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FOREWORD 

The material presented in this report constitutes a portion of the author's doctoral 
thesis from Texas A&M University, entitled "Segmented Chirp Features and Hidden 

Gauss-Markov Models for Transient Signal Classification.". In addition to the material 

presented here, the thesis discusses the feature set used to characterize segments of 
wandering-tone transients, and it contains a lengthy chapter on simulation and exper- 

imental results for classifying these signal types. Since the theoretical developments 

relating to continuous-state and Gaussian hidden Markov models should be of interest 

to a much wider audience, it seems desirable to have a self-contained discussion of these 
topics, without the "baggage" of that additional material. This report provides such a 
discussion. 

Selected portions of this material have also been submitted to the IEEE Transac- 

tions on Signal Processing in a proposed article entitled "Hidden Gauss-Markov Models 
for Signal Classification," by P. L. Ainsleigh, N. Kehtamavaz, and R. L. Streit. The 

space constraints of such a journal preclude the full development given here, however. 
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THEORY OF CONTINUOUS-STATE HIDDEN MARKOV MODELS 
AND HIDDEN GAUSS-MARKOV MODELS 

1.   INTRODUCTION 

Two of the fundamental problems that have driven the development of signal 

processing algorithms during the past several decades are tracking, whose goal is to 

characterize the time evolution of a "source" through space, frequency, or some other 
physical variable, and classification, whose aim is to make a decision about the nature 
of a source from its observable characteristics. Tracking can play a significant role in 
classification since much of the information about the nature of a source can be inferred | j 

from the way that it "moves" through the dpmain of a physical variable. In spite of 

this, the two fields have historically evolved independently, giving rise to two separate 
famihes of tools. Prom the traddng side comes the Kalman filter and a ninnber of 

related smoothing algorithms. Prom the classification side comes the hidden Markov 
model (HMM) and its associated algorithms. This report unifies these two bodies of 

theory. 
The idea of an equivalence between Kalman filters and HMMs will come as no 

surprise to many readers, for the analogous nature of these two areas has been noted in 

the Hterature for many years. The specifics of the equivalence may be more surprising, 

however. The Kalman filter is not just analogous to an HMM. The Kalman-filter model 

is an HMM with linear Gaussian model densities. The Baum algorithm for this HMM 
is a Kalman smoother, as is the Viterbi algorithm. The likelihood defined by the 
HMM criteria is analytically the same as the likelihood defined for a Kalman filter. 
Each iteration of the espectation-maximization (EM) parameter-estimation algorithm 

for Kalman-filter modeis maximizes an auxiliary function whose structure is identical 

to the function -s^ziosc sasimization gives the Bamn-Welch re-estimation formula for 

HMMs. The eqiircaisices are demonstrated here in great detail, thus removing anj- 
ambiguity about the rslarionship between these two tools. 

1.1 BACKGROUND 

The material presented in this report resulted from an investigation of methods for 

classifying certain types of transient signals. In particular, this work is motivated by a 

persistent difficulty that occurs in the design of statistical signal classifiers. The source 
of this difficulty is the high dimensionality of feature sets required to adequately describe 
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signals from eaxii class, whicJa often results in difficult or impossible probability-density 
estimation problems [1]. An approach for dealing with this issue is to segment signals in 

time, develop a low-dimensional feature set that provides good signal approximations 

on the shorter time segments, and use a parameterized stochastic model to evaluate 

the time evolution of the feature values relative to each class. The objective of such an 

approach is to replace a high-dimensional time-invariant probabihty distribution with a 
low-dimensional time-varying distribution, thereby exchanging the difficult problem of 
estimating densities in high-dimensional feature spaces for an easier model "parameter 
estimation problem. 

In addition to alleviating the dimensionality problem, this type of stochastic fea- 

ture modeling helps to accommodate the within-class variability that is commonly en- 
countered in real-world signal classes. It is able to do this because the stochastic model 
allows for "controlled xmcertainty" when characterizing the feature evolution, effectively 

forming an entire family of template-Eke models that accoimt for the different variations. 

Stodiastic feature modeling is considered here in the context of maximum-likelihood 
classification, which is performed in a conventional or a class-specific framework [2]. In 
the conventional mode, classes are distinguished whose signal segments are all par- 
simoniously represented by the same set of features.  The features are tracked using 

a parameterized model M{®). Sequences of feature values from different classes are 
represented using different values for the parameter set 0, which are estimated by max- 
imizing the Ukehhood of a set of labeled sequences (i.e., a training set) from each class. 
After © is estimated for each class, an xmlabeled feature sequence Z is classified by 
assigning it to the class for which the class-conditional likelihood /^{Z|0} is maximum. 

In the class-specific framework, distinct feature sets are used to represent signals from 
different classes. While the structure of the model M{@) for different classes may be 
different in this framework, the parameters in any given class model axe still estimated 

by maximizing the likelihood of a set of training features from that class.  Further- 

more, the class-conditional likelihood C{Z\M{@)} is still used as a measure of class 

membership, although a "change-of-measure" operation may be required before it can 
be compared to class-membership measures for other classes. In both the conventional 

and class-specific scenarios, then, the fundamental problems in stodiastic modeling for 
classification are model parameter estimation and likelihood evaluation. 

One possible choice foT.M{@) is the linear Gaussian state-space model, or Kalman- 
filter model, which is general enough to accommodate a wide range of classes and fea- 
tures. This model is supported by an extensive body of theory that has evolved out 

of the traddng, control, and optimal filtering arenas [3-6], but it has not traditionally 



been used as a classification tool. Another potential choice for M{@) is the family of 
HMMs, which have been used very successfully to classify sequences of Fourier- and 
cepstrum-based features in speedi recognition [7,8]. Traditional HMMs and the pop- 

ular Baum-Welch training algorithm [9], however, constrain the state vectors to reside 

in a discrete state space, maJdng them unsuitable for signals whose features vary con- 

tinuously as a function of time. A component of the present work is the development 

of continuous-state HMMs (GS-HMMs) that are better able to handle continuously 

vaaying feature sequences. The CS-HMM algorithms are then specialized to the linear 

Gaussian models, which are referred to in this context as hidden Gauss-Markov models 

(HGMMs). 

While the focus in this report is on classification, the theory may also be of interest 
in traddng applications due to the prominence of the Kalman filter as a tracking tool. 
A common criticism of the Kalman filter is that it gives too much credence to the model 

and not enough to the observed data. A symptom of this "naxcissistic-model s3aidrome" 

is that the error covaxiances depend only on the a priori values of the model parameters 

and are independent of the observed data. An improved tracker naight be obtained by 
including a parameter-updating scheme during the processing of observed data, as is 
done during the training phase for an HGMM. Furthermore, the general development 
of CS-HMMs could provide a framework for investigating tracking algorithms based on 

non-Gaussian models. 

1.2    RELATED LITERATURE 

Discrete-state HMMs (DS-HMMs) were developed by Baum and his colleagues in 

the late 1960s and early 1970s [9-12]. Baum's work includes a method for estimating the 
sequence of individually most likely hidden states (referred to as the Baum or forward- 
backward algorithm) and a method for estimating the parameters in the HMM (referred 
to as the Baum-Welch algorithm). An alternative approach to state estimation is to seek 
the single most likely sequence of states, which is obtained using the Viterbi algorithm 

[13,14]. Dempster et al. [15] observed that the Baum-Welch algorithm for estimating 

the HMM parameters is an example of the EM algorithm. Heiser has since noted that 

the EM algorithm is a special case of iterative majorization [16]. 

In 1980, Ferguson [17] helped to solidify HMM theory for speech recognition by 
outlining the three fundamental problems, namely, state estimation, likelihood evalu- 
ation, and parameter estimation. This "HMM paradigm" for speech recognition was 

developed further by Levinson et al. [18]. 

II 
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Most extensions of the basic HMM structure have focused on obtaining more 

- general output densities. Liporace [19] treated HMMs with elHptically symmetric con- 

tinuous output densities. Juang et al. [20] relaxed the eUiptical symmetry requirement 

by treating models with Gaussian-mixture output densities. Other continuous-output 

HMMs include those whose measurements axe governed by an autoregressive process 
[21-23], a polynomial regression function [24], and a linear Gaussian model [25]. When 

employed with models having variable-duration states [26], such continuous-output dis- 

tributions lead to the versatile class of segmental models [27]. 

In contrast to these continuous-output models, the general class of CS-HMMs has 

received very httle attention in the signal processing literature. Linear Gaussian models, 
on the other hand, have been extensively studied in the Kalman-filter context, although 

it is not generally known that these models axe examples of CS-HMMs. An excellent 
review of the early history of Gaussian models in a linear-filtering context was given by 
Kailath [28]. Methods for estimating parameters in these models axe reviewed below. 

Most early appUcations of Kalman-filter models in the engineering Hterature con- 

sidered the model parameters (i.e., the transition, output, and covariance matrices) to 

be known from physical considerations, so that parameter estimation was not an issue. 
Two notable exceptions are foimd in the works by Kashyap [29] and Gupta and Mehra 
[30], who \ised gradient-based nonlinear optimization techniques to maximize the like- 
lihood as expressed in terms of the measurement innovations. Parameter estimation 
in Gaussian models is more prominent in the time series and econometrics hterature, 

where the first appHcations of the EM algorithm for this purpose appeared. In the early 

1980s, Shumway and Stoffer [31] and Watson and Engle [32] independently derived EM 

algorithms for estimating parameters in time-invariant Gaussian models with linear con- 

straints. While the general thrusts of these references axe the same, they have a number 
of distinguishing features. First, while Shumway and Stoffer assimae that the output 
matrix is known a priori, Watson and Engle estimate the output matrix along with the 
other model parameters. Second, Shumway and Stoffer provide an exphcit recursive 
expression for the cross covariance between time-adjacent states, which must be calcu- 
lated as part of the expectation portion (or E-step) of the EM algorithm. Watson and 
Engle, on the other hand, obtain the cross covariance imphcitly by using an augmented 

state vector during the Kalman smoothing algorithm that hes at the heart of the E-step. 
Finally, Shumway and Stoffer derive the EM algorithm by defining and maximizing the 
auxihary function expUcitly, while Watson and Engle formulate the algorithm in terms 
of sufficient statistics. 



Building on this earlier work, signal processing researchers began using the EM 

algorithm with linear Gaussian models in the early 1990s. Ziskind and Hertz [33] used 
this approach to estimate directions of arrival for narrowband autoregressive processes 

received on a multisensor array. Weinstein et al. [34] estimated the parameters in a 

linear Gaussian model while performing noise removal in signals received on a pair 

of sensors with known coupling. DigalaMs et al [25] extended the EM algorithm to 
treat time-varjdng models and used the linear Gaussian model to represent segments 

of speech. Deng and Shen [35] later provided a decomposition algorithm to speed the 

processing of the EM algorithm for high-dimensional state spaces. Finally, EUiot and 

Krishnamurthy [36] derived an efficient filter-based implementation of the correlation 

matrices required during the E-step of the EM algorithm. This filter-based approach 
dispenses with the need for the more computationally demanding Kalman smoother, 
which could make the EM algorithm much more amenable to real-time processing. 

An extension of the linear Gaussian model that is particularly relevant to the 

current work was provided by Sorenson and Alspach [37] and Lo [38], who derived 

Kalman-filter recursions for models with a Gaussian-mixture prior for the initial state, 
as opposed to the single Gaussian density that traditionally governs the initial state. 

Finally, the unification of HMMs and Kalman filters was initiated a decade ago 
by Streit [39], who demonstrated that the Baum and Viterbi algorithms for a CS-HMM 
with Gaussian model densities generate the same state vectors and covariance matrices 
as are obtained \ising a fixed-interval Kalman smoother. Streit was considering these 
algorithms in the context of the tracking and not the classification problem, however, 
so that likelihood evaluation and model parameter estimation were not at issue. This 
limited focus allowed Streit to ignore both the scaling constants on the Baum probability 

densiues and tse joint densities of adjacent states in his characterization of the optimal 

state 

1.3    ORIGIXAL CONTRIBUTIONS 

This report presents a general theory for CS-HMMs, independent of the particular 

form of the model densities, addressing the state estimation, likelihood evaluation, and 
parameter estimation problems as outlined for DS-HMMs by Ferguson [17]. While 

continuous-state versions of the Baima and Viterbi algorithms are, for the most part, 

straightforward extensions of their discrete-state counterparts and axe obtained using 
methods outlined by Jazwinski [40], the Baum and Viterbi algorithms treat only state 
estimation and likelihood evaluation. The present research also addresses parameter 



estimation, to the extent possible, by giving a general formulation of the EM .auxiliary 
function. This formulation solves the E-step of the EM algorithm. The M-step can 
then be defined by maximizing the auxiliary function after the form is specified for the 

model densities. 

