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'FOREWORD

. The material presented in this report constitutes a portion of the author’s doctoral
thesis from Texas A&M University, entitled “Segmented Chirp Features and Hidden
Gauss-Markov Models for Transient Signal Classification.”. In addition to the material
pi"esénted here, the thesis discusses the feature set used to characterize segments of
wandering-tone transients, and it contains a lengthy chapter on simulation and exper-
imental results for classifying these signal types. Since the theoretical developments
relating to continuous-state and Gaussian hidden Markov models should be of interest
to a much wider audience, it seems desirable to have a self-contained discussion of these
topics, without the “baggage” of that additional material. This report provides such a
discussion. ' ' '

Selected portions of this material have also been submitted to the IEEE Transac-

‘tions on Signal Processing in a proposed article entitled “Hidden Gauss-Markov Models

for Signal Classification,” by P. L. Ainsleigh, N. Kehtarnavaz, and R. L. Streit. The
space constraints of such a journal preclude the full development given here, however.
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THEORY OF CONTINUOUS-STATE HIDDEN MARKOV MODELS
AND HIDDEN GAUSS-MARKOV MODELS

1. INTRODUCTION

Two of the fundamental problems that have driven the development of signal

processing algorithms during the past several decades are tracking, whose goal is to
characterize the time evolution of a “source” through space, frequency, or some other
physical variable, and classification, whose aim is to make a decision about the nature

of a source from its observable characteristics. Tracking can play a significant role in

classification since much of the information about the nature of a source can be inferred
from the way that it “moves” through the domain of ‘a physical variable. In spite-of

- this, the two fields have historically evolved independently, giving rise to two separate

families of tools. From the tracking side comes the Kalman filter and a number of
related smoothing algorithms. From the classification side comes the hidden Markov
model (HMM) and its associated algorithms. This report unifies these two bodies of
theory. ‘ :
The idea of an equivalence between Kalman filters and HMMs will come as no
surprise to many readers, for the ahalogous nature of these two areas has been noted in
the literature for many years. The specifics of the equivalence may be more surprising,
however. The Kalman filter is not just analdgous to an HMM. The Kalman-filter model
is an HMM with linear Gaussian model densities. The Baum algorithm for this HMM
is a Kalman smoother, as is the Viterbi algorithm. The likelihood defined by the
HMM criteria is analytically the same as the likelihood defined for a Kalman filter.
Each iteration of the expectation-maximization (EM) parameter-estimation algorithm

for Kalman-filter modeis maximizes an auxiliary function whose structure is identical °

to the functioz wnose maximization gives the Baum-Welch re-estimation formule for
HMMs. The egucziences are demonstrated here in great detail, thus removing any
ambiguity about the r=iationship between these two tools.

1.1 BACKGROUND

The material presented in this report resulted from an investigation of methods for

classifying certain types of transient signals. In particular, this work is motiya.ted by a

persistent difficulty that occurs in the design of statistical signal classifiers. The source
of this difficulty is the high dimensionality of feature sets required to adequately describe
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signals from each class, which often results in difficult or impossible probability-density
estimation problems [1]. An approach for dealing with this issue is to segment signals in
time, develop a low-dimensional feature set that provides good signal approximations
on the shorter time segments, and use a parameterized stochastic model to evaluate
the time evolution of the feature values relative to each class. The objective of such an
approach is to replace a high-dimensidna.l time-invariant probability distribution with a
low-dimensiona.l time-varying distribution, thereby exchanging the difficult problem of
estimating densities in high-dimensional feature spaces for an easier model parameter
estimation problem. _
' In addition to alleviating the dimensionality problem, this type of stochastic fea-
ture modelirxg helps to accommodate the within-class variability that is commonly en-
_countered in real-world signal classes. It is able to do this because the stochastic model
allows for “controlled uncertainty” when characterizing the feature evolution, effectively -
. forming an entire family of template-like models that account for the different variations.
Stochastic feature modeling is considered here in the context of maximum-likelihood
 classification, which is performed in a conventional or a class-specific framework [2]. In
the conventional mode, classes are distinguished whose signal segments are all par-
simoniously represented by the same set of features. The features are tracked using |
a parameterized model M(©). Sequences of feature values from different classes are
represented using different values for the parameter set ©, which are estimated by max-
imizing the likelihood of & set of labeled sequences (i.e., a training set) from each class.
After © is estimated for each class, an unlabeled feature sequence Z is classified by
assigning it to the class for which the class-conditional likelihood L{Z|©} is maximum.
~ In the class-specific framework, distinct feature sets are used to represent signals from
different classes. While the structure of the model M(O) for different classes may be
different in this framework the parameters in any given class model are still estimated
by maximizing the likelihood of a set of training features from that class. Further-
more, the class-conditional likelihood L£{Z|M(®)} is still used as a measure of class
membershlp, although a “change-of-measure” operation may be required before it can
- be compared to class-membership measures for other classes. In both the conventional
and class—specrﬁc scenarios, then, the fundamental problems in stochastic modeling for
classification are model parameter estimation and likelihood evaluation.

" One possible choice for. M (©) is the linear Gaussian state-space model, or Kalman-
filter model, which is general enough to accommodate a wide range of classes and fea-
tures. This model is supported by an extensive body of theory that has evolved out ‘
of the tracking, control, and optimal filtering arenas [3-6], but it has not traditionally
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been used as a classification tool. ‘Another potential choice for M(@) is the family of
HMMs, which have been used very successfully to classify sequénces of Fourier- and
cepstrum-based features in speech recognition {7, 8|. Traditional HMMs and the pop-
ular Baum-Welch training algorithm [9], however, constrain the state vectors to reside
in a discrete state space, making them unsuitable for signals whose features vary con-
tinuously as a function of time. A cbmpohent of the present work is the development
of continuous-state HMMs (CS-HMMs) that are better able to handle continuously
varying feature sequences. The CS-HMM algorithms are then specialized to the linear
Gaussian models, which are referred to in this context as hidden Gauss-Ma.rkov models
(HGMMs)

While the focus in this report is on classification, the theory may also be of interest
in tracking applications due to the prominence of the Kalman filter as a tracking tool.
A common criticism of the Kalman filter is that it gives too much credence to the model
and not enough to the observed data. A symptom of this “narcissistic-model syndrome”
is that the error covariances depend only on the a priori values of the model parameters
and are independent of the observed data. An improved tracker might be obtained by
including a parameter-updating scheme during the processmg of observed data, as is
done during the training phase for an HGMM. Furthermore the general development
of CS-HMMs could provide a framework for mvestlgatmg tra.ckmg algonthms based on

non-Gaussian models.

1.2 RELATED LITERATURE

Discrete-state HMMs (DS-HMMs) were developed by Baum and his colleagues in
the late 1960s and early 1970s [9-12]. Baum’s work includes a method for estimating the
sequence of individually most likely hidden states (referred to as the Baum or forward-
backward algorithm) and a method for estimating the parameters in the HMM (referred
to0 as the Baum-Welch algorithm). An alternative approach to state estimation is to seek
the single most likely sequence of states, which is obtained using the Viterbi algorithm
[13,14]. Dempster et al. [15] observed that the Baum-Welch algorithm for estimating
the HMM parameters is an example of the EM algorithm. Heiser has since noted that

the EM algorithm is a special case of iterative majorization [16].

In 1980, Ferguson [17] helped to solidify HMM theory for speech recognition by
outlining the three fundamental problems, namely, state eétiination, likelihood evalu-
ation, and parameter estimation. This “HMM pa.radlgm” for speech recogmtmn was
developed further by Levinson et al. [18].




Most extensions of the basic HMM structure have focused on obtaining more
-general output densities. Liporace [19] treated HMMs with elliptically symmetric con-
tinuous output densities. Juang et al. [20] relaxed the elliptical symmetry requirement
by treating models with Gaussian-mixture output densities. Other continuous-outpﬁt
HMMs include those whose measurements are governed by an autoregressive process
[21-23], a polynomial regression function [24], and a linear Gaussian model [25]. When
employed with models having variable-duration states [26], such continuous-output dis-
tributions lead to the versatile class of segmental models [27].

In contrast to these continuous-output models, the general class of CS-HMMc has
received very little attention in the signal processing literature. Linear Gaussian models,
on the other hand, have been extensively studied in the Kalman-filter context, although
it is not generally known that these models are examples of CS-HMMs. An excellent
review of the early history of Gaussian models in a linear-filtering context was given by
Kailath [28]. Methods for estimating parameters in these models are reviewed below.

Most early applications of Kalman-filter models in the engineering literature ¢on-
sidered the model parameters (i.e., the transition, output, and covariance matrices) to
be known from physical considerations, so that parameter estimation was not an issue.
Two notable exceptions are found in the works by Kashyap [29] and Gupta and Mehra

(301, who used gradient-based nonlinear optimization techniques to maximize the like-

lihood as expressed in terms of the measurement innovations. Parameter estimation
in Gaussian models is more prominent in the time series and econometrics literature,
where the first applications of the EM algorifhm for this purpose appeared. In the early
1980s, Shumway and Stoffer [31] and Watson and Engle [32] independently derived EM
algorithms for estimating parameters in time-invariant Gaussian models with linear con-
straints. While the general thrusts of these references are the same, they have a number
of distinguishing features. First, while Shumway and Stoffer assume that the ’output
matrix is known a priori, Watson and Engle estimate the output matrix along with the
other model parameters. Second, Shumway and Stoffer provide an explicit recursive
expression for the cross covariance between time-adjacent states, which must be calcu-
lated as part of the expectation portion (or E-step) of the EM algorithm. Watson and
'Engle, on the other hand, obtain the cross covariance implicitly by using an augmented
state vector during the Kalman smoothing algorithm that lies at the heart of the E-step.
Finally, Shumway and Stoffer derive the EM algorithm by defining and maximizing the
auxiliary function explicitly, while Watson and Engle formulate the algorithm in terms
of sufficient statistics. : :
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Building on this earlier work, signal processing researchers began using the EM
algorithm with linear Gaussian models in the early 1990s. Ziskind and Hertz [33] used
this approach to estimate directions of arrival for narrowband autoregressive processes
received on a multisensor array. Weinstein et al. 34] estimated the parameters in a
linear Gaussian model while performing noise removal in signals received on a pair
of sensors with known coupling. Digalakis et al. [25] extended the EM algorithm to
treat time-varying models and used the linear Gaussian model to represent segments

~of speech. Deng and Shen [35] later provided a decomposition algorithm to speed the

processing of the EM a.lgbrithm for high-dimensional state spaces. Finally, Elliot and
Krishnamurthy [36] derived an efficient filter-based implementation of the correlation
matrices required during the E-step of the EM algorithm. This filter-based approach
dispenses with the need for the more computationally demanding Kalman smoother,
which could make the EM algorithm much more amenable to real-time processing.
An extension of the linear Gaussian model that is particularly relevant to the

current work was provided by Sorenson and Alspach [37) and Lo [38], who derived

Kalman-filter recursions for models with a Gaussian-mixture prior for the initial state,
as opposed to the single Gaussian density that traditionally governs the initial state.
Finally, the unification of HMMs and Kalman filters was initiated a decade ago
by Streit [39], who demonstrated that the Baum and Viterbi algorithms for a CS-HMM
with Gaussian model densities generate the same state vectors and covariance matrices
as are obtained using & fixed-interval Kalman smoother. Streit was considering these

. algorithms in the context of the tracking and ilot_ the classification problem, however,

so that likelihood evaluation and model parameter estimation were not at issue. This
limited focus allowed Streit to ignore both the scaling constants on the Baum probability
densities anc th= joint densities of adjacent states in his characterization of the optimal

‘state secoEnres.

