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ABSTRACT 

This report examines tlie problem of estimating the location, velocity and 

manoeuvre of a manoeuvring target (from range, bearing and pose informa- 

tion). The report considers a non-linear modeling technique in which the target 

is represented m a hybrid system (a combination of discrete and continuoiK val- 

ued statra) and considers new Msociated approaches such as the polymorphic 

estimator. 

Although simulation studies were performed, the polymorphic estimator 

h^ seriotw numeric problems that suggested the estimator should not be used 

until the approach 'm refined. This report ib mtended to facilitate further 

disciKsion amd development of the approach (if deemed necessary); hence, it 

includes detaik of the assumptions made and the Matlab^^ implementation. 
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Estimation of Manoeuvring Targets using Hybrid Filters 

EXECUTIVE SUMMARY 

Modern giiided weapons are frequently required to operate in a complex environment that 

often involve highly compHcated behaviours. In them types of enga^ments, assumptions 

of linearity no longer hold and model uncertainties in the form of unmeasmred aerody- 

namic coefficients and complex non-linear aerodynamic are common. The target filter 

is an important sub-system of any guidance loop that estimates the required target and 

engagement information. To improve the performance of this target filter in diallenging 

environments involvmg manoeuvring target, a full understanding of any non-linearities 

present is required. 

The aim of this report is to investigate the manoeuvring target filtering problem, to exam- 

ine the importance of mode measurements amd to examine a particular filtering approach. 

A review of existing filtering results is provided before introducing a non-linear filtering 

approach known as hybrid filtering. Three possible filtering approaches are examined in 

simulation studio: the extended Kalman filter, the mteracting multiple model filter and 

a new hybrid filtering approach. The simulation studies surest that mode measiurements 

may improve target filtering performance but the studio do not support the use of the 

examined hybrid filtering approadi. Some refinement of this hybrid filtering approach is 

required. 

An improved understanding of filtering techniques is requured to aid support of present 

upgrade progran^ involving the guidance loops of new air-to-air and standoff missile sys- 

tems. This underetanding m nec^sary for the support of future weapon prociurement and 

upgrade programs. 

m 
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1    Introduction 

Preckion guidance of weapon systenw is a computationally and conceptually demanding 

problem [2]. Historically, due to real-time computing constraints, major approximations 

in the control design proems have been necessary. Recent advances in missile sub-systems 

mean that modern guided weapoiw have significantly improved computational capacity 

and hence various modelling approximations are being reconsidered [2], 

One sub-problem of the missile guidance problem is estimation of the target position and 

velocity (and other quantities) from measurements such as range and bearing to the target. 

A common approach involve developing a system model of the relationship between the 

target state (position and velocity say) and the measurements available. Once a system 

model has been obtained, the target estimation problem can then be posed as a model 

based filtering (or optimal filtering) problem. 

Across many fields of study, one of the more fitmous and commonly used system modeb 

d^cribra the relationship between the states of a system and system measurements as a 

linear Gauss-Markov system with Gatissian nois^. This model assume linear dynamic be- 

haviour of the internal system state (with perhaps an additive Gaussian noise distxurbance) 

and measmrements that aie noisy linear fimctions of the state. 

This hnear Gauss-Markov system assumption is popular because, although most systen^ 

have no finite dimensional optimal filter, the Kahnan filter has been shown to be the 

optimal filter for such a system [1, 5]. In this context, optimally is in the minimum 

mean squares sense and a filter is finite dimensional if it can be implemented using a finite 

number of statistics which can be calcidated using a finite number of recursions. Because 

the Kalman filter is a finite dimensional optimal filter it has been appHed to a large variety 

of filtering problems. 

In a typical interceptor-target engagement, measurements are the relative range and bear- 

ing to the target (and perhaps pose information). These measiurements are non-linearly 

related to the relative position and velocity of the target in cartesian co-ordinates. Because 

of the non-linearity in the measmrement process, the Kalman filter w not appropriate for 

this problem (even under the a^umption that the state dynamics of the target are Gauss- 

Unear). Rnther, if the target k performing manoeuvres then a GaiKS-linear model of the 
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target dynamics is no longer appropriate. 

For general non-linear problems, when a finite-dimensional optimal filter is not possible, 

sub-optimal numeric or approximate approaches must be used. The simplest approach 

is to use an extension of the Kalman filter known as the extended Kalman filter (EKF) 

[5, 1]. The EKF involves Imearisation of the non-linear model about the current operation 

point. The EKF approach, although appealing due to its similarity to the Kalman filter, 

does not perform well in many non-linear filtering problems. 

Some non-linear systems can be well represented by a non-linear model known as the 

hybrid system model (a model that contains a mixture of continuous and discrete valued 

states). Close to optimal finite dimensional filters have been designed that perform better 

than EKF approaches on these systems. 

In this report we compaure three non-Unear filtering approaches to the problem of estimat- 

ing the state of a manoeuvring target. The three approaches are a simple EKF approach 

(included as a benchmark), the interacting multiple model (IMM) filter [9], and the poly- 

morphic estimate (PME) [18]. The IMM and PME are filtering approaches designed on 

an approximate hybrid model representation of the manoeuvring target. An important 

issue is whether these hybrid system models are realistic representations of manoeuvring 

target dynamics. 

The key aim of this report is to examine the performance of these three filtering approaches 

in a manoeuvring target filtering problem to evaluate the apparent advantages of a hybrid 

system filtering approach. The second aim of this report is to examine these filters as part 

of a missile guidance loop. A third aim is to examine the influence of pose information on 

a missile guidance loop. 

The report is structured as follows: In Section 2, we introduce several possible dynamic 

models and then introduce the target filtering problem. In Section 3, the extended Kalman 

filter solution to the problems is presented. In Section 4, the interacting multiple model 

filter and the polymorphic estimator are presented. In Section 5, some implementation 

issues are discussed. In Section 6, simulation results are presented. Finally, in Section 7, 

some conclusions are presented. 
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2    Target Filtering Problem 

In this section we prraent the manoeuvring target tracking problem. Many formulations of 

the target tracking problem are commonly iwed. The formulation presented below allows 

several different types of dynamic models to be considered in a similar formulation. We 

firet introduce the filtering problem, then introduce two target models. 

2.1 The Filtering Problem 

The manoeuvring target filtering problem stated in the broadest terms is to determine in- 

formation about the state, usually denoted xj., and perhaps the target manoeuvre, denoted 

here uf, from measurements up imtil time k. In the context of the target tracking prob- 

lem, we are taually interested in estimating the position, velocity and perhaps manoeuvre 

of the target from range and bearing meastu-ements. 

For the purpose of this report we are going to comider filtering and ratimation from a 

model based perspective where estimation is according to a conditional meam criteria (we 

will limit our interest to statistics of the state such as the mean and variance). 

An exact study of the properties of the presented filters is beyond the scope of this re- 

port. Various practical approaches are considered in the following sections but none of 

these filters are optimal. We will examine the proposed approaches according to thek 

performance in a target tracking problem. 

2.2 Continuous State Model 

Consider the following non-linear model for engagement with a manoeuvrmg target: 

Vk   =   Ck(xk,Wk) (2.1) 

where a;^; G iJ^ is a state d^cribing both the target and interceptor dynamics (or perhaps 

the relative dynamira between the two), uf € U{xk) is the manoeuvre performed by the 

target which m an unmeasured input, «| is the manoeuvre performed by the interceptor 

which is assumed to be known, yk € R^ is the observation, Vk is a process noise process. 
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and tofc is a measurement noise process. The set U{xk) is the complete set of target 

manoeuvres that can be performed from state Xk- 

This model is generic enough to include general target manoeuvres, general measurement 

processes, and complicated aerodynamics. The problem considered in this report is esti- 

mation of the state, rcjt, from the measurements yk- The general filtering problem for the 

above non-lineax system with unmeasured uj has not been solved in analytic form (there 

are several numeric approaches such as the particle filter which are outside the scope of 

this report and not considered here). 

