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ABSTRACT 

The velocity filter is a variation of the 3D matched filter. Velocity filtering applies a constraint 
in the form of assuming that targets will have a constant velocity over the integration period 
of the filter. Velocity filters are applied over multiple frames of data and are able to detect low 
Signal-to-Noise Ratio (SNR) targets that would otherwise be undetectable using conventional 
'single look' detection techniques. This report derives, discusses and assesses the performance 
of the velocity filter technique. 
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Velocity Filtering for Target Detection and 
Track Initiation 

Executive Summary 

Track before detect techniques combine the results from multiple snapshots in time 
called 'frames' to detect targets in low Signal-to-Noise Ratio (SNR) environments that 
would otherwise be tmdetectable using conventional 'single look' techniques. Velocity 
filtering is a track before detect technique in which an assumption is made that the 
target motion is of a constant velocity over the integration period of the velocity filter. 
This report concentrates on the velocity filtering track before detect technique. 

The velocity filter is a particular type of multi-dimensional matched filter. The report 
begins by deriving the matched filter and from here the velocity filter is derived and 
compared to the matched filter. Simulations were undertaken to test the performance 
of the velocity filter. The simulations show significant improvements in detection 
probabilities when the velocity fUter technique is employed. This comes at a cost 
however, as the velocity fUter technique requires a significant amount of processing 
power and memory. Continual increases in processing power and reduced memory 
costs are seeing track before detect techniques becoming more commonplace. 

This study was performed in 2001 as part of a Masters degree in Mathematical Sciences 
(Signal and Information Processing) that the author undertook in 1999 - 2001 through 
the Cooperative Research Centre for Sensor Signal and Information Processing (CSSIP) 
and the University of Adelaide. 
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1. Introduction 

In conventional tracking techniques, tracks are initiated on the basis of a single 
detection. In low Signal-to-Noise Ratio (SNR) environments these techniques are 
inadequate and an alternative must be found. Track Before Detect (TBD) techniques 
attempt to address the track initiation problem. 

From the outset it is important to define the terms noise and clutter. The definitions 
below are taken from [11]. Clutter is defined as unwanted returns from ground, 
precipitation, or chaff. In fact clutter returns are not always unwanted. For example in 
SAR imaging, ground returns are the ones of interest. For target detection however, 
clutter will interfere with the return from the target of interest and hence is always 
unwanted. Noise is usually random and it consists of electiical or electromagnetic 
energy that interferes with the detection of wanted signals. Both clutter and noise can 
interfere with target detection. 

Unlike noise, clutter is structured. Pre-processing the data can reduce the amount of 
correlation in the clutter. The clutter rejection component of the 3D matched filter also 
helps reduce the correlation of the clutter [3] [4]. Thus, the clutter becomes more 'noise 
like' in nature and adds incoherently over multiple frames. In this report it is assumed 
that pre-processing the data and applying the matched filter to the data, wiU have the 
effect of removing the correlation of the clutter leaving only a noise like background. It 
is assumed that the noise at each pixel has a zero mean Gaussian distribution, 
independent of neighbouring pixels. Hence the spatial correlation of the noise is zero. 

TBD techniques involve combining the results from multiple frames. A frame is a 
snapshot in time of the seeker's field of view. Multi-frame integration occurs over a 
hypothesised target ti-ajectory. The target energy adds from frame to frame unlike the 
background noise and clutter. Hence an integration gain occurs and targets which are 
undetected in single frames become detectable when frames are combined for a given 
system false alarm rate. TBD techniques exploit the differences in temporal/spatial 
statistics between clutter and targets. 

Velocity filtering is a subset of the 3D matched filter [2]. It is perhaps the simplest TBD 
technique to imderstand and implement. Velocity filtering applies a consti'aint in the 
form of assuming that targets will have a constant velocity over the integration period 
of the filter. Since the exact target velocity is unknown a velocity filter bank is used to 
cover the possible target velocities. An overview of other TBD techniques is given in 
Reference 5. 

3D matched filtering algorithms were originally developed in Reference 2. This paper 
is the starting point for a discussion of velocity filtering. A further description of the 
velocity filter is given in Reference 4, which presents a mathematical description of the 
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velocity filter and evaluates its performance via the use of theoretical Receiver 
Operating Characteristic (ROC) curves. 

A major drawback of the velocity filter is that it can require a large amoxmt of memory 
and considerable computational costs. Reference 3 discusses methods that can be 
employed to reduce these computational costs and memory, such as sequential velocity 
filtering and single bit velocity filtering. A technique to reduce the number of 
computations via projecting 3D space onto two dimensions prior to applying the 
velocity filter is discussed in Reference 7. 

TBD techniques are of particular use in low SNR, high clutter envirorunents such as 
Anti Ship Missile Defence and periscope detection. With faster, cheaper and smaller 
processors TBD techniques are likely to become more prolific in the future. 

This report concentrates on the velocity filtering TBD technique. The aims of the project 
were to: 

• Develop an understanding of various TBD techniques. 
• Develop a strong understanding of the mathematics and implementation issues 

for the matched and velocity filters. 
• Use MATLAB to simulate the velocity filter and compare its performance to 

theory. 
Velocity filtering techniques can be applied to both (Infra Red) IR and (Radio 
Frequency) RF sensors. This report concentrates on the use of velocity filtering for IR 
sensors where the input to the filter is a series of images. 

In order to understand the mathematics and concepts behind the velocity filter it is a 
prerequisite to understand both the single and multidimensional matched filter. 
Chapter 2 derives the ID and 3D matched filters and assesses their performance. A 
derivation of the velocity filter with appropriate comparison to the matched filter 
follows in Chapter 3. Chapter 3 also discusses the performance of the velocity filter and 
presents two alternative forms that aim to reduce the computational costs and memory 
requirements. 

A one dimensional velocity filter was simulated and its performance is described in 
Chapter 4. One dimensional velocity filters permit the target to move in a single spatial 
dimension. The decision was made to simulate a single dimensional velocity filter 
given the short time frame of the project and the extra complexity involved in 
simulating a two dimensional filter. The same theory that applies to two dimensional 
velocity filters is also applicable to the single dimensional case, so a realistic 
appreciation for velocity filtering can be gained by simulating a one dimensional filter. 

Two other types of TBD techniques, namely the Hough Transform and the Dynamic 
Programming Algorithm are discussed in Appendix A. The MATLAB code used to 
simulate the velocity filter technique is given in Appendix B. 
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2. Matched Filters 

2.1 Introduction 

The velocity filter is a matched filter with the additional assumption of constant target 
velocity. To imderstand the velocity filter it is important to first understand the 
matched filter. This chapter discusses the matched filter and introduces several aspects 
of the matched filter that are of particular importance to the velocity filter. The chapter 
begins with the derivation of a single dimensional matched filter and then extends the 
results to a three dimensional filter. The velocity filter has at least one spatial and time 
dimension thus multidimensional matched filters are discussed in this section. 

The chapter begins by deriving the test statistic of a common detector, the Neyman- 
Pearson detector [1] [5]. The matched filter is then discussed and it is found that the 
output of the matched filter is equivalent to the Neyman-Pearson test statistic. The 
output SNR of the matched filter is then derived and it is found that the larger the SNR 
the better the probability of detection, as expected. 

2.2 The Neyman-Pearson Detector 

Consider the case of detecting a known signal (known in both shape and energy) in 
Gaussian noise. Under Neyman-Pearson criteria [1] the aim is to maximise the 
probability of detection subject to a constant false alarm probability. The probability of 
detection is the probability of correctly declaring a target to be present at a particular 
time and location. The probability of false alarm is the probability of declaring a target 
present when in fact there is no target. The detector that results from these assumptions 
is the matched filter. The important point to note for the matched filter to work 
optimally (that is to produce the maximum possible output) is that the form of the 
signal that is to be detected must be known. 

Let s[n] be a deterministic signal, w[n] denote zero mean white Gaussian noise with 

variance a^ and v[n] be a measurement for « = 0,1, ...jA'^-l. Hence, s[n], w[n] and 
v[n] are all real scalars. Our aim is to determine whether the measurement contains 
the signal for n = 0,1,..., A'^ - 1. Thus there are two hypotheses HQ (noise only) and i7, 
(signal plus noise) defined by 

//o:v[«] = H{n], « = 0,1,...,7V-1 ■eq2-l 

//; : v[n] = s[n] + vi{«], n = 0,1,..., A^ -1 eq 2-2 
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The Neyman-Pearson detector decides in favoiir of H, if the likelihood ratio, L(V) 

exceeds a threshold y 

p(v|H,) 

where v is a measuremerit vector given by 

v = [v[0]   v[l]    ...   v[N-l]Y 

As the noise is Gaussian the likelihood functions for hypotheses H^ and H^ are 

eq2-3 

^^^l^'^ = ^^^^^P 

1 

^   Y,iv[n]-s[n]y 
2^^ „=o 

''<''l^»>=^iS^T^='"' 
1      N-l 

eq2-4 

eq2-5 

Substituting the above likelihood expressions into Equation 2-3 

L(v) = exp 
2a n=0 «=0 -^ 

>r eq2-6 

It is convenient to take the logarithm of the above expression to remove the 
exponential term. As the logarithm is a monotonically increasing function, the 
inequality does not change. The condition in Equation 2-6 then becomes 

^   '^(v'[n]-2v[nMn] + 5'[n]-v'[n]) >lnr eq2-7 
2a' ^n=0 

Rearranging the above inequality 

1     W-l 1      N-l 

-T Z v[n]s[n] - —^Z ^' [«] > •" ^ 

As the signal is known, the energy term can be incorporated into the threshold. 

n\) = Xv[n]s[n]>r' 
«=o 

where the threshold y' is given by 

y'=a~ \ny + — '^s^[n] 
2 „=o 

and T{\) is the test statistic for hypotheses H^ and //,. 

eq2-8 

eq2-9 

eq 2-10 
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The next section defines the matched filter and derives its output. It is found that the 
output of the matched filter is equivalent to the test statistic for the Neyman-Pearson 
detector. 

