum, the 
OTF, along with an analog of the gray-scale transfer characteristic, determine the signal-to-noise 
ratio (SNR), which quantifies the ability of an ideal observer to perform this task. While this result 
is similar to the established result for continuous detectors, such as screen-film systems, the theory 
of discrete lattices of detectors must take into account the fact that the lattice only supports a 
bounded but (in the Umit of a detector of arbitrarily great extent) continuous range of frequencies. 
Incident signals with higher spatial frequencies appear in the data at lower aliased frequencies, and 
there are pairs of signals which are not distinguishable by the detector (the SNR vanishes for the 
task of distinguishing such signals). Further, the SNR will in general change if the signal is spatially 
displaced by a fraction of the lattice spacing, although this change will be small for objects larger 
than a single pixel. Some of the trade-offs involved in detectors of this sort, particularly in deaUng 
with signal frequencies above those supported by the lattice, are studied in a simple model. 
© 2000 American Association of Physicists in Medicine. [S0094-2405 (00)00908-1] 

Key words: image theory, MTF, DQE, Wiener spectrum, digital detectors 

I. INTRODUCTION 

The importance of signal detection theory in quantifying the 
performance of medical imaging systems (x-ray screen-film 
imaging being perhaps the best example) gives impetus to 
applying the same techniques to the digital radiographic im- 
aging systems which are now coming into clinical use. As 
applied to screen-film systems, signal detection theory re- 
quires three assumptions to be at least approximately ful- 
filled: that the detector responds linearly to the incoming 
signal, and is both stationary and homogeneous (i.e., both the 
detector response and the additive noise are translationally 
invariant). One can then summarize the response of the sys- 
tem in terms of the gray-scale transfer characteristic, the op- 
tical transfer function (OTF), and the noise power or Wiener 
spectrum. 

The digital x-ray imaging systems which are now appear- 
ing generally behave as a lattice of discrete detector ele- 
ments. Although digital, these detectors are generally oper- 
ated under conditions such that the effects of quantization are 
negligible. When compared to screen-film systems, these de- 
tectors tend to be linear over a wider range of exposures. 
Like screen-film, for low-contrast signals the noise is ap- 
proximately additive and Gaussian. However, as the size of 
the imaging elements is now comparable to the size of some 
of the smaller objects which are of cUnical interest (around 
0.1 mm), these detectors are not strictly homogeneous in that 
translations by a fraction of the lattice spacing result in the 
signal being recorded in a different manner. As these devices 
generally consist of a regular lattice of sensitive elements, 
they still possess a symmetry with respect to a discrete group 

of translations. This symmetry is approximate due to the fi- 
nite extent of physical detectors. However, as in the theory 
of screen-film systems, corrections for the Umited extent of 
the detector are neghgible for many practical applications. 
Thus, one can apply Fourier techniques to put the signal 
detection theory of such devices in a form which is both 
tractable and similar to the theory of screen-film systems. 
Instead of using a continuous Fourier transform, one uses a 
discrete space Fourier transform, which recodes the data ac- 
quired by the detector at a discrete lattice of positions in 
terms of a bounded and continuous range of spatial frequen- 
cies. 

For screen-film systems, the OTF diagonaUzes the linear 
operator which relates the input signal to the output. As de- 
tailed below, for discrete-array detectors the effects of alias- 
ing introduce a null space, different for each device, which 
prevents this operator from being diagonaUzed using a basis 
common to all devices, but the OTF represents the operator 
in a basis in which it is sparse in the sense that all terms 
vanish except those between input and output spatial fre- 
quencies which are equal or aliased. The Wiener spectrum is 
the discrete space Fourier transform of the discrete autoco- 
variance function, and thus is also defined in the region of 
frequency space which the lattice supports. As in the case of 
continuous detectors, for low-contrast objects (so that re- 
sponses are approximately Unear), these quantities determine 
the signal-to-noise ratio (SNR) which is an appropriate 
figure-of-merit for the classification task of discriminating 
between the presence or absence of an exactly known signal 
against an exactly known background (SKE/BKE). 
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To make notation definite, it is necessary to review the 
relevant parts of signal detection theory for screen-film im- 
aging systems (Sec. II) and the relevant Fourier techniques 
(Sec. III). Subsequently, the OTF (Sec. IV) and Wiener spec- 
trum (Sec. V) of discrete detectors can be studied leading up 
to the calculation of SNR for the case of SKE/BKE (Sec. 

VI). 
As discussed below, the effects of aliasing on the inter- 

pretation of the OTF have been noted in the hterature, and 
the definition of the Wiener spectrum given here has ap- 
peared before. However, this paper presents a systematic 
theory of signal detection for discrete-array x-ray detectors. 
The approach here differs from the more general theoretical 
approach of cross-talk matrices' in that the work reported 
here uses the additional assumptions of infinite extent, 
Gaussian statistics, and discrete translational symmetry. 
There are many imaging systems for which these assump- 
tions are not appropriate [e.g., three-dimensional (3D) to- 
mographic reconstruction^). However, the work presented 
here has certain advantages in that so long as the additional 
assumptions are approximately trae, the quantities involved 
are closely related to those used with screen-film systems 
and are similar or identical to measured quantities relating to 
digital systems which have appeared in the literature. 

To demonstrate the use of this theoretical structure and to 
investigate some of the trade-offs inherent in discrete-array 
systems. Sec. VII presents a simple model of a detector. In 
particular, this gives the opportunity to investigate how the 
detector's response to high spatial-frequency signals affects 
the detection of objects in terms of SNR, and in particular 
the effect which is sometimes called "noise aliasing" is ad- 
dressed. 

II. REVIEW 

The theory of SKE/BKE detection and classification for 
screen-film-like systems has been expounded in detail,-" 
and is reviewed here in order to establish notation for later 
comparison with discrete-array detectors. The input signal is 
the x-ray intensity per unit area and the output signal is the 
film density, both as a function of position. The interesting 
and tractable case is the search for low-contrast variations 
/(r) in an x-ray beam whose baseline intensity, /„, is such 
that the changes in film density D(r) are a linear function of 
/(r). The additional assumption of translational in variance 
then gives 

^Oir)) = ^^^^j j dh'Pir-r'Hiir')), (1) 

where P(r-r'), the point spread function (PSF), is the den- 
sity increase of the film at position r due to a given x-ray 
intensity at r'. The brackets «)) represent ensemble aver- 
ages, i.e., averages over many exposures. Since /(r) and 
D(r) are here defined as variations relative to baseline val- 
ues, (/(r)) = 0 and (Z)(r)) = 0 in the absence of a signal. 

Because the PSF is translationally invariant, the convolu- 
tion operator is diagonalized in frequency space, giving 

^^(f))=2ll^r(f)</(f)). (2) 

where f represents a two-dimensional vector in frequency 
space and T, the optical transfer function (OTF), is the Fou- 
rier transform of the PSF. The function D{f) is the Fourier 
transform of the data D(r), following the convention that for 
any suitable^ function g. 

-il dh g(r)e -ItriT-t 

{g{f)e iTTir-t (3) 

so that f is in units of cycles per unit length. The factor of 
7(logioe)//o serves to convert units of x-ray beam intensity 
into units of change of film density in the region of linear 
response, allowing the normalization 7(0)= 1. 

Realizations of the imaging process will be subject to 
noise which can be characterized by the autocovariance func- 
tion 

C(r,,r2) = C(r2,ri) = (D(r,)D(r2)), (4) 

that, for Gaussian noise, completely determines the statis- 
tical nature of the noise process. For stationary processes, the 
autocovariance fiinction depends only upon the displace- 
ment, 

C(ri,r2) = C(r2-r,), (5) 

so that the autocovariance C(r) is now a function of a single 
vector, the displacement r. The Wiener spectrum is the Fou- 
rier transform of the autocovariance function, and 

Wi{)-- 
\A\ "■^.W /// 

rD(r)e -liTtr-t (6) 

shows that the Wiener spectrum can be estimated in terms of 
the Fourier components of signal-free ("flat-field") images 
over regions A of sufficiently large area \A \. 

For Gaussian noise it can be shown^ that the optimal strat- 
egy for SKE/BKE signal detection or classification consists 
of choosing a mask function g{r) and a cutoff value for the 
statistic 

.-// 
dhg{r)D{r). (7) 

The efficacy of 6g for discriminating between hypothesis I 
(e.g., signal absent) and hypothesis II (e.g., signal present) is 
measured by the signal-to-noise ratio 

«^,)i-{^,)n)' 
SNR^ = - Var(^J 

(8) 

where the numerator is the difference between the expecta- 
tion values of dg under the two hypotheses and the denomi- 
nator is the variance in the statistic 0g, which for additive 
noise is independent of the hypothesis. 

While only real-valued functions g(r) are needed for 
calculating decision statistics, it will be useful to extend 
the definition of 6g  to complex valued g(r),  in which 
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case the variance of 0g is the sum of the variances of the real 
and imaginary parts. The variance of the statistic Og is given 
by 

War{dg)={i0g-{eg)){eg-{dg)y*) (9) 

= j j d^rj j dh'gir)C{r,r')gir'r 

-II d'{g({)g-*{{)W{f), 

(10) 

(11) 

as can be seen by substitution of Eqs. (7) and (4) into Eq. (9) 
[indeed, Eq. (10) can be taken as the definition of the auto- 
covariance function]. It can be shown, for example using the 
Schwarz inequality,  "     that the optimal choice of mask 
function is given by 

«/(f))n-(/(f))i)r(f) 

for which the SNR is given by 

(12) 

SNR; Hi^ r2(log,o^)'|(/(f))n-</(f))il'lnf)P 
I„ Wit) 

(13) 

where the subscript I indicates that this represents the opti- 
mal or idear observer given the detector and task at hand. 

Returning momentarily to the task of estimating the 
Wiener spectrum from flat-field images, if in Eq. (9) one sets 
g(r) = G(r)e^''''''■'', where G(r) is a window function with 
normaUzation 

j j d^rGHr) = l,    j j d^G{{)\'-=l, 

then calculating {dgd*) by Eq. (11) one obtains 

d^G(i-i,)\''w{r) 

(14) 

// 

// 
^•'rG(r)e--"'"•'•D(r) (15) 

which, since |G(f—fo)p will be sharply peaked near f^, 
shows that for finite length data sets one actually estimates 
the Wiener spectrum convolved with the square of the Fou- 
rier transform of the window function. In particular, for a 
rect window so that G is chosen to vanish outside of a square 
region of area |A| =Z,^ and to have value l/\/JA| inside that 
region. 

|G(f)|2=A 
sin( TTL/J-) sin( -nLfy) 

=A smcHLf,)smc-{Lfy), (16) 

where /^, fy are the components of f. For large areas, this 
becomes increasingly Uke a delta-function, giving Eq. (6). 

III. MATHEMATICAL PRELIMINARIES 

In the case of screen-film, described above, we studied a 
mapping of functions defined for all spatial positions to func- 

tions defined for all frequencies, namely the Fourier trans- 
form defined by Eq. (3). For the digital x-ray detectors of 
interest in this paper, the input is still a continuous distribu- 
tion of x-rays, but the output signal consists of data with 
values assigned only at a discrete set of lattice points. The 
size of the array is assumed to be sufficiently large so that 
boundary effects play no part, and thus is treated as being of 
infinite extent. To analyze these data it is appropriate to use 
a Fourier technique based on the discrete translational sym- 
metry of the detectors. Mathematically, this transform is 
similar to the Fourier series, but with the roles of the space 
and frequency domains reversed.'^ Following Giger,^'' this is 
called the "discrete" space Fourier transform (DFT). The 
"finite" Fourier transform (FFT)''' is the Fourier technique 
applied to finite sequences of data points that is customarily 
implemented using an algorithm known as the "fast Fourier 
transform." For practical purposes, one always deals with 
finite data sets, and the discrete space Fourier transform is a 
limiting case of the finite Fourier transform. As the number 
of equally spaced data points used in calculating a finite 
Fourier transform increases, the discrete set of frequencies 
calculated fill more and more densely a bounded region of 
frequency space, so that in the Umit one obtains a function of 
a continuous range of frequencies. The function obtained by 
this limiting process is the discrete space Fourier transform 
of the spatial data. 

To deal with the two-dimensional arrangements of sensi- 
tive elements which are of interest, it will be convenient to 
introduce the ideas of vectors generating a lattice and of dual 
basis vectors. A two-dimensional lattice of points can be 
specified by vectors Vj and V2 such that every point in the 
lattice can be represented as 

rm|,m2 = '«lVl+/M2V2, (17) 

where m ] and WT are integers. The vectors Vj and V2 are said 
to generate the lattice, but the choice of vectors for a given 
lattice is not unique. For the common case of a square grid 
the choice of Vj as lying along the x-axis and V2 as lying 
along the y-axis is natural. The plane containing the lattice 
can be tiled in such a way that each tile contains a total of 
one lattice point. Each tile is then called a "unit cell." For 
the case of a square grid of detectors with spacing a, the 
most natural choice of a unit cell would be the square cen- 
tered at the coordinate origin extending to ± a/2 along both 
axes. A small region of a plane containing a square lattice 
and one of the unit cells is drawn in Fig. 1(a). The reciprocal 
vectors denoted by Wj and W2 are defined by the require- 
ments 

yryyj=S,j=\l'.^^., (18) 

and serve as a basis for frequency space and as generators of 
the reciprocal lattice. In the case of the rectangular grid men- 
tioned above, each w, would be parallel to v, and scaled 
appropriately as illustrated in Fig. 1(b), which also shows a 
unit cell of the reciprocal lattice. To help clarify these ideas. 
Fig. 1(c) shows a hexagonal lattice with two choices of the 
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FIG. 1. (a) a rectangular lattice, (b) The reciprocal lattice of (a), (c) A 
hexagonal lattice, (d) the reciprocal lattice of (c). Note that (a), (b), (c), and 
(d) represent a finite region of a lattice which covers the entire plane, (e) A 
3X3 finite rectangular lattice, (f) The circles represent the frequencies used 
in the finite Fourier transform of (e). For comparison, a unit cell of the full 
reciprocal lattice is shown. See Sec. Ill for details. 

unit cell (parallelogram or hexagon) and Fig. 1(d) shows 
the reciprocal lattice (note that Vi is perpendicular to W2 
and V2 is perpendicular to Wj). The area |A| = |viXv2| of a 
unit cell is independent of the choice of unit cell, since 
it is fixed by the average density of lattice points over large 
regions. The area of the unit cell of the reciprocal lattice, 
l^l = |wiXw2|, is inversely proportional to \A\, as can be 
seen by 

|A||^| = 
,(Vl).v      (V,),\        /(Wi).v      (W2), 

''^V2)..      (V2)/1(W.),      (W2), 

det 

(19) 

det 

Vl Wi Vi-W2\ 

^2 w, V2 • W2 / 

1 0\ 

0 1/ 
= 1, (20) 

making use of the fact that the determinant of a product 
of matrices is equal to the product of the determinants and 
Eq. (18). 

For any function g(m,,m-,) of the lattice, the discrete 
space Fourier transform is defined ""    as 

i(f) = |A| 2   g{mi,m2)e' (21) 
m| .mi 

for all spatial frequencies f. This definition is equivalent to 
evaluating the z-transform on the unit circle in the complex 
plane.'"'-^ It is also equivalent to the Fourier transform of 
the function obtained from the data set by interpolation with 

sine fiinctions (e.g., Ref. 16, p. 230). Direct calculation from 
Eq. (21) gives 

i(f)=|(f+miWi+W2W2), (22) 

which shows that g is periodic in Fourier space for displace- 
ments in the dual lattice and one need only consider values 
of § on one unit cell of this lattice. Any frequency f outside 
of this unit cell is an alias of a frequency f inside the cell, 
with f-f in the reciprocal lattice. Viewed another way, the 
reciprocal lattice divides points in the frequency plane into 
equivalence classes of points, two points being equivalent if 
and only if they are separated by a vector in the reciprocal 
lattice. Any unit cell will contain exactly one point from each 
equivalence class (except for boundaries), and knowledge of 
§ on the unit cell determines § on the entire plane. Alterna- 
tively, one can consider g as being defined on the topological 
"quotient space," a torus, just as one can consider a function 
on the real line with period 27r as defined on the unit circle 
(Ref. 17, p. 155). 

The exponential functions in the discrete Fourier transfor- 
mation satisfy a simple orthogonality condition 

IL ^2f^-2.,-f.r,„,.„^^2.,-f.r„,.„^=|^|5^^_^^^^^_^^^ (23) 

where K is the region corresponding to the unit cell of the 
reciprocal lattice in the frequency plane and \K\is the area of 
this region, thus giving 

g{m ,.2)=/// { 8{f)e 2mf-r,„ (24) 

as the inverse transform. The complex exponentials form a 
complete set of orthogonal functions, so that any appropriate 
periodic function of frequency f can be represented in terms 
of them. The completeness can also be expressed in terms of 
a comb function as 

2  e^-<f-f')--'",-=|ii:|S ^(f-f'-f.,,.,),     (25) 

where the equality is interpreted in terms of distributions and 
the sum on the right-hand side is over the frequencies in the 
reciprocal lattice.^"'''' 

For actual finite data sets, one applies the finite Fourier 
transformation. The discrete space Fourier transformation 
can be interpreted as a limit of the finite Fourier transforma- 
tion as the number of equally spaced points in the data set is 
increased. Specifically, consider a bounded subset of the 
{r„  „ J such as .i^ of the form 

•^={r„,.„jA^i=s«,<A^; ,N2^n2<N:,}, (26) 

for which the finite Fourier transform and its inverse are 
given by 

i(/i,/2)=    2     g(n,,«2)e-'"'vv ■•",."., (27) 

1 
g{ni,n2) = 2     i(/i,/2)e^'"''''-'^""'-"^.      (28) 

'l''2 

where ANi^N'^-Ni. The points in the Fourier space are 
given by 
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f/,J2 = 
A 
AN, 

■Wi + 
AA^. ■W2 

and 

y^={t.,\Li^l,<L[,L2^l2<m 

(29) 

(30) 

where the L's are chosen so that L[ — Li=N\—Ni. The re- 
ciprocal relationship [Eq. (18)] between the basis vectors 
{v,} and the dual basis vectors {w,} gives 

^^,l■,'^n^,n■2; Wl+^^W2)-(niVi + «2V2) AN 

AN'I'^AN^' 
(31) 

which, along with choosing N[ = —Ni = Ngl2 and Lj=—L'i 
=Ng/2 for Ng even, produces a more conventional represen- 
tation of the finite Fourier transform. 

As the number of data points ANi AN2 increases, the 
spacing between the frequencies f/ j^ decreases, so that in 
the limit the data points on the lattice extend across the entire 
plane and the frequency values fill a unit cell of the recipro- 
cal lattice. The finite sum in the FFT [Eq. (27)] approximates 
(with a factor of |A|) the infinite sum in the DFT [Eq. (21)], 
and for the inverse transform the sum in Eq. (28) (with the 
introduction of a factor of |A||A'|= 1) becomes 

gFFT(«l.«2)=      2 
K 

t.nMAN,AN-. 

Xe'^'^'^'i-ii^^i-"!, 

■(|A|ipFr(/,,/2)) 

(32) 

which approximates the integral used in the inversion of the 
discrete space Fourier transform, Eq. (24). To illustrate this 
concept. Fig. 1(e) shows a small rectangular lattice (corre- 
sponding to A^,= — 1, N'i=2). The circles in Fig. 1(f) repre- 
sent the corresponding frequency vectors for use with the 
finite Fourier transform. The box shows the region which 
would correspond to a unit cell of the reciprocal lattice if the 
lattice in Fig. 1 (e) were extended to an infinite lattice. If the 
finite lattice shown in Fig. 1(e) were extended (but still fi- 
nite), the corresponding frequency vectors of the finite Fou- 
rier transform would fill the unit cell more and more densely. 

It should be noted that if AA^ 1 or AA'^2 ^s even, then some 
of the frequencies at which the finite Fourier transform is 
defined [shown as the circles in Fig. 1(f)] would lie on the 
boundary of the unit cell, and such frequencies would have 
aUases which also lie on the boundary. For example, in the 
square lattice considered in Fig. 1(f), if one of the frequen- 
cies at which the finite Fourier transform is defined fell on 
the edge of the unit cell, an aUas of that frequency would lie 
on the opposite edge, and a frequency on any comer would 
be aliased with all of the other comers. In certain sums over 
frequency components, such as Eq. (28), it is useful to adopt 
the convention that such sums include exactly one represen- 
tative from each class of aliased frequencies, so that frequen- 
cies falling on the boundary of the unit cell are not counted 
multiple times. If one uses the "quotient space" point of 

view, this follows automatically as the aliases correspond to 
a single point in the quotient space. Alternatively, one might 
weigh each frequency by a factor (1/2 for frequencies lying 
on edges and 1/4 for comers) so that each class of aUased 
frequencies has a total weight of 1 (similar to counting frac- 
tional atoms when reckoning the number of atoms in a unit 
cell of a crystal). 

The results pertaining to Fourier transformations and dual 
lattices which are reviewed in this section have direct gener- 
aUzations to any number of dimensions, but as the statement 
of the results for arbitrary finite dimension would be nota- 
tionally cumbersome, only the two-dimensional results have 
been explicitly stated. For notational convenience, let m rep- 
resent the ordered pair mi,m2, so that g(ni)=gimi,m2) 
and r„=r„^ ,„^, and similarly for k, e.g., fk=(k^ j^^. 

IV. TRANSFER FUNCTION 

The analog of the optical transfer function, which relates 
the response of the detector to the input signal in frequency 
space, can now be defined. The input signal (/) is a continu- 
ous function of the plane. As {/) is defined relative to the 
"flat-field," it is reasonable to assume that (/) has compact 
support, or at least vanishes sufficiently quickly at infinity to 
leave the quantities considered here well defined. Thus the 

Fourier transform (/) is a continuous function of the entire 
frequency plane. The data D{r„) are well-defined only at the 
discrete lattice points r„, so that the discrete space Fourier 

transform (Z)(f)) is determined by its values in one unit cell 

of the reciprocal lattice. Values of (D) outside of the first 
unit cell are determined by the periodicity relative to the 
reciprocal lattice and contain no new information. For spatial 
frequencies inside the first unit cell, the detector responds at 
the same frequency as the input signal. For frequencies out- 
side of the first unit cell, the detector responds at an aUased 
frequency, so it is impossible to uniquely determine the input 
signal without additional information, although it will be ar- 
gued in later sections that for reasonable tasks this is not a 
significant problem. 

Each point on the detector grid is assumed to respond 
Unearly to the incident signal, so that the analog of Eq. (1) is 

(£)(rj) = r| I dh'P{r^,r'){I{r')}, (33) 

where P, the analog of the point spread function, represents 
the response of the detector at r„ to x-ray light incident at r', 
and r is a constant for converting x-ray intensity into digital 
values, generally chosen so that the integral of P with respect 
to r' is unity. With a discrete detector, one no longer has full 
translational invariance, but there remains an invariance un- 
der translations which take lattice points to lattice points, 
assuming that each pixel is identical except for position. 
Thus we can write 

/'(r„,r') = P(r„-r'), (34) 

to indicate that the response of a detector element to an input 
signal depends upon the displacement of the detector ele- 
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ment from the region to which the signal is applied, but not 
upon the absolute position of the detector element or the 
signal, from which it follows'^'^ that 

{D{rJ) = TJ j dVP(r„-r')(/(r')) (35) 

for each position r„ of the sensitive elements on the lattice. 
While the data £>(r„) are only available at the lattice points, 
the convolution can be calculated at any point, so that 

^(r) = r[ [dVP(r-r')(/(r')), (36) 

(37) <i^(f)=rp(f)</(f)), 

serves as a definition of ^(r) for any position r. Although 
^J{r) is equal to the data (Dirj) at the lattice points where 
r=r„,, at other points fJ>{r) is an interpolation which will not 
in general represent a physical quantity, although it is some- 
times useful to think of j^(r) as the response of a virtual 
sensitive element added to the detector at position r in such 
a manner as to not perturb or be perturbed by the other ele- 
ments. The discrete space Fourier transform on (D(r„)) can 
now be calculated using {D{rJ} = ^J{r„) for g(r„,) in Eq. 
(21), giving 

(iO(f)) = |A|X ^-'"'"■•'^(r„,) 
m 

= U|2  f f J¥^(f')e2-<-(f'-f 
m    J    JK 

=S ii(f+fk)=rS nf+fk)</(f+fk)).    (38) 
fk fk 

which follows from expressing ^^ in terms of its Fourier 
transform and using the completeness relationship expressed 
in Eq. (25). 