In some situations it is reasonable to use a more restrictive stochastic process to describe 

u^ and to assume linear state dynamics as follows: 

Xk+i   =   Axk + B'^UJ + B^uj. + Vk 

Vk   =   Ck{xk) + nk (2.2) 

where A G R'^^^, Vk and n^ are Gaussian noise processes, and KJ is a stochastic process 

dependent on Xk and ufLi- 

This filtering problem is also difiicidt and no analytic solution exists. The model (2.2) is 

appropriate for an extended Kalman filter solution to the target estimation problem. We 

will discuss this approach later but first we introduce further restrictions on the input that 

lead to a hybrid system model. 

2.3    Hybrid System Model 

In this subsection we consider a further restriction on uj that leads to a hybrid system 

model and leads to two alternative filtering approaches. Consider the case that U{xk) is 

restricted to be a finite set (whose elements correspond to distinct possible target acceler- 

ations) and further that uj is a Markov process. With this finite set restriction, assuming 

linear state dynamics, the following model is obtained: 

Uk is a first order Markov chain 

Xk+i   =   A{ul)xk + B'ui + Vk 

Vk   =   Ck{xk)+Wk. (2.3) 
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where uf is a finite process that takes values from a discrete set (of size J%) whose values 

approximate the behaviour of the tar^t. Here each A{.) indexed by uf d^cribes the 

target dynamics for each of the possible target manoeuvres. For example, A(0) = A where 

0 indicates the target fe not performing a manoeuvre etc. It should be noted that this 

target acceleration model, (2.3), only holds when the possible target control actions are 

restricted to perpendicular acceleratioi^. 

This system is coi^idered a hybrid system model because it contains a mixture of contin- 

uoiM valued and discrete valued states {x^ and uf respectively). 

The motivation in considering a hybrid system approximation for the continuous system 

(2.1) stems from the knowledge that "close to optimal" filtering solutions for hybrid sys- 

ten^ exist. The meaning of ''close to optimal" will be diseased in a later section. A 

key qu^tion is whether a "clcwie to optimal" solution on the hybrid system approximation 

adiiev^ better performance than an approximate solution based on a continuous system 

model. This issue is investigated in Section 6 via simulation studies. 

The system model (2.3) k appropriate for both the interacting multiple model and the 

polymorphic estimator (both are discussed in Section 4), 

3    The Extended Kalman Filter 

The Kalman filtering is the optimal filter for a linear Gatms-Markov system. System (2.2) 

is linear Gauss-Markov when A(uk) = Ak, Ck(xk) = Cuxu and Vk,Wk are independent 

sequences of GaiMsian noise. The Kalman filter is optimal in the sense that it produces 

estimates, x^^, that minimise 

E{{xk - xu\k)(xk - Xk\k)'\yfi,..., t/fc]. 

The extended Kalman filter extends the concept of the Kalman filter to a non-Hnear 

system model via linearisation. The extended Kalman filter (analogoiw to the Kalman 

filter) calculates a state estimate, a covariance matrix, a priori state estimate and o priori 

covariance matrix at each time ijMtant (%|fc,Pfc|fe, %|fc_x and Pk\k-i respectively). 

To develop the extended Kalman filter for this problem we first assume that «f is available 



DSTO-TN-0488 

(this assumption will be relaxed later). Let us define the following quantities: 

Ak   =   A{ul),     and (3.1) 

(3.2) Ck   =    ^""'^^^ dx 

Here Ak £ ii(^><^) and Cjt € i?(^'<^). 

Let us also introduce matrices Ql and Rf. which are the covariance matrices for noises Wk 

and Ufc. 

The extended Kalman filter is implemented using the following equations [1, 5]: 

*fc|fc-l     =    0,k-l{Xk-l\k-l,Uk,Uki^k) 

Pkik-i   =   Ak-iPk-i\k-iA'k-i + Qk 

Kk   =   Pk\k-iC'k[CkPk\k-iC'k-\rR*^~^ 

^Alfc     =     *fc|fc-l + Kk [j/fc - Cfc(ife|fc_i)] 

Pk\k   =   Pk\k-\-KkCkPk\k-i (3.3) 

Given a sequence of measurements, j/^, the extended Kalman filter provides a sequence of 

estimates, Xk\ki and an estimate of error covariance Pk\k- Although in non-linear estimation 

problems higher order moments can be significant, the EKF only keeps track of 1st and 

2nd moment information {xk\k-i-,Pk\k-\)- 

The above implementation assumes that an estimate of the target manoeuvre is available. 

Often a target manoeuvre estimate will not be available and a common strategy is to 

then assume the target is not manoeuvring. This sort of approximation about the target 

manoeuvre significantly affects the performance of the filter and is the prime motivation 

for considering the two filters described in the next section. 

Another possible alternative is to include the target manoeuvre as part of the system state. 

However, when formulated this way the system model becomes highly non-linear and the 

extended Kalman filter itself (which is based on linearisations) is likely to be unstable 

when initiaUsed poorly. 
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4    Hybrid System Filtering 

In this section two separate approadies to the filtering problem for hybrid systems are 

discussed. The firat filtering approach comidered here is the interacting multiple model 

filter whidi is based on the concept of a running bank of filters (one for each of the possible 

manoeuvre mod^) and then combine the output of each filter to obtain an estimate of the 

target state. The second filter considered is the Polymorphic Estimatore which Is based 

on a sub-optimal approximation to the optimal solution of the hybrid system filtering 

problem. 

4.1    Interacting Multiple Model Filter 

The interacting multiple model filter is a filtering approadi (based on the model (2.3)) 

that involves nmning a sub-filter for each of the distinct manoeuvres modelled [9]. At 

each time step, each individual sub-filter uses any new measurements, mode probability 

information and previous sub-filter outputs to generate a new ^timate based on the sub- 

filter's assumed manoeuvre. Then the output all these sub-filters is combined according 

to certain probability information to produce a new current overall target estimate. This 

is explained in more detail below. 

Let A|_in_i and P|_i|fc_i be the outputs of the ith sub-filter at time fc - 1 and let JJ» 

be the tradition probability fi-om manoeuvre i to manoeuvre j. Also, let /ii_j denote the 

TOtimated probabiUty of being in mode j at time Jb — 1. 

Then 

N+U 

^-i|*-i   —    2^ **-i|fc-iM*-i 
i=l 

Pt-Mk-i = i:4'ii(i'l-i|*-i+(4-i|fc-i-Cii*--i)(4--i|.-i-4-i|.-i)')(4-i) 
$=1 

where «|.-i|fe-i ^d i^iij^.j are the inputs to the jth sub-filter at the Mh cycle used 

below, ^i^ k the probability that a particular transition of manoeuvre occured, and o* 

is a normalisation constant (from p|ij over «). 
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Then the i% sub-filters iterate as follows 

4|fc-i   =   «fc-i(4-i|fc-i."r = i'«fc'"fc) 

pi\k = pi\k-i-Kic,pi^,^, (4.2) 

where Ck was defined in the last section and Ak{j) = A{ti^ = j). 

The mode probability can be calculated as 

4   =   cAiJ2A^%_, (4.3) 

where c is a normalisation constant. 

The overall estimate of the overall scheme at any time is given by 

^k\k = E^ifc^i 
3=1 

Pk\k   =   E/^*(^|fc + (%-M(4|fc-M') (4-4) 

Note that the IMM filter keeps track of only 1st and 2nd order moment quantities 

4.2    Polymorphic Estimator 

Unlike the EKF and IMM filters presented above, the polymorphic estimator keeps track 

of several higher order statistics to improve the quality of state estimates for the hybrid 

system (2.3). By studying the optimal filtering problem for (2.3) and making approxima- 

tions in equations involving 4th and 5th order moments, filters with improved performance 

can be obtained. We provide no other details about the development of the PME and the 

reader is directed to [18] for any more information. Here we simply present the filter. 

