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1.0 INTRODUCTION AND SIGNIFICANCE OF PROBLEM

During the past two decades, a significant amount of effort has been directed
toward developing methodologies for turbuience closure of the time-averaged Navier-
Stokes (N-S) equations. Several workshops have been held to address issues
concerning turbulence modeling. These issues consisted of the use of simple models
to predict complex flows that are three-dimensional in nature, computational efficiency
of higher order models, test database for model validation, and the degree of accuracy
of higher order models over simple modeis to predict complex flow experienced in
engineering design. The most noted consisted of the AFSOR/HTTM-Stanford
Conference (Kline, et al,1982) on complex turbulent flows. This conference followed
an earlier conference (1968) that extended the limited two-dimensional,
incompressible work to include compressibility, curvature, mass transfer, separation,
and secondary motion. More recently, several workshops have been held on the
subject matter relative to application to the National AeroSpace Plane (NASP)
program (NASP, 1989 - 1991) as well as Cornell University (Lumley, 1990) that led to a
continuation of the Stanford effort (Bradshaw, et al, 1-91). This recent work considered
a more compiete range of test cases with a focus on compressible flows that included
shock/boundary layer interactions.

In general, the techniques that have been developed to date have been based
on two-dimensional, incompressible, fundamental parallel shear flows. These
techniques have subsequently been extended to three-dimensional, compressible,
complex flowfields and have been shown to be inadequate and usually without
generality. While advances have been made in numerical algorithms to aid the
turbulence modeler and facilitate computer storage, full Reynolds stress solutions is
still considered long range. Accordingly, generalization of existing techniques based
on low-speed turbulence models and physical evidence appears capable of meeting
near term requirements for the design process and will be the focus of this review.

Several recent papers have appeared in the literature that have essentially
reviewed the state-of-the-art in turbulence modeling and have formed the basis of this
investigation. These include the work of Rodi (1-91) and Chen and Patel (1988) who

introduced a hybrid model that consists of the standard k- € equations for the outer part
of the boundary layer and a one-equation model with standard empirical descnptlon of

the length scale () for the near wall region.

Compressibility effects were examined by Rubesin (1-89), Viegas and Rubesin
(6-91), Cousteix, et al (1-91), Situ and Schetz (6-91), and Dash (6-91).
Compressibility corrections appeared to improve the spreadrate predictions of
unconfined flows but did not work as well as turbulence models without the corrections
for boundary layer flows. .

A critical evaluation of two-equation models for near wall turbulence was
presented by Speziale, et al (6-90) and an excellent examination of several turbulence




models was made by Menter (June, 1991) for attached and separated flows. In the
latter paper, the models of Baldwin and Barth (1-91 and 8-90), Johnson and King (11-
85), Baldwin and Lomax (1978), and Wilcox (11-88) were examined. Wilcox (1-91 and

6-91) presents an historical review of the k- two- equation model as well as progress
in hypersonic turbulence modeling. The later paper also included a critique of
compressible effects.

Horstman (6-91) compared several hypersonic flow cases using a standard k-¢

model, the Rodi (1-91) hybrid model, and the k-e model with variations of compressible
effects using the work of Rubesin (6-90) and Verong and Coakley (1-87) for correction
to the turbulent length scale. To examine the effects of the individual modifications in
the compressible model, Horstman provided solutions with the Rubesin correction

alone and with the length scale correction alone. When compared to the standard k-e
compressible model, the length scale correction had a significant impact on heat
transfer in the reattachment region as well as controlling the separation length.

Turbulence models that have received wide spread attention are the k-€ models
which were developed for incompressible flows. The apparent limitation in the k-e

models lies with the & transport equations intrinsic behavior approaching solid
boundaries (viscous, near wall region). Accordingly, bridging techniques (wall
functions) have been adapted to accommodate the viscous thin-layer region where
steep gradients exist. However, the use of the law of the wall and the assumption that
turbulent quantities can be expressed in terms of the wall shear velocity fail under
severe pressure gradient flows since the near wall region is not controlled by wall
shear stress.

An examination of two-equation models with low Reynolds number techniques
was made by Patel et al, (1985) for incompressible flows which indicated that
improvements were required for damping in order to develop a more generalized
turbulence model. Shih (8-90) reviewed this work together with direct simulation
(DNS) of the Reynolds stresses (Mansour et al, 1988) and proposed a modification of
the pressure transport term of the k-equation as well as a length scale correction to

account for the asymptotic behavior of the dissipation rate to be & ~ 0 (y2) near the wall.

Table | provides a hierarchy of turbulence models which has expanded upon
the summaries of Dash (6-91) as well as Rubesin (1-89). Dash noted that with current-
generation main-frame computers (CRAY-2, for example), a grid-resolved, steady 3D
flowfield solution using a two-equation turbulence model in an efficient PNS solver
can require over twenty-four hours of CPU time, depending on grid requirements and
complexity of thermochemistry. Accordingly a practical viewpoint is required to meet
near-term work required for use in advanced CFD codes. Turbulence modeling at the
two-equation level meets this requirement.
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As noted in Table |, direct numerical simulation (soives the full/non-averaged
Navier-Stokes equation) and large eddy simulation represent the most complete
physics for resolving flow characteristics; however, these methodologies are restricted
to simulation of simplistic shear flows at low Reynolds numbers. Second-order closure
have not demonstrated invariance with fixed coefficients, and their inclusion into
advanced computer codes would not permit solutions of realistic flow problems on
current generation computers.

Reynolds stress and generalized extensions of two-equation models (such as
algebraic Reynolds stress models have eliminated the Boussinesq/isotropic
assumptions but still require several partial differential equations for the stress tensor,
or require multiple scales, or modifications to closure constants to allow for more
physics. The degree of complexity of these models together with computational time
have not shown to be significantly better than the simpler two-equation models.

The remainder of Table | shows the standard two-equation models currently
used in the scientific community, variations of these models that have been adapted to
handle near-wall conditions, compressibility, and curvature as well as several recent
lower order models that have shown successes for a variety of compiex flows. As

previously noted, the most popular two-equation model is the k-e model where ad-hoc
extensions have been made to include compressibility and curvature. In order to
eliminate numerical difficulties of integration (of dissipation) to the wall, bridging
techniques (van Driest), wall-functions (low-Reynolds number techniques) and one-
equation models (hybrid modeis) have been adopted to accommodate length scales
for the near-wall region. In the latter models, the use of kinetic energy has been used
for the velocity scale.

A one and one-half equation model, so named in as much as it retains
characteristics of the field equations (k-€ ), has recently been developed (Baldwin and
Barth, 1-91) that couples the k-e equations through a transformed variable (Rt =

k2Aue) that eliminates need for a length scale (but introduces damping similar to the
hybrid models above). Finally, one-equation models that account for lag effects and
use the kinetic energy field equation for the velocity scale, variations that include two-
time-scales, a one-half model that uses an ordinary differential equation to introduce
lag between turbulence and mean motion, and the popular algebraic eddy viscosity
models complete the table.

While many successes have been shown for unit problems, i.e., individual effects
of pressure gradient, mass transfer, roughness, non-isoenergetic flow etc., within the
incompressible or compressible flow state, coupling of these effects has not been
demonstrated. A turbulence model utilized for a generalized flow problem must be
able to produce the "simpler" unit level problem as well as the coupling effects in order
to fully embody the physics in the model and provide agreement with data that would
not be fortuitous or due to error cancellation. In attempting to meet this objective,




consideration to Reynolds stress models featuring algebraic, one- equation, and two-
equation models will be made relative to velocity and length scale characteristics.

1.1 Program Objectives

The objectives of the proposed program is to investigate the embodied physics
of several popular turbulence closure models in order to determine the feasibility of
developing universality capable of providing near term solutions to engineering
design problems. The model should include compressibility, wall conditions such as
roughness, mass transfer, and pressure gradient/curvature and be applicable to both
the boundary layer and free shear-layer flows. While the focus is on paralle!l shear-
layer flows, a secondary objective was to examine flows experiencing separation and
interactions. The module selected with appropriate modifications should be adaptable
to state of the art multizonal Navier-Stokes soivers used in the industrial community. A
roadmap to achieve these objectives which can be accomplished in a Phase Ii
program will be investigated.

1.2 Report Organization

The report has been organized into six sections and appendices. This
introduction (Section 1) provides an introduction of the turbulence modeling
methodologies and issues, and is followed by Section 2 that examines several
turbulence models with the pertinent physics that delineate reasons why the models
work for various flow conditions. Section 3 provides a recommendation for a
turbulence closure model that can be used in a multizonal PNS solver (Section 4) and
encompass sufficient generality to handle a large body of geometric/flow engineering
problems. A road map is provided in Section 5 that describes how the recommended
turbulence model can be generalized through a building block approach to handle
unit level as well as coupling of unit level problems subject to compressible flow
conditions. A compressible flow database will be outlined for this approach. Finally,
Section 6 assesses the results of the Phase | investigation as well as outiines a
technical approach for a Phase Il program to obtain a generalized turbulence model
capable of solving a large class of practical engineering problems.

Appendices are also provided that list details of the turbulence models
examined during this program.




2.0 TURBULENCE MODEL REVIEW

This review contains subject matter that can be found in a number of texts (or
papers) but is repeated for completeness in order to provide background conceming
the turbulence scales of length and velocity and why variations in the choice of these
scales can solve a number of turbulent flow states.

-

The review focussed on models that employ the Boussinesq criteria that the
stress-strain law for time-averaged turbulent flow is analogous to viscous fluids. The
eddy viscosity function can be expressed in terms of length (1) and velocity (u) scales
such as

He

The length and velocity scales can be obtained via algebraic functions
involving properties of the mean flow and geometry or from differential equations for

one or more properties of the turbulent motion. When 1 and u are determined in terms
of an aigebraic form of the mean motion, the models are referred to as zero-equation.

When 1 is determined algebraically and u is found from a solution to the turbulent
kinetic energy transport equation, the model is referred to as a one-equation model.

When both 1 and u are determined from transport equations, the model is considered a
two-equation model

The Boussinesq criteria allows for

t=pu’ v =, du/dy

where 4 is a property of the local state of turbulence (becomes effective only when

there is motion) and is not a property of the fluid. Prandt! proposed a formulation for
the eddy viscosity (mixing length hypothesis), namely

du
- “t=l2HP
dy

where 1 the mixing-length, is algebraically prescribed and is characteristic of the mean
free path of molecules (kinetic theory of gases). The eddy viscosity implies a gradient-
type diffusion. '

Prandit! later proposed a model that employed the turbulence kinetic energy as
the characteristic velocity scale, such that

He=p k2,




where 1 is again prescribed algebraically and k requires a solution of a differential
equation of turbulent energy transport. Kolmogorov proposed two independent
properties to represent the eddy viscosity (see Wilcox description, 1-91) that consisted
of turbulence energy k and a characteristic frequency of the motion. For this situation,
the eddy viscosity is written as

He = p k/f

where comparison to the Prandtl model allows for 1 = k/2/f and both k and f (which is @
in the k- w models) are determined by differential equations of transport.

Several modifications have been made to these basic models. One of the more
notable modifications is due to van Driest who introduced a damping factor, such that

ueff=l1L+P-t=ﬂL+Plsz“|
dy

where

im =k y[1- exp (-y*/ A%)]

for ut = uy/v and At = 26. An effective viscosity is defined that allows for both

laminar and turbulent contributions where the latter includes a damping function
whose effect is experienced in the near wall region (y* < At).

The above represent a basic formulation from which eddy viscosity models are
developed. What follows will be a discussion on variations of length and velocity
scales that have been recently reinvestigated and applied to a variety of complex
flows. The Cebeci-Smith (1974) and Baldwin-Lomax (1978) zero-equation models
are considered as standards from which other turbulence models can be judged.
Because the Cebeci-Smith model embodies significant physics for wall bounded
parallel shear flows that include pressure gradient, mass transfer, and compressibility,
details of this model will be given. Modifications to include rough wall effects based on
the” work of Laganelli (1-75) and independently discovered (for incompressible fiow)
by Krogstad (6-91) will also be addressed. The reason for this development is to
incorporate techniques suggested by Cebeci-Smith (1974) and Laganelli (1-75 and
12-89) together with the scales of velocity and length as provided in more recent work
which are based on the Prandtl-Kolmogorov concept. These techniques will
encompass wall conditions for curvature, mass transfer, and roughness.

10




2.1 Zero-Equation Turbulence Models

2.1.1 Cebeci-Smith (C-S) Model

The Cebeci-Smith turbulence model is a two-layer model consisting of the
Prandtl mixing length (inner-layer) and the Clauser model (for the outer-layer). The
inner region can be expressed as

-p UV’ =p 12 Pudy)? = p Vi (Bu/dy) "

where

Vai= 30uBy] @)

Introducing the dimensioniess groups u* = u/u yt= U Y0y, 1*= u, Vo, and

A'*‘=u,c Al together with the van Driest damping function, the eddy viscosity becomes

Vmi = k2 (y*)[1 - exp (-y*/A*)?] 1Bu*/0y* Vs, @)

The outer region is expressed as
Vi, =0.0168 8 U Yo (@

where 7, the Klebanoff intermittency factor, is defined as

Yo=[1+55 (y/8)6]1 _ (5)

The strain gradient 19u/dyl can be expressed as Iou/dy + ov/oxl for two-dimensional

problems. The non-dimensional parameter A+ can be a function of pressure gradient
as well as wall conditions (surface roughness and mass transfer). For smooth walls

without pressure gradients, the parameter has been determined to be A* = 26.

The van Driest damping functions is based on Stokes flow for an infinite flat plate
undergoing a simple harmonic oscillation where the amplitude of motion diminishes

from the wall by the factor e¥/A, The constant A depends upon the frequency of
oscillation and the fluid viscosity. By fixing the plate relative to the fluid (which now
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oscillates), a factor (1 - e¥A) is applied to the fluid oscillation to account for wall
damping effects.

In order to accomodate compressiblity, curviture, and mass transter effects, C-S
modified the damping coefficient A* such that

A*=26-1#(Pw/3)m (Wit (6)

/ /compressible contribution
pressure gradient & mass transfer contribution
incompressible value

Details of this development are provided in Appendix A. In equation (6), the

average properties p and T are usually chosen to be local values of p and u. the
compressible term has been shown to be a valuable contribution for treating non-
adiabatic wall conditions.