Comparison of Eq. (38) with its screen-film analog, 
Eq. (2), helps to clarify the interpretation of the OTF, r(f). 
The spacings in the discrete lattice introduce new length 
scales which occur explicitly in the summation over aliases. 
In the Umit of a very finely grained lattice, so that |A|-^0, 
the spacing of the reciprocal lattice points gets larger, until 
only the one unaliased term contributes significantly to Eq. 
(38), and the screen-film case is recovered. 

When frequencies higher than those supported by the lat- 
tice are present in the signal, the summation in Eq. (38) 
introduces "aliasing," that is, there exist multiple spatial 
input frequencies whose output is at the same frequency and 
are thus not distinguishable. For example, considering a one- 
dimensional lattice with pixel-pitch of 1 cm, oscillations at a 
rate of 0.5 cycles per cm can not be distinguished from os- 
cillations at a rate of 1.5 cycles per cm. From Eq. (38), two 
components of the input signal generate the same component 
of the output signal if and only if their spatial frequencies 
differ by an element f^.  i, of the reciprocal lattice. 

More generally for any lattice there are frequencies f^ 
such that -{„ is an alias of f^ (for example, if f and -f are 
on opposite boundaries of the first unit cell in the reciprocal 

lattice). For such a frequency f^ [noting that r(f) = r*(-f) 
and (/(f)) = (/*(-f)) for real-valued P(r) and (/(r))] it is 
possible to choose the phase of (/(fo)) so that 

r(f„)<i(fj)+T(-f„)(i(-u)=o, (39) 
showing by Eq. (38) that a sinusoidal signal concentrated 
at frequency f^ and displaced by an appropriate offset rela- 
tive to the lattice (as determined by the phase of (/(fo))) 
would be indistinguishable from the flat-field signal. Return- 
ing to the simple one-dimensional model of pixels spaced at 
1 cm, this result means that for some displacement relative 
to the lattice the input of a sinusoidal wave of frequency 
1 cycle/cm would give vanishing output. If the detector ele- 
ments were assumed to integrate over 1 cm intervals, then 
the output vanishes for all relative phases of the sinusoidal 
input wave and the lattice. If, alternatively, the detectors 
integrated over only 0.5 cm regions but still were spaced at 
I.O cm intervals, then the sinusoidal wave would have van- 
ishing output only when the nodes of the sinusoid fell upon 
the centers of the 0.5 cm sensitive regions of the detectors 
and would otherwise change each digital value by a phase- 
dependent offset from the flat-field value. 

The optical transfer function has been written in terms of 
a Fourier transform using complex exponentials. Since 
complex-valued exponential inputs are not readily available, 
it is necessary to ask how T can be experimentally measured. 
In principle, phantoms machined to produce sinusoidal pat- 
terns of x-ray intensity could be used, and by repeated mea- 
surements with different offsets one could separate the posi- 
tive and negative frequency components. A more practical 
method is the well-known slanted edge technique, ' in 
which images are acquired under flat-field conditions except 
that one half-plane of the detector is shielded so as not to 
receive any input signal. The detector response D as a func- 
tion of distance from the edge is referred to as the edge- 
spread function ESF, which can be differentiated^^ to give 
the line spread function, LSF. Alternatively, by providing an 
appropriate input the LSF can be acquired directiy. The 
LSF represents integrals through the PSF along lines parallel 
to the edge, so that by acquiring data with the edge at mul- 
tiple angles one obtains the radon transform of the PSF. One 
can reconstruct the PSF, but it is more common to stop after 
computing the Fourier transform of the ESF, which gives 
values of the OTF for spatial frequencies f which are normal 
to the edge. For discrete-array detectors it is desirable that 
the slope of the edge is not commensurate with the lattice 
spacing (for example, on a square grid, if the edge is not 
parallel to one of the axes and does not have a slope which is 
a ratio of small whole numbers like 1/2 or 2/3). When this 
condition is satisfied, for a given region of interest the dis- 
tances z of the lattice points r„ from the edge will be distrib- 
uted sufficiently densely and evenly so that the ESF is said to 
be "super-sampled," i.e., sampled at a rate significantly 
higher than the reciprocal of the lattice spacing, so that it is 
possible to measure values of the OTF for input frequencies 
beyond those supported by the lattice. 

For discrete-array detectors, rotational symmetry will 
generally be only approximately valid at low spatial frequen- 
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cies, so it is desirable to make measurements at multiple 
angles relative to the lattice. When the ESF^ at a given angle 
6 is acquired, it is often the case that the precise position of 
the edge relative to the lattice is not known, so that one 
actually acquires data for ESFg(z + Zg), where ze represents 
the lack of knowledge of the exact position of the edge. 
Upon taking the Fourier transform of the ESF, this intro- 
duces a phase uncertainty of the form e^'^'I'i^e into the value 
of r(f). While this phase uncertainty also occurs in measure- 
ments of screen-film systems, for discrete-array systems 
summations over aUased frequencies generally are not pos- 
sible given uncertainties in the relative phases of values of T 
at different spatial frequencies. In general one can remove 
this phase uncertainty by redefining the lattice positions to 
correspond to the "centers-of-mass" of the response func- 
tions of the sensitive elements. More specifically, if 

\   \   d^rP{T)==\ dzES¥e{z+Ze)>0, (40) 

then it is possible to redefine the lattice (by a shift) so that 
each lattice point sits at the center of mass of the response 
function of the associated detector element, giving 

I   I   dxdy xP(r)= I   I dxdy yP{r) = 0. (41) 

With this redefinition of the lattice position, each LSF ac- 
quired corresponds to a radon projection of the PSF (onto a 
Une perpendicular to the edge) and thus the center of mass of 
each LSF should be at the origin. This corresponds to shift- 
ing the acquired LSF (adjusting zg) so that 

/ 
dzESFe{z)z = 0 (42) 

for each angle. 
As a practical matter this results in an increase in the 

amount of data it is desirable to report for a given detector. If 
one can assume an inversion symmetry, i.e., P(r) = P( —r), 
then the imaginary part of the transfer function will vanish 
identically, so that only the real part need be reported. The 
absolute value of the OTF, traditionally called the modu- 
lation transfer function (MTF), gives enough information 
to calculate quantities such as the spatial average of SNR^ 
(Sec. VI), but does not give enough information to explore 
other aspects of the detector, such as the spatial variation of 
SNR^ as the test object is moved relative to the lattice. Re- 
searchers should also note that with the slanted edge tech- 
nique, when combining raster Hnes to plot the edge spread 
function, the independent variable of interest is the distance 
from the edge, which for square lattices differs from the 
distance along a raster Une by a factor of the cosine of the 
angle between the raster Une and the normal to the edge. 
This factor becomes significant when trying to measure the 
transfer function at angles away from the detector axes. 
Based upon the experience of the authors, one can generally 
measure values of the OTF at frequencies several times the 
highest frequency supported by the lattice. One is, of course, 
measuring the response of the detector at low frequency 
aUases to higher frequency input signals. Whether the pres- 

ence of these aUased signals in the output is desirable will 
depend upon the task at hand. For example, it might be de- 
sirable to detect a high-frequency signal even if one can't 
distinguish it from a low-frequency signal, or the resulting 
ambiguity might be unacceptable. 

The question of what, if anything, should be identified as 
either the OTF or MTF for digital systems has been ad- 
dressed in several ways in the Uterature. For example, 
Dobbins^'* discusses the "pre-sampled OTF" (OTFp^, our 
T) as measured via the LSF,^^ but then emphasizes the fact 
that the response to an input signal with either sinusoidal or 
delta-function spatial variation will change if the input signal 
is shifted by a fraction of the lattice spacing. This depen- 
dence, which follows from Eq. (38) when the input is ex- 
panded into Fourier components, confounds attempts to de- 
fine the MTF either in terms of the frequency response to a 
single delta function or as the ratio of output-to-input ampU- 
tude for a sinusoid. Dobbins addresses this issue by defining 

OTF,(f) = S OTFp,e(f+f,), 
fi 

(43) 

and defining EMTF(f) as the ampUtude of the detector re- 
sponse at frequency f to a delta-function input averaged over 
all positions of the delta function. Giger and Doi^"^ included 
such a summation of OTF over aUased frequencies in their 
study of data acquisition and display for digital systems. 
Both OTF,; and EMTF can be computed in terms of the OTF, 
but it can be seen that neither is sufficient for calculating 
SNR. Metz^* approaches the problem in essentially the same 
manner as discussed in this paper, and indeed Eqs. (19) and 
(30) of that paper essentially give our Eq. (38), but for a 
sUghtly more speciaUzed case. Metz then brings up the point 
that a shift by a fraction of the lattice spacing in the input 
signal does not result in a simple shift in the output data, and 
concludes that "the effect is accounted for mathematically, 
but it prevents us from defining a unique 'transfer function' 
of the sampUng process." 

Experimentally, Sones and Barnes^' recognized the desir- 
abiUty of measuring the transfer function above the maxi- 
mum frequency supported by the sampUng lattice in their 
work with a digital radiography unit. This measurement was 
performed using a novel technique based upon a phantom 
consisting of periodically arranged wires, the distance be- 
tween the wires chosen to be incommensurate with the dis- 
tance between samples acquired by the detector. Fujita, Doi, 
and Gigei^^ measured the "pre-sampUng analog MTF" 
above the maximum frequency supported by their sampling 
lattice via a slanted sUt technique and recognized that 
"knowledge of the pre-sampUng analog MTF ... will be use- 
ful in the determination of signal-to-noise ratio (SNR) [and] 
the evaluation of digital systems," a statement with which 
we heartily agree. 

Working from a complementary theoretical perspective, 
Barrett et al.^ uses the "cross-talk" matrix to address the 
more general case of any detector whose response is Unear, 
then proceeds to more speciaUzed cases. In Barrett et al., the 
input to the system is defined as the object being imaged 
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parameterized in terms of the coefficients of its three- 
dimensional Fourier series, while for our purposes the input 
is the x-ray fluence incident on the detector. For projection 
radiography, which is our primary interest, the incident x-ray 
fluence is directly related to the integrated attenuation coef- 
ficient of the object along rays diverging from the x-ray fo- 
cus, at least to a first approximation. As our goal is to at- 
tempt to quantify the detector response independently of 
other technical factors, this approximation is adequate. Bar- 
rett et al. is concerned with detectors which may have rela- 
tively few sensitive elements, so the appUcation of Fourier 
techniques to the acquired data is not considered. Barrett 
etal. apphes the cross-talk matrix to the case of a one- 
dimensional array of detector elements with aperture size 
equal to the element spacing, and finds that the cross-talk 
between components of the input at separate frequencies de- 
creases as the length of the array is increased, so long as the 
frequencies are not aliases of each other. Thus in the limit of 
a homogeneous detector of infinite extent one recovers the 
fact that the transfer function behaves as a sparse matrix, in 
which all terms vanish except those on the diagonal or relat- 
ing aUased frequencies. 

In order to use Eq. (38) to calculate the response of the 
detector to a given input, it would be necessary to know the 
position of the object being imaged with a precision finer 
than the lattice spacing. Strictly speaking, to calculate the 
response in either the discrete or continuous case requires 
that the input be "perfectly known." However, in the case of 
a continuous detector, a shift in position of the input will 
result in a corresponding shift in position of the output, while 
for a discrete detector the "shape" of the output would 
change. In many cases, such as predicting the detectabiUty of 
randomly placed objects, one would need to calculate for an 
ensemble of objects displaced with random phases relative to 
the lattice, as will be illustrated below in calculating the SNR 
of small objects. 

V. NOISE 

Individual realizations of an imaging process have an ir- 
reducible variability which sets a fundamental limit on how 
effectively the detector can distinguish between various in- 
puts. For discrete-array systems, as for screen-film systems, 
the noise can be quantified in terms of the autocovariance 
function. If the noise is additive and Gaussian, then the au- 
tocovariance matrix completely summarizes the stochastic 
process which generates the noise. If the system is also sta- 
tionary, then Fourier techniques can be used to define the 
Wiener spectrum. 

The discrete autocovariance function is given by  • 

C(r„,r„) = (Z)(rJZ)(r„)), (44) 

where r^ and r^ are points in the lattice of detectors, the 
angled brackets represent averaging over an ensemble of flat- 
field images, and as discussed above (£)(rj) = 0 in the ab- 
sence of a signal. Symmetry under interchange of positions 

C(r„,r„) = C(r„,rJ (45) 

is an iitmiediate result. With the assumption of stationarity, 
the autocovariance depends only upon the displacement 
rm-r„, so we can write 

C(r„,rJ = C(r„-r„) (46) 

without ambiguity. Note that the difference between two 
vectors corresponding to lattice points is again a vector cor- 
responding to a lattice point, so C on the right-hand side of 
Eq. (46) is defined at precisely the lattice points. 

The Wiener spectrum W<J) is defined as the discrete 
space Fourier transform [Eq. (21)] of the autocovariance 
function C(rm). As with any discrete space Fourier trans- 
form, the Wiener spectrum is periodic in frequency space 
[Eq. (22)] so that one need only consider the values of W(f) 
on a single unit cell of the reciprocal lattice. It is noteworthy 
that both the autocovariance C and the Wiener spectrum W 
are real-valued and even. As with screen-film systems, one 
considers statistics which are Unear functions of the data, so 
if g(m 1 ,^2) is a set of real (or complex) numbers defined on 
the lattice points, one defines 

eMA\^ gim)DirJ. (47) 

The variance of 0g (for g complex valued, the sum of the 
variances of the real and complex parts) is given by 

Var(0,) = (0ge*) (48) 

= |Ap/|2 ^(in)0(rjJ|E g*(n)Z)(r„)|^ 

= |ApE E ^(in)C(r„-rJg*(n) (50) 

in terms of real space. Expressing the autocovariance matrix 
as the inverse discrete space Fourier transform [Eq. (24)] of 
the Wiener spectrum one obtains 

Var(^„) = |AP2 S §(!")[  I d'{ 
m      n J    JK 

XW(f)<?^'"'<''»"'"™V*(n) (51) 

= j j^dHg{r)g*{{)w{(), (52) 

where the second step follows from the definition of the dis- 
crete space Fourier transform [Eq. (21)]. 

Thus one can calculate the variance of a statistic 0g, 
which depends in a Unear manner upon the data, using either 
the autocovariance function or the Wiener spectrum. Statis- 
tics of this form, for ^(m) real-valued, will be seen to cor- 
respond to decision variables of ideal observers in Sec. VI. 
As in the screen-film case, it is useful to consider functions 
g{m) corresponding to the product of a plane wave and a 
windowing function, which can be written as 

gt^im) = G{m)e^'"^''-^'", (53) 

where G{m) is a real-valued window function with normal- 
ization 
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iA|2 G(m)G*(m)=l,     f  I  d^tG(f)G*{f) = l,  (54) 
m J    J K 

where the two normalizations are equivalent by Parseval's 
theorem. Applying Eq. (49) and Eq. (52), 

Var(^„) = |Ap 

=//, 

E G(m)e-2'^'f<''-"'D(rJ 

d^0{{-{„)\'~W{{). 

(55) 

(56) 

For suitable windowing functions G, |G(f—fo)p will be 
strongly peaked near f^ so that one obtains an estimate of the 
Wiener spectrum at the specified frequency, W(to). In par- 
ticular, if G^^^{m) is chosen as l/{MyM2\A\)^'^ at the lattice 
points me [0,...,Mi - 1 ]X[0,...,M2~ 1 ]> then 

M,-l A/,-1 

mi =0 m 

|G(f-fJ|2 = 

-Dirje' 
m,=0 m2 = 0   SIMIM2\A\ 

\A\    sin2(M,77(f-f„)-v,) 

(57) 

M1M2    sin^(i7(f-f„)-v,) 

sin2(M27r(f-f„)-V2) 
X- 

sin2(7r(f-f,).V2)   ' 
(58) 

which explicitly shows that for this choice of G, 
|G(f-f„)|^ is strongly peaked near f„. For a square lattice 
with conventional choice of basis vectors, (f-fo)-Vi = (/^ 
— {f„}^)Ax, where/j — (/o)^ is the difference in the x com- 
ponents of the frequencies and Ax is the lattice spacing 
in the x direction, and similarly for the y axis. In general, 
if a separable window is chosen, so that G(m) 
= Gi(m,)G2(w2), then G(f) = Gi(f-Vi)G2(f-V2), so that 
one can make use of the variety of one-dimensional windows 
which have been studied.^^ 

Returning to the case of a general lattice, Eq. (58) shows 
that for this particular choice of window, as is typical, the 
estimate of W{{) becomes sharper as the spatial width of the 
window increases, so that 

iy(f) = C(f)=     lim    {Wf^^^Jt}), 
M\ Mi^vt 

|A| 
^A.,A^.(f)=M,M2 

Af|-I A/,-! 

2     E   Z>(rJ.-^-'' 
mi=0  m9=0 

(59) 

,    (60) 

where, by stationarity, any M1XM2 region of the detector 
lattice will serve. Specializing to the zero frequency case, 
f=0, one gets 

W(0)=     lim    (M1M2IAI) 
M| .A/2—°= 

X 
I 

M,-l M-,-1 

2     E   DirJ       , 
,MiM2m,=0  m, = 0 

(61) 

which is the discrete-array version of Selwyn granularity^ 
(the variance in the average digital value corresponds to the 

variance in the spatially averaged optical density of film). 
Comparing Eq. (61) to Eq. (52), one can interpret Eq. (61) as 
the statement that the integrated response over large regions 
of the detector depends only upon the low-frequency com- 
ponents of the Wiener spectrum. Viewed spatially, this result 
means that the digital values averaged over sufficiently large 
disjoint regions are approximately independent, so that the 
variance of the average over A^ large subregions scales with 
1/Afal/M,M2. 

As with the OTF, the results of the screen-film theory 
appear as a limiting case for sufficiently fine lattices. Writing 
Eqs. (59) and (60) as 

1 
Wit)= lim „ „ 1,1 

,^,^^MiM2\A\ 

X E     t   \A\D{rJe-'--''-' 
mi=0 m-> = 0 

(62) 

the summations become approximations of the integrals in 
Eq. (6). 

The discrete autocovariance [Eq. (44)], the definition of 
the Wiener spectrum as the discrete space Fourier transform 
of the autocovariance, and the use of Fourier components of 
flat-field images to estimate the NFS [Eq. (59)] have oc- 
curred in several places in the medical physics literature,'■'■■'*' 
but historically these results seem to have been considered 
less than satisfactory from a theoretical point of view. For 
example, Cunningham^' stated that while "[i]t is tempting to 
write out the NFS of [the sampled digital signal], but strictly 
speaking this violates the shift-invariance assumption since 
[the data] is sampled and is therefore not shift invariant." 
More recently, Cunningham,^^ in analyzing the concept of 
NFS in terms of cyclostationary'^'-^-^ random processes, de- 
fines W,^^i^^ [Eq. (60)] as "a working definition of the digi- 
tal NFS." As detailed in Sec. VI, the NFS, as defined here, is 
precisely the noise which sets the detection-theoretic limits 
on the use of the detector. In the detection-theoretic approach 
of Barrett et al.,^ the Fisher information matrix relates the 
detector noise back into uncertainties in the estimates of the 
Fourier coefficients of the object being imaged. This has the 
advantage that it removes the fundamentally arbitrary choice 
of scale in using digital values, but if aliased frequencies 
become important the Fisher information matrix becomes 
singular so that the inversion of this matrix is problematic. 

The definition of NFS given here is intended to be opera- 
tional in the sense that it is defined in a manner which can 
be implemented using the experimentally available digital 
values. For the purposes of understanding the sources of 
noise in detectors, it may be useful to consider the noise 
in the ' 'presampled'" signal, and for some detectors this pre- 
sampled signal might be experimentally accessible. For ex- 
ample, in a detector based on a phosphor screen coupled with 
a lens to a charge-coupled device (CCD) camera, one could 
do experiments in which the camera is replaced by a photo- 
graphic film. For some devices, such as TFT arrays using 
direct conversion mechanisms, the meaning of the presa- 
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mpled signal is less clear as removal or refinement of the 
sampling array is likely to change the electric fields respon- 
sible for charge collection. 

As reviewed by Wagner and Sandrik,^" the calculation of 
the NPS can be implemented in several ways. One method is 
to estimate the autocovariance function [Eqs. (44) and (46)] 
using pairs of points in one or (preferably) more images, and 
then performing the Fourier transform to give the NPS. Al- 
ternatively, the variance in the Fourier components is used, 
as in Eq. (55). If G is chosen as a rectangular window, then 
Eq. (55) reduces to Eq. (59), so that (^^,^,(0) [Eq. (60)] is 
used as an estimate of W(f)- I" principle the frequency f is a 
continuous variable, but the spread of |G(f)|^ limits the reso- 
lution in frequency space [by Eq. (56)] and this spread is 
inversely proportional to the size of the spatial region and on 
the order of \K\/MiM2. Given this resolution, it is reason- 
able to calculate the NPS at M,M2 frequencies spaced 
evenly in the unit cell K in frequency space. Thus, the tech- 
niques commonly in use by experimenters give precisely the 
quantities of interest from our current theoretical point of 
view, although the use of windows other than the rectangular 
window might be of interest to obtain better frequency reso- 
lution. 

Generally, frequency resolution is not a limiting factor in 
estimating the Wiener spectrum, and the NPS estimated by 
{WM M,(f)) is subjected to further smoothing. From Eq. (57) 
it is seen that (WM^M^^O)) is Ae variance in the random 
variable 6'rect. and ^s the region of interest used in the cal- 
culation is made larger, the variance in ^rect tends to W(f) 
which will be nonzero in general. Because the variance of 
^rcct does not vanish, neither will the variance in \0,eJ^, so 
the variance in WM^M^^^ does not converge to zero as 
Mi,M2-^°°. As the region of interest is made larger, one 
gains in spectral resolution but not precision, and this repre- 
sents an unavoidable trade-off^""'''* One can only decrease 
the uncertainty in the estimates of the Wiener spectra by 
averaging estimates of W(f) from several different regions of 
interest. Of course, for the purposes of analysis one could 
divide a large region into several smaller regions, and the 
averaged value of estimates of W(() would then have less 
uncertainty, but the spectral blur would be increased. Since it 
is often inconvenient to obtain sufficiently many flat-field 
images to make the standard error in the estimates of W(f) at 
individual frequencies small, researchers often opt for 
smoothing the experimental spectrum. 