The CS-HMM results are then specialized to HGMMs. With regard to the Baum 

and Viterbi algorithms for HGMMs, this research extends the results given by Streit 

[39] in both scope and substance. Streit demonstrated the equivalence of the Baum 

and Viterbi state sequences with those generated by the fixed-interval smoothing al- 

gorithm developed by Ranch, Tung, and Striebel (commonly referred to as the RTS 

smoother) [41]. It is shown here that Baum's forward-backward algorithm is more nat- 

urally equated with the two-filter implementation of the smoother given by Mayne [42] 

and Eraser and Potter [43], which employs forward- and backward-running Kalman fil- 

ters and then estimates the state sequence by optimally combining the estimates from 
the two filters. The Viterbi algorithm does lead naturally to the state-estimation por- 

. tion of the RTS smoother, but, as noted by Streit [39], it does not give the state error 
covariances. The covariance matrices from the RTS algorithm are obtained here using 
a new joint-density marginalization approach, which provides a more natural derivation 

of the RTS algorithm firom the HMM point of view. 

This report presents a new Gaussian refactorization lemma. While the original 

motivation for this lemma was to characterize a recurrent set of operations when deriving 
the HGMM Baimi and Viterbi algorithms, it turns out that this lemma provides a 

natural alternative derivation of the Kalman filter recursions. 

The conditional joint density of time-adjacent states in HGMMs is also derived. 
In addition to facihtating the theoretical development of the parameter estimation algo- 

rithm, this derivation leads to a new expression for the cross covariance between states 

that is considerably simpler than the recursive definition given by Shumway and Stoffer 

[31]. The simphcity of the new expression occurs because the cross-covariance matrix 

is viewed within the larger context of the joint density, as opposed to its being derived 
by taking the expectation of the appropriate outer product. 

In addressing likelihood evaluation and parameter estinaation for HGMMs, this 
report shows two additional equivalences between HMMs and Kalman-filter models. 
First, Baum's forward recursion for marginalizing out the states from the joint distribu- 

tion of the states and measurements yields the classical expression for the measurement 
likelihood firom Kalman filter theory [44]. Second, the continuous-state formulation of 
the Baum-Welch auxiliary function leads to the existing EM algorithm for estimating 

the parameters in Kalman-filter models. 



In addition to these results, the CS-HMM and HGMM algorithms axe extended 

to ax:commodate prior state densities that are composed of mixtures. These new devel- 
opments provide substantial extensions of previous work with mixture-based Kalman 

filters [37,38], first by generalizing the mixture-based algorithms to the laxger-class of 
CS-HMMs, and then by addressing the smoothing and parameter estimation problems. 

In the classification context, the inclusion of mixture-based prior densities allows the 
model to accommodate even greater amounts of within-class vaxiabiUty than can be 

handled by "single-mode" models. 
AU of the above results axe given for models whose parameters axe time varying. 

For HGMMs with parameters that axe constant across time, the measurement likeli- 

hood is shown to be invariant to a family of similaxity transformations of the model 

parameters. 
This report provides a unified context from which to view HMMs and Kalman 

filters for both classification and tracking. The hterature review given above provides a 

samphng of the very rich history that has unfolded in comiection with these famihes of 
tools For the most part, this history has evolved along two separate paths, one leading 
from Bamn, the other leading from Kalman. It is shown here that these two paths axe 

really one. 
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2.   CONTINUOUS-STATE HIDDEN MARKOV MODELS 

In general, discrete-time HMMs represent a sequence of observed M-dimensionaJ 

measurements Zjv = {zi, Z2,..., ZN], made at times tn, n = 1,2,..., iV, as probabilistic 

functions of a sequence of unobservable jL-dimensional states X^• = {xo,Xi,.. .,XN}, 

where XQ is governed by a prior distribution and does not correspond to a measurement. 

If the Xn are constrained to take values from a discrete finite-sized alphabet, then the 

model is a DS-HMM. In such models, there is no need to specify the actual element 

values for vector x„. Only the index into the alphabet containing the different values 

of Xn need be provided. This index is usually denoted as i or j, and the event g„(i) 
indicates that the ith state has occurred at time *„. If the elements of x„ are jfree to 
assume values on the real line, then the model is a CS-HMM. In these models, the 
element values must be specified since the indexing of all possible state vectors would 
require an uncountable number of index values. 

Regardless of whether the states are discrete or continuous, they are usually as- 

sumed to obey a first-order Markov process, where each state depends only on the state 
that occurred at the previous time instant. These fixst-order HMMs are characterized 
by three model probability functions. First, the state-transition distribution governs 
the probability of moving firom one state to another in a single time step. Second, 
the output distribution governs the probability of obtaining a particular measurement, 
given the value of the state vector. Finally, the prior state distribution governs the 
probability that the state at time to will take on a particular value. 

For DSTHMMS, the prior state probabilities and state-transition probabilities are 
discrete sets of numbers denoted by TTJ and aij, respectively, for states with indices i and 
j. The output distribution can be either discrete or continuous, and is denoted 6j(z„). 

While discrete-state models work quite well for certain classes of signals and features 
(e.g., spectral or cepstral coefficients of speech), they are ill-suited for feature sequences 

that foUow a continuous trajectory through state space (e.g., the instantaneous fire- 

quency of a wandering tonal). For these types of signals, continuous-state models allow 

a more accurate representation. The model distributions axe denoted in this case by 

the density functions j?(xo|^o), p(Xn|Xn_i, Ox), and p(zn|x„; 6z). The structure of these 
model densities is usually known (e.g., Gaussian, Rayleigh, gamma), but the parameter 

sets $0, &x, and dz must be estimated for each class from training data. For conve- 
nience in notation, only those probability models having well-defiined density functions 
are considered here. 



The notation for discrete- and continuous-state models is sinnmarized in table 1. 
It is important to note that, when moving from discrete to continuous models, ejqpres- 

sions such as p(x; 6) no longer designate probabilities, but likelihoods. While it would 
be technically more accurate to use expressions such* as £(x; 6) for CS-HMMs, the p- 

notation is used to follow conventions established in existing literature. The notation 
is abused even further by using the same symbol for the likelihood of an event x (i.e., a 

particular numerical value or sequence of values) and the probability density function 

of a random variable x. The context can serve as a guide for the meaning of the expres- 

sion, however, since the difference between the likelihood function and the probability 
density function is merely a matter of whether ^ or x is treated as unknown, and the 
hkelihood is just the likelihood function evaluated at a particular value. 

Table 1. Notation for Hidden Markov Models 

Discrete-State 
Model 

Continuous-State 
Model 

State ij .  x„ 

Measurement 
■   ^"^ 

z„ 

State-Transition 
Probability °^i p{Xn\Xn-l,ex) 

Output 
Probability bA^) p{Zn\Xn,ez) 

Prior State 
Probability TTi p(xo!eo) 

Tnis section derives algorithms for likelihood evaluation, state estimation, and 
model parameter estimation with CS-HMMs. For discrete-state models, these problems 

are solved using the Baum, Viterbi, and Baum-Welch algorithms [9,13,17,18]. The 
continuous-state versions of these algorithms axe derived here. While the continuous- 

state analog to the Baum-Welch algorithm cannot be completely specified without as- 
suming expHcit forms for the model densities, the auxiHaxy function for the EM algo- 

rithm can be formulated in a density-independent fashion. In addition to these devel- 
opments, the CS-HMM and associated algorithms aie extended to include prior state 
distributions.consisting of a nprture of densities. 
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2.1    BAUM PROBABILITY DENSITIES 

The state evolution in CS-HMMs is characterized by the joint density of the 
measurement and state sequences, which is given by 

■ N 

p(Z;yr,Xiy^)=p(xo)  n KZn|Xn)p(Xn|Xn-i), (1) 
n=l 

where the explicit notational dependence on the model parameters has been dropped. 

This expression makes two basic assumptions: (1) the states follow a first-order Markov 
model and (2) the measurements are conditionally independent, given the states. Class 
assignments are made in signal classification using the measmrement likelihood, which 
is obtained by marginalizing equation (1) over all possible state sequences, giving 

P{ZN) = JdXNp{ZN,XN). (2) 

Here, the shorthand / cZXjv denotes the multiple integral / dxo • • • / dxN, where each 

single integral / dxn is an L-dimensional integration over state space. For the discus- 
sion below, it is also necessary to introduce the partial measurement sequence Z„ = 

|zi,Z2,..., Zn} and its complement in Zjv, denoted Z^ = |zn+i,Zn+2,...,z;^^}. 

Becaiise of the intractable computational load required to evaluate the discrete 
equivalent of equation (2), Baum et al [9] developed recursive functions to characterize 
and marginalize the joint probabihty for DS-HMMs. These functions are defined in 
table 2 using both the discrete-state and the continuous-state notation. The algorithm 
for computing these probabihty (or probabiHty-density) functions is referred to as the 
3aum. or forward-backward, algorithm. The Baum recursions for DS-HMMs are given 
~ zabie 3 for comparison with the continuous-state recxirsions derived in this section. 

2.1.1    Forward Densities 

The forward densities are defined as 

a{^)   =  p(Z„,x„) 

=    p(Zn|Z„_i,Xn)p(Zn_i,Xn) 

=    p(^niXn)y dXn_ip(Zn_i,X;»,Xn_i) 

=    p(Zn|Xn)y <ix„_lp(x„|Zn-i,Xn_i)p(Zn-l,Xn-i) 

=    p(Zn|Xn)y dXn_ip(x„|Xn-i) a(x„_l), (3) 

where the recursion defined in this last expression is initialized as Q;(XO) = p(xo). 
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Table 2. Baum ProhahUity Functions 

Forward 
Probability 

Backward 
Probability 

Discrete-State 
Definition 

Conditional State 
Probability 

Conditional Joint 
State Probability 

Q:n(i)=P{?n(i),Z„} 

^„(i)=p{Z2|g„(i)} 

Continuous-State 
Definition 

a(x„)=p(xn,Z„) 

7n{i)=P{9n(i)|Zjv} 

7n(i,i) =p{?n-l(i),9nO')|Zjv} 

/3(x„)=p(Z?|x„) 

7(Xn)=p(x„|Zjv) 

7(Xn,X„-l) =p(x„,X„_i|Zjv) 

This recursion can be alternatively defined by 

Q;(X„)    =    p{Zn\Xn) JdXn-i 5{Xn,X^-i), 

where 5(x„,Xn_i) is defined as 

5{Xn,X^-l)     =    p(Z„_i,X„,X„_i) 

=    p(x„lZ„_i,Xn_i)p(Zn_i,Xn-i) 

=   piXn\Xn-i)a{Xn-i). 

(4) 

(5) 

The recursion for oc{xn) can therefore be performed by first computing and marginalizing 
6{xn, Xn-i) and then multiplying by the output density. 

2.1.2    Backward Densities 

The backward densities are needed primarily as an intermediate step in calculat- 
ing the conditional densities 7(xn) and 7(xn+i,x„). The recursion for the backward 
densities is given by 

/?{x„_i)   =  p{Z^.,\xn-i) 
If 

"    p(Xn-i) /^^^(^"'^n»Xn,Xn-i) 

=    ydXnp(z„|Xn)KZ^|Xn)p(Xn|x„_l) 

=    y rfXnP(z„|Xn)p(x„|Xn_i)^(x„). (6) 
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Table 3. Baum Algorithm for DS-HMMs 

Forward Probability 
(Initialization) ao{i) — TTi for all i 

Forward ProbabiKty 
(Recursion) 

i 

Measurement 
Probability 

i 

Backward Probability 
(Initialization) /3N(J) = 1 for all j 

Backward Probability 
(Recursion) /0n(i) = 53 Oi:;i'j(2n+l)/3n+l(j) 

3 

Conditional State 
Probability -V   (-t^   —                        n,    (■■>■> /?   tn 

^"^^ ~ p(Ziv)   "^^^"^^ 

Conditional Joint 
State ProbabiKty ■V   (i   i'^                         n    n      ,{i'\h(<T   ^ fi  (n\ InKhj) —     /2   ^"v"'>-lW°J^.^/^'nu; 

In this expression, /5(xn) is undefined at the terminal time t^ because Z^ is empty. 

