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Introduction 

Neurons that degenerate in Parl<inson's disease (PD) develop cjiaracteristic inclusions 

called Lewy bodies that contain aggregates of a synaptic protein, alpha synuclein. 

Overexpression of mutant forms of synuclein associated with familial PD can lead to aggregate 

formation in both transgenic mice (1) and fruit flies (2). The pattern of neurodegeneration found 

in Parkinson's disease (PD) can be replicated in some animal species, including primates and 

mice, by the systemic administration of neurotoxins such as 1-methyl-4-phenyl- 

tetrahydropyridine (MPTP)(3,4). MPTP inhibits mitochondrial oxidative phosphorylation and 

causes oxidative injury leading to cell death (3,5). We and others have shown that MPTP can 

induce synuclein aggregation (1,4). Oxidative stress may be a key factor leading to synuclein 

aggregation that in turn may lead to further oxidative injury and the induction of neuronal death 

(6,7). The purpose of this study is to determine how MPTP and other toxins affect cytoskeletal 

and synaptic proteins and to study the relationship between oxidative damage and the formation 

of synuclein aggregates within neurons. This annual report updates our progress for the period 

August 1^* 2001-July 31st, 2002. In the first year of our study we showed that both acute and 

chronic MPTP treatment, which cause nigral dopaminergic neurons to degenerate, are 

associated with the displacement of alpha synuclein from its normal synaptic location into 

neuronal cell bodies. Neuronal degeneration was evident with DAT and calbindin 

immunocytochemistry and glial reaction was evident with GFAP immunocytochemistry. We also 

found that the redistribution of synuclein is associated with increased ubiquitin immunoreactivity 

and increased levels of oxidative markers in the substantia nigra and that the redistribution of 

synuclein does not appear to be associated with changes in distribution of synaptophysin or 

neurofilament proteins. In the second year of the study continued to make progress in 



accomplishing the experiments outlined in the Statement of Worl< by quantifying MPTP toxicity in 

three different strains of mice using two different protocols of MPTP administration. Synuclein 

aggregation was studied using four well-characterized alpha synuclein antibodies. In year three 

we have made substantial progress in completing the proposed time course and double 

labeling studies proposed in the approved Statement of Work. In addition, important new 

opportunities to study the role of synuclein in aggregate formation and neuronai injury have 

presented themselves by the availability of synuclein knocl<out mice and by recent reports 

published in the past year showing that neurotoxins such as paraquat and proteasomal 

inhibitors such as lactacystin may be more potent that MPTP in inducing aggregate formation in 

vitro and possibly in vivo. We performed new studies using paraquat and the proteasomal 

inhibitor epoxomicin based on this important new data. In the final year of the study (year 4, no 

cost extension) we will follow up on these important new observation and complete data 

analysis and manuscript preparation. 

Body 

We proposed two series of experiments in the approved Statement of Work. The first 

series of experiments were designed to define changes in the distribution and morphology of 

alpha synuclein immunoreactivity produced by systemic treatment of MPTP in mice. Both the 

time course of these changes and their relationship to synaptic (synaptophysin) and 

neurofilament proteins (NF-M) are being studied. The second series of experiments focuses 

on spatial and temporal relationships between synuclein aggregation and oxidative injury at the 

cellular level. Patterns of cell death and apoptosis associated with MPTP toxicity are to be 

determined and related to the changes in synuclein and oxidative damage. 



In the first year of funding we completed the first series of experiments (series 1) on 72 

adult male C57BL mice treated with intraperitoneal MPTP followed by sacrifice after a 7-10 day 

survival period. In the second year we further explored the process of synuclein aggregation by 

testing four unique synuclein antibodies in different mouse strains and we completed the 

second set of experiments (series 2) on mice treated with intraperitoneal MPTP followed by 

sacrifice after a 7-10 day survival period. Quantitative analysis using all antibodies showed a 

stril<ing increase in synuclein positive cell bodies after MPTP treatment. Similar changes are 

seen with ubiquitin immunocytochemistry. A few ubiquitin positive cellular profiles are seen in 

the control substantia nigra. In the acute and chronic MPTP lesions there is a clear increase in 

the number of ubiquitin positive profiles. In contrast to the stril<ing changes seen with alpha 

synuclein and ubiquitin staining, the staining pattern of synaptophysin, a synaptic protein, and 

neurofilament (medium chain), a marl<er of cell bodies and dendrites, changes minimally. A 

series of 40 MPTP-treated mice were studied for evidence of oxidative injury using markers 

such as 8-hydroxydeoxyguanosine, a marker of DNA oxidation, which was clearly increased in 

neurons in the substantia nigra of MPTP-treated animals after 7-10 day survivals. In year three 

we have made substantial progress in completing the proposed time course and double 

labeling studies proposed in the approved Statement of Work. In addition, important new 

opportunities to study the role of synuclein in aggregate formation and neuronal injury have 

presented themselves by the availability of synuclein knockout mice and by the discovery that 

other neurotoxins may be more potent that MPTP in inducing aggregate formation in vivo. 