VI. KNOWN SIGNAL DETECTION 

Having addressed the issues of OTF and Wiener spec- 
trum, it is now possible to use the signal-to-noise ratio (SNR) 
to quantify the ability of the detector to perform SKE/BKE 
tasks. First, however, it is useful to briefly review the mean- 
ing of the SNR in terms of an ideal^-''' observer working with 
Gaussian statistics. The ideal observer is challenged with de- 
ciding between two hypotheses based upon a given set of 
data. In the current context, these data consist of the digital 
values obtained from the detector, and for the moment 
we will restrict the observer to knowledge of only a finite 

(63) 

(64) 

region of the detector, corresponding to indexes me^/S 
= [MI,...,M;-1]X[M2,...,M2-1]. This observer works 
under the assumption that given hypothesis Hi, correspond- 
ing to an expected input signal {/(r))i and an expected data 
set {D(r„))i, the probability density function describing the 
expected range and frequency of observed data sets is Gauss- 
ian. This Gaussian distribution in {M[-Mi)X(M2-M2) 
= AM I AM2 dimensions, one dimension for each detector 
element available to the observer, can be written explicitly, 
but to make the formulas somewhat less cumbersome we 
use the following notation: X,„=D(rra), {•X^in)i=(^('"m))i' 
{Xjn={D(rjU, and {Xj = {D(rj|ine..#} is a 
AM,AM2-dimensional vector in the space of all possible 
data values for the detector elements in region ^S. The prob- 
abiUty distribution which governs the frequency with which 
particular data sets will be obtained under hypothesis H^ is 

given by 

where the normaUzation factor is given by 

/   I   \(AM,AM2)/2       1 

The matrix C„„ is the autocovariance function C(r„,r„) of 
Sec. V restricted to the range m,ne.J'^. The fact that m and 
n are double indices, e.g., m stands for Wi,/«2, is not a 
problem from the theoretical point of view, and in principle 
for a numerical calculation one could simply choose a con- 
venient one-to-one pairing of the double indices mi,m2 
e. /^ with the integers 1,...,AM,AM2 so that C would be 
indexed in a more customary manner. Under hypothesis HQ, 

the range and frequency of observed data sets will be gov- 
erned by a Gaussian probabiUty density Pn, this time con- 
centrated around (X)n. The restricted covariance matrix, C, 
occurring in both cases, will be the same under the assump- 
tion that the noise is additive. 

Returning to the question of how to decide between hy- 
pothesis Hi and hypothesis Hu, if for a given instance of the 
experiment a data set {Xj = {D{Tj\me.f<i) is obtained 
such that Fn({^m}) is relatively large and Pi({X J) is rela- 
tively small, it would generally be reasonable to favor Hu. 
Thus the ideal observer's decision rule based on the likeli- 
hood ratio Pn/Pi, as discussed below, is intuitively reason- 
able. 

The ideal observer attempts to minimize the expected 
cost^-'* given knowledge of the cost of misclassification un- 
der either hypothesis and the a priori probabilities associated 
with each hypothesis, 

(Cost) = F(//,)/'(ChIl|l)Ci_.„+P(//n)P(Chl|lI)Cn_i, 
(65) 

where in the first term P(Hi) is the a priori probability of the 
state corresponding to hypothesis Hi being true, /'(Chll|l) is 
the probability of mistakenly choosing hypothesis H^ when 
hypothesis //j is correct, Cj^n is the cost associated with this 
error, and similarly for the second term. Given a region 7?n 
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of the AM I AM2 dimensional data space and the decision 
rule that, if the observed data {D(rm)|me„^} are in i?n 
then the observer rules in favor of hypothesis Hj^ and other- 
wise in favor of H^, then the probability of mistakenly fa- 
voring hypothesis HQ when Hi is correct is 

P(ChIl|l)= f f ... f  rf^^'^^H^^PidX^),        (66) 
J   J       JRa 

and, as under either hypothesis the total probability must be 
unity, 

/>(Chl|lI)=l-J I ... J^ rf^^'^^H^™}/'ii({X^)   (67) 

gives the probability of making the error in the other direc- 
tion. Combining Eqs. (65)-(67), 

(Cost) = P(//n)Cn_i 

+ f f ... f  rf^^.^^2{x„}DC({Xj),       (68) 
J       J JRJJ 

where 

DC({X™}) = P(//,)C,^n^,({^m}) 

-P{Hu)Qi^iPu({Xj) (69) 

is the differential cost which, if the experiment were repeated 
sufficiently often, would be attributed to those experiments 
which gave data {D(r„)|ine./^}. Clearly the expected cost 
given by Eq. (68) is minimized by choosing the region Rji to 
be precisely the region where the differential cost DC is 
negative, so that the ideal observer's decision rule is to 
choose hypothesis Hn if and only if the likelihood ratio 

Pn({D(rJ|me../4) 

P,({^(rJ|me./4) 

exceeds the threshold value 

A = 

A.= 
P{Hi)Ci_^a 

"   P{Hn)Cii^i- 

(70) 

(71) 

By adjusting the operating point A^ one makes trade-offs in 
the rates of the two possible error types, as can be shown 
graphically in terms of receiver operator curves (ROC 
analysis)."^^ Equivalently one can place the cutoff on log A, 
and from Eq. (63), 

logA=   E     ((0(rJ)n-(Z)(rJ),)(C-')„„Z)(rJ 
m.ne.//?^ 

+ const, (72) 

where the constant term does not depend upon the observed 
data. Thus an ideal observer, viewing a finite region . /<{ of 
the detector array, uses a Unear statistic 0 //. defined by 

0.//- 2   8.AT^m)D{rJ, 

where g/^ is given implicitly by 

(73) 

E   5v^(rm)C(r„,r„) = ((Z)(r„))n-(D(rJ),),       (74) 

for all ne^/ii. On physical grounds, the values of the mask 
function gy/^ir^) will be significant only in the region near 
where (/(r))n—(/(r))i is nonzero. Further from this region, 
the values of gy^ir^) will tend to zero, so that for suffi- 
ciently large AM i AM2 the ability of the detector to dis- 
criminate between the two hypotheses should not depend 
upon the exact value of AMi AM2 ■ In that limit, the efficacy 
of the detector for the SKE/BKE task should be set by the 
linear statistic Og for the ideal observer's mask function gj. 
This mask function is defined implicitly by 

\A\ 2   g2(rJC(r„,rJ = ({Z)(r„))n-{D(r„))i),     (75) 
me.// 

where a factor of \A\ is introduced to simpUfy the form of 
the solution which in the Fourier domain is given by 

ii(f)= 
(£>(f))n-(P(f))i 

W{0 
(76) 

2f ((/(f+fk))n-(/(f+y)i)7'(f+fk) 
= Y— .        (77) 

The statistic dg is itself a Gaussian variable whose variance 
can be computed using Eq. (52), so that 

SNR: -''I/' 
|2f^(A/(f+y)r(f+f,)p 

W) (78) 

gives the SNR corresponding to the use of the statistic, as 
defined in Eq. (8). Thus the limiting case of a detector array 
of infinite extent is well defined, for pixels "far away" from 
the region of interest do not significantly contribute to the 
decision. Physically, it is clear that the "tails" of the PSF 
and autocovariance functions set the relevant scale by which 
distance from the edge of the array is measured, so that when 
the projected images of objects appear at a distance from the 
boundary of several times the lengths of these tails the de- 
tector can be treated as essentially infinite and Eq. (78) is 
valid. 

It is acknowledged that there are mathematical subtleties 
related to a truly infinite detector which are not addressed 
here. For example,^^ the data set for such a detector would 
represent an infinite set of random variables, so it is not 
possible to write down a probabiUty density distribution like 
Eq. (63) in the infinite case. The nature of the physical limit 
is sufficiently clear that a study of these mathematical subtle- 
ties could not change the results. In any case, the fact that the 
linear statistic 0g with g = gj gives the optimal SNR of any 
linear statistic can be proven directly. More precisely, if 
^(rn,) is used to define a linear statistic dg, then letting 
AD = (Z))n-(D)„ 
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with position is not too great, then the spatially averaged 
d^fg(f)AD{{)   = d^{igi{)\IWif)) value of SNR^ will be of use.' This spatial average can be 

J    JK J   JK comnuted exactlv bv noting that if an object is shifted by a 

X 
/AD(f)\ 

jAg(f)P 
'    lV(f)    ' /// 

(79) 

where the second step is an application of the Schwarz in- 
equality. Dividing both sides of Eq. (79) by the first factor on 
the right, one obtains 

\l |AD(OP 
W{i)    ' 

(80) 

where the quantity on the left is the SNR- for the statistic 6^ 
[Eqs. (8) and (52)] and the quantity on the right, proven to be 
larger, is the SNR^ of the ideal observer as given by Eq. (78) 
[with Eq. (38)]. 

As a slightly less subtle point, the construction of the 
ideal observer involves dividing by W(f), which is problem- 
atic if VF(f) = 0 at some frequency. For physical detectors, 
the Wiener spectrum never vanishes as there is always some 
residual noise. Even for highly idealized detectors, the 
Wiener spectrum must reflect the noise in the incident x-ray 
fluence so that it can only disappear at frequencies where the 
OTF vanishes, and at these frequencies the Wiener spectrum 
will vanish no faster than OTF-(f) (discussed in more detail 
in the next section), so that even in this case the SNR as 
given by Eq. (78) is a well-defined limit. 

The SNR given by Eq. (78) corresponds to the SKE/BKE 
decision task using a discrete-array detector, as Eq. (13) 
gives the SNR for the SKE/BKE decision task for screen- 
film. Strictly, these formulas do not apply to the task of 
detection when the observer does not know the position of 
the object being imaged. For detecting a signal of unknown 
location, one can calculate the ideal observer's SKE/BKE 
^z(r) for each possible position r of the object. A common 
strategy is then to apply a threshold to ^j{r). Under the 
assumption of Gaussian statistics with complete knowledge 
except for position, the likelihood ratio computed by the 
ideal observer uses %r) in a nonlinear manner'''''^'*" that is 
sensitive to peaks in d-ji^r). In either case, the values of SNR 
given by Eqs. (13) and (78) are indicative of the efficacy of 
the ideal observer in the more general case of the position 
being unknown. 

For the discrete-array detector, however, the value of the 
SNR for the SKE/BKE case will depend upon exactly where 
the object is relative to the lattice. While this variation can be 
significant (for example detectors could have interstitial 
spaces where objects completely disappear), the magnitude 
of the effect decreases for objects large relative to the lattice 
spacing. Examples of this for several simple model detectors 
will be given in the next section. If the variation in SNR" 

computed exactly by noting that if an object is shifted by a 
displacement r, the Fourier transform is multiplied by g^ir'fr 
so that in Eq. (78) the sum over elements of the reciprocal 
lattice becomes 

2 (A/(f+fk))r(f+fk)e liritu (81) 

where a common factor independent of k(|e^''''^'"1 = 1) has 
been removed. In averaging over positions r in Eq. (78), the 
denominator of the integrand does not depend upon r, and 
the numerator is the square of the magnitude of a Fourier 
series in r, so that in integrating over r to obtain the average 
over all displacements one can apply Parseval's theorem to 
obtain 

(SNR2) = r2 J  [ dH 
sjA/(f+fk)nr(f+f,)p 

W{f) 

where the second step follows from noting that the sum of 
the integrals over each unit cell is equivalent to the integral 
over the entire plane. 

As for the OTF and NPS, the film-screen result, Eq. (13), 
can be recovered from the discrete-array result [Eq. (78)] by 
going to the limit of a sufficiently fine lattice, in which case 
the distance to the first aliased frequency is so large that only 
the unaliased term contributes to Eq. (78). Similarly, for a 
sufficienrty fine lattice all objects are large relative to the 
lattice spacing, so that SNR" does not vary appreciably as the 
object is moved relative to the lattice spacing. These facts 
prompt the identification' of 

GNEQ(f) = r2|r(f)|-<D2/w^(f), (83) 

as a generalization of the concept of noise equivalent quan- 
tum flux (NEQ), where <!> is the incident x-ray flux, and 

GDQE(f) = r-|nf)|-<&/M'(f)> (84) 

as a generalized detective quantum efficiency (DQE). These 
results parallel the screen-film theory, except that factors of 
fluence appear in the numerator as the response of digital 
detectors is Unear with fluence [Eq. (33)] while film density 
is Unear with respect to the log of fluence [Eq. (I)]- While 
Eq. (82) is exact in the context of the assumptions we have 
made about the detector, SNR^ enters nonlinearly into other 
quantities such as the various probabilities of misclassifica- 
tion for a given operating point (sometimes called the false 
positive fraction and the false negative fraction in ROC 
methodology). However, when the variation in SNR^ is not 
too large, perhaps as measured by the rms (root-mean-square 
variation in SNR^), then the GNEQ and spatially averaged 
SNR^ can be considered a useful summary of the efficacy of 
the detector. 

In this paper we have applied the concept of an ideal 
observer directly to the digital data. The results obtained are 
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implicit in the work of Giger et al.}^'^^''^^'^^ but Giger et al. 
concentrates on issues of display and models of human vi- 
sual response to the displayed data. As these tasks are decou- 
pled from image acquisition for digital systems, it is worth 
considering figures of merit for the data acquisition system 
independent of the display, as done here. The results of this 
section also follow as limiting cases of the work of Barrett 
et al.' Of particular note. Sec. V A' discusses a simple bin- 
ning detector and obtains 

m=i   cr„ 
(85) 

where o-„ is the uncorrelated noise in the wth detector and 
A^„ is the expected change in the data value at the mXh 
detector which would be caused by the signal. This particular 
result can be obtained directly from first principles based on 
counting statistics in each detector element. In the stationary 
case, a„=a is a constant, so in Eq. (78) Vr(f) = (r^|A| and 
the numerator [using Eq. (38) and Parseval's identity] be- 
comes |A|2m|A(Z)(r„))p, again recovering the result [Eq. 
(85)] based on counting statistics for uncorrelated noise. It is 
worth noting that if one does not include the aliased terms in 
the numerator of Eq. (78) (perhaps on the grounds that 
aUased signals are not useful), the value of SNR^ will be 
underestimated. The ahased response is part of the physical 
response of the detector, and in this case the aUased terms 
will add coherently in such a manner as to bring the calcu- 
lated value of the SNR^ up to the value in Eq. (85) obtained 
from counting statistics. 

VII. MODEL DETECTORS 

To give a feel for the implications of the above theory, the 
capabilities of detectors with reasonably reaUstic parameters 
will now be investigated. The modeUng is somewhat simplis- 
tic, but sufficient to demonstrate several interesting proper- 
ties, such as the dependence of SNR on the position of the 
object being imaged, and certain trade-offs inherent in such 
detectors, particularly those trade-offs related to the possible 
suppression of input spatial frequencies above the frequen- 
cies supported by the lattice. The incident x-ray fluence $ 
has a white Wiener spectrum, Wj{() = <t>. Among other sim- 
phfications, which will be discussed in more detail at the end 
of the section, we assume 100% of the x-rays interact. Each 
x-ray undergoes a stochastic amplification, characterized by 
an average of m secondary quanta per x-ray with cr„ = \fm 
for a Poisson process, and the secondary quanta undergo a 
stochastic scattering process, with a spread function P^ and 
transfer function T^, before being "binned" by the detector 
elements. The result is an average of m$ secondary quanta 
per unit area on the detector with a pre-sampled Wiener 
spectrum given by'*'' 

W,{{) = [m^W^if) + ^al-m^]\TM^ + 'n^- (86) 

For a square lattice with spacing L, binning can be consid- 
ered as a deterministic convolution with rect functions rep- 
resenting the detector regions, so that with 

sin(7rL/jWsin('n-L/ ) 
(87) 

the digital noise power spectrum can be written 

M'(f)= 4E |A|2<I>(m2|r,(f+fk)P + m)|r,(f+fk)|2 

+ WE, (88) 

where the factor of llnr is introduced so that digital values 
will correspond to x-ray count and W^ is the electronic 
noise. With the present conventions the gray-scale character- 
istic is set to r = |A|. A simplification can be achieved** 
using 

,^    lsin{'rT{x + n))y-_ 

^    '     7r(x+«)     '  ~^ 
(89) 

for any x, which can be proven by applying Parseval's theo- 
rem to the Fourier series for e^'""'^ for 3; e [ — 0.5,0.5]. The 
experimentally observable transfer function (as obtained, for 
example, by the slanted-edge technique, cf. Sec. IV) contains 
the effects of stochastic scatter and binning, thus r(f) 
= r,(f)7'fc(f), so that 

<D|A| 
M^(f)/|A| = <I>|A|S |r(f+f,)p + 

fir ''^ 

+ WEI\A\     (90) 

is the Wiener spectrum of the model detector, with the aver- 
age number of x-rays per pixel being <I>|A|. The summation 
over aliases in Eq. (88) is often referred to as "noise ahas- 
ing." The division into aliased and unaUased components is 
useful for modeling a variety of detectors, but it should be 
noted that this division is generally not directly experimen- 
tally accessible, at least not without modifying the detectors, 
and that in principle there could be devices which are sta- 
tionary, and therefore have Wiener spectra, but for which the 
division of the NPS into aliased and unaliased components is 
not useful. 

It is useful to choose values of the parameters in the 
model which are representative of detectors of current clini- 
cal interest, as this can help in the understanding of the phys- 
ics which determines the performance of these devices, but 
detailed modeling for quantitative comparison to actual de- 
vices is beyond the scope of this article. We assume a square 
lattice with spacing of L = 0.143 mm, operation at an expo- 
sure corresponding to |A|<I>= 1400 x-rays per pixel, and an 
amplification factor of m = 1000. For the stochastic transfer 
function T^ we consider three possibilities: a "blur-free" 
detector for which rj(f) = l, typical of photoconductive 
arrays,'*^ and two "aUas-free" detectors whose stochastic 
transfer functions are of the form r,(f) = e~'^l1 with 
X =0.463 and A.=0.34 mm, which approximates the transfer 
function for evaporated Csl.''^"*^ Typically electronic noise 
•J{W^)I\A\ is on the order of 3-5 x-rays, so values of 0, 4", 
and 8^ cover the range of values for <I>|A|/ffi + W£/|A|. 

The transfer functions for these models are shown in 
Fig. 2. As the pixels are symmetric with respect to inversion 
through their centers [i.e., for the PSF, P(r) = P(-r), and 
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Transfer Functions 

2430 

-- blur-free 
— alias-free {X = 0.463 mm) 
- - alias-free (X = 0.34 mm ) 

27* 

10.0 
Frequency (Ip/mm) 

15.0 20.0 

FIG. 2. The optical transfer functions of three model detectors. The "blur- 
free" detector bins the .secondary quanta without smoothing, while for the 
"alias-free" detectors the distribution of secondary quanta is smoothed by 
an exponential MTF (c"'*''') before binning. Data are shown as a function of 
the magnitude of the spatial frequency for several angles. 

F(r) is a real number], the imaginary part of the transfer 
function is identically zero, so only the real part need be 
graphed. The OTF is, of course, a function of two variables, 
f, and fy. To show this, we plot the OTF as a function of the 
magnitude of the frequency vector for three angles relative to 
an axis of the detector. For the blur-free detector, the transfer 
function is simply the product of the sines in the two direc- 
tions induced by the binning operation. The OTF of the blur- 
free detector is nonzero well beyond the highest frequency 
supported by the lattice. Any component of an input signal at 
these higher frequencies will contribute to a lower frequency 
alias in the output, as per Eq. (38), and while it is not obvi- 
ous from the point of view of frequency space the sum over 
aliases in Eq. (38) will be precisely equivalent to the detector 

Wiener Spectra 

1500.0 ■ 

Y                                                                   blur-free 
\\                                                                 a!ias~free(>.-0.463) 
\\                                                               alias~lree(X = 0.34mm) 
\\ 

b 1000.0 

> \ \ \ \ 
\    N >% \    \ 
\     \ \      \ 

<r 
j_ 

500.0 \      ^ 
z 

2.0 3.0 
Frequency Ip/mm 

FIG. 3. The Wiener spectra lV(f)/|A| for the three model detectors as in Fig. 
2. The residual additive white noise <l>|A|//n + lV£/|A| has been set to 0. 

GDQE 
*lA|/m + Wj/jAI = 0 
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  alias-free {k = 0.463 mm) 
 alias-free {X = 0.34 mm) 

0.0 5.0 10.0 
Frequency (Ip/mm) 

15.0 

FIG. 4. GDQE as a function of frequency for the three model detectors as in 
Fig. 2, with the residual white noise <I>|A|/m + lVe/|A| set to 0. 

simply binning each incident x-ray. For the alias-free detec- 
tors, there is very little response to frequencies beyond those 
supported by the lattice. For each detector, three angles are 
plotted, but the angular dependence for the alias-free detec- 
tors is small enough to not be apparent on the graph. 

The Wiener spectra are shown in Fig. 3. Again, instead of 
plotting a function of two variables, /,. and fy, we plot the 
NPS as a function of the magnitude of the frequency vector 
for three angles, 0=0, 27, and 45° (27° corresponds to a 
slope of 1:2 relative to the lattice). However, the NPS shows 
little angular dependence. For the Wiener spectrum one only 
needs to look at frequency values supported by the lattice, 
i.e., A e [ - 1/2L,1/2L] and /,, e [ - 1/2L,1/2L] (for conve- 
nience one can consider W to be periodic in the frequency 
plane). Thus, at ^=0° one only needs to graph up to 1/2L 
= 3.5mm"', but at ^=45° the frequencies are on the diago- 
nal of the square, so one goes up to x/2/2L = 4.9 mm"'. At 
d=2T, one goes up to 1/(2L cos ^=4mm~'. For this graph 
the constant offset *|A|/»J + Ty£-/|A| has been set to zero. 
For the blur-free detector, the NPS is flat, which follows 
mathematically from Eq. (89) and the fact that T({) for these 
detectors is simply related to sine functions, or more physi- 
cally by noting that for a detector which simply bins incident 
x-rays adjacent cells will be uncorrelated so the NPS is flat. 
For the alias-free detectors, the NPS is suppressed by factors 
of the square of the transfer function. 

The GDQE as a function of frequency are shown in 
Figs. 4-6 for a range of values of the residual white noise 
<l)|A|/m-l-W£/|A|. For each graph, values are plotted as a 
function of the magnitude of the spatial frequency for angles 
0, 27, and 45° relative to an axis. In each case, the GDQE 
falls off most quickly at 6=0° and least quickly at ^=45°, 
which represents the fact that on the diagonal the sampling 
rate is increased by a factor of V5. In the case where the 
residual white noise is zero (Fig. 4), the GDQE of the blur- 
free detector drops like the square of a sine function. For the 
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FIG. 5. GDQE as a function of frequency for the three model detectors as in 
Fig. 2, with the re.sidual white noise 4>|A|/m +W£/|A| set to 4^. 

alias-free detectors, the GDQE remains at nearly unity up 
to the lattice cutoff, the factor of r^(f) canceling the same 
factor in the colored part of the noise. The GDQE of the 
blur-free detector shows some response beyond the lattice 
cutoff. Though small, this portion of the GDQE is physical 
and it will be shown that the responses to the aliased 
frequencies can not be trivially dismissed. With the addition 
of residual white noise the GDQE of all three models is 
reduced, as shown in Fig. 5 (<I>|A|/m-l-W£'/|A| = 4^) and 
Fig. 6 ($|A|//M-I-W£-/|A| = 8^). These figures illustrate that 
the alias-free detectors are more sensitive to sources of re- 
sidual white noise than blur-free detectors. Indeed, in Fig. 6 
the blur-free detector now has higher GDQE than the 
X.=0.463 mm detector even at low spatial frequencies. From 
the spatial point of view this is quite reasonable. A detector 

GDQE 
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O o 
a 
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\ \ 
  alias-free {k = 0.463 mm) 
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\ * 
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' 
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% 

'/'/'/,   
0.0 5.0 10.0 

Frequency (Ip/mm) 

FIG. 6. GDQE as a function of frequency for the three model detectors as in 
Fig. 2, with the residual white noise "tlAl/m + Wg/lAl set to 8". 

