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ABSTRACT

This report examines the problem of estimati:ig the location, velocity and
manoeuvre of a manoeuvring target (from range; bearing and pose informa-
tion). The report considers a non-linear modeling technique in which the target
is represented as a hybrid system (a combination of discrete and continuous val-
ued states) and considers new associated approaches such as the polymorphic
estimator. k

Although simulation studies were performed, the polymorphic estimator
had serious numeric problems that suggested the estimator should not be used
until the approach is refined. This report is iﬁtended to facilitate further
discussion and development of the approach (if deemed necwsa,ry}; hencé, it

includes details of the assumptions made and the Matlab”™™ implementation.
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Estimation of Manoeuvring Targets using Hybrid Filters

EXECUTIVE SUMMARY

Modern guided weapons are frequently required to operate in a complex environment that
often involve highly complicated behaviours. In these types of engagements, assumptions
of linearity no longer hold and model uncertainties in the form of unmeasured aerody-
namic coefficients and complex non-linear aerodynamics are common. The tafget filter
is an important sub-system of any guidance Iéop that estimates the required target and
engagement information. To improve the performance of this target filter in challenging

environments involving manoeuvring target, a full understanding of any non-linearities

present is required.

The aim of this report is to investigate the manoeuvring target filtering problem, to exam-
ine the importance of mode measurements and to examine a particular filtering approach.
A i-'e\riew of existing filtering results is provided before introducing a non-linear filtering
approach known as hybrid ﬁiteriﬁg. Three possible filtering approaches are examined in
simulation studies: the extended Kalman filter, the intéracting multiple model filter and
a new hybrid filtering approach. The simulation studies su‘ggést that mode measurements
may improve target filtering performance but the studies do not support the use of the

examined hybrid filtering approach. Some refinement of this hybrid filtering approach is
required.

An improved understanding of filtering techniques is required to aid support of present
upgrade programs involving the guidance loops of new air-to-air and standoff missile sys-

tems. This understanding is necessary for the support of future weapon procurement and

upgrade programs.
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1 Introductién

Precision guidance of weapon systems is a cempntationél}y and conceptually demanding
problem [2]. Historically, due to real-time computing constraints, major approximations
in the control design process have been necessary. Recent advances in missile sub-systems
mean that modern guided weapons have significantly improved computational capacity

| and hence various modelling approximations are being reconsidered [2].

One sub-problem of the missile guidance problem is estimation of the target position and
velocity (and other quantities) from measurements such as range and bearing to the target.
A common approach involves developing a system model of the relationship between the
target state (position and velocity say) and the measurements available. Once a systefn
model has been obtained, the target estimation problem can then be posed as a model

based filtering (or optimal fltering) problem.

Across many fields of study, one of the more famous and {:{)iz;monly used system models _
describes the relationship between the states of a systeﬁa and system measurements as a
linear Gauss-Markov system with Gaussian noises. This model assumes linear dynamic be-
haviour of the internal system state {with perhaps an additive Gaussian noise disturbance)

and measurements that are noisy linear functions of the state.

This linear Gauss-Markov system assumption is popular because, although most systems
have no finite dimensional optimal filter, the Kalman filter has been shown to be the

- optimal filter for such a system [1, 5]. In this context, ogtimality is in the minimum
mean ‘squares sense and a filter is finite dimensional if it can be implemented using a finite . -
number of statistics which can be calculated using a finite number of recursions. Because

the Kalman filter is a finite dimensional optimal filter it has been applied to a large variety
of filtering problems.

In a typical interceptor-target engagement, measurements are the relative range and bear-
ing to the target (and perhaps pose information). These measurements. are non-linearly
related to the relative position and velocity of the target in cartesian co-ordinates. Because
of the non-linearity in the measurement process, the Kalman filter is not appropriate for
this problem (even under the assumption that the state dynamics of the target are Gauss-

linear). Further, if the target is performing manoeuvres then a Gauss-linear model of the
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target dynamics is no longer appropriate.

For general non-linear problems, when a finite-dimensional optimal filter is not possible,
sub-optimal numeric or approximate approaches must be used. The simplest approach
is to use an extension of the Kalman filter known as the extended Kalman filter (EKF)
[5, 1]. The EKF involves linearisation of the non-linear model about the current operation
point. The EKF approach, although appealing due to its similarity to the Kalman filter,

does not perform well in many non-linear filtering problems.

Some non-linear systems can be well represented by a non-linear model known as the
hybrid system model (a model that contains a mixture of continuous and discrete valued
states). Close to optimal finite dimensional filters have been designed that perform better

than EKF approaches on these systems.

In this report we compare three non-linear filtering approaches to the problem of estimat-
ing the state of a manoeuvring target. The three approaches are a simple EKF approach
(included as a benchmark), the interacting multiple model (IMM) filter [9], and the poly-
morphic estimate (PME) [18]. The IMM and PME are filtering approaches designed on
an approximate hybrid model representation of the manoeuvring target. An important
issue is whether these hybrid system models are realistic representations of manoeuvring

target dynamics.

The key aim of this report is to examine the performance of these three filtering approaches
in a manoeuvring target filtering problem to evaluate the apparent advantages of a hybrid
system filtering approach. The second aim of this report is to examine these filters as part
of a missile guidance loop. A third aim is to examine the influence of pose information on

a missile guidance loop.

The report is structured as follows: In Section 2, we introduce several possible dynamic
models and then introduce the target filtering problem. In Section 3, the extended Kalman
filter solution to the problems is presented. In Section 4, the interacting multiple model
filter and the polymorphic estimator are presented. In Section 5, some implementation
issues are discussed. In Section 6, simulation results are presented. Finally, in Section 7,

some conclusions are presented.
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2 Target Filtering Problem

In this section we present the manoeuvring target tracking problem. Many formulations of
the target tracking prebleﬁ} are commonly used. The formulation presented below allows
several different types of dynamic models to be considered in a similar formulation. We

first introduce the filtering problem, then introduce two target models.

2.1 The Filtering Problem

The manoeuvring target filtering problem stated in the broadest terms is to determine in-
formation about the state, usually denoted z, and perhaﬁs the target manoeuvre, denoted
here u’g’, from measurements up until time k. In the context of the target tracking prob-
lem, we are usually interested in estimating the position, velocity and perhaps manoeuvre

of the target from range and bearing measurements.

For the purpose of this report we are going to consider filtering and estimation from a
model based perspective where estimation is according to a conditional mean criteria (we

will limit our interest to statistics of the state such as the mean and variance).

An exact study of the properties of the presented filters is beyond the scope of this re-
port. Various practical approaches are considered in the following sections but none of
these filters are optimal. We will examine the proposed approaches according to their

performance in a target tracking problem.

2.2 Continuous State Model
Consider the following non-linear model for engagement with‘ a manoeuvring target:

T I
Tg+1 = Gk(zk,u&,ﬂks?fk}

u = celzr,wg) : (2.1)

where z;. € RY is a state describing both the target and interceptor dynamics {or perhaps
the relative dynamics between the two), ul € U (z1) is the manoeuvre performed by the
target which is an unmeasured input, zai is the maaoeuﬁe performed by the interceptor

which is assumed to be known, y; € RM is the observation, vy is a process noise process,
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and wy is a measurement noise process. The set U(z;) is the complete set of target

manoeuvres that can be performed from state z.