To simplify the presentation, we consider the PME as a two step process: a time update 

step, and a measurement update step. 
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Time Update 

In between measurements, the statistic of the hybrid system evolve according to the 

underlying dynamics of the system. For this reason, the tune update step of the PME is 

typically done via numeric integration of the following differential equation. In general, 

the evolution of them equation can not be implemented as difference equations, 

fit+it  =  Afit 

d Nu 
j^Pxx = Y.Mi){&tP%^ + Px^^^i + P^^iJ^^+R(iM 

d ^" 
■^P^^M^   =   12M*)P(x^i)^f,m + Pl^^i^^^^ASY + P^^^iQ*"' (4.5) 

where ^(») is the tth row of A and ^<*) K the ith column of A. Note that 

Pftpt   =   diagint) - fitlA 

Pscn    =    P^ 

Pmfiixi    =    Pxfiii^i — fit)  +f4Pxii 

P      i  „ 
I. ~f^^Pxxfi* ~ fJ'^Pxxfi'n — Pxxfi^fi"^ otherwise    ' ^ 

where diag{X) is the diagonal matrix with X on its diagonal. 

Measurement Update 

If either range and bearing or pose information becomes available, then the state ^timate 

of the hybrid system filter can be updated as shown in the following two sub-sections. 

Note that if both typ^ of measurements become arailable at the same time instant then 

the update steps can be performed sequentially. Although the following equations are 

generally implemented as discrete time recursion, to emure conformity with the time 
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update equations, we have expressed the updates as changes from f ^ to x^ etc. at the 

discrete time instants that measurements occiu:. 

Mode Measurements Assuming that there are measurements of the target pose j/J", 

this information can be incorporated into the filter estimates. Here yj" G {ei,...} is a 

discrete value representation of the tsirget pose (for example, the target orientation in the 

yaw-plane). 

r = ^mym 

l^t = f^T*yr; An = nl - Hi 

: 
Nu 

■'—1 

P.X = 
Nu 

(4.7) 

where the ijth element of A"^ is the probability of being in mode i given that the target 

pose is j, ^ is a pseudo measiurement of target mode, and * is the operation of element- 

by-element multiplication. 

Range/bearing Measurements Range sind bearing information, j/t, can be used to 

update the target state information as follows 

7i   =   PxxC'iCPxxC + R) -1 

xf  =  xt +jxyt 

PxfJ.    ^^    Pxn ~ fx^Pxn 

Pxx     =    Pxx-JxiCPxxC'+Rh'x (4.8) 

4.3    Other Filtering Approaches 

There are many other non-linear filtering approaches that may be considered appropriate 

for this problem. The robust Kalman filtering approach may be considered an alternative 

to the extended Kalman filtering approach [16]. More success can be obtained from non- 

model based approaches such as Monte Carlo approaches [15] and the particle or auxiliary 

particle filter approach [17]. 

10 
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Abo of inter^t is the collection of approaches to the hybrid filtering problem. There axe 

many sub-optimal hybrid filtering approadi^ available and this paper only had time to 

examine one. Some of the other hybrid filtering approadies many be worth considering. 

None of these alternatiw approaches were examined in the context of this simulation study, 

but previoxis work suggests that the particle filter approach may offer some advantages 

(once the technique has become well developed), Rirther comment is outside the scope of 

this report. 

5    Implementation Issues 

This section discusses some of the implementation issues associated with the above filtera. 

In the firat sub section we wiU discuss some issues directly. Further information about the 

Matlab^^ implementation and the syntax and header files can be found m Appendix A. 

5.1    Direct Issues 

Implementation of the extended Kalman filter has been covered by many other authors (See 

[5] for ecample), and implementation issues with respect to the IMM are well understood 

[9] so this section will concentrate on issues related to the Polymorphic Estimator. 

Numeric Stability 

In our studies, the Polymorphic Estimator wm found to have serious numeric stability 

problems. The most significant of these problems was the ir^tabiUty in the time update 

step of the filter. The time update step requires numeric integration of a non-linear 

system of equations. In our implementation of the filter, a Euler approximation w^ used 

for integration purpose. 

It was found that imlras the step-size was reduced to ft < 0.001 the filter would often 

update Pxz and other matric^ to non-positive definite ma,trices (non-valid updates). While 

decreasing the step-size did reduce the number of non-valid updates, the incidence of non- 

valid updates was not completely remowd. When thb positive definite properly is lost, 

the filter quickly diverges. 

11 
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Alternative implementations, that were not tried, may have reduced the incidence of non- 

valid updates these include: reformulation of the update equations to maintain the positive 

definiteness property, and the use of other numeric integration techniques. 

Instead, the implemented code checks for non-valid updates of the matrices and attempts 

to correct the updates and keep the filter stable. In simulation studies In Section 6, 

simulations involving situations where the PME had extensive numeric problems have 

been excluded. Hence, the reader must consider the results as best case results, indicative 

of the sort of performance that may be possible for a hybrid system filtering approach, 

rather than an endorsement of the PME filter. 

The numeric stability problems on the PME were found to be significant enough to exclude 

use of the filter in a practical environment. 

Target Motion Assumptions 

The taxget is assumed to exhibit piece-wise perfect lineEir and perfect turning motion. The 

turn rate of the target was assumed to be perfectly known by the filter, but the timing of 

turning events is not. 

These target motion assumptions as quite unrealistic. In real problems the tmrning rates 

will neither be known nor be constant. An extensive investigation of situations involving 

model mismatch is required before any hybrid system filtering approach could be applied to 

a real problem. Such examinations have been performed for the IMM filter [9]. However, in 

this study, the computation effort required to implement the PME filter was too significant 

for us to test a large set of engagements and hence performance during mismatch was not 

examined. 

Inteceptor Motion Assumptions 

A simple augmented proportional navigation guidance law without either guidance or 

autopilot lags was used to evaluate the filters as part of a guidance loop. 

Matlab^^ Implementation 

Details of the Matlab-^^ implementation of the filters are presented in Appendix A 

12 
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6    Simulation Studies 

In this section we examine the three presented filters in an engagement agaimt a target 

performing a mtim of manoeuvres. We firet consider the error performance of the filters 

(under no guidance) and then we investigate the miss distance performance when these 

filters are used in a missile guidance loop. 

6.1    Stand Alone Filter Performance 

To examine the performance of the filters, the EKP, IMM and PME were iKed to filter data 

in a total of 1249 simulatioiK. Detaib of the parameter values used in these simulations 

are provided in Appendix A. The EKP with knowledge of the actual target mode was 

also simulated. Became all the filters in this study are EKP based the EKP filter with 

knowledge of the actual target mode provide a lower boimd on performance. 

As discussed in the previom section, the PME filter sometimes has numeric difficulty in 

the P^j; update step. The implemented version of the PME filter monitors the P^^ update 

step and provides a count of the number of bad update steps. The simulation studies 

suggest that when more than 5 bad P^^ update occur the performance of the P^^ can be 

quite poor. 

Although, the performance of the PME was quite imsatisfactory, some selected results are 

presented in the tables below to demonstrate what performance gains might be possible if 

the numeric problen^ can be resolved. In Tkble 1, the average error performance of the 

filtere are compared on the 75 data sets for which the PME had no bad P^^ updates. 

The avera^ mean error valu^ presented in the table is the average error over the last 100 

points of the selected simulation rim. The variance of error supplied in the table is the 

variance of individual simulation errors across the selected set. In Tkble 2, the average 

error performance of the filters are compared on the 244 data sets for which the PME had 

one or less bad P^^ updates. The other 1005 runs have greater than one bad update. 