Further modifications have been made to the C-S model to incorporate wall
roughness (see Appendix A) by introducing a vortex generating factor to the mixing
length as suggested by van Driest; namely

b =xy* [ 1 - exp (-y*/26) + exp (-60y*/k:)] (7)

However, the above does not allow reoughness heights to grow for k,"‘ > 60 where the

viscous sublayer would be eradicated and is in conflict with experimental data. In
order to allow the damping factor to be in excess of unity, an incrumental factor due to
roughness is introduced such that

Dir =[ 1 +k/ 30y*] exp (-2.3y*/k?)
and the damping becomes

(8)

D = Dmootht Dir 9)
wﬂére Dy, is the sole means of introducing roughness effects.
The turbulent viscosity coefficients is transitioned from the inner to the outer
layer about a switch y,, point defined as follows

Hi @Y <Ye
o @ ¥ > Yo (10)

where y, is the smallest value of y where Ly = iq.

l-'-t=
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2.2 Characteristic Scales of Turbulence Modeling

In the previous section, it was noted that zero-equation models provided length
and velocity scales using prescribed algebraic discriptions. One-equation models
used the turbulent kinetic energy field equation for the velocity scale (k'/2) and an
algebraic prescription for the length scale. Two-equation turbulence models required

field equations for both the velocity (k%/2) and length (k3/2/¢) scales. Here, the length
scale has the characteristics required by Kolmogorov (i.e. 1 = k1/2/f = k3/2/e where f = ®
= ¢/k) and e is determined by the dissipation rate equation

vi=Cufuk¥e | (11)

In the above equation, the damping term fu is critical for mean flow predictions and

must have the correct asympototic dependence as y -->0 in order for v ~ 0 (y3).

since k32 is a characteristic length scale of energy containing eddies ~0 (1)
and the length scale k32/e ~ 0 (y3), a modification to the eddy viscosity is required to
allow for k32/e~ O (y). For this situation, the damping term f,, must be on the order of y

for vy to be correct and approach unity away from the wall. The scaling requirements
are as follows k~0@2),e~0(1),T~0(), fu~0()

TT-0GD, TV ~003), 20
then v~ 0 (y3)

(12)

Appendix H provides a further discussion of scaling issues.

An examination of the C-S model shows that

—_— ou du, du
ou V= v—=p(1cyD)Zl—-4—~0(Y4)
B P P Yoy dy dy

where as the theory of kinematics shows -p u” v* ~0 (y35 and could be ~0 (y4) if all
fluctuating quantity correlations were used. Here, we note that the C-S model would

yield -p u” v’ ~0 (y2) without damping and would provide an incorrect asymptotic
behavior at the wall. '

The Baldwin-Lomax (B-L) model, see Appendix B for details, has similar
features that are more avantages. Specifically, the B-L. model eliminates the outer
length scale requirement of boundary layer thickness and uses the magnitude of the
vorticity vector'as opposed to shear strain for velocity scale.

13




The diagram below depicts the characteristics of the C-S and B-L models. For
attached boundary layer flow, both C-S and B-L. models provide adequate solutions to
compressible flow problems (modest curvature), The B-L model is shown to have a

maximum wake function (y w D) at y/d of approximately 60% where the wake factor
reaches a maximum (representative of the velocity scale). The turbulent viscosity is

shown for the inner and outer regions with the switch point at y/5. When flow
separation is experienced, the wake provides a double “hump” where the first hump

exceeds the wake function maximum value at y/d of 0.6. Here, the turbulent viscosity

can yield values on order of magnitude less at the switch point than values attained for
attached flow conditions.

_ P

|
S
Attached Flow Region i Separated Flow Region
yuD ywD
A Foag A
wd ~ ur/K
= s
0.6 ¥/8 0.6 Y
Y d n.
\t' Vli \ "l
""""""""""""""" ~0(10)
o oo
.\(yto
- C-S & B-L B-L
........ S y/8 ——>y/8
yc/é ye/d

Both C-S and B-L models have been shown to be deficient for separated flows.
This is a consequence of strong pressure gardients where separation can cause the
shear stress to change sign. Moreover, use of law of the wall relations and turbulence
equations based on wall shear stress fail since the near-wall region is not controlied

by u.. Finally, the constants Cgp, and Cy gg in Table B.1 have been shown to be a
function of compressibility, wall temperature, and skin-friction.
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2.3 One-Half Equation Model: Johr_lson and King (J-K)

The Johnson and King (11-85) model is a non-equilibrium eddy viscosity model
that is formulated with an algebraic eddy-viscosity relation and an ordinary differential
equation (ODE) based on a simplified turbulent kinetic energy field equation. This
equation is based on the distribution of maximum turbulent shear stress which controls
the outer layer and ensures lag effects between stress/strain terms. Appendix C
provides details for this model.

The inner and outer-layer eddy viscosity relations are expressed as

Vi = Ky Djg (0" v' m)!72 | (13)
and

Vi = G (x) (0.0168) ue8 Yo (14)

The term o (x) represents an unknown modeling parameter (history effects)
which is solved by the ODE, Eq (9) in Table C.1, and is adjusted to satisfy the relation

v ’ v’ m)u2 — 12
t=—————— 0’V m)
(0u/0Y)m " (15)
which can also be expressed as
Vi=C 1 k12 | (16)

where the constant C and the length scale y, will be addressed for comparitive

purposes relative to one-equation and two-equation turbulence models. Further
discussion conceming the J-K model and wiil be provided.

2.4 Characteristics of One-Equation Models

One-equation turbulence models were developed in order to incorporate histroy
effects of the turbulent structure. This is a consequence of the inability of the turbulent
viscosity to follow sudden changes in the flow structure such as shock/boundary layer
interactions and transition from smooth walls to walls featuring roughness or blowing.

The eddy viscosity is prescribed as v; = v; (k,1) where the turbulent kinetic energy k is
solved with a transport equation. A closure relationship for the dissipation rate is
required such that e =€ (k, 1, v) where the length scale 1 is prescribed

The inner and outer-region dissipation rate ate given as

e~vkn?t- (17)
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and

~ 3R
e~k (18)

where a composite of two regions gives

e=(C2K4)(1+C3Ry) (19)
for

Rr=kZyv (20)

In the above, as y --> 0, Ry -->0, and Ry< < Cj giving e=C, C3 v Ki2. On the other
hand as y --> e, Ry> > 1 and € = C, k3/2h.

The eddy viscosity is expressed as

V1=C4kl/21D (21)
where the damping term D is expressed as
D =1 -exp [-Cs kM2 y] (22)
and the length scale is given as
L= {_u@__Y_S_Y_e (23)

Ced@ y2y.

A number of variations have appeared for the definition of of the length scale in
the inner and outer regions of the boundary layers. These variation are presented in
Appendix D for the Norris and Reynolds (1975) model, Appendix E for the Goldberg
(6-91) model, and Appendix F for the Baldwin and Barth (1-91) model.

2.5 Two-Equation Turbulence Models

The two-equation transport model for turbulent kinetic energy (k) and its
dissipation rate (¢) have been formulated to define appropriate velocity and iength
scales that zero-equation models must specify in an ad-hoc manner. These equations
therefore provide a bases for examining more complex flow fields. It is beyond the
scope of this paper to give details of the field equation development; accordingly, only
a discussion of the results of the models will be provided.

The conservation equations for a turbulent compressible flow field are derived by

expressing the dependent variables as a sum of mean and fluctuating quantities. The
results are ensemble averaged with the N-S equations (with variable ﬂujd properties)
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together with a total energy equation. The instantaneous velocities and temperatures
can be mass-weighted averaged using the Favre technique (see Cebeci and Smith,
1974) which provides terms similar to the incompressible counterpart. For the
compressible situation, density and pressure are ensemble averaged without
weighting.

The momentum equation can be multiplied by the instantaneous velocity which
is subsequently ensemble averaged to provide an equation for the kinetic energy of

turbulent fluctuations. The dissipation rate of turbulent kinetic energy (€) can be

expressed in analogy to the turbulent kinetic energy format that provides the k-e
turbulent transport equations. These field equations which are provided in a number
of references stated above will be expressed in terms of mean flow quantities. The
Appendix (G and H) of this report provides the conservation equations, transport
equations and constitutive relations for the k-& two-equation model (Wilcox, 6-91) as
well as the k-g two-equation model (Speziale et al, 6-90). The latter retains the
fluctuating quantities for the purpose of discussion for embodied physics. The
resulting field equations are:

Dk._y. v €e=E
—]jtk-V (V+6:)Vk+§a€ Ey (24)

~ -~ ‘.Q
DE_v. Yty Ve £0 cof)8-+E+E
o v (v-ige—)Va+C1f1k80 Colyi—+ Ee

(25)
D( /D =3()3+T+V
where
vi=Cyfy k¥e
ou ou; o o (9 (26)
R e Al G
- (27)
£E=¢g+ DE ; E=V _a_q_l. _a_._u_l
a ox; OXx;
| (28)
Ex=CpfMppe
=f(Mp

The functional form of the turbulent Mach number f(M,) has several prescriptions,
(Dash, 6-91), (Sarkar et al, 11-89), (Zeman,2-90), and (Wilcox, 6-91).
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The standard high Reynolds number form of the k-¢ field equations provides for
the following definitions:

The constants

o =1.0,0,=13,Cq = 1.44,Cp=182,C, =0.09 7

The functions

fi =1 = fl’1 =1, represent wall functions for low Re flows

Ex = E; =0, represents compressibility corrections (29)

E = O, source term to dissipation

D, = O, correction to dissipation -
The eddy viscosity is given by equation (11).

As previously noted the two most popular two-equation turbulence models
consist of the Jones and Launder (2-72) k- ¢ model and the Saffman (1970) and

Wilcox (1-91 and 6-91) k-w type. The common field equation of the two-equation
models is the turbulent kinetic energy (TKE) equation, eq. (24). The rate of dissipation

of TKE (g) is determined from field equations that are similar to the TKE transport
equation. The relationship of the velocity and length scales with eddy viscosity are
given as

m=Cufupk!?1=Cufupk¥e=Cyfyp ki (30)

for
1=k%/w,0=¢k

where fu and Cu have been previously defined and w is the specific dissipation rate.

The standard k- € model has been used to predict a wide variety of flows that
include jets, wakes, mixing layers, boundary layer (attached and separated), and flows
experiencing wall mass transfer and roughness. Due to its inherent limitation with the

¢ transport equation behavior approaching solid boundaries, wall techniques have
been required to provide solutions to a wide range of engineering problems. Since
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ad-hoc techniques are required for the near-wall region which can be numerically stiff
in turbulent boundary layer flows, alternate forms of two-equation models have been

sought. These include the k-« model of Wilcox (1-91), the k-W model of Spalding (11-
82) and the kt model of Speziale et al (6-90). The latter two models are essentially

variations of the Wilcox k-wmodel. Appendix G and H of this report provide the field
equations, constitutive relations, conservation of mass, momentum and energy as well
as closure coefficients for these models.

As noted in the introduction, a position on choice of turbulence closure
modeling is required in order to meet near-term goals of providing design resolution to
practical engineering problems. Turbulence modeling at the two-equation level meets

this requirement. The k- € two-equation model has been clearly the most used and
has developed an extensive experience base to meet the chalienges of many complex

flow problems. This experience base also includes the adaptation of the k- € models
into multizone PNS solvers which has not been demonstrated by the k- type.
Moreover, coupling of unit level problems has been demonstrated by the k- € type with

proper use of wall techniques, whereas the k- type require boundary condition
adjustments (usually with log-law relations to account for wall effects (roughness and
blowing for example) which can present problems under compressible flow conditions.

With the recent success of the two-layer models that incorporate the standard k-
e model and one-equation model for length scale in the near-wall region thereby
eliminating difficulty of the & equation in approaching solid wall boundaries, it is our
position that the k-e two-equation type model can meet near-term goals.

It will be demonstrated that a. hybrid model that features the standard k-e
field equations for the outer layer and a one-equation model for the inner near-wall
region provides the correct asymptotic behavior for dissipation and eliminates
numerical stiffness problems. The experience base with use of other wail techniques
as well as adapting corrections for compressibility and curvature provide the capability
to treat a wide class of engineering problems that include free shear layer, mixing
layers, and wall bounded flows including separation subject to compressible flow
conditions.

Table Il provides a comparison of the J-K model together with the C-S model and
the N-R model. Since the Rodi hybrid model is based on the N-R one-equation model
for the length scale in the near wall region, it has been added for comparison. The
inner-layer eddy viscosity has been structured in terms of fluctuating components. in
order to make a one to one comparison of all models. Three distinctive variations
occur in length and velocity scales that are the underlying reasons why the J-K and
Rodi hybrid models have had demonstrated success in both incompressible and
compressible flow. The most important is the choice of velocity scale. The C-S model
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uses the wall shear stress velocity (u 1._) while the J-K and N- R use a variation on

the Prandtl concept. The J-K model uses (-Wm)" 2 while the N-Ruses (k)2 where k is

the sum of the square of the stress-strain diagonal components i.e.1/2 [(u)2 + (V)2 +

(w)2]. A variation in the damping coefficient A* also exists as well as the exponent of
the damping term (i.e., J-K uses a power of 2, while the other features a power of
unity). This was required to allow for damping to adjust to ~0 (y) instead of ~ 0 (y2),

note the power of unity on the length scale xy. With reference to egs (15) and (16), a
comparison between the length scales of the N-R and J-K models can be made. Here,

\m compares directly with the N-R v,, eq D-2, with the velocity scales as described
above. Variations in the constants are also noted. It would be interesting to re-
examine the J-K model with the correct value for the damping coefficient A* (=26) and
allow for (x y D)2 as developed in the zero-equation and one equation models.

The elegance of the J-K model is provided in the combination of the use of a

turbulence energy term for the velocity scale in the inner-layer and the parameter o (x)
which is determined from an ODE for maximum Reynolds shear stress in the outer-
layer. The outer layer solution uses an ODE while the N-R model uses a turbulent
kinetic energy field equation with a modified Kolmogorov term for dissipation. Since
the characteristic scales are based on maximum shear conditions, wall effects such as
pressure heat- transfer, and drag are reasonably predicted. However, details of the
shear layer structure cannot be obtained by the J-K model as would be provided by
the N-R model and to a greater extent by the Rodi hybrid model.

2.6 Higher Order Steady State Turbulence Models

Beyond the two-equation level, a broad spectrum of turbulence model have

been formulated to remedy fundamental deficiencies such as Boussinesq gradient

transport hypothesis —pu™ v' = y1, :—“ and the assumption of isotropy. The simplest

remedy for removing the isotropy lesumption can be performed at a two-equation
level with significant additional algebra and is called Algebraic Reynolds Stress (ARS)
model. Such models were first formulated in the mid-to-later seventies at Imperial
College and have been predominately employed for vortical turbulent flows such as
corner flow and V/STOL jets. Until quite recently, all ARS work has emphasized
incompressible flows. In the recent work of Burr and Dutton (1-90) at the University of
lllinois, ARS models have been extended to highly compressible flows with a primary
emphasis on NASP-oriented flow problems.