This model is generic enough to include general target manoeuvres, general measurement
processes, and complicated aerodynamics. The problem considered in this report is esti-
mation of the state, zj, from the measurements y,. The general filtering problem for the
above non-linear system with unmeasured u has not been solved in analyt'ic form (there
are several numeric approaches such as the particle filter which are outside the scope of

this report and not considered here).

In some situations it is reasonable to use a more restrictive stochastic process to describe

ul and to assume linear state dynamics as follows:

Tpr1 = Az + BT'uzw + BIu,,Ic + v

Yk cx(zk) +ng (2.2)

where A € RN*VN 4, and ny are Gaussian noise processes, and uf is a stochastic process

dependent on zx and u} ;.

This filtering problem is also difficult and no analytic solution exists. The model (2.2) is
appropriate for an extended Kalman filter solution to the target estimation problem. We
will discuss this approach later but first we introduce further restrictions on the input that

lead to a hybrid system model.

2.3 Hybrid System Model

In this subsection we consider a further restriction on uf that leads to a hybrid system
model and leads to two alternative filtering approaches. Consider the case that U(zy) is
restricted to be a finite set (whose elements correspond to distinct possible target acceler-
ations) and further that u] is a Markov process. With this finite set restriction, assuming

linear state dynamics, the following model is obtained:

ul is a first order Markov chain

AWz + Blul + v,

I

Tk+1

Yk cx (k) + wg. (2:3)
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where ul is a finite process that takes values from a discrete set (of size Nyy) whose values
approximate the behaviour of the target. Here each A(.) i;iéexed by uf,z: describes the
target dynamics for each of the possible target manoeuvres. For example, A(0) = A where
0 indicates the target is not performing a manoeuvre etc. It should be noted that this
target acceleration model, (2.3), only holds when the possible target control actions are

restricted to perpendicular accelerations. -

This system is considered a hybrid system model because it contains a mixture of contin-

uous valued and discrete valued states (zx and ul respectively).

The motivation in censideriﬁg a hybrid system appmximatioﬁ for the continuous system
{(2.1) stems from the knowledge that “close to optimal” ﬁiteﬁng solutions for hy‘brid sys-
tems exist. The meaning of “close to optimal” will be discussed in a later section. A
key question is whether a “close to optimal” solution on the hybrid system approximation
achieves better performance than an approximate solution based on a continuous system

model. This issue is investigated in Section 6 via simulation studies.

The system model (2.3) is appropriate for both the interacting multiple model and the
polymorphic estimator {(both are discussed in Section 4).

3 The Extended Kalman Filter

The Kalman filtering is the optimal filter for a linear Gauss-Markov system. System (2.2)
is linear Gauss-Markov when A(u;) = Ag, ck(zx) = Crzr and vg,wi are independent
sequences of Gaussian noise. The Kalman filter is optimal in the sense that it produces

estimates, £, that minimise
E[(zk — Zapt) (2k — Eix) [v0, - - -, Yx]-

The extended Kalman filter extends the concept of the Kalman filter to a non-linear
system model via linearisation. The extended Kalman filter (analogous to the Kalman
filter) calculates a state estimate, a covariance matrix, a priori state estimate and a priori

covariance matrix at each time instant (Exik s Prjks Zrjk—1 and Pyyr—; respectively).

To develop the extended Kalman filter for this problem we first assume that ol is available
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(this assumption will be relaxed later). Let us define the following quantities:

Ar & A@T), and (3.1)
A 6ck(X)

c, & %%\2) . 3.2

k X lxetin. (32)

Here Ar € RV*N) and C) € R(MxXN),

Let us also introduce matrices Q} and R} which are the covariance matrices for noises w;,

and Vk.

The extended Kalman filter is implemented using the following equations [1, 5):

Erk-1 = ok—1(EBx_1pp—1, 0  uf, v5)
Pukr = A 1P g4k +Q;
Ky = Py_1Cp [Ckpklk—lcllc + RZ] -
Zee = Zpp-1+ Kk [yk - Ck(-’£'k|k—1)]

Por = Prjg—1 — KxCrPrp (3.3)

Given a sequence of measurements, yk, the extended Kalman filter provides a sequence of
estimates, £, and an estimate of error covariance Pyji. Although in non-linear estimation
problems higher order moments can be significant, the EKF only keeps track of 1st and

2nd moment information (kg -15Pkjk-1)-

The above implementation assumes that an estimate of the target manoeuvre is available.
Often a target manoeuvre estimate will not be available and a common strategy is to
then assume the target is not manoeuvring. This sort of approximation about the target
manoeuvre significantly affects the performance of the filter and is the prime motivation

for considering the two filters described in the next section.

Another possible alternative is to include the target manoeuvre as part of the system state.
However, when formulated this way the system model becomes highly non-linear and the
extended Kalman filter itself (which is based on linearisations) is likely to be unstable

when initialised poorly.
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4 Hybrid System Filtering

In this section two separate approaches to the filtering problem for hybrid systems are
discussed. The first filtering approach considered .here is the interacting multiple model
filter which is based on the concept of a running bank of filters (one for each of the possible
manoeuvre modes) and then combine the output of each filter ie obtain an estimate of the
target state. The second filter considered is the Polymorphic Estimators which is based

on a sub-optimal approximation to the optimal solution of the hybrid system filtering

problem.

4.1 Interacting Multiple Model Filter

The interacting multiple model filter is a filtering approach (based on the model (2.3))
that involves running a sub-filter for each of the distinct manoeuvres modelled [9]. At
each time step, each individual sub-filter uses any new measurements, mode probability
information and previous sub-filter outputs to generate a new estimate based on the sub-
filter’s assumed manoeuvre. Then the output all these sub-filters is combined according

‘to certain probability information to produce a new current overall target estimate. This

is explained in more detail below.

Let éi—lik—z and P;;—Iik—l be the outputs of the ith sub-filter at time k — 1 and let A%
be the transition probability from manoeuvre i to manoeuvre j Also, let pi_i denocte the

estimated probability of being in mode 7 at time & — 1.

Then
#;33—1 = ééﬁ#?z-;
0 N+U i
N _ i il
”"ﬁ:—,zik—i = Z x}bl!k—lf“k—i
i=1

2, NU 21 . - = ‘ . ry - ‘
Plkx = 2oy (Bhoaes + @hopes = 0 1) @y — 5% ) ) (1)

=1

where é‘:f;a_lik_i and Pﬁl;ﬁ-—i are the inputs to the jth sub-filter at the kth cycle used

below, pﬁi 1 is the probability that a particular transition of manoceuvre occured, and ¢/

is a normalisation constant (from p,;g}_ 1 Over ).
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Then the Ny sub-filters iterate as follows

A
P,{,k_l = Ak—l(j)Pzgllk_lAk—l(j), + Q7 %
K| = Pl ,Ch[ChPiyCh+ Rin]”
‘i'Zuc = i’i]k—1 + K] [yk - ck(‘?’iw—l)]
Pl = Pl ~KCeP) (42)

50 T .1
ak—l(ﬂ"'i_uk—p“k = J, U, Vk)

where Cy, was defined in the last section and Ag(5) = Al =j).

. The mode probability can be calculated as

] . 50 j0
AL = P (ykluk = Jr"i-uk—vP I'Z—llk—l)
. . NU - »
W= ALY A (43)
=1

where c is a normalisation constant.