SNR^ as a function of displacement 
(50^1 wire 20 mm long parallel 10 axi.s) 

blur-free 
alias-free (X^ 0.463 mm) 

0.00 0.02 0.04 0.06 0.08 
Displacement (mm) 

FIG. 7. Relative SNR^ as a function of position for a 50 /j,m wide, 20 mm 
long wirelike object parallel to one axis of the detector. The horizontal axis 
of the graph gives the displacement of the wire, so that at 0 mm the wire is 
over a single column of sensitive elements, while at 0.07 mm the wire 
straddles two columns. The verticle scale is arbitrary (dependent upon the 
contrast of the wire). 

whose fransfer function is designed to remove aliases has a 
relatively wide point spread function, and therefore a rela- 
tively wide autocovariance function. The ideal observer 
makes use of digital values in array elements whose distance 
from the position of the signal is up to several times the 
lengths of the tails of these functions, so for the same input 
signal the ideal observer will have to integrate over a larger 
region on an alias-free detector and thus will be more sensi- 
tive to any residual uncolored noise. 

While GDQE is directly related to the average value of 
SNR^ by Eq. (82), high-frequency signals (i.e., x-ray pro- 
jection images of small objects or objects whose projected 
density varies quickly with position) can demonstrate signifi- 
cant changes in SNR^ with position. To explore this, con- 
sider the SKE/BKE task associated with an object 50 ^m 
wide and 20 mm long. Wires of this width have been used in 
neurological and cardiovascular stents."*' Figure 7 shows the 
SNR^ for such an object, oriented parallel to an axis of the 
detector, as a function of displacement in the direction of the 
shorter (50 /mi) axis. The scale of the vertical axis is arbi- 
trary as we won't set the inherent contrast of the signal. In 
Fig. 7, the 0 mm displacement corresponds to the signal 
being centered over the sensitive elements of the detectors. 
For the blur-free detector, at 0 mm displacement the signal 
falls into a single column of detectors, so the SNR^ corre- 
sponds to counting statistics for one column of elements 20 
mm long. The SNR^ is constant until the 0.05 mm mark, 
after which the signal is shared between two columns of 
detectors, resulting in a drop in SNR^. Physically, the num- 
ber of x-rays attenuated by the object is independent of its 
position, but at a displacement of 0.7 mm the signal is shared 
equally between two columns, and since the noise is as- 
sumed to be uncorrelated, the variance in the total counts in 
the two columns is twice that of one column, so the SNR^ is 
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TABLE I. SNR^ averaged over position and orientation for the projection 
image of an object 0.05 by 20 mm. As the SNR^ scales with the square 
of the contrast of the image, only relative values are meaningful. The ± 
represent the rms (root-mean-square) fluctuations in the SNR^ with position, 
not the statistical uncertainties. 

SNR^ for 50 /xm wide, 20 mm long object 

$|A|/m-l-H'E/|A|=0        =4^ =8^ 
Blur-free 1.81±0.02 1.79±0.02 1.73±0.02 
Alias-free (\=0.463 mm) 2.16±0.16 1.87±0.07 1.48±0.02 
Alias-free (\=0.34 mm) 2.15+0.15 1.99±0.10 1.68±0.05 

2432 

TABLE III. SNR^ averaged over position and orientation for detecting the 
projection of a 0.5 mm square. Normalization is arbitrary. The ± represents 
the rms fluctuations in the SNR^ with position, not the statistical uncertain- 
ties. 

SNR^ for 0.5 mm square 

Blur-free 
Alias-free 

^\A\/m + WE/\A\=0 
1.91±0.01 
2.08+0.01 

= 42 

1.89±0.01 
1.99±0.01 

= 8^ 
1.83±0.01 

I.789±0.003 

(\=0.463 mm) 
Alias-free 2.07+0.01 2.01 ±0.01 1.855 ±0.006 

(\=0.34 mm) 

reduced by half. The ahas-free detectors show less sensitivity 
to position, as the signal is always shared between multiple 
columns. As before, curves are shown for three values of the 
residual white noise (|)|A|/m +W£/|A|(0^4^ and 8^). For 
all models, the SNR" drops as the residual white noise in- 
creases, but this effect is greater for the alias-free models. 
Table I gives the average SNR^ for detection of the 0.05 
wide, 20 mm long wire, now averaged over both position 
and orientation. Additionally, the root-mean-square variation 
in SNR^ is given, to indicate the degree to which the detect- 
ability of the wire would vary. Again, the alias-free detectors 
give a higher SNR^ if the residual white noise is kept suffi- 
ciently low. In calculating the SNR" of the projection of the 
wire using Eq. (78), if the summation over aliases is 
dropped, the resulting integral decreases by about 10%. Thus 
the contributions of the aliased signal to the SNR are not 
always negligible. 

Somewhat speculatively one can consider tasks which de- 
pend upon higher frequency components of the signal. 
Consider a 5 mm square with 10% contrast, and a second 
square whose edges have been smoothed by convolving with 
a 0.15 mm rect function, so that the resulting signal "ramps 
up'" over a distance of 0.3 mm. The SNR^ for the SKE/BKE 
task of distinguishing between these two objects is given in 
Table II. It is interesting to note that, mathematically, the 
SNR^ is sufficiently large that the ideal observer can perform 
this task efficiently, although whether a human could do this 
is questionable. On the other hand, edge detection is impor- 
tant both computationally and probably as part of the strat- 
egy of human observers, so the ability to perform this task is 
not a priori irrelevant. Again, the alias-free detectors have a 
higher SNR^ if the residual white noise is zero, but as the 
task now depends more heavily on the higher frequency 

TABLE II. SNR^ averaged over position and orientation for distinguishing 
between the projection of a 5 mm square with sharp boundaries and a square 
whose boundaries ramp up over a 0.3 mm region. Normalization corre- 
sponds to a 10% contrast with an x-ray flux corresponding to 1400 x-rays/ 
pixel. The + represents the rms fluctuations in the SNR- with position, not 
the statistical uncertainties. 

SNR^ for discontinuity vs slope 

Blur-free 
Alias-free (\=0.463 mm) 
Alias-free (\=0.34 mm) 

<I)|A|/m + Wr/|A|=0 
14±2 
16±3 
16±3 

= 42 =8^ 
14±2 13+2 
I2±l 7.6+0.5 
14+2 10±1 

components of the signal, the aUas-free detectors are more 
sensitive to residual white noise, with the crossover at 
<I)|A|/m-f-W£/|A| = 4^ The detection of a 0.5 mm square is 
shown in Table III. Here, the lower (but nonzero) frequen- 
cies dominate the response of the detector, so that in general 
the antialiasing detectors gain from the removal of the 
aliased noise without losing any signal. 

It is interesting to note that the SNRs for the tasks and 
models described above do not vary greatly. Many factors 
not considered here will greatly effect the performance of 
real detectors, beginning with the fact that less than 100% of 
the incident x-rays will produce secondary quanta. The color 
of the Wiener spectrum need not be the same as the transfer 
function, due to, for example, x-rays interacting at various 
depths in the detector.^' The efficiency of collection of the 
secondary quanta can also have significant effects. For Csl 
detectors, of which our "aUas-free" detector is a rough 
model, the fill factor is a minor effect so long as the ampli- 
fication m is sufficiently large.''^ For selenium detectors, of 
which our "blur-free" detector is an approximation, it is 
possible to have an effective fill factor significantly greater 
than the geometric fill factor of the TFT array."'^'* In any 
case, our purpose here is merely to indicate some of the 
issues which must be faced in quantifying digital detectors of 
these types. In addition, we did not consider geometric fac- 
tors such as x-ray focal spot size and x-ray parallax which 
reduce the high-frequency content of the incoming signals. 

VIII. DISCUSSION AND CONCLUSION 

The results of this paper set up a framework for quantita- 
tive measurements of digital systems in a manner analogous 
to the now common analysis of screen-film systems in terms 
of the gray-scale transfer characteristic, the optical transfer 
function, the Wiener spectrum, and signal-to-noise ratio. The 
logic of this framework is by design close to the classic work 
on film-screen systems. While many pieces of this argument 
have appeared in the work of others, as noted throughout the 
text, it seemed desirable to produce a coherent systematic 
exposition. The results can be seen as appropriate limits of 
those of Barrett et al., but the theoretical construction here 
emphasizes the parallels with the classic results on screen- 
film systems. While detectors consisting of discrete elements 
do not have continuous translational symmetry, the remain- 
ing discrete symmetry allows one to use the appropriate Fou- 
rier technique. The advantage of this, as in the screen-film 
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case, is that one can explicitly solve for the mask function of 
the ideal observer [see Eq. (75)] and thereby obtain the op- 
timal SNR. As for screen-film, this formula can be inter- 
preted as the ratio of the square of the signal in each fre- 
quency bin to the noise in each frequency bin, as measured 
by the Wiener spectrum, integrated over bins. 

We have investigated several highly idealized, but not 
completely unrealistic, models of detectors, and illustrated 
some of the issues inherent in various design decisions. This 
analysis is incomplete and intended to point toward issues 
which could be addressed in other work. However, our re- 
sults suggest that for typical tasks the detectability of objects 
as determined by SNR'^ is not drastically affected by the 
decision, in and of itself, to suppress or not to suppress 
aliases. In any real device, of course, this design decision is 
linked to many other parameters. This article should be of 
use in clarifying what is actually experimentally measured in 
testing such devices. 

The results presented here are exact for the SKE/BKE 
task as approached by the ideal observer under the assump- 
tions of linearity, homogeneity, and stationarity. However, 
each of these assumptions is only approximately true in prac- 
tice. The finite extent of real detectors trivially shows that 
they are not homogeneous, but for a variety of tasks edge 
effects are negUgible. More importantly, many digital detec- 
tors in practice show significant inhomogeneity and nonsta- 
tionarity. The work of Barrett et al. is sufficiently general to 
cover these cases. Further, the inhomogeneity and nonsta- 
tionarity of a given instrument often occur in ways which are 
different for each individual device, so that while the extra 
information is relevant to the particular device one has mea- 
sured, the extra information is often not generalizable to 
other devices of the same manufacture. This extra informa- 
tion is useful for optimizing certain tasks using the particular 
device, but of less use in understanding a class of devices. 
Additionally, while the signal detection task of the ideal ob- 
server under SKE/BKE conditions certainly shares some fea- 
tures with the task which human observers face, and has 
under many conditions been shown to correlate well with the 
ability of human observers (for example, screen-film images 
of nylon beads^^), it is still a very ideahzed task. For ex- 
ample, if edge-detection is important, then higher frequency 
parts of the incoming signal become more important than 
would be expected given simply the signal detection task. 
From the point of view of a radiologist, a clear edge might be 
used to identify and distinguish the existence of a lesion 
from a variation in projected density of the underlying organ, 
particularly in the presence of the "structured noise" of 
other anatomical features. 

Clearly these are issues for further study, but while OTF, 
W, SNR, and GDQE are certainly useful because they are 
objectively measurable and in a mathematically precise man- 
ner are related to tasks which approximate those of the hu- 
man observer, it is worth remembering that measurement of 
these quantities does not obviate the need for observer stud- 
ies, particularly with practicing radiologists. 
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A method is proposed for generating synthetic mammograms based upon simulations of breast 
tissue and the mammographic imaging process. A computer breast model has been designed with a 
reaUstic distribution of large and medium scale tissue structures. Parameters controlling the size and 
placement of simulated structures (adipose compartments and ducts) provide a method for consis- 
tently modeling images of the same simulated breast w^ith modified position or acquisition param- 
eters. The mammographic imaging process is simulated using a compression model and a model of 
the x-ray image acquisition process. The compression model estimates breast deformation using 
tissue elasticity parameters found in the literature and clinical force values. The synthetic mammo- 
grams were generated by a mammogram acquisition model using a monoenergetic parallel beam 
approximation applied to the synthetically compressed breast phantom. © 2002 American Asso- 
ciation of Physicists in Medicine.   [DOT: 10.1118/1.1501143] 
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I. INTRODUCTION 

Visibility of breast lesions in mammography is compromised 
by overlapping projections of normal anatomic structures 
that generate a background texture, which can mask existing 
abnormalities or introduce false ones. Several authors'" 
have shown that these parenchymal patterns are often the 
Umiting factor in detection tasks. A 3D simulation of mam- 
mography is proposed to provide insight into the formation 
of such patterns. The simulation allows one to analyze the 
correlation between the 3D composition of the breast and its 
2D mammographic appearance. By identifying the dominant 
anatomical structures found in an average breast, this model 
can help analyze the deformation of those structures during 
the exam and their appearance in mammograms. A 3D mam- 
mography simulation can also serve as a complement to ex- 
periments with respect to positioning, compression, and ac- 
quisition. Optimization of imaging parameters (such as 
compression angle and force, x-ray tube kVp and mAs, etc.) 
cannot be achieved by repeatedly imaging the same patient, 
due to concerns about the radiation dose. Such simulations 
can also be useful in training medical personnel by demon- 
strating the effects of technique selection on image quaUty or 
by determining 3D lesion position from two or more projec- 
tions. Finally, a 3D breast model can provide a theoretical 
framework for testing new breast imaging modalities. Many 
new modalities are being developed today, including 
stereoscopy,'*"'' tomosynthesis,^ and 3D image recon- 
struction,** which are expected to provide more diagnostic 
information about normal and abnormal tissue structure. It is 

essential in the development of such systems to have a tool 
that can be used to test the visibility of breast structures and 
help select optimal views for 3D reconstruction, since the 
number of views is limited by the amount of radiation re- 
ceived. 

Historically, mammography simulation started with the 
design of the first mathematical breast models for computing 
the dose received by a patient during an examination using 
Monte Carlo simulation of x-ray interactions.^ These simu- 
lations have used fairly crude models of breast anatomy, 
lacking internal structures. More recent analytical models of 
mammographic image acquisition have related the average 
values of the incident x-ray flux, Unear attenuation coeffi- 
cients of breast tissue, and the film density or pixel digital 
values in the obtained mammograms.'" 

There are two approaches to modeling the image content 
of mammograms. In a 2D approach, mammograms are mod- 
eled based upon the analysis of spatial correlation between 
image pixel values, using various random field methods. 
Such models can match some of the statistical properties of 
real mammograms, but they cannot reveal the relationship 
between the 3D structures of the breast, nor they can consis- 
tently produce images of the same breast with modified po- 
sition or acquisition parameters. 

In this paper we propose a second approach, whereby 
mammograms are modeled by projection of simulated 3D 
anatomic structures, based upon the size and the distribution 
of large and medium scale tissue regions found in the breast. 
It is our hypothesis that the distribution of the 2D structures 
seen in mammograms reflects the distribution of the 3D tis- 
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Mammography Simulation 
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Breast Tissue Model 

Large Scale Elements: AT, FGT 

Medium Scale Elements: Shells, Blobs, 

andCBuctalTK^ 

Compression Model 

Compressed Breast Model 

Acquisition Model 

Synthetic Mammograms 

FIG. 1. Components of a system for mammography simulation. The flow- 
chart shows the order (top-to-bottom) in which the model components are 
simulated. 

(a) 

sue structures of the breast. Thus, the background texture in 
the synthetic mammograms so generated, should have simi- 
lar properties to those found in clinical images. 

Positioning and compression significantly affect the ap- 
pearance of mammograms. Until recently'''"'^ there were no 
models of breast deformation, due to the complex anatomy 
of the different types of interwoven breast tissue, whose me- 
chanical properties are difficult to analyze. We have approxi- 
mated breast compression by separate deformations of tissue 
layers positioned normal to the compression plates. 

The objective of this work is to generate synthetic mam- 
mograms. A method for achieving this goal is described in 
Sec. II, while the results of the simulation are shown in Sec. 
III. An accompanying paper details an analysis of the quality 
of the model. 17 

II. MAMMOGRAPHY SIMULATION 

The proposed mammography simulation consists of three 
major components: a 3D software breast phantom, a com- 
pression model, and an x-ray image acquisition model (see 
Fig. 1). The breast phantom is a software tissue model con- 
taining two ellipsoidal regions of large scale tissue elements: 
predominantly adipose tissue (AT) and predominantly fibro- 
glandular tissue (FGT). The internal tissue structures of these 
regions, namely the adipose compartments and the breast 
ductal network, are approximated by realistically distributed 
medium scale phantom elements: shells, blobs, and the simu- 
lated ductal tree. The compression model is based upon tis- 
sue elasticity properties and a breast deformation model. De- 
formation is simulated separately for tissue slices (or layers) 

(b) 

FIG. 2. Anatomic structures of the breast included in the tissue model, (a) 
Laige scale regions seen in MRI images as predominantly adipose tissue 
region, AT (bright), and predominantly fibroglandular region, FGT (dark 
surrounded by the AT), (b) Subgross (thick) histologic slice showing large 
scale regions: AT and FGT, and medium scale tissue structures: compart- 
ments surrounded by Cooper's ligaments in the AT and small adipose cavi- 
ties and ducts within the FGT. (Subgross breast histology image provided 
courtesy of Dr. R. D. Cardiff.) 

positioned normal to the compression plates. Each slice is 
approximated by a beam composed of two different tissues. 
Deformed slices are stacked to produce a model of the com- 
pressed breast. The mammogram acquisition model was 
adopted from the literature,'" assuming monoenergetic x rays 
and a parallel beam geometry without scatter. Presently, the 
synthetic mammograms are generated with a spatial resolu- 
tion of 200 /im/pixel because the current model version does 
not include fine tissue details. This resolution is comparable 
to the resolution of digitized mammograms in the Mini 
MIAS database (obtained by averaging 4X4 pixels in the 
original MIAS database'^). 

A. Software breast phantom 

r. Modeling large scale tissue regions 

Figure 2 illustrates the types of anatomic structures of the 
breast which are included in the breast phantom. Figure 2(a) 
is an MRI breast section, showing the shape and position of 
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FIG. 3. Orthogonal sections of the uncompressed breast model. Parameters 
without subscripts correspond to the semi-axes of the ellipsoidal approxima- 
tion of the breast outline; superscripts A and P correspond to the anterior and 
posterior border of the FGT model region, respectively. 

FIG. 4. Examples of different tissue distributions in real breasts, illustrated 
with clinical mammograms from the MIAS database. The amount of adipose 
tissue affects the size and visibility of compartments seen in the AT and FGT 
regions. 

The interiors of the shells and blobs have the elastic and 
x-ray attenuation properties of adipose tissue. As a first ap- 
proximation, the adipose compartments are represented by 
spheres. The size of the spheres can vary to allow for normal 
breast anatomic variations. 

Figure 3 shows two orthogonal cross sections of a breast 
tissue phantom. Simulated regions of predominantly adipose 
and predominantly fibroglandular tissue are seen, together 
with the spherical approximation of adipose compartments in 
those regions. Note that the size of the simulated compart- 
ments in the AT and FGT regions differ. The size of the 
adipose compartments varies in different women, depending 
upon the amount of adipose tissue in the breast, as seen in 

the large scale tissue regions. The MRI shows the predomi- 
nantly fibroglandular tissue, appearing as a dark region in the 
central part of the breast, and the predominantly adipose tis- 
sue, a brighter region surrounding the fibroglandular tissue. 
Internal structures of these tissue regions are less clearly vis- 
ible, due to the relatively low MRI resolution of approxi- 
mately 1 mm/pixel. Figure 2(b) shows a subgross histologic 
sUce of the breast, obtained after mastectomy. The predomi- 
nantly fibroglandular region in the shce is represented by a 
darker image region in the center, surrounded by brighter, 
predominantly adipose tissue. Adipose tissue is organized 
into round compartments, formed by fibrous Cooper's liga- 
ments. The FGT region also contains adipose compartments, 
but they are smaller in size than the compartments in the AT 
region. Analysis of subgross histologic slices of the breast 
and the corresponding mammograms showed that projec- 
tions of these compartments dominantly contribute to the 
formation of parenchymal patterns. Therefore, simulated adi- 
pose compartments were included as medium scale breast 
model elements. 

2. Modeling adipose tissue compartments 

The adipose compartments are approximated by thin 
shells in the AT region and small blobs in the FGT region. 

FIG. 5. Sections of breast models with different sized tissue elements labeled 
according to Table I as: (a) "Small," (b) "Medium," and (c) "Large." 
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FIG. 6. Examples of computer generated ductal lobes, (a) A simulated mam- 
mogram with five duct lobes. For the purpose of this illustration, other 
medium scale image elements have been suppressed, (b) Two views of the 
same simulated ductal network, used to generate image in (a). (The letter 
"N" indicates position of the nipple.) 

Fig. 4. Adipose compartments are more easily identified in a 
histologic slice than in a mammogram, since the latter image 
contains the superimposed projections of many tissue layers. 
Simulations of breasts with different sized adipose compart- 
ments are illustrated in Fig. 5. The procedure for generating 
simulated tissue compartments starts by filling the 3D breast 
phantom with compartments of the largest selected size until 
they start to intersect each other. The compartment size is 
then reduced and the procedure continued until the smallest 
selected size has been reached. 

3. Modeling breast ductal network 

To achieve a sufficiently realistic tissue phantom it is also 
necessary to model the breast ductal network. Ducts can be 
visualized by galactography, a clinical x-ray imaging proce- 
dure whereby the ducts are enhanced by injection of a con- 
trast agent. The breast ductal system consists of about 15-20 
ductal lobes, each corresponding to a major duct branching 
from the nipple into a network of smaller ducts. In galacto- 
grams, usually a single lobe is enhanced. Larger ducts are 
more visible than the smaller ones, since they attenuate more 
X rays. 

The main focus of our model is on the pattern of duct 
branching. This pattern can be expressed by a ramification 
matrix, representing probabilities of branching at different 
levels of a tree structure.'^ There are no previous reports in 
the literature on analyzing the breast ductal network by rami- 
fication matrices. The class of random binary trees was cho- 

sen for modeling the ducts since it offers the least con- 
strained branching pattern.'^ The ductal model consists of 15 
lobes and each lobe is simulated by a different random bi- 
nary tree. Different trees are generated by using different 
random number generator seeds. A simulated ductal network 
is shown in Fig. 6. For clarity, only 5 out of 15 lobes are 
visible. 

B. Mammographic compression model 

The mammographic compression simulation is based 
upon a deformation model including realistic tissue elasticity 
properties. Elasticity parameters of the tissue found in the 
literature vary significantly.^°"^^ One of the reasons for these 
variations is that the experiments for determining the elastic 
properties have been performed using small samples taken 
from a particular tissue type (e.g., adipose, fibroglandular, or 
cancerous). However, the breast is comprised of a compli- 
cated admixture of different tissues which affect the elastic 
behavior of the whole organ. 

The parameters most often used for description of elastic 
properties are the Young's linear elasticity modulus, E, and 
the Poisson's ratio, v, defined by 

_o-_F/A Aw 
(1) 

The Young's modulus relates the strain, e, as a measure of 
deformation (i.e., the fractional change in length A.l/1) and 
the stress, cr (the force F applied to the surface area A of the 
deformed object). The Poisson ratio, v, is equal to the ratio 
of transverse contraction. Aw, to the elongation, A/, of a 
deformed bar. It is usually assumed that human tissue can be 
approximated as an incompressible material, whose volume 
does not change during deformation.^^ For incompressible 
materials v^O.S. 

The other elasticity moduli used to describe the behavior 
of material are the bulk modulus, K, and shear modulus, G, 
which can be expressed using the values of E and v. 

K= G =  . (2) 
3(l-2i/)' 2(1 + 1^) 

There is a relationship between the bulk elasticity modulus, 
K, material density, p, and the speed of sound through the 
material, v, given by 

(3) K/p. 

In the compression model, the elasticity parameter values of 
adipose and fibroglandular tissues were computed using the 
values of ultrasound velocity through various tissues found 
in the literature."^ 

The Mammography Quality Standards Act^'* regulates the 
minimum and maximum breast compression to be used in 
mammography. In general, the mammography technician 
will apply the maximum force tolerated by the patient to 
achieve optimum quality mammograms. Sullivan et al.- re- 
ported a statistical analysis of the compression force and 
compressed breast thickness, measured during 560 exams. 
Simulated force values were selected to address these con- 
siderations. 
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FIG. 7. Separate deformation of breast model slices. Il- 
lustrated are the steps of rectangular slice approxima- 
tion, deformation of the approximated slice, and gen- 
eration of the final shape of the deformed slice. These 
steps are followed by stacking all deformed slices to- 
gether to generate the compressed breast shape (not 
shown). 