We previously found in our year 2 studies that the severity of MPTP lesions varies from 

animal to animal and differed between strains. C57BL6 mice are more resistant to the effects 

of MPTP toxicity than B6CBA mice and lesion extent is smaller and more variable. B6SJL mice 



show a greater mean reduction in DAT-positive neurons and less variability within individual 

groups and so were used in subsequent experiments. In addition we tested two protocols of 

MPTP administration (acute (higher doses over 2 days) and chronic (lower doses over 10 

days). Since both protocols resulted in similar lesions that acute model was used in year 3 

studies. As in our previous studies, we defined the extent of MPTP-induced neurodegeneration 

Immunocytochemically using a monoclonal antibody against the dopamine transporter (DAT). 

In MPTP treated mice there is a clear reduction in the intensity of immunoreactivity in the 

striatum that is more severe in the caudal and dorsal aspects of the striatum. There is also 

depletion of neurons in the substantia nigra, especially in the middle third of the nigra (A8 field) 

with relative sparing of the medial ventral tegmental area (A10). Individual DAT positive neurons 

show dendritic and axonal pruning and fragmentation and distortion of immunoreactive 

processes. 

As shown in the appendix illustrations, we performed double labeling studies as 

proposed in the statement of work. As expected we found that the oxidative markers colocalized 

in neurons with aggregation formation. Time course data surprisingly we did not see neuronal 

loss at 4 days post last MPTP dose despite clear loss at 7-10 days. 

New reports published in the past year indicate that neurotoxins other than MPTP may 

also lead to aggregate formation (8, 9). We tested paraquat and the proteasomal inhibitors 

lactacystin and epoxomicin (10). Paraquat produces a similar degree of nigral degeneration as 

MPTP but with more robust aggregate formation (see appendix figure). Both lactacystin and 

epoxomicin reduced MPTP toxicity. Paradoxically they may both be associated with increased 

synuclein aggregation but further studies will be needed to make a more definitive statement 

on this issue. 
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We performed a series of studies using alplia synuclein knocl<out mice, an important 

new animal model that was not available when this proposal was initially funded (11). With 

these animals we can directly test the role of synuclein in aggregate formation and the role of 

synuclein in MPTP neurotoxicity. We found that these animals are less sensitive to MPTP (draft 

manuscript enclosed). Baseline histological studies show that they are no different from wild 

type (11). There was no clear aggregate formation in these animals as defined by ubiquitin 

staining but further studies are needed to define potential changes. 

We have requested a 4*^ year of the study as a no-cost extension to follow up on these 

exciting preliminary data and to complete data analysis and manuscript preparation based on 

our experimental results. 

Key Research Accomplishments: 

1) Neurons exposed to toxins that induce alpha synuclein aggregation show evidence of 

oxidative damage. For example, 8-OHDG immunoreactivity, which labels oxidized DNA, is 

colocalized with alpha synuclein in degenerating neurons within the substantia nigra of 

MPTP-treated mice. 

2) Time course studies suggest that alpha synuclein aggregation is a relatively late 

phenomenon after MPTP treatment. Preliminary studies show that alpha synuclein 

immunoreactive aggregates are detected at 7-10 days post MPTP exposure but not at 4 

days post exposure. 

3) Treatment of mice in vivo with paraquat induces nigral degeneration and alpha synuclein 

aggregation that is more prominent than that produced by MPTP. 



4) Proteasomal inhibitors such as lactacystin and epoxomicin protect mice from the neurotoxic 

effects of MPTP but paradoxically may lead to increased alpha synuclein aggregation in 

nigral neurons. 

5) Alpha synuclein knocl<out mice resist the neurotoxic effects of MPTP and mitochondria! 

toxins. Preliminary studies suggest that ubiquitin positive aggregate formation is not found 

in these animals in contrast to wild type animals. 

Reportable Outcomes 

1) Two manuscripts are being prepared and will be submitted for publication. One 

manuscript is near completion and a draft is enclosed (see appendix materials). 

2) The database of histological materials has been further expanded with our new studies 

and dozens of specimens have been added to our tissue banl< and catalogued for future 

research. 

3) Three postdoctoral fellows and three technicians have been trained in surgical and 

histological procedures and have gained experience in the laboratory supported by this 

award 

Conclusions 

MPTP treated mice develop alpha synuclein aggregates in degenerating neurons in the 

substantia nigra 7-10 days after MPTP administration. Time course studies suggest that 

aggregate formation is not present 4 days after MPTP administration. The neurodegenerative 

process is associated with increased levels of oxidative markers that colocalize in neurons that 

contain alpha synuclein immunoreactivity. Paraquat treatment also induces prominent nigral 

degeneration and alpha synuclein aggregation that is more prominent than that produced by 



MPTP. Proteasomal inhibitors such as lactacystin and epoxomicin protect mice from the 

neurotoxic effects of IViPTP but paradoxically may lead to increased alpha synuclein 

aggregation in nigral neurons. Alpha synuclein knockout mice resist the neurotoxic effects of 