The next class of higher-order turbulence models are multi-scale models which
distinguish between turbulent producing large eddies and turbulent dissipating small
eddies. These are four equation models which solve for the turbulent kinetic energy of
the large and small eddies and turbulent dissipation rates for the transfer from large to
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small scale in addition to the basic dissipation rate. Several models have been

formulated as extensions for the k-e model with pioneering work in this area again
performed at Imperial College (Hanjalic and Launder) and more recently by Kim and
Chen (1-88) at the University of Alabama/Huntsville. This work too has focused on
incompressible flows. Attempts to deal with compressible flows are provided by Adol-

Hamid and Wilmoth (6-87) NASA/LRC,using the compressibility-correction to the k-e
model of Dash et. al (8-75). Section 3.3 addresses compressible issues.

Multi scale work with the k-w model has aiso been performed as described by
Wilcox in several recent AIAA Journal articles (11-88 and 7-90). Multiscale models

serve to eliminate the Boussinesq approximation since they compute the Reynolds
Stress directly.

Next in the hierarchy of higher order models are the Reynolds-Stress models
which solve partial differential equations for u' u', v' v\, w' W', and u' v' in conjunction
with a dissipation rate equation. These models have focussed primarily on
incompressible flows until quite recently. The new models of Sarker et. al (6-90) at
NASA/LARC and Zeman (2-90) at Stanford are compressible extensions of
conventional Reynolds-Stress models which use Favre (density-weighted) averaging
to account for density fluctuations. The basic compressible models do not account for
observed compressibility effects and must be supplemented by modifications to the
dissipation rate equation (compressible-dissipation extension) to properly account for
observed compressibility effects.

The most sophisticated of the steady state turbulence models are full second-
order closure models which solve partial equations (pde’s) for all second-order

correlated terms such as pu, . . ., A' U, . . ., etc. Third-order correlations are
expressed as sums of the 2nd-order correlations. The leading proponent of this work
has been Donaldson (1966) at ARAP. Early issues involved the use of algebraic
length scale equation which has since been remedied. Such models lost momentum
in conclusions drawn in 1982 AFOSR/Stanford Turbulence Model Conference where
the claimed “invariance” of coefficients was questioned and refuted. For flows with
multi-component species, the number of pde’s can be overwhelming making such
methodology highly impractical.
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3.0 TURBULENCE MODEL RECOMMENDATIONS

3.1 Standard High Reynolds Number k-e Model

As previously noted, our position on choice of a turbulence closure model is the

standard two-equation k-e model and its subsequent modifications to treat a wide
range of engineering problems. The extensive experience base generated by these
models should provide a level of generality with proper definitions for closure
constants (or parameters) together with near-wall terms to handle mulitiple flow states.
Moreover, the versatility of the models and adaptation to existing industrial codes
allows for robust transfer of the methodology.

Two-equation models also provide other obvious features over lower-level
models. This includes the use of better physics in the field equations to handle the
outer layer region where accelerated flows, severe pressure gradients, and mass
transfer (diffusion) can have an impact. Details of the turbulence structure are
provided which can help provide insight for a wall function modeling. The models are
not computationally intensive and are readily adaptable to current industrial codes.

Equations (24) through (29) presented the generalized two-equation model with
and without modifications. Table Ill has been structured to show how these
modifications have been made to the standard high Reynolds number equations.
These modifications include near wall techniques, compressible corrections, and
geometric (curvature) corrections. Each of these modifications will be discussed. The

closure constants that are recommended for the standard k-e model were acquired
from incompressible experiments of free turbulent flows that include free shear layers
(jets) as well as confined mixing layers. These same constants have been
recommended for boundary layer flows. The relative merit of these constants in flows
subject to wail bounded flows which has necessitated wall damping functions requires
further investigation relative to compressible effects..

3.2 Near-Wall Techniques

Four levels of near-wall techniques have been characterized as wall functions,
bridging techniques using van Driest damping, low Reynolds number techniques, and
hybrid techniques. The hybrid techniques actually feature two-layer models that
incorporate the standard k-e model in the outer layer with a one-equation model for the

inner layer. Wall functions use law of the wall equations to match a grid point usually
taken at the edge of the viscous sublayer with no attempt to resolve the sublayer

region. This point is then used as a boundary condition for the outer region for the k-e
equations. Modified versions of the k-equation are also used at this point to soive for
the kinetic energy as opposed to setting its value. Wall shear stress velocity is taken
as the characteristic velocity. These techniques have the advantage of not
encountering numerical problems (no grid points) in the sublayer and can save
computational time. However, they require ad-hoc techniques between the wall and
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Table lll. TWO-EQUATION k- MODEL VARIATIONS

Ox

Q|2

D .[v*.&]vhp-he.

= V-(vel)\?a «Ctip - c,f,E:- +E +E,

v, = C,f k¥&

§=E+DE

v

f; =f, =1, = unity,

STANDARD HIGH Re k-e MODEL
o = 1,0, = 1.3,C, = 1.44,C, = 1.92, & C, = 0.09

Low Re Wall Functions

Ex =E =0, Compressible Corrections
D, =0, Correction to Dissipation
E=0, Source Term
COMPRESSIBLE GEOMETRIC
CORRECTIONS CORRECTIONS
- DASH
- AXISYMMETRIC
- SARKAR et al - STREAMWISE CURVITURE
I gﬁ‘g‘é‘gm NEAR WALL - SWIRL
. TECHNIQUES - VORTICAL
WALL BRIDGING LOW REYNOLDS HYBRID
FUNCTIONS TECHNIQUES JECHNIQUES JECHNIQUES
- Spaiding-Launder {Van Driest) - Jones-Launder - lacavides-Launder
- Chieng-Launder - Dash etal - Chien (Van Driest)
- Viegas-Rubesin - Aroraetal - Lam-Bremhorst - Patel ot al
- Gorski - - Launder-Sharma (Wolfshtein)
- . - Shih - Rodi
- - (Norris-Reynoids)
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grid first point which do not have established physics. Moreover, use of law of the wall
relations has been demonstrated to be inadequate for compiex flows where
inaccuracies affect turbulence quantities as well as mean flow properties.

A second approach uses bridging techniques between the wall and grid point at
the edge of the viscous sublayer with consideration to multiple layers in between.
Here, the van Driest damping functions are applied to provide algebraic relations to
solve for the flow conditions. While this method provides better physics, the
phenomena is linear and does not account for lag between the stress and mean flow
properties. An advantage of this technique however, is the ability to incorporate wall
conditions such as roughness, blowing, and pressure gradients through modifications
of the van Driest damping function (or coefficient). This has been demonstrated by
Aurora et al ( 11-82) as well as Cebeci-Smith (see Appendix A).

The third technique considers use of the field equations extended to the wall
with low Reynolds number techniques that require damping function adjustments to
the constants, as well as to the dissipation term. In some instances, the addition of a
source term to the dissipation has been used. These techniques provide better
physics and have been shown to predict transitional boundary layer flow as well as re-
laminarization. In some cases, a non-physical form of dissipation is solved within the
viscous sublayer requiring a modified kinetic energy equation to balance the
dissipation. As in the van Driest technique, exponential damping is used to
compensate errors for the new ad-hoc technique which do not allow for the eddy

viscosity to correctly asymptote to the wall (i.e. it does not have an O (y2) behavior).
These techniques also offer opportunities to investigate wall conditions of roughness,
blowing,and curvature through the damping terms or damping coefficients. One
interesting aspect of the low Reynolds number methods is the choice of velocity scales
which use both the wall shear velocity as well as a velocity based on kinetic energy.

The fourth technique considers a hybrid method that uses the standard k-e
model in the outer layer of a two-layer model and a one-equation model for the inner
layer. This approach has shown recent success for both incompressible and
compressible flows to treat severe pressure gradient regions. Moreover, the one-
equation model eliminates the difficulty of the limitation of the dissipation to approach
solid boundaries and provides for techniques to treat roughness, mass transfer,
curvature, and transition. The technique used by Rodi (1-91) for incompressible flow
and extended to compressible flow by Horstman (6-91) uses the one-equation model
of Norris-Reynolds (see Appendix D) and will be the candidate methodology for a
generalized turbulence model.

3.2.1 RODI Hybrid Model

The Rodi model (1-91) combines the k-¢ transport equations with a one-equation
length scale model for the near wall region. The rationale and features of this model
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have been discussed. Table IV provides the model characteristics. The bulk of the

shear layer is determined by the k-e equations. As evidenced by this review, a number
of variations have been used for the damping functions for the one-equation, length
scale as well as the matching criteria for the inner/outer layers. It has been
demonstrated that the use of the N-R one-equation model provides results for

incompressible flow that are consistent with low Reynolds k-€ models, and have been
shown to be better for flows with adverse pressure gradients. Moreover, the
recent work of Horstman (6-91) has shown that the Rodi hybrid model provides
resolution to compressible 2D/3D shock/boundary layer interactions for supersonic
and hypersonic conditions.

The standard high Reynolds number k-e model is used for the bulk of the shear
region away from the wall and calculates the distribution of eddy viscosity from (see
eq. (11)).

‘Ut = Cukzls

The near wall region is formulated by a one-equation model whose length scale
is prescribed by Equations (D-1) through (D-4). It should be noted that the length

scales Wy and 1 are the same in the log-law region when the coefficient Cu is chosen

as the square of u'v/k under equilibrium conditions. In the near wall regions,
gradients require that W and e be different and a reduction in 1, can be tailored after

the van Driest formulation with a proper definition of velocity scales. The N-R model
provides for such a function.

Several other phenomena make the Rodi model attractive for potential
universality. This includes the ability to provide wall conditions such as blowing,
roughness, and curvature using the damping coefficients (C3 in Equations (D-2) and

(D-8)) as developed by C-S, Rodi (1984), and Laganelli (1-75), as well as handle
adverse pressure gradient and compressible flow conditions. In essence, the two-
layer model appears capable of providing solutions of coupled problems. Another
attractive feature is that the model considers a modified version of the Kolmogorov

function and provides for correct length scale where 1 ey at the wall. Finally, since the
transport equations are being used, details of the flow structure can be obtained that
are not available with lower order models.

3.3 Compressible Modifications

The k-¢e model was originally, formulated from a purely incompressible
viewpoint. Its inability to deal with high Mach number compressibility effects was first
made evident at the 1972 NASA Free Shear Flow Conference (NASA-72) where its
performance versus the classic isoenergetic/single-stream shear layer data showed
no decrease in mixing with increasing Mach number, whereas the data indicated a
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Table IV. RODI TWO-LAYER (RTL) TURBULENCE MODEL
(from Horstman, 6-91)

The two-equation k — € turbulence model is
expressed as

Dpk _ 2 . -9
syt

-%pkdivﬁ-pe-t-diﬁusion-i—LRT M

DOE e 2 . =

Dt
2 .
-C,—pkdivu
3
e
-szzp-’-‘-+ diffusion + LRT 2)
Sij= ujj + ujd 3)
py = Cypkfe )

where LRT refers to the low Reynolds number terms used
near solid surfaces. The values used for the constants

were C='1.44,C2=1.92, and Cyp=0.09.

The second model used here is the two-layer model
developed by Rodi and his co-workers  For this model
the € equation is replaced by an analytical expression
near the wall. In the wall region this model determines the
eddy viscosity from the relation

M, =f,Cupvk L ()
R, =pvky/n ™

where y is the normal distance to the wall. The dissipation
rate € is given by

=k3’2 - 13.2
L { evkL/p

€ ®)

The length scale L is assumed proportional to the dis-
tance from the wall, i.e., L = C;y. The wall region model
is matched with the full k — € model at a distance from
the wall where Ry = 150 (fy; = 0.95). At this location the
eddy viscosity given by Eqn. 4 is equated to Eqn. 5 to
determine the proportionality constant C,. For typical
shock-wave/boundary-layer interaction flows solved here
C, varied from 0.8 to 9.0 at various locations in the flow
field. The lowest vaiues occurred upstream of the interac-
tion and the highest near reattachment. For the present
computations, maximum and minimum limits of 2.4 and
1.2 were used for C;. With these limits imposed, the val-
ues of eddy viscosity are no longer matched between the
inner and outer models for large regions of the flow field.
A few solutions were obtained using C, = 2.4 which is
equivalent to using the Prandtl length scale. (Rodi
used a constant vaiue of 2.45 in his incompressible com-
putations). Solutions were also obtained for several inter-
action flows varying the march point from Ry = 100 to
200. These resuits differed from each other by less than
3 percent.
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substantial decrease at Mach numbers above unity (e.g., a factor of 4 decrease at
Mach 5). Attempts to remedy this deficiency has focussed on free shear flows

(jets/plumes/wakes) since the performance of the k- model for basic boundary layer
flows was found to be adequate to Mach § and beyond (depending on wall
conditions).

Over the years, a variety of compressibility-corrections have been formulated to
address the issue of reduced mixing at higher Mach numbers. Explanations of the
phenomenology causing this behavior have been varied and based on stability
considerations, eddy-shocklet concepts, etc. The most widely-used correction for

jets/plumes has been that of Dash et al. (8-75) to the k-e model. The k-¢ cc model (i.e.

k-€ with compressible corrections) uses a correction to the turbulent viscosity, eq. (11),
of the form: :

= C. X2
1 = G K Mopp e (31)
where Cm is the incompressible coefficient (=.09) and K (M) = C”/Cm is a curve fit
which enforces agreement with the isoenergetic single stream shear layer data. In
equation (31), M,c is the turbulent fluctuation Mach number

M; =g/a (32)

where g = (u;u;)"/2 and the peak value of M_is used at each axial position of the shear

layer. A number of compressibility corrections to the k-e and higherorder models have

been proposed, some of which are summarized in Table V. The recent compressible
dissipation corrections of Sarkar et al. (6-90) and Zeman (2-90) appear to have
generated the most enthusiasm as evidenced by recent papers at the AlAA Fluids and
Plasmadynamics Meeting in Hawaii (June 1991).

Papers by Dash (6-90), Viegas and Rubesin (6-91) , and Wilcox (6-91) all have

explored the inclusion of these compressible-dissipation models into k-e and k-w
turbulence mode! frameworks. In both the Sarkar and Zeman models, the turbulent

dissipation rate, g, is taken to be comprised of a solenoidal, incompressible
component, €, and dilatational, compressible component, &, and thus:

pe=p (e +&) (33)
which replaces P e in the standard k-e equations (See Table llI).

Both Sarkar and Zeman integrate the incompressible form of the dissipation equation
to obtain &, and model &; as follows:
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Sarkar et al:

€ = 0y € M2 (34)
Zeman:

go=Ca F (M) &, (35)
where

F (My) = 1 - exp [ (-Mc- 0.1/ 0.6)%] (36)
for M_>0.1, and,

F (Mt) =( (37)

for Mt < 0.1. In their calibrations of these compressible-dissipation models, Sarkar
found a, = 1.0 to provide the best agreement and Zeman found Cy = .75 to work best.