13 
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Table 1: Filter results with no bad Pxx updates 
Filter Average Mean Error Variance of Error 
EKF(truth) 33.1m 82.9 m^ 
EKF 569.0 m 446.9 m^ 
IMM 118.3 m 1380.9 m2 
PME 72.6 m 332.9 m2 

Table 2: Filter results with one or less bad Pxx updates 
Filter Average Mean Error Variance of Error 
EKF(truth) 32.6 m 70.2 m^ 
EKF 574.7 m 1400.2 m2 
IMM 116.0 m 992.7 m^ 
PME 75.9 m 1257.3 m2 

6.2    Filters in a Missile Guidance Loop 

To evaluate the performance of the PME and the influence of having pose measurements 

of the target available in the missile guidance problem, the performance of the PME with 

various amounts of target pose information was compared to the performance of a guidance 

loop using an EKF that knows the present target manoeuvre. 

Table 3 shows the achieved miss-distance in 5 guidance loop configurations. Details of the 

parameter values used in these simulations are provided in Appendix A. To examine how 

the availability of mode measurements influence the performance, the PME was examined 

with four difierent amounts of mode information. The scenarios considered were: 

• the PME with mode measurements for the complete simulation, 

• the PME with no mode measurements available, 

• the PME with mode measurements available when range was less than 1500 m, and 

• the PME with mode measmrements available when range was less than 750 m. 

The achieved miss-distances and the count of Pxx bad updates are provided in Table 3. 

Due to the large number of Pxx bad updates it is not possible to determine the influence 

of mode measurement on guidance performance. 
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Table. S: Guidance Rmults 
Filter Miss distance Pxx Bad Updates 
EKF(truth) 
PME(full mode) 
PME(no mode) 
PME{1500m mode) 
PME(750m mode) 

0.8514 m 
7.9520 m 

30.6579 m 
9.0632 m 

10.6382 m 

n/a 
2 

5500 
5501 
5500 

6.3    Simulation Conclusions 

The mimeric problems of the PME are a very serious limitation. Due to the very long time 

it took to perform the sunulatioM (2 weeks for a full sunulation set) it was not possible 

to work towards a numerical stable implementation of the filter. However, by looking at 

the performance of the filter in the sub-set of shnulations that P^z was updated correctly, 

it seems the filter may offer performance advantages over the IMM and EKP approaches. 

This may also suggest that mode me^urements can involve target filter performance. 

The simulation on the performance of the filter in a nmsile guidance problem were not 

conclusive becai^e of the numeric probleuK. The study done here was not complete and 

significant work is required on the PME filter before it could be considered fully examined. 

7    Conclusion 

This report provides a description of recent work examining the xim of hybrid filters in- 

cluding the Polymorphic Estimator (PME) for the estimation of manoeuvrmg targets. 

Details of the filtering problem and standard approadies such as the extended Kalman 

filter (EKF) and the interacting multiple model (IMM) filters were provided. The value 

of mode measurement (or target pose information) was examined and simulation studies 

described. 

The PME, as pr^ented in the literatture, was found to have very serious numeric problems 

that hindered a full evaluation of the hybrid filtering approach. The simulation studies 

suggested that the PME (and the use of mode measurements) may offer performance 

advantages over the well known EKP and IMM approaches; however, significantly more 

work (includmg the development of numerically stable versions of the filter) is requked 

before the examination of the PME could be considered complete. 
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Appendix A    Simulation Environment 

In these appendices we describe the operation of the filter in terms of the notation used 

to implemented the filter in the Matlab*^^. The Matlab*^^ code was used to examine the 

PME, IMM and EKF filters. The filters were examined in two problems: As a stand alone 

filter (representing measurements from the origin), and as part of a missile guidance loop. 

Below we provide a discussion of the implementation of each simulation separately. 

A.l    Path generation: Overview 

A trajectory of a missile is simulated in Matlab-^*^. At each time instant, the kinematic 

state of the missile is represented by a state vector, [x;y;vx;vy], (x,y position and x,y 

velocity) which are stored as columns in the array, Xk. 

The missile in the simulation performs a series of manoeuvres, including straight sections 

and tiurning left or turning right segments. In the code presented above the missile target 

performs 5 manoeuvres on its flight toward the origin : 

• turn left (5sec), 

• straight (6sec), 

• turn right (5sec), 

• straight (3sec) and 

• turn left (5sec). 

The tfirget begins at an initial state, a;^ (with units m and m/s) and all turns are with 

the same, ±phi turn rates (units rad/s). 

Simulated measm-ements of the target from the coordinate origin are also generated, in- 

cluding: 

• A simulated radeu: producing noisy measiu-ements of range and bearing. 

• A simulated imager (imagerl.m) that measures the teirget orientation under noise. 

Target orientation is specified to a 30° sector (bin) numbered 1 — 12 from North. 
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The radar measurements and orientation are combined and produce a wctor of measure- 

ments and are stored in Ymk ([range;bearing;bin]). Tlie mode (or current manoeuvre) of 

the target is recorded as modev, 

A.2    Path Generation: Sub-functions 

In the implementation, the whole trajectory of the missile is simulated by combining 

simulated trajectories for each dktinct manoeuvre. For each manoeuvre the function 

asm.m generate a discrete series of states (xkl) with sampUng time (h), typically OMls. 

Internally, the complete path state record is stored as the vector Sk. Measurements are 

available with sampling time (hm), typically 0.1 s, in the vector Ymk. 

The initial state (xkm) is evolved at each time mstant k using the following state equation: 

xkl = Ahx xkm-j-G xw 

where xkm is the state vector for the previous sample time; ^ft is a 4 x 4 matrix selected 

to produce a path which is straight or turnmg left or right at typically 0.2rad/s; G is the 

covariance matrix of the noise components; and w is the process noise, set to zero for all 

simulations. 

At each measurement mstant, i, a rectangular - polar coordinate conversion is performed 

giving the target range 

Ck(l,i) = ^(SA(l,i X ns))2 + (Sfc(2,i x ns))2; 

and bearing 

Ck{2, i) = atan(Sk{2, ixns), Sk(l, i x ns)); 

where ns = hm/h must be an integer and i is the measurement interval (hm) index. To 

these range and bearing values measurements noise is added: 

Vk(l,i) = i/rvar X randn;    (Range measurement noise) 

and 

Vk(2, i) = sjtvar x randn;    (Bearing measurement noise) 

Here rvar is the range variance, tvar is the bearing variance and randn is Matlab's 

normal distributed random number generation. The radar measurements are recorded in 

Ymkil : 2, i) = Ck{:, i) + Ffc(:, i);. 
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For each measurement, i, imagerl.m works out the orientation of the target (6) and assigns 

a bin number (bin). Imager errors are introduced randomly to simulate the following : 

• Total occlusion (UDE - 5% chance) - selects any bin number at random. 

• Nearest neighboiu- (NNE - 5% chance) - assigns one of the bins either side of the 

correct one. 

The output bin is recorded as Ymk{3,i). 

At the completion of each manoeuvre the state record (Xk), observations (Ymk), mode 

record {modevl) are stored. The final state (xkm) of each manoeuvre segment becomes the 

initial state of the next manoeuvre. The successive Xk, Ymk and modevl are concatenated 

to produce a complete state, measurement and mode record for the path. 
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Appendix B    Filtering Equation Code 

The following subsections d^cribe the various routines used to compare the EKP, IMM 

and PME filter on the target filtering problem. 

initcommon.m Contains initialization and definitions for a munber of parameters and 

matrices which are common to all the filters. Th^e include sample tune (ft), measurement 

time {hm), turn rate (phi) and state tradition matrices {Ac, Ad). The following vectors 

and matrices are also mitialised: initial target state (a;s),initial target state estimate (xhs), 

measurement and proems noise covariance matric^ (Rn, Qn), and the prior state error 

covariajice matrices {Pn). 

The quantity .Ac is (4 X 4 x 3) 3d-matrix where the third mdex corresponds to the selection 

of a 2d-matrix representing the continuous-time state transition matrices corresponding 

to turning left, straight flight, and turning right respectively. The quantity Ad is similarly 

twed to represent three discrete-time state tradition matric«. 