2.3 The Matched Filter Derivation 

In this section the output of the matched filter is derived and a simple example is 
considered. Let v[n], the measurement as defined in the previous section, be the input 

to an FIR w^ith impulse response h[n], where h\n\ is nonzero for n - 0,1,..., TV -1. The 
output at time n is 

w[n] 

Figure 2-1: Filtering the received signal 

►y[n] 

y[n] = Yuh[n - k]v[k], for n > 0 
*=o 

eq 2-11 

Hie matched filter is so called as it is matched to the signal that it is attempting to 
detect. The impulse response of the matched filter is simply the 'flipped aroimd' 
version of the signal [1], i.e. 

h[n] = s{]Sl-\-n] eq2-12 

Thus substituting Equation 2-12 into Equation 2-11 yields 

N-\ 

y[n]^Y.'^N-\-{n-k)Mk] 
k=0 

At time n = N -i, the above equation becomes 

N-l 

y[N-i] = j;^s[k]v[k] 

eq 2-13 

eq 2-14 
*=o 

This is the theoretical maximum output of the matched filter. Note that the above 
expression is equivalent to the test statistic for the Neyman-Pearson detector (Equation 
2-9). 
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The matched filter impulse response is obtained by flipping the signal s[n] about n = 0, 
and shifting to the right by N-1 samples. An example of the output of a matched filter 
is shown in Figure 2-2. In this example there are five samples in the signal and hence in 
the matched filter as well. The maximum output occurs at sample A^ -1 = 4. This 
matched filter relies on the fact that the signal begins at n = 0. If this is not the case the 
performance of the detector will be reduced. 

Signal 

 <? 

Impulse Response of the Filter 

 <> f ^  

 <s  

 (I 

Output 

■ ■ \ 9 • \ : 

 -■ i «> O i i - 

"i m <B i 

;:::::i::::::::::::::::::::::::: :::::f:::; 

Figure 2-2: Matched filter response for a ramped signal 

It is common to express the matched filter in the frequency domain. From Equation 2- 
12 it follows that the matched filter in the frequency domain is given by 

Hif) = S\f)exp[-j2^iN-l)] eq2-15 

where 5*(/)is the complex conjugate of the deterministic signal expressed in the 

frequency domain. 

2.4      SNR Gain of the Matched Filter 

The output SNR of the matched filter is an important quantity and is derived in this 
section. In the following section the importance of the SNR is emphasized when it is 
found that the distribution of the test statistic is dependent on the SNR. 
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The output SNR is defined as 

SNRQUJ. - 
E\y[N-\]\H,) 

var(>;[7V-l]|//,) 
eq 2-16 

where E^\) signifies the use of the expectation operator. Noting that the expectation 
of white noise is zero and that the signal has constant amplitude and thus zero variance 
and applying Equation 2-2 and Equation 2-14, leads to the following expression for the 
output SNR. 

Y,h[N -\-k]s[k'\ 
SNR, \k=G J 

OUT 

Y,h[N-l-k]M{k] 

eq 2-17 

Defining 

h=[;z[0]   h[l] 

w = [M{0]   H{1] 

h[N-l]Y 

M{N-l]f 

yields 

SNR     ^i^ 
cr n n 

where a^ is the noise variance. From the Cauchy-Schwarz inequality 

(h^)'<(h^h)(s's) 

eq 2-18 

eq 2-19 

eq 2-20 

Equality occurs when  h = cs, where  c  is a constant. This leads to the following 
expression for the maximum SNR when c is equal to one. 

a'    (7 
eq 2-21 

where £ is the signal energy. Thus the output SNR of the matched filter is simply the 
signal energy divided by the variance of the noise. 

2.5 Performance of the Matched Filter 

In this section a derivation is performed for the Probability Distribution Functions 
(PDFs) of the matched filter test statistic under each hypothesis H^ and //,. An 
expression is derived for the probability of detection in terms of the probability of false 
alarm and the output signal to noise ratio of the matched filter and this expression is 
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used to create probability of detection versus SNR plots for various probability of false 
alarm. 

A decision is made in favour of//, if the output of the matched filter at A^ -1 is greater 

than a threshold y' determined by the probability of false alarm P^^ . 
N-\ 

3'tv-i]=E^[«M">^' eq 2-22 
n=0 

In the previous section it was shown that ;^[A'^ -1] is equivalent to the test statistic 

r(v) derived in Section 2.2. In what follows, expressions for the expectation and 

variance of the test statistic for each hypothesis are derived. 

First consider the derivation of the expectation of the test statistic under hypotheses 

HQ . The noise is white and hence uncorrelated with the signal, thus 
/-N-\ \ 

E(T;//O)= ^ ZHn)s{n)\ = 0 eq2-23 

Similarly, under H^ the expectation is given by 

fN-\ \ 
E(T-Hd=E Y,i^{n) + w(n))sin) 

V«=o 

rN-\       \ 
= E Y.s(nf 

V«=o 

= £ eq 2-24 

Thus the two distributions are separated by the signal energy along the test statistic. 
This is shown in Figure 2-3. 

The variance of the test statistic under the noise only hypotheses H^ is derived below. 

fN-i ^ 
var(r;//o)= var '^w{n)s(n) 

V « J 

= J]var(w(«))s'(«) 
n 

= a'Y^s\n) 
11=0 

= a-V 

Siinilarly, it can be shown that 

var {^;^.) = (T'£ 

eq 2-25 

eq 2-26 
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The test statistic is Gaussian distributed under each hypothesis, with equal variance 
and different means 

\NiO,(T'£)\H, 
T ~ 

[Nie,(7^£)\H, 
eq 2-27 

The above results are shown diagrammatically in Figure 2-3. This figure shows two 
coloured sections. The blue section illustrates the values of the test statistic for which a 
false alarm will occur if the input consists of noise only. Conversely the red section 
illustrates the values of the test statistic for which an actual signal will be missed. The 
threshold is chosen to be at the point where the two PDFs intersect; this is referred to as 
Maximum Likelihood detection. 

-\/ /^^ p(^'^l) 

^^^^^^^^^^^HK^H^^ r 
Figure 2-3: PDFs of the matched filter test statistic 

Detection performance can be improved in two ways. Firstly increasing the signal 
energy will increase the separation of the distribution for each hypothesis. However 

this will increase the variance of each distribution, 0^£, thus the noise power must be 
reduced as well to compensate for this. Therefore improved detection performance is 
obtained by increasing the SNR. This is further emphasized if the test statistic is scaled 

T 
eq 2-28 T = 

4^e 
The distribution for the scaled test statistic for each hypothesis is 

T ~ 
\N{Q,l)\H, 

eq 2-29 
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I.e. 

T ~ 
\N{0,\)\H, 

N{^SNRoarX)\H, 
eq 2-30 

Expressions for the probability of false alarm and the probability of detection given a 
particular threshold are derived as follows. The probability of false alarm is the 
probabiHty that the test statistic exceeds the threshold when there is only noise present 
in the measurement. 

P,,=?r{T>r\H,} 
f 

= Q 
r ,. ^ 

^[o■' 
eq 2-31 

£J 

where 

Q(x)=j- 
f     ,2^ 

'ITT 
exp 

I    2 
dt = l-Oix) 

0(. 
J27V  ^' 

f    2^ u 
exp 

2) 
du 

eq 2-32 

eq 2-33 

0(x) is the normal cumulative distribution function. It is a monotonically increasing 

function and hence has an inverse, as does Q{x). 

Conversely, the probability of detection is the probability that, in the case of the 
measurement containing the signal as well as noise, the test statistic exceeds the 
threshold and a decision is made that a target is present. 

= Q 
y-s 

V? s ) 

By rearranging Equation 2-31 a formula can be obtained for the threshold 

r=^eQr\p,,) 

eq 2-34 

eq 2-35 

10 
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Substituting Equation 2-35 into Equation 2-34 gives 

Q 

= Q 

= Q(Q-'{PJ-4SNR^) eq 2-36 

Thus the probability of detection can be written as a function of the probability of false 
alarm and the output SNR of the niatched filter. Figure 2-4 shows how the P^ changes 
for different SNR's and P^^. The figure shows that for a given probability of false 
alarm, the probability of detection increases as the SNR increases. The figure also 
shows that for a given SNR, the probability of detection carmot be increased without an 
increase in the probability of false alarm. Consider an example for a Constant False 

Alarm Rate (CFAR) of 10""*. Table 2-1 shows a comparison of different SNR's required 
for different probabilities of detection. 

Pd vs. SNR for different Pfa 
1 

0       2       4       6       8      10     12     14     16     18     20 

SNR (db) 

Figure 2-4: SNR required for a specified probability of detection for different probabilities of 
false alarm. 

11 
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Table 2-l:SNR required for a specified probabilihj of detection loith a false alarm rate of one in 
10000. 

Specified Probability of Detection 

0.8 

0.9 

0.95 

0.99 

0.999 

Required SNR (db) 

13.2 

14.0 

14.6 

15.7 

16.7 

This section has shown the importance of the SNR on the performance of the matched 
filter. It is important to note that it is the signal energy and not the shape of the signal 
that affects detection performance. 

2.6 Processing Gain of the Matched Filter 

In the velocity filter technique, an improvement in the SNR is obtained by integrating 
the results from multiple frames. In this section the improvement in the SNR obtained 
for the matched filter by processing N samples instead of a single sample is 
investigated. The results obtained here can be compared directly to the results obtained 
for the velocity filter in Section 3.3. 