The overall estimate of the overall scheme at any time is given by
NU . .
2 - PR
Tk = in|k”k
j=1

No . . .
Pklk = Zl‘i (PIZIk + (ﬁiw - iklk)(-’i’ilk - L’A’k]k)l) (4'4)
=1

Note that the IMM filter keeps track of only 1st and 2nd order moment quantities
(@Bl

4.2 Polymorphic Estimator

Unlike the EKF and IMM filters presented above, the polymorphic estimator keeps track
of several higher order statistics to improve the quality of state estimates for the hybrid
system (2.3). By studying the optimal filtering problem for (2.3) and making approxima-
tions in equations involving 4th and 5th order moments, filters with improved performance
can be obtained. We provide no other details about the development of the PME and the

reader is directed to [18] for any more information. Here we simply present the filter.

To simplify the presentation, we consider the PME as a two step process: a time update

step, and a measurement upda.ﬁe step.
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Time Update

In between measurements, the statistics of the hybrid system evolve according to the
underlying dynamics of the system. For this reason, the time update step of the PME is
typically done via numeric integration of the following differential equation. In general,

the evolution of these equation can not be implemented as difference equations.

Bit+se = fiﬂ't
N
Lo = Y 4i) (s + PS)
dt par (1 T
d ;L . ~ :
TP = Pudo+ Z A4(i) (8PS} + Pryys + Poyil)
) ,
EPM = ZA;(?.) (:ng(‘) + Pzog,: + Pm;&) + R(§)pt
=1
d Ny o ) «
ZPesum =Y Ai) Payiyeym + P #,)w,at(g} + Py Qi (4.5)
=1

where A is the ith row of A and A() is the ith column of 4. Note that

Py = diag(ps) — pep

P, = P,
P, Tupt = 1:;:’ (el ;u’f)f + a“iP Tu

Plapiyaum = Pagyiym + i Pogym + 8tPyigum — P (P( m))’
Pygm = PS). and

zpp
Pooim = Proym + Pgp™ — p™ L7 #Pm:;:’""' za:s”@‘ ifi=m (4.6)
Nt =" Py — 1 ‘P, zopm — Poopt ™ . otherwise

where diag(X) is the diagonal matrix with X on its diagonal.
Measurement Update

If either range and bearing or pose information becomes available, then the state estimate
of the hybrid system filter can be updated as shown in the‘ following two sub-sections.
Note that if both types of measurements become available at the same time instant then
the update steps can be performed sequentially. Although the following equations are

generally implemented as discrete time recursions, to ensure conformity with the time




DSTO-TN-0488

10

update equations, we have expressed the updates as changes from #; to #; etc. at the

discrete time instants that measurements occur.

Mode Measurements Assuming that there are measurements of the target pose 3",
this information can be incorporated into the filter estimates. Here yi" € {e;,...} is a

discrete value representation of the target pose (for example, the target orientation in the

yaw-plane).
g =A™y
pEo= p g Ap=pf —py
8f = & +Podl; Az =Pngl

Ny
Py = Ppy—AzAp'+3Y P (i)

i=1

o
Poy = Pop— AzAz+ ) Popyiii(i) (4.7)

i=1
where the ijth element of A™ is the probability of being in mode 7 given that the target
pose is j, §i* is a pseudo measurement of target mode, and * is the operation of element-

by-element multiplication.

Range/bearing Measurements Range and bearing information, y;, can be used to

update the target state information as follows

Y= = PzzCI(CszC’ + R)_l

& = +nuw
Pyy = Py~ 7CPy
Pry = Py —7(CPC' + R}y, ' (4.8)

4.3 Other Filtering Approaches

There are many other non-linear filtering approaches that may be considered appropriate
for this problem. The robust Kalman filtering approach may be considered an alternative
to the extended Kalman filtering approach [16]. More success can be obtained from non-
model based approaches such as Monte Carlo approaches [15] and the particle or auxiliary

particle filter approach [17].
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Also of interest is the collection of approaches to the hybrid filtering problem. There are
many sub-optimal hybrid filtering approaches available and this paper only had time to

examine one. Some of the other hybrid filtering approaches many be worth considering,.

None of these alternative approaches were examined in the context of this simulation study,
but previous work suggests that the particle filter approach may offer some advantages

(once the technique has become well developed). Further comment is outside the scope of
this report.

5 Implementation Issues

This section discusses some of the implementation issues associated with the above filters.
In the first sub section we will discuss some issues directly. Further information about the

Matlab™ implementation and the syntax and header files can be found in Appendix A.

5.1 Direct Issues

Implementation of the extended Kalman filter has been covered by many other authors (See
[5] for example), and implementation issues with respect to the IMM are well understood

[9] so this section will concentrate on issues related to the Polymorphic Estimator.
Numeric Stability

In our studies, the Poiymt}rphie Estimator was found to have serious numeric stability
problems. The most significant of these problems was the instability in the time update
step of the ﬁltef. The time update step requires numeric integration of a non-linear
system of equa;tions. In our implementation of the filter, a Eﬂer approximation was used

for integration purposes.

It was found that unless the step-size was reduced to h < 0.001 the filter would often
update Py, and other matrices to non-positive definite matrices (non-valid updates). While
decreasing the step-size did reduce the number of non-valid updates, the incidence of non-

valid updates was not completely removed. When this positive definite property is lost,

the filter quickiy diverges.

11
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Alternative implementations, that were not tried, may have reduced the incidence of non-
valid updates these include: reformulation of the update equations to maintain the positive

definiteness property, and the use of other numeric integration techniques.

Instead, the implemented code checks for non-valid updates of the matrices and attempts
to correct the updates and keep the filter stable. In simulation studies in Section 6,
simulations involving situations where the PME had extensive numeric problems have
been excluded. Hence, the reader must consider the results as best case results, indicative
of the sort of performance that may be possible for a hybrid system filtering approach,

rather than an endorsement of the PME filter.

The numeric stability problems on the PME were found to be significant enough to exclude

use of the filter in a practical environment.

Target Motion Assumptions

The target is assumed to exhibit piece-wise perfect linear and perfect turning motion. The
turn rate of the target was assumed to be perfectly known by the filter, but the timing of

turning events is not.

These target motion assumptions as quite unrealistic. In real problems the turning rates
will neither be known nor be constant. An extensive investigation of situations involving
model mismatch is required before any hybrid system filtering approach could be applied to
areal problem. Such examinations have been performed for the IMM filter [9]. However, in
this study, the computation effort required to implement the PME filter was too significant
for us to test a large set of engagemenfs and hence performance during mismatch was not

examined.

Inteceptor Motion Assumptions

A simple augmented proportional navigation guidance law without either guidance or

autopilot lags was used to evaluate the filters as part of a guidance loop.

Matlab”™ Implementation

Details of the Matlab”™™ implementation of the filters are presented in Appendix A
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6 Simulation Studies

In this section we examine the three presented filters in an engagement against a target
performing a series of manoeuvres. We first consider the error performance of the filfers

(under no guidance) and then we investigate the miss distance performance when these

filters are used in a missile guidance loop.

6.1 Stand Alone Filter Performance

To examine the performance of the filters, the EKF, IMM and PME were used to filter data
in a total of 1249 simulations. Details of the parameter values used in these simulations
are provided in Appendix A. The EKF with knowledge of the actual target mode was
also simulated. Because all the filters in this study are EKF based the EKF filter with

knowledge of the actual target mode provides a lower bound on performance.