.Rectangle .Ellipse 

There are very few published results about deformation of 
breast tissue structures during mammography. One reason is 
that it is hard to provide 3D visualization of such deforma- 
tions. Clinically available 3D breast imaging techniques, ul- 
trasound and MRI, have lower resolution and poorer quality 
than mammography. In addition, both methods use much less 
compression and are not applicable for analyzing tissue de- 
formation during mammography. In our compression model, 
tissue deformation is estimated in two phases. First, the large 
scale model elements, the AT and FGT regions, are deformed 
to determine the shape of the compressed breast. Second, the 
medium scale model elements are deformed by transforming 
the shells and spheres into ellipsoids. After compression and 
x-ray image acquisition, the medium scale elements appear 
as elliptical structures in synthetic mammograms corre- 
sponding to the oval shaped lucencies seen in real mammo- 
grams. 

The compression of large scale model elements is simu- 
lated in the form of separate deformations of the breast tissue 
slices, positioned normal to the compression plates. In this 
paper, the medio-lateral oblique (MLO) mammographic view 
is modeled since it provides visuaUzation of more breast tis- 
sue than other views.^^ Moreover, in a number of countries, 
e.g., UK, the Netherlands, and Sweden, it is the only view 
obtained by breast screening.^^ Compression for other views, 
e.g., cranio-caudal (CC), can be simulated by a modification 
of the described model. In the case of MLO compression, 
tissue slices are positioned normal to the MLO view plane. 
In this case, a slice appears as a semiellipse, and the FGT 
portion of the slice appears as the intersection of two semiel- 
lipses, as shown in Fig. 3. Slice thickness corresponds to the 
model resolution specified at the beginning of the simulation. 

Deformation of each sUce is computed in three steps. First, a 
rectangular slice approximation is computed. Second, slice 
deformations are estimated using a composite beam model. 
Third, the compressed slice shape is computed from the de- 
formed rectangular approximation. Compressed slices are 
stacked together to form the compressed breast model shape. 
A detailed description of the processing steps is given in the 
following. 

1. Rectangular slice approximation 

A slice of the breast model is replaced by its rectangular 
approximation. The whole slice region and its FGT portion 
are approximated by rectangles, satisfying the following con- 
straints: (i) the area of the rectangular slice approximation, 
A Slice, and area of the rectangular FGT approximation, Apc, 
are the same as the corresponding areas in the original slice; 
(ii) the side of the rectangular slice approximation in the 
chest-nipple direction, ^siicc» 'ind the side of the rectangular 
FGT approximation in the same direction, dpQ, are equal to 
the corresponding dimensions in the original slice; and (iii) 
the distance between the centers of gravity of the rectangular 
sUce approximation and the rectangular FGT approximation 
is the same as the corresponding distance in the original 
slice. This constraint is not used for deformation of the slice 
through the nipple, because it may produce a rectangular 
approximation of the FGT region protruding outside of the 
slice. Instead, the FGT region is positioned so that it touches 
the nipple side of the rectangular approximation of the whole 
slice. 

Using these constraints, the dimensions and relative posi- 
tions of the rectangular slice and FGT approximation are 
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computed. An example of a slice through the nipple is illus- 
trated in Fig. 7. 

2. Slice deformation via a composite beam model 

The approximating rectangles preserve the elastic proper- 
ties of the corresponding sUce regions. The elastic properties 
of the AT and FGT regions are modeled by linear Young's 
moduli, EA and EpQ, respectively. This rectangular slice ap- 
proximation can be treated as a composite 2D elastic beam, 
positioned between two bars corresponding to slices through 
the compression plates. Deformation is estimated by apply- 
ing a force to the compression plates which in turn deforms 
the composite beam. It is assumed that (i) the slice thickness 
is much smaller than the sides of the approximating rect- 
angles and (ii) during the compression, the slice stays in the 
same plane as before compression. The latter assumption is 
based on the fact that in reality slices of tissue are not com- 
pressed independently; the neighboring tissue (above or be- 
low) partially confine the slice to a plane. Slices in the planes 
above or below the nipple level do not have initial contact 
with the compression plates. It is assumed that all slices de- 
form with the same strain value which is equal to the strain 
of the slice in the nipple level: 

^Sli< 

A,^,ncw                      ,„Compress 
iN.pmc^,     ^RecSlicc_    _ '^RecSlice ^    _ ]^  

%licc ,„_    _.. '■        ,old ,„Relax    ' 
^RecSlicc '^RccSlice W 

(4) 

where €s,icc and ^1^^'^ represent strain for any slice and 
strain for the sUce in the nipple level, respectively; WRej.s,i^e 
and WRCCSHCC represent size of the rectangular approximation 
normal to the compression plates, before and after compres- 
sion, respectively; w^"^'^ and w^'""^'^^^ represent breast thick- 
ness before and after compression, respectively. The inten- 
sity of the compression force is included indirectly, by 
specifying the thickness of the compressed breast. Since a 
linear model of tissue elasticity is used, only the ratio of 
Young's moduli for the AT and FGT region is needed to 
estimate slice deformation. 

The stress in the rectangular FGT region, a^^, is the same 
as the stresses a^ and cr^j^ in the parts of the rectangular AT 

region with thickness w^^ and w^^, 

o-R=arR=(rR^. (5) 

Replacing a^ by £,€/, from Eq. (1), the strain in the rectan- 
gular FGT approximation is calculated as: 

^R.'- 
EA (6) 

The ratio E^ IE^Q is computed based upon the relationship 
between the bulk elastic moduli, tissue density, and velocity 
of sound propagation through the tissue. Measured values of 
the velocity of sound in samples of adipose and fibroglandu- 
lar tissue are i;^=1470 m/s and i;pG= 1545 m/s, 
respectively.""' Densities of the adipose and fibroglandular 
tissue are PA = 930 kg/m'^ and pro= 1040 kg/m\ 
respectively."** Using Eq. (3), gives 

EA      KA      PAV\ 

EpG      ^FG      PFG^^FG 

= 0.81. (7) 

Finally, there is a relationship between the strains in dif- 
ferent parts of the rectangular slice approximation, since: 

AWL = AWR +Awo+Awo, (8) 

which after dividing by Wi and using the fact that €R^ — eR^ 

due to symmetry, yields 

€, = ec 
'1 W, Wi 

(9) 

Equations (4), (6), and (9) yield dimensions of the rectan- 
gular slice and FGT region normal to the compression plates 
after the compression, WR^^SIJ,, and WR^^FG' respectively: 

V*'Re:sUce = H'L(l -^L),      <:^V0=^ RS^'^R^)' (10) 

Assuming that the areas of the rectangular slice and FGT 
region, A^^^^ and Apc. stay the same before and after com- 
pression, we can compute the dimension of the rectangular 
slice and FGT approximation in the chest-nipple direction 
after compression, afRecsike ^"d d^^^Q, respectively: 

inew 
"RecSlicc" 

I Slice 

W 

incw 
"RecFG" 

ipG 

RecSlicc '^ RecFG 

(11) 

3. Compressed slice from the deformed 
rectangular approximation 

The final step of the slice deformation modeling is the 
computation of the compressed breast slice from its de- 
formed rectangular approximation. The compressed breast 
does not have an ellipsoidal but rather a flattened shape." ' 
The thickness of the compressed breast is constant and equal 
to the distance between the compression plates, VV"^°"'P"'^', 

everywhere except in a narrow region close to the front edge 
of the breast. Analysis of that region on a mammogram was 
used to estimate the breast thickness directly from 
mammograms.^° To achieve a realistic shape of the com- 
pressed breast slice, a correction was applied to the model. 
This correction assumes that the deformed breast slice con- 
sists of a rectangle positioned at the chest wall side, and a 
semiellipse attached to the rectangle, extending forward to 
the nipple (see Fig. 7). 

Parameters of the deformed rectangle and semieUipse are 
computed satisfying the following constraints: (i) the sum of 
the rectangular area, A'^*^''""^''^, and the semielliptical area, 
^ Ellipse^ is equal to the area of the whole uncompressed slice, 
A Slice; (ii) one side of the rectangle and one axis of the 
semiellipse are equal to the distance between the compres- 
sion plates for the compressed breast, w'^'""P'''=''; and (iii) the 
slice region where the thickness is less then H'*^°"'P'''='' con- 
tains 10% of the whole mammogram breast area.'"' The de- 
scribed correction for flattening the compressed breast is 
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TABLE I. Radii of simulated adipose compartments in the AT and FGT, used 
to generate the synthetic mammograms. 

FIG. 8. Examples of synthetic images with different sizes of tissue model 
elements (i.e., simulated compartments in the AT and FGT), which are used 
for comparison with clinical mammograms. The images are labeled accord- 
ing to Table I as: (a) "Small," (b) "Medium," and (c) "Large." 

only used to determine the border of the whole compressed 
slice. Deformation of the FGT region is still computed using 
the 2D composite beam approximation. 

Separate processing of individual model slices is followed 
by stacking the deformed slices together to get the 3D com- 
pressed breast model. Slices whose relaxed (noncompressed) 
thickness is less than the compressed breast thickness are not 
processed at all; they are assumed to preserve their relaxed 
shape. The compressed breast thickness was used instead of 
the compression force to compute the deformation of the 
breast model slices. The compression force can be calculated 
from the difference of the relaxed and compressed breast 
thickness and tissue elastic moduU using Hooke's law. When 
computing the force, the values for both the elastic moduli of 
the adipose and fibroglandular tissue are needed. 

C. X-ray mammogram acquisition model 

The x-ray image acquisition model consists of an x-ray 
propagation model, which includes attenuation by the breast 
tissue and conversion of the x-ray energy into film density, 
and a model of mammographic film digitization. In the case 
of digital mammography, the film and digitization models 
should be replaced by a model of a solid-state x-ray detector 
array. The model is adopted from the literature,'" and for 
simplicity assumes a monoenergetic x-ray spectrum and a 
parallel beam geometry, without scatter. 

The mammogram acquisition model relates the spatial 
distribution of the x-ray energy imparted to the intensifying 
screen, E,, to the mammogram digital values (after digitiza- 
tion), DV, and the linear x-ray attenuation coefficient of tis- 
sue, ix,: 

Compress 

fj,,{x,y,z)dz\,    (12) Ei{x,y)= ijcf>ECexpl — I 

DV{x,y) = a-bylogio{/3Eiix,y)}, (13) 
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Model regions 

Structure radii AT( mm) FGT (mm) 

Small 
Medium 

Large 

2.7- 
4- 

5.3- 

-6.7 
10 
13.3 

1.3- 
2- 

2.7- 

-2.7 
-4 
-5.3 

where 77 represents the quantum efficiency of the screen, (f) is 
the fluence at the entrance to the breast, E the x-ray photon 
energy, C is the attenuation factor due to the compression 
paddle and grid, H''-^°™P"^'**' is the compressed breast thickness, 
a and b are digitization coefficients, and y and ^ are the film 
gamma and the speed coefficient, respectively. It is assumed 
that the digitization output is proportional to optical density, 
thus Eqs. (12) and (13) can be simpUfied so that DV is Un- 
early proportional to the ray sum. The Unear x-ray attenua- 
tion coefficients of the AT and FGT tissue, taken from the 
Uterature,^^ are /iyyr= 0.456 cm"' and fMfQ=Q.S02 cm"', at 
20 keV. Further details of the acquisition model are given in 
the literature.^"' 

III. SIMULATION RESULTS AND DISCUSSION 

Figure 8 shows three synthetic mammograms generated 
by our simulation. These three images differ in the size of the 
simulated medium scale tissue structures. The ranges of adi- 
pose compartments radii simulated in the mammograms 
(shown in Fig. 8) are given in Table I. 

It can be noted that the proportions of the breast model, 
i.e., vertical to horizontal dimension ratio after compression, 
agree with the "standard breast" from Novak,^^ defined by 
averaging dimensions of 27 compressed breasts. Dimensions 
of the breast model are smaller than the "standard breast" by 
approximately 15%. 

The synthetic mammograms were printed on film (AGFA 
LR5200, AGFA-Gevaert, Belgium) lifesize, and were shown 
to radiologists in the Breast Imaging Center of Thomas Jef- 
ferson University. Qualitatively, subregions of synthetic and 
cUnical images were reported to have similar appearance 
when viewed at a distance of 1-2 m. When examined 
closely, it was observed that the synthetic images lack blood 
vessels and other organized fine tissue structures. In addition, 
the borders between the AT and FGT regions in the synthetic 
mammograms appeared as a clear, geometrically regular 
separation degrading the subjective perception of reality. For 
the latter reason, the model was modified by addition of 
small random variations to the position of the borders be- 
tween the compressed AT and FGT phantom regions. This 
correction is included in Fig. 8. 

As stated in Sec. I, the model for producing the synthetic 
mammograms was based upon the hypotheses that the size 
and the distribution of simulated 3D tissue elements are simi- 
lar to those found in the real breasts, and that the 3D tissue 
distribution is reflected in the distribution of 2D mammo- 
graphic structures. In order to evaluate the synthetic images. 
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we performed statistical comparisons of several texture de- 
scriptors computed in synthetic and clinical mammograms, 
including: average size of image objects, texture energy, and 
fractal dimension. These descriptors have been previously 
used in the literature for the analysis of parenchymal patterns 
in mammograms.^"*"'^ The image objects' size, analyzed us- 
ing mathematical morphology, can be related to the size of 
the simulated 3D tissue structures. Texture energy and fractal 
dimension are sensitive to small scale changes in image in- 
tensities, corresponding to fine tissue detail. Details about the 
texture analysis of synthetic and clinical mammograms are 
given in the accompanying paper.'^ Quantitatively, the syn- 
thetic mammograms have a similar distribution of values av- 
eraged over a large number of clinical mammograms. The 
best matching was observed for the synthetic images gener- 
ated using the simulated adipose compartments with radii of 
4-13.3 mm in the AT regions, and radii of 2.7-5.33 mm and 
1.3-2.7 mm in the retroareolar and dense FGT regions, 
respectively.'^ It is expected that the introduction of detailed 
tissue structures in the breast model will enhance the local 
variations of synthetic mammograms and the variations in 
feature distribution needed to better match real images. In 
addition, the simulated ducts and the compression model 
were separately evaluated and compared with clinically ac- 
quired data."" 

IV. CONCLUSIONS 

A method is described for generating synthetic mammo- 
grams using simulations of breast tissue and the mammo- 
graphic imaging process. A software breast phantom was de- 
veloped, which contains realistic large and medium scale 
tissue structures, derived from an understanding of the mac- 
roscopic anatomic tissue organization. Parameters control- 
ling the size and placement of the tissue simulating structures 
provide flexibility to generate a large database of synthetic 
images with different characteristics. Mammographic imag- 
ing is simulated using a compression model and a model of 
the x-ray image acquisition. The compression model esti- 
mates breast deformation using tissue elasticity parameters 
found in the literature and realistic values of compression 
force. The synthetic mammograms were generated by a 
mammogram acquisition model using a monoenergetic par- 
allel beam approximation, applied to the synthetically com- 
pressed breast phantom. 

The proposed simulation can be used in analysis of breast 
positioning, compression, and image acquisition parameters. 
The software breast phantom can be used as a test object for 
optimizing mammographic systems or testing novel systems 
for 3D reconstruction of breast images. The simulation can 
be used for analyzing the correlation between the 3D breast 
composition and 2D mammogram characteristics, e.g., the 
parenchymal patterns, which can be used for estimation of 
the cancer risk."*^ Computer algorithms for characterization 
of normal breast tissue could be tested on large databases of 
normal images with random variations of tissue structures, 
generated by the model. Synthetic mammograms with simu- 
lated abnormalities or abnormalities extracted from clinical 

mammograms could be used for testing algorithms for can- 
cer detection. 
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We have evaluated a method for synthesizing mammograms by comparing the texture of clinical 
and synthetic mammograms. The synthesis algorithm is based upon simulations of breast tissue and 
the mammographic imaging process. Mammogram texture was synthesized by projections of simu- 
lated adipose tissue compartments. It was hypothesized that the synthetic and clinical texture have 
similar properties, assuming that the mammogram texture reflects the 3D tissue distribution. The 
size of the projected compartments was computed by mathematical morphology. The texture energy 
and fractal dimension were also computed and analyzed in terms of the distribution of texture 
features within four different tissue regions in clinical and synthetic mammograms. Comparison of 
the cumulative distributions of the mean features computed from 95 mammograms showed that the 
synthetic images simulate the mean features of the texture of clinical mammograms. Correlation of 
clinical and synthetic texture feature histograms, averaged over all images, showed that the syn- 
thetic images can simulate the range of features seen over a large group of mammograms. The best 
agreement with clinical texture was achieved for simulated compartments with radii of 4-13.3 mm 
in predominantly adipose tissue regions, and radii of 2.7-5.33 and 1.3-2.7 mm in retroareolar and 
dense fibroglandular tissue regions, respectively. © 2002 American Association of Physicists in 
Medicine.   [DOl: 10.1118/1.1501144] 

Key words: mammography simulation, 3D, synthetic mammograms, texture analysis 

I. INTRODUCTION 

We have proposed an approach to generate synthetic mam- 
mograms based upon a 3D simulation of mammography.' 
Synthedc mammographic texture is produced by projecting 
simulated 3D breast anatomic structures. In clinical images, 
the overlapped projections of normal anatomic tissue struc- 
tures generate a background texture in mammograms which 
can mask the existing abnormalities or introduce false ones. 
The simulation can be used to optimize positioning, com- 
pression and acquisition in order to improve the visibility of 
the breast tissue, and to test new breast imaging modalities. 

The proposed mammography simulation consists of three 
major components. First, a 3D software breast phantom con- 
tains two ellipsoidal regions of large scale tissue elements: 
predominantly adipose tissue (AT) and predominantly fibro- 
glandular tissue (FGT) regions. Internal structures of these 
regions, namely the adipose compartments and breast ductal 
network, are approximated by realistically distributed me- 
dium scale phantom elements: shells filled with simulated 
adipose tissue and a synthetic ductal tree. Second, a com- 
pression model of the breast deformation occurring during a 
mammographic exam is based upon tissue elasticity proper- 
ties. Deformation is simulated separately for layers of tissue 
positioned normal to the compression plates. Each slice is 

approximated by a rectangular beam composed of AT and 
FGT regions. The sUces are computationally deformed, as- 
suming cUnical values of the compression force. Deformed 
sUces are stacked together to produce a model of the com- 
pressed breast. Third, mammogram image acquisition is 
modeled assuming monoenergetic x rays and a parallel beam 
geometry without scatter. Details of the simulation are given 
in the accompanying paper.' 

Ideally, each of the three components of the simulation 
should be evaluated separately by a 3D imaging technique. 
There is, however, a significant difference in tissue properties 
captured by the clinically available 3D breast imaging mo- 
dalities (ultrasound and MRI) and mammography which is 
the focus of our simulation. Breast ultrasound and MRI also 
have different resolution and compression than mammogra- 
phy. With these issues in mind we have evaluated the tissue 
model indirectly, assuming that a relationship exists between 
the distribution of 3D breast tissue structures and the 2D 
parenchymal pattern. It is our hypothesis that the texture 
properties computed in synthetic and clinical images have 
similar distributions. 

There are two approaches to mammogram synthesis 
found in the literature: (i) direct modeling of 2D distribution 
of pixels and (ii) simulation of 3D tissue distribution and the 
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mammographic imaging. Bochud et al.^ modeled mammo- 
gram texture as a "clustered lumpy background" by random 
placement of "blob" clusters, visually resembling tissue ap- 
pearance in mammograms. Synthetic images were evaluated 
by comparing their power spectra and statistical moments 
with the values from 32 clinical mammograms. Good agree- 
ment of the first and the second moments in clinical and 
synthetic images were observed, with similar statistical prop- 
erties overall. Heine et al? modeled a mammogram as evolv- 
ing from a process of passing a random field (colored noise) 
through a linear filter with a self-similar characteristic, based 
upon the analysis of 60 clinical mammograms. Such an ap- 
proach can match some of the statistical properties of chnical 
images but cannot relate the 3D tissue structures and their 
mammographic appearance. Both papers do not model breast 
ducts or the large scale tissue regions. Consequently, the im- 
ages of the same simulated breast, with modified positioning, 
compression, or x-ray parameters cannot be consistently syn- 
thesized. 

Taylor et al^ generated synthetic images by mammogra- 
phy simulation, in an approach similar to our work. The fo- 
cus of their simulation is on modeling breast ducts based 
upon the fractal properties of the duct length and diameter. 
They have evaluated the synthetic images so obtained by 
comparing the Fourier spectrum with that computed in im- 
ages of tissue slices with contrast enhanced ducts. Good 
agreement using a small number of samples was observed. 

Separate evaluations were performed for the simulation of 
the ductal network, the compression model, and the synthetic 
parenchymal pattern. Initial feasibiUty tests of the ductal 
model and compression simulation are presented 
elsewhere.^'^ This paper describes the analysis of the syn- 
thetic mammogram texture. 

Synthetic images were generated by simulating the x-ray 
image acquisition on a computationally compressed phan- 
tom. Images of the phantoms were generated containing dif- 
ferent sizes of simulated medium scale elements: spherical 
shells and blobs. The synthetic mammograms, so obtained, 
were evaluated by comparing them with clinical images 
taken from the MIAS database of digitized mammograms.' 
Subimages taken from regions corresponding to different tis- 
sues were compared separately, including the subcutaneous 
AT, retromammary AT, retroareolar FGT, and dense FGT re- 
gions. Three texture features were used for description of the 
parenchymal pattern: (i) the average size of image structures 

Fio. 1. Illustration of morphological closing, (a) The original image with 
objects of different size, (b) The image of the structuring element, (c) The 
resulting image obtained by the morphological clo.sing with the .structuring 
element from (b) applied to the image from (a). 

computed using mathematical morphology, (ii) the texture 
energy, and (iii) the fractal dimension. Feature values were 
computed over each clinical and synthetic subimage and sta- 
tistically compared using the Kolmogorov-Smimov test and 
histogram correlation. Details of the analysis of synthetic and 
cUnical mammographic texture are given in Sec. II and the 
resuhs of the comparison are discussed in Sec. III. 

II. TEXTURE ANALYSIS OF SYNTHETIC 
MAMMOGRAMS 

A. Texture descriptors 

The following texture descriptors were used for the evalu- 
ation of synthetic mammogram texture. First, size analysis 
was performed by a sequence of morphological closings with 
disks of increasing size as structuring elements.^ Average 
image brightness increases after the closing operation. The 
change in brightness as a function of the disk radius is re- 
lated to the size distribution of radiolucent (adipose) areas in 
the mammograms. Second, texture energy analysis was per- 
formed by convolving each image with a small mask.^ Treat- 
ing gray scale image intensity as the height of a 3D object, 
this mask is sensitive to local roughness of the image sur- 
face. Third, fractal dimension was computed by the blanket 
box counting method of self-similarity analysis."* 

1. Morphological analysis of image structure size 

Morphological image analysis is based upon the shape of 
image objects and is used to simplify image data while pre- 
serving shape characteristics. The theory of mathematical 
morphology is discussed in the books of Matheron" and 
Serra.^ An application oriented tutorial of morphological im- 
age processing is given by Haralick.'^ 

Morphological operations are performed on a set of image 
pixels using a second set of pixels called the structuring el- 
ement. Definitions of the basic operations are given in the 
Appendix. The opening operation is used for size analysis of 
bright objects, and closing for the analysis of dark objects. 
This analysis is sensitive to the radiolucent areas of the 
mammogram, corresponding to the adipose tissue which ap- 
pears darker than the surrounding tissue. X rays are less at- 
tenuated by adipose tissue, producing greater film density 
than connective tissue. 