1.3 ORIGINAL CONTRIBUTIONS

This report presents a general theory for CS-HMMs, independent of the particular
form of the model densities, addressing the state estimation, likelihood evaluation, and
parameter estimation‘prob'lems as outlined for _DS—HMMs by Ferguson [17]. While
continuous-state versions-of the Baum and Viterbi algorithms are, for the most part,
straightforward extensions of their discrete-state counterparts and are obtained using
methods outlined by Jazwinski [40], the Baum and Viterbi algorithms treat only state
estimation and likelihood evaluation. The present research also addresses parameter
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estimation, to the extent possible, by giving a general formulation of the EM auxiliary
function. This formulation solves the E-step of the EM algorithm. The M-step can
then be defined by maximizing the au:nhary function after the form is specified for the
model densities. |
The CS-HMM results are then spec1ahzed to HGMMs. With regard to the Baum
and Viterbi algorithms for HGMMs, this research extends the results given by Streit
[39] in both scope and substance. Streit demonstrated the equivalence of the Baum
and Viterbi state sequences with those generated by the fixed-interval smoothing al-
gorithm developed by Rauch, Tung, and Striebel (commonly referred to as the RTS
smoother) [41]. It is shown here that Baum’s forward-backward algorithm i is more nat-
urally equated with the two-filter implementation of the smoother given by Mayne [42]
and Fraser and Potter [43], which employs forward- and backward-running Kalman fil-
ters and then estimates the state sequence by optimally combining the estimatés from
the two filters. The Viterbi algorithm does lead naturally to the state-estimation por-
_tion of the RTS smoother, but, as noted by Streit [39], it does not give the state error
covariances. The covariance matrices from the RTS algorithm are obtained here using
anew joint-dénsity margina.lizatioﬁ approach, which provides a more natural derivation
of the RTS algorithm from the HMM point of view.
This report presents a new Gaussian refactorization lemma. While the original
motivation for this lemma was to characterize a recurrent set of operations when deriving
' the HGMM Baum and Viterbi algorithms, it turns out that this lemma prov1des a
natural alternative derivation of the Kalman filter recursions.
The conditional joint density of time-adjacent states in HGMMs is also denved '
In addition to facilitating the theoretical development of the parameter estimation algo-
rithm, this derivation leads to a new expression for the cross covariance between states
that is considerably simpler than the recursive definition given by Shumway and Stoffer
[31]. The simplicity of the new expression occurs because the cross-covariance matrix '
' is viewed within the larger context of the joint density, as opposed to its being derived
by taking the expectation of the appropriate outer product
In addressmg likelihood evaluation and parameter estimation for "HGMMs, th1$
report shows two additional equlva.lences between HMMs and Kalman-filter models.
First, Baum’s forward recursion for marginalizing out the states from the joint distribu-
tion of the states and measurements yields the classical expression for the measurement v
likelihood from Kalman filter theory [44]. Second, the continuous-state formulation of
the Baum-Welch auxiliary function leads to the existing EM algorithm for estimating
the parameters in Kalman-filter models.
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In addition to these results, the CS-HMM and HGMM algorithms are extended
to accommodate prior state densities that are composed of mixtures. These new devel-
opments provide substantial extensions of previous work with mixture-based Kalman
filters [37,38], first by generaliiing the mixture-based algorithms to the larger-class of
CS—HMMs, and then by addressing the smoothing and parameter estimation problems.
In the classification context, the inclusion of mixture-based prior densities allows the
model to accommodate even greater amounts of within-class variability than can be
handled by “single-mode” models. '

All of the above results are given for models whose parameters are time varying.
For HGMMs with parameters that are constant across time, the measurement likeli-
hood is shown to be-invariant to a family of similarity transformations of the model
parameters. ' ' ' -

" This report provides a unified context from which to view HMMs and Kalman
filters for both classification and tracking. The literature review given above provides a
sampling of the very rich history that has unfolded in connection with these families of
tools. For the most part, this history has evolved along two separate paths, one leading
from Baum, the other leading from Kalman. It is shown here that these two paths are
really one. o ' .

7(8 blank)




2. CONTINUOUS-STATE HIDDEN MARKOV MODELS - -

In general, discrete-time HMMs repres,ent a sequenée of observed M-dimensional

measurements Zy = {z1,2,... ,ZN}, made at times ¢,, n = 1,2,...,N, as probabilistic
functions of a sequence of unobservable L-dimensional states Xy = {x0,X1,...,%Xn},
where Xg is governed by a prior distribution and does not correspond to a measurement.
If the x, are constrained to take '-va.lues from a discrete finite-sized alphabet, then the
model is a DS-HMM. In such models, there is no need to specify'the actual element
values for vector x,. Only the index into the alphabet containing the different values
of x, need be provided. This index is usually denoted as i or j, and the event g, (%)
indicates that the ith state has occurred at tinie_ tn. If the elements of x, are free to

assume values on the real line, then the model 1s a CS-HMM. In these models, the

element values must be specified since the indexing of all poss1ble state vectors would
require an uncountable number of mdex values.

Regardless of whether the states are discrete or continuous, they are usually as-

sumed to obey a first-order Markov process, where each state depends only on the state
that occurred at the previous time instant. These first-order HMMs are characterized
by three model probability functions. First, the state-transition distribution governs
the probability of moving from ‘one state to another in a single time step. Second,
the output distribution governs the probaLbi]ity of obtaining a particular measurement,
given the value of the state vector. Finally, the prior state distribution governs the
probability that the state at time £, will take on a particular value.

For DS-HMMs, the prior state probabilities and state-transition probabilities are
discrete sets of numbers denoted by =; and a;;, respectively, for states with indices i and
.j. The output distribution can be either discrete or continuous, and is denoted b;(2n).
While discrete-state models work quite well for certain classes of signals and features
(e-g., spectral or cepstral coefficients of speech), théy are ill-suited for feature sequences
- that follow a continuous trajectory through state space (e.g., the instantaneous fre-
quency of a wa.ndenng tonal). For these types of signals, continuous-state models allow
a more accurate representation. The model distributions are denoted in this case by
the density functions P(X0l60), P(Xn|Xn-1, Gx), and p(znixm 6z). The structure of these
model densities is usually known (e.g., Gaussian, Rayleigh, gamma), but the pa.rameter
sets 6y, Ox, and §z must be estimated for each class from training data. For conve-
nience in notation, only those probability models having well-defined density functions
- are considered here. |




The notation for discrete- and continuous-state models is summarized in table 1.

It is important to note that, when movmg from discrete to continuous models, expres-
sions such as p(x;6) no longer designate probablhtles, but likelihoods. While it would
be technically more accurate to use expressions such as L(x;0) for CS-HMMs, the p-
notation is used to follow conventions established in existing literature. The notation
is abused even further by usmg the same symbol for the likelihood of an event x (ie., a
particular numerical value or sequence of values) and the probability density function
of a random variable x. The context can serve as a gulde for the meaning of the expres-
sion, however, since the difference between. the likelihood function and the probability
density function is merely a matter of whether # or x is treated as unknown, and the
likelihood is Just the likelihood functlon evaluated .at a partlcula.r value.

Table 1. Notation Sfor Hidden Markov Models

JVDiscrete-State Continuous-State

Model © Model
' State i,j o xa
Méasu;ement , . Zn Zn
St?:%:%?lsi;??n Gy P(Xn|Xn-1,6x)
Output co
Progablxlhty bj(zn) P(2n|Xn.82)

Probabilty | ™ plxolé)

This section derives algorithms for likelihood evaluation, ‘state estimation, and
model parameter estimation with CS-HMMs. For discrete-state models, these problems
are solved using the Baum, Viterbi, and Baum-Welch algorithms [9,13,17,18]. The

~ continuous-state versions of these algorithms are derived here. While the continuous-

state analog to the Baum-Welch algorithm cannot be completely specified without as-
suming explicit forms for the model densities, the auxiliary function for the EM algo-
rithm can be formulated in a density-independent fashion. In addition to these devel-
opments, the CS-HMM and associated algorithms are extended to include prior state
distributions _consisting of a mixture of densities.
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2.1 BAUM PROBABILITY DENSITIES

The state evolution in CS-HMMs is characterized by the Jomt density of the
measurement and state sequences, which is-given by

p(ZN,Xn) = p(xo) H P(Zn]%n) P(Xn|Xn-1), | (1)

n=]

where the explicit notational dependence on the model parameters has been dropped.
This expression makes two basic assumptions: (1) the states follow a first-order Markov
model and (2) the measurements are conditionally mdependent given the states. Class
assignments are made in signal classification using the measurement likelihood, which
is obtained by marginalizing equation (1) over all possible state sequences, giving

p(Zn) = / dXNp(ZNaXN)- | | @)

Here, the shorthand J dXy denotes the multiple integral [dxg--- [dxy, where each

single integral [ dx, is an L-dimensional integration over state space. For the discus-
sion below, it is also necessary to introduce the partial measurement sequence Z, =
{zl,zz, ,zn} and its complement in Zy, denoted Z$ = {zn+1,zn+2, -,zN}

Because of the intractable computational load required to evaluate the discrete

eqmvalent of equation (2), Baum et al. [9] developed recursive functions to characterize
and marginalize the joint probability for DS-HMMs. These functions are defined in
table 2 using both the discrete-state and the continuous-state notation. The algorithm

for computing these probability (or probability-density) functions is referred to as the

Baum. or forward-backward, algorithm. The Baum recursions for DS-HMMs are given
= t2die 3 for comparison with the continuous-state recursions derived in this section.

2.1.1 Forward Densities

The forward densities are deﬁnéd as -

(%) = p(Zns %)
= DP(2n|Zn-1,%n) P(Zn-1,%n)
= P(z0l%n) [ dRoot P(Znm1,%0: %-1)

= p(zn|xn) /dxn—l p(xnlzn-—h%—l)p(zn—l,%—_l)
= p(zn{Xn) f @Xn-1 P(Xn|Xn-1) A(Xn-1), )
where the recursion defined in this la.ét expression is initialized as a:(xo) = p(xo).
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Table 2. Baum Probability Functions

Discrete-State Continuous-State
Definition Definition |
Forward , o Nz _ z
Probability an(i) = p{gn(?), Zn} a(Xr) = p(Xn, Zn)
PBrta)bability - Ba() =p{2%10a()} B(x») = p(ZS|xn)
o airate | @) =p{m@IZn} ) = P(%n|Zn)
| S&‘i‘e”tﬁi’?ﬁlag&‘?yt ¥n(8:9) = P{gn-1(8), gn(G)|Zn} | ¥(Xn,Xn-1) = D(%Xn, Xn1|Zn)

This recursion can be a.lférnati\'rely deﬁned by
a(%n) = p(2n|%n) / @Xn—1 8(Xn, Xn—1), | (4)
where>5(xn, Xn-1) is defined as

6(%ny%ne1) = P(Zno1,Xn,Xno1)
= p(%n|Zn-1,%Xn-1) P(Zn—1, Xn—1) |
= P(Xn|Xn-1) (Xp-1). | ()

The recursion for a(x,) can therefore be performed by first computmg and ma.rgma.hzmg "

0(Xn,Xn—1) and then multiplying by the output density.

2.1.2 Backward Densities |
The backward densities are needed primarily as an intermediate step in calculat-

ing the conditional densities (x,) and y(Xp+1,%,). The recursion for the backward

densities is given by

B(%n-1) P(fo-llxn-i)

d zn,Zn, -
p(xn_ )/ X, P Xy Xn—1)

p(xn / s D(2n ) P(2S lxmxn-l)p(xn Xn-1)

= [ e plznle) (2 1) P(nlnt)
= [ % planle) P(kalXn-1) B | ®)

12




Table 3. Baum:Algarz’thm‘ Jor DS-HMMs

Forward Probabxhty

_ (Initialization) : ' aod(:i) = .Wi for allz
Forward Probability | a(j) = e Z P
et PZy) = 3 anti)
B ety ™ | Bu(j) = 1for ol
Ba"k‘(”ﬁreguf:ﬁfﬁb‘“"’ ul) = 3 csbions) )
°°‘;,‘ii§§;’;;3‘u§;a*e | Toli) = Sz 0n(9) ()

Conditional Joint A | - . .
State Probability | 1(69) = sy 64 an-1(3) bs(2n) B (3)

In this expression, B(x,) is undefined at the términal time ty because‘Z.?V is empty.
The DS-HMM literature usually defines By (j) = 1 for all j. In the continuous-state
case, such a definition is problematic because B(xxy) = 1 is not an integrable proba-
bility density. To be formally correct, the recursion should be started at time tn-1,
and B(xy-1) = [dxy p(zn|xn) p(xn|Xn-1) should be defined as a special case. This
approach is notationally inconvenient, however, because other densities are defined as
products of & and 3, which would cause a proliferation of special cases. So, as a purely
notational mechanism, S(xy) is set to unity for all x.
The backward density can be alternatively defined as

Baer) = [ @b bx), )
where |
V(x) = p(BS %)
= p(20|ZS,%n) p(ZS|%n) | ~
= p(Zn|%n) B(x%n)- - } - (8)

The backward recursion thus proceeds by first computing ¥(x.), then multiplying by
the transition density, and finally marginalizing over x,,.