Consider the case where a constant amplitude signal of size A is present. Using a 
single sample, the performance is a function of 

£     £- 
SNR,^, -2-^2 eq 2-37 

If instead the matched filter processes N samples 

V «=i    J 
SNRo^r ^ E- 

' N \ 

^ «=I / 

f N \ 

V «=i        J 

f N \ 

V "=i J 

eq 2-38 

as the numerator and denominator are independent. 

41-^ 
SNR 

«=i 

OUT 
E iw(l) + w{2)+...+w(N)y I 

eq 2-39 

12 
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The noise samples are uncorrelated with each other, thus 

{NAY 
SNRouT = ^i .,o>    ^i L/( ^TTTZTZTl ^q2-40 

E\v(iy\+E\v(2y\+... + E\v(Nfl 

Now £'|w(r)^| = a^ for all i, therefore 

(NAf A' 
SNRour - )^ =N^=Nx SNR,, eq2-41 

Thus the processing gain obtained by processing N samples is 

PG = lOlog^o -—f^ = lOlog.o N dB eq 2-42 

The above has shown that an improvement in detection performance can be obtained 
by processing multiple samples. This is useful if a probability of detection is required, 
which is not satisfied given a specific constant false alarm rate. However, using 
multiple samples may create latency in the detection process, as it is necessary to wait 
for a period of time to receive then process the samples. 

2.7 Three Dimensional Matched Filters 

The discussions thus far have dealt with the single dimensional matched filter. The 
velocity filter is multidimensional. It will have a temporal dimension and at least one 
spatial dimension. In this section the one dimensional matched filter is extended to 
three dimensions. The results are used in the derivation of the velocity filter in 
Chapter 3. 

The 3D matched filter [2] is an extension of the ID matched filter discussed above. It is 
common to associate the 3D matched filter with measurements of a spatial area over 
time. The optimal 3D matched filter maximises the SNR for a given target trajectory 
over a given field of view for a set period of time. 

An example of where a 3D matched filter may be used is in the case of an IR seeker, 
which records images over time and uses these images to detect targets. Assumptions 
can be made regarding the motion of the target, for example the user may wish to 
consider targets of constant velocity. The filter that results from this assumption is the 
velocity filter. 

Table 2-2 shows a comparison between the one and three dimensional matched filters. 
Unlike the ID filter where the index into the measurement, signal and noise vector is a 
scalar, the index for the 3D matched filter is a vector of spatial and time 
components, r. 

13 
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Table 2-2: A comparison between the ID and 3D matched filters 

Measurement 

Signal 

Noise 

Noise variance 

Hypothesis, H^ 

Hypothesis, /f, 

Index 

Filter Impulse 

Response 

Filter Transfer 

Function 

Output 

SNR 

ID Matched Filter 

v(«) 

sin) 

w(n) 

o 

v{n) = w{n) 

v{n) = s{n) + w(«) 

« = 0,...,7V-1 

h{n)^s{'N-\-n) 

H{f) = S\f)e (-j24(N-\)) 

y(n) = J]h(n-kMk) 
k=0 

W/? E{y[n-l]\H,) 
'"'     variy[N-l]\H,) 

s''s 
SNRouT = —T cr 

3D Matched Filter 

v(r) 

s(r) 

w(r) 

S , Power Spectral Density of the background noise 

v(r) = w(r) 

v(r) = s(r) + w(r) 

r = (n,,ny,n,) 

n,=K[0] «J1] ... n^[N,-l]f 

n,=K[0] n,[l] ... n^[N^-l]f 

n.=K[0]   n,[\]   ...   «,[iV,-l]f 

h(r)^s(N-l-r) 

N = (N,,N^.,N,) 

l = (U,l) 
//K,n ,n.) = 5(iV,-l-n,,A/-^-l-n^,A^,-l-n.) 

E(/) 

>;(r) = ^/?(r-u)v(u) 

".<    "r    "/ 

h(n^ -u^,n  -u ,n, -u,)v{u,^,u^,u,) 
H,=0H^,=0U,=0 

SNR 
mean {y{r,))\ 

OUT 

SNR, OUT Z 

var(y(rj) 

\S{ff 

nf) 
Tg: target location at time t = 0 

Tj:   represents   that   the   sum   is   performed   over   3 

dimensions   

14 
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3. Velocity Filters 

3.1 Introduction 

The velocity filter is a variation of the 3D matched filter. It assumes a constant target 
velocity and that the signature of the target remains constant over time. The exact 
target velocity is unknown and therefore a bank of velocity filters is employed which 
cover the hypothesized target trajectories. As was shown in the ID matched filter case, 
using multiple frames can improve the detection performance of the velocity filter. In 
fact the concept of a velocity filter reUes on the use of multiple frames. 

The assumption of a constant target velocity and hence straight-line motion effects the 
type of targets, the number of frames, the update rate required for each frame and the 
range of target velocities that the velocity filters must cover. For example in the case of 
anti-ship missile defence, incoming missiles will be travelling at high speeds. As a 
result frames will have to be processed in the order of once every second. In the case of 
periscope detection, submarines travel at a far slower speed and as such, processing of 
the frames can be delayed to be in the order of several seconds. 

As stated above, the velocity filter is a 3D matched filter with some extia requirements 
concerning the type of targets it is used to detect. The clutter rejection component of 
the 3D matched filter reduces the correlation of the clutter [3] [4]. Thus the clutter 
becomes more 'white' in nature and adds incoherently over multiple frames. Over N^ 

frames the clutter power will increase by a factor of Np-. The target however will be 
present at the same location in all frames, when the velocity filter is matched to the 

target velocity, and hence the target power will increase by a factor of ^F over A'^^ 
frames. Thus the signal to noise ratio is increased by a factor equal to the number of 
frames. A mathematical argument is provided to support the above in Section 3.3. 

Velocity filters provide the sensor with position and velocity information, which is 
needed for tiack initiation. They are useful for detecting multiple targets, as the 
number of computations is independent of the targets present in the field of view. 
However, data association logic must be employed in order to associate detections with 
the correct target. Such logic is not employed in this report, however simulations 
involving multiple detections were performed and are discussed in Section 4.1.2. 

3.2 The Velocity Filter: A Mathematical Description 

We begin by forming a mathematical description of the velocity filter. The 3D matched 
filter is defined in Reference 2 to have the following tiansfer function: 

Hif) = ^~ oM-J2nfro) eq 3-1 
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It is convenient to convert this to the z-domain, 

S\z) 
H{z) = 

S(z) 
eq3-2 

Expanding Equation 3-2 into its spatial and temporal components yields. 

H{z,,z^,z,) = 
S{z;\z;\z;') 

eq3-3 
i:{z^,Zy,z,) 

where S{z^,z ,z,) is the z-transform of the spatio-temporal signal s{n^,ny,ni) and 

Z(z^, z , z,) is the power spectral density of the background clutter expressed in the z- 

domain. Note that the signal is sometimes called the target function [4]. The pre- 

processing of the frames that occurs prior to applying the velocity filter has the effect of 

whitening the backgroimd clutter. Thus in all simulations performed in this study the 

background noise was assumed to be white. 

Assuming the target moves with a constant velocity the signal can be redefined to be 
s{n^,ny,n,) = s{n^-v^n,,ny-v^n,) eq3-4 

where v^ and v are the components of constant velocity in the x and y dimensions 

respectively, v^ and v , represent the number of pixels the target traverses per frame 

and do not need to be integer values. Consider the case where A^^, filters are used and 

filtering begins at time «, = 0. Taking the z-transform of Equation 3-4 gives 

00  ' O)       N p-\ 

S{z^,z^,z,)=Y. E Z^K-^.v«,'«,-^«.K"'z/"^'zr"' 
H^=-co//   =-co  «, =0 

Defining m^ = n^ -v^n, and m^, = n^ -v^w,, yields 

eq3-5 

CO 00 N,~\ 

S{z„z^„z,)= Y.  S Z^K>"^,K 
/H ^ = -00 /»   = -c»   H^ = 0 

eq3-6 

Rearranging 

S{z^,z^,,z,)= YJ 
n,=0 

OD K) 

Z   Z^K''^)^/"''^> 
m =-oo m,, =-co 

^v 2y     >  'Zi eq3-7 
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Noting that the bracketed term is in fact the z-trarisform of the spatial components of 
the spatio-temporal signal, reduces Equation 3-7 to 

S(z,,Zy,z,)= Y,S{z^,Zy)z^'''''"'Zy "'"'z,""' eq3-8 
n,=0 

The conjugate of the above expression is used in the expression for the matched filter, 

S(z^'\zy~\z,''^) = S(z^'\Zy'^)Y, Zx"'*'2/'*'^r*' eq3-9 
k,=0 

Substituting the above expression into the expression for the matched filter (Equation 
3-3) yields 

m Siz,'\zy'') 
n{^Zjc ,Zy ,Z,) 

^\Z^    ,Zy    ,Z,    ) 

Zv^k,      Vyk,      k, 
Z^ Zy Zf 

i,=0 

eq 3-10 

where the bracketed term is the transfer fimction of the velocity filter. The impulse 
response of the velocity filter is given by 

K(n,,ny,n,)-- J^S[n^+v^k,,ny+Vyk,,n,+kJ eq3-ll 
k,=0 

w^here n^ , Uy and n, take values less than or equal to zero. Note that the subscript v 

refers to the particular velocity that the velocity filter is tuned to. 