Sarkar and Zeman have incorporated their compressible-dissipation models
into a Reynolds-Stress model framework where they solve the field equations for the
varied stress components (i.e. for U't’, viv', u'V', ---). Simplifying their models to work

in a k-e two-equation mode! framework leaves open some ambiguities with regard to
the value of the turbulent viscosity ko to be utilized. The initial interpretations of Dash

(6-91) and Viegas/Rubesin(6-91) differed substantially and thus produced different
results. This descrepency was addressed by Dash et al (9-91) and was associated

with the interpretation of the turbulent viscosity, R appearing in the diffusion terms of

the mean flow equations, in the diffusion terms of the k and e; equations, and in the
turbulent production term, p. Compressible and incompressible values of z Mo and

g respectively) are defined as follows:
Hic = Cpoa kz/ (&5 +£¢) (38)
W = Cuop kg (39)

Dash used the compressible Ko for all diffusion terms (mean flow, k and ¢), the
compressible My for g in the k equation and the incompressible e for o in the ¢

equation. Viegas/Rubesin used the incompressible M for all terms. After reviewing




these two initial attempts, Dash explored this matter in greater detail to ascertain which
interpretation was most consistent with the Reynolds-Stress formulation of Sarkar et al.
A matrix of plausible interpretations is summarized in Table VI.

In Table VI Dy, Dy, and D, refer to the diffusive terms in the mean flow, k and &

equations respectively. g and o, refer to the turbulent production term in the k and &
equations.

In reviewing the Sarker Reynolds-Stress equations, method A (Dash 6-91)

appeared inconsistent since different values of production were employed in the k and

€ equations. Method B (Viegas/Rubesin, 6-91) also appeared inconsistent since
wherever a gradient transport hypothesis was employed by Sarkar et al., a

compressible value of B, was utilized whereas Viegas/Rubesin used incompressible

values throughout. The different methods for including compressible-dissipation into

k- £ listed in Table VI were assessed by Dash via comparisons with the spread rate
data correlation of Birch and Eggers (NASA, 1972) LaRC correlation, for asymptotic

isoenergetic/single-stream shear layers. The Sarkar formulation was used with a4 =
1.0. Figure 1 exhibits the predictions for variants A - E vs the Mach number LaRC

correlation. The spread rate parameter, ¢ (=1.855 Ax/Ay) is plotted vs the Mach
number of the moving stream. As the Mach number increases above sonic, the spread

parameter increased from the incompressible value (o, ~ 11) indicating a marked
decrease in spread rate with increasing Mach number. Variants A and E underpredict

the rate of mixing throughout (o’s are too large) whereas variants B, C and D
underpredict the rate of spread of My < 1.5 and overpredict the rate of spread for M, >
1.5. Variants C and D have identical behavior whereas variant B shows somewhat
smaller spread. Comparing with Sarkar's Reynolds-Stress (RS) predictions, variants
A and E can be ruled out whereas variants B, C and D all produce spread behavior
which appears quite comparable. Version D has been selected for reasons discusses
by Dash (9-91).

~- As shown in Figure 1, Variant D overpredicts spread below M = 1.5 and
underpredicts above M = 1.5 (this is true for both the Sarkar and Zeman formuiations).

In view of its simplicity, Dash (9-91) chose to work with the Sarkar formulation in the
confines of Variant D, and, to revise it to better match the spread data. The revised

version is described below. The compressible-dissipation, €., is redefined as:
ec =8 [ o Mz + p M) (40)
where a Zeman lag is inserted (R'Ilt = M -A) and a fourth-order term is added.

The coefficients utilized are:
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o = 1 (same as Sarkar et al.)
A =0.1 (same as Zeman)
B = 60 (fits LaRC data the best)

Figure 2 shows performance of the revised model with the LaRC spread data
and with the keCC model (Dash et al., 8-75), also calibrated to fit this same area.

Two turbulence models have been calibrated to reproduce the
isoenergetic/single-stream shear layer data. We can designate the revised Sarkar

model in k-g using Variant D is designated as the keCD model. A preliminary attempt
was made by Dash (9-91) to distinguish between their performance first using other
data sets, and then profile comparisons including the behavior of turbulent quantities.
In analyzing the isoenergetic/two-stream data of Chinzei et al. (1986) and the non-
isoenergetic/two-stream data of Goebel and Dutton (4-91),the spread behavior is
nearly identical and no distinguishing characteristics are observed. In comparing
profiles, however, differences are significant . From a cursory look at the available

data, the performance of the keCD model appears to provide a more consistent
behavior. In particular, turbulence stress and kinetic energy decrease with increasing

convective Mach number as predicted by the keCD but not by keCC.

Relative to compressible modeling, a recent paper by Situ and Schetz (6-91)

considered the addition of the fluctuating term -t p'v' to the shear stress where a
favorable comparison to a variety of shear layer and boundary layer flows was
demonstrated. Appendix | provides details of this turbulence model concept.

3.4 Vorticail/Curative Modifications

The basic k-e model was developed for simple shear flows (planar shear layers
and boundary layers). The turbulence field is assumed to be isotropic and the relating
Boussinesq eddy viscosity assumption turbulent stress to mean strain is employed.
For flows with any type of geometric complexity, corrections are required to enforce the
desired behavior. Corrections are required for:

(1)  axisymmetric behavior
(2) streamwise curvature
(8)  swirl

(4) streamwise vorticity

and various other geometric distortions for simple planar flow, which are often very
specialized and problem dependent. The corrections range from those being entirely
heuristic to those attempting to be generalized and thus modeling the turbulent

behavior. All the latter models achieve improved behavior via modifications to the €
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equations and thus they directly focus on the length scale issue. There are far too
many corrections in usage to describe in this report. Rather, several will be briefly
described to provide an understanding of how such corrections are made and how

they improve the performance of the basic k-e model.

The first comrections to the k- model were made in the early ‘70’s to deal with
the axisymmetric problem, namely, the inability of the basic model to analyze both

planar and axisymmetric jets with the same constants. To have the k-e turbulence
model agree with basic low-speed, axisymmetric jet data, the constants must be
revised or made to vary with jet parameters, or, additional terms must be added to the
equations. The simplest modification entails changing C, from a value 1.43 for planar

to 1.60 for axisymmetric jets. This forms the basic for some of the earlier work with k-&
in Great Britain in analyzing axisymmetric rocket plumes.

The next group of corrections make the coefficients dependent on the jet
centerline velocity decay, dUq /dx, and are summarized below.

Launder, et al. (1972) ke1/ke2 models provide for

C,=1.92-aF, a=0.067 (=0.053 for ke2)
C,=.09-bF, b=0.1

k= {f%za(‘%xﬂlggfh) }0.2 (41)

McGuirk and Rodi (1977) chose the coefficient C, to be

where

Ci=1.14- 531 L2 dUc,
1 T (42)

while Morse (1977) selected

B Ci=14-34 (léﬂ%!xl); (43)

~In the above axisymmetric corrections, Uy, is the jet centerline velocity and r1/2,
is the distance from the centerline to the half-velocity position.

All the above corrections are heuristic, use centerline values to change the
turbulence away from the centerline, and are not extendible to more generalized flows.
Pope (3-78), noting these issues, introduced a more generalized extension based on
vortex stretching arguments which modifies the dissipation equation by adding an
extra term, namely:
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(44)

Cix e2/k
where
X = 0jj Wik §; (45)
with
5= 1K é“_.,.a_ul) (46)
2e Jx; 9x;
and
coa=%§(—a—“i+@i) (47)
an axi
For an axisymmetric jet (with no swirl), x becomes:
du dv\2
PG
x 4 \¢ al' ax T (48)

and the constant C, = .79 was found to match jet data (axisymmetric jet into still air).

This vortex stretching correction has potential generality and does go to zero for planar
flows. However, in a review article by Launder (1985) the universality of the C,

coefficient is questioned based on calculations of coaxial jets. Hanjalic and Launder
(1980) suggest that a correction term of the form:
' ou; du
-C3k b ke €ijk Eumk (49)
j OAm
be added which is similar to Pope’s in appearance but acts differently. The sign is
different and this term is also operative for planar shear flows.

To illustrate the importance of these axisymmetric correction terms, consider a
simple low speed, axisymmetric jet with a 10:1 velocity ratio. Figure 3 shows the

predicted centerline velocity decay and jet boundaries obtained using the basic k-¢

model and the k-e model with the Launder CL (centerline) and Pope vortex stretching
corrections (see Dash, 6-91 and Dash et al., 9-91 for details and discussions
regarding the use of these corrections with the previous compressibility corrections
provided in this section). As exhibited, inclusion of the axisymmetric correction siows
down the mixing and produces a significantly farger jet size. For low speed jets such
as this, the correction produces good agreement with data.

The next corrections discussed are those for streamline curvature. While both
the mean flow and turbulence model equations contain a number of curvature terms
arising from the transformation to curvilinear, surface-oriented coordinates, numerous
investigators have demonstrated that additional, curvature corrections terms are
required to account for the strong effects of curvature on turbulence structure. The
analogy drawn by Bradshaw (1969) between curvature and buoyancy has been
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utilized by most investigators as the basis for heuristic corrections to algebraic or two-
equation turbulence models. Defining the curvature parameters, s = -KU/0U/on), a
curvature correction to the ML formulation (Bradshaw, 1973) is given by:

_Lo(1-as) 50
L= (1-5s) (50)

where L, is the planar value while a is a constant (5 <« < 10). The treatment has

been implemented for wall jets by Foloyan and Whitelaw (1976) who utilized a
complete (inner/outer) mixing length formulation. For the present near-wall use of the
mixing length formulation, this correction will only be required in situations with very
large curvature since the near-wall correction to L, is negligible.

Launder and coworkers (3-77) have developed a curvature correction for the k-¢
model which utilized a single empirical coefficient, C,. The curvature correction is

proportional to a Richardson number, Ri, based on the turbulence time scale. In their
formulation, the local Richardson number is given by:

Ri = - KU ({g)z% (51)

and the C, coefficient of the € equation is modified as follows:

C, = 1.92 (1 - C. Ri) (52)

Values of C. of about 0.2 have yielded optimal predictions for a variety of curved
boundary layer flows as described by Launder et al., (3-77). An analogous type of
curvature correction for the k-e model has developed by Hah and Lakshminarayana
(10-80). They have modified the C, coefficient of the & equation as follows:

C; =143 (1 +C:Ri) (53)

~+ To illustrate the marked influence of these streamwise curvature corrections, we
refer to the work of Dash et al., (10-85 and NASA CP 2432, 1986) for wall jets on
curved surfaces. The case simulated the experiment of Wilson and Goldstein (9-76)
(Reg = 13,200) for a wall jet issuing from a .615 cm slot flowing over a circular cylinder

with a diameter of 20.32 cm. The data for the jet half-radius variation is compared with
a series of predictions in Figure 4. The following predictions were performed:

(a) Basic k-¢ (inner Van Driest)
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(b) - nder Correction
As above the k-e curvature correction of
Launder using C, = .10 and .20.

(c)  As above with k- curvature correction, eq. (53),
using C. = .12 and .16, Hah and Lakshminarayana

(10-80)

Comparing the data for this case with that for the planar jet, we observe a
pronounced effect of curvature on the jet growth rate (i.e., at x’b = 50, the planar jet

half-radius is about 4 times larger). Applications of the basic curvilinear k-e model
grossly underestimates the growth rate yielding a variation comparable to that of the
planar case. Launder et al., (3-77) recommend a value of C, = .20 for their k-e
curvature correction but state that Priddini (1975) had found a value of C, =.10to
work best for wall jets. We have implemented both these values and find the value of
.20 to yield best agreement. For the C, curvature correction of eq. (53) (using the
Launder Ri definition), the value of C, = .16 is seen to yield good agreement with the
data while the value of C, = .12 underestimated the measured growth rate.

Comparable conclusions can be drawn from the comparison of predictions for
maximum velocity decay also depicted in Figure 4. The predictions with the Launder
correction with C, = .20 and the C, correction with C. = .16 are quite comparable and

fit within the data band based on the experiments of Wilson and Goldstein, and other
investigators. The other k-€ predictions underestimate the velocity decay rate.

Predicted profiles of the streamwise velocity at 6 = 90° (with C = .20, Launder
and C, = .16 EQq. (53) are indistinguishable and agree favorable with the data of

Wilson and Goldstein which is invariant in similarity coordinates for 8 = 45%. The case
itself is, however, nonsimilar as seen by the comparisons with turbulent shear stress
data depicted in Figure 5. The data exhibits a significantly greater peak shear stress
level at 1800 than at 90%as do the predictions. The predictions at 900 (C, = .20,

Launder and C, = .16 with eq. (53) are in close agreement with each other and

somewhat overestimate the shear stress. Those at 1800 differ substantiaily with the
Launder model overestimating and the Hah and Lakshminarayana model
underestimating peak shear stress levels. Figure 5 also compares the predicted
streamwise variation of peak turbulent shear stress with data. The two predictions are
quite comparable up to 70%with the eq. (53) model yielding a decreased rate beyond
700 while the Launder model continues in an essentially linear fashion. Discounting
the data point at 1809, the trend provided by eq. (53) appears to be more consistent;
moreover, the model yields values of peak turbulent shear stress which agree quite

closely with the data of 0 <6 < 1500.
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4.0 MULTI-ZONE NAVIER-STOKES CODE

The code selected for turbulence model assessment studies is the PARCH
Navier-Stokes (NS) code. PARCH is an outgrowth of the Ames Research Code (ARC)
of Pulliam (3-84 and 1-85) and the propulsive extension, PARC, that Cooper (6-90)
developed at AEDC. Like the AFWAL PNS code, PARCH embodies over ten years of
continuous development, upgrade, and support by the government.
ARC/PARC/PARCH represent the most popular and widely used NS codes in the
United States. The PARCH version has unified the features of ARC and PARC and
includes unique “patched grid” capabilities developed at AEDC to treat complex
geometries using simple gridding procedures. With patched gridding, boundary
conditions can be applied along any mapped grid lines of the computational domain,
not just the bounding domain. This facilitates dealing with fins, struts, cavities, etc.

PARCH is an implicit code which is requisite for the efficient treatment of
turbulent flows near walls where grid spacing is small and would severely limit time-
steps if explicit methods were utilized. Separate 2D/AXISYMMETRIC and 3D versions
are operational which have been specialized to various flow problems shown in Table
VII. Versions of PARCH are operational with finite-rate chemistry and muiti-phase flow.
Multi-zone versions are available where each zone has internal patching capabilities
as well. PARCH has been applied to aerodynamic flows (hypersonic vehicles, tactical
missiles, circulation-control airfoils), to propulsive flows (rocket nozzles, gas turbines,
scramjet inlets/combustions/nozzles), jets/plumes/wakes (aircraft jets, rocket plumes,
RV wakes), and laser flows. Moreover, it is presently being used as a research tool
under NASA/LaRC support to study advanced turbulence models for jets (in support of
the high speed civilian transport program).