The DS-HMM literature usually defines /3N{J) = 1 for all j. In the continuous-state 
case, such a definition is problematic because y9(xj\r) = 1 is not an integrable proba- 

biUty density. To be formally correct, the recursion should be started at time tjv-i, 

and /?(xjv-i) = /<ix^■p(zJv|xJv)p(x;s^|x^^_l) should be defined as a special case. This 
approach is notationally inconvenient, however, because other densities are defined as 

products of a and 0, which would cause a proliferation of special cases. So, as a purely 
notational mechanism, P{XN) is set to unity for all x^-. 

The backward density can be alternatively defined as 

0{Xn-i)    =    y dx„p(Xn|Xn-i)z/'(Xn), (7) 

where 

=  p(Zn|Z^,Xn)p(Z^|x„) 

=    p(z„|Xn)/?(Xn). (8) 

The backward recursion thus proceeds by first computing ^(Xn), then multiplying by 
the transition density, and finally marginalizing over x„. 

I 
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2.1.3    Conditional State Densities 

The conditional state probability densities characterize the stochastic properties 

of individual states when conditioned on the observed measurements. These densities 

can be maximized to determine the sequence of individually most likely states. They 

axe also important for parameter estimation. These densities axe defined as 

7{Xn).    =    p(Xn|Zjv) 

PCZN) 

p(Zj|Zn,X^)KZn,Xn) 
P(ZjNr) 

^      p(Z^|Xn)p(Zn,Xn) 
P(Zjv) 

-——/?(x„)Q;(Xn) 
P{ZN) 

(9) 

2.1.4    Conditional Joint State Densities 

Finally, the conditional joint state densities chaxacterize the relational properties 

of time-adjacent states when conditioned on the measurements. They axe defined as 

7(x„,x„_i)   =   p(x„,x„_i|Zjv) 
1        ^ 

p(Z„_i,-Z^_l,X„,Xn-l) 
P(ZN) 

p(Zj_i|Zn-.i, X„, X„-l) p(Z„_i, Xn, X„-l) 
P(Zjvr) 

• p(Zj_i|Xn) p(Z„_i, X„, Xn-i) 
p(Zjv) 

=    -7^^(Xn)5(x„,Xn_i). (10) 
P(Zjvj 

This expression looks quite different from the discrete-state version because it has been 

derived directly in terms of ^(x„) and 5{xn, x,i-i). Substituting the definitions of ^(x„) 
and 5(x„,x„_i) in terms of /5(xn) and Q;(Xn-i) provides the more famiUax-looking ex- 

pression 

7(x„,x„_i)   =   ——^p(z„|xn)/3(x„)p(x„|xn-i)a(x„_i). (11) 
P(Zjv} 
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; -i; 2.2 LIKELIHOOD EVALUATION 

The measiorement likelihood can be expressed in terms of the forward and back- 

ward densities by writing 

p(Zjv)   =   J dXnp{ZN,:x^) 

=    J dXnPi'Zn\^n,^)p{Zn,Xn) 

=    JdXnP{Z^\Xn)p{'Zn,Xn) 

=   Jdx^/3{x^)a{x^). (12) 

This result demonstrates that the definition given for the conditional state density is 

properly normalized; that is, /<ix„7(xn) = 1 for all n. A simpler expression is obtained 
by evaluating the likelihood at t^, where it is 

P(ZN) = J dx.Np{ZN,XN) = J dXNOiiXN). (13) 

This outcome is consistent with equation (12) since /5(xjv) = 1. The Baum algorithm 

and likelihood evaluation formulas for CS-HMMs are collected in table 4. 

2.3 VITERBI ALGORITHM 

The Viterbi algorithm is a two-pass dynamic programming algorithm [45] that 

evaluates the maximimi c posteriori (MAP) estimate of the state sequence, defined as 

XN = argmaxp(XjvlZiy^) = argmaxp(Xjv,Zjv), (14) 

where p(Zjv) is constant for any ZN and does not affect the argmax operation. The 

forward pass propagates a function ^(x^), which is initialized as ^(XQ) = p(xo). The 

forward recursion is then defined for n = 1,..., iV as 

^(xn)   =  p(znlxn)max{p(xn|x„_i)©(x,.,^a)}. . (15) 

This expression is similar to Baum's forward density cx{xn), except that it contains a 
maximization instead of a marginalization. 

The backward pass of the Viterbi algorithm is a back substitution operation. The 
optimal estimate at time t^ is determined as 

XN   =   argmax0(xjv), (16) 

which is then used to initialize the backward recursions, defined as 

Xn-i   =   argmax {p(x„|xn_i)(^(xn_i)}. (17) 
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Table 4. Baum Algorithm for CS-HMMs 

Forward Density 
(Initialization) 

Forward Density 
(Stage 1 Recursion) 

a(xo) = p(xo) 

Forward Density 
(Stage 2 Recursion) 

Measurement 
Likelihood 

5(x„,x„_i) =p(xn|x„_i)a(x„_i) 

Q(X„) = lj(Zn|x„)   / dx„_i 5(x„,X„_i) 

P{ZN) =   / ffacn a (XT.) 

Backward Density 
(Initialization) 

Backward Density 
(Stage 1 Recursion) 

Backward Density 
(Stage 2 Recursion) 

Conditional State 
Density 

Conditional Joint 
State Density 

;S(XN) = 1 for all xjv 

V-CXn)  =p(z„iXn);S(Xn) 

^(X„_i)  =        dXnP{Xn\Xn-l)i>(Xn) 

"^^^"^  =  KZ];;) °'(^)^('''') 

7(x„,X„_i)  = V(Xn)g(Xn,Xn-l) 

2.4   PARAMETER ESTIMATION 

Hidden-state modek axe natural candidates for the EM algorithm, which distin- 
guishes three types of data: the incomplete data, which in this context are the observed 

measurements; the missing data, which are the hidden states; and the complete data., 

which are the concatenation of the incomplete and missmg data. Since the joint density 

in equation (1) is the hkehhood of the complete data, that function is referred to here 
as the complete-data likelihood function (CDLF). 

For time-varying models, parameter estimation using the EM algorithm requires 
the Vise of a multiple-sequence training set since no time averaging can be performed and 
since EM parameter estimation with a single piece of data merely repeats the previous 

estimate at each iteration. Single-sequence training can be performed for time-invariant • 

models since the parameters can be averaged over time, although classification models 

so obtained will likely have poor generalization performance. 
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The multiple-measurement training set is denoted as    . 

^    -    {Z]vijZ^2)---:Z^;f}) (18) 

where Z^-^ = jzj, z^,..., z^-^ | is the fcth training sequence. The lengths of these training 
sequences are not constrained to be equal, although the sequences are assumed to be 

arranged so that Ni> N2> ■ --NK. Even with multiple training sequences, however, 

a difficulty arises due to the imequal lengths of the training sequences. Parameters 

in the densities p(xn|x„-i, 0) and p(z„|xn, 0) corresponding to large n are estimated 
from fewer and fewer training sequences as n successively exceeds the lengths of the 
shorter measurements. If there is a unique longest training sequence, then parameters 
corresponding to time samples that occur after the end of the second longest sequence axe 
"estimated" from a single measurement. This problem might be addressed by truncating 
the longer measurement sequences to some predetermined value or by using some type 

of time-waxping to obtain equal-length measurements, depending on the appHcation. In 

what follows, the above difficultly is assumed to have been dealt with in the appropriate 
manner. 

Notationally, the unequal sequence lengths are accommodated by introducing the 
variable K^ which is, for each time tn, the nxunber of training sequences whose length 
equals or exceeds n. This variable represents the effective number of training sam- 
ples available at tn- Recalling that the measurements are assumed to be arranged in 
decreasing order of length and defining N^^ = max(iVfc), then for any function /(x^), 

EE/(^) = EE/(^)- (19) 
fc=l7X=l n=l ifc=l 

The EM algorithm generates parameter estimates iteratively, where at each iter- 
ation the estimates axe chosen to maximize the conditional expectation of the CDLF, 

given the observed data and the model parameters from the previous algorithm iteration. 

Denoting by ^ = {^^k' ^ = 1, • • •, K\ the collection of state sequences corresponding 
to the measurements in the training set, the CDLF for the training set is 

p{z,x\@) = np(zk'X^j©) 
K Nk 

=   IlPi^\^o)IlP«\<-iMpi<\<,&z). (20) 
k=l JT=1 
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Each iteration of the EM algorithm generates estimates 

0'+^   =   ajgmax(5(0,©*) (21) 

that maximize the auxiliary function 

Q(0,©*)   =   Exiz,e^{logp{Z,X\e)} 

= JdXp{x\z,&)iogp{z,x\e) 

=   n/^^,KX^^JZ5,^,©')logp(S,^|0). (22) 

The E-step evaluates the auxiliary function at 0* jfrom the previous iteration, yielding a 

function of the unknown parameters only. The M-step then generates optimal estimates 
of the unknown parameters by maximizing the auxihaxy function. Since the M-step 

requires diJfferentiation with respect to the model parameters, it cannot be specified 
without imposing a particular form for the model densities. The E-step can be specified 
in greater detail, however, by imposing the structure of the HMM. 

Since the CDLF consists of a product of model densities that are parameterized 
by separate subsets of the model parameters, the auxiliary function is decomposed as 

(5(0,0^) = Qo{eQ,&) + Qx{ex,&) + Qz{ez,&), (23) 

where each component corresponds to one of the three model densities. The parameters 
in the model's initial-state density are estimated by maximizing the component 

go(^o,0')   =   ^;.|2,e.|log   nP(x^l^o) I 

^=1 -^ U=i j 
K    K 

= E T{j<^k p(xl-jzl,^, 0') log p{^\e,) 
k=i 1=1'' 

= E J^k p(xkizk= &) log P{^\eo) 
k=i''     ■ 

=   E/<^oP(xS|Z^„0*)logp(x*|^o) 

=   E/^xg7(xg)logp(x*|^o), - (24) 
fc=l' 

where 7(x§) = p(x§|Z^^, 0*) is the conditional state density for tune to under the old 
parameter values in 0\ 
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The parameters in the model's transition density axe obtained during each EM 
iteration by maximizing the auxiliary-function component 

^    r (  K    Nk 

K   Nk ■ 

fc=l n=l 

^=1 "^ [ k=l n=l 

K    Nk     . 

=   EEj^k Pi^kl^k^ ®') log PM^-V OX) 
k=l 71=1 "^ 

K    Nk 

=    E E   //^ ^-1 Pi^,^.,\Z%^,&) l0gp(x^|x^_„^;,) 
fc=l n=l "^ "^ 

=    EE /rf4/rf4-i7(x^,x^_x)logp(x^|x^_i,^x), (25) 
n=l fc=l •'• •' . 

where 7(x^, x*_i) = p(x^,x^_i|Z^^, 0*) is the conditional joint state density obtained 
from Baum's forward-backward algorithm with the A;th measm:ement. Note that one 
of the summations over the members of the measurement training set drops out in the 
third step of equation (25) because the summand is zero except when i — k. 

Finally, the parameters in the output density are obtained by maximizing the 
auxihary-function component 

Qz{Bz,^')   =   -E;,,^,©. <^ log 

^   r (  K   Nk 

K   Nk 

k=ln=l 

= Uf^k Pi^kK,^®')   E E logpiz'J^M 
i=l'' [ fc=:l n=l 

^    r f ^* 
= Ey^kpixk\zk^&)   Eiogp(z^|x^,^^) 

fc=l -^ ( n=l 

=    E E/^^ 7(^4) logp(z^ix^,^^), (26) 
•,—1 I 1 j n=l fc=l" 

where 7(x^) = p(x^lZ^^,0») is the conditional state density obtained from Baum's 
algorithm. The above results are sxmimarized in table 5. 
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Table 5. EM Auxiliary-Function Components for CS-HMMs 

Transition 
Density 

Parameters 

Output 
Density 

Parameters n=l  fc=l>' 

Prior State 
Density 

Parameters 
OoC^o, e') = Y^jd4 7(x§) log p(xg|^o) 

If the continuous variables in this table are replaced with their discrete counter- 

parts and the auxiliary-function components are maximized'over those variables, the 

Baum-Welch re-estimation formulas [9] are obtained. Estimation of the" parameters in 
the transition density is simplified in this case because the Oij enter into the model 

linearly, subject to the constraint that the "exiting probabilities" for the ith state must 
sum to unity. The re-estimation formula for Oij is therefore obtained by solving the 
constrained optimization problem whose Lagrangian is 

iVmax  Kn. 