It is useful to consider an example to illustrate the technique described above. Consider 
the one dimensional case (one spatial dimension) where four frames are used and a 
velocity filter is employed that is tuned to a velocity of 1 pixel per frame. Thus 

3 

K^i (";c.«,) = Z ^(".v +K^n,+K) eq 3-12 
/t,=0 

Expanding the above yields 
h^in^,n,) = S{n^,n,) + S{n^ +l,n^ +l) + S{n^ +2,n, +2)+ S{n^ +3,n, +3)  eq3-13 

Figure 3-1 shows a diagrammatic representation of the velocity filter for this example. 
Just as the ID matched filter is the 'flipped' version of the signal, the velocity filter is 
also the flipped version of the signal. However the velocity filter is fUpped in both 
spatial and temporal dimensions. Figure 3-2 shows the result of flipping the velocity 
filter in both dimensions. This velocity filter would be matched to a signal that begins 
in pixel one and has a velocity of one pixel per frame. If the velocity filter is swept 
across the frames it would be matched to signals that originate from different pixels. 
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n. -6 -5 -4 -3 -2 -1 0 

n.  - -3 

n. - -2 

n.  = -1 

n, =0 

Figure 3-1: A diagrammatic representation of a one-dimensional velocity filter for an assumed 
velocity of one pixel per frame, over four frames. 

n^ 

^t = 0 

«r = 1 

^t = 2 

n. = 2> 

0 1 2 3 4 5 6 

Figure 3-2: A'flipped' version of the velocity filter in the above example. 

3.3 SNR Gain of the Velocity Filter 

In this section the SNR gain of the velocity filter is derived. The results obtained here 
can be compared directly to the SNR gain of the matched filter derived in Section 2.4. 

Consider a target located at (n,.,ny,«,). The SNR at the input to the velocity filter is 

given by 

^(/i,-v,n,,n^-v^,n,) 
SNR„=- 

a 
eq 3-14 

where cr^ is tlie variance of the backgroimd noise. 
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An expression for the SNR at the output of the velocity filter is now derived. Let 
y-y^+yw be the velocity filter output where y^ and y^ are the signal and noise 

responses respectively. The output of the velocity filter is given by the convolution of 
the impulse response of the filter and the input to the filter. For the signal response 

Applying the expression for the velocity filter given in Equation 3-11 yields 

k,=0 

E^(«x + ^A -v^(n, +k,)n^+ v^k, -v^(H, + k,)) 
k,=0 

N,-\ 

yt,=0 

The above expression is independent of k^ thus 

y.. («.'«,,.",)= ^F^(«. - ^«,.«y - ^«/) eq 3-17 

Reference 4 shows that the output noise power can be expressed as 

cr^,'=A^^cr' eq3-18 

This result occurs because the application of the velocity filter and the pre-processing 
that occurs prior to the velocity filter tend to decorrelate the background noise. Using 
the above results. The SNR at the output of the velocity filter is given by 

^^^OUT -  2  = T; 2  

^y. ^f'^ 

a' 

The gain in terms of SNR achieved by using the velocity filter is thus 
SNRr 

eq 3-19 

SNRa.,.= 
SNR,, 

= Np eq 3-20 

This result is analogous to the ID matched filter case where a similar result for 
processing N samples instead of a single sample was obtained. 

Table 3-1 summarizes the velocity filter and can be compared directly to Table 3-2, 
which summarizes the ID and 3D matched filters. Table 3-1 shows both a one and two 
dimensional velocity filter. The one dimensional velocity filter only considers single 
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dimensional frames, i.e. one spatial dimension and one time dimension. It is equivalent 
to a two dimensional matched filter. The two dimensional velocity filter considers two 
spatial dimensions and one time dimension. It is equivalent to a three dimensional 
matched filter. 
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Table 3-1: A comparison between the ID and 2D velocity filters 

ID Velocity Filter 2D Velocity Filter 

Measurement v(n^,n^) H«.'«y'"J 
Signal s(n^,n,) = s(n^-v^n,) 4«,,«^,«,)=5(«,-v_^«,,«^-v^nj 

Noise M{n^,n) w(«,,«^,nj 

Noise variance 

(Input to filter) 
a' a' 

Hypothesis, H^ v[n^,n,)^M>(n^,n,) v{n^,n^,n,) = w[n^,n^,n,j 

Hypothesis, //, v[n^,n,) = s[n^,n) + w[n^,n) v(n^,ny,n,j = s(n^,ny,n,j + w(n^,ny,n,j 

Index 

n.=K[0]   «,[1]   ...   nXN,-\]Y 

n, =K[0]    «J1]    ...    n^[N,-l]r 

n,=K[0]    «^[1]    ...   n^[N^-\]Y 

n.=K[0]    «,[1]    ...    «,[iV,-l]]^ 

Filter N,-\ 

k,=0 

Filter TF 

k,=0 k,=0 

Output 

y^: target response, y^^,: noise response 

y. («.v >«, )= Z ^(« V + vA ,n,+k,) 

y^ys+y. 

y^: target response, y^ : noise response 

J'.{",^ny,n,)= N,s[n^ -v^n,,n^ -v^n,) 

y. («. ^ny,n,)= w[n^ ,ny,n,)* h(n^ ,n^,n,) 

k,=0 

SNR N,,s{n^ -vnT N,s(n^~v^n„n^-Vyn,f 

SNR Gain A^. A^. 

21 



DSTO-TR-1406 

3.4 Performance of the Velocity Filter 

Now that the SNR gain of the velocity filter has been derived the results can be used to 
assess the performance of the velocity filter. It is found that as for of the matched filter, 
the disti-ibutions of the noise and noise plus signal hypotheses along the test statistic 
for the velocity filter is dependent on the SNR. 

A derivation of the probability of false alarm and probability of detection for a single 
velocity filter is provided in Reference 4. The probability of false alarm is the 
probability that a single appUcation of a particular velocity filter will falsely report a 
target to be present. The probability of detection is the probabiUty that a target at a 
particular location and travelling at a particular velocity will be detected by the 
appropriate velocity filter. In this section the results obtained from deriving the 
probability of false alarm and detection given in Section 2.5 are used to derive similar 
expressions for the velocity filter. 

From (eq. 2-30) scaling the test statistic gives the following PDF for the matched filter 

,     fA^(0,l)|//o T ~J   eq3-21 
\N{^SNRour,mH, 

where the scaled test statistic is given by 

f = —  eq 3-22 

If the velocity filter employs A'^,, frames, the SNR is increased by this factor. From 

Equation 3-20 
SNRauT=N,SNR,^ eq3-23 

Thus the scaled test statistic for the velocity filter gives the following PDF 

T ~ <          eq 3-24 

where the scaled test statistic has become 

T = - eq 3-25 
^ rO^S 

From Equation 2-35 the threshold for the test statistic for the matched filter is given by 

f-^Q''(PfJ eq3-26 

Noting that the SNR input to the velocity filter is given by 

SNR,,=^ 
a 

22 



DSTO-TR-1406 

and also using Equation 3-20, the threshold of the test statistic for the velocity filter is 
given by 

y'^a'^N,SNR„Q-'{pJ eq3-27 

Figtire 3-3 shows the above results diagrammatically. It is clear to see the advantage of 
employing multiple frames. As the number of frames increases the PDF of the signal 
plus noise case moves to the right. 

p{T';Hg)    P{T;H^) p(r';//,)Multip]e Frames 

0 4^NR,^ 

Figure 3-3: PDF's for the velocity filter 

^lN,SNR„ 

Using the above relationship between the ntimber of frames and the SNR and 
combining this with Equation 2-36, leads to the following relationship between the 
probability of detection and the probability of false alarm. 

P^ = Q(Q-'{PJ-^N,SNR„) eq 3-28 

Figure 3-4 shows a theoretical Receiver Operating Characteristic (ROC) curve, which 
expresses Equation 3-28 over multiple probabilities of false alarm and numbers of 
filters. The ROC curve is a fundamental measure of performance that is commorily 
used. The SNR was set to four (6.02dB) for these simulations to match similar curves 
that are provided in Reference 4 for comparative pvirposes. 

The figure below shows the improvement in performance obtained by increasing the 
number of frames. For a given false alarm probability, the probability of detection 
increases when additional frames are used. 
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Pd vs. Pfa for DBerent Numbers of Frames With SNR = 4 

Figure 3-4: TIteoretical velocity filter bank ROC curves 

3.5 The Velocity Filter Bank 

When the range of possible target velocities exceeds the width of a single velocity filter 
bin, more than one bin is required. The resulting collection of velocity filter bins forms 
a velocity filter bank. The number of bins used in the velocity filter bank is determined 
by the range of possible target velocities and the velocity range covered by a single bin. 

hi IR cases it is not the actual target velocity that the velocity filters are tuned to, rather 
it is the target velocity in pixels per frame. The target velocity in pixels per frame is a 
function of the actual target velocity relative to the detector and the distance between 
the detector and the target. Targets that are close to the detector will traverse more 
pixels per frame than those further away. Thus in determining the range of velocities in 
pixels per frame that the velocity filter bank should cover, it is not only the actual 
target velocity relative to the detector but also the expected range to the target that 
must be considered. 

It is important to note that the output of the velocity filter bank tells the user which 
pbcel the target started in and its velocity in pixels per frame. The target could be 
moving towards or away from the sensor and still fall into the same velocity filter bin. 
Some type of secondary processing would need to be performed if the target velocity 
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vector needed to be found. For example a rough estimate of the targets velocity vector 
could be obtained by noting the rate of change of the SNR from the target. 

3.5.1 Calculating the Maximum Number of Velocity Filters & the Velocity Filter 
Bank Resolution for a ID Velocity Filter 

Assume that targets can move between v„^j„ and v^^^ pixels per frame. Hence, after n 

frames the target can move into any of («-lX^max "''^minj+l pixels. Thus, there are 

{n - iX^max ~ ^min)+ ^ possible target velocities and hence velocity filters 

A^K.=(«-lXv™.-v,™J+l eq3-29 

where A'^^^ is the number of velocity filters. 