As discussed in the previous section, the PME filter sometimes has numeric difficulty in
the P, update step. The implemented version of the PME filter monitors the P, update
step and provides a count of the number of bad update steps. The simulation studies

suggest that Whé:a more than 5 bad P,; updates occur the performance of ‘the Fyy can be

quite poor.

Although, the performance of the PME was quite unsatisfactory, some selected results are
presented in the tables below to demonstrate what perférmance gains might be possible if
the numeric problems can be resolved. In Table 1, the average error performance of the

filters are compared on the 75 data sets for which the PME had no bad P, updates.

The average mean error values presented in the table is the average error over the last 100
points of the selected simulation run. The variance of error supplied in the table is the
variance of individual simulation errors across the selected set. In Table 2, the average

error performance of the filters are compared on the 244 data sets for which the PME had

one or less bad P, updates. The other 1005 runs have greater than one bad update.

13
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Table 1: Filter results with no bad P,, updates

Filter Average Mean Error | Variance of Error
EKF(truth) 33.1m 82.9 m*
EKF 569.0 m 446.9 m?
IMM 118.3 m 1380.9 m?
PME 72.6 m 332.9 m?

Table 2: Filter results with one or less bad Py, updates

Filter Average Mean Error | Variance of Error
EKF(truth) 326m 70.2 m?
EKF 574.7m 1400.2 m?
IMM 116.0 m 992.7 m?
PME 75.9 m 1257.3 m?2

6.2 Filters in a Missile Guidance Loop

To evaluate the performance of the PME and the influence of having pose measurements
of the target available in the missile guidance problem, the performance of the PME with
various amounts of target pose information was compared to the performance of a guidance

loop using an EKF that knows the present target manoeuvre.

Table 3 shows the achieved miss-distance in 5 guidance loop configurations. Details of the
parameter values used in these simulations are provided in Appendix A. To examine how
the availability of mode measurements influence the performance, the PME was examined

with four different amounts of mode information. The scenarios considered were:

e the PME with mode measurements for the complete simulation,
e the PME with no mode measurements available,
o the PME with mode measurements available when range was less than 1500 m, and

e the PME with mode measurements available when range was less than 750 m.

The achieved miss-distances and the count of P;,; bad updates are provided in Table 3.

Due to the large number of P,, bad updates it is not possible to determine the influence

- of mode measurement on guidance performance.

14
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Table 3: Guidance Results

Filter Miss distance | P,, Bad Updates
EKF(truth) 08514 m nfa
PME(full mode) C79520m | 2
PME(no mode) 30.6579 m | 5500
PME(1500m mode) 9.0632 m 5501
PME(750m mode) 106382 m | 5500

6.3 Simulation Conclusions

The numeric problems of the PME are a very serious fimitation. Due to the very long time
it took to perform the simulations (2 weeks for a full simulaiien set) it was not possible
to work towards a numeﬂéal stable implementation of the filter. However, by looking at
the performance of the filter in the sub-set of simulations that P,, was updated correctly,
it seems the filter may offer performance advantages over the IMM and EKF approaches.

This may also suggest that mode measurements can involve target filter performance.

The simulations on the performance of the filter in a missile guidance problem were not
conclusive because of the numeric problems. The study done here was not complete and

signiﬁcant work is required on the PME filter before it could be considered fully examined.

7 Conclusion

This report provides a description of recent work examining‘the use of hybrid filters in-
cluding the Polymorphic Estimator (PME) for the estimatibn of manoeuvring targets.
Details of the filtering problem and standard approaches such as the extended Kalman
filter (EKF) and the interacting multiple model (IMM) filters were provided. The value

of mode measurement {or target pose information) was examined and simulation studies
described.

The PME, as presented in the literature, was found to have very serious numeric problems
that hindered a full evaluation of the hybrid filtering approach. The simuiati&jﬁ studies
suggested that the PME (and the use of mode measureméhts) may offer performance
advantages over the well known EKF and IMM approaéhes; i however, signiﬁcémtiy more

work (including the development of numerically stable versions of the filter) is required

before the examination of the PME could be considered complete.
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Appendix A Simulation Environment

In these appendices we describe the operation of the filter in terms of the notation used
to implemented the filter in the MatlabT™. The Matlab”™ code was used to examine the
PME, IMM and EKF filters. The filters were examined in two probleins: As a stand alone
filter (representing measurements from the origin), and as part of a missile guidance loop.

Below we provide a discussion of the implementation of each simulation separately.

A.1 Path generation: Overview

A trajectory of a missile is simulated in Matlab”™. At each time instant, the kinematic
state of the missile is represented by a state vector, [z;y;vz;vy], (x,y position and x,y

velocity) which are stored as columns in the array, Xk.

The missile in the simulation performs a series of manoeuvres, including straight sections
and turning left or turning right segments. In the code presented above the missile target

performs 5 manoeuvres on its flight toward the origin :

¢ turn left (5sec),
e straight (6sec),
e turn right (5sec),
o straight(3sec) and

o turn left (5sec).
The target begins at an initial state, ; (with units m and m/s) and all turns are with
the same, +phi turn rates (units rad/s).
Simulated measurements of the target from the coordinate origin are also generated, in-

cluding:

¢ A simulated radar producing noisy measurements of range and bearing.

o A simulated imager (imagerl.m) that measures the target orientation under noise.

Target orientation is specified to a 30° sector (bin) numbered 1 — 12 from North.
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The radar measurements and orientation are combined and produce a vector of measure-

ments and are stored in ¥'mk ([range;bearing;bin]). The mode (or current manoeuvre) of

the target is recorded as modev.

- A.2 Path Generation: Sub-functions

In the implementation, the whole trajectory of the missile is simulated by combining
simulated trajectories for each distinct manoeuvre. For each maneeavfe the function
- asm.m generates a discrete series of states (zk1) with sampling time (k), typically 0.001s.
Internally, the complete path state record is stored as the vector Sk. Measurements are

available with sampling time (hm), typically 0.1 s, in the vector Ymk.
The initial state (zkm) is evolved at each time instant k using the following state equation:
zkl = Ah x zkm + G x w

where zkm is the state vector for the previous sample time; Ah isa 4 x 4 zna.trix selected .
to produce a path which is straight or turning left or right at typically 0. 2rad/s, G is the

covariance matrix of the noise components; and w is the process noxse, set to zero for all

simulations.

At each measurement instant, i, a rectangular - polar coordinate conversion is performed

giving the target range

Ck(1,9) = 1/(Sk(L,i x n5))? + (Sk(2,4 x ns))%;
and bearing ’ — _
Ck(2,i) = atan(Sk(2,i x ns), Sk(1,4 x ns));

where n.s = hm/h must be an integer and i is the measurement interval (hm) index. To

these range and bearing values measurements noise is added:

VE(1,1) = Vrvar X randn; (Range measurement noise)
and , »
VE(2,7) = Vtvar x randn; (Bearing measurement noise)

Here rvar is the range variance, tvar is the bearing variance and randn is Matlab’s

normal distributed random number generation. The radar méasu:ements are recorded in
Ymk(1:2,i) = Ck(;,3) + Vk(:,1);.

19
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For each measurement, i, imagerl.m works out the orientation of the target (6) and assigns

a bin number (bin). Imager errors are introduced randomly to simulate the following :

¢ Total occlusion (UDE - 5% chance) - selects any bin number at random.

e Nearest neighbour (NNE - 5% chance) - assigns one of the bins either side of the

correct one.

The output bin is recorded as Ymk(3, 7).