13




2.1.3 Conditional State Densities

' The conditional state probability densities characterize the stochastic propertiés
of individual states when conditioned on the obsei'ved measurements. These densities
can be maximized to determine the sequence of individually most likely states. They
are also important for parameter estimation. These densities are defined as

V(%) = p(xnIZN)' |
= (Z )p(z n,xn)

= 2@ )p(ZCIxn)p( Xn)

1. - _ ﬂ
= m Bxn) alxn)- ,. -9

2.1.4 Conditional Joint State Densities

Finally, the conditional joint state densities characterize the relational properties
of time-adjacent states when conditioned on the measurements. They are defined as

Y(Xny Xnm1). = P(XnyXn1|Z)
| o o

- mp(zn—la'z"c?-h X, Xn—1)

m p(2ZS, |an.1, Xn, Xn—1) P(Zn-1, %n, Xn~1)
1
= p(Z ) (Zn—llx‘n) p(zn.—]_; Xn, x‘n—l)

1 .
= 0(Xpy Xn— - 10
This expression looks quite different from the discrete-state version because it has been
derived directly in terms of ¥(x,) and 6(X,,X,—1). Substituting the definitions of ¥(x,)
and (X, X,—1) in terms of B(x,) and a(x,-;) provides the more familiar-looking ex-
pression

Tk Xmt) = 277 Do) D) P rt) ). ()
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2.2 LIKELIHOOD EVALUATION

The measurement likelihood can be expressed in terms of the forward and back-
ward densities by wntmg

p(Zn) = [ dxap(Zn,x0)
= f d%n P(ZS|Zn, %n) P(Zn, Xn)
= [axp(ZSx) p(Znsxa)
= / dx%n B(xn) (). | (12)

This result demonstrates that the definition given for the conditional state density is
properly normalized; that is, [ dx,v(x,) =1 for all n. A simpler expressmn is obtained
by evaluating the likelihood at ty, where it is - :

p(2x) = [denp@nen) = [dnaley). (13)

This outcome is consistent with equation (12) since B(xy) = 1. The Baum algorithm
and likelihood evaluation formulas for CS-HMMs are collected in table 4.

2.3 VITERBI ALGORITHM

The Viterbi algorithm is a two-pass dynamic programming algorithm [45] that
evaluates the maximum a posteriori (MAP) estimate of the state sequence, defined as

Xy = arg max p(Xn|Zy) = a.rgn;;a.x p(Xn,Zn), ' (14)
) N N : :

where p(Zy) is constant for any Zx and does not affect the argmax operation. The

forward pass propagates a function ¢(x,), which'is initialized as ¢(xp) = p(xo). The _

forward recursion is then defined forn=1,...,N as

(%) = P(zalxn) max {P(XalXn1) S(xna)}: . (15)

This expression is similar to Baum’s forward densn;y a(x,), except that it contains a
' maximization instead of a ma.rgma.h.zatlon

The backward pass of the Viterbi algonthm is a back substitution operatlon The
optimal estimate at tlme tx is determined as

kv = argmax(xn), (16)

which is then used to initialize the backward recursidns, defined as

%ot = argmax {p(Ealxn-t) 6(Xa-1)}. a7
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Table 4. Baum Algorithm for CS-HMMs

Forward Densi 7
(Iottiatization) a(xo) = p(xo)

Forward Density

(Stage 1 Recursxon) 6(%n, Xn-1) = p (’."‘lx"‘l)a(x"'l)

(slimmi?n) &(%n) = p(2n|xn) / %Xy 8(%n, Xn1)

Nie_:«.\lkseluir;zznt P(Zn) = / dxn a(xn)
B?Imtml‘xizgf::;ty B(xn) = 1 for all xn
(gtage 1 R,e]g:::lg)  P(%n) = p(zn|xn) B(xn)

(g:me&?:lgz) ‘ﬁ(Xn—l) =/dxnp(xnlxn—1)'¢’(Xn)

Conditionsl State Ye) =~ axe) Blxn)

Conditional Joint
State Density ¥(Xn,Xn-1) = p(Z ) ‘(b(xn) 6(x'n.axn—1)

2.4 PARAMETER ESTIMATION

Hidden-state models are natural candidates for the EM algorithm, which distin-
guishes three types of data: the incomplete data, which in this context are the observed
measurements; the missing data, which are the hidden states; and the complete data,
which are the coﬁcatenation of the incomplete and missing data. Since the joint density
in equation (1) is the likelihood of the complete data, that function is referred to here

 as the complete-data likelihood function (CDLF).

For time-varying models, parameter estimation using the EM algorithm requires
the use of a multiple-sequence training set since no time averaging can be performed and

since EM parameter estimation with a single piece of data merely repeats the previous

estimate at each iteration. Single-seqﬁence training can be performed for time-invariant-
models sinée the parameters can be averaged over time, although classﬂicatlon models
so obtained will likely have poor generalization performa.nce

16




The multiple-measurement training set is denoted as

{Z}Vl’(zlz\fz""’zlf\{fx}: ; | - . . (18)
where Z§, = {Z'f, z5,... ,ZR-,‘} is the kth training sequence. The lengths of these training

sequences are not constrained to be equal, although the sequences are assumed to be

~arranged so that Ny > Np > - Ng. 'Evenb with multiple training sequences, however,

a difficulty arises due to the unequal lengths of the training sequences. Parameters
in the densities p(x,|xn-1,©) and p(z,|x,, ©) corresponding to large n are estimated
from fewer and fewer training sequences as n successively exceeds the lengths of the
shorter measurements. If there is a unique longest training sequence, then parameters
corresponding to time samples that occur after the end of the second longest sequence are
“estimated” from a single measurement. This problem might be addressed by truncating
the longer measurement sequences to some predetermined value or by using some type
of time-warping to obtain equal-length measurements, depending on the application. In
what follows, the above difficultly is assumed to have been dealt with in the appropriate
manner. : o
‘ Notationally, the unequal sequence lengths are accommodated by introducing the

. variable K,,, which is, for each time ¢,, the number of training sequences whose length

equals or exceeds n. This. variable represents the effective number of training sam-
ples available at ¢,. Recalling that the measurements are assumed to be arranged in
decreasing order of length and defining Ny, = max(Ny), then for any function f(x%),

Npax Krn
ZZf(xn) > > fxa) (19)

k=1n=1 ‘n=1 k=1

The EM a.lgérithm generates parameter estimates iteratively, where at each iter-
ation the estimates are chosen to maximize the conditional expectation of the CDLF,
given the observed data and the model parameters from the previous algorithm iteration. .'
Denoting by X = {Xﬂ‘v LK } the collection of state sequences correspondmg
to the measurements in the tra.mmg set, the CDLF for the training set is

p(Z2,X|®) = H (2%, X5, 1)

I_Ilpx’swo)Hp(xnxx,, NG ()

n=1

17




Each iteration of the EM algorithm generates estimates

& = agmaxQ(©,0") . (2

that maximize the auxiliary function

Qe,0") = Exlze={logp(z Xl@)} .
- / dX p(X|Z,0") log p(2, 1) |

=11/ IXf, p(XF, |24, @) log (2, XIO). @

e=1
The E-step evaluates the auxiliary f1mct1on at ©* from the previous iteration, yleldmg a
function of the unknown parameters only. The M-step then generates optimal estimates
of the unknown parameters by maximizing the auxiliary functlon Since the M-step
requires differentiation with respect to the model pa.rameters it cannot be spec1ﬁed
W1thout imposing a particular form for the model densities. The E-step can be spec1ﬁed
in greater detail, however, by imposing the structure of the HMM.

Since the CDLF consists of a product of model densities that are parameterized

by separate subsets of the model parameters, the auxiliary function is decomposed as

QO,6) = Qol60,0") + Qx(6x,0") +Qz(62,0), (23

- where each component.corresponds to one of the three model densities. The pa.ram_etérs
in the model’s initial-state density are estimated by ma;xi_mizing the component

» K
Qq(eo, ©') = Exze: {108 [HP(XS |9o)]}
- 1 [ x4, 2825, 0 { S 108t

e_1 k=1
- 3> 11 [axs, p(X Z},» ©°) log p(x§|60)
k=1 £=1

| =~§:/dX P(X}, |2k, , ©*) log p(x£|6o)

= z /dx Xolsz, @z) log p(XOIOO)

: _k-l

= kg [ dxk v(xb) 1og plxklde), - (24)

where (x§) = p(x§|Zk, ,©") is the conditional state density for time ¢, under the old ,

parameter values in ©*.
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The parameters in the model’s transition dens1ty are obtained dunng each EM
iteration by maxlmlzmg the auxiliary -functlon component

Qx(6x,©")

k=1n=1

K K Ny |
= H / X}, p(Xk,|Z%,, ©") {Z > log p(acg|xs_ 1,9x)}

k=1 n=1

Cem
Exize {log [H I p(x)xE_ 1,9x)]}

k=1

- | | N
,= Z ./dXI;"k p(X‘I;VkIZka’ ez) { z_: 10g p(xnlxn—th) }

= 3 [k, plKE, 2, 09 log Oy, 0x)
k=1 n=1
K N

= 23 [[axk axtk pid,xk |sz,®’) log p(xk[x%_,, )

k=1 n=1
Nmax Kn

=33 / axt [ oy %) log oGkl Ox), (29

n-—l k=1

where y(x%, xk_, )= p(xﬁ,xﬁ_IIZ}‘Vk, ©?) is the conditional joint state density obtained
from Baum’s forward-backward algorithm with the kth measurement. Note that one
of the summations over the members of the measurement training set drops out in the
third step of equation (25) because the summand is zero except when £ = k.

Finally, the parameters in the output density are obtained by maoammng the
auxiliary-function component

K N
Qz(02,©") = Exze: {log [H I1 »(zzlxs, 92)]}

k=1n=1

K N
= /dva (va N,,@’) {z > log p(zk|xk, Bz)}

=1 =1 n=1

= Z /dXﬁfk p(XNJJZNk’ez) { Z log p(znlx”" 92) }

' k=1 n=1

= T3 [k (e log platia, 62), @)

n=1 k=1

- where '7(xn) = p(xk|Z%, ,©") is the conditional state density obtained from Baum’s
algorithm. The above results are summarized in table 5. - '
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Table 5. EM Au:cz’lz'ary-Punction Compbnents for CS-HMMs

Transition C Nmex Kn ,

Density” | Qx(0x,0% = 3 > [ ek [ ks otk xhy) log plxhick 1,0
Parameters |: o1 k—1

Output Nmax Kn '

Density Q2(02,0") = 33 [ axk +(xh) og ek, )
Parameters =1 k=1’ : ‘
Prior State . X . ok .