The distance in pixels per frame between adjacent members of the velocity filter bank is 
termed the resolution of the velocity filter bank in this report. The resolution is 
inversely proportional to the number of frames. 

^   1   ^ 
KF = n-\ 

eq 3-30 

Figure 3-5 shows an example of the above. In this figure it is assumed that the target 
can have velocities remging between -1 and 1 pixels per frame. This is shown by the 
shaded pixels. Each line passing through the frames corresponds to a particular target 
velocity. The region between each line represents the resolution of the velocity filter 
bank. As the number of frames is increased it is clear to see that the number of velocity 
filters increases and the resolution improves. Thus a finer resolution in velocity 
measurements is obtained at the expense of an increased number of computations and 
increased latency before a detection is declared. 
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No. Velocity Filters       Filter Width 

0.5 
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0.33 

Figure 3-5: The number of velocity filters grows with the number of frames 

It is important to note that the above calculations refer to the maximum number of 
velocity filters and the highest possible resolution of the velocity filter bank. 
Depending on a number of issues including computational costs, the expected width of 
the target signature in velocity and the required update rate, the user may not choose 
to implement all possible velocity filters. 

The results presented in this section apply to the one dimensional velocity filter. The 
results have shown that the number of velocity filters increases linearly with the 
number of frames. For a two dimensional case the number of possible velocity filters 
increases at a rate proportional to the square of the number of frames. It is clear to see 
that after only a few frames the number of possible velocity filters gets very large. Thus 
it is particularly important to prune the number of velocity filters used in the 2D case. 
One solution is to omit every n* velocity filter. This reduces the number of filters at the 
expense of a reduction in the resolution. Reference 7 presents an alternative solution 
whereby 2D space is projected into ID space before applying the velocity filter. This 
reduces the number of computations at the expense of a reduction in performance. 
Several other methods used to reduce the number of computations are presented in the 
next section. 
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3.6 Velocity Filter Implementation Issues 

In the preceding sections the velocity filter has been developed and the concept of the 
velocity filter bank has been discussed. This section discusses several velocity filter 
implementation issues. Figure 3-6 shows three velocity filter computation strategies. 
Each horizontal Line in the figure corresponds to a frame and the lines passing through 
these frames correspond to the velocity filters. The difference between the three 
techniques is the order in which the filtering is performed. 

Figure 3-6(a) shows a frame-first strategy. Each velocity filter state in each pixel is 
updated before moving onto the next frame. Using this strategy the velocity filter states 
(or partial sums) for each pixel in the current frame must be stored in memory. The 
frames on the other hand do not have to be stored. The advantage of the frame-first 
strategy is that it lends itself to recursive velocity filtering. Using recursive velocity 
filtering, updates to the velocity filter states are obtained after each frame. Thus the 
entire frame stack does not need to be processed before a target can be declared. 

There are two main disadvantages of employing the frame-first technique. In many 
applications there are hundreds or thousands of velocity filters but only a few tens of 
frames. Thus storing the frames requires far less memory than storing the filters. 
Secondly, the temporal correlation of the false alarms is much higher for a frame-first 
implementation than a pixel-first or filter-first implementation [4]. 

The pixel-first and filter-first implementations, shown in Figure 3-6(b) and (c), store the 
frames, not the velocity filters states for each pixel. In the pixel-first implementation, 
the filter trajectories starting at a given pixel in the first frame are traced all the way to 
the bottom of the frame stack. This process is repeated for all pixels in the first frame. 
In the filter-first implementation, a single filter is applied to all pixels in the first frame 
and is traced all the way to the bottom of the stack. The filter is then changed and the 
process repeated until all filters in the velocity filter bank have been applied to the 
stack. 

Pixel- Pixel- Pixel- 

r^ 'ww TfrwTifwT 

(D 

c3 

i 

(a) Frame-First (b) Pixel-First 

Figure 3-6: Velocity filter computation strategies 

(c) Filter-First 
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3.6.1 Sequential Velocity Filter 

The disadvantage of the pixel-first and filter-first techniques is that it is not until all the 
frames have been processed that decisions can be made as to the presence of a target. 
Reference 8 develops a modification on the basic velocity filter, which addresses this 
problem. Unlike the basic velocity filter, which delays thresholding until the entire 
frame has been processed, the sequential velocity filter applies thresholding after each 
frame. If the integrated sum is greater than the upper threshold, a target is declared 
and further processing is halted. If the sum falls beneath a lower threshold, it is 
determined that no target is present for that filter at that location and once again 
processing is halted. The above process is illustrated in Figure 3-7. 

Integrated 
Pixel 
Intensity 

Detected 
Path Upper Threshold 

Lower Threshold 

Rejected 
Path 

Frames 

Figure 3-7: Tlie sequential velocity filter 

The sequential velocity filter is most effectively implemented using the pixel-first 
approach. Using this approach allows the exploitation of cases where adjacent filters 
share the same quantised path for the first several frames before diverging. 

3.6.2 Single Bit Velocity Filter 

References 3 and 6 discuss the use of a single bit velocity Alter. The single bit velocity 
tilter quantises the data into two levels. This substantially reduces the memory 
requirements at the expense of a reduction in performance. The single bit velocity filter 
requires two fliresholds. The first is used to determine which pixels in the input data 
will be given a value of one i.e. the maximum or 'on' value. The velocity filter bank is 
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then applied to the quantised image and a count is kept of the number of times a level 
of one was observed in the quantised image for each application of each velocity filter. 
The output of the filter bank is then processed and a target wiU be declared for a 
particular velocity filter and initial target location if the count is above a second 
threshold. 

3.6.3 Implementing the ID Matched Filter & the ID Velocity Filter: A 
Comparison 

Table 3-2 compares the ID matched filter with the ID velocity filter in terms of 
implementation. As defined early in this chapter, the ID velocity filter has a single 
spatial dimension and a time dimension. The aim of this section is to assist the reader 
in understanding the implementation of the velocity filter by relating it to that of the 
matched fUter. 

For the ID matched filter, convolution is performed in the domain in which there is 
uncertainty about the target, i.e. the time domain. The convolution is equivalent to 
flipping the filter and moving along the measurement vector from left to right. 
Theoretically the maximum output will occur when the filter exactly overlaps the 
signal. This allows the location of the signal in time to be determined. The same 
principle appUes for the ID velocity filter. For the ID velocity filter the uncertain terms 
are the initial pixel location of the target and the velocity of the target. These are the 
dimensions in which convolution must occur. Each velocity filter is flipped both 
horizontally (along the pixels) and vertically (along the frames) and shifted from left to 
right over the pixels. Theoretically the maximum output will occur when the 
appropriate velocity fUter exactly overlaps the signal. Thus the velocity of the signal 
and its initial pixel position can be determined. Note that there is no need to convolve 
in the time domain, as one of the assumptions of the velocity filter is that if a signal is 
present it will occupy all frames. 
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Table 3-2: A comparison betxveen tlte implementation of tlie ID matched filter and the ID 
velocity filter 

Known terms 

Unknown 

terms 

Convolution 

Principle 

Implementation 

method 

ID Matched Filter 

Form of the signal 

• Shape 

• Energy 

Location of the signal in time (or 

sample number) 

Time domain 

Maximum output occurs when 

the filter and signal overlap 

1. Flip the filter in time 

2. Move the filter from left 

to right over the 

measurement summing 

the response at each 

point 

3. Threshold the output 

4. Declare elements that 

pass the threshold, 

detections 

ID Velocity Filter 

Form of the signal 

• Shape 

• Energy 

• Signal is located in every frame 

• Signal structure remains 

constant over frames 

Location of the signal (initial pixel 

location) 

Velocity of the signal 

Spatial domain (along the pixels) 

Velocity domain 

Maximum output occurs when the filter 

and signal overlap 

1. Flip the filter both horizontally 

(pixels) and vertically (frames) 

2. Shift the filter from left to right 

over the pixels summing the 

response at each point (filter- 

first implementation) 

3. Repeat for the next member of 

the velocity filter bank 

4. Threshold the output 

5. Declare elements that pass the 

threshold, detections 
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4. Velocity Filter Simulations 

This section discusses simulations that were performed to test the performance of a ID 
velocity filter. A decision was made to implement the ID velocity filter, as it requires 
far less computation time and is easier to visualise that the 2D velocity filter. Due to the 
time constraints imposed on the project, stringent assumptions needed to be made. The 
assumptions made and parameters used for the tests were: 

• The target occupies only one pixel at a time 
• The target can only move a maximum of one pixel per frame 
• The noise was zero mean white Gaussian noise with a variance equal to one 

o    No temporal correlation in the noise 
o    No spatial correlation in the noise (independent from pixel to pixel in a 

particular frame) 
• There were a total of 50 pixels in each frame. 

4.1 Types of Simulations Performed 

This section begins with the results from simulating the velocity filter technique for a 
single target. Following this the same simulations were performed for two targets. In 
each of the above simulations it was assumed that the noise variance was equal to one. 
This is an important parameter as the value of the noise variance is used in 
determining a threshold for detections (see Equation 3-27). In Section 4.1.3 a technique 
is developed to estimate the noise variance. The aim is to determine the effect that 
using an estimated noise variance value has on the simulations. Such simulations were 
performed in Section 4.1.4 where ROC curves were developed for the velocity filter 
technique. In all cases the filter-first technique as discussed in Section 3.6 was 
implemented. 