The gray scale closing first replaces each pixel with the 
maximum from its neighborhood defined by the structuring 
element (a disk). The original values are then recovered for 
all of the pixels, except for those from regions which are 
both darker than their surroundings and smaller than the 
structuring element. As an illustration, Fig. 1(a) shows an 
image with several objects of different size. After the closing 
operation with the structuring element from Fig. 1(b), the 
resulting image is given in Fig. 1(c). It can be seen that dark 
objects smaller than the structuring element have been elimi- 
nated; the resulting image is thus brighter than the original. 
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This is the basis for morphological size analysis, whereby 
the change in average image brightness (i.e., the total pixel 
sum after the closing) is used to describe the size distribution 
of the image objects. The derivative of the brightness as a 
function of size shows the contribution of the objects equal 
in size to the structuring element. 

Morphological size analysis of mammograms has been 
reported previously in the literamre.'^''' Behrens and 
Dengler''' reported examples of applying morphological size 
analysis at global, regional, and local image levels; analysis 
of calcifications was presented as a local processing. Miller 
and Astley''* used morphological size analysis to segment the 
FGT region from mammograms. They used the opening op- 
eration which is dual to closing; it replaces the bright regions 
smaller than the structuring element by their dark surround- 
ing pixels. The overall image brightness is, thus, reduced. 
However, the authors did not analyze the relationship be- 
tween morphological feature values and the physical proper- 
ties of the anatomic structures. Our research represents a 
novel application of morphological image analysis as a result 
of using the simulated 3D tissue structures to synthesize pa- 
renchymal patterns. 

2. Texture energy analysis 

Texture energy features are the statistical estimates of the 
outputs from a filter bank implemented in the form of local 
finear transformations. They were introduced with the goal 
of achieving texture segmentation and description at each 
image pixel, corresponding to a hypothetical low level func- 
tion of the human visual system.' The filter bank consists of 
small 2D convolution masks whose coefficients are com- 
puted as the product of ID masks with different numbers of 
zero crossings. Contrast invariance of the filter outputs is 
achieved by the normalization with the output of the filter 
sensitive to the average local image intensity. The absolute 
values or variances of the convolved images are used for 
analysis. A generalization of this approach can include a 
larger set of local linear transformations, and the estimation 
of higher order moments of the output channel histograms.'^ 

In mammogram processing applications'''"'^ texture en- 
ergy was usually computed using a single or a few convolu- 
tion masks. The mask sensitive to image "ripple" was found 
to be the most efficient in segmenting potentially abnormal 
regions in mammograms, a task which is related to the local 
roughness of the image surface. Texture energy features have 
also been used m mammogram registration. 

The mask coefficients are given in the Appendix. A 5X5 
"ripple" convolution mask, R5R5 [Eq. (A2)], was used, cap- 
turing local roughness of the image surface. The absolute 
values of the convolved data were averaged on a 15X15 
window and normalized by the "level" mask, L5L5 [Eq. 
(A2)], providing contrast invariance. 

3. Fractal analysis 

Fractal dimension describes self-similarity of image prop- 
erties at different spatial scales. It is common to perform 
fractal analysis on the area of the image surface, obtained by 

considering the pixel values as local surface heights. This 
area is related to the roughness of the image texture. A com- 
plete definition of the fractal dimension of image surface 
area is given in the Appendix. 

There are numerous reports in the literature on fractal 
analysis of mammograms. Caldwell et al. analyzed the 
fractal dimension of various parenchymal patterns and the 
difference between the fractal dimensions computed over the 
whole image and within a region near the nipple. A feature 
space defined by these two fractal features was segmented 
and a relatively good agreement with the original Wolfe 
classification^"' was observed. Mairanographic calcifications 
have been segmented using a variety of methods for comput- 
ing fractal dimension, including box counting,^" iterated 
function systems,^' and fractal Brownian motion. 

We computed fractal dimension by the blanket algo- 
rithm.'*' This method has been used previously in the detec- 
tion of calcifications in mammograms.^" The fractal dimen- 
sion is computed for each pixel by analyzing the local image 
surface around the pixel. A 15X15 window was selected, 
centered on each pixel. This corresponds to the nonlinear 
averaging window size used in the texture energy method. A 
log-log plot of Aio<;ai(e) is generated for the local surface 
around each pixel. The local fractal dimension value D^g^-^i is 
computed as the slope through three points on the log-log 
plot, corresponding to the scale parameter values of e=2, 3, 
and 4 pixels. 

B. Image selection 

The following criteria were used for selection of the clini- 
cal and synthetic mammograms to be used for comparison. 
First, the clinical images had to represent normal breast tis- 
sue. Second, the glandularity seen in the mammograms 
should approximately represent the average breast glandular- 
ity (not too dense and not predominantly adipose). Third, 
spatial resolution of the clinical and synthetic mammograms 
should be matched. The clinical images were selected from 
the MIAS database^ of digitized mammograms and the syn- 
thetic mammograms were generated for varying properties of 
the medium scale elements, i.e., different sizes of simulated 
adipose compartments in the AT and FGT regions. In addi- 
tion, the comparison was repeated for the same set of clinical 
and synthetic mammograms at a reduced resolution. The im- 
ages with reduced resolution were generated by averaging 
2X2 blocks of pixels from the original mammograms. 

1. Clinical mammograms 

Sixty-five mammograms from the Mini-MIAS database of 
clinical mammograms were used, having a spatial resolution 
of 200 /im/pixel. The Mini-MIAS database was obtained by 
averaging 4X4 pixel blocks in the original MIAS mammo- 
gram database.' This resolution is sufficient for the evalua- 
tion of our synthetic mammograms since presently they do 
not include fine, small scale tissue detail. The selected im- 
ages represent normal cases in the MIAS database with the 
background tissue classified as "fatty-glandular." As the 
sizes of adipose compartments differ for various tissue re- 
gions, up to four 25 mmX25 mm subimages per mammo- 
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FIG. 2. Tissue regions used in texture analysis, illustrated on a clinical mam- 
mogram from the MIAS database: (1) subcutaneous adipose tissue, (2) ret- 
romammary adipose tissue, (3) retroareolar fibroglandular tissue (immedi- 
ately posterior to the nipple), and (4) dense fibroglandular tissue. 

gram were selected manually, giving a total of 219 sub- 
images, from the following regions (see Fig. 2): (1) subcuta- 
neous fat; (2) retromammaiy fat; (3) retroareolar glandular 
tissue, immediately posterior to the nipple; and (4) dense 
glandular tissue. If the extent of a tissue region could not be 
unambiguously determined, or if it was too small for a sub- 
image window, the corresponding tissue sample was ex- 
cluded from analysis. 

2. Synthetic mammograms 

Synthetic images were generated at a spatial resolution of 
200 /Am/pixel, matching that of the database. Four subimages 
per synthetic mammogram were selected from different re- 
gions in the same manner as for the clinical images. The 
positions of the subimages were determined from the known 
extent of the large scale model elements, the AT and FGT 
regions. Model parameters controlling the distribution of me- 
dium scale tissue structures, modeled by shells in the AT and 
spheres in the FGT regions, were varied to match the statis- 
tical properties of real images. Three groups of synthetic 
mammograms were tested. The groups consisted of ten syn- 
thetic mammograms each, generated randomly using the 
same range of size of simulated adipose tissue compart- 

ments. The ranges of compartment sizes differed between the 
groups by 30% (see Table I and Fig. 8 in the accompanying 
paper'). 

C. Statistical comparison 

Two methods were used for statistical comparison of the 
texture features. First, feature histograms were computed for 
each subimage. Synthetic histograms were then averaged 
over all subimages of the same tissue type and were com- 
pared with similarly computed clinical histograms. The cor- 
relation between the corresponding clinical and synthetic av- 
eraged histograms was used to measure how well the 
synthetic images approximated the clinical images. Next, 
mean feature values (i.e., the histogram first moments) were 
computed for each subimage. Distributions of these means 
for all subimages of the same tissue type were then analyzed 
and compared with the distributions of means of the clinical 
images, using the Kolmogorov-Smimov (KS) test.^'* The 
maximum difference between the cumulative distribution 
functions (CDFs) of the clinical and synthetic mean feature 
values was used as another measure of quality of mammo- 
gram synthesis. In both methods the average texture features 
were compared, thereby testing the ability of the simulation 
to match the average properties of a large set of clinical 
mammograms, rather than simulating an image of a particu- 
lar breast. 

1. Analysis of feature histograms 

As a measure of similarity between the real and synthetic 
feature distributions, the correlation between the feature his- 
tograms was calculated for each of the clinical and synthetic 
subimages, and averaged over all subimages of the same 
tissue type. In the case of size analysis, the correlation was 
computed between the brightness gradient (as a function of 
the structuring element radius) of clinical and synthetic im- 
ages. In the following text, these derivative values are re- 
ferred to as the "average histogram of the size analysis fea- 
ture." 

The coefficient of correlation, /?, between the real, /z/?, 
and synthetic, h^, histograms averaged over all subimages 
(in a given category) is computed as: 

RihR,hs)-- 
^ih^iOhsii) 

where the summation runs over histogram bins /. 

(1) 

2. Kolmogorov-Smirnov (KS) test 

The KS test compares two random distributions based 
upon the maximum difference between their CDFs. It be- 
longs to a group of nonparametric methods which make no 
assumptions about the types of distributions used. The maxi- 
mum difference between two CDFs, D, is a measure of the 
discrepancy between the two sets of samples. Kolmogorov 
showed that for two sets of samples with the same parent 
distribution, the CDF of D is given asymptotically byr'* 
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FIG. 3. Texture energy histograms of the FGT from cUnical (left) and synthetic (right, primed) mammograms. (a) Sample subimage. (b) Image of texture 
energy values, (c) Texture energy histogram (normalized for the range of feature values). 
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where m and n are the numbers of samples in the two sets, 
D,„ „ is the maximum CDF difference for the given number 
of samples, and P is the probability that Z),„ „ is less than a 
given value z- The level of significance, a, is defined as 

P{D,„,„>dJ = a, (3) 

where </„ is the critical value of £),„ „ corresponding to the 
significance a. Thus, the observed discrepancy between a 
CDF drawn from clinical mammograms and a CDF drawn 
from simulated mammograms can be quantified in terms of 

the significance, a, which is the probability that a greater 
discrepancy than observed would occur due to chance alone. 
The relationship between a and da for various sample sizes 
is tabulated in several textbooks.^'*'^^ 

The CDFs of statistics for each subimage from the clinical 
and synthetic mammograms were compared. In the texture 
energy analysis and the fractal analysis, for each subimage 
the appropriate feature value was averaged over all of the 
pixels in the subimage, and this average was used as a 
sample for the KS test. In the morphological analysis, for 
each subimage the first moment of the brightness gradient 
was used as a sample value. 

Both the KS test and the histogram correlation show how 
well, on average, the synthetic images can approximate the 
properties of the clinical mammographic texture. The differ- 
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Disk Radius 
30 
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Fio. 4. Size analysis of the FGT from clinical (left) and synthetic (right, primed) mammograms. (a) Sample subimage. (b) Result of closing 
disk structuring element, (c) Result of closing with a 40 pixel disk, (d) Change in brightness (sum of all pixels) before and after closing, (e) 
brightness. 

with a 10 pixel 
Gradient of the 

ence between the two methods is that the KS test compares 
the mean feature values averaged over each subimage, while 
the histogram correlation takes into account the range of fea- 
ture values computed locally at each pixel. 

3. Illustration of the analysis 

An illustration of the histogram analysis is given in Fig. 3 
by the texture energy features computed on subimages of 
retroareolar glandular tissue. The histogram of a clinical FGT 
subimage is shown on the left and of a synthetic subimage on 
the right. Histograms averaged over all clinical and over all 

synthetic subimages are shown in Fig. 5(c). Figure 4 illus- 
trates the analysis of object size distribution for the retroar- 
eolar glandular tissue. The left-hand side shows the results 
for the clinical FGT and the right-hand side for the synthetic 
FGT. The upper graphs show the average brightness (offset 
for the brightness of the original image) after each morpho- 
logical closing as a function of structuring element (disk) 
size in pixels. Note that the output images get brighter with 
increasing disk size, as seen in the examples of the images 
obtained for the disk radii of 10 and 40 pixels. The graph in 
Fig. 4(e) shows the gradient of the features graphed in Fig. 
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FIG. 5. Comparison between clinical and synthetic images of retroareolar fibroglandular tissue: CDFs of the (a) mean texture energy feature and (b) mean 
fractal analysis feature: average histograms of the (c) mean texture energy feature and (d) mean fractal analysis feature. 

4(d). The gradient is used in place of the feature histogram 
for the size analysis. (Running averages of the gradients are 
shown for clarity.) Mean feature values, whose distributions 
were analyzed by the KS test, are also indicated on the 
graphs in Fig. 4(e). For texture energy and fractal dimension, 
the mean feature values were computed as the first moments 
of the feature histograms of each subimage. CDFs for all 
cUnical and three groups of synthetic subimage means are 
shown in Fig. 6(b). 

Figure 5 shows the CDF of the mean feature values and 
the average histograms for texture energy and fractal dimen- 
sion computed for the samples of retroareolar glandular tis- 
sue regions in clinical and synthetic mammograms. Figure 6 

gives the cumulative distributions of the first moments of the 
brightness gradients and the average brightness gradients for 
the size analysis of the clinical and synthetic samples of the 
subcutaneous adipose tissue (left) and the retroareolar glan- 
dular tissue (right). 

III. RESULTS AND DISCUSSION 

Results of the synthetic texture evaluation are presented in 
the form of graphs of the histogram correlation coefficients 
and maximum CDF differences computed for several texture 
features. Simulations were performed for three ranges of 
compartment size and for two spatial resolutions. Figures 
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7-10 show the results for subcutaneous adipose tissue, ret- 
romammary adipose tissue, retroareolar glandular and dense 
glandular tissue regions, respectively. The abscissa in these 
graphs is not a continuous variable, but indicates the size 
range of the simulated breast anatomic structures (adipose 
compartments). Texture features are labeled by different 
symbols: circle=average structure size, diamond=texture 
energy, and triangle=fractal dimension. 

The graphs labeled (a) in Figs. 7-10 show the values of 
histogram correlation. Higher values indicate better correla- 
tion, with a maximum possible value of unity. A boot-strap 
analysis of the histogram correlation (averaged over all tissue 

types, texture measures, and synthetic structure sizes) was 
used to calculate a standard deviation of approximately 
0.003. In the CDF difference graphs [labeled (b)], the maxi- 
mum difference between the CDFs is equal to one. Thus, the 
lower the value, the better the agreement between the clinical 
and synthetic textures. The CDF difference is translated into 
a significance level, as explained previously, on the vertical 
axis at the right of the graphs. Values of the CDF difference 
corresponding to significance levels of 1%, 5%, and 20% are 
shown. 

It can be seen that the size analysis (represented by 
circles) shows better agreement between the clinical and syn- 
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FIG. 7. Summary of (a) histogram correlation and (b) the results of the KS 
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of size of synthetic tissue structures and for the three texture analysis meth- 
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FIG. 8. Summary of (a) histogram correlation and (b) the results of the KS 
test, for retromammary adipose tissue. The data are presented for three 
ranges of size of synthetic tissue structures and for the three texture analysis 
methods. 

thetic texture, than the other two features. This is expected as 
the size of the radiolucencies is related to the size of the 
adipose compartments, while the other features are more sen- 
sitive to local, small scale structure. The current version of 
our model does not include fine, local tissue detail. 

Results for the retroareolar glandular tissue regions are 
shown in Fig. 9. Most of the feature values are concentrated 
very close to one in the histogram correlation graph, indicat- 
ing good agreement between the simulation and the real 
mammograms. Also, the CDF difference for the retroareolar 
glandular tissue are lower that for the other tissue regions. 
The dense glandular region shows similarly good agreement 
(Fig. 10). By comparison, both glandular tissue regions are 
simulated better than the adipose regions (Figs. 7 and 8). 

A repeated comparison between synthetic and real mam- 
mograms at a resolution of 400 yam/pixel (not plotted) 
showed that the simulation results were not affected signifi- 
cantly by the change of resolution. In addition, from Figs. 7 
to 10 one can see that the analyzed features are sensitive to 
the size of simulated anatomical structures and that the 
agreement between the synthetic and clinical mammograms 
depends upon our selection of the simulated structure size. A 

partial analysis of a larger set of synthetic mammograms was 
also performed and no significant changes in the comparison 
with the set of real images were found. 

The agreement between distributions of mean texture fea- 
tures suggests that the synthetic images sufficiently well 
simulate mean features of the cUnical texture. Similarity be- 
tween the averaged histograms of real and synthetic texture 
features means that our synthetic images can simulate the 
range of features seen over a large group of mammograms, 
not necessarily matching the feature distribution of any par- 
ticular mammogram. 

By varying the parameters which control the sizes of 
breast tissue model elements, we were able to match the 
average statistical properties of cUnical mammograms for all 
tissue types except the retromammary fat. The best match for 
clinical mammogram texture was achieved for the simulated 
compartments with radii of 4-13.3 mm ("Medium" and 
"Large," as labeled in Table I in the accompanying paper') 
in predominantly adipose tissue region, and with radii of 
2.7-5.33 mm ("Large") and 1.3-2.7 mm ("Small") in the 
retroareolar and dense FGT region, respectively. These pa- 
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FIG. 9. Summary of (a) histogram correlation and (b) the results of the KS 
test, for retroareolar fibroglandular tissue. The data are presented for three 
ranges of size of synthetic tissue structures and for the three texture analysis 
methods. 
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FIG. 10. Summary of (a) histogram correlation and (b) the results of the 
KS test, for dense fibroglandular tissue. The data are presented for three 
ranges of size of synthetic tissue structures and for the three texture analysis 
methods. 

rameters were chosen because of high histogram correlation 
values and low maximum CDF difference; the corresponding 
distribution of the size analysis features for real and synthetic 
images cannot be distinguished at the 5% level. A difference 
between the retroareolar and dense FGT region is expected, 
since the retroareolar region contains more fat clustered in 
larger compartments than in dense regions. Further under- 
standing of the clinical retromammary adipose tissue struc- 
ture is needed to improve the simulation. 

IV. CONCLUSIONS 
Evaluation of the synthetic mammograms was performed 

by texture analysis and comparison with normal clinical 
mammograms from the MIAS database. By varying the dis- 
tribution of tissue structures in the model we have been able 
to match some of the statistical properties of clinical mam- 
mograms. Quantitatively, the synthetic mammograms have a 
similar distribution of the values averaged over a large num- 
ber of mammograms for several texture features, namely the 
average size of image objects, the texture energy, and the 
fractal dimension. The analysis of mammogram object size is 

closely related to the size analysis of the medium scale phan- 
tom elements, simulating adipose compartments in the 
breast, which are responsible for generation of the synthetic 
mammogram texture. This was the first such use of the mor- 
phological analysis of lucent mammogram regions, repre- 
senting the projections of adipose compartments. Previous 
applications of morphology focused on the mammogram re- 
gions brighter than their surroundings, such as the fibrous 
structures and microcalcifications. The texture energy and 
the fractal dimension are more sensitive to the local variation 
of pixel intensities due to the small scale breast tissue struc- 
tures. 

Our model clearly captures the coarse tissue structures of 
the breast for all the tissue subregions except the retromam- 
mary fat. This exception is likely due to the fact that cur- 
rently the retromammary adipose tissue is simulated in the 
same way as the subcutaneous tissue, although it is possible 
that the amount of fibroglandular tissue differs in these two 
regions. The model is less capable of capturing the small 
scale structures of the breast, e.g., blood and lymph vessels 
and fine tissue detail, which affect fine texture and give or- 
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ganized structure familiar to radiologists. The overly geomet- 
ric appearance of the borders between the AT and FGT re- 
gions in the synthetic mammograms can be improved by 
small, random variations in the position of the borders in the 
compressed tissue model. Differences between the synthetic 
and clinical images are more evident for texture measures 
that emphasize smaller spatial scales, in agreement with the 
quaUtative visual assessment. We expect that the introduction 
of detailed tissue structures in our breast model will enhance 
the local variations of synthetic mammograms and the varia- 
tions in feature distribution needed to better match cHnical 
images. 
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APPENDIX: BACKGROUND ON TEXTURE 
ANALYSIS 

1. Mathematical morphology 

Morphological operations are performed on an image, 
f{x,y), using a second set of pixels, S, called the structuring 
element. The basic morphological operations, are defined 
by:'-^ 

Dilation: {feS)(x,y) = max{fix+x',y+y')\{x',y')eS}, 

Erosion: {fes){x,y) = imn{f{x-x',y-y')\ix',y')eS}, 

(Al) 
Opening: fOS = (feS)®S, 

Closing: fS = {f®S)eS. 

2. Texture energy analysis 

2D convolution masks for texture energy analysis are de- 
rived using ID masks with different number of zero- 
crossings, designed to detect different texture properties. For 
example, the five-element ID masks are:^ 

Level: L5 = [l   4 6 4   1], 

Edge: £:5 = [-l   -2 0 2   1], 

Spot: S5 = [-l   0 2 0  -1], 

Wave:  H'5=[-l  2 0-2   1], 

Ripple: /?5=[1   -4 6  -4   1]. 

The most often used 2D masks in mammogram analysis 
are 5X5 "level" and "ripple" masks, obtained by the prod- 
uct of the corresponding ID masks (R5R5=R5^R5 and 
L5L5=L5^L5): 

r 1     -4 6 -4 1 

-4      16 -24 16 -4 

R5R5= 6      -24 36 -24 6 

-4      16 -24 16 -4 

1       -4 6 -4 1 

■14     6 4 1- 

4    16    24 16 4 

L5L5 = 6    24    36 24 6 , 

4    16    24 16 4 

_1     4      6 4 1. 

Fractal analysis 

(A2) 

Image fractal dimension is usually defined using the area 
of the image surface. When the scale, e, is increased (which 
corresponds to decreasing the resolution) the area of a fractal 
surface, A{e), decreases. The fractal dimension, D, is related 
to the slope of decreasing area on a log-log plot, as 

log A(€) = log const-l- (2 — £))log e. (A3) 

There are several algorithms for computing fractal dimension 
based upon box counting, image power spectrum, or iterated 
function systems. Any attempt at measuring fractal dimen- 
sion must deal with the fact that self-similarity of real images 
holds only over a limited range of scales, due to actual struc- 
ture and Umitations of the imaging process. 27 
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Classification of Galactograms 
with Ramification Matrices: 

Preliminary Results^ 
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Materials and Methods The ductal trees were manually segmented for 25 galactographic views from 15 patients, and 
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conclusion. The preliminary analysis indicates that it may be possible to identify cases with reported galactograph.c find- 

ings by using R matrices. 
Key Words. Breast, ducts; breast neoplasms, diagnosis; galactography. 
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Virtually all breast cancers derive from epithelial tissue, 
with 90% of malignant lesions arising in the ductal epi- 
thelium (1, p 118). Most carcinomas spread initially along 
the lumen of the ducts or lobules. Evidence of this 
growth pattern is seen in the distribution of calcifications 
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associated with early breast cancer, which often follows 

the ductal pathway (2). 
Major ducts of the breast extend from the nipple to- 

ward the chest wall in a branching network of smaller 
and smaller ducts, which defines a draining territory, or 
lobe (1,3-6). The adult breast contains 15-20 irregular 
lobes, which converge to the nipple. Each lobe is drained 
by its own major duct. Several major ducts merge to form 
an ampulla (or lactiferous sinus), a dilated segment be- 
neath the nipple. Branching of the ducts toward the chest 
wall continues until a duct finally ends in blunt fingerlike 
ductules formed by the acini, the basic glandular secre- 
tory units. During lactation the ductal network drains milk 
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produced in the acini. Ductules surrounded by specialized 
connective tissue are called lobules. A lobule with its ter- 
minal duct is known as the terminal ductal lobular unit. 