Qx = EEEET^(^=i)iog%+A i-E% (27) 
n=l fc=l   i     j \ 3 

A similar Lagrangian is used to obtain the output probabilities for discrete measurement 
spaces. 

2.5    MIXED-MODE MODELS 

This section extends the CS-HMM by letting the initial state be governed by the 
mixtmre of densities 

P(xo)   =  EPjP(xob'), (28) 
j=i 

where p(xo|j) is the jth mode in the mixture, j is the mode-assignment index, and 

Pi ~ PU) is the mode-assignment probability, or nuxing parameter. Since j is a discrete 
variable, pj is a probability measiore and not a density. As usual, the mixture is assimied 
to be a convex combination with pj > 0 for all j and E/^j pj = 1. For reasons that 

will later become clear, the resulting model is referred to as a "mixed-mode" CS-HMM. 

Due to the commutativity of the summation and integration operations, the Baum 
functions for mixed-mode models all take the form of J-component mixtures, so that a 
mixed-mode model acts like a "bank" of single-mode CS-HMMs. 
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2.5.1    Baum Probability Densities and Likelihood Evaluation 

The forward density is given by 

j 

=    Sp(Zn,Xn,i) 
i=l 

J 

J 

=   J2PJM^)^ (29) 
i=i 

where / 

Oij{-Xn)   =   p(Z„,Xn|i) (30) 

is the forward density obtained using the Baum recursion with the single-mode prior 
p{-xo\j). The backward density /?(xn) is the same for all j' and is identical to the 
single-mode case. Integration of the terminal forward density over state space gives the 

measurement likelihood as a mixture of single-mode measurement likelihoods. Defining 

P(Zjvb)   =   JdxiNajixN) (31) 

results in the likelihood being written as 

J 

P{ZN)   =   YIPJPC^M- (32) 

The conditional mode-assignment probability 

Pj\N =P{J\ZN) = ^^P{ZN\J)PJ (33) 

is required along with the conditional state densities 7(x„) and 7(xn,Xn-i) to fully 

characterize the expected state evolution. Given pj\N, the conditional state densities 
are 

7(xn)   =   p(x„|Zjv) 
J 

=    IIp(Xn,j|Zjv) 
i=i 

J 
. = Ep(^b''Zjv)p(i|Z7v) 

J ■ 

=   llPm-TiM, (34) 
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where 

7i(Xn)    =    P(Xn|Zjv,j) 

is the conditional state density for a single-mode model with prior p{y^\j). While 

maximization of equation (34) to obtain the optimal state sequence is a difficult non- 

linear optimization problem even for simple model densities, likelihood evaluation and 

parameter estimation (the two crucial problems for classification appHcations) can be 

performed directly from the densities. Finally, the joint state densities are 

7(Xn,X„-l)    =    p(x„,Xn-i|Zjv) 
J 

=    Sp(Xn,X„-l,:?|Zjv)      . 
J=l 

J 

=   I]p(xn>Xn_ib",ZAr)p(j|ZAr) 
3=1 

J 

=   Y.PiW'Tji'^^'^-i)' (36) 

where 

7j(xn,x„_i)   =  p(x„,x„_i|;,Zjv) 

The expressions that are unique to mixed-mode models are summarized in table 6. 

2.5.2    Parameter Estimation 

For an observed measurement sequence, knowledge of the mode assignment vari- 
able j would reduce the mixed-mode modeling problem to a single-mode probism. The 

natural choice for the missing data in mixed-mode models therefore includes the mode 

assignment in addition to the state sequence. The resulting CDLF is 

p{z,x,j) = np(zj,^,x^,,jfc) 

K Nk 

fc=l R=l 

where jk is the mode assignment for the fcth measurement and J" represents the collec- 

tion of mode assignments for all measurements. 



Table 6. Baum Algorithm for Mixed-Mode CS-HMMs 

Forward Density 
(Stage 1 Recursions) 5j(Xn,X„_i)  = p(Xn|x„_i)aj(x„-i) 

Forward Density 
(Stage 2 Recursion) aj{x.n) = p(z„|Xn)   / dXn-1 Sj{Xn,Xn-l) 

Single-Mode 
Measurement Likelihood p(Zjv|j) =   / dxjvQjCxjv) 

Measurement 
Likelihood 

J 

3=1 

Conditional Mode-Assignment 
Probability ^'•|^ = p(Z;.)^^P(^^I^V 

Conditional State 
Density 

1         ■' 
'yypCnJ  —      f„    X    / ^ PjlN aj\p^n}P{Xn) 

Conditional Joint 
State Density 7v.Xn)Xn-lj   —      /^    \   / ^ P3\^ OjyXTuXn-ljyyXn; 

The EM aimliary function in the mixed-mode case is 

Q{e,&)   =   5;..Ji2,e.{logp(-2:,Ar,J^)} 

(38) 

As before, the au3dliary function can be decomposed into components that depend 

exclusively on the different subsets of model parameters; that is, 

Q(©, e*)   =   QJCP, 0') + Qo(^o, &) + Qx{Bx. ©0 + Qz{^z. ®% (39) 

Components Qx and Qz are identical in form to the single-mode counterparts because 

the relevant components from the CDLF (i.e., the product of transition densities for Qx 

and of output densities for Qz) are independent of the mode assignment. Summation 
over ji thus serves to marginalize the mode assignments from the conditional density 
p(X^^,J£|Z^^,0'). The mixed-mode natmre of the model shows up in the parameter 

estimates via the conditional state densities. 
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The auxiliaxy-function component Qo for the prior state density is 

K 

Upi^lh) 
Lfc=i 

J    K 

EE 
i=i k=i • 

Component Qj, which is used to optimize the mixing parameters, is given by 

=   EE/^'7(4)logp(x^|i). 
..•—1 I—1 •' 

(40) 

Qj{p,@')   =   Ex,j\z,B^ ^og   nPi. I 
K     J 

= n E j ^NA'^%,.3iK,^&) {log 

= E E /dx*,^Kx^„i.!z^^,0') log p, 

if 

k=\ 

k=l jk=l 

= EE i'(ilz^.>©*)iogPi. 
k=i jk=i 
J    K     ' 

= EE PjfciiVfc logpjfc. (41) 

Since the model is linear in the mixing parameters, the EM update for these parameters 
can be expressed without knowing the form of the other model densities. The updates 
axe obtained by maximizing Qj, subject to the constraint that the pj sum to one. The 
Lagrangian is 

(42) 

where ^ is a dunmay version of the mode assignment. Differentiating with respect to pj 
and equating the resulting derivative to zero yields 

««+i 
K 

=   T E Pi. %\Nk- (43) 

Imposing the constraint E/^i pj = 1 gives the Lagrange multiplier as A = if.  The 
parameter update is therefore 

1   ^ 
Pj       =   1? Z^ Ph\Nk- 

fc=l 
(44) 
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3.   HTODEN GAUSS-MARKOV MODELS 

Hidden Gauss-Markov models (HGMMs) result when the model densities in the 

CS-HMM take the form 

p{Xn\Xn-l,9x)    =    ^f{■Xn;AnXn-l,Qn) (45) 

p{Zn\^M    =    A^(Zn;B„Xn,Rn) (^6) 

p(xoi^o)   =  A^(XO;MO,PO), (47) 

where the usual shorthand A^(y;M,P) is used to denote the density function for a 
multivariate normal vector y with mean fi and covariance matrix P. For example, if y 

is L-dimensional, then the density function is 

jV(y;^;p)   =   (27r)-^/MPr^'exp{-^(y-M)^P-My-/^)}- (48) 

The model densities in an HGMM are parameterized by the sets ^o = {/io,Po}> Ox = 
{An,Q„}, andSz = {Bn,R«}, where n = l,...,iV. The transition matrices {An}, 

output matrices {B^}, aad covariance matrices {Qn} and {R^} axe coUectively referred 
to as the system matrices. Although time-vaxying models axe considered throughout 
most of this section for the sake of generaUty, tune-invaxiant models (whose system 
matrices are the same for all n) are discussed briefly in section 3.5, where a parameter- 

invaxiance structure is noted for the measurement likelihood function. 
The model densities that characterize HGMMs provide alternative escpressions for 

the set of equations defined by 

Xn    =    A„Xn_i+Wn (49) 

Zn    =   B„Xn + V„ (50) 

p{wn)   =  A'(w„;0,Qn) (51) 

P(V„)    =    J^{-Vn;0,'Rn) . 52;. 

p(xo)   =  Ar{xo;/io,Po), (53) 

which is recognized as the defining model for the Kalman filter. While Kalman filters 
are not typically viewed in the context of HMMs, they have recently been described 
as being "analogous" to CS-HMMs [25,27,35]. This section demonstrates that the 

relationship is not merely an analogy, but that Kalman-filter models in fact form a 
subset of CS-HMMs. The CS-HMM results given in the previous section axe specialized 

to the Gaussian models m equations (45), (46), and (47) to show that Baum's forwaxd- 
backward algorithm and the Viterbi algorithm axe implemented by the two-filter [42,43] 
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and RTS [41] formulations of the fixed-interval KaJnaan smoother, respectively. The 

measurement likelihood obtained from the forward pass of the Baum algorithm is shown 

to equal the innovation-based definition from Kalman-filter theory [44], and an existing 

EM parameter estimation algorithm [31,32] is shown to follow directly firom the CS- 
HMM auxihary function. 

Also, paralleling the developments of the previous section, mixed-mode HGMMs 

axe defined in which the single-component prior density in equation (47) is replaced by 
the J-compbnent mixtiire 

j 

p(xo|^o,p)   =   E^i^(xo;A4>Po)' (^^) 

where the mixing parameters satisfy pj > 0 for all j and.X)/=iP'j = 1- Here, ^o = 
|//^,P^,7 = 1,..., j| contains the parameters for each mode in the naixtiure. The 
mixed-mode HGMM is developed to provide more flexible and accurate models for 

short measurement sequences whose assessed likelihoods are very sensitive to the prior 
distribution, and to better represent classes of signals whose members axe well modeled 

by the same set of system matrices, but which exhibit significant within-class variabiUty 
due to different initial-state values. 

3.1    GAUSSIAN REFACTORIZATION LEMMA 

Derivation of the HGMM algorithms is simplified by introducing the following 
Gaussian refactorization lemma (GRL), whose proof is given in appendix A. 

Lemma: Given the L-dimensional vector x, the M-dimensional vector y, appropriately 
sized nonsingular covaxiance matrices S and P, and the M x L matrix F, the product 
function 

. 77(y,x) =A^(y;Fx,S)jV(x;/i,P) (55) 

can be refactored as 

77(y, x) = M{y; a;, fl) J\^(x; A, A), (56) 

where the means and covariances in the resulting product densities axe 

w = F/i (57) 

n = S + FPF'T (58) 

A = (I-HF)/i + Hy (59) 

A = (I-HF)P, (60) 
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with the supporting variable 

H   =   PF'^Q-K (61) 

The parameters can also be escpressed in information terms, where the information 

matrix is the inverse of the covaxiance matrix and the information vector is the mean 
vector preinultipUed by the information matrix. In this format, the density parameters 

A-iA = P-V + FTS-V (62) 

A-i =P-i+FTs-iF (63) 

n-^o; = DP-V (64) 

f2-^ = (l-DFT)S-\ (65) 

with the supporting variable 

D   =   S-^F(A-^)-\ (66) 

Interestingly, while this lemma arises as a necessary prerequisite for evaluating -the 
density recursions in the Baima algorithm, it naturally generates all of the Kalman- 
filter update recursions. 

3.2    BAUM ALGORITHM 

This subsection applies the results summaxized in table 4 to models with the 

Gaussian densities in equations (45), (46), and (47). The derivations for the forward 

and backward recursions proceed as an induction. The conditional state densities and 
likelihood are then obtained in terms of the forward and backward densities. 