Density Q0(66,©") = 3 [ ax +(x) 1o o
Parameters . =1

If the continuous variables in this table are replaced with their discrete counter-
parts and the auxiliary-function components are maximized ove;') those variables, the
Baum-Welch re-estimation formulas [9] are obtained. Estimation of the parameters in
the transition density is simplified in this case because the a;; enter into the model
linearly, subject to the constraint that the “exiting probabilities” for the ith state must
sum to unity. The re-estimation formula for a;; is therefore obtained by solving the

‘constrained optimization problem whose Lagrangian is

Nma.x K"l

Qx = 3 3 33 ) losaz-j+/\(1—Zaz~j)- en

n=l k=1 ¢ j

A similar Lagrahgia.n is used to obtain the output probabilities for discrete measurement

spaces.
2.5 MIXED-MODE MODELS
- This section extends the CS-HMM By letting the initial state be governed by the

miﬁcture of densities

pxo) = 3 psplxali), | (28)

=1

~ where p(xp|j) is the jth 'mode in the mixture, j is the mode-assignment index, and °

pi = p(j) is the mode-assignment probability, or mixing parameter. Since j is a discrete
variable, p; is a probability measure and not a density. As usual, the mixture is assumed
will later become clear, the resulting model is referred to as a “mixed-mode” CS-HMM.
Due to the commutativity of the summation and integration operations, the Baum

to be a convex combination with p; > 0 for all j and ¥"J_; p; = 1. For reasons that

functions for mixed-mode models all take the form of J-component mixtures, so that a

mixed-mode model acts like a “bank” of single-mode CS-HMMs.
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2.5.1 'Baum Probability Densities and Likelihood Evaluation
The forward density is given by

(%) % 2(Zn, %)
P |
= > p(Zn,%n, )

=1

J .
= 3 P(Zn,%nl5) 2(5)

=1

_ ' J

- A = Y pioj(x), (29)
‘ J=1

where ¢

%) = pZuxa) (30

is the forward density obtained using the Baum recursion with the single-mode prior
p(%o|j). The backward density B(x,) is the same for all J and is identical to the
single-mode case. Integration of the terminal forward density over state space gives the
measurement likelihood as a mixture of single-mode measurement likelihoods. Defining

p(Zali) = [dxwastan) @

results in the likelihood being written as

p(Zy) = inP(ZNU)-, . (32)

j=1

The conditional mode-assignment probability

pin = p(§|Zn) = —5— p(Znlj) p; (33)

0 p(Zy)
is required along with the conditional state densities Y(xn) and ¥(Xn,Xn-1) to fully
characterize the expected state evolution. -Given pjy, the conditional state densities
are

¥(%n) - p(%n|Zn)
: J
= Y p(%n,j|Zn)

= bl Z) 21 Z)

j=1

R .
= 3 e o), @
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where

p(xnlzNaJ)

= "H'Z}Hﬁaj(xn)ﬁ(in) o | (35)

is the conditional state density for a single-mode model with prior p(xg|j). While
maximization of equation (34) to obtain the optimal state sequence is a difficult non-

5 (%n)

linear optimization problem even for simple model densities, likelihood evaluation and
parameter estimation (the two crucial problems for classification apphcatlons) can be
performed directly from the densities." Fmally, the joint state densities are

V(Fns Xn-1) = p(xn xn—lIZN)

= Z (%n, Xn—1, | Zx)
j=1

J

= > p(Xn,Xn1 IJ,ZN)P(JIZN)
J-l , ‘
j=1

where

Vi(Xn, ¥n-1) = P(Xn,Xn-1l5,Zn)
| 1
2@l Y(%a) 0 (Xn, Xn-1)- (37)

The expressions that are unique to mixed-mode models are summarized in table 6. -

- 2.5.2 Parameter Estzmatzon

For an observed measurement ssquence. knowledge of the mode assignment vari-
able 5 would reduce the mixed-mode modeling problem to a single-mode p-odier=. The
natural choice for the missing data in mixed-mode models therefore includes the mode
assignment in addition to the state sequence. The resulting CDLF is

p(Z7X7-7)= Hp(sz? Nkvjk)
k=1

K : Ni )
=TI o5 p(x5le) T1 (i 1) p(ahixh),

k=1 n=1

where j is the mode assignment for the kth measurement and J represents the collec-
tion of mode assignments for all mea.surements
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© Table 6. Baum Algorithm for Miﬁ:ed-Modé CS-HMMs

Forward Denéity

(Stage 1 Recursions) 8;(%n, Xn~1) = P(Xn[Xn-1) @j(Xn-1)
(SFtoage 2%?;1) @j(xn) = p(zn|xr) / dXn—1 8i(Xn,Xn-1)
Singl d ‘ . :
Measurlenxﬁeex;ﬁ.oik:lihodd - : 'p(zN.b) = / dxy a;(xn)
M t . |
Likelihood p(Zn) =Y psp(Znl)
. j=1
Conditional Mode-Assignment o1 ] .
Probability PN = S P p(Znl7)
. J .
Conditional State PR .
Density Wxa) = TS 2:, piin @3(n) B(xn)
L -
Conditional Joint _ 1 5.
State Density . Y(Xn,Xn-1) = 2Zn) J; PjIN 5,€xn,x,...1)¢(xn)

The EM auxiliary function in the mixed-mode case is

Q(©,8") = Exsize{logn(Z,%,7)) |
= ¥ [dxp(x,712,€") g p(2, %, T)
7

. | o _
1Y [ aX4, p(Xk, 24, ©) g p(2,2,9).  (38)
£=1 e :

As before, the auxiliary function can be decomposed into components that depend
exclusively on the different subsets of model parameters; that is, -

QO.0Y) = Q6,0 +Qol0h &) + Qx(6x,0") + Q2(67,€). (39

Components Qx and Q7 are identical in form to the single-mode counterparts because
the relevant components from the CDLF (i-e., the product of transition densities for Qx
and of output densities for Qz) are independent of the mode assignment. Summation
over j, thus serves to marginalize the mode assignments from the conditional density
(X%, el Z,, ©). The mixed-mode nature of the model shows up in the parameter
estimates via the conditional state denéities. |
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The au:diia.ry—ﬁmctioncomponent Qo for the prior state density is

- Qolbo, @z)' = EX’JIz,Q,{Iog [ﬁp(xgljk)]}

J

= T3 [dxbath g pludly). (40)

J=1k=1"

Component @7, which is used to opti;hize the mixing parameters, is given by

- Qu(p, 9;) = Exgze {158 [ﬁpij}

k=1

= HJ;/dva (X5, 3elZ%,, 0 {.log Lﬁl ij]}
K J

= Z Z /dX?Vkp(X_lka,]klsz"@‘) lOg Pix
k=1 jr=1
K J

= 3 3 p(5lZ5,,©") log p;,

=1 je=1
J K _ N
= 2> P, 10 pj,. | (41)
J=1k=1 ) )

Since the model is linear in the m:xmg parameters, the EM update for these parameters
can be expressed without knowing the form of the other model densities. The updates

are obtained by maximizing Q;, subj ject to the constraint that the p; sum to one. The ,

Lagrangian is

Qs = Z szkuvk log pg, + }\ (1 Z Pe) (42)

£=1k=1 £=1

where £ is a dummy version of the mode ass1gnment. Dﬂerentlatmg with respect to p;

and equating the resulting derivative to zero yields

p;-rl = }\ Z PNy - ‘ (43)
=1 :

Imposing the constraint Z =1 P = 1 gives the Lagra.nge multlpher as A\ = K. The

parameter update is therefore

z+1 1 X - .
= X Z Pl N+ ' ) . (44)
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3. HIDDEN GAUSS-MARKOV MODELS

Hidden Gauss-Ma.rkov models (HGMMs) result when the model dens1t1es in the
CS—HMM ta.ke the form .

(Xn|xn'-1, 9x) = N (Xn; ArXn-1, Qn) : (45)

P(2al%n;62) = N(2n;BnXn,Ra). - (46)
p(xol6o) = N(xo;0,Po), | (47)

where the usual shorthand N(y;u,P) is used to denote the' density function for a
‘ multivariate normal vector y with mean g and covariance matrix P. For example, if y
is I-dimensional, then the density function is - '

N;wP) = o P en{-2y- TPl -n) @

The model densities in an HGMM are parameterized by the sets 6y = {uo,Po}, bx =
{A,,Q-} and 7 = {Bn,R,}, wheren =1,...,N. The transition matrices {A,},
output matrices {Bn} and covariance matrices {Qn} and {R,} are collectively referred
to as the system matrices. Although time-varying models are considered throughout
most of this section for the sake of generality, time-invariant models (whose system
matrices are the same for all n) are discussed brleﬂy in section 3.5, where a parameter-
invariance structure is noted for the measurement- likelihood function.

The model densities that characterize HGMMs prov1de alternative expressions for
the set of equations defined by '

Xn = ApXp-1+Wn  (49)

Z, = BaXnt+Va - (50)
p(Wn) = N(wn;0,Qn) (51)
p{va) = N(vz;0,R,) g 2,
pixo) = N(xojme,Po), - (33)

which is recognized as the defining model for the Kalman filter. While Kalman filters
are not typically viewed in the context of HMMs, they have recently been described
as being “analogous” to CS-HMMs [25,27,35]. This section demonstrates that the
relationship is not merely an analogy, but that Kalman-filter models in fact form a
subset of CS-HMMs. The CS-HMM results given in the previous section are specializéd
to the Gaussian models in equations (45), (46), and (47) to show that Baum'’s forward-
backward algorithm and the Viterbi algorithm are implemented by the two-filter [42,43]

25




and RTS [41] formulations of the fixed-interval Kalman smo'other,’ respectively. The
measurement likelihood obtained from the forward pass of the Baum algorithm is shown

to equal the innovation-based definition from Kalman-filter theory [44], and an existing

EM parameter estimation algorithm [31,32] is shown to follow directly from the CS-
HMM auxlhary function.
Also, paralleling the developments of the previous sectlon mixed-mode HGMMs
are defined in which the single-component prior densrcy in equation (47) is replaced by
‘the J-component mixture
J
P(x060,0) = lej N (Xo;ué,Pﬁ) .o (54)
j= _
: where the mixing parameters satisfy p; > 0 for all _7 and. Z ! .p; = 1. Here, 6y =
.{/.Lo,P ,Jj=1,...,J } contains the parameters for each mode in the mixture. The
mixed-mode HGMM' is developed to provide more flexible and accurate models for
short measurement sequences whose assessed likelihoods are very sensitive to the prior
distribution, and to better represent classes of signals whose members are well modeled
- by the same set of system matrices, but which exhibit s1gmﬁcant Wlthm-class vanablhty
due to different initial-state values :

3.1 GAUSSIAN REFACTORIZATION LEMMA

Derivation of the HGMM algorithms is simplified by introducing the following .

Gaussian refactorization lemma (GRL), whose proof is given in appendix A.

Lemma: Given the L-dimensional vector x, the M-dimensional vector y, a.ppropriately

sized nonsingular covariance matrices S and P, and the M x L matrix F, the product

.function
yx) = NP S)NemP) (55)
can be refactored as 'A | |
Ny, %) = Ny;e, QNEA), 69

where the means and covariances in the resulting product densities are

w=Fu ' ' (57)

Q = S+FPFT . (58)
A= (1I-HF)p+Hy (59)
=(I-HFP, = - (60)
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with the supporting variable

H = PFTQL. ’ . (6))
The parameters can also be expresséd in information terms, where the information
matriz is the inverse of the covariance matrix and the information vector is the mean

vector premultiplied by the information matrix. In this format, the density parameters
oo _ . .

A\ =P lu+FTSly (62

A™l'= P +FTS"'F (63)
Q7w = DP~ Yy o | (64)
Q7 = (I-DF7)s, | (65)
“with the supporting variable
D = sF(A). | " (66)

Interestingly, while this lemma arises as a necessary prerequisite for evaluating the
density recursions in the Baum a.lgonthm it naturally generates all of the Kalman-
filter update recursions.

3.2 BAUM ALGORITHM

This subsection applies the results summarized in table 4 to models with the
Gaussian densities in equations (45), (46), and (47). The derivations for the forward
- and backward recursions proceed as an induction. The conditional state densities and
likelihood are then obtained in terms of the forward and backward densities.