Turbulence models have been incorporated into PARCH in both a loosely-
coupled manner and a strongly-coupled fashion. The PARCH/Gas Turbine version
presently contains the following turbulence models: '

(1)  k-e model, high Re version

(2) compressibility-corrected variants of the above with the corrections
- of Dash (8-75), Sarkar et. al (12-89), and Zeman (2-90)

(3) near-wall extensions including van-Driest two-layer coupling, the
Chien (1982) low Re version, and the Rodi (1-91) one-equation
hybrid approach

(4) geometric corrections for axisymmetric effects (Launder, 1985 and
Pope (3-78) corrections), for swirl and streamwise curvature
corrections (Penn State/Lakshminarayana, 12-86 and Imperial
Coliege)

(5) k-w model, high Re version
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PARCH has been applied to a very large data base of fundamental flows as well
as to many complex, three-dimensional flows as demonstrated by Dash et. al (6-91, 1-
91, and 10-89), York et. al (6-89 and 11-89), and Sinha et. al (7-88 and 7-89).

The selection of PARCH as a generalized tool to study the behavior of
turbulence medels in high speed flows is motivated by many new practical factors.
With current generation missiles and spacecraft having highly integrated propuisive
systems, one cannot separately study aerodynamic and propulsive flows.

The exhaust flow from integrated propulsive systems can wet large protions of
the aerodynamic surfaces. This flow can be chemically-reacting and for missiles with
solid-propellant rockets, will be multi-phase. With lateral control jets replacing
conventional aerodynamic control surfaces on many missiles, the ability to analyze
such flowfields is felt to be requisite. PARCH which has chemical and muiti-phase
capabilities, is the only 3D Navier-Stokes Code now being used in a design
environment to support the development of varied-missile systems with integrated
propulsive systems and missiles with lateral control jets.

Another seiection criterion for PARCH is the validation of the code with its
included turbulence models. This has occured over a five year period starting with the

inclusion of the basic high Re version of k-e and checkout for varied high speed free

shear flows, and versions of k-e coupied to various near-wall models. [t takes many
man-years of effort to incorporate an advanced turbulence model into a Navier-Stokes
code and get it to work properly in a broad spectrum of flow problems. No other
Navier-Stokes code has the experience base of PARCH with advanced turbulence
models.

Finally PARCH is now used as a “standard” tool by many different communities
dealing with aerodynamic, propulsive, signature and acoustic problems. PARCH is a
standard component of the SDIO system of codes for missile detection, the SPIRITS
system of codes for aircraft/helicopter detection, the HSCT system of codes (MICOM)
NSWC, etc) for missile design, etc., etc. All these communities are dealing with the
turbulence problem in a practical manner and their experience with PARCH will
provide significant contributed value to envisioned work by Wright-Labs with this code.
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5.0 TURBULENCE MODELING ROADMAP

In order to accommodate a wide range of practical engineering problems using
a generic turbulence closure model, a “building block” approach will be required. This
approach consists of evaluating a variety of turbulent boundary layer flows relative to
corresponding validation cases which can be used to calibrate closure constants (or
functional coefficients) together with appropriate damping terms. The methodology
would commence with simple unit level problems and progress to more complex flows
with combined effort as the experience based is enhanced. Table VIl shows the
descending order of flow status that should be considered. The end product of the
methodology will provide a matrix (table) of closure coefficients and damping functions
that can be used in the proposed hybrid turbulence model that will aliow the user to
“dial-a-model” as required to solve the problem at hand. Several techniques that
can be used to develop the building block methodology will be addressed in this
section as well as the identification of a fundamental database for validation.

- The building-block matrix shown in Table VIl will consist of compressible
boundary layer and jet flowfields that are 2D or axisymmetric. While several
successes have been demonstrated for unit problems, coupling of unit level problems
with compressibility has not been established. For a generic turbulence model to
analyze fundamental wall bounded and jet flowfields, the turbulence modeling in each
flow state must be validated in a reliable manner. Consequently, a systematic
development from the simplest flow to the more complex flows will be required. The
emphasis of our approach will be on boundary layer type flows. A similar approach for
jet flowfields has been proposed to NASA (Dash et al, 10-91) that would complement
proposed work for a Phase Il program.

5.1 Wall Roughness

Appendix A addressed issues of wall roughness in boundary layer flow. The
modification to the C-S model to incorporate the van-Driest local vortex generating
tactor was shown to be inadequate since the factor did not allow for roughness
elements greater than the sublayer thickness. Since the near wall velocity distribution
can be dependent upon many geometric variables that define surface texture, the
concept of Rotta (1962) will be adapted. Here, the influence of surface roughness is
felt only close to the wall such that the law of the wall relations could be used by

shifting the reference plane by some distance (-A y*) with respect to mean roughness
level. To accommodate the no-slip condition at the new surface, the reference plane
would be required to move in the direction opposite to the mean flow at a rate that
depends upon the shift.

Cebeci and Chang (7-78) used the Rotta criteria in an algebraic mixing length

mode! but allowed for the no-siip condition to be maintained at y* = 0. Chang (5-71)
used reference plane slip velocity but did not allow for a shift in the reference plane
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position. Laganelli (1-75) as well as Krogstad (6-91) considered both aspects of the
Rotta concept. The latter paper provided a thorough examination of the damping
requirements and showed excellent comparisons to incompressibie data. In both
cases, the authors chose to characterize the reference surface by a single roughness
length scale, namely, the equivalent sandgrain roughness height which is easily
obtained. In a recent investigation, Laganelli and Scaggs (6-90) reviewed the single
sandgrain roughness length scale criteria of Dirling (6-73), which was developed from
incompressible data, and demonstrated that the criteria could be used for
compressible flow conditions. The authors (Laganelli and Scaggs, 1-86) determined
that a unit Reynolds number (velocity scale) was required in the equivalent sandgrain
roughness parameter. The authors also reviewed the reference plane shifting criteria
using a boundary layer code and recommended a technique to define the reference
plane position. A comparison to compressible data showed good agreement.

When the roughness elements just protrude through the viscous sublayer,
turbulence production can be generated by the individual roughness elements where
the eddy length is on the order of the element size. In regions away from the wall, the
impact of the vortex generating roughness elements could have an effect on local
equilibrium (i.e. production is approximately equal to dissipation).. However, with the
use of two-equation models, the field equations should provide insight into near-wall
modeling requirements especially since the kinetic energy is carried to the wall.

Finally, it should be noted that Arora et. al (11-82) used the technique of Cebeci

and Chang in a two-equation k-e¢ model (using the wall function method) and the
assumption of equilibrium away from the wall. Comparison of the method to
incompressible and compressible data showed good agreement which could render

the no-slip condition y* = 0 as opposed to the reference plane as not important.

The velocity distribution in the wall region given by Krogstad (6-91) is

u’=f7. 2dy’

° 3 +\/1‘ (20°D,) ° (54)

where 1% is the dimensionless mixing length and Dpg is a roughness damping function
(given in the bracket of Eq. A-12). Since Dgis limited to Dg< 1 (as given in Eq. A-12),
Krogstad proposed a shift such that

H 2w

An examination of the above shows the damping term to be similar to that given by
Egs. (A-13) and (A-14). However, Eq. (55) appears to have correct asymptotic
behavior in both the linear region of the sublayer as well as the log-law (slope) region

Dy =1-¢7/2 + exp
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that correctly accounts for the velocity shift. The form given by Eqgs (A-13) and (A-14)
used an average value in the sublayer region and does not have the asymptotic
characteristics of Eq. (55).

This work should provide excellent near wall modeling techniques to
incorporate into the proposed hybrid k-e turbulence model.

5.2 Mass Transfer

Appendix A also describes the basic methodology that has been used by the
modelers to treat mass transfer effects. Essentially, corrections have been made to the

damping coefficient such that A* = A* (v,,). These corrections have been adapted into

algebraic eddy viscosity models as well as two-equation models. For the k-e type,
modifications are usually made to damping coefficients in the expontial term in wall
functions, van Driest bridging techniques, and low Reynolds number near-wall

techniques. The k-wtype have also featured mass transfer modeling using taw of wall
relations coupled to boundary conditions using a perturbation solution in the near wall
region. However, all of the above methods have shown success for incompressible
flow conditions only. To the authors best knowledge, no-one has demonstrated the
ability to predict mass transfer effects subject to compressible flow.

Rajendran and Laganelli (12-89) considered the arguments of van-Driest that
the presence of the wall can modify the universal constant (Karman constant) such that

xk=x [1-exp (-y/A)]

or that the mixing length must be charged to

L=xy [1-exp (/A)]

An examination of compressible mass transfer data of Martellucci et al (4-74)
and Danberg (1-67) shows that the slope in law of the wall coordinates deviates from
the non-blowing value and changes with increasing blowing. Accordingly, Rajendran
and Laganelli suggest that the damping term he modified in the same spirit as wall
roughness in as much as wall blowing has the opposite effect as roughness in law of
the wall coordinates. For this condition, the damping can be expressed as

[1-exp(-y /A% +B(r*/A)* exP [Bu/ Bu,] (56)

where

B=B Q) =(pVIw/ (Pue (57)
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Bu = (A/St) (58)
Bu,, = exp [2.7726 (w-0.5)] (59)
W= (Tw/Te) 13 + 0.125M, (60)

In the above, the critical blow-away parameter Bu, was determined by
Laganelli et. al. (4-75) to vary between a value of 4 (incompressible) to 64
(compressible) using data from a several facilities over a range of Mach number and
wall temperature ratio. The technique was used in the Baldwin-Lomax algebraic eddy

viscosity model and the constants B and n were determined from the data of
Martellucci et al (4-74). This initial result showed promise and will allow for a
technique to be further evaluated in a Phase Il program.

With the ability to provide more physics to the damping coefficient A* using the
kinetic energy equation, together with the heuristic arguments developed for near wall
functions, we believe that the ability to characterize mass transfer can be
accomplished. This can be demonstrated by comparing the exponent terms from the
damping functions of van Driest and Norris-Reynolds i.e.

Y*/A* = G, vE y/v

which leads to the definition of the damping coefficient to be At = U /Cs k12, Here,

one has the added advantage of the kinetic energy which is provided by the field

equation and should provide better physics for determining characteristics of A* = A+
(vy,) as opposed to data correlations.

5.3 Compressibility

Section 3.3 addressed issues concerning compressible modifications to the
standard k-e incompressible field equations. Specifically,  investigations were made
by Dash et al (6-91 and 9-91), Viegas-Rubesin (6-91), and Wilcox (6-91) that
considered adaption of the Sarkar et al (12-89 and 6-90) and Zeman (2-90)
compressible-dissipation models to the k-e and k- two-equation turbulence models,
respectively. While Dash et al and Viegas-Rubesin focussed on mixing layers, Wilcox
considered both mixing layers and wall bounded flows. The authors noted some
variation in the compressible models.
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Several observations can be drawn from the work of the above investigators
which, when supplemented by the work of Horstman (6-91) provide a practical path
that can be followed to enhance the prediction of compressible shear flows. Since
section 3.3 focussed on free mixing layers, the immediate near path should consider
the impact of these compressible modifications to the turbulence two-equation models
in analyzing wail bounded flows.

When the Sarkar et al and Zeman compressible terms were added to the k-¢

and k-0 models, a comparison with free shear layer data showed that the
compressibility effects on spreading rate was reasonably predicted. However when
applied to adiabatic, flat plate compressible boundary layer flow data (M < 5), the
compressible corrections tended to underpredict skin-friction data while the
unmodified turbulence two-equation model predicted this data quite well. Wilcox
modified the coefficients in the Sarkar model to force agreement with the skin-friction
data and subsequently used the modified version to analyze the free shear data base.
Wilcox’s experiences indicated that the compressibility modifications can not be
arbitrarily extended to the near wall region, even for simple paralle! shear flows. Initial
application of the Sarkar compressible modifications to separated flow conditions
(M<3) provided a larger separation length than the unmodified models with
significantly better agreement with data (Dash, 9-91).

Wilcox (6-91), demonstrated that the Sarkar and Zeman models were
inaccurate in the near wall region and developed an improved model that combines
the Zeman extended lag effect with the Sarkar dilatational dissipation effects on the
turbulent Mach number. When the hybrid model was applied to the limited data base
of mixing layers (My<2), adiabatic flat-plate boundary layers (M<5), and separated

flows (M<3), data trends were correctly predicted. The k-w equations were used for
this examination.

Horstman (6-91) used the standard k-¢ model and two modifications of this
model and compared the results to a range of supersonic/hypersonic separated flows.

The modified k-& models consisted of the standard k-e equations and a one-equation

model (hybrid, Rodi, 1-91) for iength scale in the near wall region and the standard k-¢
mode! with additional compressible terms (as provided from Farve averaging by

Rubesin, 6-90). The standard k-¢ tended to underpredict the separation length and
overpredict skin-friction and heat transfer. The Rodi hybrid model tended to increase
the separation zone while underpredicting skin-friction and heat transfer in the

reattachment region. The k-e model with additional compressible terms tended to
provide the same trends as the hybrid model but was difficult to implement readily. An
examination was made to determine the impact of individual effects of compressible
modifications and length scale (Rodi) modifications. It was shown that both
compressible and length scale modifications increased the separation zone length
while length scale alone changed skin-friction and heat transfer in the reattachment
region.
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Based on such assessments, our building block approach wiil consist of
“carefully” combining improvements for free shear layer flows and boundary layer

flows using the standard k-e model with compressible modifications of Dash (9-91) as
the baseline model. Near-wail behavior will be explored using low Reynolds number
modifications (with compressible correction) and the Rodi hybrid length scale
modifications (also with appropriate compressible modifications).

5.4 Pressure Gradient (Curvature)

Section 3.4 addressed issues concerning vortical-curvature modifications.
These modifications include corrections for axisymmetric behavior, streamwise
curvature, swirl, and streamwise vorticity. As noted, these modifications have been

made to the constants in the € equation of the k-¢ two-equation model.

Consistent with our building block approach, a systemetric evaluation of varied
geometric corrections will be required. It is imperative to couple the assessment of the
varied geometric corrections with the assessment of the compressibility-correction
(both influence the length scale), and, with the near-wall formulation. The geometric
corrections are generally formulated for low speed flows and they may not work
without recalibration for higher speed flows even with the compressibility-correction
implemented.

5.5 Compressible Flow Database

The previous sub-sections considered issues and methodologies that have
been used to predict attached/separated boundary layer and jet flow fields. Moreover,
several of the methodologies have been shown to predict favorable and adverse
pressure gradient flows subject to compressible flow conditions. Our objective has
been the development of a generic turbulence closure model capable of providing
near term solutions to a wide range of engineering problems. Accordingly, we have

identified the k-e two-equation model with variations to meet these near term goals.