Some cancers are revealed by nipple discharge alone, 
with no palpable or mammographic lesions. Indicated in 
cases of nipple discharge, galactography is a procedure 
for imaging the contrast material-enhanced ductal net- 
work (7-9). It is performed by carefully identifying the 
discharging nipple orifice, introducing a blunt needle, and 
injecting a small amount of radiographic contrast mate- 
rial. Pre- and postcontrast mammograms are obtained 
with the needle in place, thereby revealing the breast lobe 
that contains the discharging duct. Various ductal patterns 
(eg, filling defects, ductal ectasia) can be recognized from 
galactograms (10). Galactography lacks specificity (1), a 
situation that results in a large number of biopsies with 
normal or benign results. A quantitative radiographic clas- 
sification scheme for galactograms might help reduce the 
percentage of biopsies with negative results and the re- 
lated psychological and economic effects. 

The ductal origin of breast cancer is the physiological 
basis for various techniques of diagnosis and treatment. 
The analysis of nipple aspirate fluid (11) has been investi- 
gated for early cancer detection. Breast cancer risk has 
been estimated by analyzing the parenchymal pattern of 
projected fibrous and ductal structures (12). In surgical 
assessment of nipple discharge, preoperative staining of 
the ducts can minimize the amount of tissue excised (9). 
The breast ductal network has been modeled by tracing 
the points of duct entrance to and exit from a series of 
subgross histologic slices (13,14). The use of statistical 
analyses of ductal networks for breast modeling also has 
been reported (15,16). 

Describing the normal ductal network is difficult be- 
cause of anatomic variability and low radiographic con- 
trast. Here, we report a method of analyzing ductal net- 
works by using ramification matrices (R matrices), which 
describe the topologic shape of a treelike structure (17). 
The R-matrix elements represent branching probabilities 
at various levels of a tree and can be used to describe a 
given tree or to generate a family of trees. The probabilis- 
tic nature of R matrices makes them useful for generating 
many individual synthetic trees with matching statistical 
properties of branching. For this reason, R matrices have 
been used to generate ductal networks in breast modeling 
for mammographic simulation (16). 

The morphology of the ductal network reflects the 
state of breast development and the healthy or pathologic 
state of the breast tissue, as has been shown by analyses 

of the branching of murine mammary ducts in different 
phases of gland development (18,19) and by studies of 
epithelial cellular organization under the influence of hor- 
mones, growth factors, and carcinogens (20-22). We hy- 
pothesize that diseases of the breast, demonstrated 
through alterations of the normal ductal anatomy, can be 
quantified and classified from galactograms. In the present 
study, we manually segmented ductal trees from 25 galac- 
tograms, calculated the R matrices, and computed the 
probability of correct classification for a combination of 
R-matrix elements. We also tested the robustness of the 
R-matrix representation by analyzing pruned trees. 

MATERIALS AND METHODS 

Clinical galactograms for this analysis were obtained 
retrospectively fi-om 15 patients with a mean age of 49.2 
years (range, 29-75 years). These patients were selected 
from a group of 41 who had undergone galactography at 
the Thomas Jefferson University Breast Imaging Center, 
Philadelphia, Pa, during the 6'/2-year period from June 
1994 through January 2001. Galactograms from 17 of the 
41 patients were unavailable because they had been re- 
turned to the patients or the primary health care institu- 
tions, and galactograms from another nine patients were 
not used, because of obstruction or poor image quality 
(ie, the complete ductal tree could not be segmented). Of 
the 15 patients whose cases were analyzed, eight (mean 
age, 44.2 years; range, 29-74 years) had no reported ga- 
lactographic findings (hereafter NF), and seven (mean 
age, 54.8 years; range, 43-75 years) had galactographic 
findings of ductal ectasia, cysts, or papilloma (hereafter 
RF). Twenty-five galactographic views of the 15 patients 
were analyzed (16 craniocaudal [CC] and nine mediolat- 
eral or mediolateral oblique [hereafter denoted in combi- 
nation as ML/MLO]), of which 12 views (eight CC and 
four ML/MLO) were from NF cases and 13 (eight CC 
and five ML/MLO) were from RF cases. There were no 
reported findings of malignancy from these 25 galacto- 
grams. Furthermore, mammographic follow-up data were 
available for eight of the 15 patients for an average pe- 
riod of 4.75 years (range, 3.5-6.0 years), and no malig- 
nancies were reported. Patients' ages, available galacto- 
graphic views, symptoms, and reported galactographic 
findings are listed in the Table. 

To reconstruct the ductal topology, each branch in the 
ductal network was drawn by hand on a sheet of tracing 
paper placed over the galactogram displayed on a light 
box (Figure 1). The points where ducts branched were 
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Patient's Age, Available Views, Symptoms, and Galactographic Findings 

Age (y) 

29 
30 
32 
36 
43 
44 
45 
45 
47 

50 
55 
63 
70 
74 
75 

View 

LCC 
LML, LCC 
LML(Mag), LCC 
LCC 
RML, RCC 
RCC 
RCC, LML 
LCC 
RMLO, RCC 
RML, RCC 
RML, RCC 
RCC, RMLO 
LMLO, LCC 
RCC 
LCC 
RCC 

Symptom Galactographic Finding 

Note.—LCC = left cranlocaudal, LML = 
lateral oblique, LMLO = left mediolateral oblique, and Mag = magnified. 

Greenish discharge None 

Clear/yellow discharge None 

Bloody discharge None 

Bloody/yellow discharge None 

Greenish discharge Cysts 

Bloody discharge Cysts, ductal ectasia 

Bloody/milky discharge None 

Dilated ducts on mammogram and US image None 

Greenish discharge, mastitis Cysts, ductal ectasia 

Greenish discharge Cysts 

Clear discharge Cysts 

Darkish discharge None 

Bloody discharge Ductal ectasia 

Clear/bloody discharge None 

Bloody discharge Papilloma 

mfiriinlateral. RML = rioht mediolateral, RCC = right cranlocaudal, RMLO = right medio- 

distinguished from the points of overlap by the fact that 
the latter are galactographically brighter, due to superpo- 
sition of the x-ray attenuation. Large ducts were recon- 
structed by connecting the marked points. In each of the 
segmented ductal trees, the root, internal and terminal 
nodes, and branches were labeled and the R-matrix ele- 
ments were computed as described by Viennot et al (17). 
Simplified, the algorithm is given as follows: (a) all ter- 
minal branches have label 1, (ft) a "parent" branch whose 
"children" have labels / and; will be labeled by max(/, j) 
if / i= j or by (i + 1) if i = j, and (c) the labeling proce- 
dure continues until the root branch is reached whose la- 
bel s is called the Strahler number of the tree structure. 

The R matrix of a tree with Strahler number 5 is a 
lower triangular matrix, defined as 

/?(.,-,).. = ['•*•,; = b,j!a„ k £ (2, s)J&{\, k)],     (1) 

where Uk is equal to the number of branches with label k 
(17). Fory < k, bi,j is the number of pairs of branches 
with labels k and;, while for; = k, b^j is the number of 
pairs of branches both labeled k - I, descending from a 
node. Therefore, nj = bk/a,, = pibja,,) is the probability 
that a branch with label k will bifurcate into branches 
with the appropriate labels. Figure Ic shows the numeri- 
cally labeled branches of the segmented ductal tree fi-om 
Figure la. In Figure Ic, there are 14 branches with label 
2, six of which bifurcate into pairs of branches with la- 

bels 1 and 2, corresponding to the probability of rj.i - 
6/14 = 0.43. The other eight branches with label 2 bifur- 
cate into pairs of branches both with label 1, correspond- 
ing to the probability of rj.z = 8/14 = 0.57. In a similar 
manner, all the elements of the R matrix shown in Figure 
Id were computed from the galactogram shown in Figure 
la. We computed R matrices with nine elements and 
Strahler number 5 = 4, corresponding to a root branch 

with label 4. 
A linear Bayesian decision rule was used to classify 

the galactographic findings. In the design of the Bayesian 
classifier, we assumed that the data were normally distrib- 
uted and that the population standard deviation was the 
same for both classes. These assumptions reduce the risk 
of overspecification due to the small sample size. We es- 
timated the standard error of the classification results by 
means of a leave-one-out (jackknife) method, in which 
the percentages correctly classified are calculated for sub- 
sets of the data formed by leaving each sample out in 
turn. The standard error of the classification results is 
then the standard deviation of the values calculated for 
the jackknife subsamples (23). 

A preliminary test of the robustness of the R-matrix 
approach was performed by analyzing pruned ductal trees 
derived from an original tree after removal of a single 
terminal branch. This test was proposed because of the 
observed ambiguity in tracing terminal branches, which 
can be easily overlooked due to their small size and low 
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.._i....- 

Figure 1.   Segmentation of a ductal tree, 
showing (a) part of a galactogram with a con- 
trast-enhanced ductal networl<, (b) the manu- 
aily traced network of larger ducts from the 
contrast-enhanced portion of the galacto- 
gram, (c) numeric labeling of branches in the 
ductal network, and (d) the R matrix com- 
puted from the branching pattern. The dots, 
triangles, and squares denote branching 
points of different levels of the tree. 

/■2,1    '"2,2       • 

r:u ■''.■(,2 '■.■(,:)    • 

''"1,1  '■'(,2 ''.I,:) '"-I,'! 

0.43 n..57     . 

0    0.33 0.G7    . 

0    0.75    0    0.25 

contrast. Consequently, some of the terminal branches 
might have been omitted, resulting in a pruned version of 
the original tree. The R matrix of a pruned tree was com- 
puted and the procedure was repeated for each of the ter- 
minal branches in the original tree. A comparison was 
performed by computing the root-mean-square fractional 

difference, as follows: 

fkj ■ 
pnin 

fk.. 
/Ku (2) 

where r^; and r^™" are the elements of the original R ma- 
trix and the matrix averaged over all pruned versions of 
the original tree, respectively. A^ei is the number of non- 
zero R-matrix elements (N.x < 9 for 5 = 4, from Eq [1]). 

The values of the R-matrix elements calculated from 
clinical galactograms and the averages over all NF and all 

RF cases are plotted' in Figure 2. Some matrix elements 
show a noticeable difference in mean value between the 
two classes (eg, rj.j and rj,,), suggesting the possibility of 
classifying galactographic findings on the basis of R ma- 
trices. We evaluated a classification scheme that used ei- 
ther a single matrix element or a pair of them and a linear 
Bayesian decision rule in a leave-one-out fashion. The 
classification performance of a single R-matrix element 
was best (in terms of the sum of the correctly identified 
fractions in the two groups) for r^^^, which correctly clas- 
sified 92% ± 2 of NF and 62% ± 3 of RF cases. In a 
combination of two elements, ^3,3 and r^i correctly classi- 
fied 83% ± 4 of NF cases and 77% ± 4 of RF cases. 
Figure 3 illustrates the classification results. 

To estimate the statistical significance of the classifica- 
tion results, we performed an additional experiment by 
using random numbers as descriptive parameters. Six 
numbers, corresponding to the linearly independent ele- 
ments of the R matrix with nine elements, were randomly 
generated for each of the 25 galactograms. This procedure 
was repeated for 10,000 trials, and in each trial the ran- 
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Figure 2.   Values of the R-matrIx elements. Bold symbols (O = 
RF, * = NF) represent element values averaged over all RF and 
all NF cases, and light symbols represent the individual cases. 
Error bars correspond to the sample standard deviations. 
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Figure 3.   Classification of galactographic findings based on ele- 
ments of the R matrix and a Bayesian linear decision rule. Bold 
symbols (O = RF, * = NF) represent element values averaged 
over all RF and NF cases, and light symbols represent the individ- 
ual cases. Short dashes indicate Bayesian decision line for ra.a, 
and long dashes indicate Bayesian decision line for r3,2, r^^s- 

trees pruned in the same fashion, yielded an average root- 
mean-square fractional difference of 6.8% (24). 

domly generated data were used to classify galactograms 
by means of either one or two matrix elements, as was 
done for the real data. In 0.7% of trials, one of the pa- 
rameters showed a classification power of at least 92% 
for one class and at least 62% for the other—comparable 
with the performance of element r^^^ on the clinical galac- 
tograms. Thus, if the classification result observed for the 
clinical galactograms is by chance alone, it would be en- 
countered in just 0.7% of repeated experiments, and the 
statistical significance for classification with rs^ is P = 
.007. The classification results achieved with the pair of 
elements r^i and ^3,3 was not statistically significant (P = 

.108). 
The analysis of the pruned versions of the clinical ga- 

lactograms showed an average root-mean-square frac- 
tional difference between the original R-matrix elements 
and the elements averaged over all pruned trees of 9.7% 
for all NF and RF galactograms (6.5% for the NF cases 
and 12.6% for the RF cases). A similar analysis, which 
considered 1,000 synthetically generated random binary 

DISCUSSION 

We investigated the branching structure of ducts visu- 
alized on galactograms and evaluated the use of R matri- 
ces to classify galactographic findings. As an illustration 
of the classification results, Figure 4 shows two galacto- 
grams from the sets of NF and RF cases used in the 
study. The NF galactogram in Figure 4a corresponds to 
the values r3,2 = 0.5 and ^3,3 = 0.19. The RF galactogram 
in Figure 4b corresponds to the values r3,2 = 0.33 and 

r3,3 = 0.67. 
Results obtained in this study show that element ^3,2 is 

approximately 50% smaller and element r3,3 is approxi- 
mately 50% larger when averaged over all RF images, 

0.20 relative to the average over NF images: <r3,2> 
whereas <r?> = 0.38, and <r}l> = 0.52 whereas 
<r^l> = 0.33. These differences in the matrix elements 
may be due to long-term processes that alter the ductal 
branching pattern. Another explanation may be cutoff or 
dilation of the ducts, which affects the filling of the duc- 
tal network with contrast agent and the visibility of the 
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Figure 4.   Two examples of galactograms 
that have been correctly classified by means 
of R matrices, (a) Gaiactogram with no re- 
ported findings (patient age, 45 years; right 
CC view; r3,2 = 0.5 and ^3,3 = 0.19). (Large 
bright regions seen in this gaiactogram are 
due to extravasation, which did not affect the 
segmentation of the ductal tree.) (b) Gaiacto- 
gram with a reported finding of cysts (patient 
age, 55 years; right CC view; r3,2 = 0.33 and 
r3.3 = 0.67). 

smaller ducts, thereby altering the calculated R matrix. 
Further research is needed to investigate the relationship 
between galactographic changes and R-matrix element 
values. 

The root-mean-square fractional difference, estimated 
from analysis of the pruned ductal trees, is on average 
9.7%, significantly smaller than the difference between 
the average values of matrix elements ^3 2 and ^3 3. More- 
over, the sample standard deviation of these elements is 
significantly larger than the root-mean-square difference 
measured from pruning. The means and standard devia- 
tions of these elements are shown in Figure 2. These 
findings substantiate the robustness of the R-matrix repre- 
sentation of ductal networks, as the observed variation in 
the galactograms cannot be explained by the accuracy of 
the segmentation. 

Evaluation with the simulated data showed that clas- 
sification based on a single element, 7-33, performs at a 
statistically significant level (P = .007). The perfor- 
mance of classification based on a pair of elements, ^3 2 
and ^3 3, was not significant (P = .108). This reduction 
in significance is understandable given that the use of 
two matrix elements increases the probability that some 

pair will give a spuriously efficacious classification 
and given that the classifier design assigned equal im- 
portance to each matrix element to avoid overspecifica- 
tion. 

Several confounding factors should be considered in 
the interpretation of these results. Patient age distributions 
differ for the NF and RF cases (mean age, 44.2 years for 
NF vs 54.8 years for RF). We tested and found essen- 
tially no correlation between the age and the matrix ele- 
ment values, with Pearson correlation coefficient values 
of 0.18 and 0.01 for the elements r3 2 and ^33, respec- 
tively. Another possible influence could be our combina- 
tion of galactograms obtained with all views, CC and 
ML/MLO. In an ideal case, with all the branches visible 
and with perfect segmentation, the reconstructed ductal 
trees would be the same on both CC and ML/MLO 
views, as would the corresponding R matrices, which was 
not the case in this experiment. We compared the maxi- 
mum difference between the mean element values com- 
puted over normal and benign galactograms with the 
maximum difference between the mean element values 
computed over CC and ML/MLO views and found the 
former difference approximately two times greater than 
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the latter. The most limiting factor in our study, however, 
was the small sample. 

In summary, our preliminary analysis indicates that R 
matrices may be used to identify cases with reported ga- 
lactographic findings. The performance of classification 
with a single matrix element was statistically significant 
in a set of eight NF cases (12 views) and seven RF cases 
(13 views) with findings of ductal ectasia, cysts, or papil- 
loma. Further experiments should use more galactograms 
and a more sophisticated decision rule and should include 
malignant cases. 
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I. INTRODUCTION 

A significant limitation of projection radiography is that relevant findings are often ob- 

scured or mimicked by the x-ray shadows of other anatomical structures (summation ar- 

tifacts). By comparison, stereoradiography allows superimposed structures to be spatially 

separated, reducing the confounding effects of overlap. Stereoradiography was first proposed 

by Thomson in 1896-^ and continued to be used for certain radiographic procedures until the 

1980's.  The first recorded use of stereomammography occurred in 1930.^ The advantages 

and disadvantages of stereoradiographic techniques are discussed in several radiographic text 

books and articles, e.g. Curry et al.} Improvements in image quality of conventional film- 

screen radiographic systems combined with the added effort, cost and patient dose led to a 

decline in the use of stereoradiography and stereomammography.^ Development of digital x- 

ray detectors and softcopy reading has resulted in a renewal of interest in stereoradiography 

as a potentially useful method of reducing summation artifacts. 

Dose in radiography is constrained by the imaging task, the x-ray quantum mottle, and 

the detector specifications.   Quantum mottle is caused by the fluctuation in the number 

of x-ray quanta produced and transmitted through the tissue. For the same detector, the 

fewer the x-ray quanta, the greater the relative fluctuation, and the lower the signal-to-noise 

ratio of the object to be detected. An example of detector limitations is the characteristic 

("H and D") curve, which determines a minimal useful exposure.   The issues of dose in 

stereoradiography are either not mentioned in textbooks^"^ or it is suggested that a stere- 

ographic technique requires a total of twice the exposure of a single-projection technique.'' 

Signal detection theory suggests that, under quantum limited conditions, an ideal observer 

would be able to combine information from the two stereoscopic views and thereby suppress 

quantum mottle. Thus, under this model, two stereoscopic views, each acquired with one 

half of the dose of a single-projection radiograph, would provide the same level of resilience 

to quantum noise as a single projection acquired with the same total dose, but provide the 

inherent benefits of stereoscopic viewing. 



Human observers perform certain visual tasks more efficaciously when fusing information 

from both eyes.^'^ In this paper we are concerned with the tasks of contrast perception and 

noise suppression, which are complementary to the well described advantages of stereoscopy 

in depth perception. For example, threshold measurements of sinusoidal patterns have shown 

a decrease in threshold (i.e., an increase in sensitivity) of a factor of \/2 when viewing is 

performed binocularly as opposed to monocularly.^° This increase in sensitivity is precisely 

as expected for an ideal observer combining the signal from each eye. The quantum mottle in 

x-ray projections is different from the sources of noise in these experiments; in a radiograph, 

a given realization of the noise is permanently recorded at the time of acquisition and it is 

presented to each eye as a fixed pattern. For example, we note that flat random-noise fields 

presented stereoscopically cause lustre-^^ (i.e., the image to appear to shiriimer) due to an 

attempt by the visual system to stereoscopically fuse the random bright and dark variations. 

The question of threshold detection of objects stereoradiographically is different from 

detection in other stereoscopic settings. To address this difference and examine the role of 

dose in stereoscopy we performed an observer study. Observer studies of stereoradiography 

have been reported in the literature previously. Kundel et al.^ compared stereoscopic acu- 

ity and effects of monocular depth cues under direct vision and in stereofluoroscopy, while 

Goodsitt, Chan, and Hadjiiski^^ studied depth perception in stereomammography. Berkson 

et al.^ compared the number of false negatives/positives in mono- and stereoscopic chest 

radiographs and Hsu et alP studied detection of simulated abnormalities in stereomam- 

mography. 

Our observer study was based upon the hypothesis that in the merging of left and right 

eye images by the human visual system, the dose needed for each of the two stereoradio- 

graphic images is equal to one half of the dose for a single x-ray image viewed monoscopically. 

Thus, by corollary, we hypothesize that viewing a stereoscopic image will result in an ef- 

fective increase in SNR by a factor of \/2. A series of contrast-detail (C-d) experiments 

were performed with stereoradiographic images acquired over a range of exposures. The 

C-d experiment belongs to a class of threshold-visibility psychophysical measurements.-'^'^ In 



the study, observers attempted to detect details in a C-d phantom. The observers scored 

the phantom monoscopically (both eyes seeing the same radiographic projection) and stereo- 

scopically (each eye seeing a separately acquired projection). The focus of the study was 

on the issue of whether the human observer could combine the stereoscopic images in a 

manner so as to reduce the apparent quantum mottle. The two projections in each stere- 

oradiographic pair were, therefore, acquired separately, although with the same geometry. 

No depth information was encoded, i.e., all objects were positioned in the imaging plane, 

to avoid the confounding issues of the variable ability of observers to fuse stereo pairs. The 

observers' performances were evaluated in terms of the difference in number of details seen 

stereo- vs. monoscopically, effective stereoscopic dose (equal to the dose needed for a mono- 

scopic viewing with the same performance as for the stereoscopy), and the effective decrease 

in the threshold SNR values. 

II. MATERIALS AND METHODS 

A. Image acquisition 

Radiographic images of an RMI-180 mammographic C-d phantom (Gammex RMI, Mid- 

dleton, WI) were used in the observer study. The phantom has 90 objects aligned in nine 

columns. Adjacent objects within the same column differ in diameter by a factor of V2, 

with a range of 7.07-0.312 mm. The thickness of the objects in adjacent columns also differ 

by a factor of \/2, with a range of 1.0-0.062 mm. The phantom projections were acquired 

with a DirectRay flat panel digital x-ray detector (Hologic/Direct Radiography, Newark, 

DE),^^ without a grid. Observers were presented with a subregion of 650 x 810 pixels with 

the original resolution of 147 yum pixels, including all the phantom details. 

Imaging was performed at 60 kVp and at six mAs stations in the range of 2-100 mAs, 

using a general radiography Bi-150 30/50 x-ray tube (Siemens, Munich, Germany) with 

tungsten target, a measured HVL of 1.34 mm Al (at 60 kVp), and a Heliophos 5S generator 



(Siemens, Munich, Germany). Additional filtration of 6cm of Incite was used to simulate 

tissue and appropriately harden the beam. The block of Incite was positioned near the x-ray 

focus in order to reduce scatter and provide for uniform beam filtration. The phantom was 

imaged in contact with the detector (112 cm from the focal spot) and was placed within 

a wide lucite frame of equal thickness, providing uniform scatter throughout the whole 

phantom area. At each mAs station, we acquired five images of the phantom, as well as ten 

dark field (x-rays off) and ten bright field (x-rays on, with the phantom removed) images. 

The bright and dark fields were used for correcting the gain and offset variations of the 

individual detector elements (dels). 

B. Image processing 

The raw acquired phantom images were corrected to compensate for the effects of detector 

nonuniformity and adjusted for the non-linearity of human contrast sensitivity. 