4.1.1 Single Target 

In the simplest case the velocity filter technique was implemented for the case where a 
single target is present and an assumption is made that the noise variance is equal to 

one. In the figures that follow the probability of false alarm was set to lO"*, ten frames 
were used and the SNR was set to 3dB. Figure 4-1 shows the input signal and the signal 
plus noise which is the input to the velocity filters. The target starts in pixel ten and 
moves at a velocity of 0.5 pixels per frame. The low SNR makes the signal difficult to 
detect over the background clutter. 
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Input Signals lo Ihe Velocity F;fler 

Figure 4-1: Input signal and noise into tlie velocity filter 

As discussed in Section 3.6.3 the output of the velocity filter is the convolution of the 
input to the filter and the space temporal form of the filter. Theoretically the maximum 
output occurs when the velocity filter matches the target exactly in both velocity and 
initial pixel position. Figure 4-2 shows the two dimensional convolution between the 
velocity filter and the input to the filter for tiiree different velocity filters. In the top plot 
the velocity filter exactiy matched tiie actual target velocity. The diagonal line of 
maximum values is representative of the target motion over multiple frames. In the 
other plots the output is not as large as the filter is not matched perfectly to the target 
(note the changing scale between the three plots). If a target exists, it will be present in 
all frames thus it is unnecessary to convolve in the frame (or time) dimension. Only the 
case where the filter perfectly overlaps the input signal needs to be considered. This 
occurs along the central horizontal line of each plot. Thus only this central line needs to 
be kept in memory. In fact only the elements of this line that correspond to those where 
non zero elements of the filter overlap the input image, need to be kept in memory, i.e. 
the blank sections shown on the right hand side of the plots in Figure 4-2 can be 
discarded. 
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Figure 4-2: Convolution output for various velocity filters 

The purpose of the above discussion is to assist in the understanding of Figure 4-3. 
Simulations were not performed using convolutions; rather the implementation 
method discussed in Table 3-2 was used^. The top plot in Figure 4-3 shows the output 
of the velocity filter bank for the input illustrated in Figure 4-1. A total of 19 velocity 
filters were used. These filters were effectively moved from left to right over the input 
frames. Each cell for the top plot in Figure 4-3 represents the output of a particular 
velocity filter assuming that the target starts at a particular initial pixel position. Each 
horizontal line corresponds to the output for a particular velocity fUter applied to all 
the pixels. This is equivalent to a section of the central horizontal line shown in the top 
diagram in Figure 4-2. 

A threshold is appHed to the output of the velocity filter and those elements that pass 
the threshold are declared targets. The central plot of Figure 4-3 shows the elements 
that have passed the threshold. Only one such element exists, which corresponds to a 
target with a velocity of 0.5 pixels per frame, starting in pbcel ten. Thus, the velocity 
filter has correctly detected the targets velocity and initial starting position. The bottom 
plot of Figure 4-3 shows the trajectories for those elements that pass the threshold test. 

' In practice, the implementation represented a correlation between the velocity filter and the mput 
frames, not a convolution. The correlation process produces an equivalent result to the convolution 
process, as the velocity filter has uniform values over all frames. 
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This plot is equivalent to the input signal to the velocity filter shown in the top plot of 
Figure 4-1. 

Fillei Oulpijt. Velocily-Pitel Malru 

Figure 4-3: Output oftlte velocity filter hank 

4.1.2 Multiple Target Detection Using Single Target Velocity Filters 

An advantage of the velocity filter is that the number of computations performed is 
independent of the number of targets present. An example of the velocity filter 
technique applied to a case where the input contains multiple targets is shown in 
Figure 4-4. There are two targets present in this example. The first is tihe same target 
discussed in the previous section. The second is a target that has a velocity of -0.8 
pixels per frame and begins in pixel 35. The SNR of both targets was 3dB, the false 
alarm rate was set to 10 "^ and the number of frames was set to ten. Figure 4-5 shows 
the output of the velocity filter bank. By comparing the bottom plot in Figure 4-5 with 
the top plot of Figure 4-4 it is clear that both targets have been detected. 
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Input Signals lo the Velocity Filter 

AO "   «■ 

Input Signals + Noise lo It^e Vetocity Filter 

15 50 

Figure 4-4: Input signals and noise into tlie velocity filter hank for multiple targets 

Finer Output. Velocity-Pnel Mjlnr 

45 £0 

Figure 4-5: Output oftlie velocity filter bank for multiple targets 
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Often multiple elements corresponding to the same target may pass the threshold test 
at the output of the velocity filter bank. Figure 4-6 illustrates such a case^. In this figure 
a total of five elements have passed the threshold test. Clearly two of these detections 
are for the first target and three are for the second. In some cases the targets may be 
spaced closely together, for example aircraft flying in formation. A problem exists for 
these cases in associating the detection with the correct target and determining how 
many targets are present. 

Filler Oulput. Velocity-Pt»el MalriK 

25 30 
Pixel PoBilion 

Figure 4-6: Multiple detections of multiple targets 

4.1.3 Noise Variance Estimation 

In the previous sections it was assumed that there was prior knowledge of the noise 
variance. Unless pre-processing of the data has occurred that has effectively set the 
noise variance of the data to a specific value, this will not be the case. Thus the noise 
variance must be determined via processing the data input to the velocity filter bank. 
In this section a recursive technique for estimating the noise variance is developed. 

' Note that in Figure 4-6 the SNR of both targets is 5dB. 
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The variance, o"^ of a set of data, y = [yi    y^    ■■■   >^„ ] is given by Reference 9 

Assuming that the noise is zero mean white Gaussian, Equation 4-1 can be simplified 

to 

—       1     " 

n   1 j=\ 
eq4-2 

The difficulty with directly applying this formula to the data is that samples that 
contain the signal as well as the noise will be used in the calculations of the noise 
variance. However, without having prior knowledge of the noise variance a threshold 
level cannot be used to determine which output samples contain signal components. 
This is a fundamental problem in estimation. To overcome this problem a recursive 
algorithm was used to estimate the noise floor. Consider Equation 4-2 for the case 
where n-1 samples have been used to estimate the noise variance, i.e. 

Now consider the case where n samples are used for the noise variance estimation 

S^i = T^A^' + ^2^ +... + xl, + x] ) eq 4-4 <T., 
(«-l)^   ^       («-l) 

Combining the results from the above equations yields 

^   1   ^ 
cxl = 

\n-\. 
[{n-iyrl^+xl) eq4-5 

This recursive form of the noise variance estimation allows each sample to be tested 
prior to being included in the noise variance estimate. If the value of the sample is 
determined to be too large a decision is made that the sample is likely to contain signal 
components and therefore will not be included in the noise variance estimate. The 
difficulty then lies in determining a threshold for deciding if a sample contains a signal. 
If the threshold is set too high, some samples containing signal components will be 
included in the estimate and bias the estimate to a high value. If the threshold is too 
low some samples consisting only of noise will not be included in the noise estimate 
and hence bias the estimate to a low value. In the simulations performed in this study, 
ti-ial and error showed that setting the threshold to a value of twice the standard 
deviation of the noise estimate provided a good compromise. In practice a less ad-hoc 
method should be used to determine the threshold. 
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4.1.4 Simulated ROC Curves 

This section shows the performance of the velocity filter bank using simulated ROC 
curves. It is important to note that the ROC curves presented here are only theoretical. 
An ROC curve plots the probability of detection versus the probability of false alarm, 
often for different variables such as the SNR or the number of frames. To create an 
ROC curve from simulations one would run the program multiple times, count the 
number of false alarms and the number of detections and use this information to create 
the plot. In this project, such an approach was not feasible as the required ROC curve 
includes probability of false alarm rates as low as one in a million. The code would 
therefore need to be executed on average one million times to count just a single false 
alarm. Techniques such as 'Importance Sampling' are beyond the scope of this report. 
In this study, the approach used to construct the ROC curves was to set a constant false 
alarm rate (CFAR)3 and to use this to determine the detection threshold. Determining 
the probability of detection was then simply a matter of dividing the number of 
detections by the total number of runs. This produced a curve of probability of 
detection versus constant false alarm rate. 

' In determining the CFAR it was noted that the probability of false alarm increases linearly with the 
number of frames [4]. Thus, it was important to scale the false alarm rate used in detennining the 
threshold for detections. 
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Figure 4-7: Velocity filter bank ROC curves for various numbers offi-ames using tlie true noise 
variance 

Figure 4-7 shows several ROC curves for different numbers of frames. The true noise 
variance was used in the production of these curves. The SNR was set to 4 (6.02 dB), to 
match the simulations performed in Chapter 3. The advantage of using additional 
frames may be clearly seen. For a given probability of false alarm, the probability of 
detection substantially increases when the num^ber of fram.es is increased. 

Comparing Figure 4-7 with the corresponding theoretical plot from Chapter 3, Figure 
3-4, shows that in general the simulated performance agrees with the theoretical 
performance. Both plots clearly show the improvements in probability of detection 
obtained by employing additional frames. However there are some notable differences 
between the plots. For probability of detection values above approximately 0.7 the two 
figures are similar however the performance of the simulated velocity filter decreases 
for lower values of probability of detection compared to the theoretical plots. For each 
probability of false alarm point in Figure 4-7, 500 simtilatior\s were performed. 
Performing such a large number of simulations means that random affects are tmlikely 
to be the cause of the differences between the theoretical and simulated results. These 
differences should be investigated further if additional work is undertaken in this area. 
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Velocity Filter Bank ROC Curve for Various Numbers of Frames 

10 ID 10"" 10 
Probability of False Alarm 

10" 10 

Figure 4-8: Velocity filter bank ROC curves for various numbers offi-aines using an estimated 
noise variance 

The same simulations discussed above were rerun using the noise variance estimate. 
The results are shown in Figure 4-8. The slopes of the curves appear steeper when the 
noise variance was known. A reasonable explanation for these differences can be found 
by considering the uncertainty of the noise variance estimation. For each nm the results 
of the noise variance estimation process will not be the same. For some rims the 
estimate will be less than the real value and in others it will be greater. In the cases 
where the noise variance estimate is less than the true value, more detections will be 
declared than if the true value was used. This will become more noticeable when the 
expected probability of detection from Figure 4-7 is very low. Similarly, when the 
expected probability of detection is very high there will be many cases where the noise 
variance estimate is a high value and some targets wHl not pass the threshold. The net 
result of the above is a smoothing in the ROC curves. Further investigations would 
need to be performed to confirm these results and the reasoning for the differences 
between Figures 4-7 and 4-8. 