Inparticular, this will involve the hybrid concept that consists of the standard k-e model
and a one-equation model for length scale. Variations will require a systematic
investigation to provide compressible corrections, curvature corrections, roughness
and blowing corrections.

A database will be required to provide this systematic investigation. The
Stanford conferences, NASP symposiums, and recent AIAA meetings/workshops have
established a formidable list of test resuits which can be used to develop validation
cases. Table IX lists a database of compressible flow experiments for boundary layer
and jet flowfields. This preliminary database is consistent with the building block
approach described in Table VIll. While several of these references provide data for
unit flow problems (mass transfer, for example), other define experiments for several
unit level problems. The database allows development for simple flat plate, adiabatic
parallel shear flows to complex shock/boundary layer interactions and subsequent
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coupling of flow states. Most of these test cases (sans mass transfer and rough wall
data) have been used by previous modelers using conventional techniques and in
some cases with modifications to standard techniques. The quality of this database
has essentially been judged and its limitations defined.

Finally, Table X shows how the building block approach can be used to develop
a matrix for a turbulence “dial-a-model” to suit specific classes of engineering

problems. It is our position to use the hybrid versions of the k-& turbulence model with
appropriate compressible corrections as the baseline model. Essentially this table
would be structured having established the ability to predict compressible zero-
pressure gradient, adiabatic and cold wall conditions for two-
dimensional/axisymmetric flow fields.

As shown in Table X and described in the text, near-wall length scales will
require modifications to include mass transfer, roughness, and curvature. These
modifications will require adjustments to constants (which can become functional
coefficients) and/or adjustments to a reference plane which requires the no-slip

conditions at this plane. As noted by Rotta, this requires a shift (-A y*) relative to near

roughness level and +A y* (Rajendran and Laganelli) for mass transfer. For curvature

these adjustments can be made to either length scales or the constants in the k-€
transport equations.

A potential variation to the above would be to provide a functional form for the
constants, C4, Cg, ok, and o, to include wall effects. We have seen that low Reynolds

number forms to the k-& equations madify the constants C4 and C, to include damping
terms (mass transfer and roughness) or velocity gradients of mean flow for curvature.

We believe that the baseline compressible model together with the extensive

experience base of k-¢ modelers to predict a wide range of
incompressible/compressible flow engineering problems, will provide the insight to
complete the matrix of Table X. However, this will require the systematic building block
approach and database described above.
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6.0 ASSESSMENT OF PHASE | PROGRAM AND RECOMMENDATIONS
FOR PHASE |l EFFORT

6.1 Assessment of Phase | Program

A through review has been made to idenitfy a turbulence closure model
capable of treating a wide range of practical engineering problems. The review has
focussed on high Mach number compressibility effects for simple turbulent flows-
boundary layers as well as free hear layers. Consideration was also given to wall
effects such as roughness, blowing, and curvarture as well as flows experiencing
separation and interactions. The process of selecting a turbulence model also
considered adaptability to a multizonial Navier-Stokes solver with a long history in the
industrial community.

It was determined that a hybrid k-e model had the potential to meet the above
objections for near term resolution to engineering problems. Specifically, the hybrid

model consists of the standard two-equation high Reynolds number k- turbulence
model for treating the outer layer and a one-equation model (with correct length

prescription and the € of the k-e two-equation model) to treat the inner viscous layer.
The hybrid model which was introduced by Rodi for incompressible flows has been
successfully applied to analyze compressible flows including complex shock/boundary
layer interactions. The hybrid model was chosen for a number of reasons, namely:

. k-e two-equation model is the most widely used turbulence model
in the scientific community

. it has an extensive experience base to treat a wide range of
engineering probiems

. use of the one-equation model to treat the length scale in the near-
wall region eliminates numerical problems associated with the €
equation in the k- two-equation model

. one-equation models have demonstrated success to provide
engineering solutions for flows subject to serve adverse pressure
gardients and has demonstrated success to provide engineering
solutions for hypersonic flows subject to complex shock/boundary
layer interactions

. provides details of the turbulence structure as well as wall
conditions :
. k- transport equations have demonstrated success in adapability

to industrial codes
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Several turbulence models were reviewed that included zero-equation type
where both length and veiocity scales are algebraically prescribed, one-equation
models where the length scale is prescribed and the velocity scale is determined by a
kinetic energy transport equation, and the two-equation models where both length and

velocity scales are determined by field equations; the hybrid k-¢ being in the latter
class. Variation in these models that have shown success include the one-half
equation model of Johnson and King, the one-equation models of Goldberg and
Baldwin and Barth, and a number of variations to the standard high Reynolds number

k-e model. Recent success has also been reported by Situ and Schetz who included
extra terms in the basic shear stress equation to treat compressibility effects.

Finally, Dash et al, Wilcox, Horstman, and Viegas and-Rubesin considered the
impact of compressibility with modifications to the two-equations turbulence models.
Horstman considered the extra compressible terms suggested by Rubesin (cascadsed

from Favre averaging) and compared this result to the standard k-e and the hybrid k-e
noted above. It was determined that both the hybrid k-e and the extra compressible

terms k-e model provided better resolution to interacting flows where the former gave
better control on separation zone length and magnitude of wall heat transfer. The work
by Dash, Wilcox, and Viegas-Rubesin considered adaption of the Sarkar et al and
Zeman compressible terms to the two-equation models. It was determined that the
compressible terms provided the reduction in the spread rate of mixing layers; but
when applied to boundary layer flows (Wilcox) underpredicted results compared to
unmodified turbulence models. However, the Wilcox model is not hybrid and our use

of k-¢ with the Rodi near wall formulation may remedy this deficiency.

Recognizing the potential of the hybrid k-e turbulence model and the issues
concerning compressibility, a building block approach has been identified that can

provide a matrix of turbulence closure parameters that can be used with the hybrid k-&
model to solve a wide range of practical engineering problems. This matrix will
provide the user with a “dial-a-model” menu capable of analyzing boundary layer and
free shear layer flows. In order to develop this matrix through a building block
approach, a database and a multizone Navier-Stokes solver were identified. The
database consists of attached/separated boundary layer flows as well as plane free
shear axisymetric free jet flows. This compressible flow database has been used by
the scientific community and has been judged for quality and limitations for validating
models. '

The multizone Navier-Stokes solver identified for the building-block
investigation is the PARCH code which is an outgrowth of the Ames Research Code
(ARC) and the propulsive extension, PARC, developed at AEDC. PARCH embodies
over ten years of continuous development, upgrade, and support by various DoD
agencies. ARC/PARC/PARCH represent the most popular and widely used NS codes
in the United States. A simplified version of the PARCH code that does not include
chemistry is recommended for the development of the turbulence closure matrix.
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6.2 Recommendations for Phase Il Effort

A Phase Il program is recommended that will focus on boundary iayer type
flows. Similar efforts are currently being proposed to NASA (by Sciences Application
International Corporateion) to investigate free shear and axisymmetric jet flows. Both
of these programs would compliment each other and could be developed in a con-
current fashion for technical interchange and cost effectiveness.

Prior to excersing the building block methodology, it will be necessary to resolve
the compressibility issues identified in the Phase | investigation. The database will be
used together the concepts proposed in this investigation; namely to include the
Sarkar and Zeman compressible- dilatation terms, or some modification of the two,

into the hybrid k- model. It is also recommended that a low Reynolds number version

of the k-e model, such as Chien, be modified in the same fashion for comparison.
Having established a baseline compressible turbulence model, the building block
methodology can proceed from simple to more complex flows to treat
attached/separated flows including roughness, blowing, and curvature. Unit level
problems will be investigated to develop the “dial-a-model” turbulence matrix.
Coupling of individual effects will be required to ensure the extent of modeling
capability as well as the ability to reduce to unit level problems.

A by-product of this Phase Il effort will be the development of a “Turbulence
Tutorial”. This tutorial will consist of a two-dimensional boundary layer solver with
several turbulence closure models ranging for zero-equation to two-equation levels.
Also included in the turbulence turorial package will be a database and user-manual
that will provide directions on use of the tutorial to be adapted to a PC that can include
a post-processor, graphics, and windows to allow students, researchers, and teachers
the opportunity to learn/explore/teach turbulence issues. While such a product could
be an invaluable eductaional tool (university), it also' provides a mechanism for
researchers to test turbulence models and variations of prior to insertion into complex
NS solvers (industry and government).
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APPENDIX A
MODIFICATION TO CEBECI-SMITH MODEL
A1 C-S Model with Compressible Effects

For a one-dimensional non-steady flow, the momentum boundary layer equation
can be expressed as :

dut = (Wp) @ wdyd) (A-1)

with the boundary condition u(o,t) = U, cos (ft). The solution to the above diffusion

type equation is easily obtained. Cebeci extended Stokes flow to include
compressible effects (non- isothermal) by consideration of the non-steady momentum
equation in the form

p du/dt = 9/dy (1Ou/dy) (A-2)

and introducing the transformation dy = ndz with the product ppL representing some
average value over the sublayer region, Equation (A-2) becomes

/ot = L/(p 1) @' woz?) (A-3)

The solution to Equation (A-3) subject to boundary conditions from the incompressible
development, becomes

u/up = exp (-mz) [cos ft - mz] (A-4)

where m = [(#/2) pRJ"/2 = constant utg (FEV)1/2 for utg = (t,/p)V2. The damping
function can then be expressed as

[1 - exp -y&/ A A
where
; =26 (2) (X
yg,=uwy/vwandA§—26(.6) (l-lw) (A-6)

Here one notes the choice of the constant as the incompressible value of 26.

69




- |

in the above formulation, one could potentially use a reference enthalpy (Eckert,
for example) and a viscous power iaw relationship instead of the average properties of

P and T. In the former, the equation of state could be assumed such that p ~ 1/T
and the latter as p = u (T). In this manner, direct use of the Mach number and wall
temperature ratio (Ty,/Ta,,) would be obtained to have an explicit compressible and

non-isoenergetic function. Most investigators have chosen to use local values for p
and p.

A.2 C-S Model with Pressure Gradient and Mass Transfer
Cebeci recognized that the expression given by Equation (A-6) had to be
modified to account for incompressible flows with pressure gradients and mass

transfer. This was accomplished by redefining the parameter A in terms of a sublayer
friction velocity rather than its wall value, such that

A=26V . (T/ps) 2= ATV o/ (Twlpw)'?

By neglecting the convective component in the stream direction in the momentum
equation, the friction velocity in the sublayer can be approximated as

dty/ dy - (vw/V) T = dp/dx (A-7)

and for a value of ys‘“ = 11.8, the solution of Equation (A-7) allows for the damping
coefficient to become

At = A" (Vwo dP/ dX)

The damping constant can be expressed as

A* =26 '1!? (Pwl P2 (Witw)

- (A-8)

/ compressible contribution

%;sure gradient & mass transfer contribution
incompressible value

N= (_—_*L(P-E-)Pl[ 1-exp (- 118 B2 vi)] +exp (- 1L8EXveil2  (A-9)
Hw \Pwl Vs H B

where

for
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_ Ve ue duJdy
i (tw/pw)lsl/z =2 = (ue/pd) (dp/dy)/(Tolpw)*?

(A-10)

Vi = Vollg

A.3 C-S Model with Roughness Effects

In the classic van Driest paper that introduced the damping function for the near
wall region, the concept was extended to include rough wall effects. An artificial mixer

(vortex generator) was introduced at the wall to mitigate the damping function (1-e-Y/A),
This implies that the wall roughness encompasses the viscous sublayer such that the
stabilizing effect of viscosity is negated and the effect of turbulence is felt all the way to
the wall. Observation of experimental data, in law of wall parameters, shows the
velocity profile to decrease with increasing roughness height.  van Driest noted that
the damping effect of the wall extends approximately y' = 60. As aresultt, for roughness
elements which extend to a value of y* = 60, the viscous influence of the wall should be
nullified.

In order to accommodate the effects of roughness within the near wall viscous
region (i.e., k,* < 60 where k;* = u_k /v, for k, some r.m.s average height), a local

vortex generating factor is introduced. This is accomplished by adding a factor that is
similarand on the same order of the damping factor, namely

e-y*126 e -0 (y*/26)

Since the vortex generating factor should be allowed to grow with the size of
roughness, the factor was modified to a form

exp (-60 y*/ 26 ky) (A-11)

such.that at y* = k,* = 60, the disturbance factor just offsets the damping factor. The
mixing length is then expressed as

tn=xy* [ 1- exp (-y*/26) + exp (-60y*/k])] (A-12)

An examination of the above shows that the van Driest formulation will not
decrease any further once the sublayer has been eradicated by a sufficiently large

roughness height (kr"' > 60) which is in conflict with experimental evidence

(McDonald-Fish, 1973). In order to allow the damping factor to be in excess of unity,
an incremental factor due to roughness is introduced, namely
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Dy = [ 1+ K7 30y*] exp (:2.3y*/) (A13)

such that damping becomes

D =Dg+ Dig (A-14)

Here, Dg is the original smooth wall damping term and Dy, provides the sole means of

introducing the effect of roughness into the prediction process. The mixing length is
now written as

g =ky'D (A-15)

Further comments concerning this development were addressed in the text. It should be
noted that the form of Equation (A-15) is similar to that which was recently derived by

Krogstad (6-91).

The turbulent viscosity coefficient is obtained from the inner to the outer layer
about a switch point defined as follows

= Bi @y <Yc (A‘16)

M= e @y> e

where y, is the smallest value of y where py; = g,
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APPENDIX B

B.1 Baldwin-Lomax (B-L) Model

The Baldwin-Lomax(1978) turbulence model is included here for completeness
inasmuch as it has become integrated into many industrial codes for direct use or as a
standard from which other models are compared. Like the C-S model the B-L model
also works well for attached boundary layer flows. However it incorporates teatures
that are more advantageous than the C-S model by eliminating difficulties in the outer-
layer length scale that require a knowledge of the boundary layer edge. Moreover, the
inner-layer velocity scale uses the magnitude of the vorticity vector as opposed to the
shearing strain. This provides 3-D capability for flows where an invariant shearing
strain is not well defined. This model has the following features:

pi=plad=p (xy D)?|d (B-1)

where ldj is the magnitude of the local vorticity vector and the damping factor D has the
same functional form as in the C-S model. The vorticity term has the same form as C-
S when the thin-layer assumption is invoked. Baldwin-Lomax chose local values for
the fluid properties in the damping coefficient of Equation (A-8) and noted that the
compressible contributions become significant only when large temperature gradients
occur in the near wall region.