3.2.1    Forward Densities 

The assumed form for the forward density at time i„_i is 

Q;(X„_I)   =   Cn_iA/'(x„_i;Ai„_i|„_i,P„_i|„^i)^ 

which includes the initial condition by letting Po|o = Po, ^o|o = Mo, and CQ = 1. The 
first stage of the forward recursion evaluates the term 

(5(x„,Xn_i)    =    p(x„|x„_i)a(Xn_i) 

=   c„_iAr(x„; AnX„_i,Qn) A/'(xn-i;/x„_i|„_i,p„_i,„_3L) . 
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Application of the GRL results in 

6(Xn, Xn-i) = Cn-i J\f[x^; fJ^\n-l, P„|„-i) Af(xn-i; A„, A„), (67) 

where the mean and covaxiance parameters in the first factor correspond to a Kalman- 
filter time update and are given by 

fXnln-l  = A.nfln-l\n-l (68) 

Pn|n-1   = Qn + AnPn-l\n-lK, (69) 

respectively. The parameters in the second factor axe 

An =  (I-H„An)//„_l|n-i+HnX;, (70) 

A„ = (I-HnA„)P„_i,„_i, (71) 

where 

H„  = Pn-i|n-lATp-J^_^. (72) 

These variables axe usually ignored in a Kahnan-filter context, but, in an HGMM con- 

text, they occur again in the smoothing and parameter-estimation problems. While the 
mean A„ of the second term is a function of the current state x„, integration of this 
term over x^-i produces unity regardless of the mean; that is, 

JdXn-lMiXn-i;Xn,An)    =    1. 

The forward density then becomes 

Applying the GRL to this product yields 

Q;(xn) = Cn_iAr(z„;z„,S„)Ar(xn;At„|„,P„l^), (73) 

where the parameters in the first factor axe the esthnated measurement and its error 
covariance, respectively given by 

Zn = Bn/in|n-l (74) 

S„ = R„ -f BnP„|„_iB^. (75) 
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The parameters in the second factor correspond to the Kahnan-filter measurement up- 
date and are 

;^n|n =  (I - GnB„) fln\n-l + GnZ„ (76) 

Pn|n  =  (I—GnBn) Pn|n-1, (77) 

where 

Gn=Pn|n-lBTS;^ (78) 

Defining the innovation vector as 

I/n    =    Z„-Zn = Zn-Bn/in|n-l (79) 

and recursively defining the weighting constant as 

Cn    =    Cn-iAf{iyn;0,-En) (80) 

results in equation (73) being rewritten as 

a{x^)    =    CnAr(xn;Mn|n,Pn|n), (81) 

which matches the assumed form for the previous time step, completing the induction. 

3.2.2    Likelihood Evaluation 

The likelihood of a measurement sequence is obtained using equation (13), that 
is, by integrating the forward density at time t^ over all of state space, giving 

■ P{ZN)   =   J dxtf a{xN) = CN 

.       =  n^K;0,S„), (82) 

which equals the known likelihood expression for the Kalman fiilter [44]. This definition 

for the likelihood can also be applied to the partial sequence Z^ to obtain p(Z„) = c„. 
Since the forward density can be decomposed as        ' 

a(Xn)     =    p(Zn,Xn) 

=  p(Z„)p(x^|Z„), (83) 

it follows that 

p(Xn|Zn)     =    ^J'(xn^,^Jin\n,'Pn\n)■ (84) 
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The "joint forward density" 5{xn, x„_i) similarly decomposes as 

<5(x„,X„_l)    =    p(Zn_i,X„,Xn_i) 

=    PiZn-l)p{Xn\Zn-i)p{x^.r\x^,Zn-i), (85) 
where 

PMZn.i)  =Ar(xr,;iLCn\n-l,Pn\n-l) (86) 

PiXn-i\x^,Zn-i)  =M{Xn.i;Xn,K). (87) 

3.2.3    Backward Densities 

The assumed form for backward density is 

where the superscript (r) indicates reverse time. The recursion again proceeds in two 
stages, with the first stage evaluatmg the product 

V'(Xn)    =    PiZn\Xn)0{Xn) 

Application of the GRL produces 

^(x„) = c«Ar(z„;z«S«)Ar(x.;^«,Pi?n), -     (88) 

where the mean and covaxiance of the first factor axe the reverse-time measurement 
estimate and its error covaxiance, given by 

z« = B„^« ^, (89) 

S«=R„ + B„P«^,BT (90) 

respectively. The parameters in the second factor, which correspond to a reverse-time 
Kalman-filter measurement update, axe 

^iin=(l-G«B.)/^ilU + G«2n (91) 

P«  =(I-G«B„)P«^„ (92)-^ 

where 

"^n      -    .fni^+ili^ 2-^^     . (93) 
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where 

Dej&ning the weighting-constant update 

c«,=c«|A.|-V(z„;2«,S«) (94) 

yields 

^(Xn)-e,|A„|Ar(x„;;,«,p«). (95) 

Here, the canceling terms | A^^ | and | A„ | have been inserted to accommodate a necessary 
factor in the second stage of the recursion, which evaluates the integral 

/?(x„_l)    =    /rfXnKXn|x„-l)^(Xn) 

=   c^li J dx^r}(Xn,Xn-i), (96) 

7?(x„,x„_0   =   |An|^(x„;A„x„_i,Q„)^(x„;/i«,pW). (97) 

This product does not immediately fit the form required for appHcation of the GRL. If 
A„ is invertible, however, then 

Ar(x,_i; A;^X„, A;1Q„A-^) = | A„ J Ar(^., A„X„_,, Q„) . (98) 

The GRL can then be used to obtain 

^(x„,x._0   =  Ar(xn-x;A-^x„,A-^Q.A;T)Ar(x„;^«,pW) 

=  A^(xn-i; //£„„, PW „„) Ar(x„; AW, AW) . (99) 

The parameters in the first factor correspond to a reverse-time Kalman-filter time up- 
date, given by       , 

/^i-Hn = A-Vi|L (100) 

Pillln = K'{Qn+P%)K''. (101) 

The parameters in the second factor axe 

(102) A(^) = (l-HWA-i);,W+H(f)x._, 

A(^)=(l-HWA-)pW,      . (103) 
where 

H<"   =   Pit(Q„ + P«)-'A„. (104) 
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Substituting the refactored product into equation (96) and integrating results in 

/(xn-i)  =  41.A^(^-.;;.«,.,P«,,).     ■■ ■   (105) 

The induction requires the assumed form to fit the initial condition, but this is 
not the case since /?(x^) = 1 is not a Gaussian density. As noted in subsection 2 1 2 

the recursion should really be started at time t^.„ where it is evaluated as a special 
case using 

.    K^N-i)   =   Jdx^^r(zN■,B^x^,RJ,)^f(y:^.ANXN.^,QJ,). (106) 

To avoid having to consider this special case in all of the recursions dependent on 
/?(x„), an approach is taJcen here that parallels the development of the two-filter Kahnan 

smoother [42,43]. That is, an information formulation for the reverse-time filter is used 
and the terminal-state parameters axe defined as PJ^^, = 0 and P^'l, ^^,^^, = o.' 

This approadi is equivalent to defining /?(x^) as a Gaussian ^eudodensity" whose 

variances axe infinite but whose value for any axgmnent is unity. The information 
formulation of the revers^time filter is refiected in table 7, which smmnarizes the com- 
putations involved in the Baum algorithm. 

3.2.4    Conditional State Densities: Method I 

The state density 7(x.) is the normalized product of a(x„) and ^(x„), which, 
by defimtion, gives a properly normalized density. When the Gaussian densities in 

a(xn) and /3(x„) axe multiphed without the scale constants, the product is a properly 

normalized density function. The scale constants c. and c« can therefore be ignored 
when constructing the 7(x„), giving 

This is a product of Gaussians in the same vaxiable with constant means and covaxiances 
which has the following well-known form: ' 

7(Xn)    =    ^f{xn^,fln\N,Pn\N), (107) 
where 

^nw= (P;,UP.^'^ n|'n+l   ) (108) 

f^\N = PnliV (P;,J, A^nln + P^^l\ //« ^,) . ' ^ (lOQ) 
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Table 7. Baum Algorithm for HGMMs 

Forward Stage 1 Recursion 
(Time Update) 

Given: /lin-l|n-l,Pn-l|n-l 

Mn|n-1  = An^-l|n-l 

Pn|n-1   =  Q„+A„P„_I|„_IAJ 

Hn = P„_i|„_iA„P~|„_i 

Forward Stage 2 Recursion 
(Measurement Update) 

Given: /i„|„_i,P„|„_i 

Vn  = Zn- B„Mn|n-Tl 

S„  = R„ + B„Pn|„_iBj 

Gn  = Pn|n-lBn EJ^ 

Mn|n  =  (I - GnBn) Mnln-1 + GnZn 

Pn|n  =  (I ~ GnBn) Pn|n-1 

Measurement 
Likelihood 

N 

p(Z) = ]][;\^(i/n;0,S„) 
n=l 

Backward Infomaation 
Variables 

c    _Ti(r)-l„{r)     j,    _p(r)-l 

Backward Stage 1 Recursion 
(MeasTU-ement Update) 

Given: |n|n+i,rT.|n+i 

?n|n = ^n|n+l + B„.R^ Zn 

Pnln = r„|n+i+BjR;r^B„ 

Backward Stage 2 Recursion 
(Time Update) 
Given: Cn|n,r„|„ 

= AjQ-^(r„|n + Q;')"'en|n 

QnV-.Qn' (rn|n + Qn')"'Qn'] An 

Conditional State Calculation 
(Smoothing) 

Given: Mn|n,Pn|n>ln|n+l.rn|„+i 

Pn|W  =   (P„|^„ + rn|n+l)~ 

Adjacent-State 
Cross Covariance 

Given: Pnijv,Hn 
Pn,n-l|Ar  = P„|JvH„ 

The use of the information fonnat for the backward density parameters simpUfies these 

calculations since the variables 'Pn\n+i ^"^^ ^njl+i f^n\n+i ^® generated by the backward 
recursions and need not be calculated from the covariance information. 

As outUned above, the calculations involved in obtaining these densities via Baum's 
forward-backward algorithm are exactly the same calculations involved in the two-filter 
implementation of the fixed-interval Kalman smoother [42,43]. The two-filter smooth- 
ing algorithm is therefore an implementation of the Baum algorithm for HGMMs. 

33 



f 

3.2.5    Conditional Joint State Densities 

Chaxaxjterization of the conditional state evolution for HGMMs is completed by 

specifying the joint density of time-adjacent states, which is obtained from equation 
(10) by substituting equations (67) and (95). This calculation gives 

7(x„,x„-i) = Ar(x„;;^|„_i,P„|„_i)Ar(xn_i;An,A„)jV(xn;)Lii'i!„Pi'iy ,      (110) 

where the means and covariances of these factors are defined in equations (68), (69), 
(70), (71), (91), and (92). It is easy to show that the product of the first and third 

terms provides an alternative construction for 7(x„), such tha;t 

The accuracy of this expression is confirmed by recalling that J^{xn;pLn\N,^n\N) = 
p(x„|Zjv) and that A/^(x„_i;An,A„) = p(3c„_i|x„,Z„_i). In the latter expression, the 
conditioning variable can be changed fi:om Z„_i to Zjv since the information contained 
in Z^_i is redundant, given that conditioning on x^ also occurs, so that 

J\f{Xn-i;Xn,An)    =    ^(Xn-ilXn, Zjv). (112) 

The product in equation (111) is therefore 

7(Xn,Xn_i)    =    p(Xn|Zjv)p(x„_ijx„,ZiNr) 

=    p(Xn,Xn-i\ZN), (113) 

which is the desired definition. Equation (111) is instrumental for evaluating the aux- 
iliary function for HGMMs. 

For the computations actually performed during parameter estimation, only the 

cross-covaxiance matrix for time-adjacent states, denoted Pn,n-i\N, is required. An 
expression for this matrix can be obtained by evaluating the conditional joint density 

and then extracting the cross-covaxiance matrix from one of the off-diagonal blocks of 

the joint covariance matrix. This derivation is provided in appendix B, where it is 
shown that the density of the 2i: x 1 joint random vector X[„,„_i] = [x^, x^_J'^ is given 
by 

where 
7(x„,Xn_i)    =    A/'(x[n,n-l];M[n,n-l]|JV,P[n,n-l]|iv), (114) 

P[n,n-l]|3V  = 

fJ-n-l\N 

Pn|JV        P„|jvH^ 

.H„Pn|;\r       Pn-l|JV . 

(115) 

(116) 
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The term Hn is defined in equation (72). The upper oflF-diagonal gives the adjacent-state 

cross-covariance matrix as 

'Pn,n-l\N = Pn|ivH„. ^ (117) 

This expression is considerably simpler thaa the recursive definition given by Shumway 

and Stoffer [31]. 