At the completion of each manoeuvre the state record (Xk), observations (Ymk), mode
record (modevl) are stored. The final state (zkm) of each manoeuvre segment becomes the
initial state of the next manoeuvre. The successive Xk, Y mk and modevl are concatenated

to produce a complete state, measurement and mode record for the path.
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Appendix B  Filtering Evaluation Code

The following subsections describe the various routines used to compare the EKF, IMM

and PME filter on the target filtering problem.

- initcommon.m Contains initialization and definitions for a number of parameters and
matrices which are common to all the filters. These include sample time (h), measurement
time (hm), turn rate (phi) and state transition matrices (Ac, Ad). The feﬂowing vectors
and matrices are also initialised: initial target state (zs),initial target state estimate (zhs),

measurement and process noise covariance matrices (Rn, Qn), and the prior state error

covariance matrices (Pn).

The quantity Acis (4 x4 x 3) 3d-matrix where the third index corresponds to the selection
of a 2d-matrix representing the continuous-time state transition matrices cerrespcnding
to turning left, straight flight, and turning right respectively. The quantity Ad is similarly

used to represent three discrete-time state transition matrices.

The measurement and process noise covariance matrices (Rn, Qn) are individually stored
for EKF, IMM and PME filters. The prior state error covariance matrix, Pn} is initialised

with errors of 100 m in position and 10 m/s in velocity for all runs (unless a larger state

error is input via zhs).

EKF filters The EKF algorithm, as described in {3.3) was implemented with notation
changes to allow for the restricted text format options in the Matlab™™ code editor. These

changes are:

Maths Terms Matlab™ Term  Notes

Egjk—1 zh
Eriks Tk—1jk—1 zhm zhm is the output of one iteration (Exge)
and also the input of the Ioop(:%;c_zik_i).
Ay Ahm |
Pyjp—1 Pm
Py, Pe_yr—1 Pm Note: Pm is both the output of one iteration (Py;)

and the input of the next loop (Pe—1je—1)-

21
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Cy C

Ky Kk

Yk Ymk

CeEk|k-1 yhat

Ry, R

Qk | 0 we assume there is no process noise

At each measurement instant the appropriate state transition matrix Ad(:,:,1) is selected
(assuming the EKF has access to the true target manoeuvre state. The variable pr fis
used to switch between two measurement situations. If prf = 10 then the measurement
update occurs at hm. If prf = any other value then the measurement update occurs at
10 x hm. The variable zhatv is the complete record of the estimated state output of the

filter, at the rate dictated by hm.

For the ekfc.m version, no knowledge of the target manoeuvre is assumed, so the state

transition matrix corresponding to straight flight Ad(:,:,2) is used.

IMM filter The IMM filter, as described in (4.1)-(4.4), was implemented with notation
changes to allow for the restricted text format options in the Matlab”™. These changes

are:

Maths Terms Matlab™ Term  Notes

- pyj(k—1) mu2 Equation (4.1)
f";;(l1jk—1 zoj Equation (4.1)
Ly ﬁuk_l Poj Equation (4.1)
5”11;|k—1 zjh Equation (4.2)
Pl Pj Equation (4.2)
Ki Kk Equation (4.2)
.f’i|k zhjk Equation (4.2)
P;fpc Pjk Equation (4.2)
A Lijk Equation (4.3)
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p‘}; mu Equation (4.3)
Erpe zkk Equation (4.4)
Py Pkk ~ Equation (4.4)

It is assumed in the initial definition of the mode probability (mu) that the the ytarget is
equally likely to initially be in one of the three possible medeé (straight path, turning left
or right). It is also assumed that the target will continue in the same mode (manoeuvre)
or the target can switch, with equal probability, to any adjacent manoeuvre mode (ie. the
model does not allow for direct transition between left and right turn modes). This mode

switch is random and described by a probability transition matrix introduced in the PME

description below.

PME filter The PME filter, as described in (4.5) —(4.8}, was implemented with notation
changes to allow for the restricted text format options in the Matlab”™™, These changes

are:

Maths Terms Matlab™ Term  Notes

Hiyst fhm Time update equations
mu, fh '
-gz:%t dz x deltaT
4Py dPzf x deltaT
L Pes dPzz x deltaT
%Pm#m dPzzfm x deltaT
Py Pff
P, Pzf
Py Pzffi
Plyiyzum Pzfizfm
~Pigm Pfizfm
wap
Pypyyiym Pzzfifm
9 ybm Measurement update equations

23
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I fh

& zh

Az dzh

Py Pzf

P, Pzxzx

Y Kk Range/bearing measurements update equations

This filter is based on the algorithm presented in by Boyd and Sworder. A section of
Boyd and Sworder’s version of the Matlab”™ code is incorporated using wrapping code

to translate between the different variable names used in their implementation.

In defining a hybrid system description appropriate for the PME filter several design
assumptions were made. It was assumed that the target was able to perform 3 types of
manoeuvre (straight flight, left turn, right turn). The probability of transitioning between
manoeuvre modes is described by the (3 x 3) transition probability matrix Aa . The
elements of Aa are such that A(%,j) represents the probability of changing from mode j

to mode 1.

At each time instant the target orientation is one of twelve values (corresponding to the
orientation bins). The probability of changing orientation bin, when that target is in a

particular manoeuvre mode, is described by 3 (12 x 12) matrices, As, Al and Ar.

It was decided to use a composite discrete state vector, fh, to represent both the present
manoeuvre mode and orientation of the target. This vector represents all combinations
of the 12 orientations and 3 manoeuvre modes so fh is a (36 x 1) vector. The transition
probability matrix, A, required by the PME is hence a (36 x 36) matrix made up from
Aa, As, Al and Ar.

The PME filter also requires an observation mapping matrix, Pb, which describes the
probability of receiving ybm given that fh has a particular value. Because the orientation
observation is independent of the target manoeuvre, the mapping matrix, Pb, contains

three repeated blocks, Po.
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Appendix C Evaluation of Guidance
Performance Code

To evaluate the filter as part of a guidance loop we simulated a missile guidance problem.
In the missile gﬁidance loop, the missile observes the target through a range and bearing
measurements. The missile uses these measurements to estimate the state of the target

and then uses these state estimates to guide towards the target.

The guidance algorithm used in these guidance loop simulations is the augment propor-
tional navigation algorithm:

B = —3(Voh + %d}. ‘ (c1)

where d is the target acceleration perpendicular to the‘}ine—ef-sighi: line connecting the
missile and the target; V. is the closing velocity; A is the line-of-sight rate seen by the

missile; and #; is the control action.

In previous sections we have introduced all the information necessary to construct the
state estimates so this is not repeated here. The control algorithm described above was

implemented with notation changes to allow for the restricted text format options in the
Matlab™ code. These changes are:

Maths Terms Matlab™ Term
Uy U

Ve Ve

25
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Appendix D Matlab™ Syntax Headers

In this section we introduce the headers of the MatlabT™ code used examine various filters.