The measurement and process noise covariance matrices (Rn, Qn) are individually stored 

for EKF, IMM and PME filters. The prior state error covariance matrix, Pn, is initialised 

with errors of 100 m in position and 10 m/s in velocity for all runs (unless a larger state 

error is input via xhs). 

EKF filters The EKP algorithm, as described in (3.3) was implemented with notation 

changes to allow for the restricted text format options in the Matlab'''^ code editor. These 

changes are: 

Notes 

ahm is the output of one iteration (XM) 

and also the input of the loop(%_i|fc_i). 

Maths TemK Matlab^*' Term 

&k\k-i xh 

%|fei %-i|fc-i xhm 

^fc-i Ahm 

Pk\k-i Pm 

Pk\k^ ^fe-llfc-l Pm Note: Pm is both the output of one iteration (Puk) 

and the input of the next loop (Pk-iik-i)- 
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Ck C 

Kk Kk 

Vk Ymk 

CkXk\k-\ yhat 

Rk R 

Qk 0 we assume there is no process noise 

At each measurement instant the appropriate state transition matrix Ad{:, :,i) is selected 

(assuming the EKF has access to the true target manoeuvre state. The variable prf is 

used to switch between two measurement situations. If prf = 10 then the measurement 

update occurs at hm. If prf = any other value then the measiurement update occurs at 

10 X hm. The variable xhatv is the complete record of the estimated state output of the 

filter, at the rate dictated by hm. 

For the ekfc.m version, no knowledge of the target manoeuvre is assumed, so the state 

transition matrix corresponding to straight flight Ad{:,:, 2) is used. 

IMM filter The IMM filter, as described in (4.1)-(4.4), was implemented with notation 

changes to allow for the restricted text format options in the Matlab'^^. These changes 

are: 

Maths Terms Matlab^^ Term Notes 

f^i\jik-l) mu2 Equation (4.1) 

^k-l\k-l xoj Equation (4.1) 

pJO 
•Nfc-l|fc-l Poj Equation (4.1) 

4|Jt-l xjh Equation (4.2) 

•\fc|fe-l Pj Equation (4.2) 

4 Kk Equation (4.2) 

4ifc xhjk Equation (4.2) 

pj 
■Nfc|fc Pjk Equation (4.2) 

4 Ljk Equation (4.3) 
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Maths Texxas Matlab^J*^ Term 

Mt+ft fhm 

mut fh 

TA dx X ddtaT 

Ap dPxf X deltaT 
dp dPxx X deltaT 
d p dPxxfm X deltaT 

Pft/j. Pff 

P.^ Pxf 

"xflfl* Pxffi 

"(xn*)xij,"i' Pxfixfm 

■^fl'XIJ,"^ Pfixfm 

^xx^^^^^ Pxxfifm 

ff ybm 

DSTO-TN-0488 

/4 "*« Equation (4.3) 

«fc|fc xkk Equation (4.4) 

Pk\k Pkk Equation (4.4) 

It is assumed in the initial definition of the mode probability (mu) that the the target is 

equally likely to initially be in one of the three possible modes (straight path, tiuning left 

or right). It is also assumed that the target will continue in the same mode (manoeuvre) 

or the target can switch, with equal probability, to any adjacent manoeuvre mode (ie. the 

model does not allow for direct transition between left and right turn modes). Thk mode 

switch is random and described by a probability transition matrix introduced in the PME 

description below. 

PME filter The PME filter, as described in (4.5) -(4.8), was implemented with notation 

dianges to alow for the restricted text format options in the Matlab^^. These dianges 

are: 

Notes 

Time update equations 

Measurement update equations 
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f^t fh 

^t xh 

Ax dxh 

P., Pxf 

Pxx Pxx 

■fx Kk Range/bearing measurements update equations 

This filter is based on the algorithm presented in by Boyd and Sworder. A section of 

Boyd and Sworder's version of the Matlab-^^ code is incorporated using wrapping code 

to translate between the different variable names used in their implementation. 

In defining a hybrid system description appropriate for the PME filter several design 

assumptions were made. It was assumed that the target was able to perform 3 types of 

manoeuvre (straight flight, left turn, right turn). The probability of transitioning between 

manoeuvre modes is described by the (3 x 3) transition probability matrix Aa . The 

elements of Aa are such that A{i, j) represents the probability of changing from mode j 

to mode i. 

At each time instant the target orientation is one of twelve values (corresponding to the 

orientation bins). The probability of changing orientation bin, when that target is in a 

particular manoeuvre mode, is described by 3 (12 x 12) matrices. As, Al and Ar. 

It was decided to use a composite discrete state vector, fh, to represent both the present 

manoeuvre mode and orientation of the target. This vector represents all combinations 

of the 12 orientations and 3 manoeuvre modes so //i is a (36 x 1) vector. The transition 

probability matrix. A, required by the PME is hence a (36 x 36) matrix made up from 

Aa, As, Al and Ar. 

The PME filter also requires an observation mapping matrix, Pb, which describes the 

probability of receiving ybm given that fh has a particular value. Because the orientation 

observation is independent of the target manoeuvre, the mapping matrix, Pb, contains 

three repeated blocks, Po. 
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«t u 

Vc Vc 

A Osd 

d Tlat 
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Appendix C    Evaluation of Guidance 
Performance Code 

To evaluate the filter as part of a guidance loop we simulated a mtesile guidance problem. 

In the missile guidance loop, the missile observes the target through a range and bearing 

measurements. The missile uses thrae measurements to estimate the state of the target 

and then uses these state estimate to guide towards the target. 

The guidance algorithm used in these guidance loop simulations is the augment propor- 

tional navigation algorithm: 

«t = -3(FcA + -d). (Cl) 

where d is the target acceleration perpendicular to the line-of-sight line connecting the 

missile and the target; Vc is the closing velocity; A is the hne-of-sight rate seen by the 

missile; and «t is the control action. 

In previous sections we have introduced all the information necessary to coi^truct the 

state estimates so this is not repeated here. The control algorithm d^cribed above was 

implemented with notation changes to allow for the r^tricted text format options in the 

Matlab^**^ code. These chants are: 
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Appendix D    Matlab-^^ Syntax Headers 

In this section we introduce the headers of the Matlab-^^ code used examine various filters. 

Stand Alone Filters   Figures Dl and D2 demonstrate the interconnection of Matlab^^ 

files used to examine the filters in a stand alone implementation. 

Target 
State and 
Measurements 

Figure Dl: Matlab"^^ files for data generation in stand alone filtering simulation 

Path Generation 

pathlsrsl 

• asm 

• imagerl 

'/.Syntax: : function [Xk,Ynik,modev,zho,Tk,phi,t,hm,h]=pathlsrsl(du]nmy); 
^Description : Generates a target path in 2-d space(x-y)and encompasses 5 manoeuvres - 
'/, left tum(5sec) ,straight(6sec) .right turn(Ssec) .straight(3sec) .left turn(5sec) 
'/.Inputs : nil (all necessary variables are set by initcommon) 
'/.Outputs : Xk-path state vector (4x(T/h)) (T=total path time (sec), h^sample time (sec)) 
'/. Xk(l.:)«i position, Xk(2,:)= y position.XkO.O'^x velocity, Ik(4,:)=y velocity 
y, : Ymk-radar measurements 
'/. Ymk(l,:)=range(m), Ymk(2,:)= bearing(deg.) 
'/, Ymk (3,:)'target direction of travel (bin number, of SOdeg opening) 
'/, :  modev-record of the target mode (straight path or turning left/right) at 
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initcommon 