1. Detector nonuniformity 

A standard procedure for reducing the pixel variations due to the gain and offset vari- 

ations of dels is to apply a dark and bright field correction. Corrected pixel values were 

computed as: 

where / and Icorr are the original and corrected pixel values, respectively; E{D} and E{B} 

are the averages of the dark and the bright fields, respectively; and, K and Inew are param- 

eters transforming the range (contrast) and the mean image pixel values. Subscripts i and 

j denote the position of the pixel in the image array. 

The existence of malfunctioning dels, whose corresponding pixel values are not propor- 

tional to the incident x-ray flux and differ significantly from their neighboring pixels, was 

observed and the corresponding pixel values corrected.  Recently, several researchers have 



investigated this problem. Aach and Metzler^^ proposed image deconvolution using the spec- 

tral analysis of the defect image and Tang et alP used wavelet analysis for identification 

and interpolation of flat panel images used for cone beam CT. 

In our case, the average value and the variance of all the dark fields were computed for 

each del, and the same procedure was repeated for all of the bright fields. First, dels for 

which the digital value was constant accross all of the dark- and bright- field images were 

identified as non-functioning. The pixels corresponding to the non-functioning dels were 

replaced by the average of their immediate neighbors. Second, we computed the spatial 

variance within 3x3 pixel neighborhoods of the phantom images, and averaged the spatial 

variance values over a small and large neighborhood (of size 3 and 5 pixels in diameter, 

respectively). The averaged variance values were then tested against the following criterion: 

<a> 
> C, (2) 

< a >lg 

where < (J >sm and < a >ig are the spatial averages of the values of the pixel standard 

deviations, computed over the small or large neighborhood, respectively and C is the crite- 

rion value. Pixels satisfying the criterion were replaced by the average of their immediate 

neighbors. Many of the affected dels were grouped along several vertical and horizontal 

lines. The value of parameter C that would correct all of the pixels along these lines would 

also produce an undesirably high number of replaced pixels randomly distributed over the 

image; Replacing too many correct pixels might change the statistics of the noise and affect 

the results of the study. Therefore, we identified the Unes of malfunctioning dels in images 

and directly applied the correction. For the rest of the image, the value of C = 2.1, which 

produced only a small number of undesired replacements, was selected. 

2. Non-linear human contrast sensitivity 

Human contrast sensitivity is a non-linear function of luminance.  Relative changes in 

luminance are more easily noticed in bright image areas than in dark areas.^^ Perceptual 



linearization is an image transformation that adjusts tlie brightness so that equal changes 

in the quantity being displayed (here, x-ray fluence at the detector surface) will be equally 

perceived. The contrast sensitivity of the human visual system is approximated by Barten's 

model.-"^^ The model was derived for a standard target of a 2 deg x 2 deg square filled with a 

horizontal or vertical sinusoidal modulation of 4 cycles/deg, placed in a uniform background 

of the mean target luminance.-"-^ The threshold modulation at which the target becomes just 

visible to the average observer defines the just-noticeable difference, JND, at the luminance 

value of the background. The interpolation of the luminance levels corresponding to 1023 

JNDs is given by the grayscale standard display function:•'■^ 

Et=oaSnN^y 
l + EUkilnNAY logioi(iVA)  =   . f^^ Trt. . (3) 

where Nj\ and L are the JND index (i.e., the number of just-noticeable differences) and the 

corresponding luminance value, respectively. Coefficients Cj and bi of the rational polynomial 

interpolation are given in the DICOM standard.-^^ We have incorporated the grayscale stan- 

dard display function into the transformation from the flat-panel output 12-bit pixel value 

to the monitor input 8-bit digital-driver value. This transformation consists of three parts.^^ 

This decomposition offers flexibility to perform observer studies using different monitors or 

at different overall brightness or contrast levels. 

In the first step, the monitor characteristic, relating luminance levels to the 8-bit digital 

driver levels, was interpolated from photometric measurements made by a TEK Lumacolor 

J17 photometer (Tektronix, Beaverton, OR). The luminance values were measured in the 

center and at the periphery of the monitor. The average values at 24 digital driver levels 

were used for interpolation. A fourth order polynomial fit was used for interpolation with 

maximum error of 1.68 digital driver levels (0.6%).   Second, the transformation from the 

luminance values to the number of JNDs was approximated by the grayscale standard display 

function, given by Eq. 3. Third, the linear transformation from 12-bit flat panel output to 

the JND index was used to adjust the common overall brightness and contrast of all the 

phantom images included in the study.   The overall brightness was selected in a small 
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preliminary observer study as the one which gave the largest increase in number of details 

seen stereo- vs. monoscopically. Based on that study, the mid-level between the largest, 

highest contrast element and its annular neighborhood was transformed to a JND index of 

350, corresponding to a digital driver level of 90. 

We have used two strategies for displaying the phantom images. In the first approach, 

we kept the contrast between the first phantom detail and its background fixed for all the 

images displayed in the study. The range between the average brightness in and around 

the first detail was mapped to a range of 328-372 JNDs, corresponding to a range of 73-110 

digital driver levels. In the second approach, the images were modified to have fixed variance 

of the background noise. Each 12-bit pixel value was multiplied by the ratio between the 

standard deviation of the background noise (of the given image) and the standard deviation 

of the background desired for display. The new values of the average background and 

the background standard deviation were selected so that a range of about ±3 background 

standard deviations could be shown by the 8-bit monitor digital driver levels. A discussion 

about the effects of display strategy on the results of the experiment is given in Section IV. 

In both strategies, the linear transformation from the flat-panel output to the JND index, 

was image dependent. An example of a processed phantom image is shown in Figure 1. 

C. Observer study 

1. Selection and display of images 

Six medical physicists participated in the study. Each observer was presented with 

60 images, consisting of 30 for monoscopic viewing and 30 for stereoscopic viewing. The 

monoscopic images were displayed so that both the left and right eye saw the same image, 

while for the stereoscopy, the left and right eye images were different. Each of the observers 

saw the same set of monoscopic images (there were 5 images for each of 6 exposure levels). 

A set of 5 out of twenty possible stereo image pairs for each mAs was selected randomly for 



each observer. 

The two sequences of 30 images, one for mono- and the other for stereoscopic viewing, 

were separately randomly permuted and then interleaved into a single sequence of the form: 

...   Mn Sn Mn+1 Sn+l ■■■, 

where Mi and Si represent mono and stereo images, respectively. Next, the positions of the 

mono and stereo images, in each mono-stereo pair, were randomly changed in order to break 

the repetition of mono following stereo, and to decrease possible observer bias. 

2. Test of stereoscopic acuity 

The stereoscopic acuity of the observers participating in the study was tested using a 

standard clinical test, the RANDOT Stereotest (Stereo Optical Company, Chicago, IL). The 

test consists of image pairs with or without angular disparity. The images in a pair are or- 

thogonally polarized and the stereo effect is observed using appropriately polarized glasses. 

The images are divided into three groups with different content (geometric figures, animals, 

and triplets of circles) designed to assess the stereoscopic acuity in a wide range of patients' 

age. The images in each of the groups gradually decrease in angular disparity and roughly 

cover the range of 20-500 seconds of arc when viewed from 40 cm distance. Stereoscopic 

acuity is measured by identifying the image, and the corresponding angular disparity, be- 

yond which the observer cannot distinguish between the objects with and without disparity. 

Table I shows the minimum observable angular disparity for the six observers. 

3.  Viewing conditions and scoring 

The C-d experiments were performed in a darkened room, with a black monitor back- 

ground. The distance between the observer's eyes and the monitor was approximately 1 

m. The monitor used in the study was equipped for stereoscopy with a stereoscopic gog- 

gles system (StereoGraphics, San Rafael, CA). A transmission box, attached to the monitor. 



controlled the opening and closing of the liquid crystal shutters in the goggles synchronously 

with the changing of the image on the monitor. Therefore, each of the eyes was presented the 

corresponding image with a repetition frequency of 56 Hz. The goggles were used for both 

mono- and stereo experiments to provide a comparable brightness level in both experiments. 

Several training sessions for image scoring were organized for observers in order to es- 

tablish a uniform decision criterion. The observers were trained to inspect the objects from 

largest to smallest and from greatest to least contrast. The objects were inspected for gen- 

eral roundness ("whether or not more than 50% of the edge was visible"), size ("whether 

or not more than 50% of the object was missing"), and the expected position in the detail 

array The goal was to prevent misinterpretation of the clustered background noise as phan- 

tom details. A graphical user interface was developed allowing an observer to identify the 

smallest detail seen in a column by clicking over the detail position. 

We have analyzed the relationship between the inter- and intra-observer variability, by 

having one of the observers additionally reading all the C-d experiments in the study. Thus, 

we could compare the average C-d performance of a group of observers with a single round 

of experiments, and the average performance of a single observer after repeating the study 

multiple times. 

For further comparison, we have also repeated the C-d experiments for all the observers 

without the use of the stereoscopic goggles. Due to the 112 Hz switching between the two 

stereoscopic images on the monitor, the observers were, effectively, presented with an average 

of the left and right eye image. Therefore, we could compare the performance of observers 

attempting to utilize information from disparate images with the performance of observers 

looking at the combined images. 

III. RESULTS 

The observers took, on average, 39 minutes (std. dev. = 2.8 minutes) to score a set of 

60 combined mono and stereo images.  Figure 2 shows the number of details seen mono- 
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and stereoscopically by a single observer, averaged over all images with the same mAs. Fig- 

ure 3 shows the difference between the number of details for stereo and mono images, for 

all the observers. When averaging over different observers, we have included the results of 

all but one of the observers. This observer reported uncorrected vision in one eye, corre- 

sponding to low stereo acuity, and demonstrated a large value of the minimum observable 

angular disparity in the stereo vision RANDOT test (Table I, Observer 6). Furthermore, the 

difference between the number of details seen stereo- vs. monoscopically, for the observer 

in question (Figure 3, points labeled by triangles) was significantly smaller compared to 

the others. We have compared the stereo- and monoscopic performance of the observers by 

analysis of the C-d curves and an analysis of the SNR. 

A. Analysis of C-d curves 

For a low-contrast object with given thickness t and diameter d, contrast is proportional 

to t, and the detectibility is determined by the signal-to-noise ratio, SNR= t d K\/X, 

where X is the exposure in mAs and ET is a proportionality constant. C-d curves relate the 

diameter and thickness of objects at the limits of visibility. Ideally, the {t, d) points in C-d 

experiments would form a line with negative unit slope on a log-log plot, satisfying: 

logioi + logio^^ = logioSNRr - logi^K - -logwX, (4) 

where SNRy is the value of the SNR at the threshold of perception. 

For each observer we calculated their C-d curves by averaging the size of the smallest 

visible detail in each column, over a set of images, e.g., for the same exposure. Computing 

the average detail size is problematic when no details are visible in a given column for one or 

more images, since the contribution of those images to the average is ambiguous. To avoid 

this problem, we chose the median diameter for generating C-d curves. Figure 4 shows the 

average C-d curves for a single observer (the same observer as in Figure 2). Comparison 

of the C-d curves corresponding to stereo- and monoscopic viewing has been performed 
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using the approximation of a line with negative unit slope, as per Eq. 4. The difference in 

the intercept values between the fitted stereo and mono C-d curves can be related to the 

effective exposure for stereoradiography, assuming the same threshold SNR for mono and 

stereo experiments, by 

logio OJM - logio 4  = logio-7^ = logioJ-^^, (5) 
"S -      V    ^M 

where du and ds are the diameters of the smallest visible details viewed mono- and stereo- 

scopically, respectively, for the same detail thickness. Xu is the exposure used in acquiring 

the projection viewed monoscopically, and Xseff/Xu is the ratio of the effective stereoscopic 

exposure (in terms of object visibility) to the exposures used to produce the individual pro- 

jections. Thus, Xseff is defined as the exposure needed to obtain an image which, when 

viewed monoscopically, would produce the same C-d characteristic as the stereo image in 

question. If our hypothesis that human observers can combine information from both im- 

ages is true, then the intercpets of the corresponding linear fits to the C-d curves would be 

separated by y/2. Figure 5 shows the linear approximation of the C-d curves for a single 

viewer. 

Figure 6 (a) shows the relative reduction in exposure when using stereo- rather than 

monoscopic viewing normalized with the hypothesized reduction by half. Plotted are the 

percent values of Rx = Xse///(2 Xu) — [C?M/(V^ ds)f, averaged over all the observers, for 

both display conditions for each per-projection exposure level. If the hypothesis is true, the 

ratio Rx would be equal to 100%. Figure 6 (b) presents Rx for multiple readings done by a 

single observer and both display conditions. For clarity of presentation, the results obtained 

with different display conditions are slightly horizontally displaced on the graph. 

B. Analysis of SNR cut-ofF 

The objects used in this observer study were of low contrast and imaged on a detector 

with essentially no correlation in the noise between detector elements (a white noise power 
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spectrum) ^^. Therefore, for monoscopically viewed images the classic Rose modeP^'^^ is 

applicable, in which the signal-to-noise ratio (SNRM) can be computed from the subject 

contrast and the standard deviation in the pixels values, and object visibility is directly re- 

lated to SNRM- The subscript "M" is used here to emphasize that this is the SNR applicable 

to an analysis of viewing a single image. In Figure 7 the number of objects visible as a func- 

tion of exposure were calculated for a class of ideal observers which would detect all objects 

above a given threshold SNRTM. Thresholds SNR^M of two through seven are shown; the 

number of objects decreases with increasing threshold. Superimposed on Figure 7 are the fits 

to the actual performance of one observer from Figure 2. For monoscopic viewing, the data 

for this observer falls between the theoretical curves corresponding to SNRM thresholds of 

5 and 6, (in agreement with the customary range of estimates of Rose's k). For an observer 

capable of combining information from stereoscopic images the signal-to-noise ratio of each 

object should increase by a factor of ^2, (i.e., SNRs = \/2 SNRM), SO that the object count 

as a function of per-projection exposure would correspond to a monoscopic signal-to-noise 

ratio cut-off reduced by a factor of v^. Consistent with this, the real observer from Figure 7 

does show an increased sensitivity, as will be discussed in detail later. 

Following the Rose model, the results were analyzed by identifying a threshold SNR 

under each viewing condition. For each observer scoring of the phantom, the detected 

details had greater SNRy than the details not detected, with only a few details near the 

threshold not following this pattern. Thus, for each observer scoring of the phantom, the 

threshold was calculated as the mean of the smallest SNRM of the details detected and the 

largest SNRM of the details not detected. The averages of these per-scoring values over the 5 

monoscopic viewings give the monoscopic threshold SNR^j^ for each viewer at each exposure 

level, and similarly the 5 stereoscopic viewings give SNRTS- A hypothetical observer capable 

of reducing the quantum noise in the phantom images by using information from both 

images of the stereoscopic pair would then effectively find the signal to noise ratio of each 

disk increased by a factor of \/2, and thus would present a decrease in the SNRM of the 

threshold objects by a factor of 1/v^. Thus, for such a hypothetical observer, one expects 
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the ratio RSNR = SNRTM/SNRTS = V2. Figure 8 (a) shows the ratio RSNR averaged over 

all the observers at each exposure level. Figure 8 (b) shows the and the ratio RSNR for 

multiple readings performed by a single observer. Discussion of the experimentally observed 

results is presented in the next section. 

IV. DISCUSSION 

A. Effects of display conditions 

The transformation from the flat panel 12-bit output to the number of JNDs was imple- 

mented in an image dependent fashion, as described in Section II, by keeping fixed (a) the 

background contrast of the largest detail or (b) the standard deviation of the background 

noise, in all the displayed images. Using the first approach, images acquired with high 

nominal exposure were displayed such that the background noise range was limited to only 

a few 8-bit digital driver levels, with the potential for quantization distortion. The latter 

approach, however, changed the contrast of the largest detail in the images with different 

exposures, which could lead to possible saturation of the display. Moreover, the percep- 

tual linearization is a nonlinear transformation that may affect the perception of the noise 

patterns. The eflFects of these issues on the results of the C-d experiment are not obvious. 

For all performance measures and both display conditions, we observed better agreement 

with theory at lower exposures. The normalized effective dose ratio (Figure 6) at the higher 

exposures, showed more benefits from stereoscopy for the images displayed with fixed noise, 

than for the images with fixed contrast. The SNR ratio is near RSNR = ^2 at low exposures, 

as expected for the hypothetical observer combining information frorh each of the stereo pair 

of images. At higher exposures, the ratio is less, but still greater than one. 

The value of the normalized eflfective dose ratio, averaged over all six mAs stations, is 

i?x=89.7%±8.4%, corresponding to a reduction in threshold SNR of i?5jvji=1.339±0.066, 

for the images displayed with fixed contrast,  and Ex=94.2%±5.0%,  corresponding to 

14 



Rsi^R=1.372±0.0S8, for the images with fixed noise (compare with Figure 8). The total 

dose to obtain a stereo pair Ds = DM/RX = ^DM/RSNR where DM is the dose for a 

single radiographic projection. Thus, stereomammography requires a dose of 1.12±0.13 DM 

to 1.06±0.06 DM, for the respective values of i?5ivij- 

The obtained reduction in the SNR threshold can be compared with the results reported 

by Hsu et alP. In that study of stereomammographic detection of simulated objects, the 

performance was evaluated by an ROC analysis. Reported values of the area under the 

ROC curve, A^, were 0.82 (stereo) vs 0.74 (mono) for their arrangement experiment, and 

0.75 (stereo) vs 0.71 (mono) for their density experiment. Assuming that A^ is equal to 

the probability of correct detection, the corresponding reduction in threshold SNR can be 

computed as the ratio of stereoscopic and monoscopic d' values^^, yielding RSNR =1-423 for 

the arrangement experiment and RSNR =1-219 for the density experiment. 

We have performed an additional validation of the contrast-detail experiment results by 

comparing the performance measures averaged over five observers with the average perfor- 

mance of repeated readings by a single observer (see Figure 6 (b) and 8 (b)). There is little 

difference in the results of these experiments. 

B. Effects of viewing condition 

Results of the C-d experiments with and without the stereoscopic goggles are shown in 

Figure 9. The error bars correspond to the standard error of the average values. For clarity 

of presentation, the 2 datasets are slightly displaced on the graph. Normalized dose ratio, 

averaged over all 5 observers (solid lines) was compared with the performance of observer 6, 

with low stereo acuity (dashed lines). While the average performance of the five observers 

with (bold) and without the goggles (thin) did not differ significantly, observer 6 performed 

much better without the goggles. This was expected as when using the goggles the image 

shown to the uncompensated eye of the low stereo acuity observer was effectively unused 

under either the stereoscopic or monoscopic viewing conditions, therefore showing basically 
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no advantage of stereoscopy. Without the goggles, an averaged image was shown to both 

eyes, and the difference in the background noise for the mono and stereo images became 

visible, without, however, the advantage of parallax. 

C. Effects of additive detector noise 

The images used in this study were acquired radiographically, with a digital x-ray detec- 

tor. All images, regardless of mAs, were x-ray quantum noise limited, rather than detector 

noise limited. Thus, in the C-d experiments reported, the limiting factor for detection was 

the x-ray quantum fluctuations. Furthermore, a detector entrance exposure of 10 mR, typ- 

ical for the detector being evaluated, would have required a technique of 14 mAs. Hence, 

the results reported are Hkely to be generally applicable to digital radiography and digi- 

tal mammography. Extensions of this approach can be envisioned to address the issue of 

the dose requirements for tomosynthesis. However, in that instance, careful evaluation of 

the dominant noise source in the individual projections, and in the reconstructed data is 

necessary. 

D. Other issues affecting the efRciency of stereoscopic viewing 

The following issues are potential sources of concern in our experiment. Since it was, to 

the best of our knowledge, the first C-d study of the stereoscopic viewing in radiography, no 

reference suggestions were found to address the experimental design. Future experiments, 

modified to improve the following conditions, may give a more accurate estimate of the 

advantages of stereoradiography. 

Observers used the stereoscopic goggles while viewing both mono and stereo images, in 

order to keep the average brightness level comparable and reduce bias of having the mono 

images directly identified. The goggles reduce the brightness level of the scene. We have 

not analyzed the amount of this brightness reduction, nor its uniformity with the change of 

brightness. Perceptual linearization was applied without taking into account this brightness 
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reduction, and this might be of concern if the non-linearity of the human contrast sensitivity 

was not properly compensated. Note, also, that structured anatomic noise is not included 

in this set of test images, but its modeling is considered for future research.24.25 ^e have 

also begun another approach to testing the hypothesized benefits of stereoradiography using 

a 2-alternative forced-choice experiment. 

V. CONCLUSIONS 

A series of C-d experiments was performed, testing the hypothesis that the radiation 

dose required for stereoradiography is one half the dose for a single x-ray image viewed 

monoscopically, due to the combination of images by the human visual system. For images 

acquired at a fixed exposure, more objects were detected under stereoscopic than monoscopic 

viewing conditions. For the lower range of the x-ray exposures tested, where the quantum 

fiuctuations were easily visualized, the increase in the number of details observed was the 

same as expected for a hypothetical observer combining the two projections to remove noise. 

With increasing x-ray exposure, the increment between the number of objects detected under 

stereoscopic and monoscopic conditions decreased, but was always positive. The experimen- 

tal results indicate that a stereoradiograph can be acquired at a dose approximately 1.1 

times that of a single projection radiograph. The study results are potentially influenced 

by the brightness reduction of stereoscopic goggles, background noise quantization, and the 

lack of anatomical noise. 
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Fig 1 An example of a phantom image used in the study. The image was acquired with 

an exposure of lOmAs and post-processed to compensate for the effects of detector 

nonuniformity and to adjust for the non-linearity of human contrast sensitivity. 

Fig 2 Number of details seen in the C-d phantom for two image display modes: fixed con- 

trast (thin) and fixed noise (bold). Shown are the average number of details (symbols), 

the standard error (bars), and the linear fits (fines), for mono- (solid) and stereoscopic 

(dashed) viewing. 

Fig 3 Comparison between mono- and stereoscopic viewing, (a) Difference in the number 

of objects seen by stereo- vs. monoscopy, for each observer, and images displayed with 

fixed contrast, (b) Difi'erence in the number of objects seen by stereo- vs. monoscopy, 

for each observer, and images displayed with fixed noise. 

Fig 4 C-d curves for a single observer (observer 1), for monoscopic (solid) and stereoscopic 

(dashed) viewing, and two display conditions: (a) with fixed contrast and (b) with 

fixed noise. 

Fig 5 Linear approximation of C-d curves for a single observer (observer 1), for monoscopic 

(solid) and stereoscopic (dashed) viewing, and two display conditions: (a) with fixed 

contrast and (b) with fixed noise. 

Fig 6 Normalized dose ratio, [XM/XS]/2 = [{duldsf]/2 , as a function of exposure, for 

two display conditions, and averaged: (a) over 5 observers and (b) over 5 readings by 

a single observer (observer 3). Bars represent the ranges of ± one standard error. 

Fig 7 Number of details seen in the C-d phantom by an ideal observer, with various thresh- 

old SNR values (thin). The results for the real observer from figure 2, the fixed noise 

display and stereoscopic viewing (bold line) are given for comparison. 

Fig 8 Comparison of the observers mono- and stereoscopic performance using the analysis 

of the SNR cut-off values for two display conditions, and averaged: (a) over 5 observers 
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r 

and (b) over 5 readings by a single observer (observer 3). Bars represent the ranges of 

± one standard error. 

Fig 9 Comparison of the normahzed dose reduction for the C-d experiments with (bold 

lines) and without (thin lines) the stereoscopic goggles. Shown are the results averaged 

over 5 observers (solid lines) and for a single observer with low stereoscopic acuity 

(dashed lines). 
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TABLES 

Observer 
Aomin [arc sec] 

1 
25 

2 
70 

3 
30 

4 
25 

5 
25 

6 
200 
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Table I Results of the RANDOT stereo test for six observers. Tabulated are the values of 

the minimum observable angle of stereo disparity in seconds of arc. 
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