Stand Alone Filters Figures D1 and D2 demonstrate the interconnection of Matlab™™

files used to examine the filters in a stand alone implementation.

pathlsrsl.m

— e —— ——— —— —— ——— - ————— — — —

| |

| |

: Xy ! Target )

T Stat

: asm Y : Mea::rr:ement_s
| |

| imager1 !

| g mode !

| |

Figure D1: Matlab™ files for data generation in stand alone filtering simulation

Path Generation

e pathlsrs]

® asm
e imagerl
%#Syntax: : function [Xk,Ymk,modev,xho,vk,phi,t,hm,h]=pathlsrsl(dummy);
%Description : Generates a target path in 2-d space(x-y)and encompasses § manoeuvres -
% left turn(5sec),straight(6sec),right turn(bsec),straight(3sec),left turn(5sec)
%Inputs : nil (all necessary variables are set by initcommon)
%0utputs : Xk-path state vector (4x(T/h)) (T=total path time (sec), h=sample time (sec))
% Xk(1,:)=x position, Xk(2,:)= y position,Xk(3,:)=x velocity, Xk(4,:)=y velocity
% : Ymk-radar measurements
% Ymk(1,:)=range(m), Ymk(2,:)= bearing(deg.)
% Ymk (3, :)=target direction of travel(bin number, of 30deg opening)
% : modev-record of the target mode(straight path or turning left/right)at

26
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initcommon

initcommon Ta rget
- filter
IMM estimates

mode ~ xhatv

Figure

%Calls
#Aiuthors
#Modifications
%Bugs
%Assumptions

#Syntax:
%Description
%
%#Inputs
%

%

%

%

%

%

%
%0utputs
%

[TOT)

T

TR T TR TR THE TS

P

PR ETY

RIS

initcommon
initpme

PME —

D2: Matlab™ files for filters in stand alone filtering simulation

each sample point
xho- estimate of the state vector at the beginning of the run
vk~ process and measurement noise variance vector
vk{1)= range measurement noise variance svk(2)=bearing measurement noise variance
vk(3)=x component process noise variance,vk{4)= y component process noise variance
phi= turn rate (rad/sec) ~ tve =left turn,-ve = right turn of last manoeuvre.
t= Total flight time . :

hm=measurement interval (sec)

h=sample interval {sec)

asm.m, initcommon.m

Jason Ford, Peter Hunter

final version 14-11-01

nil .

Target has constant velocity segments and comstant turning rate segments.

function [Xk,Ymk,xkm,nm,modevil=asm(phi,xkm,vk,t,hm,h);
Generates a target path in 2-d space(z-y)encompassing 1 manceuvre -
left turn (phi=+0.2 rad/sec),straight(phi=0 rad/sec) or right tm{ph1--ﬂ 2 Ia&/sec)
phi= turn rate (rad/sec) - +ve =left turn,-ve = right turn
xkm = initial state vector for this manoeuvre iteration.
vk- process and measurement noise variance vector
vk(1)= range measurement noise variance,vk(2)=bearing measurement noise variance

vk{(3)=x component process mnoise var;ance,vk(é) ¥ component process noise variance
t= manoeuvre time

hm=measurement interval (sec)

h=sample interval (sec)

Xk-path state vector (4x(T/h)) (T=total path time (sec), h=sample time (sec))
Xk(1,:)=x position, Xk(2,:)= y position,Xk(3,:)=x velocity, Xk(4,:)=y velocity

27
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%Calls
%Authors
%Modifications
%Bugs
%Assumptions

%#Syntax:
%Description

%Outputs
%Calls
%#Authors
#Modifications
%Bugs
%Assumptions

%

Filters

e pme

e imm

o ekf

%Syntax:
%Description
%

%

%Inputs

%

%

%

%Output

%

o oo

es ss se ae es es ee

Ymk-radar measurements
Ymk(1,:)=range(m), Ymk(2,:)= bearing(deg.)
Yumk (3, :)=target direction of travel(bin number, of 30deg opening)
xkm - (4x1) initial state vector for the manoeuvre
nm - the number of measurements in the manoeuvre
modevi-record of the target mode(straight path or turning left/right)at
each sample point
imagerl.m
Jason Ford, Peter Hunter
final version 15-11-01
nil
nil

[bin)=imager1 (Ymk,Vy,Vx,Y,X,i);
The target direction is located in one of twelve 30 deg.intervals(labelled
cw from North as {1,2,3,..,12})
Randomly occurring allocation errors are introduced:
=NNE - nearest neighbour error- placed into an adjacent bin due to noise etc.
~UDE - uniformly distributed error - occlusion of target makes any bin number
a possibility
Ymk-not used
Vy - target velocity - y direction
Vx - target velocity - x direction
Y - target location ~ y direction
X - target location - x direction
i - not used
bin - the direction of target travel as classified {1:12} (noisy result)
nil
Jason Ford, Peter Hunter

: final version 14-11-01

nil
Target can be represented by 1 of twelve attitude bins.

: Assumptions on the nature of the error.

.

[xhatp,Pxxv,normrecord,modeestv,binestv]=pme (Ymk,Xk) ;
implements a Polymorphic Estimator algorithm to produce an estimate
of position and velocity of the target derived from noisy range
and bearing measurements from a simulated tracking radar.
Ymk-radar measurements from the simulation origin.
Ymk(1,:)=range(m), Ymk(2,:)= bearing(deg.)
Ymk (3, :)=target direction of travel(bin number, of 30deg opening)
Xk-target state (x,y,x-velocity,y-velocity) and only used for the initial Pxxv
xhatp (4xT) vector of position estimate (x,y, x-velocity, y-velocity)
Pxxv(4xT)-vector of Pxx diag elements (used by plotdata routine).



%

%

%

%Calls
%Authors
#Modifications
%Bugs

%

%

%
%Assumptions

%Syntax:
%Description
%

%

%

%

#Inputs

%

%

%

%0utputs

%

%

%4

%

%

#Calls
%Authors
YModifications
%Bugs
%Assumptions

%Syntax:
%Description
%

%

%

%Inputs

%

%

%

“

%0utput
#Calls
%#Authors
JModifications
%Bugs
%Assumptions
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normrecord- debuging info. )

modeestv(1xT)-vector of manu. mode estimates.

binestv(ixT)-vector of orientation mode estimates.

initpme

Jason Ford, Peter Hunter

final version 22-11-01

The time update step of the algorithm is not particularly stable.
Small time step sizes (ie. h) seem to improve the preformance but

bad updates of Pxx vector are possible (if this happens the code resets

L T TR TR R TR

s

some quantities in the filter to try to stop the filter diverging).

numeric intergration of continuous-time equations.

[xhati,Pkkv,muv,xhi,xh2,xh3]=imm(¥mk) ;

Interacting Multiple Mode filter (IMM)- is a filter function used to estimate

the location of a manceuvring target.It uses measurement data as well as manoeuvre
type (straight or turning path) to estimate the path of the target. i

- It uses the mode estimation to switch between individual EXF algorithms to better

track the target. )
Ymk-radar measurements from the simulation origin.

¥mk(1, :)=range(m), ¥mk(2,:)= bearing(deg.)
¥mk(3, :)=target direction of travel(bin number, of 30deg opening)

:modev (1xT/h) vector which logs the actual manoceuvre at each sample point

:xhati (4xT) vector of estimates

{x,y, x-velocity, y-velocity)

:Pkkv combined state covariance matrix

:muv mode probability for each modeal filter
:xhl state estimate of filter 1

:xh2 state estimate of filter 2

:xh3 state estimate of filter 3

[T I T

s se

»e

B T TR R T P VY

initcommon

Jason Ford, Peter Hunter

final version 20-11-01

nil

Based on hybrid system mode of dynamics.

function [xhatv]=ekf (Ymk,modev,prf);
implements an Extended Kalman Filter to produce an estimate of position and
velocity of the target derived from noisy range and bearing measurements from
a simulated tracking radar. The filter has the target manoeuvre at each
sample point (straight path or turning left or right at 0.2 rad/sec)
Ymk-radar measurements from simulation origin’

Ymk(1, :)=range(m), Ymk(2,:)= bearing(deg.)