EKF 

Xk 
Vk 

initcommon 

IMM 

mode 
initcommon 

initpme 

PME 

Target 
filter 
estimates 
xhatv 

Figure DS: Matlab'^^ files for JUters in stand alone filtering simulation 

% 
% 
% 
% 
% 
% 
% 
% 
% 
XCalls 

XAnthors 

XModificatioBS 
XBngs 

%Assi]iiptions 

XSymtaxt 

XDescription 

X 
Xlnputs 

X 
X 
% 
% 
% 
t 
% 
XOutputs 

% 

each saiBple point 
3dio- estimate of the state vector at the beginning of the run 

vk- process and neasnrement noise variance vector 

vk(l)= range neasurement noise variance,vk(2)=bearing meastirement noise variance 

vk(3)=x conqsonent process noise variance,vk(4)= y component process noise variance 

phi= turn rate (rad/sec) - +ve =left tum,-ve = right tnxn of last manoeuvre. 
t= Total flight time 

hm=neasureBient interval (sec) 

h-sasple interval (sec) 

asm.m, initcoBmon.m 

Jason Ford, Peter Hunter 

final version 14-11-01 
nil 

Target has constant velocity sepnents and constant turning rate segments. 

function [Xk,Ymk,xka,nm,modevl]=asm(phi,xkm,vk,t,hm,h); 

Generates a target path in 2-d space(x-y)encompassing 1 manoeuvre - 

left turn (phi=+0,2 rad/sec),straight(phi=0 rad/sec) or right tum(phi=-0.2 rad/sec) 
phi= turn rate (rad/sec) - +ve =left tum,-ve = right turn 

ikm = initial state vector for this manoeuvre iteration. 

vk- process and measurement noise variance vector 

vk(l)= range measurement noise variance,vk(2)=l>earing measurement noise variance 

vk(3)=x component process noise variance,vk(4)= y conponent process noise variance 
t= manoeuvre tine 

hm=neasurement interval (sec) 

h=sair5>le interval (sec) 

Xk-path state vector (4x(T/h)) (T=total path time (sec), h=sample time (sec)) 

Xk(l,:)=x position, Xk(2,:)= y position,Xk(3,:)=2 velocity, Ik(4,:)=y velocity 
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'/. : Ynk-radar measurements 
'/. ymk(l,:)=range(m), Ymk(2,:)" bearing(deg.) 
'/i ymk(3,:)=target direction of travel (bin number, of 30deg opening) 
'/, : xkm - (4x1) initial state vector for the manoeuvre 
'/. : nm - the number of meastirements in the memoeuvre 
*/. : modevl-record of the target mode (straight path or turning left/right) at 
'/, each sample point 
'/Calls : imagerl.m 
'/.Authors : Jason Ford, Peter Hunter 
'/Modifications : final version 15-11-01 
'/Bugs : nil 
'/Assumptions : nil 

'/Syntax: 
'/Description 
•/ 
•/ 
•/ 
'/ 
•/ 
Ji Inputs 
•/ 
•/ 
•/ 
*/ 
•/ 
^Outputs 
'/Calls 
^Authors 
^Modifications 
'/Bugs 
%Assumptions 
'/ 

[bin]«=imagerl(Ymk,Vy,Vx,Y,X,i)j 
The target direction is located in one of twelve 30 deg.intervals(labelled 

cv from North as {1,2,3,..,12}) 
Randomly occurring allocation errors are introduced: 

-NNE - neeirest neighbour error- placed into an adjacent bin due to noise etc. 
-UDE - uniformly distributed error - occlusion of target makes any bin number 

a possibility 
Ymk-not used 
Vy - target velocity - y direction 
Vx - target velocity - x direction 
Y - target location - y direction 
X - target location - x direction 
i - not used 
bin - the direction of target travel as classified {1:12} (noisy result) 
nil 
Jason Ford, Peter Hunter 
fined version 14-11-01 
nil 
Target can be represented by 1 of twelve attitude bins. 
Assumptions on the nature of the error. 

Filters 

pme 

• imm 

• ekf 

'/Syntea: : [xhatp,Pxxv,normrecord,modeestv,binestv]=pme(Ynk,Xk); 
'/Description  : implements a Polymorphic Estimator algorithm to produce an estimate 
'/, of position and velocity of the teurget derived from noisy range 
'/, and beziring measurements from a simulated tracking radar. 
/(Inputs : Ymk-radar measurements from the simulation origin. 
'/ Ymk(l,:)=range(m), Ymk(2,:)= bearing (deg.) 
'/ Ymk(3, :)"target direction of traveKbin number, of 30deg opening) 
7, : Xk-teurget state (x,y,x-velocity,y-velocity) and only used for the initial Pxxv 
^Output : xhatp (4xT) vector of position estimate (i,y, x-velocity, y-velocity) 
'/, : Pxxv(4xT)-vector of Pxx diag elements (used by plotdata routine). 
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% : nonnrecord- debuging info. 

% : aodeestv(liT)-vector of manu. node estimates. 
X : binestv(lxT)-vector of orientation node estimates. 
%Calls : initpme 
XAnthors : Jason Ford, Peter Himter 
^Modifications : final version 22-11-01 

XBugs : The time update step of the algorithm is not particularly stable. 
X Small tine step sizes (ie, h) seem to in^rove the preformance but 
% bad updates of Pxx vector are possible (if this happens the code resets 
X some quantities in the filter to try to stop the filter diverging). 
XAssnn^tions : numeric intergration of continuous-time equations. 

XSyntax: 
XDescription 
X 
X 
X 
X 
Xinpnts 
X 
X 
X 
XOutputs 
X 
% 
% 
X 
X 
XCalls 
XAuthors 
XModifications 
XBugs 
XAssuiqitions 

XSyntaz: 
XDescription 
X 
% 
X 
Xinputs 
X 
X 
X 
X 
XOutput 
XCalls 
XAuthors 
XModifications 
XBugs 
XAssumptions 

: [xhati,Ptev,muT,xhl,xh2,2h3]=imm(Ynik)j 
: Interacting Multiple Mode filter (IMM)- is a filter function used to estimate 
the location of a manoeuvring target.It uses measurement data as well as manoeuvre 
type (straight or tiiming path) to estimate the path of the target. 
It uses the mode estimation to switch between individual EKF algorithms to better 

track the target. 
: Ymk-radar measurements from the simulation origin. 

Ymik(l,:)=range(m). Ymk(2,:)= bearing(deg.) 
Ymk(3.:)=target direction of traveKbin number, of SOdeg opening) 

:modev (IzT/h) vector which logs the actual manoeuvre at each sample point 
:xhati (4xT) vector of estimates (x.y, x-velocity, y-velocity) 
:PKkv combined state covariance matrix 
:mmv mode probability for each modeal filter 
:ihl state estimate of filter 1 
:xh2 state estimate of filter 2 
:xh3 state estimate of filter 3 
: initcommon 
: Jason Ford, Peter Hunter 
: final version 20-11-01 
: nil 

: Based on hybrid system mode of dynamics. 