The outer region of the B-L. model modifies the Clauser relation of C-S to give

o = 0.0268 0 Ymax Frmax %o (8-2)

where y.. and F., correspond to the values at the location of the maximum value in
the vorticity function, F(y) = yDle]. The modified Klebanoff intermittency factor is

Yo=[1+5.5 (——-——(;;:i)‘s]" (B-3)

where one notes that & is replaced by ymg /0.3 in Equation (5). The turbulent
coefficient switch point is defined as in Equation (10). Table B.1 provides further
details.
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Table B.1. BALDWIN-LOMAX TURBULENCE MODEL (from Menter, 6-91)

The Baldwin-Lomax Model
The formulation for the eddy viscosity is

10))

= { (Uinner ¥ < Ycrossover
(vt)outer Y > Yerossover,

where Yerossover is the smallest vaine of Ys for which the
inner and the outer formulation are equal.

The inner eddy-viscosity is defined as follows:

(tdinner = lul (2)
with
| = ky[l ~ ezp(—y+/AT)). (3)
|w| is the magnitude of the vorticity and
4 _ Ury
== (4)
The outer formulation is
(Vt)outer = K CCPF wakeF Icleb(ll) (5

with
Fpake = Min(Ymaz Fmaz; kaymzu‘zﬁ f /Fmaz).
(6)

function .

F(y) = ywi(1.0 — ezp(~y+/AT)). )
Fmaz is the maximnm valve of F(y) and ymaz is the

comresponding y location. The function Fiyep(y) is the
Klebanof i : functi

- Ciiesy ]~
Fuest) = [1+55(Z)° . @
The quantity ug; ¢ is the difference between the maximum
and the minimum total velocity in the profile. The constants
used are

At =260; Cep=16;  Cilep =03
Cui = 1.0; k=04; K =0.0168.
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APPENDIX C

C.1 Johnson-King Model (J-K): One-Half Equation

The Johnson and King model (11-85) represents a nonequilibrium eddy viscosity
model that is formulated by an algebraic eddy-viscosity relation and an ordinary -
differential equation (ODE) based on a simplification of the turbulent kinetic energy
field equation. The ODE is based on the distribution of the maximum turbulent shear-
stress which controls the value of the outer eddy-viscosity and ensures that lag effects
are accounted for. The model has been successfully used to predict turbulent
boundary layer flows including shock interactions. The model has been updated by
Johnson-Coakley (11-90) to include a modification to the near wall eddy viscosity
formulation as well as incorporating compressibility effects. Menter (6-91) has used
the updated version of the J-K model and compared results with two-equation models
as well as the Baldwin-Lomax and Baldwin-Barth (1-91) one-equation model. Table
C.1 provides the modeling characteristics that include the Johnson-Coakiey
modifications (table was structured from Menter).

J-K attempted to develop a closure model for a limited class of flows (as opposed
to a universal model) which was motivated by the ability of the C-S model to perform
with known invalid assumptions of the turbulent stress dependence on local properties
of the flow (Boussinesq criteria). Accordingly, the closure model without the
requirement to predict the production, dissipation, and diffusion (as is done for two-
equation models) was developed. For flows experiencing severe pressure gradients,
it was assumed that characterizing convection effects would be essential with diffusion
less dominant.

An ODE was developed that considers the maximum Reynolds stress in the
stream direction that prescribes the development of u'v, together with an eddy
viscosity distribution across the shear layer that is functionally dependent on u'vp,

(subscript m refers to the location of maximum trubulent shear stress). It should be
noted that this development is in spirit to that of Norris-Reynolds (1975) and Wolfshtein
(1969) where damping of the eddy viscosity (using a turbulence Reynolds number
based kinetic energy characteristic velocity) is not a viscous effect but is the result of

the near wall reduction of the pormal fluctuations ('v_')2 due to pressure-strain and has
been verified by direct numerical simulation (Rodi, 1-91).

J-K provided the following functional form for eddy viscosity

Ve =Vio[1 - exp (-Ve Vio)] (C-1)
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where vy and v,, represent inner and outer regions of the shear layer and, in effect,
can be considered a two-layer model. In Equation (C-1), v, is functionally dependent

on v, across most of the shear layer (this is commensurate with production =

dissipation which is commonly used by modelers and verified using DNS and
experimental data). The outer layer is used to control the rate of growth of -u'v', . The

inner-layer eddy viscosity is written as

Vi =Ky Djx (v’ v’ m)!" (C-2)
where D, i is a damping term similar to C-S. The outer-layer is expressed as

Vio = G (x) (0.0168) ued Yo (C-3)

where ¢ (x) represents an unknown modeling parameter (it represents the history
effects to account for slow response of the Reynolds stresses to local changes). In the
above, the damping term is given as

et (225

for
Up = (uV'm)"? and A} =17 (C-5)

It is noted that the damping term represents a modification of the van Driest
formulation to account for y dependency instead of y2. The subscript m denotes
evaluation when the Reynolds stress terms-u'v' reaches a maximum. In the outer-
layer v, represents the Kiebanoff intermittency function.

Modifications to the J-K model were made by Johnson and Coakley (11-90 ) that
incorporated a compressibility term to the velocity scale of Equation (C-2) that consists
of the density ratio (p,/p)!/%. Length scales are redefined to allow for the J-K model to

be used for flows that are less severe than those experienced in separation. Details of
these maodifications are found in Table C.1 and a discussion of same in the Johnson-
Coakley paper.
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Table C.1. JOHNSON-KING TURBULENCE MODEL WITH JOHNSON-COAKLEY
MODIFICATIONS (from Menter, 6-91)

The Johnson-King Model

The JK-model is a nonequilibrium eddy-viscosity
model, which is composed of an algebraic eddy-viscosity
formulation and an ordinary differential equation (ODE).
The ODE is a simplified Reynolds-stress equation along
the path of the maximum turbuient shear-stress. It controls
the vaive of the outer eddy-viscosity v¢, and ensures that
history effects are propesty accounted for.

The model has recently been modified to account
for a thin logarithmic region close to the wall which exists
even in the presence of strong adverse pressure gradients.
This new formulation was used for the present investiga-
tion (note that the compressible formniation depends on the
variable density).

The eddy viscosity »; has the following form:

v = Vo tanh (vg;/140)

with vy; and 14, defined as follows:
hi= Dz"!ﬂh

Veo = o(z) (0.0168uc5"7)

In this formulation §* is the displacement thickness of
the boundary layer, ue is the velocity at the edge of the
boundarylalyaand'yismebamﬂ"sinmnimcyfmcﬁon:
7=m.mnhdtymu.wlﬁchappmin
the formuiation of v is a blending between the friction
velocity ur and um = (—u't/yn)!/2(the index m refers
to the location of the maximum turbulent shear stress):

us =ur(l —12) +umy

. v2 = tanh (y/L,)

L:,'—-

ur_*_um!lm

The damping function D is defined as follows:

u
D=1 -ezp(—l—’-f_{-)

where AT = 17 and up = maz(um, ur).

The function o(z) is determined from the solution of
the ODE for the maximum Reynolds shear stress:

1/2  LmGm d(-v'v'm)

T /2 T
(~¥¥m) (—u"Vm)eg e &

—-——_L_Q—D,,.
(~v'v'm)
In this equation Lm is the dissipation length scale, a; the
ratio of Reynolds shear stress.to turbulent kinetic energy,
Dy the turbulent diffusion and (-u‘ﬂlm)eq the maximum
Reynolds_s_h_wsnaswhenconvecﬁonanddiﬁusinnm
zero. (—u/vm)eq can be obtained by setting o(z) = 1

in Eq. ( ) and replacing um in Egs. ( ) and ( ) by
(um)eg- Lm and Dp, are defined as follows:

Lm = 0.4ym,
Lm = 0.096,

ym/6 < 0225
ym/6 > 0225

Caif(~u¥'m)*/2 12
P T AR

The value of o(z) is chosen for every profile in a way, that
ensures that the actual maximum _shear stress:

Dm=

~ (W' m)act = ["t(% + gz-)]m

is equal to the maximum shear stress (~%’v’m )0 p g com-
puted from the ODE, Eq. ( ). This is achieved iteratively
by —_
—u'v'm)oDE
o(z)?H = a(z)"———-—-——( rom .
( ) (“ul”'m)act

Only one iteration is performed per time step. The con-
stants are:

a; =025
Caif =05 o{z) 21
Caif = 00 o(z) <1
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APPENDIX D

D.1 Norris-Reynolds Model (N-R)

The authors chose the turbulent kinetic energy closure concept of Prandti for the
eddy viscosity such that

Vi =V (k’ 1)

where k is prescribed by the turbulent kinetic energy transport equation. The length
scale (1) is algebraically specified. In addition, a closure relationship for the
dissipation rate is required such thate = & (k, 1, v).

The dissipation rate € which is a length scale in the eddy viscosity relation of
Equation (11) and source a term in the kinetic energy field equation, is determined
from the relation

ve=Cy k2, (D-1)
where
L =C.y[l-exp (-C3R7)] (D-2)
for
HPRRY
Rr=p k'’ y/h (D-3)

The eddy viscosity that is proportional to a turbulence Reynolds number is that
proposed by Prandtl and asserts that the same large eddies responsible for turbulent
mixing are also those containing the bulk of the turbulent motion. The constants C,, C,
and C, are to be determined. The one major difference in the damping term of

Equation (D-2) is the use of kinetic energy velocity as opposed to the wall shear
velocity in the van Driest relation. It is believed that the use of the kinetic energy as a
velocity scale is one criteria for the success of simple turbulence models to predict

severe pressure gradient flows (since it has been demonstrated that u . is no longer
linear for these conditions).

Norris-Reynolds and Wolfshtein (1968) allowed for the pressure velocity term

and the triple velocity correlation term to be modeled in a gradient diffusion manner
such that
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For this condition, the source term can be expressed as
€= CDkslz/\-g (D-4)

which is based on dimensional analysis and is a resuit found by Kolmogorov, i.e.,
g k¥2n. The outer layer (of the boundary layer) should be controlled by the factor
Cp k321 which will require modification to mitigate the size of the eddies by allowing
for the viscosity to be a dissipative agent for the largest eddies.

Variations on the iength scale have been introduced. Wolfshtein recommended
a form similar to Equation (D-2), namely

1e=C.y[1-exp (-Rr/Ag)] (D-5)

while Norris-Reynolds chose
1e=Cy(1+CsRr)?  (D-6)

and meets the requirement that dissipation at the wall is non-zero. The dissipation
becomes the Kolmogorov function in regions away from the wall and has a functional

relation € o vkAi2 in the near wall region. Here, one notes that 1 « y near the wall as
opposed to the van Driest equation which implies 1« y2.

The purpose of the van Driest damping factor is the near wall suppression of 1in

order to make the eddy viscosity v, = 12 lowayl very small in the sublayer. Accordingly,

Equation (D-1) was developed in place of the van Driest damping factor for near wall
dissipation. Here the exponential near wall damping factor was removed from the
length scale requirement and became a direct part of the eddy viscosity specification.
Moreover, the small eddy characteristics of the near wall region are retained while the
proper sublayer modeling of the dissipation was achieved and provides a mean flow
model that is valid all the way to the wall.

In the above, two distinct lengths have been identified. A length scale
appropriate to viscosity (‘u) and a length scale characteristic for dissipation (1.). The

constants used in the length scales are as follows:

Cu is sameask-e( = 0.09)
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Cl is chosen for conformity to the log law

-3/4

C=x (D-7)

and

Cs = 26/A, A* (D-8)

where At is equal to 26 (van Driest) and 50.< Au < 70. Again A* can include terms to
account for surface roughness and mass transfer as well as pressure gradient
conditions. The remaining constants have been selected as:

Cp = unity
Cy =53 (D-9)

Rodi (1-91) noted that damping due to the exponent ot Equation (D-2), as
described above, is not a viscous effect but is a result of the near wall reduction due to
pressure-strain that has been confirmed by direct numerical simulation (DNS).

Moreover, damping of the dissipation length 1., Equations (D-5) and (D-6), are not in
agreement with DNS data which suggests that 1, = ny; however, the multiplication
by the damping term provides good engineering estimates for wall conditions.
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APPENDIX E
E.1 Goldberg Model (6-91)

Recognizing that large-scale eddies are characterized by a development rate
much different from small scale dissipative rate, a one-equation model was developed
using two-time scales of turbulence. These time-scales provide length scales for

diffusion (1u) and dissipation (1;) that are similar to those developed by Norris and

Reynolds or Wolfshtein. The velocity scale is determined by solutions to the
turbulence kinetic energy PDE (standard form of k-e). The time scales for the large and
small eddies (using the Kolmogorov scale) are given by

~k/e , Large Scale
. (E-1)

ty ~ Yv/e, Small Scale

where v is the kinematic molecular viscosity.

The dissipation is algebraically expressed in terms of k and a length scale
throughout the boundary layer as provided by Wolfshtein i.e. Equations (D-4) and
(D-5) with a condition on the y coordinate; namely

L}

y= min{y, Cwﬁlx} (E-2)

where § is the boundary layer thickness and x the von Karman constant.