3.2.6    Conditional State Densities: Method II 

The expression for the conditional joint state density in equation (111) provides 

an alternative approach to calculating the conditional state densities. In particular, the 

conditional state density can be obtained by (1) calculating the forward densities a(xn) 

forn = 1,..., ^■, (2) initiaUzing 7(xjv) = Q^X-N), and then (3) calculating 7(xn-i) given 
7(xn) for n = iV,..., 1. To realize this algorithm, the backward recursion defined in 

step (3) must be derived. TMs derivation begins by noting that 

7(Xn-i)    =    J   dXnj{Xn,:X.n-i) 

=    /dx„A/'(x„;Mn|jv,Pn|iv) .A/'(x„-i;An,A„), (118) 

where the ejqjression for the joint density given in equation (111) has been substituted. 

For convenience, the definitions of A„ and An axe restated as 

A„ =  (I — HnA„) Mn-l|n-l + H„Xn 

A„  =  (I — HnA„) Pn-ljn-lj 

where the intermediate variable Hn is 

Hn = ^ n-l\n-l-^'^ n\n-V 

Given these variable definitions, the mean in the second factor in equation (118) is 

seen to have an "oSiset" of (I - H„An) iin-i\n-\- This ofeet is temporarily removed by 

defining the new variable 

Yn-l  = Xn-l-(I-HnA„)A£n-l|n-l- (119) 

With this, the product in equation (118) can be rewritten as 

7(x„_l)    =     / dXnA/'(xn;MnlN,Pn|iv) A/'(yn-i;HnXn,A„). (120) 

Apphcation of the GRL then gives 

7(xn-i)   =   /dx„AA(xn;Un,Yn)^(yn-i;a;n,nn)- (121) 
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The mean and covaxiance of the new y„_i term are 

UJn = B-nHnW (122) 

"" = ^ + HnP„,iNrHj, (123) 

respectively. While the mean z;. a^d covariance r„ of variable x. axe easily obtainable 
they axe not needed because this normal density integrates to unity regardless of thei^ 
values. Smce the y„.i term is independent of x„, the state density becomes 

7(Xn_i)   =   Ar(y„_i;a;„,n„) 

.=    ^(Xn-i;/in-l|Ar,Pn-l|Ar). (124). 

The recursions for calculating the conditional meaii and covaxiance of each state from 
those corresponding to the next later state axe respectively given by 

=    ^n^nlN + fJ-n-lln-l-Unflnin-l 

=    f^~l\n-l+Hn(/J^lN-fin]n-l) (125) 
and ■ ^ 

Pn-llN    =    An+H„P„,jvHj 

=   (I-H„A„)P„_i|„_i + H„p„j^H^ 

=    Pn-l|n-l+H„(P„|jV-P„|„_i)Hj. (126) 

These expressions equal the mean and covaxiance from the RTS formulation of the 
fixed-interval Kahnan smoother [41]. This jomt-density maxginali^ation appxoa^ thus 
provides a very natural way of deriving the RTS smoothing algorithm. 

3.3    VITERBI ALGORITHM 

The forwaxd passes of the Viterbi and Bamn algorithms differ only in that the 
Viterbi algorithm maximizes over the previous state at each step whereas the Baum 

algorithm marginalizes out the previous state. For Gaussian state densities, the differ- 
ence between marginalization and maximization is just a scale factor. Neglectmg this 
scale factor, the Viterbi forward density functions are 

where ^,„ and P,,„ axe defined in equations (76) and (77), respectively 
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The backward pass of the Viterbi algorithm begins by maximizing the forward 

density function at the terminal time step, which gives xjv = {JLNIN by inspection. After 

this notation is adopted for the nth state estimate (i.e., Xn = Mn|7v), the function that 

is maximized during the Viterbi backward recursion can be written as 

p(/in|Jv|x„-l).0(Xn-l)    =   ^(/in|JV;AnX„-l,Qn)A/'(x„-i;//n-l|n-l,Pn-l|n-l)-  (128) 

Here, the term p(2„lxn = Hn\N) is neglected since it.is a constant that does not affect 
the argmax operation. Applying the GRL and again neglecting a constant term yields 

%i-i\N   =   argmax{A/'(xn_x;Ain-i|iv,An) }, 

where An is defined in equation (71) and 

Atn-llJV = /^-l|n-l + Hn {^fJ^\N - fJm\n-l) • (129) 

In this last expression, fXn\n-i = A„iiin-iin-i and H„ is defined in equation (72). The 
state estimate is iCn-i = fJ^-m, which equals the smoothed state estimate from the 
RTS smoother [41]. Note, however, that A„ is not the covariance matrix for the state 

estimate. The Viterbi algorithm is, by its nature, incapable of providing second-order 
statistical information. On another note, the equivalence of the RTS and two-filter 
smoothers impUes the equivalence of the most likely state sequence (the Viterbi track) 

and the sequence of individually most Hkely states (the Baum estimates). 

3.4    PARAMETER ESTIMATION 

For HGMMs, the E-step of the EM algorithm consists of evaluatmg the auxihaxy- 

function components defined in equations (24),(25), and (26), which requires the calcu- 
lation of expected values for various quadratic functions imder a normal density. These 

expectations are evaluated using the following identity: 

J dx (x^Fx H- x^f + /o) Ar(x; fx, P) = tr {F (P + fifx'') } + ju'^f + /o,        (130) 

which is a special case of theorem 10.5.1 in Graybill [46]. The M-step of the EM 
algorithm consists of maximizing the auxiUary-function components obtained during 
the E-step, which requires differentiation of those components. In addition to standard 

matrix and trace derivatives, these calculations require the identity [47] 

AtrJF'^SiFSs}   =   SiFS2-^S?FSf. (131) 
OF     ^ J 
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Ausaliaxy-functioii component (5o is given by 

Oo   =   E/^7(xo*)logp(x§) 

K 

=   EJ d^^i^-^f^m.^PoiN,) logAf(4-,p^o,Po). ,     (132) 

Expanding the logarithm term, neglectmg the constant -Llog(27r)/2, and neglectmg a 
scale factor of 1/2 results in . 

Qo = g/dx* Ar(xS;MU'PoVj {log|Po-' I - (xj - //oj^'Po"^ (xj - fM>)]. (133) 

Performing the integration using equation (130) gives 

Qo = iiriog I Po ^ I - E tr {Po ^ [PoV, + {4\N. - i^o) (iug,^, -^y] ].     (134) 

This function is concave in the parameters fiQ and PQ \ so that the optimal parameter 
esthnates occur at the unique critical point. The derivative of QQ with respect to /XQ is 
obtained as 

^ = "a;;^ E t^{Po-'(4|Ar, - MO) {4\N, - f^of} 

= , - E ^ MJV, - Mo)   PQ-' (4|JV, - Mo) 
K 

=   -E2Po~' (4iiv,-Mo)- (135) 

Equating this derivative to zero and solving for /ZQ gives 

I   K 
/^o'^'=^;K^E/^S|iv,- (136) 

In general, a symmetry constraint must be imposed when maximizing Qo to find 
the optimal P©. This constraint can be implemented by using derivative formulas that 
expHcitly take into account the symmetry of the matrbc or by performing a constrained 
optimization in which the appropriate Lagraagian is maxunized. The constraint turns 
out to be redundant for the HGMM covariance matrices, however, because the uncon- 
strained optimizer has a symmetric form. This redundancy occurs when optimizing Q„ 
and R„ as well. The derivative expressions used to find the optimal covariance esthnates 
are therefore given for matrices with independent elements, which greatly simplifies the 
analj^is. 
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The derivative of equation (134) with respect to PQ ^ is 

5Pn-^ 
=  iiTPo E {Poiiv, + {lA\N, - f^o) {4\N, - f^oY} . (137) 

0 fc= 

Equating to zero, substituting the optimal value oipo, and defining 

e-fc      _      ,,fe _  1,^+1 
=^0    ~    MO|JVA      PO 

gives the parameter update 

1   "^ 
PQ^^ "^ "^ E {^oiJVfc + ^0 4 } 

(138) 

(139) 
k=l 

The transition-density component Qx was defined in equation (25) as 

EE 
n=l fc=l 

Qx   =   E E Jd^Jd^., 7(x^,x^-i) logKx^|x^_J. 

Substituting the definition of p(x^|x^_i), neglecting the constant Llog(27r)/2 and the 

scale factor 1/2, and marginalizing 7(x^,x^_i) from the log Q~^  term yields 

E 
71=1   fc=l 

<5X    =     EE{l0g|Q;:1--f^(An,Qn)}, (140) 

where 

.   4(A„,Qn)   =   /rf4/dx^-i7(x^,x^-i) 

The integral term can be further decomposed as 

Ik{An,Qn)    =    /i')(Qn)+/f (A„,Qr.)+lf(A„,Qn). 

The first component is given by 

(141) 

(142) 

(143) 
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The second component is 

,   = -2 /&J / d4_, Ar(Kj; 4,^^, Pji^j Ar(^.,; >i,K)4''cc' A.^.. 

=   -2/rf^ Ar(xJ;,:iS,;,.,Pj,„.) ^^Q-. A„;^J 

=<H*Q"'^Hj=^ + ^"Q;'A„(l-HiA.);,t«„-,}.      (144) 
Applying the identity in equation (130) then gives 

/f   =   -2HQ»'AnH5(pV,+.J,...jr..)}-2rfr..Q,-'A„(l-HSA„).U-. 

=   -2tr{Q,-A„(HjP*,,J}-2^jS;.Q;.A,pt,H. 
=   -2tr{Q„->A„(pJ,„.,|„.+ ^»,„^^»^^,„J^|. • ^^^^^ 

The last component is given by 

=  ''{^^'^{^UN.+MU^,f.f.,,^,)Al}. (146) 

When these integral terms axe substituted back into the expression for Q^, each trace 
term midergoes a summation over k. Since the parameters A„ and Q„ are constant 
across k, the summations can be taken inside the trace and applied to the terms involving 
the state means and covariances. It is therefore convenient to define 

^^n^=T,{K\N,+P'n\N,fJ'nfN^} (147) 

^^-=^-^=T^{K,n-im+fii\N,f^n-l\N,}- (148) 
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With these in hand, Qx can be written as 

Niaax  ( N 

=    E   i^nlog|Q;^|-tr{Q;^C^^}+tr{Q-A.Cj„,„,J 

+ tr {Q-'C^^.,Al] - tr {Q;^A„CX„_,,„_,AJ} |. (149) 

This last expression, which makes use of the trace properties, is used for optimization 

of the covariance matrix because it ensures symmetry in cases when An is known [48]. 
The derivative of Qx with respect to A„ is 

1^ = -aX:*^{Q"'(c-''»-2AnCj„,„_,+AnC.„_,^_,Aj)} 

= 2(C^,„_^Q;I)''-2Q;1A„C^^_, 

=   2Q;^ (a„^_,-A„Cx„x„_,). (150) 

Equating this derivative to zero and solving for A^ yields the update 

A„    = Cx„xn_iC;^_j^_^. (151) 

The derivative of Qx with respect to Q~^ is 

dQx 
^QTT    =    ^nQn-Cx„K„ + Cx„x„_,A^ + AnC^^„_^-AnCx„_,Xn-iAT       (152) 

which, when equated to zero, gives the estimator 

Qn""'   =   K'^ {Cx„xn - Cx„x„.,A^ - AnC^^^_^ + A„Cx„_,^_,A^} .    (153) 

This expression is used if A„ is known. Otherwise, the optimal value for A^ is substi- 
tuted to obtain the update 

^^ = jT {^^^ ~ ^^^-i ^i^^ix„_i C^„x„_i} • (154) 

Finally, the auxiliary-function component Q^ is 

Q^   =    EE/rf^7(x^)logp(z^!x^) 
n=l k=l-^ 

=     EE{l0gP^'|--^fc(Bn,Rn)}, (155) 
n=l Jfc=l 
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where the integral term is 

=   tTS^R;'{zizf-2zifx'^^^Bl+Br.{Pi^^^+f,t^^^ 

(156) 

After bringing the summation over k into the trace terms and defining 

C^^^Ez'n^'' (157) 