: function [xhatT]=ekf(Ymk.modev.prf); 
: inqslements an Extended Kalman Filter to produce an estimate of position and 
velocity of the target derived from noisy range and bearing measurements from 
a simulated tracking radar. The filter has the target manoeuvre at each 
saayle point (straight path or turning left or right at 0.2 rad/sec) 

: YiA-radar measurements from simulation origin 
Ymk(l,:)=range(m). Ymk(2,:)= bearing(deg.) 
Ymk(3,:)=target direction of traveKbin number, of SOdeg opening) 

: modev (liT/h) vector which logs the actual manoeuvre at each sample point 
: prf - measurement interval (sec) (pulse repetition frequency of the radar system) 
: xlatv (4xT) vector of position estimate (x,y, x velocity, y velocity) 
: initconraon 
: Jason Ford, Peter Hunter 
: final version 20-11-01 
: nil 
: nil 

Initialisation files 

• initcommon 
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initpme 

•/.Syntax: 
/(Description 
^Inputs 
'/.Outputs 
•/. 
•/. 
•/. 
•/. 
•/. 
•/. 
'/.Calls 
/.Authors 
/.Modifications 
'/.Bugs 
'/.Assumptions 

:initcommon 
; contains the initialization values for all filters 
: nil 
; there are no explicit outputs but the following variables are initialised: 

- h (sample interval(s)},phi(turn rate(rad/sec)),hm 
- xs.xhs 
- Ac.Ad.Rn.Qn.Pn 

for EKF 
for IMM 
for PME 

EKFQ.EKFR.EKFP 
IMHQ.IMMR.IMMP 
Rx.Rxx.Pxx 

nil 
Jason Ford, Peter Hunter 
final version 14-11-01 
nil 
nil 

'/.Syntax: : initpme 
'/.Description : Contains constants and initialization data for the pme.m program 
'/.Inputs : nil 
'/.Outputs : there are no explicit outputs but the following variables are initialised: 
y. - statenum,modenum,binnum,measbin,bigmode 
'/. - hm.minfh 
'/. - Aa.As.Al.Ar.Ai 
*/. - Po.Q.Rx.Rix. 
V.Calls :   initcommon 
/.Authors :   Jason Ford,  Peter Hunter 
/.Modifications :  final version 27-11-01 
/.Bugs : nil 
^Assumptions : nil 

Guidance Evaluation Figure D3 describes tlie structure of the Matlab^^ code used 

to simulate a missile guidance loop using an extended Kalman filter. The Matlab^^ code 

for incorporating the PME filter is similar. 

Matlab Files 

• compaxefilters 

• guidanceekf 

• guidamcepme 

• ekfscon 

• pmelloop 
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initekf.m 
flrst.m 

Manoeuvre Defri 

Guidance Law 

State step forward 
Observations 
Generated     ImagerLm 

mode 

ekfscon 

Xk 

Update Output 
Matrices 

End Engagement 

xhatv 
)dtatvp 
Xk 
Xv 
Ymk 

-*> minv 

Figure DS: Matlaff"^ files for guidance loop simulation using the extended Kalman filter. 

• imagerl 

• first 

• initekf 

initpme 

XcoBiparefiltsrs 
XSyntax: 
^Description 
Xlnputs 
XOutputs 
% 
% 
% 
% 
% 
X 
XCalls 

coaqiaref liters 

runs a mmhex  of control/filter algoritbns to compare the minianm miss distances Cmimr) 
ail 

MISSmin - irector of the minimum miss distances for each filter 
MeanHISSminir - for multiple runs this is the average result for each filter 

additional outputs with prefixes :EKF...(c),PMEHOD....PHENM.,..PMESMISOO..., 
PMESM750.., 

- ekf filter sI^.Xk.xhatv.Xv.ClatT.Tlatv 

- pne filter :Pxxv,Xk,xhatv,pMcotint,pxxvconnt,bad6xtraps,Xv,Clatv,Tlatv 

guidanceekf, guidancepme, first 
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'/.Authors 

/(Modifications 

•/. 

'/. 

•/. 

'/. 

•/. 

•/. 

•/. 

•/. 

'/.Bugs 

%Assumptions 

'/.Syntax: 
'/.Description 
'/. 
•/. 
'/.Globals 
'/.Inputs 
•/. 
'/.Outputs 
•/. 
'/. 
'/. 
'/. 
•/. 
'/. 
•/. 
•/. 
•/. 
'/. 
'/. 
'/. 
•/. 
'/.Calls 
'/. 
'/. 
)(Authors 
J^Hodifications 
'/.Bugs 
^Assumptions 

Jason Ford, Peter Hunter 

16/2/01 ; 

21/2/01 ; 

28/2/01 ; 

12/7/01 ; 

18/7/01 ; 

2/10/01 ; 

3/10/01 ; 

27/11/01: 

nil 

nil 

save workspace to comparef4a.mat 

save workspace to comparef4b.mat 

save workspace to comp2iref4c.mat 

save workspace to comparef4f.mat 

save workspace to comparef4g.mat 

save workspace to comparef4a2.mat 

h=0.0001 s»3 

li=0.001, ekf, ekfc, pmemod 

h^O.OOl s=10 all except ekfc 

h=0.0001, s=l, run=10. only EKF t 
PMEHOD 

save workspace to comparef4a3.mat as for comparef4a2 except all filters 

final version , renamed comparefilters 

tPmt,Xv,Xk,Ski,Ymk,modev,xhatv,xhatvp,Rangev,Tlatv,minv,Clatv]«guidanceekf(timesteps.tiO); 

A simulated engagement between an incoming, manoeuvring target and a radeu: guided 

interceptor. The radar range and bearing measurements are filtered by an EKF, with 

the whole operating within an APN guidance loop. 

B, Q, R. Bt; 

timesteps - the number of time sample points >= realtime/h. 

tiO - interceptor start heading (rad) 

Pmt - diagonal elements of the covariance matrix. It is a diagnostic output to 

enable construction of the 1 sigma circles at each measurement point 

of the filter output. 

Xv - relative state between interceptor and target 

Xk - target state 

Ski - actual target state 

Ynk - measurement sequence (radar range and beeuring measurements) 

modev - the teirget mode vector 

xhatv - estimate of target state 

xhatvp - one-step ahead estimate of target state 

Rangev - teurget-interceptor separation(used for testing guidance loop) 

Tlatv - perpendiculeu: component of the teirget acceleration (testing veiriable) 

minv - minimum miss distance between the target and interceptor 

Clatv - Vector of guidance commemds 

initekf 

ekfscon.m 

imagerl.m 

Jason Ford, Peter Hunter 

final version 27-11-01 

nil 

interceptor position is prefectly known...  in real case would need INS solution 

'/.Syntax: 

'/. 

'/.Description 

•/. 

•/. 
'/.Globals 

'/. 
'/. 
'/. 
'/. 
'/. 
'/. 
V, Inputs 

'/. 
'/ 

[Xv,Xk,Pxxv,Ski,Ymk,modev,xhatv,xhatvp,Rangev,Tlatv,minv,pxxcount,pxzmcount, 

badextraps, Clatv] -guidancepme (timesteps, tiO ,moderaaigemax) ; 

A simulated engagement between an incoming, manoeuvring target and a radeir 

guided interceptor.  The radar range and bearing measurements are filtered 

by a PME, with the whole operating within an APN guidance loop. 

B, Q, R, Bt 

TIMEUPDATE MODEUPDATE BASEUPDATE RADAR_ALL_TIME 

xh fh Pxx Pif Pxxfi xhm fhm Pxxm Pxfm Pxxfim modest 

A Rx Rxx V Q Pb 

pxxcount badextraps pixmcount 

bigmode E 

h P_preset 

timesteps - the number of time sample points •■ realtime/h. 
tiO - interceptor start heading (rad) 

moderangemax - the maximum distance (m) over which the imager provides information 
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^Outputs 

X 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
I 
% 
% 
XCalls 

X 

X 

XAuthors 

XModifications 
XBugs 

XAssnoptions 

XSyntax: 

XDescription 

XGlobals 

Xlaputs 

X 

X 

% 
% 
X 
X 
X 

XOutputs 

X 
X 
XCalls 

XAuthors 

XModifications 

XBugs 

XAssmptions 

Xv - relative state betv«en interceptor and target 
Ik - target state 

Pxxv- diagonal elements of the covariance matrix. Used to construction 

one Sigma circles at each neasurenent point of the filter output. 
Ski - actual target state 

Ymk - meastirement sequence (radar range and bearing measurements) 
nodev - the target mode vector 

shatT - estiuate of target position 

xhatvp - Debug variable 

Rangev - target-interceptor separation(used for testing guidance loop) 

Tlatv - perpendicular coa^sonent of the target acceleration(testing variable) 
minv - minimim iniss distance between the target and interceptor 
pxxcount - Error count 

pzxncount - Error count 

badextraps - Error count 

Clatv - Vector of guidance conmands 
initpne 

pnelloop.m 

imagerl.m 

Jason Ford, Peter Hunter 

final version 27-11-01 
: nil 

: interceptor position is prefectly knosn... in real case would need INS solution 

: bhp,xhia,PiiO=ekf scon(Ahm,xhm,PB,ymk,radarpoints,i,u,xik) j 
: EKF section - one iteration only 
: B. q. R, Bti 

: Aha - initial state transition matrix 

: xhm - initial target state (k-l|k-l) 

: RB - initiaJ. covariance martix (k-l|k-l) 

: Ymk-radar measurements from the simulation origin. 