3.2.1 ° Forward Densities

The assumed form for the forward density at time t,_; is

Ol(xn—1) = Cn—_lN (xn—l;l"'n—lln—lapn—lﬁz-.-l),

- which includes the initial condition by letting Pojo = Po, pojp = o, and ¢y = 1. The
first stage of the forward recursion evaluates the term

0(%nXn-1) = P(%n|%n-1) (Xn-1) |
Cn—1 N(Xm Anx,_i, Qn) N(x'n—l; ﬂ'n_-ll;z—l, Pn—lln—l) .

i
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Application of the GRL results in
6(xmxn-1) = cn-lN(xn;ﬂ'nIn-thln-l) N(Xn-l;)\mA'n) ) (67)

where the mean and covariance parameters in the first factor correspond to a Kalman-
ﬁlter tzme update and are gwen by

Hnp-1 = An”n—l[n—l ’ (68)
Pn)rz—l = Qn +A'nPn—1|n—1A;£3 | ) ’ (69)

respectively. The parameters in the second factor are

b= (T-Holn) gy + Hoxe (70)
o A, = (I -' HnA'n) Pn—lln—lr | ‘ ' - (71)

where
Hn Pn—l]n—l-An P njn~1° » _ (72)

These»variables are usually ignored in a Kalman-filter context, but, in an HGMM con-
text, they occur again in the smootbmg and parameter-estimation problems. While the
mean A\, of the second term is a functlon of the current state x,, mtegratmn of this
term over X,_; produces unity regardless of the mean; that is,

[ a1 Ntasidn, An) = 1.
The forward density then becomes -
axn) = pEnln) [ Aoy 8k %0 ) |
= Cp-1 N(Zn;_anmR'z) N("‘n;ﬂnln;—l, Pnln—l) .
Applying the GRL to this product yields
(%) = a1t N (Zn; Bn, Za) N (Xn; finjrs Pan) , | (73)

where the pé.ra.meters in the first factor are the estimated measurement and its error
- covariance, respectively given by

Z, = Bnﬂn]n—} ‘ ‘ (74)
n = Ry + BnPnln—lBg- : (75)
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The parameters in the second factor correspond to the Kalman-filter measurement up-

date and are

Mrjn = (I G B ) Hnin-1 +G’nzn
n|n (I G Bn) Pnln—la

where
G, = Pn|n_1BZ b Imgh
Defining the innovation vector as -
Un = Zp—2p = Zp— B, Hnjn-1
and recursively defining the 'weighting. constant as
| e = o N(vn30,5,)
results in equation (73) being rewritten as

a(%n) = cnl (% ﬁnln; Pop),

(76)
(77)

(78)

(79)
(50)

(81)

which matches the assumed form for the previous time step, completing the induction.

3.2.2 Likelihobd Evaluation

The likelihood of a measurement sequence is obtained using equation (13), that

is, by integrating the forward density at time tN over all of state space, giving

. p(Zy) = / dXN a(XN) = cn

= H N(n;0,2,),

n=]

(82)

which equals the known likelihood expression for the Kalma.n filter [44]. This deﬁ’.nitien ,
for the likelihood can also be applied to the partial sequence Z, to obtain P (Zn) =

Since the forward density can be decomposed as

a(xn) = D(Zn,%n)
P(Z,) p(%n|Zy),

it follows that

P(XalZn) = N (% tnims Prin) -

. (83)
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| "The “joint forward density” 0 (Xn,Xn—1) similarly decomposes as

6(%Xn, Xn—1) = P(Zn1,%n,Xn-1)

= P(Zo-1)P(%n|Z0t) PXn-1fXn, Zncs), - (85)

where - |
P(xalZo) = N (5o prppr, Prips) (86)
P (Xn-1%n, Zo1) = N (Xn-1;2n, Ay). - (87)

3.2.83 Backward Densities 4
The assumed form for backward density is

B(xn) = KN ( ’#r(:|)n+1vP gln+1) |

where the superscript (r) mdlcates reverse time. The recursion a.gam proceeds in two
stages, W1th the first stage evaluating the product

Y(x,) = p(Zn,xn):B(xn)
= )N (@i Buxa, Ra) N (s 480,,, P, )

Application of the GRL produces
Y(xn) = PN (20;20, 20) & (xmﬂfffn,PfQ)n), - (88)

where the mean and covariance of the first factor are the reverse-time measurement
estimate and its error covariance, given by ‘

z{) = Bn/‘gﬁwl (89)
, 2;9 = R, +B,P{) , BT, (90)

respectively. The parameters in the second factor, which correspond to a reverse-time
Kalman-filter measurement update, are

S = (1- G(’)B n) 451+ GPz, (91)
Py = (I-G¥B, ) PE) | (92)~
where
G(’) = Py, BI=O™, - (93)
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Defining the Wéighting—consta;nﬁ update .

&= A N 20) ey
 yields | | | |
Y(xa) = s | An| N (oms S PEL) . ()

Here, the canceling terms |A 7| and |A| have been inserted to accommodate a necessary
factor in the second stage of the recursion, which evaluates the integral

B(xp-1) = / dx, p(xnlxn_x)zﬁ(xn)_

= o, / @Xn (Xn, Xn-1), - (%)
* where " '
10 Xn-1) = [ An| N (ot0; Anns, Qu) N (%0 15, PE) (97)

This product does not immediately fit the form required for .applicatvion of the GRL. If
A, is invertible, however, then

N (ne15 A7 %, AT QnATT) = | An | N (ks Anknr, Q). - (98)

The GRL can then be used to obtain

Mk Xnmt) = N (nss AT, AZIQATT) N (305 1), P

= N (%0168, P2,,) N (35 A0, A80) . (99)

The parameters in the first factor correspond to a reverse-time Kalman-filter time up-

date, given by

bty = AFE), | .~ (100)
POy = A71(Qn +P5) AT (101)

The pafameters in the second factor are
A = (I- HOAZ) 48, + HOx,_, (102)
AP = (I-HPAHPY | (103)

where
. r. r) \ 1 ' .

HY = P (Q.+P%)7 4, : (104)
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Substituting the refactored Product into equation (96) and integrating results in

B(xp-1) = cgll N (xn-l;ﬂfflump 1(21[7:,) _ (105)

' The induction requires the assumed form to fit the initial condition, but this is
not the case since A(xy) = 1 is not .a Gaussian density. As noted in subsection 2.1.2,

the recursion should really be started at time iN_l, where it is evaluated as a special
case using ‘ ' '

Bxn_1) = / dxy N(zw; Byxy, Ry) N (xnv; Anxn-1,Qn). (106)

To avoid having to consider this special case in all of the recursions dependent on
B(x5), an approach is taken here that parallels the development of the two-filter Kalman

smoother [42,43]. That is, an information formulation for the reverse-time filter is used,

. -1 -1
and the terminal-state parameters are defined as Pl(f,), N4+1 = 0 and Pg% N+1 ENiv+1 = 0.

This approach is equivalent to defining B(xy) as a Gaussian “pseudo-density” whose

~ variances are infinite but whose value for any argument is unity. The informatioﬁ

formulation of the reverse-time filter is reflected in table 7, which summarizes the com-
putations involved in the Baum algorithm. '

3.2.4 Conditional State Dénsitz'es: Method I

The state density v(x,) is the normalized product of a(x,) and B(x»), which,
by déﬁnition, gives a properly normalized density. When the Gaussian densities in
o(x,) and B(x,) are multiplied without the scale constants, the product is a properly
normalized density function. The scale constants ¢, and ¢ can therefore be ignored

* when constructing the ¥(x,), giving

7(xn) = N(xn;ﬂnln:PnIn) N(xn;ﬂ,(:‘;_,_l, Pf(:i)n+1) .

This is a product of Gaussians in the same variable with constant means and covaﬁa;nces,

which has the following well-known form:

1) = N (Xn;#n|N,Pn;N) , : | (107)

where - E
-1 @-T\™

Pn]N = (Pn]n + Pn|n+1 ) » (108)

- -1 . ' ‘ |

HnlN = P n|N (Pn'; Hnin + P‘;(';]?n.+1 #,(fﬁm) - (109)
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Table 7. Baum Algorithm for HGMMs

Forward Stage 1 Recursion bnin-1 = Anpin-ijn-1 .
(Time Update) Pnln—l = Q-n. + A-nPn—lln-—lAn
Given: fonmtin-ts Po-in-s Hn = PoyniATPG
_ Vn = 2Zn = Bnpinjn
) In = B, BT
Forward Stage 2 Recursion o Ro + BnPrin-1
(Measurement Update)

_  Gn = PpnyBIE;!
Given: pnin-1,Pajn-1

ﬂnlﬁ = (I- G»B») pmjn—1 + GnZn l
nln = (I G'an)

nin-1
Measurement

Likelihood

»(Z) = HN(V,.,o =)

n=l
Backward Information

Variables £ =PP 7 uY, Ta=pP™
Backward Stage 1 Recursion
(Measurement Update)

Given: &njn+1:Tnpnsa

&nin = &Enjn+1 +BI,R.;12,, :

rn]n = rn|n+1 +B$R;13n
Backward Stage 2 Recursion En-sjn = ATQT (Topn + Q:I)"i Enin
. (Time Update) — - , -
Given: &njn, Tnjn rrf-lln = An [Q:l -Qz? (Tam + Q;l)‘ ;1] An
Conditional State Calculation
(Smoothing)

PulN = (P;]t; +rn!n+1) -

. — -1 [p=1 )
Given: Hain, Pnln’gniﬂ-i-h rnln+1 /J'f"'lN - PﬂlN (P"I”“"I" +§n|n+1)
Adjacent-State
Cross Covariance

Given: Pnl N Hn

T
Pn,n—llN . PnINHn

The use of the information format for the backward density parameters simplifies these
calculations since the variables P

-1
nint1 . and P,fl)n 1 F‘nt)n 41 are generated by the backward
recursions and need not be calculated from the covariance information

As outlined above, the calculations involved in obtaining these densities via Baum’s

forward-backward algorithm are exactly the same calculations involved in the two-filter

implementation of the fixed-interval Kalman smoother [42,43]. The two-filter smooth-
ing algorithm is therefore an implementation of the Baum algorithm for HGMMs
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3.2.5 Conditional Jomt State Densities

* Characterization of the condltlona.l state evolution for HGMMs is completed by
specifying the joint density of time-adjacent states, which is obtained from-equatlon
(10) by substituting equations (67) and (95). This calculation gives

V(Xny Xn-1) = N (xn;#nln—lvpnln—l) N (Xn1; Any An) N (xm#ff,)mPff,L) (110)

where the means and covariances of these factors are defined in equations (68), (69),

(70), (71), (91), and (92). It is easy to show that the product of the first and third
terms provides an alternative construction for v(x,), such that -

V(e Xne1) = N (xn;#nlN,PnlN) NosidmAd). o (111)

The accuracy of this expression is confirmed by reca.lhng that N (x.n p,nw,Pn,N) =
P(%n|Zy) and that N (Xn-1; Any An) = p(Xno1|%n, Z,_1). In the latter expression, the
conditioning variable can be changed from Z,_; to Zy since the information conta.med
in ZC_, is redundant given that condltlonmg on X, also occurs, so that

N(Xn-—h /\m An) = p(x'n—l lx‘na ZN) . (112)
The product in equatlon (111) is therefore

VYXnsXn-1) = D(Xn|Zx) p(Xp1|Xn, Zn) .
= P(Xn,Xn1|Zn), - (113)

Wthh is the desired definition. Equatlon (111) is mstrumenta.l for evalua.tmg the aux-
iliary function for HGMMs. :

- For the computations actually performed during parameter estimation, only the
cross-covariance matrix for time-adjacent states, denoted P, n—1N, is required. An
expression for this matrix can be obtained by evaluating the conditional joint density
and then extracting the cross-covariance matrix from one of the off-diagonal blocks of

the joint covariance matrix. This derivation is provided in appendix B, where it is

shown that the density of the 2 x 1 joint random vector Xinn-1) = [X3,x1_,]T is given

V(ns Xn1) = N (XIn,n—u;u{n,n_-mN%P[n,n—mN), - (114)
where '
, h | |
Hpn-1IN = [ .IN ] (115)
Hn—-1|N
- PnIN PnINHE
Plpn-uyn = o . 1
fnn-1j|N [HnPnlN Pn—l[N (1 6)
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The term H, is defined in equé_tion» (72). The upper off-diagonal gives the adjacent-state
cross-covariance matrix as

This expression is considerably simpler than the recursive definition given by Shumway
and Stoffer [31]. '

2.9.6 Conditional State Densities: Method II

The expression for the conditional joint state density in equation (111) provides
‘an alternative approach to calculating the conditional state densities. In particular, the
conditional state density can be obtained by (1) calculating the forward densities :(x5)
forn=1,...,N, (2) initializing v(xy) = (xy), and then (3) calculating y(X,-1) given
~v(xn) for n = N,...,1.. To realize this algorithm, the backward recursion defined in
step (3) must be derived. This derivation beg'ms by noting that