C^nXn   =  E^nMnliV,, (158) 
k=l 

Qz can be expressed as 

Qz   =    E \Kn log I R;^ I - tr {R;^ (C.„,„ - 2 B„Cj^,„ + B„C.„.X) } | 

=   E kn log I R;^ I - tr {R;I C,„^ } + tr {R;^ BnCJ^,„ } 

+ tr{R;:^C,„xX}-tr{R;^B„a„xX}|- (159) 

Because this expression has the same structure as Qx, the optimal updates are found 
at the critical point using the same steps as for Qx, with the following result: 

B;+I = c^x„c;^^x„ (160) 

'^'^      =      ^{CznZn -Cz„XnB„  -BnC^X„+BnCx„XnB^} (161) 

^^l^*"*""^^"""^''"'^^^''''"}' (162) 

The correlation matrix and model parameter estimates axe shown in table 8. In this 
table, the factors 1/Kn on the correlation matrices are borrowed from Qj^"''^ and "Bi^^. 
The factors cancel in Aj+^ and B^^. 
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Table 8. EM Parameter Estimators for HGMMs 

Correlation 
Matrices 

1  ^" r                  T 1 

Cx„x„_i   =  ^   >J i Pn,n-l|;Vfc + PnlNfc Mn-l|JV* [ 

1     *^"              T 
Cz„x„   =  -^ V] Z„ 2„ 

1     ^"              T 
Cz„x„   =   j^     ^ Zn /'niNjt 

System 
Matrices 

■A4         =   Cx„X„_lCx„_jx„_i 

X>n        —   ^«nXn'-'XnX„ 

Qn       = Cx„Xn — CxnX„_iCjt^_jjc„_jCx„x„_i 

Rn      = Cz„x„ — Ci„xnCx„x„Cx„x„ 

Tnitial-State 
Parameters £0  = MoiJVfc - Mo 

K 

°    ~ Jc 2^ 1 *^o|Jv* + Co So  1 
fc=i 

The auxUiary-function components Qo, Qx, and Qz are concave in parameter sets 

{lJLo,Po^}, {An,Qn^}, and {Bn,It;r^}, respectively. The updates at each iteration are 
therefore the imique maxima of the CDLF. The final measurement likeMhood p(Zjv) 

is not necessarily concave, however, so that suboptimal local maxima are possible. 

Multiple training runs from diflterent starting points may therefore be needed to find 

the global maximum. 
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■■■m 

3.5   TIME-INVARIANT MODELS 

The parameter update formulas given above are easUy specialized to time-invariant 
HGMMs by perfonning a second averaging operation across time when the correlation 

matrices are calculated in equations (147), (148), (157), aad (158). These time-averaged 
correlation matrices are then used in equations (151), (154), (160), and (162), which 
are each evaluated only once for all time. 

The measurement likelihood in the time-invaxiant case has a parameter invari- 
ance structure that is worth noting. Specifically, as an argument of the measurement 
likeUhood function in equation (82), the parameter set 

e   =-{A,B,Q,R,/io,Po} (163) 

is equivalent to any set 

0   =   {A,B,Q,R,/IO,PO}, (164) 

where the transformed parameters are given by 

A = XJ^AV2' (165) 

B = BVo'V2' (166) 

Q = U^UoQUjUl (167) 

Jlo = TJAVO^O (168) 

Po = U^UoPoUjUl. (169) 

Here, U^ is any nonsingular LxL matrix, and UQ is any nonsingular X x L matrix 
that commutes with A. 

The equivalence of the two models under the likeUhood function is demonstrated 
in appendix C. Two conclusions can be drawn concerning this invariance. First, the 
EM algorithm wiU converge to the member of the invariant family that is closest to the 
starting point. Second, any member of the invariant family is theoreticaUy as good as 

any other for classification. While the second conclusion suggests that there is no need 

to be concerned about the first, it may be desirable for numerical reasons to constrain 
the EM algorithm to produce estimates of a given structure. For example, it might be 
beneficial for the transition matrix to be as close as possible to an identity matrix. 
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3.6    MIXED-MODE MODELS 

Attention is now tiimed to mixed-mode HGMMs (MM-HGMMs). The Baum 
forward densities for these models are obtained directly by substituting an indexed 
version of equation (81) into equation (29), giving 

The 4? /4|n' ^^'^ ^Itn ^® calculated for each j using the HGMM recursions with 
the single-mode prior p(xo|j)- Furthermore, since the integral of the smn of terminal 
densities is just the sum of the integrals of the individual densities, the likelihood can 
be written as 

p(Zjv) = EPiKZivli) = EPj4- (171) 

Drawing on equations (107) and (34), the conditional state densities are 

J ,        : 

7(Xn)    =    YiPj\N-^{^'^F'n\N^K\N) ^ ■ (1^2) 

where fxLjs! ^ ^^'^ conditional state mean and PL^ is the state covariance matrix from 
the appropriate single-mode HGMM. 

Parameter estimates in MM-HGMMs are obtained using results from section 2 and 
the analysis techniques of the previous subsection. The mean and covariance updates 
for the mixture components in the initial-state prior distribution are given by 

t^t^-=Z^Pm.4k (173) 

K' = ^ E P^W. {P^oU + ^H""-' ^^'^'% (174) 
"J  fe=l 

where 
K 

«j = E/'jm- (175) 

The variable eo*'*"*"^ denotes the difference between the estimate of the mean at time to, 
conditioned on the fcth measiurement sequence, and the weighted sum of the estimates 
from all measurement sequences; that is, 

et^'-'^^N.-P^- (176)' 
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The estimates for the mixing parameters were defined in section 2. The expressions for 
the system-matrix estimators in terms of correlation matrices aie identical to those given 

in equations (151), (154), (160), and (162) for single^inode HGMMs. The correlation 
matrices for MM-HGMMs axe very similar to those for single-mode HGMMs, but with 

a weighted sum over the mode assignments; that is, 

j 

CxnXn   -Y^Pom^l^X^ (177) 

J      ' 

3=1 '      ^ 
J 

CznXn   =   l^Pj|Ar*Ci^Xn' (179) 
J=l 

where 0^^, CLxn_j> a^d C^^^^ axe given by equations (147), (148), ajid (158), respec- 
tively, except that the /.*,^^ and P^,^^ axe mdexed by j. The measurement correlation 

matrix is identical to that given in equation (157) since the measurements do not depend 
on the mode index. • 

While the number of components, J, in the mixture density has been assumed 
to be known thus fax, it might be estimated as foUows. First, the system matrices for 
a single-mode HGMM with a fixed laxge-vaxiauce Gaussiaii prior axe estimated usmg 
the measurement training sequences. Second, the estunated parameters axe used to 
calculate the conditional state sequence corresponding to each measurement sequence. 
Finally, a multivaxiate clustering algorithm is appHed to the initial states fi-om these 

state-sequence estimates. The number of significant clusters provides an estimate for 

J, and the location and spread of the clusters provide initial estimates of //o,i and Poj, 
respectively, for each mixture component. 
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4.   SUMMARY 

A general theory of continuous-state hidden Markov models (CS-HMMs) has been 
presented. The given results solve the likelihood evaluation, state estimation, and pa- 
rameter estimation problems, to the extent that the solutions can be formulated inde- 

pendent of the particular form of the model densities. The CS-HMM results were then 

specialized to linear Gaussian models, resulting in the hidden Gauss-Maxkov model 

(HGMM). A Gaussian refactorization lemma has been derived, which provides a nec- 

essary tool for evaluation of the Baum recursions for HGMMs and, at the same time, 

naturally generates the update recursions for Kalman filters and smoothers. The Baxun 

and Viterbi algorithms for HGMMs were shown to be equivalent to two different im- 
plementations of the fixed-interval Kalman-smoother. It was shown that the hkelihood 
obtained using the Baum algorithm for HGMMs equals the classical likelihood definition 

from Kalman-filter theory and that the parameter estimation algorithm for these mod- 
els is eqmvalent to the existing expectation-maximization (EM) algorithm for Kalman- 
filter models. Taken together, these results tmify Kalman-filter and HMM theory. The 

parameter-estimation algorithms given in this report were formulated for multiple train- 
ing sequences with imequal lengths. The HGMM training algorithm presented here 

therefore extends previous algorithms that treat equal-length training measurements. 
This analysis has also resulted in a new estimator for the cross covariance between adja- 
cent HGMM states that is considerably simpler than existing estimators. A parameter 

invariance structure was.demonstrated for HGMMs whose parameters do not,vary with 
time.. Finally, the CS-HMM and HGMM algorithms were extended for models whose 

initial state is governed by mixtures of densities instead of a single density. 

This work paves the way for extensions of HMM and Kalman-filter algorithms in 
both classification and tracking applications. For example, it generates a framework for 
investigating analogs of Kalman filters and smoothers for non-Gaussian model densities. 
In addition, the parameter-estimation algorithm could be used to obtain a more sophis- 
ticated, and possibly more accmrate, tracking algorithm whose state and measurement 

covariance matrices are influenced by the observed data instead of being predetermined 
from the prior estimates of the model parameters. 
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APPENDIX A 

PROOF OF THE REFACTORlZATION LEMMA 

This appendix demonstrates the equivalence of the two product functions 

■   77(y,x)   =  ^f{r,Fx,S)^f{x■,fJ.,P) (ISO) 

=  M{r,u;,n)Af{x;X,A),     . (181) 

where u>, Q, A, and A are defined in terms of F, S, //, and P, as given in section 3.1. 
Essentially, this refactorization is eqttivalent to sa3dng that p(y|x)p(x) = p(x|y)p(y). 

Beginning with equation (180) and substituting the normal densities gives 

77(y,x)   =   (27r)-(^+^)/2|s|"'/'|p|"'/'exp{-ie(y,x)}. (182) 

A useful form for the exponent ^(y, x) is obtained as 

e(y,x)   =   (y-Fx)^S-^(y-Fx) + (x-M)^p-^(x-/.) 

=  xT (p-i + F^S-ip) X - 2xT (p-V + F^S-V) + y^ S"^ y + //"^ P"^ fi 
=   x^A-ix-2xTA-^A + y^S-^y + //Tp-i^ 

■   =   {x-XfA-'{K-X)-X'^A-'X + y'^S-'y + fi'^p-'lJL. (183) 

The variables A and A, which are introduced in the third step of equation (183) and 
are desigiied to facilitate completing the square in the last step, axe defined by 

^-1   ^   p-i + F^S-^F (184) 

A-^A   =   p-^ + F'^S-V- (185) 

These variables naturally arise in the "information" form, where the inverse covariance 

matrix is the primary variable instead of the covariance matrix and the mean is scaled 

by the inverse covariance. The variable defined in equation (184) is called the informa- 

tion matrix,.and the variable defined in equation (185) is called the information vector. 
Equations (184) and (185) constitute a measurement update in the information formu- 
lation of a Kalman filter [5]. K the covariance matrix is desired, the matrix inversion 
lemma (MIL) [46,49] can be applied to obtain 

A   =   P-PF'^(S + FPF'^)"^FP. (186) 
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(187) 

(188) 

Defining the variables 

H = PF^S-^ 

results in the Govariance matrix becoming 

A   =   P-PFTS-^FP 

=   (I-HF)P. (189) 

The mean vector is then obtained as 

A = A(P-V + FTS-V) 

=   (I-HF)yu+(I-HF)PFTS-V 
= (I - HF) tji+ (i - PF^S-^F) PF'^S-V 

=   (I-HF);/ + PFT(I-S-1FPFT)S-V 

= (I-HF)A+(PFTS-I)(S-FPFT)S-V 
=   (I-HF)/x + HSS-V 

=   (I-HF);. + Hy. (190^ 

Returning to the exponent term in equation (183) aaid introducing the functional 

C(y)   =  y^S-V + A^^P-^/x-A^A-^A (191) 

causes the e:!q)onent to become 

e(y,x)   =   (x-A)^A-^(x-A) + C(y)., (192) 

which is put in a form similar to equation (183) as 

C(y)   =  yT s-i y + ^T p-x ^ _ (p-,^ ^ F^S-V)^A (P'V + F^S-^) 

=  yT(s-i_s-iFAF^S-^)y-2yTS-iFAP-V + ^^(p-i-p-iAP-i)^ 
=   y^n-'y-2yTj7-^a; + ^T^p-i_.p_i^_i^^ 

=   (y-a;fn-^(y-a;)-a;Tf2-ia; + ^T(p-i-p-iAP-i)^. (193) 