Figures 4-9 and 4-10 show a set of ROC curves for different SNR. Five frames were 
used in each simulation. In Figure 4-9 the brue value of the noise variance was used 
where as an estimated value was used in Figure 4-10. Both figures show the improved 

40 



DSTO-TR-1406 

performance of the velocity filter when the SNR is increased. The figures also show 
that velocity filtering works well in low SNR environments. It is in these environments 
that the velocity filter is most likely to be employed, as single measurements will detect 
the target when the SNR is large, and there will be little to gain by integrating the 
frames. 

The ROC curves in Figure 4-9 show an improved performance over the curves in 
Figure 4-10. For example, corisider the case where the SNR is 5dB and the probability 

of false alarm is set to 10"\ The corresponding probability of detection is 
approximately 0.77 when the true noise variance is used compared to a value of 
approximately 0.54 when an estimate is used for the noise variance. As the threshold 
for declaring detections is directly proportional to the noise variance (see Equation 3- 
27) the above results indicate that the average of the noise variance estimates was 
greater than the true value. Thus the threshold for declaring whether a measurement 
contains noise only or signal plus noise was probably set too low. 

Velocity Filter Bank ROC Curve for Various SNR 

10' 10 
Probability of False Alarm 

Figure 4-9: Velocity filter bank ROC curves for various SNR (dB) values: true noise variance 
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Velocity Filter Bank ROC Curve for Various SNR 

1D^ 10 
Probability of False Alarm 

Figure 4-10: Velocity filter bank ROC curves for various SNR (dB) values: estimated noise 
variance 

5. Conclusions & Recommendations for Further Work 

The velocity filter technique is a particular type of track before detect technique where 
it is assumed that the target velocity is constant over the period that the frames are 
being integrated. In this report the velocity filter has been derived and simulated 
results have been compared to theory. 

The report has shown the benefit of using the velocity filter in low SNR environments. 
When multiple frames are combined and the appropriate velocity fUter is used, the 
signal components will add coherently. The noise components will not add coherently 
and an overall SNR gain will be achieved. 

The report began with the derivation of the ID matched filter. The test statistic for the 
ID matched fUter was derived, as was its distribution. It was foxmd that the larger the 
signal to noise ratio, the further apart the noise only and the signal plus noise 
distributions will be along the test statistic (see Figure 2-3). 
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In Chapter 3 the velocity filter was derived. The impulse response of the velocity filter 
is given by 

hM,,ny,f^,)=T.^k^x+^A^"y+'^yknn,+kJ eq 5-1 
k,=0 

When the uncertainty in the target velocity is such that the width of a single velocity 
filter is not large enough to cover this uncertainty a set of velocity filters is required. 
This is termed the velocity filter bank. 

It was found that increasing the number of frames over which the velocity filters are 
applied had the following effects 

• An increased SNR out of the velocity filter, proportional to the number of 
frames. 

• An increase in the number of possible velocity filters, proportional to the 
number of frames for the ID velocity filter and proportional to the square of the 
number of frames for the 2D velocity filter. 

• An increase in the resolution of the velocity measurement, proportional to the 
number of frames. 

• The probability of detection increases at a rate greater than the probability of 
false alarm, thus there is an overall improvement achieved by increasing the 
number of frames. 

• Increase in the delay before ta-ack initiation can take place. 

Three different techniques for implementing the velocity filter were presented, namely 
the frame-first, pixel-first and filter-first techniques. For the pixel-first and filter-first 
techniques the frames need to be stored in memory. However, for the frame-first 
technique the velocity filter states for each pixel need to be stored. This generally 
requires more memory than storing the frames, thus the pixel-first and filter-first 
techniques tend be used more in practice. 

Several types of simulations were performed to test the performance of the velocity 
filter with and without noise variance estimation. These included single and multiple 
targets as well as the production of theoretical ROC curves obtained by executing the 
velocity filter multiple times. It was fotmd that when the noise variance was estimated 
the slope of the ROC curves was reduced. 

5.1 Further Work 

There are many opportunities for further work to be performed in this area. Some of 
these opportunities are discussed below: 

• Simulations were performed for a ID velocity filter. In practice it is likely that 
images will be two dimensional thus, the 2D velocity filter would need to be 
implemented. This would add an extia level of complexity to the simulations 
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and issues such as memory and computation time, which were not crucial in 
the ID case, would need to be explored. 
The velocity filter technique could be applied to real data and its performance 
compared to conventional techniques using this data. 
In this report the issue of estimating the noise variance in order to determine a 
threshold for detections was investigated. Further work could be performed in 
this area to find other techniques to estimate the noise variance. 
The concept of data association was introduced in Section 4.1.2, where five 
detections were reported for only two targets. If the velocity filter technique 
were to be applied to real data, tiie way in which detections are associated to 
individual targets would need to be addressed. 
The velocity filter is one of several track before detect (TBD) techniques 
(Appendix A). Other TBD techruques could be simulated and their results 
compared to the velocity filter technique. 
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Appendix A: Other Track Before Detect Techniques 

Velocity filtering is one of many track before detect techniques. In this section two 
other TBD techniques are discussed, namely the Hough transform and Dynamic 
Prograrrmiing. 

A.l.    Hough Transform 

For the Hough transform, measured data is transformed into stationary bins in target 
state space. In general the bins represent the two normal parameters of a straight line. 
Reference 5 uses an example of a dim radially inbound target with nearly constant 
radial velocity. The Hough parameter space {p,0) is mapped into the time-range 
space using the following equation: 

p = Rco?,6 + tsm.O eqA-1 

p and 0 are broken up into bins which spread over the range and angles that are 
under consideration. Given a measured range at a given time and angle. Equation A-1 
is used to calculate p and this measurement is placed in the appropriate (/?, 0) bin. 

A double threshold criterion is used in [10]. A single measurement is not passed to its 
appropriate {p, 6) bin unless the signal power exceeds a primary threshold, T^. This 
reduces the amount of noise in each bin at the expense of dismissing some dim signals 
as noise. After several scans a second threshold, T^ is applied to each (/?, 0) bin. If the 
accumulated signal power in a particular bin exceeds T^, a detection is declared. For 
appropriate choices of 7^ and T^ a double detection threshold increases the probability 

of detection over a single threshold. 

A Umitation of the Hough transform is that just like the velocity filter, it assumes that 
the target moves in a straight line. Targets deviating from this assumption will not be 
detected as readily. However, Hough transform methods are less computationally 
intensive than other techniques such as dynamic programming techniques. 

A.2.    Dynamic Programming Algorithm 

As with the Hough ti-ansform, the Dynamic Programming Algorithm (DPA) partitions 
the target state space into bins. For IR applications the typical target states are azimuth 
and elevation angles and their corresponding rates. The DPA implements the Viterbi 
algorithm [5] and associates a score for each bin. The score is calculated using the 
following equation: 

Score(j,k) = ^ {Log-likelihood of Amplitude (i,k) + Log-transition probabilihj(i,i) + Log-prior 

probability ofstate(i,k-l)} ^'? ^-2 

47 



DSTO-TR-1406 

Where, i and j are the bin numbers and k is the index for a particular scan. 

The important difference between the DPA and other TBD methods is the inclusion of 
the second and third terms in Equation A-2, which enable the DPA to detect 
manoeuvring targets. Transitions from bin to bin are weighted according to the 
probability of the target performing the required acceleration. The score function is 
used to determine the most likely transition between scans for each bin. This transition 
is recorded for each bin. After N scans the score in each bin is compared to a threshold 
and should the score exceed the threshold, a target is declared whose trajectory is 
determined by the stored transitions between the bins. The Viterbi algorithm assumes a 
first order Markov target motion. Namely, the target motion from scan k-1 to scan k is 
independent of prior scans. 

The disadvantage with the DPA is its complexity and that it is very computationally 
intensive. This limits the use of the DPA in real time or near real time envirorunents. 
The obvious advantage of the DPA is its ability to detect manoeuvring targets. With the 
advent of faster and cheaper processors DPA techniques are becoming more realizable 
and common. 
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Appendix B: MATLAB Code 

Below is the code from two MATLAB programs. The first 'VF.m', runs the velocity- 
filter bank over the input image a single time. The second 'run_VF.m', executes 'VF.m' 
in a number of ways. Single or multiple runs can be performed, either one or two 
targets can be simulated and the user can choose whether to use the real or estimated 
noise variance. 
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VF.m 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% 

% Function name: vf 

% Programmer: Matthew Dragovic 

% Date: 28/10/01 

/o 

% Usage detection = vf(Pfa,Nf,SNR„no_signals,noise_var_est,ROC) 

% Pfa: probability of false alarm in a single velocity filter at a single 

%      initial pixel position 

% Nf: number of frames 

% SNR: Signal to Noise Ratio 

% no^signals: number of signals (1 or 2) 

% noise_var_est: (0 or 1) 0: use the exact value of the noise variance 

% 1: use an estimated value of the noise vararnce 

% ROC: (0 or 1) 0: perform a single run analysis 

% 1: perform ROC analysis (ie. do not create the plots etc.) 