~

Y(Kn-1) = f d%p, V(%) Xnm1)

—_ /dxnj\f Xn} Ua|N; .,,|N) N(xn-h}‘mAn) (118)_

where the expression for the joint density given in equation (111) has been substituted.
For convenience, the definitions of )\, and A, are restated as '

n = (1=HyA,) tn-1jn-1 + HoXn
An = (I - H'n.An) Pn-—l]n.-_l,

where the intemiedia’ce va.riable H,is
Hn Pn—lln—lAn Pnin—l

Given these variable definitions, the mean in the second factor in equation (118) is

seen to have an “offset” of (I — HpAp) fin—1jn—1. This offset is temporarily removed by

defining the new variable
| | V-1 = Xn-1 - (I - HnA-n) Hn—ijn—1- i (119)
- With this, the prqduct in equa.tiori (118) can be rewritten as ‘4
Yoknct) = [ dtn N (e iy, Prrr) N Hon A, (120)
Application of the GRL then gives.
Yotat) = [ B Noai 0, T) N(Fositim, ). (121)
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The mean and covariance of the new ¥Ya-1 term are

Wy = H, pon - A | | (122)
Qn = A+ H,PypHT, O (a2)

respectively. While the mean v, and cbvariance Y, of variable x,, are easily obtainable,
they are not needed because this normal density integrates to unity regardless of their
values. Since the y,_; term is independent of Xn, the state density becomes

Y(Xnz1) = N(Yn—l;wm 2,) R
=N (xn—l;,u'n—llN7 Pn—'l]N) ' ‘ (124) .
The recursions for calculating the conditional mean and covariance of each state from
‘those corresponding to the next later state are respectively given by

Hn-1lN = wp+ (I - HnAn) Hr—1jn-1
= Hnﬁ‘nlN -+ l‘n—l]n—?l - Hnll'h]n-l

= Hn-tin-1 + Hy (v =t - (129)
and -

Py = A+ H,P,~HI L '
= (I-H,A,)P n=1jn—~1+ HpoPp yHT
= Po_ip-g1— HnA;zP n-lijn~1 + HnPnINHE
= Pogpos —H.Py HT + H,P,vHT

_.= Pn-iln;l + Hn (PnlN _'P;nln—l) H;f (126)
- These expressions (eq1'1al the mean and covariance from the RTS formulation of the

fixed-interval Kalman smoother [41]. This joint-density marginalization approach thus _
provides a very natural way of deriving the RTS smoothing algorithm.

3.3 VITERBI ALGORITHM

The forward passes of the Viterbi and Baum algorithms differ only in that the
Viterbi algorithm maximizes over the previous state at each step whereas the Baum
algorithm marginalizes out the previous state. For Gaussian state den}sit'ies,‘the differ-
ence between marginalization and maximization is just a scale factor. Neglecting this
scale factor, the Viterbi forward density functions are

¢(xn) = N(xn;#nlmpnln)a | . : . (127) | |

where yi,1, and P, are defined in equations (76) and (77), respectively. |
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The back'ward pass of the Viterbi algonthm begins by maximizing the forwa.rd
dens1ty function at the terminal time step, which gives Xy = pnv by inspection. After

this notation is adopted for the nth state estimate’ (i-e., Xp = pin) ~), the function that ‘

is maximized during the Viterbi backward recursion can be written as

p(”’"lle’l-l) ¢(x1’1—1) = N(F‘nlN’Anx'n lan) (xn—lul“n—lln—ly Pn—lln—l) . (128)

Here the term p(znlxn Enn) is neglected since it is a constant that does not affect
the arg max operation. Applymg the GRL and again neglectmg a constant term yields

Rooyw = argmax {N (Xn-1; oy, An) |,
where A, is defined in equation (71) and

Hn—-1|N = ﬂm—llﬁ'—1 +H, (Hn]N - l-"nln—l) n ' (129)

In this last expression, pfnjn-1 = Anlin-1jn-1 and Hy is defined in'equationb (72). The '

state estimate is X,—; = Un-ajn, Which equals the smoothed state estimate from the
RTS smoother [41]. Note, however, that A, is not the covariance matrix for the state
estimate. The Viterbi algorithm is, by its nature, incapable of providing second-order
statistical information. On another note, the equivalence of the RTS and two-filter

smoothers implies the equivalence of the most likely state sequence (the Viterbi track)

and the sequence of individually most likely states (the Baum estimates).

3.4 PARANIETER ESTIMATION -

~ For HGMMs, the E-step of the EM algorithm consists of evaluating the amnha.ry
function components defined in equations (24),(25), and (26), which requires the calcu-
lation of expected values for various quadratic functions under a normal density. These
expectations are evaluated using the following identity: '

/ dx (xTFx +x5f + fo) N(x; b, P) = tr {F (P + uuT)} + utf + fo, (130)

which is a special case of theorem 10.5.1 in Graybill [46]. The M-step of the EM
algorithm consists of ma.ximizing the auxiliary-function components obtained during
the E-step, which requires differentiation of those components. In addition to standard
matrix and trace derivatives, these calculations require the identity [47]

8 o . |
éftr{FTleSQ} = §,FS,+STFS]. (131)
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Auxiliary-function .compbnent Qo is given By
_ _ B |
Q =3 / dxg (x§) log p(xk)
. k=1 o . i
.k o
-3/ BN (b i, P, log N (o, Po) - (132)

Expa.ndmg the logarithm term neglectmg the constant —Llog(21r) / 2, and neglectmg a
scale’ factor of 1/2 results in -

Z/dx’é ,I-‘olNk,Pme) {Iog]Po l" (xo .#0) Py (xo I-Lo)} (133)

k=1

Performmg the mtegratlon using equation (130) gives
-1 Jp-1 [pk k- N [,k \T .
Qo = K log l Po* |- Z tr {Po [Po,wk + (ﬂouvk - ﬂo) (MolN,c - #o) ]} (134)
‘ k=1 L |

This function is concave in the parameters yo and Pg?, so that the opt1ma.1 parameter
estimates occur at the unique cnt1cal point. The denvatlve of Qo with respect to ug is

obtained as |
| | _g% _ '___u_g ];1 r {Po (b, = o) (u'éutr; - NO)T}
- —f:‘: @; (b, — #O)T Py _(M'&Ng ~ o)
- ,}2 2P (s 1) . )

Equating this derivative to zero and solving for ug gives

Zﬂom | | (136)

k—-l

In genera.l a symmetry constraint must be imposed when maximizing @, to ﬁnd
the optimal Py. This constraint can be mplemented by using derivative formulas that
~ explicitly take into account the symmetry of the matrix or by performmg a constrained
optimization in which the appropriate Lagrangian is maximized. The constraint turns
out to be redundant for the HGMM cova.nance matrices, however, because the uncon-
- strained optimizer has a symmetric form. Th.lS redunda.ncy occurs when optimizing Q,,
and Rn as well. The derivative expressions used to find the optimal covariance estimates
are therefore given for matrices with independent elements, which greatly simplifies the
analysis. '
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The derivative of equation (134) with respect to Py is

8Qo

Equating to zero, substituting the optimal value of uo, and defining

ko— kil
€ = Hon — Ho

| gives the parameter update

pit! V—VKZ{POINE'-"EO*:O }- |

The transition-density component Q@x was defined in equation (25)4 as

Nmax K'n.

| K . ‘
3Pt K Py - g‘—‘:l{Psle + (#guv,, - #o) (.“IOC|N;, - #o)%}_-

= T3 [axd [y vk, ,) log pekih ).

n=1 k=1

)

(138)

, (139)

Substituting the definition of p(xk|xt_,), neglecting the constant L log(27)/2 and the |

scale factor 1/2, and marginalizing v(x%,x%_,) from the log ] Q. 1" term yields

Nmax Kn

= 3> {log|Q;!| - LA, Qn)}

n=1 k=1
where

(A Qn) =[xk [axh oGy

(- At ) Q7 (-

The integral term can be further decomposed as

Ik(An,Qa = I,Sl’(czn>+.r,§2><An, Qn>+1,§3>(Aﬂ, Q).

The first component is given by

19 =[xt [axd o0,k ) 7 Q7

: T ~—
= [adkaed=T o

= '/dxfZ N(xi;#ﬁ[Nk’PilNk) xﬁT Q. x;

= t.r {Q;l (PﬁlNk + “:.INk F"ﬁﬁ"\’k)} "

%)

(140)

(141)

(142)

(143)
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- The second component is
= - [k fax it ) (7 Q7 At} |
;2 /dxﬁ/dxﬁ_1 N(?(z;ﬂicz[NpPﬁ[&k) N(x:—lx)‘anfJ xlrczT Q;l Anxv];-l

= =2 @RV (ki Pl X7 Q A, [, N8 08)
= =2 [ N (ki by, Pl ) 247 Q30 A, 28 -
= 2 [N (ks Pl 8T Q7 A (- HE L) +HixE)
= =2 /dxﬁ N(Xf;;ﬂﬁwupzw,,) _ o |
 x{=TQrlAHERE 4 T A, (T-EEA.) b ) (49
Applying the identity in equation (130) then gives | -
2 {QT AR (P, + i, wih)} - 2485, Q54, (1- 24 e o
= 20 {Q7 A, (HEPhy, )} - 2440, QA (M spnes + B (b, = Hhino1) }
= —2u{Q7 AL (HEPh, )} - 2480 Q5 At -
= 26 {QuAL (PE,y+ s, Wom) ) 1)

I®

The last componént is given by ‘
L7(8n Qu) = [t [, y(xk,xt,) (7,47 Q1 Anxt_,)
= e ) RTAT g A
= [N P ) AT QR A
= tr {A,'f Q;'A, (P n-um, + #ﬁ-ll}sfk #ﬁfnm)}
= {r { Q'A, (Pﬁ-uN,; + U, Nﬁum) AT } : (146)
When thése integral terms are substituted back into thé_expression for Qx, each tra.c'e:
term undergoes a summation over k. Since the parameters A, and Q. are constant

across k, the summations can be taken inside the trace and applied to the terms involving
the state means and covariances. It is therefore convenient to define

Kn
T B ‘ :
anxn~ = Z {P‘)I'cz’Nk + u:.'Nkﬂlek} (147)
k=1 . :
| & E kT | ' PPN
CXn'.xn—l = Z {Pn,n—llNk =+ ”nlNk”n—llNk} . (148) )
. k=1
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With these in hand, Qx can be written as

o = 5 { o] 2| = {5 (Coe =24 Cre .+ AeCrnrD)}

- n=1

n=1

= NZ {K log| Q7| - tr{Q7 Crpmn } +tr { Q7 AWCE,...}

+tr {Q;lcxnx,,_lAI} —tr {Q;‘lAann_,xn'_lAT} } (149)

This last expressmn WhJCh makes use of the trace propertzes is used for optumzatlon
of the covariance matrix because it ensures symmetry in cases when A, is known [48].
- The derivative of Qx with respect to A, is

el -afi (8 (G =B+ 4D}
' 057} 250 (AT A G}

= z( x,,x,,-lQ‘l) -2Q:'A, c,cﬂ,‘,,_1 | | N
= 2Q‘1( xwxns = AnCiuxaoy ) - . . (150)

Equatmg this der1vat1ve to zero and solvmg for An y1e1ds the upda.te

A::H = Cx"x""lc;: 1Xn-1" (151)
" The derivative of Qx with respect to Q;lis
8 | |
5E = KaQn = Cuuna + Cruxus AT+ ALy — AsCrr AT, (152
n . .
which, when equated to zero, gives the estimator
Qi+l = {cx,,xﬂ cx,,xn_lAﬁ -ACT, + Aann_Ixn_lA;f} . (183)

This expressmn isused if A, is known. Otherwise, the opt1mal value for A, is substl-
tuted to obtain the upda.te

Q' = 2 {Cuuma = Cranas Ol €L L) (154)

Xn—1Xn-1 ~ XnXn-1

Finally, the auxiliary—ﬁ1hction component Qz is

Nmax' Kn

> > [ axk v(x) log plzk|xk)

n=1 k=1
Nma.x Kn

> Y {log|R| - L(B.R.)}, (155)

n=1 k=1

Qz
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where the integral term is

L(BnRy) 5 [k N (ki by, Phiy,) { (25— Boxt) RS (2 - Baxdt)}
_/ dx, N (XZZ /*‘:lNkanlek) | |
x {25 72k — 2x} BIR; 'z} + XA "BIR'Boxt]
= z R;'z} - zuz.'fv,,BTR;lzﬁ + t {BIR;'B, (Ph, + i, i) }

e .
= tr {Rnl {zhas" - 22 b BT + B, (Ph, + sy, iy, ) BT} }

(156)
 After bringing the Mation over k into the tra!ce terms and defining |
z 2k 2k" | (157) |
| k=1 o L
Canr Z 2 1 o (158)
Qz can be expressed as
Qs = NZI {K 1og]R,,1 |- tr {R7? (Cz,,h 2BnCIan+B anang)}}
= Nzl {K loganll- tr{R'1 z,,z,‘}drtr{Rn B Czﬂx,,}
tir {R7'Cpx, BT} —tr {R;anCxﬂan;f} } (159)

Because this expréséion has the same structure as Qx, the optimal updates are found
- at the critical point using the sa.me steps as for Qx, with the following result:

B = CouCil, | (60
Ri+1 = F{Cznzn—CznxﬂBE_BnC'zruxn+BannanE} (161)
- 'kl'; {Crrn - Cz,,x,.C;jx,,CI,,x,,} | ey

The correlation matrix and model parameter estimates are shown in table 8. In this
~ table, the factors 1/K, on the correlation matrices are borrowed from Qi*! and RiFL.
The factors cancel in Ai! and Bitl.
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Table 8. EM Parameter Estimators for H GMMs

Correlation
Matrices

Kn
' 1 k k &T
C’fnxn = K -kE_l {PnINk “+ b Ny, #,.]Nk} .