Tmk(3, :)=target direction of travel(bin number, of 30deg opening)
modev (1xT/h) vector which logs the actual manoeuvre at each sample point
pri - measurement interval {sec) (pulse repetition frequency of the radar system)
zhatv (4xT) vector of position estimate (x,y, x velocity, y velocity)
initcommon
Jason Ford, Peter Hunter
final version 20-11-01
nil
nil

Initialisation files

e initcommon
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e initpme
#Syntax: tinitcommon
YDescription : contains the initialization values for all filters
%Inputs : nil
%0Outputs : there are no explicit outputs but the following variables are initialised:
% - h (sample interval(s)),phi(turn rate(rad/sec)),hm
% - xs,xhs
% - Ac,Ad,Rn,Qn,Pn
% - for EKF : EKFQ,EKFR,EKFP
% - for IMM : IMMQ,IMMR,IMMP
% - for PME : Rx,Rxx,Pxx
%Calls : nil
%Authors : Jason Ford, Peter Hunter
YModifications : final version 14-11-01
#Bugs ¢ nil
%Assumptions  : nil
%Syntax: : initpme
%Description : Contains constants and initialization data for the pme.m program
#Inputs : nil
%0utputs : there are no explicit outputs but the following variables are initialised:
% - statenum,modenum,binnum,measbin,bigmode
% - bm,minfh
% - Aa,As,Al,Ar,Ai
% - Po,Q,Rx,Rxx.
#Calls : initcommon
%Authors : Jason Ford, Peter Hunter
%#Modifications : final version 27-11-01
%Bugs : mil
%Assumptions  : nil

Guidance Evaluation Figure D3 describes the structure of the Matlab™ code used
to simulate a missile guidance loop using an extended Kalman filter. The Matlab™ code

for incorporating the PME filter is similar.

Matlab Files

o comparefilters

guidanceekf

guidamcepme

ekfscon

pmelloop
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initekf.m
first.m
Manoeuvre Defn
Guidance Law
State step forward
Observations
Generated Iimageﬂ.m
Yy . |mode
ekfscon
Xy
xhatv
Update Output Yhatvp
Matrices Xv
Ymk

End Engagement | —» minv

Figure D3: Matlab™ files for guidance loop simulation using the extended Kalman Fflter.

e imagerl
o first
o initekf
® initpme
#comparefilters
#Syntax: : comparefilters
#Description  : runs a number of control/filter algorithms to compare the minimum miss distances (minv)
%Inputs : mil . '
%0utputs : MISSmin - vector of the minimum miss distances for each filter
% : MeanMISSminv - for multiple runs this is the average result for each filter
% : additional outputs with prefixes :EXF...({(c),PMEMOD... ,PMENM. .. ,PMESMi500..., .
% ‘ PMESM750. ..
% - ekf filter :Pm,Xk,xhatv,Xv,Clatv,Tlatv ‘
% - pme filter :Pxxv,Xk,xhatv, pxxcount,pxxvcount ,badextraps,Xv,Clatv,Tlatv
Y .
%Calls : guidanceekf, guidancepme, first
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%Authors : Jason Ford, Peter Hunter
%Modifications : 16/2/01 : save workspace to comparefia.mat

% 21/2/01 : save workspace to comparefdb.mat

% 28/2/01 : save workspace to comparef4c.mat h=0.0001 s=3

% 12/7/01 : save workspace to comparef4f.mat h=0.001, ekf, ekfc, pmemod

% 18/7/01 : save workspace to comparefdg.mat h=0.001 s=10 all except ekfc

% 2/10/01 : save workspace to comparefd4a2.mat h=0.0001, s=1, run=10, only EKF &

% PMEMOD

% 3/10/01 : save workspace to comparef4a3.mat as for comparef4a2 except all filters
% 27/11/01: final version , renamed comparefilters

%Bugs : mnil

%Assumptions  : mil

%Syntax: : [Pmt,Xv,Xk,Ski,Ymk,modev,xhatv,xhatvp,Rangev,Tlatv,minv,Clatv]=guidanceekf (timesteps,ti0);
%Description : A simulated engagement between an incoming, manoeuvring target and a radar guided
% interceptor. The radar range and bearing measurements are filtered by an EKF, with
% the whole operating within an APN guidance loop.

%Globals B, Q, R, Bt;

%Inputs timesteps - the number of time sample points = realtime/h.

%

ti0 - interceptor start heading (rad)

e es es es

%0utputs Pmt - diagonal elements of the covariance matrix. It is a diagnostic output to
% enable construction of the 1 sigma circles at each measurement point

% of the filter output. :

% : Xv - relative state between interceptor and target

% : Xk - target state

%4 : Ski - actual target state

% : Ymk - measurement sequence (radar range and bearing measurements)

: modev - the target mode vector

: xhatv - estimate of target state

%4 : xhatvp - one-step ahead estimate of target state

Rangev - target-interceptor separation(used for testing guidance loop)
Tlatv - perpendicular component of the target acceleration(testing variable)
minv - minimum miss distance between the target and interceptor

Clatv ~ Vector of guidance commands

T2

N
TS

%Calls : initekf

% : ekfscon.m

% : imageri.m

%Authors : Jason Ford, Peter Hunter

%Modifications : final version 27-11-01

%Bugs : nil

YAssumptions : interceptor position is prefectly known... in real case would need INS solution
%Syntax: : [Xv,Xk,Pxxv,Ski,Ymk,modev,xhatv,xhatvp,Rangev,Tlatv,minv,pxxcount ,pxxmcount,
% badextraps,Clatv] =guidancepme (timesteps,ti0,moderangemax) ;

%Description : A simulated engagement between an incoming, manoeuvring target and a radar
% guided interceptor. The radar range and bearing measurements are filtered
% by a PME, with the whole operating within an APN guidance loop.

%Globals : B, Q, R, Bt

% : TIMEUPDATE MODEUPDATE BASEUPDATE RADAR_ALL_TIME

% : xh fh Pxx Pxf Pxxfi xhm fhm Pxxm Pxfm Pxxfim modest

% : ARx Rxx W Q Pb

% : pxxcount badextraps pxxmcount

% : bigmode E

A : h P_preset

%Inputs : timesteps - the number of time sample points = realtime/h.

%4 : ti0 - interceptor start heading (rad)

% : moderangemax - the maximum distance (m) over which the imager provides information
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%0utputs : Xv - relative state between interceptor and target

% : Xk ~ target state ;

% : Pxxv- diagonal elements of the covariance matrix. Used to construction
% one sigma circles at each measurement point of the filter output.
% : Ski - actual target state

% : Ymk - measurement sequence (radar range and bea}:lng measurements)

% : modev - the target mode vector

% : xhatv - estimate of target position

% : xhatvp - Debug variable

% : Rangev - target-interceptor separation(used for testing guidance loop)
% : Tlatv - perpendicular component of the target acceleration(testing variable)
% ¢ minv - minimum miss distance between the target and mtercepter

% : pxxcount - Error count

% : pxxmcount - Error count

% : badextraps - Error count

% i ¢ Clatv - Vector of guidance commands

%Calls : initpme .