/o 

% An assumption is made that the target will not leave the field of view 

% 

% eg detection = vf(10e-4,5,2,l,l) 

% 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

function detection = vf(Pfa,Nf,SNR,no_signals,noise_var_est,ROC) 

% Noise Statistics 

sigma_n_sq = 1; % noise power 

no_pixels = 50; % number of pixels 

noise = randn(Nf,no_pixels)*sqrt(sigma_n__sq); 

% Signals 

init_locl =10; % initial pixel location of the target (signal) 
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veil = 0.5;     % velocity of the target (pixels per frame) 

sig_powl = power(10,SNR/10)*sigma_n_sq; % signal power 

signall = zeros(Nf,no_pixels); % initialise the signal matrix 

for (j = l:Nf) 

signall {j,initJocl + round(vell*(j-l))) = sig_powl; 

end 

if (no_signals ~= 1) 

if (no_signals ~= 2) 

disp('Number of signals must be either 1 or 2'); 

break; 

end 

init_loc2 = 35; % initial pixel location of the 2nd target 

vel2 = -0.8;    % velocity of the 2nd target 

sig_pow2 = power(10,SNR/10)*sigma„n_sq; % power of the 2nd signal 

signal2 = zeros(Nf,no_pixels); % initiaUse the 2nd signal matrix 

for(j = l:Nf) 

signal2(j,init_loc2 + round(vel2*(j-l))) = sig_pow2; 

end 

end 

% Input to the VF 

if (no_signals == 1) 

signals = signall; 

else 

signals = signall + signal2; 

end 

filter_in = noise + signals; 

% Implementation of the filter first algorithm 
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% Assumptions: 

% target only occupies 1 pixel 

vmin = -1; % minimum velocity of targets the velocity filter bank will cover 

vmax = 1; % maximum velocity of targets the velocity filter bank will cover 

delta_v = l/(Nf-l); % separation between each velocity filter 

vel_vector = [vmin:delta_v:vmax];   % the velocity filter bank 

pixeLvector = [l:no_pixels]; 

% initialise power out of each element of the VF bank 

h_out = zeros(length(veLvector),length(pixel_vector)); 

H = zeros(Nf,no_pixels); % initialise the velocity filter 

% The VF is specifically set for each velocity and pixel 

forj=[l:length(vel_vector)] % all velocities 

for k=pixel__vector % all pixels 

for n = l:Nf % all frames 

index = k+round(veLvector(j)*(n-l)); % index is the pixel position of the velocity filter 

% in each frame 

if ((index > 0) & (index <= no^pixels))   % within the pixel position bounds 

H(n,index)=l; 

end 

end 

h_out(j,k) = sum(sum(H.*filter„in));   % output of a particular VF (velocity, pixel position) 

H = zeros(Nf,no_pixeIs); % reset the VF matrix 

end 

end 

if -ROC 

figure(l) 
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subplot(211) 

iinage(100*signals); 

xlabel('Pixel Position') 

ylabel('Frame Number') 

title('Input Signals to the Velocity Filter') 

subplot(212) 

image(filter_in); 

colorbar; 

xlabel('Pixel Position') 

ylabel('Frame Number') 

title('Input Signals + Noise to the Velocity Filter') 

end 

if (noise_var_est) 

% Estimate the variance of the input noise to the VF 

in_mean_power = 0; 

in_est_var = 0; 

for (i=l:length(filter_in(:,l)))   % all frames 

for (k=l:length(filter_in(l,:)))   % all pixels 

n = k+(j-l)*length(filter_in(l,:)); 

if (n > 1)   % n must be greater then zero for the statement below to 

% execute w/o a divide by zero error. See report for 

% an explanation of the equation. Basically it is a 

% recursive estimate of the noise variance, 

if (sqrt(filter_in(j,k)) <= 2*sqrt(in__est_var)) 

in_est_var = l/(n-l)*((n-2)*in_est_var + filter_in(j,k)^2); 

end 

end 

end 
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end 

noise__variance = in_est_var; 

else 

noise_variance = sigma_n_sq; 

end 

% Find the threshold for this Pfa and noise variance 

threshold = Qinv(Pfa/Nf); % threshold given in number of variances 

% find the elements of the VF output matrix that pass the target threshold 

% the output is scaled first (see Kay 4.12 to 4.14 for a description of the maths) 

% The Nf term must be present as the SNR increases by the sqrt of this term 

[a,b]=find(h_out/(noise_variance*sqrt(Nf*power(10,SNR/10)))>threshold); 

if ROC 

detection = 0; % detection is set to 1 if the threshold is passed for the 

% element which corresponds to the signal 

for (j = l:length(a)) 

if (pixel_vector(b(j))==init_locl) 

if (vel_vector(a(j))-vell<=delta_v) 

detection = 1; 

end 

end 

end 

end 

if (~ROC) 

detection_matrix = zeros(length(vel_vector),length(pixel_vector)); 

for (i = l:length(a)) 

detection_matrix(a(j),b(j)) = 100; % set the elements that pass the 

% threshold to a value which allows them to be clearly seen 

% when using the image command 
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end 

figure(2) 

subplot(311) 

image(pixel„vector,vel_vector,h_out) 

colorbar; 

xlabel('Pixel Position'); 

ylabel('Velocity (Pixels/Frame)') 

titIe('Filter Output, Velocity-Pbcel Matrix') 

subplot(312) 

image(pixel_vector,veLvector,detection_matrix); 

xlabel('Pixel Position'); 

ylabel('Velocity (Pixels/Frame)') 

title('Detection Matrix, Velocity-Pixel Matrix') 

% reconstruct initial image without the noise 

signal = zeros(Nf,no_pixels); 

for (j = l:length(a)) 

est_vel = veLvector(a(j)); 

est_init_loc = b(j); 

for (k = l:Nf) 

signal(k,est_iTut_loc + round(est_vel*(k-l))) = 100; 

end 

end 

subplot(313) 

image(signal); 

xlabel('Pixel Position') 

ylabel('Frame Number') 

title('Estimated Signals') 

end 
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run_VF.m 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% 

% Function name: run_VF 

% Programmer: Matthew Dragovic 

% Date: 28/10/01 

/o 

% Usage run_VF(simulation_type) 

% simulation_type determines the way in which the vf program will be executed 

/o 

% run_VF(0): single run with 1 signal and no noise variance estimation 

% run_VF(l): single run with 2 signals and no noise variance estimation 

% run_VF(2): produces a ROC curve for various numbers of frames with no noise variance 

estimation 

%  run_VF(3): produces a ROC curve for various numbers of frames with noise variance 

estimation 

% run_VF(4): produces a ROC curve for various SNR with no noise variance estimation 

% run_VF(5): produces a ROC curve for various SNR with noise variance estimation 

% 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

function run_Vf(simulation_type) 

switch simulation^type 

case 0 

vf(10^-4,10,3,l,0,0); 

% single run with 1 signal and no noise variance estimation 

case 1 

vf(10'^-4,10,5,2,0,0); 

% single run with 2 signals and no noise variance estimation 
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case 2 

VF_ROC(500,0,0.1,0); 

% produces a ROC curve for various numbers of frames with no noise variance estimation 

case 3 

VF_ROC(500,0,0.1,1); 

% produces a ROC curve for various numbers of frames with noise variance estimation 

case 4 

VF_ROC(500,1,0.1,0); 

% produces a ROC curve for various SNR with no noise variance estimation 

case 5 

VF_ROC(500,1,0.1,1); 

% produces a ROC curve for various SNR with noise variance estimation 

otherwise 

disp('usage: run_VF(value) where value is 0,1/2,3,4 or 5') 

end 

end 

function VF_ROC(N,Nf_or_SNR,delta_Pfa,noise_var_est) 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

% Usage VF_ROC(N,Nf_or_SNR,delta_Pfa,noise_var_est) 

/o 

% N: number of times VF.m is executed for each point on each curve 

% Nf_or_SNR:   0 if we want curves for different numbers of frames 

% 1 if we want curves for various SNR 

% delta_Pfa:      space between each Pfa value (loglO base) 

% noise_var_est: 0 use the real value of the noise variance 

% 1 estimate the noise variance 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

Pfa^vector = fliplr([l:delta_Pfa:6]); 

Nf_vector = [235710]; 

SNR_vector = [012345]; 
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if (Nf_or_SNR) 

detection_count = zeros(length(Pfa__vector),length(SNR_vector)); 

else 

detection_count = zeros(length(Pfa_vector),length(Nf_vector)); 

end 

for (j = l:length(Pfa_vector)) 

for (k = 1:N) 

if (Nf_or_SNR) 

for (m = l:length(SNR_vector)) % various SNR 

detection_count(j,m) = detection_count(j,m) + vf(10^ 

Pfa_vector(j),5,SNR_vector(nT),l/noise_var_est,l); 

end 

else 

for (m = l:length(Nf__vector)) % various Nf 

detection_count(j,m) = detection_count(j,m) + vf(10^ 

Pfa_vector(j),Nf_vector(m),10*loglO(4),l,noise_var_est,l); 

end 

end 

end 

end 

Pd = detection_count/N; % probability of detection 

xaxis = [10.^-Pfa_vector]; 

semilogx(xaxis,Pd); 

grid on 

xlabel('Probability of False Alarm') 

ylabel('Probability of Detection') 

% insert the legend information 

string_matrix = "; 
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if (Nf_or_SNR) 

title('Velocity Filter Bank ROC Curve for Various SNR') 

for (j = l:length(SNR_vector)) 

string_matrix = [strmg_matrix;sprintf('SNR = % d',SNR_vector(j))]; 

end 

else 

title('Velocity Filter Bank ROC Curve for Various Numbers of Frames') 

for (j = l:length(Nf_vector)) 

if (Nf_vector(j) < 10) 

string_matrix = [string_matrix;sprintf('Nf = %d ',Nf_vector(j))]; 

else 

string_matrix = [string_matrix;sprintf('Nf = %d',Nf_vector(j))]; 

end 

end 

end 

Iegend(string_matrix,0); 

end 
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