Kn
. 1 k k kT
Cxpxn-i = K—n z {Pn.n-um + Ba|Ny V‘n-—l]Nk}
el ) ;

1 & T
§ : k k
Cznxn = K Zn HniNy
. n
k=1

System
Matrices

i+l _ -1
A‘n = C"n"n—ICxﬂ—lxﬁ~1
il -1
Bn = Cznxdcxuxa

-1

i+l _ ) ) T
n = an!u - anxn—:lcxn-ixn—zcxnxn—l

R':.:.l = Cznzn - Czn"n C;:xncz;xn

Initial-State

Parameters

_— K
i k
#BH = 'EZF'NN;, :
k=1

ko ok i+l
€0 = HoiN, — Mo

. .
i 1 T
| 3 ='?Z{P'5|Nk +eges }

k=1

The auxiliary-function components Qg, Qx, and Qz are concave in parameter sets
{uo, Py 1}, {A,,Q;!'}, and {B,, R}, respectively. The updates at each iteration are
therefore the unique maxima of the CDLF. The final measurement likelihood p(Zy)
-is not necess'aiily concave, however, so that suboptimal local maxima are possible.
Multiple training runs from different starting points may therefore be needed to find

the global maximum.




3.5 TIME-INVARIANT MODELS

- The parameter update formulas given above are easily spec1a11zed to time-invariant
HGMNMs by performing a second averaging operation across time when the correlation -
matrices are calculated in equations (147), (148), ( 157), and (158). These time-averaged
correlation ‘matrices are then used in equations (151), (154), (160), and (162), whmh
are each evaluated only once for all time.

The measurement likelihood in the time-invariant case has a parameter invari-
ance structure that is worth noting. Specifically, as an argument of the measurement
likelihood function in equat:on (82), the parameter set

® = {AB,QR, po, Po} o (163)
is equivale_ﬁt to any set

6 - {A,é, QR G0 Bo}, (164)
where the transformed paré,meters aie given‘ by . |

A =U ATY (165)

B = BU;lU; (166)
Q = U,U,QUI U] | © (167)
Fo = Uy Ugpo , . (168)
1’="0 = U, U, P, UF U3, (169)

Here, U4 is any nonsingular L X L matrix, and Uy is any nonsingular L x L matrix
that commutes with A.

The equivalence of the two models under the hkehhood functlon is demonstrated
in appendix C. Two conclusions can be drawn concerning this invariance. F1rst the
EM algorithm will converge to the member of the invariant family that is closest to the
starting point. Second, any member of the invariant famﬂy is theoretically as good as
any other for classification. While the second conclusion suggests that there is no need
to be concerned about the first, it may be desirable for numerical reasons to constrain
the EM algorithm to produce estimates of a given structure. For example, it might be
beneficial for the tra.nsmon matrix to be as close as possible to an 1dent1ty matrix.
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3. 6 MIXED-MODE MODELS
 Attention is now turned to mixed-mode HGMMs (MM-HGMMs). ' The Baum

forward densities for these models are obtained directly by substituting an indexed

version of equation (81) into equation (29), giving

o) = Y pdN(miphyPha).  (70)

=1

 The d, )ty and P7, are calculated for each j using the HGMM recursions with
the single-mode prior p(Xo|j). Furthermore, since the integral of the sum of terminal
densities is just the sum of the integrals of the individual densities, the likelihood can
be written as | '

=1 =1

J J
p(Zn) = 3 pip(Zuli) = 3 pich- (171)

-*Drawing on equé{cions (107) and (34); the conditional state densities are

'Y(Xn) ZPJINN(men]N’PnIN) : . (172)V :

J=1

where F‘n| w is the conditional state mean and P’ v 1S the state covariance matrix from
the appropriate single-mode HGMM.

Parameter estimates in MM-HGMMs are obtained using results from éect_ion 2 and
the analysis techniques of the previous subsection. The mean and covariance updates
for the mixture components in the initial-state prior distribution are given by

%31 == Z PjINy l‘ow,, : (173)
k=1
) ny . z T :
where
X .
Kj = ZPjINk' (175)

k=1

The variable eék”'“ denotes the difference between the estimate of the mean at time tg,

-conditioned on the kth measurement sequence, and the weighted sum of the estimates
from all measurement sequences; that i is, ' '

é_ak,z+1 — u,gllcNk ”zo-:-?l . (176)
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The estimates for the mixing parameters were defined in section 2. The expressions for
the system-matrix estimators' in terms of correlation matrices are _identica.l to those given
in equations (151), (154), (160), and (162) for single-mode HGMMSs. The correlation
matrices for 'MM—,HGMMS are very similar to those for single-mode HGMMs, but with
a weighted sum over the mode aséignments; that is, |

J . . .

Crnxn = Z PilNe Clox, , (177)

=1 '
Ac-xnxn-l = ZleNk Cinxn..].' R : ’ (178) ’
. =1 . ] .

' J - o

Conxn = ijlNk Ci,,xna o (179)
=1 . - :

where C__ , Ci x.,,and C! .. are given by equations (147), (148), and (158), respec-
tively, except that the pﬁ, w, and Pﬁ, n, are indexed by j. The measurement correlation
matrix is identical to that given in equation ( 157) since the measurements do not depend
on the mode index. o o

While the number of componénts, J, in the mixture density has been assumed
to be known thus ;Ea.r,' it might be estimated as follows. First, the system matrices for
a single-mode HGMM with a fixed large-variance Gaussian prior are estimated 'using
the measurement training sequences. Second, the estimated parameters are used to
calculate the conditional state sequence corresponding to each measurement sequence. -

- Finally, a multivariate clustering algorithm is applied to the initial states from these

state-sequence estimates. The number of significant clusters provides an estimate for
J, and the location and spread of the clusters provide initial estimates of Ho,; and Py ;,

. respectively, for each mixture component.

46




4. SUMMARY |

A general theory of contmuous-state hidden Ma.rkov models (CS-HMMs) has been
presented. The given results solve the likelihood evaluation, state estimation, and pa-
rameter estimation problems, to the extent that the solutions can be formulated inde-
- pendent of the particular form of the model densities. The CS-HMM results were then
. specialized to linear Gaussian models, resulting in the hidden Gauss-Markov model
(HGMM). A Gaussian refactorization lemma has been derived, which provides a nec-
- essary tool for evaluation of the Baum recursions for HGMMs and, at the same time,
naturally generates the update recursions for Kalman filters and smoothers. The Baum
- and Viterbi algorithms for HGMMs were shown to be equivalent to two different im-
plementations of the fixed-interval Kalman-smoother. It was shown that the likelihood
obtained using the Baum algorithm for HGMMs equals the classical likelihood definition
from Kalman-filter theory and that the parameter estimation ‘algorithm for these mod-
els is equivalent to the existing expectat1on-max1m1zat1on (EM) algorithm for Kalman-
filter models. Taken together, these results unify Kalman-filter and HMM theory. The
parameter-estimation algorithms given in this report were formulated for multiple train-
ing sequences with unequal lengths. The HGMM training algorithm presented here
therefore extends previous algorithms that treat equal-length training measurements.

This analysis has also resulted in a new estimator for the cross covariance between adja-

cent HGMM states that is considerably simpler than existing estimators. A parameter
invariance structure was.demonstrated for HGMMs whose parameters do not vary with
time. Finally, the CS-HMM and HGMM algorithms ‘were extended for models whose
initial state is governed by mixtures of densities instead of a single density. |

' This work paves the way for extensions of HMM and Kalman-filter algonthms in
both classification and tracking applications. For example, it generates a framework for

investigating analogs of Kalman filters and smoothers for non-Gaussian model densities.

In addition, the parameter-estimation algorithm could be used to obtain a more sophis-
ticated, a.nd‘possib‘ly more accurate, tracking algorithm whose state and measurement
covariance matrices are influenced by the observed data instead of being predetermined
from the prior estimates of the model parameters.
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APPENDIX A ,
PROOF OF THE REFACTORIZATION LEMMA

ThlS appendlx demonstrates the equlvalence of the two product functlons

n(y,x) = N(y;Fx,S) I (X;#,P) (180)
= N(y;w,Q) N A), . . (181)

where w, Q, ), and A are deﬁned interms of F, S, u, a.nd P, as given in section 3.1.
Essentla.lly, this refactorization is equivalent to saying that p(ylx) p(x) = p(xly)p(y)-
‘Beginning with equation (180) and substituting the normal densities gives

nyx) = @nERr|s[ e M ep [ Zewn).  as)

A useful form for the eprnentf (v, x) is obtained as

£, x) = (y—Fx)"S7(y - Fx)+ (x — ) P~ (x - p)
' = xT (P +FTS7'F) x — 2xT (Pu+ FT87ly) +yTS 7y + uT P71y
= XTA T x - 2xTAT AN+ yT Sy + uTP Yy .
S = @=NTAT x-S ATATIA+yTS ly 4 TP, (183)

The variables A and ‘A, which are introduced in the third step of equation (183) and
are designed to facilitate completing the square in the last step, are defined by

A"l = Pl4FTs-IF | (184)
A\ = P lu+FTSly. © - (185)

These variables naturally arise in the “information” form, where the inverse covariance
matrix is the primary variable instead of the covariance matrix and the mean is scaled
by the inverse covariance. The variable defined in equation (184) is called the informa-
tion matriz, and the variable defined in equation (185) is called the information vector.
Equations (184) and (185) constitute a measurement update in the information formu-

lation of a Kalman filter [5]. If the covariance matrix is desired, the matrix inversion
lemma (MIL) [46,49] can be applied to obtain ‘

A = P-PFT(S+FPFT) FP. (186)
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Deﬁning the variables

S = S+FPFT o (187)
H = PFTS-1 | (188)

results in the covariance matrix becoming

A = P-PFTsS-Ipp
= (I-HF)P. R (189)
The mean vector is then obtained as .
A = A(Pu+FTSYy)
= (I-HF)p+ (I- HF)PFTs-ly
= (I~HF)p+(I- PFTE™'F) PFTs 1y
= (I-HF)p+PF (I- E-'FPFT) 5y
= (I-HF)p+ (PFTz-l) (=- FPFT) sy
= (I-HF)u+HSS Yy ‘
= (I-HF)y+Hy. ' - (190)
Rétuming to the exponent term in equation ( 183) and introducing the functional
() = yTSly+uTP - ATAI) RGN
_ causes the exponent to become
%) = (x=NTA (x-) +¢(y), | (192)
which is put in a form similar to equation (183) as |
() = YTy 4 TP (Pt BTs )T (Ptu+FTsy)
' yT(s71- STIFAFTS™) y — 2yTS-IFAP-14 4 T (P-1 _ PTIAP)y
= y Qly —oyTQ 1y 4 T (P‘1 -'P'IAP'I) 7 |
= y-w)lal(y- w) ~wT Q1 4 4T (P‘1 - P‘IAP"-I) B. (193)