% : pmeiloop.m

% : imageri.m

%Authors : Jason Ford, Peter Hunter

%Modifications : final version 27-11-01

#Bugs ¢ nil ]

%Assumptions  : interceptor position is prefectly known... in real case would need INS solution
#Syntax: + [xhp,xhm, Pm}=ekfscon(Ahm, xhm,Pm ymk,rad&rpelnts i,u,xik);

#Description  : EKF section - one iteration only

%Globals : B, Q, B, Bt;

#Inputs : Abm - initial state transition matrix

% : xhm ~ initial target state (k-11k-1)

% : Pm - initial covariance martix (k-1[k-1)

% ¢ Ymk-radar measurements from the simulation origin.

% Ymk(1,:)=range(m), ¥mk(2,:)= bearing(deg.)

% Ynk(3,:)=target direction of travel(bin number, of 30deg opening)
% : radarpoints - helps determine if 2 measurement update is required

% i~ time k

% i u - control action of the interceptor.

% ¢ xik - initial interceptor state (k-1lk-1)

%0utputs : xhp - state vector - after time update (k-1]k)

% : xhm ~ measuremnet updated state (kl|k)

% t Pm - initial covariance matrix for (k+1)

%Calls : nil

#huthors : Jason Ford, Peter Hunter

#Modifications : final version 27-11~01

%Bugs : mil

%Assumptions  : mil

#Syntax: : [dummyl=pme1loop(¥mk,k,xik radarpuxnts,mo&epoznts ;moderangemax,Range) ;
YDescription : is a single time iteration of the PME filtering algorithm

%Globals : TIMEUPDATE MODEUPDATE BASEUPDATE RADAR_ALL_TIME

% ¢ xh fh Pxx Pxf Pxxfi xhm fhm Pxxm Pxfm Pxxfim modest

% :ARxRxx WQ Pb

% : pxxcount badextraps pxxmcount

A : bigmode E

% : h P_preset

%Inputs : Ymk-radar measurements from the simulation nrigin.

% ' Ymk (1, :)=range(m), ¥mk(2,:)= bearing(deg.)

% ¥mk(3, :)=target direction of travel(bin number, of 30deg opening)
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%

%

%

%

%0utputs
%Calls
%Authors
#Modifications
%Bugs
%Assumptions

#Syntax:
%Description
%

%

%

%

%

%Globals
%Inputs

%

%

%

%

%

%Outputs
%Calls
%Authors
/Modifications
#Bugs
%Assumptions

%Syntax:
#Description
%4

%Globals
#Inputs
#0utputs

%

%

%

%

%

A

%Calls
%Authors
YModifications
%Bugs
#Assumptions

%#Syntax:
#Description
%Globals
%Inputs
#Outputs

%

.

e ee es es

s es se es es

e es es ev es se se es ee

o er

o e

s se

radarpoints - number of radar measurements

modepoints - number of mode observations

moderangemax - maximum range (m) over which the image information is available
Range

nil explicitly (output via global variables)

nil

Jason Ford, Peter Hunter

final version 27-11-01

Same bugs as PME filter. Numerical unstable.

Same as the PME filter.

[bin]=imager1(Ymk,Vy,Vx,Y,X,i);
The target direction is located in one of twelve 30 deg.intervals(labelled cw
from North as {1,2,3,..,12})
Randomly occurring allocation errors are introduced:
-NNE - nearest neighbour error- placed into an adjacent bin due to noise etc.
=UDE - uniformly distributed error - occlusion of target makes any bin number
a possibility
nil
Ymk-not used
Vy - target velocity - y direction
Vx - target velocity - x direction
Y - target location - y direction
X - target location - x direction
i - not used’
bin - the direction of target travel as classified {1:12} (noisy result)
nil
Jason Ford, Peter Hunter
final version 27-11-01
nil
nil

first

contains the initialization values for all filters evaluated in the control loop
environment

nil

nil

there are no explicit outputs but the following variables are initialised:
- Basic System Parameters :h ,phi,hm,modeh,radarh

- Sample Numbers/sec :modepoints,radarpoints,controlpoints

- Initial State vectors :ta,xs,ti0,xis

- Noise variances :pxvar,pyvar,rvar,tvar

- Debugging Switches : TIMEUPDATE ,MODEUPDATE, BASEUPDATE ,RADAR ALL TIME
- Iteration Parameters :s,runnum, seedoff

nil
Jason Ford, Peter Hunter

: final version 27-11-01

nil
nil

sinitekf
: contains the initialization values for EKF filter

B,Q, R

: nil

.

there are no explicit outputs but the following variables are initialised:
-phi
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%Calls
%Authors
YModifications
#Bugs
%Assumptions

#Syntax:
#Description
%#Globals
%Inputs
%0utputs

%
%4
%

EEl

%Calls
#Authors
#Modifications
%Bugs
#Assumptions

ke e ee e
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-xhs
~Ac,Ad,Aint,Aintd,Bt,Bi
<Pn,Qn,Rn
-EKFP ,EKFQ,EKFR
nil
Jason Ford, Peter Hanter
final version 27-11-01
nil
nil

initpme
contains the initialization values for the guidancepme program
nil :
nil :
there are mo explicit outputs but the following variables are initialised:
—statenum,modenam,bianum,measbin,bigmo&e
~pxxcount
=f,fh,fhm,minfh
-w
—xhm,xhs,xh,xkm,xo0,xho, ym, ybm
-Aa,As, Al,Ar A, Ah Ahm, Ac,Ad,Ai,Aint i1ntd
-Bt,Bi,C,Ck,E,G
-Pn,Po,Pb1,Pb,Pxf Pxffi,Pxx,Q,0n,Rn,Rx,Rxx
-MKL,Pxx_p,pixx_p,Pxx_m,pixx_m pkz_m,?hz_y,?xp_m,
-Pxp_m,Pxp_p,.x_p,x_m,badextraps
first
Jason Ford, Peter Hunter
final version 27-11-01
nil

: nil
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Appendix E Simulation Parameter Values

E.1 Stand-Alone Filter Evaluation
The following parameter values were used in the stand-alone filter evaluation:

h = 0.001s sample time

hm = 0.01s measurement time

zs = [36000, 36000, —300, —300] initial target state

zsh = [36100, 36100, —310, —310]  initial target state estimate
phi = 0.2rad/s turn rate

Aa = mode transition probability matrix (3 x 3). k

If in straight flight mode:

0.98 straight path will continue
0.01 change to left (or right) turn mode
If in a turn flight mode:
0.99 that the turn will continue
0.01 change to straight flight mode.
Al, As and Ar= Probability matrix for manoeuvre induced bin

number change, each (12 x 12).

As straight path gives no change (Identity matrix).

Al left turn - probability of transition to next left bin is 0.05.

Ar right turn - probability of transition to next right bin is 0.05
fh bin transition indicator (36x1).

Initialised so that fh(8) =1, fh(i) = 0 for all other i

E.2 Filters in Guidance Loop

h = 0.0001
hm=nh
radarh =1

controlh = 0.01



DSTO-TN —0488

phi =0.2rad/s
rvar = (40m)? : target range measurement variance
tvar = (1.75 * 10~3rad/s)? target bearing measurement variance

timesteps = 100, 000

o5 = [2000,1000,660 X cos(225),660 x sin(225)]

[100, 100, 10, 10] initial state estimate errors
ta = 225° initial target heading

wis = [0,0,1000 x cos(75), 1000 x sin(75)]

10 = 75° interceptor initial bearing
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