Tmk(l,:)=range(m), Ymk(2,:)= bearing(deg.) 

YBik(3,:)=target direction of traveKbin number, of 30deg opening) 

: radarpoints - helps determine if a measurement update is required 
: i - time k 

: u - control action of the interceptor. 

: xik - initial interceptor state (k-l|k-l) 

: xhp - state vector - after time update (k-l|k) 

: xhm - measuremnet updated state (kik) 

: Pm - initial covariance matrix for (k+1) 
: nil 

: Jason Ford, Peter Hunter 

: final version 27-11-01 
: nil 

: nil 

XSyntax: : i:dunmy]=pmelloop(YBfc,k,xik,radarpoints,modepoints,moderangemai,Range); 
XDescription  : is a single time iteration of the PME filtering algorithm 

XGlobals : TIHEDPDATE MODEDPDATE BASEOPDATE RADAR.AIi.TIME 

X : xk fh Pxx Pxf Pxxfi xhm fhm Pxxm Pxfm Pxxfim modest 
X : A Bx Rxx W Q Pb 

X : pxxcount badextraps pxxmcount 

X : bipiode E 

X : h P_preset 

Xinputs : Ynik-radar measurements from the simulation origin. 

X Yak(l,:)=range(m), Tmk(2,:)= bearing(deg.) 

X Ymk(3,:)=target direction of travel(bin number, of 30deg opening) 
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'/. 
'/. 
•/. 
•/. 
'/.Outputs 
•/.Calls 
'/.Authors 
'/.Modifications 
'/.Bugs 
y.Assumptions 

'/Syntax: 
'/.Description 
'/. 
'/. 
'/. 
'/. 
'/. 
'/.Globals 
'/.Inputs 
'/. 
'/. 
'/. 
'/. 
'/. 
'i^Outputs 
'/.Calls 
/.Authors 
/.Modifications 
'/.Bugs 
/.Assumptions 

radarpoints - number of radar measurements 
modepoints - number of mode observations 
moderangemax - meiximum range (m) over vhich the image information is available 
Range 
nil explicitly (output via global veiriables) 
nil 
Jason Ford, Peter Hunter 
final version 27-11-01 
Same bugs as PME filter. Numerical unstable. 
Same as the PME filter. 

[bin]=imagerl(Ymk,Vy,Vx,Y,X,i); 
The target direction is located in one of twelve 30 deg.intervals(labelled cw 

from North as {1,2,3,..,12}) 
Randomly occurring allocation errors are introduced: 

-NNE - neeirest neighbour error- placed into an adjacent bin due to noise etc. 
-UDE - uniformly distributed error - occlusion of target makes any bin number 

a possibility 
nil 
Ymk-not used 
Vy - teffget velocity - y direction 
Vx - target velocity - x direction 
y - target location - y direction 
X - target location - x direction 
i - not used 
bin - the direction of target travel as classified {1:12} (noisy result) 
nil 
Jason Ford, Peter Hunter 
fineil version 27-11-01 
nil 
nil 

'/.Syntax: : first 
'/.Description :  contains the initialization values for all filters evaluated in the control loop 
y. environment 
y.Globals : nil 
'/.Inputs : nil 
^Outputs : there are no explicit outputs but the following variables are initialised: 
y. - Basic System Parameters :h ,phi,hm,modeh,radarh 
y. - Sample Numbers/sec     :modepoints,radarpoints,controlpoints 
y. - Initial State vectors  :ta,xs,tiO,xis 
'I, -  Noise variances       :pxvar,pyvar,rvar,tvar 
'/. - Debugging Switches     :TIMEUPDATE.MODEUPDATE,BASEUPDATE,RADAR ALL TIME 
'/, -  Iteration Parameters   :s,runnum,seedoff 
'/.Calls : nil 
y.Authors :  Jason Ford, Peter Hunter 
'/.Modifications :  final version 27-11-01 
'/.Bugs : nil 
'/.Assumptions : nil 

'/.Syntax: : initekf 
'/.Description :  contains the initialization values for EKF filter 
'/.Globals : B, q, R 
'/Inputs : nil 
'/Outputs :  there are no explicit outputs but the following variables are initialised: 
•/. -phi 
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X 
X 
% 
% 
XCalls 
XAuthors 
XModifications 
XBugs 
XAssosptions 

-xhs 
-Ac,Ad,Aint,Aintd,Bt,Bi 
-Pn.Qn.Ha 
-EKFP.EKFQ.EKFE 

nil 
Jason Ford, Peter Hunter 
final version 27-11-01 
nil 
nil 

XSyntaz: : initjmie 

XDescription  : contains the initialization valnes for the guidancepme program 
XClobals : nil 
Xinputs : nil 

XOutputs : there are no explicit outputs but the following variables are initialised: 
7, -stateniini,iBodenua,binnuiB,measbin,bipnode 
X -pxxcount 
X -f.fh.fhm.minfh 
X -H 

X -zhiB,3chs,sh,xkia,xo,zho,ym,ybm 
X -Aa,As,Al,Ar,A,Ah,Alai,Ac,Ad,Ai,Aint,Aintd 
X -Bt,Bi.C,Ck,E,G 

X -Pn,Po.Pbl,Pb,Pxf,Piffi,Pii,q.Qn,Bn,Ex,Rxx 
X ~IlKL,Pxx_p,pixx_p,Pzx_ai,pixx_n,phi_m,phi_p,Pxp_ni, 
X -Pxp_ai,Pxp_p,i_p,x_in,badextraps 
XCalls : first 
XAuthors : Jason Ford, Peter Hunter 
XModifications ; final version 27-11-01 
XBugs : nil 
XAssuaptions  : nil 
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Appendix E    Simulation Parameter Values 

E.l    Stand-Alone Filter Evaluation 

The following parameter values were used in the stand-alone filter evaluation: 

h = 0.001s sample time 

hm = 0.01s measurement time 

xs = [36000,36000, -300, -300] initial target state 

xsh = [36100,36100, -310, -310] initial target state estimate 

phi = 0.2rad/s turn rate 

Aa = mode transition probability matrix (3x3). 

If in straight flight mode: 

0.98 straight path will continue 

0.01 change to left (or right) turn mode 

If in a turn flight mode: 

0.99 that the tm-n will continue 

0.01 change to straight flight mode. 

Al, As and Ar= Probability matrix for manoeuvre induced bin 

number change, each (12 x 12). 

As straight path gives no change (Identity matrix). 

Al left turn - probability of transition to next left bin is 0.05. 

Ar right turn - probability of transition to next right bin is 0.05 

fh bin transition indicator (36x1). 

Initialised so that fh{8) = 1, fh{i) = 0 for all other i 

E.2    Filters in Guidance Loop 

h = 0.0001 

hm = h 

radarh = 1 

controlh = 0.01 
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phi = 0.2rad/s 

rvar = (40m)^ target range measurement -variance 

tvar = (1,75 * 10~^rad/sf target bearing measurement variance 

timesteps = 100,000 

xs = [2000, lOM, 660 x cos(225), 660 x sin(225)] 

[100,100,10,10] initial state estimate errors 

to = 225° initial target heading 

xis = [0,0,1000 X cos(7S), 1000 x sin{75)] 

tiO = 75° interceptor initial bearing 
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