Il

‘The variables w and {2 introduced above are defined by

Q7! = 8§71 — §-IFAFTS-! (194)
Qlw = STIFAP1y. (195)
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These terms can be simplified by introducing the variable
D = S7'FA
= STF (P +FTS7F) T, o (19%)
with which the information matrix becomes
Q7 = (I-S™'FAFT)s™
= (I-DFT)s (197)
and the information vector becomes
@7 = DP . S (198)

Equation (194) can also be converted to covariance form by applymg the MIL in reverse;
that is,

| . .
Q= {s-l - §7'F (P~ + FTS"F) FTs-l}
= S+FPFT =3. E (199)
Noting that Q = ¥ and applying the MIL allows the mean vector to be obtamed as
w = QSF P+ FTS"IF) P“1
= I57'F (P-PF'S™'FP) Py
= 387 (1- FPF'S™!) FPPYy
= s (Z- FPFT) S-'Fy
= ZIS-ISZ-iFy
= Fy. | | - (200)
The functional ¢(y) is now written as |

() = G-o)T0 (y-w)+r, (201)
where

Kk = ut (P‘1 —-P“IAP'I) p—-wr Oty
= T (P -PiaP-1 - ~FTZ7'F) 4
= uT{P-1-p- (P- PFTE~'FP) P~ —FTE‘IF}/.L
= pT (P =Pl 4+ FTE-IF - FTS'F) 4
= 0. | C(202)
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The combined ._exponent ﬁ‘ém equation'( 180) therefore becomes

LX) = (y—0)TR (v —w) + (x - AT A (= ),

Substituting this expression for §(y,x) into equation (182) gives

x) = @RS R e {2y - w0 (- )
X exp {—% x=NTA T (x— A)} . (203)

The exponentials can be written as normal densities if constants are included to com-
pensate for the normalizing constants; that is,

"ex) = (@) E0 5[ B | nanl o [ sy
x @m)*2| A["2 M(x; 2, A). (200)
Multiplying out the 27 terms and collecting the determiziant terms gives
n(y,x) = cN(y;w, Q) N(x; A, A), (205)
where | - |
e = {|s["[p[*|a|-[A[}".  (206)

Equation (205) is the desired expression if it can be shown that ¢ = 1. This equality

'is demonstrated by using a theorem for block matrices [46,49], which states that the

determinant of the matrix

_ [Bu B} ‘
- [ o BzzJ (207)
with nonsingular B;; and B, is given by |
|B| = |Bu|-|Bx- BxuBiBr. | B (208)
= {322, . ,Bu ~ BB By ' . - (209)
First, the definitions of £ and A and' equation (209) are noted to obtain
el i senl .. [P PET ‘
,QHA':'E'.IP—PFTE IFPI—’det[FP 5 ] (210)
It is also noted that : ‘ ‘
-1 .
IP‘l , . IS‘1 I = det [PO S("l} . (211)
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Given thgse two partitioned matrices, tﬁe desi;ed product is
[s[7-[B[7 ]l |a] = |r|

where

0 S| |FP X S-FP S'IZ

Application of equation (208) then yields

yr[ = ’IHS‘lE—.S‘lFPIFTI
= |s-1 (E—FPFT)]
= |s7's| =1,

which completes the proof.

r.=[P‘1 OHP PFTJ;[ 1 FfJ.

(212)

(213)

o (219)
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APPENDIX B
HGMM JOINT STATE DENSITY

This appendix derives the conditional joint densu;y of tlme-adja.cent HGMM states,
as given in equations (114) through (116). The starting point for this derivation is

equation (111), Whlch states that
V(X Xne1) = N (Xn; ottty Paiv) N (Xn1; M An)

where - ‘
n = (I — HoAy) oot + HoXn
= (I-H,A,)Projn
Hn PoiniATP .

Substltutmg the functmnal forms of the normal densities gives ,
' _ 1/2 1/2 L
Vs Xot) = @) [Poe [ A | exp { =3 €00, %0-0)

where

g(xm xn-l) = (Xvn. - ﬂn]N)TP-,:]}V (x'n. - %IN) + (xﬁ—l - )\n)T A:l.(xn_l - )\n).

Defining the condit_ional State error vector &, = X, — Unjv and reca.lliné that
| Hnjn-1 = Anun—nn—z | |
Pn—iN = Pn-1jn-1 +H, (/J'n!N #nln-l)
allows A, to be rewritten as
A = pn-qjn-1+Hp (Xn -A, Nn-—l[ﬁ—l) o

= pn—lln—l + H, (/-‘nlN - /J'nln—l) +H,¢,
= fpynv + Hrén. '

Defining the error vector
€n-1 = Xn-1—An = &y —Hpe,
then results in £(x,,X,—1) being expressed as

§(Xn,Xn-1) = €n7 in Enten1TA e,
= g,7 Pn1 NEn+ (en_l -H, sn)T Al (g1 —H, sn)
(Pn,N + HTA"lH ) En — ,,_IA 'H, ¢,

(215)

(216)

(217)

(218)

(219)

(220)
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Equation (220) is written in matrix notation as

T -1 -1 - ~1 | _
[ & J [PnlN“LHEA H, -HiAZ ] [:" J (221)
n-1 n—1

5(*717;:11—1) = | '—A;IH,Z A.;l

The joint density can then be written as

Y(Xn; Xp-1) = N (x[n,n-l];#[n,n-uuv,P[n,n-uuv), . (222)
where the joint state variable is
. qu‘ : . -
=[] e
Xn-1 :
and the mean and covariance are
T bmw
Hpn-1)|N = [ l J ‘ (224)
HBn-1N _
P-1 HT. =1L -] A-17-1
Phpp-yn = "W +HAH, -H, ln , ~ (225)
-A7'H, A-

respectively. There are no scale factors in equation (222) because, using an argument
~ similar to that given in appendix A, it can be shown that

| P |- [ Aa]- IP_,n—lan =1 | (226)

A more useful expression for the Jomt covariance matrix is obtained by applying
 the block matrix inversion theorem [49]. This theorem states that the inverse of block
‘matrix S with nonsingular diagonal blocks S;; and S, is

- {Tu Tm] -‘= g-1 [Sn 312]'_1, (227)
Ty To LSz Sp :
where
Ty = Sghy (228)
Tiz = —S5'S1S7, (229)
Ty = -S5'SaSh, (230
Top = S2_211 o (231)

Here, S;;.2 and Sy,.; are the Schur complements

Suz = Siu —8x55'S:, ‘
Sooq = 822-81251‘11821. ‘ (232)
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The Structure of the joint covariance matrix dictates that the diabgonaljblocks should
equal the covariance matrices P, and P, N'} This outcome is confirmed by substi-
tuting S;; = P;ﬁv +HIA'H,, S1o = —HZAY, Sy = A;'H,, and Sz = A7}, so

‘that the Schur complements are
Suap = (Pgh +HIASH, ~HIA-AA-H )" =Pk (233)
Sopy = AT~ Al (PnlN -+ HEA“lHn) H;-[;A‘-l = (A + HnPn]NH;‘E)_l . (234)

 With these results, the first diagonal block of the joint covariance matrix is T1; = Py,
as it should be. The second diagonal block is

Ty = A+H,PyyHT
= (I-H,A;)Proyjpn-1 + H,PynHT
= Pu-ijp-1 = HaAwPryjo s + Ho Py H]
= Prijn-1 = HoPon 1Pyl 1 AnPrgjnoy + HoPoyHT
= Progjoes = HoPo i HT + H,P,yH? o
= Pn—ll'n—l —H, (Pyy - Ppn-1) HY, : - (235)

which is just the deﬁmtlon of Pp_yn from the RTS smoother.” The lower off-diagonal
is given by

Ty = A, (A;lm) P = HiPo. (236)

Since the inverse of a symmetric matrix must also be symmetric, the cross-covanance :
matrix is known to be

P'n. n-lN = Ty = Tgl = PnlNHE- (237)

To verify the validity of this expression, T}, is evaluated from the terms in the block
~ matrix inverse, giving the expected result as

Ty = (gl -+ HIATH,) HIAD Pa-yy .
= [Puy —PoyHT (A+H.P,wH) H P JHTAZP,
= PunH (I- Py H.PoyHT) APy gy |
= PuvH [I-PL)y (Pooaw = An) ] AT Pooyy
= PuvH; (I-1+P;1)0An) APy
= Pn]NH,‘z. e
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N APPENDIX C
HGMM PARAMETER INVARIANCE PROPERTY

The objective is to show that the model with time-invariant parameters

= {AaBa Q: Ra/‘l’O:PO}

is equivalent under the measurement likelihood function to.parameter set
é = {Aa ﬁ’ QaRw ﬁO) PO} ),

~ where the transformed parameters satisfy

A =U,AU
B = BU;'U

Q = UsU,QUI US
fio = UgUp po

Py = Uy U, P, UTUTL.

(238)

(239)

(240)
(241)
(242)
(243)
(244)

Here, U4 can be any nonsingular L x L matrix and Uy can be any nonsmgula.r LxL

matrix that commutes with A.

The invariance of the likelihood is demonstrated by showing the invariance of the

measurement innovation v, and measurement-error covariance X,,. Note that the state

variables are not invariant to the parameter transformations and that they undergo a

- corresponding set of transformations defined by

finjn-1 = UaUg pajn—1
ﬁn|n = U,y ﬂﬁln
- Ppjn-1 = Ug Uy Py, UTUT
Pon = UsUyPpy UTUL.

First, it is shown that output calculations with the transformed parameters and state

variables produce the same measurement innovation and error covariance as the original

model. It is then shown that the Baum recursions actually propagate these variables.
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- The measurement innovation is given in terms of the transformed states and model
parameters as

Vo = Zp—Bligny
~B Uy Uz'Us Up pinjns
z,—B Enjn-1 : , :
- . | (245)

and the measurement-error covariance matrix is

£, = R+BP,, BT |

= R+U;'Uz'U4 U Py, UT ULUST U T BT

= R+BP,, BT |

= 3, - . (246)

Thus, 1f it is assumed that the transformed model propagates the transformed state
variables in' the forward probability recursions, the invariance is demonstrated. The ,
propagation of these variables is demonstrated by induction. The transformed variables -
fit the initial state conditions by definition, so that only the recurs1ons need be examined.
For the time update, it is observed that

fnjn—y = An Hin—1jn—1 _
= U, AU'U,LU, Hirn—1jr-1 -
= U4AUppniyjn
= UsUp A pin_1jn—
= Uy Up tinjn-i.

The recursion for the transformed covariance matrix is

Ponoi = Q+ Af’n—lpn-lAT . L

= UsUoQUI U} + Us AUZ' U, Uo Py U U (U, A U

= UasU (Q+ AP, 1,1 AT) UTUS | |
UsUoPpyjny UT UL ‘ (247)

These expressions confirm that the time updates propagate the transformed variables.
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Verification of the correct variable propagation during the measurement ﬁpdate begins
~ by examining the gain matrix, which is given as

G, = Pn,BTE,

= UsUsPou UTUS (BU;'UZY) B,

= UsUoPyn1BZ, .
UsUpG,. . , (248)

The measurement update for the mean is then

finjn = (I - énf") Pnjn-1 + énzn | ,
= (I-U4UoGBU;' Uz") Uy Up ftnjn-1 + Us Up Gnzn
= UaUp [ (T~ GuB) ptnjn1 + G| | |
= U4 Upompn | | (249)

and the update for the covariance is

P1'1.]11 .= (I - énﬁ) f’n]n—l
= (I-U4U,G.BU; UYY)

= U4Uo [ (I-G0B)Pons |UF US .
= UsUoPrn Ug UL R (250)

These expressions demonstrate that the measurement updates propagate the trans-
formed variables, thereby completing the invariance proof.
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