Combining Eqgs. (E-1) with the velocity scale k, the eddy viscosity associated
with the time scales are

~ — 2 3
Vg ktk—Cuk/S,SCCCq @) (E-3)
and

. Vg ~ k te = Ce KYVFE [1 - exp (-AyR7)] (E-4)

where a damping term has been added to Eq. (E-4). The constant Ce is obtained from
comparison to the N-R results i.e. Egs. (D-1) and (D-2) such that

CE = ﬁ K C&M (E-5)

Goldstein combined Egs. (E-3) and (E-4) into a single expression which has the
correct behavior in the near-wall region as well as away from the wall, such that
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Cp fy = (Cy + Ce YWE/K) [1 - exp (-Ay Rp)] (E-6)

where Cufu has limits pending on Ry >>1 and Ry << 1. This led to an eddy viscosity

expression for the entire layer given as v, = cufu k2/e which is the well accepted

constitutive equation for k- € models using wall damping functions. What makes the
Goldstein work different from the other one-equation models is the definition of the
length scales. Using the algebraic definition for the length scale (Egs. D-4 and D-5)
together with the velocity scale (k/2) and Eqs. (E-3) and (E-4), the length scales
corresponding to large and small scaie eddies become

w=xkC/*y [l -exp (-AyRr)] (E-7)
te= [E,%%?y“ -exp (-AcRp) | 11 -exp Ay R (E8)

where provisions on y are specified by Eq. (E-2). Arguments are presented relative to
scaling criteria of Eq. (E-8) as y ---> 0. In particular, the behavior of the turbulence KE
in the viscous sublayer that provides a density ratio with the characteristic velocity
scale. This was also shown by Gorski (1-86) as well as by the Johnson and Coakley
(11-90) correction to the velocity scale of the Johnson and King model. Because of the
introduction of a simple multi-scale procedure and its similarity to models that have
had demonstrated success, this model should be considered for further evaluation.
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APPENDIX F

F.1 Baldwin-Barth Model (B-B) : One and One-Half Equation Model

The B-B turbulence model (1-91) considered a transformation of the basic

physical variables in the k-e transport equations in order to eliminate the numerical
difficulties in the near wall region associated with these two-equation models. Table
F.1 provides details of the turbulence structure as summarized in the Appendix of the
B-B paper. The authors chose a field equation for a turbulence Reynoids number
based on an eddy viscosity concept for high Reynolds number flow with the

distribution away from the wall governed by v; = Cu k2/¢ [combines Equations (D-1)
and (D-4)]; in particular, the turbulence Reynolds number Rer is

Rey = k2/ve (F-1)

The above is substituted into the standard k- € equations and the results are
combined to provide a one-equation model that encompasses turbulent kinetic energy
and its dissipation. Equation (F-1) is rearranged to provide two regions in the shear
layer consisting of an outer-layer (k,)where production is equal to dissipation and an

inner- layer (ky)where production requires damping; namely
€= kzh.) HeT = (k1 + k2)/‘0 ReT (F'2)

For the outer region p =¢, and ky >>ky, then k2 =v Ret . and the turbulent kinetic
energy becomes

k= (v Ret @)V2 (1+ kyk,) | (F-3)

When Equation (F-3) is substituted into the standard high Reynolds number k-¢
equations, there results

D (v Rer) /Dt = (Cz- Cy) (v Re0) 12+ (v + %’i) VA(v Rer)-
LVw.VwRen-@-c) K2 _Rer p)-2 -Gk
e ki +ky
The system is closed by substituting Equation (F-3) into the kinetic energy equation of
the k-e equations to give

(F-4)

Dk/Dt = -2 (/VRep) /2 k; - ky/VRer + V o (V +.;‘,'t) Vk (F-5)
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At this junction, the B-B approach follows a path similar to thehybridr modelers
(Chen and Patel, 11-88), (Rodi, 1-91). Here, Equation (F-4) is solved for k, --> O for

solution in the high Reynolds number region (which is most of the shear layer) and
develops a length scale to accommodate damping in the near wall region. One

should keep in mind that since field equations for k-¢ were combined, the results

represent solutions to the k- € two-equation model for the regions away from the wall.
To accommodate the near wall region, the turbulence Reynolds number is split into
two factors

Rer= §e1~ f (RCT) (F-6)

where f5 is a damping function that allows Ret = ﬁeT for large Reynolds numbers.
Using the damping functions similar to those of van Driest or N-R, there results

Vi=V Cp, fu, RCT =V C’_L fp_ f3 ﬁe'r (F_7)
and

k2/v Rer = (ky +ko)? /v 3 Rer (F-8)

where k42 _ vpRey. Using the thin-layer assumption where o =, (Uy)z, the field
equation becomes ‘

DRer/Dt=(Cy ;- Cyp) (Cy £, f3)1’2§er?1+(v + Yty 9'Rer ]
dy O oy? (F-9)

(1/0¢) (@vy3y) @ (Rer) / 9y

which becomes the basis for the one-equation model defined in Table F.1. The
damping term f4 has to be selected to allow for k; to be the dominate part of k in the

near wall region. Details for the selection of the damping function are provided in the
B-B paper.

Menter (6-91) compared the B-B model to adverse pressure gradient
experimental data as well as other turbulence models. It is not clear what velocity
scale was used in the damping terms. It appears that the van Driest shear velocity was

used, i.e., y* instead of Ret where U_is used in y* and k'/2 is used in Rer. It was
found that displacements (hence, pressure) were predicted with good accuracy, but

could not predict profile shapes in either the inner or outer shear layer regions.

Moreover, wall shear-stress distributions are similar to ones produced by the B-L
model.
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Table F.1. BALDWIN-BARTH ONE-EQUATION TURBULENCE MODEL
(from Baldwin-Barth, 1-91)

By D(;)Itir) = (ces f2 = ¢ )G1 Y VRTP + (v + _)Gl Vi(vRr) - ai(vw) V(vhr)

In this equation, we use the following functions:

1

— =(ce; — c“)\/E: «?
T

OR =0-250’.

Ve =C“(V§T)D1 Dz

Bt =pvy
D, =1 - exp(—y*/4%)
D; =1—exp(-y* /A7)

P= 3Ui+an 6U¢__2-U _a_U_t 2
— dz; Oz ) 0z; 3

f(yt) = Za +(1- b )(n—;: + Dy D;)(/ D1 D,

Ces
+ (i exp(—y* [A") D1 + i p(-3*/4F) Do)
2
(Fg + €0/Ba)
(w‘ + BQFE <+ éo)
(VVET)iVURT) _ -'-c-i{w|

vRr Cu

G1 =1+

Fr=

For all calculations we have used the following constants:

k=041, ¢, =12, ¢, =20
. c, =0.09, A+ =26, AT =10
By =04, B, =0.01, ¢ =10"1°

We also recommend the following boundary conditions for

1. Solid Walls: Specify Ry = 0.

2. Inflow (V - n < 0): Specify Ry = (Rr)e < 1.

3. Outflow (V - n > 0): Extrapolate Ry from interior values.




Since the B-B model is relatively new and untested, further work will be required
prior to a full assessment. The N-R damping functions should be considered for the B-

B model which incorporate kinetic energy to the 1/2 power (k'/2) and uses a modified
Kolmogorov function (for length scale) relating kinetic energy dissipation that is
applicable throughout the shear layer.
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APPENDIX G

Wilcox k-w Turbulence Model
(from Wilcox, 6-91)

For general compressible turbuient fluid fiow. the compiete
sets of equations that constitute the Wilcox k-w two-equa-
tion mode! and muitiscale model are written In terms ot
Favre mass-averaged quantities as toliows.

Conservation of Mass, Momentum and Energy

30

— - —{;1) = 0 b
ot 2 !

0 o .

—— -p—.—‘ , = el & 6 - r_l ( 2)
at o) ax, L) ax, (08, - %] .

d ) k

— - — = |7 - +tu+0%Uy) =—

= (PE) = = (mu.E) a.‘l[ AL = Q +tu r a".]

1

]

{3

where t is time. x, is the position vector. u. is velocity. 0 is
density. p is pressure., 4 is molecutar viscosity. 7,; is the sum
of molecuiar and Revnolds stress tensors. and a. is the sum
of molecular and turbulence heat flux vectors. In Equation
( 3). the quantities E=&+k+Y%uu and H=h+k+Y:uy, are
total energy and total enthalpy. respectively. with h=¢&+p/g
€ and h denote internal energy and enthalpy. Also §, is the
Kronecker delta. and k is the turbulence kinetic energy that
is determined by the following equations.

Turbulence Kinetic Energy, Specific Dis:ipan'on Rate

3 3 du,
'5?“'“ + 'a'ij‘”“*k’ =1, 3;-’-- 8%k
- - %;,[(#*G‘ﬂr) -g-:—’] € 4)
%(nw) -'-—g-;;(mjm) = ai:— r.,-—aa% - Bou?
- B0wE(20 s Q) + %; {(u+ouy) -:-%] (9

The quantity w is specific dissipation rate. r, is Reynoids
stress tensor. and uy is eddy viscosity. The parameters . 8.
8°*. 0. 0* and ¢ are closure coefficients whose values are
g@iven below. We ciose the system of equations as follows.

Constitutive Relations

1 30 ( 6)
.?ij = Zﬂ[sﬁ - ‘5‘5;‘8“] + Ty
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ah

.= /Pt~ up/Pro] —— -
4, {“ L - Ur fr] Bx, « 7N
uy = a®ck/w L= €/K ( 8)
s 1 {au, du, 0 | Gy, Au

it vy crlgosd 09

The quantities Pr, and Pry are laminar and turbuient
Prandtl numbers. respectively. and a* is an additional
closure coetficient that is specified below. We need just
one additional constitutive rejation for the k-w model.
Specitically. we assume the Reynoids stress tensor 1s pro-

?:l:tlg:l?h i‘;;)i stl;: t_g;le::xstrain-me tensor. The resulting
Two- Equation-Model Reynolds Stress

=9 1 u 2 2
7, = 2uqfS, - -s-—a;:o,,] . B-oks,, ( 10)

The muitiscale model computes each component of the
Revnolds stress tensor separately. The model introduces
two energy scaies corresponding to upper and lower parti-
tions of the turbuience energy spectrum. The guanury DT,,
denotes the upper partition contribution to the Revnolids-
stress tensor while ce denotes the energy of the eddies in

the lower partition. The additional equations needed for
closure are as follows.

Multiscale-Model Reynoids Stress

-

T, = 6T, - Soed, ( 11)
3 ]
3 ¥ = 3o Ty = <P, - E, ( 12)
8 3 . . Oy
— (p(k-e)] = — [ouik-e)] = (1-a- —
P [ptk-e)] aml{nu; e'] tl-a-8)r, Yy

- 3*wak(l - e/k)3: ( 13)

-

E,=-C8~wfr, ~ :—pka,,] - &P,, - EDi,

- 1 du, 2 .
- "Pkls.,-ga s,) + 3 87puki 1-e/k) 35, [ 14)
du, ou, ou, ouy,
Pll=f,m§;’+ tm?x-:.ﬂ ij.—.rm-g—x-j-d- t’m-é—x-‘-( 15)

Finally. these equations invoive a number of closure coeffi-
cients whose values are given by the foilowing equations.

Closure Coefficients

8 =3/30, 8° = 9/100. 0 = 1/2, ¢* = 1/2 ( 16)
a® = L a = [8(1+§/3%) - ox2yAT)/8" (17
am42/55. B=6/55.Y=1/4  §=1 ( 18)




APPENDIX H

k-€ Turbulence Model

{(from Speziale et al.,

For simplicity, we will restrict our analysis to incom-
pressible turbulent fiows (however, the crucial conclu-
sions that will be drawn carry over to compressible
filows). The mean velocity U and mean pressure P are
solutions of the Reynolds averaged Navier-Stokes and

continuity equations given by
o o, 5p an
5+ U, --7‘;+uv'm+a—i (1)
o _
-a;_o (2)

whcen,:-mntheneynddlctrastm,vu
the kinematic viscosity, and the usual Einstein sum-
mation convention applies to repeated indices. We
will consider the cammoniy used two-equation mod-
eis based on an eddy viscosity where

R = -%x&] + v (%+%§)

x @
given that K = 4uu] is the turbulent kinetic energy,
€ = vBu[[D2,8u}[Bz; is the turbulent dissipation rate,
and C), is a dimensioniess constant at high turbulence
Reynolds numbers. In two-equation models, transport
variables constructed from K and ¢. In the K —¢
model, modeled transport equations for X and ¢ are
solved; in the X — w model, modeled transport equa-
tions for X and the reciprocal turbuient time scals
w = ¢/K ate solved; and in the X — v model, modeled
transport equations for X and the turbnlent time scale
= K/c arcsolved. The exact transport equations for
K and ¢ are as follows (8):

(3)
and
w=0C,

DK o 2 ‘
- Dt ﬂj-h—’—c D+vWK (8)

D

-5:--?' ~ & =Dy +vV% (6)

where D/Dt = 8/8¢ +1. V. In (5) - (6),

k(R o
8 (8y
D = o Oz; 82,
(8)
8
+p

6-91)

are turbulent transport terms, and

W& 2“W'W'anu‘
835 08; 7Y 8z 82, &3,

WAL~ o
83.03,03; 8z; 8262,

W
& =2}t 523505 5age, (10)

are, respectively, the production and destruction of

P =
(9)

‘ It is a straightforward matter to show that near a wall

88

= O(y?), e=0(1), r=O(%) (14)

(15)
(16)

= o), F=0(P), F=04")

o*), w3 =0(7), P=0@")
D= O(y), Pe =0(y), & =0O(1) (17)
=0(1), V’ E=0(1), Vie=0(1) (18)
where P = 73;81; /834 is the turbulence production.

An asymptotic analysis of the K — ¢ model will be

conducted first. In the X ¢ model, the eddy viscosity
near a wall is taken to be of the form

vr= cpfu? (19)

‘The asymptotic analysis presented in this section in-
dicates that f, = O(1/y) near the wall since, due to
(15), »r must be of O(y®) in this region. Of course,
sufficiently far from the wall f, assumes a value of 1.
(Cy is a constant which is typically taken to be 0.09).
The turbulent transport term D in the kinetic energy
equﬁgn(s)hmodeledulinglgndimtmpmhy.

ou
oy
=

(20)




APPENDIX |

Situ and Schetz, (6-91) considered compressibility effects from the Reynolds
stresses for thin shear layers. Here shear-stress is given as

= - - -1
Tay=-pu'V-up’'Vv-vp'u-p'uv (1)

allowing for u > > u and the neglecting the triple correlation, the shear becomes
Tey=p UV -Tp'V (-2)

Shang (7-74) considered the first and last terms on the RHS of eq. (I-1) to
introduce compressibility. The impact of the triple correlation, as reported by Marvin
Coakley (11-89), had no effect up to Mach 5, but showed some effect at higher Mach
number conditions.

Situ and Schetz provided for a length scale for the scale for the second term on
the RHS of equation (I-2) which together with gradient transport theory establishes an
effective turbulent Schmidt number for mixtures or a turbulent Prandtl number for
homogeneous gases. The Reynolds stress terms in equation (I-2) are given as

PUV =p & Gudy)? (I-3)

—u-(;-'-\;=12 %ig__a_u_ (1-4)
oy
for
S= Cu 1u/Cp lp (|_5)

12, = Constant » Cyy 13

In the above, one recognizes the usual definition of the Prandt! concept,
Equation (I-3), and the introduction of the new length 1p due to compressibility. For thin

layers ,
pe=1 _83 +1 %
ay ° (1-6)

where from gradient transport theory it is shown that

p’V'=D 9 _ e _.o P du
- - = = 1-7

and
- ﬁ-pT\'-;Elz u pdu

" Sct gy ay

_89

(I-8)




R

It the turbulent Lewis number is unity, S = Py and one can allow for S =Py = S,
= 0.8.

The authors compared their work to six test cases that include compressible fiow
over a flat plate (M = 4.67 and 6.55), tangential slot injection (sonic jet and supersonic
jet) and shock/boundary layer interacting flows. While the new model does not invoke
ad-hoc techniques and success was shown to a range of test conditions, it is not clear
what form of mixing length characteristics were used by the authors. Recognizing use
of the original Prandtl concept as stated by the authors, they did not show if damping was
used, if the length scale was proportional to y of y2, or what form of characteristic velocity
scale was used, i.e., shear velocity or a form of the kinetic energy. An inspection of the
original AIAA paper (89-1821) did not reveal any further insight.

Since the method is new and has not been tested in the literature by
independent sources, this work will require further evaluation. The use of the double

length scale which is also provided by the hybrid modelers (i.e., 1 and L for viscous

and diffusion effects) and the ability of the model to handle the wall jet problem warrant
further investigation.
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