The variables a; and fi introduced above axe defined by 

n-i = s-1 - S-^FAFTs-i (194) 

n-^u = S-^FAP-V. (195) 
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These terms can bfe simplified by introducing the variable 

D   =   S-^FA 

=   S-^F(P-^+FTS-^F)-^,      ■ (196) 

with which the information matrix becomes 

fi-i = (I-S-^FAFT)S-^ 

=   (I-DFT)S-^ (197) 

and the information vector becomes 

n/w = DP V- (198) 

Equation (194) can also be converted to covariance form by applying the MIL in reverse; 
that is, 

n  =   {s-i-S-^F(p-i + FTs-iF)"'FTS-ir' 

=   S + FPFT = S. (199) 

Noting that n = S and applying the MIL allows the mean vector to be obtained as 

uj = ns-iF(p-i + FTs-iF)"'p-v 
= 2S-IF(P-PFTS-IFP)P-V 

= SS-I(I-FPFTS-I)FPP-V 

= SS-I(S-FPFT)S-IF^ 

= SS-^SS-^FM 

=   Ffi. (200) 

The functional ({y) is now written as 

where 
C(y)   =   (y - uf n-'iy-w) + K, (201) 

= ■ fi'^ (P-^ - p-1 Ap-1 - F^S-^F) fi 

=  f/^ {p-1 - p-1 (p _ PF^S-iFP) P-I - F^S-^F} fi 

= A^(P-^-P-^ + FTS-IF-FTS-IF)JU 

=   °- (202) 
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The combined exponent from equation (180) therefore becomes 

Substituting this expression for ^(y,x) into equation (182) gives 

X exp|--(x-A)^A-^(x-A)}. (203) 

The exponentials can be written as normal densities if constants are included to com- 
pensate for the normalizing constants; that is, 

'7(y,x)   =   (27r)-(^+^)/2 S -1/2 -1/2, 1/2 
(2;r)^/2|fi^^V(y;a;,fi) 

x(27r)^/2|A|'^(x;A,A). (204) 

Multiplying out the 27r terms and coUecting the determinant terms gives 

^(y,x)   =   cMir,u,n)Af{x;X,A), (205) 

where 

1-1   I - I   r    111/2 = {|sr !n|.|A|y (206) 

Equation (205) is the desired expression if it can be shown that c = 1. This equality 

is demonstrated by using a theorem for block matrices [46,49], which states that the 
determinant of the matrix 

Bii   B12 

. B21   B22. 

with nonsingular Bn and B22 is given by 

B = (207) 

B    = Bxr 

B22 

B22-B2iBr/Bi2 

Bii-Bi2Bj2'B2i 

First, the definitions of fi and A and equation (209) axe noted to obtain 

P    PF^ n • A = S '• P - PF'^S-^FP I = det 
FP     S 

It is also noted that 

)-i j-i = det 
P-i     0 

0     S"i 

(208) 

. (209) 

(210) 

(211) 
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Given these two partitioned matrices, the desired product is 

where 

s -1 
p 

-1 n • A = . r 

p-^    0 
0    s-1 

p   PPT 
FP     S 

I PT 
g-ipp   g-ij. 

Application of equation (208) then yields 

r I|-|S-^S-S-^FPIFT 

s-^s 1 = 1, 

which completes the proof. 

(212) 

(213) 

(214) 
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APPENDIX B 

■ 

HGMMJOINT STATE DENSITY 

This appendix derives the conditional joint density of time-adjacent HGMM states, 
as given in equations (114) through (116).   The starting point for this derivation is 

equation (111), which states that 

7(x„,x„_i)   =   A/'(x„;/Xn|JV,Pn|Jv) A/'(xn-i;An,An), (215) 

where 
An =  (I - H„An) lln-l\n-l + HnX„ 

A„ = (I - H„A„) P„_i|„_i 

Hn  =  Pn-l|n-lA„Pn|n-l- 

Substituting the functional forms of the normal densities gives 

7(x^,Xn-i) = (27r)-^ P„|;yr    ^^ A„ ~^^exp|--^(Xn,Xn_:)j, (216) 

where 

C(Xn, X„-i)  =   (x„ - tin\N)    P'^N (^n " /inljv) + (Xn-i - Xnf A^^ (Xn-i - An). (217) 

Defining the conditional state error vector £„ = Xn - fJ^\N and recalling that 

A^|n-l  = AnA^n-lln-l 

fJ^-l\N = fhi-l\n-l + Hn {jln\N — Mnln-l) 

allows An to be rewritten as 

An    =    Mn-l|n-l + Hn (x„ - A„ /i„_i|^_i j 

=    iUft-l|n-l + Hn (/in|JV - Mn|n-l) + Hn Sn 

=   T^n-lIN+ Hnen- (218) 

Defining the error vector i 

©n-l    =    Xn_i — An = £n-l "" Hn £n (219) 

then results in ^(xn,x„-i) being expressed as ^ 

^(Xn,Xn-i)    =    £n"^ P;;,^;^ Sn + Cn-l'^ A"^ Cn-i 

=    en'^P;|^jv£n + (£n-l-Hn£n)'^A-l(£n-l-Hn£n) 

=    ^n'' {K\N + HlA-^Hn) £n " 4-1 A'^Hn £n 

~ ^Ti^nA^ Sn-i+En-l    A~   £n-l- (220) 
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Equation (220) is written in matrix notation as 

^(Xn)X„-l)    = 
-A;r'Hn A; -: 

Sn-l 

The joint density can then be written as 

7(Xn,X„-l)    =   A^(x[n,n-l];M[n,n-l]|JV,P[n,n-l]|iv), 

where the joint state variable is 

and the mean and covariance are 

Xn. 

.Xn-1. 

^[n,n-l]\N  = ' 
^P;,l, + HTA;lH„   -HjA^i---^ 

(221) 

(222) 

(223) 

(224) 

(225) 

respectively. There are no scale factors in equation (222) because, using an argument 
similar to that given in appendix A, it can be shown that 

n\N K ■ I '^in,n-l]\N i  —  1- (226) 

A more useful expression for the joint covariance matrix is obtained by applying 
the block matrix inversion theorem [49]. This theorem states that the inverse of block 
matrix S with nonsingulax diagonal blocks Sn and S22 is 

T = Til   T12 

T21   T22 
= s-i = Sll     Sx2 

S21    S22 

-1 

where 

Tji = S^i.2 

^12 = —Sji S12SJ2.1 

T21  = —S22 S2iS5'i.2 

T22   =  Sj2a- 

Here, S11.2 and S22.1 are the Schur complements 

8x1-2    =    Sll — S2iSj2'^Si2 

S22.I     =    S22 — Si2Sjff^S2i. 

(227) 

(228) 

(229) 

(230) 

(231) 

(232) 
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The structure of the joint covariance matrix dictates that the diagonal blocks should 

equal the covariance matrices P„|jv and Pn-i|jv This outcome is conJSrmed by substi- 

tuting Su = P-lf^+H^K'^n, Si2 = -H^A;\ S21 = A;:^H„, and S22 = K\ so 
that the Schur complements are 

.  Sii.2=(P;|V + HTA;^Hn.-HTA-^AA-iH„)"   = P'^ (233) 

S22.1 = A-^ - A-i (P„,jv + HTA-IH„)"' H^A-1 = (A + H„P„,^HT)"'.    (234) 

With these results, the first diagonal block of the joint covariance matrix is Tn = P„|jv, 
as it should be. The second diagonal block is 

T22    = A + H„P„|7y^E[jj 

= (I ~ HnAn) Pn-l|n-l + H„P„|j\rH„ 

= Pn-l|n-l ~ H„A„P„_i|n-l + ^nPn\N^n 

= Pn-l|n-l — H„Pn|n-lP„|n_iAnPn-l|n-l + HnPn|JvH„ 

= Pn-l|n-l — H7iPn|„_iH„ + H„Pn|jyH„ 

= Pn-l|7i-l — Hn [Pn\N — Pn|n-1 j H^j, (235) 

which is jxist the definition of Pn-i|jv from the RTS smoother.' The lower off-diagonal 
is given by 

T21 = A„ (A;:'Hn) P„,jv = HnPniw. (236) 

Since the inverse of a symmetric matrix must also be symmetric, the cross-covariance 
matrix is known to be 

Pn,n-l|iV  =  T12  =  T21  = Pn|ivH„. (237) 

To verify the validity of this expression, T12 is evaluated from the terms in the block 
matrix inverse, giving the expected result as 

T12 = (p;|J, + H^A;^Hn)"'H^A;^p„_ii^ 

=   [P«|iv-Pn|ivHT(A-hH„P„ljvHT)"'H„Pn|;,]H^A;^P„_i|;v 

=    PnlN^n (I - Pn-l|ArHnPn|W'H^) A^^P^-iiJv . 

=    Pnl^y^H^ [I - Pn^iljv (Pn-l|iV " Anj ] A;;^P„_l|^' 

= P„,^H^(i-l + P;ii|;^An)A;ip„_i„v 

=   PniArH„. 
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APPENDIX C 

HGMM PARAMETER INVARIANCE PROPERTY 

The objective is to show that the model with time-invariant parameters 

.    0   =   {A,B,Q,R,;Cio,Po} (238) 

is equivalent imder the measurement likelihood function to.parameter set 

0   =   {A,B,Q,R,/2O,PO},. (239) 

where the transformed parameters satisfy 

A = VAAV2'- (240) 

B = BUo-'U2' (241) 

Q = U^UoQUjUT (242) 

fio = UAUO/XO .                              (243) 

Po = U^UoPoUjUl. (244) 

Here, U^i can be any nonsingular Lx L matrix and UQ can be any nonsingular Lx L 
matrix that commutes with A. 

The invariance of the likelihood is demonstrated by showing the invariance of the 
measurement innovation i/„ and measurement-error covariance S„. Note that the state 
variables are not invariant to the parameter transformations and that they undergo a 
corresponding set of transformations defined by 

Jj-n\n-l  = UxUo/in|n-l 

Mn|n = UyiUo/Xn|n 

■Pnm-l  =U^UoPn|n-lUTUT 

Pn|n = U^UoPnlnUjUT. 

First, it is shown that output calculations with the transformed parameters and state 

variables produce the same measurement innovation and error covariance as the original 

model. It is then shown that the Baum recursions actually propagate these variables. 
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The measurement mnovation is given in tenns of the transformed states and model 
parameters as 

=    Zn-BUo^U^^UxUo/^ln-l 

=    Zn - B fMnln-l 

=    l^n, (245) 

and the measurement-error covariance matrix is 

Sn    =    R + BP„|n_iBT 

r,TT.-b .   .TTTT,  ., =   R + Uo-^U2iU^UoP„,n-iUTuIUlTu„-TBT 

=   R + BP„|„_IBT. 

(246) 

Thus, if it is assumed that the transformed model propagates the transformed state 
variables in the forward probability recursions, the invariance is demonstrated. The 
propagation of these variables is demonstrated by induction. The transformed variables 
fit the initial state conditions by definition, so that only the recursions need be examined. 
For the time update, it is observed that 

P'n\n-l    =    AnAn-lln-l 

=    U^AUo/i„_i|n-i 

=    UyiUo/i„|n-l. 

The recursion for the transformed covariance matrix is 

Pn|n-1    =    Q + APn_i|„_iA^ 

=   U^UoQU?Ul + U^ AV2'V^UoPoUjU^ (u^ AUj^f 

=   VA UO (Q + A P„_I,„_IAT) UJU^ 

=    VAVoPn-lln-lV^Ul (247) 

These expressions confirm that the thne updates propagate the transformed variables. 
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Verification of the correct variable propagation during the measurement update begins 
by examining the gain matrix, which is given as 

G„    =    P„|n_iB    Sn 

=    U^ Uo Pn|n-1 B Sn 

=   U^UoGn. (248) 

The measurement update for the mean is then 

fJn\n    =     (I — GnBj JJLn\n-l + GnZn 

=    (l-U^UoG„BUo'Ul^)UAUoMn|n-l + UxUoGnZn 

=    VAVo[{I-GnB)fXn\n-l+GnZn] 

=  UxUo/inin, (249); 

and the update for the covariance is 

Pn|n    =     (I — GnBj Pn|n-1 

=     (l-VAVoGnBVo'Vj') 

. =   U^Uo [ (l - GnB) P„|„_i]uJU]S 
=    U^UoPnlnU^U^. (250) 

These expressions demonstrate that the measurement updates propagate the trans- 
formed variables, thereby completing the invariance proof. 
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