MPTP and mitochondrial toxins. Preliminary studies suggest that ubiquitin positive aggregate 

formation is not found in these animals in contrast to wild type animals. Our new findings 

provide new insights into the pathogenesis of neuronal degeneration induced by neurotoxins 

and suggest that therapeutic strategies targeted at interfering with synuclein aggregation may 

lead to novel therapeutic approaches to the treatment of PD. In the final year of the study (year 

4) we will follow up on these important new observation and complete data analysis and 

manuscript preparation. 
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Appendices 

Manuscript (draft) 

1) Klivenyi P, Ferrante RJ, Giardian G, Kowall NW, Abelovich A, Bea! MF. Mice Lacking Alpha- 

Synuclein Are Resistant To Mitoctiondrial Toxins. In preparation 

Color Photographs (set of 3): 

Figure legends 

Figure 1. Low power photomicrographs of the neostriatum of wild type (A) and alpha synuclein 

knocl<out mice (B), using dopamine transporter (DAT) antibody, in MPTP lesioned mice. There 

is a reduction in DAT immunoreactivity in the wild type mouse with relative protection of DAT 

immunoreactivity in the alpha synuclein mouse. This reflects the relative preservation of 

dopamine neurons in the substantia nigra in the MPTP-lesioned alpha synuclein mice. 

Figure 2. Substantia nigra in paraquat-treated mice. Alpha synuclein (A) and ubiquitin (B) 

immunoreactivity in the substantia nigra of paraquat-treated mice. Both intense cellular and 

neuropil aggregates are observed in the substantia nigra with both antibodies. 

Figure 3. Combined alpha synuclein and 3-nitrotyrosine immunoflourescence in MPTP-treated 

mice. Combined immunoflourescence for alpha synuclein (red) (A) and 3-nitrotyrosine (green) 

(B) immunoreactivity within the same tissue specimen from the substantia nigra of an MPTP- 

treated mouse show colocalization of alpha synuclein and 3-nitrotyrosine immunostaining in 

the merged figure (yellow) (C). 
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Abstract 

Abnormalities in the function of a-synuclein are implicated in the pathogenesis of 

Parkinson's disease (PD). We found that a-synuclein deficient mice are resistant to MPTP- 

induced degeneration of dopaminergic neurons. These effects were not due to alterations in 

MPTP processing, MPP^ uptake or vesicular transport. We found that a-synuclein deficient 

mice are also resistant to both malonate and 3-nitropropionic acid (3-NP) neurotoxicity. There 

was reduced generation of reactive oxygen species in a-synuclein mice following intrastriatal 

administration of malonate, and reduced histopathologic evidence of oxidative damage following 

MPTP, 3-NP and malonate. These findings implicate a-synuclein as a modulator of oxidative 

damage, which has been implicated in neuronal death produced by MPTP and other 

mitochondrial toxins. 
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Introduction 

A role of a-synuclein in the pathophysiology of Parkinson's disease (PD) has been under 

intense investigation following the finding that mutations in a-synuclein are associated with 

dominantly inherited PD, and that a-synuclein appears to the most abundant protein in Lewy 

bodies, the proteinaceous cytoplasmic inclusions which are the pathologic hallmark of PD and 

dementia with Lewy bodies (Polymeropoulos et al., 1997; Spillantini et al., 1998; Kruger et al., 

1999). a-Synuclein also is part of glial cytoplasmic inclusions of muhiple system atrophy (Tu et 

al., 1998). It is associated with the neuronal intranuclear inclusions of Huntington's disease 

(HD), and promotes huntingtin aggregation (Furlong et al., 2000; Mezey et al., 2000). Over 

expression of both wild-type and mutated a-synuclein produced neurotoxicity in drosophilia, 

mice and rats (Feany et al., 2000; Kirik et al., 2002; Richfield et al., 2002). 

The normal physiologic role of a-synuclein is unknown. a-Synuclein is widely expressed 

in the nervous system, where it is found in presynaptic nerve terminals closely associated with 

presynaptic vesicles (Goedert, 2001; Cole et al., 2002). However, immunoelectron microscopy, 

as well as cell-fractionation studies, suggest that synuclein is not stably associated with synaptic 

membranes (Clayton et al., 1999; Kahle et al., 2000). a-Synuclein however undergoes a marked 

conformational change upon binding to cellular membranes, and interacts with a number of 

vesicle-related and microtubule associated molecules (Goedert, 2001). In the substantia nigra 

dopaminergic neurons a-synuclein may regulate the rate of refilling of releasable pool of 

synaptic vesicles (Abeliovich et al., 2000). 

The neurotoxicity of a-synuclein may be related to its fibrillization. Although both PD 

a-synuclein mutations [Ala^^ — Thr (A53T) and Ala''^ — Pro (A30P)] accelerate the formation 

of nonfibrillar oligomeric pro to fibrils in vitro, but A3 OP inhibits the conversion of protofibrils to 
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fibrils (Conway et al., 2000). More recently it was shown that dopamine is oxidatively linked to 

a-synuclein and this prevents the protofibril-to-fibril conversion, causing accumulation of the a- 

synuclein protofibril (Conway et al., 2001). 

Other evidence showed that oxidative damage can cross-link a-synuclein with the 

formation of dityrosine, or that a-synuclein can be nitrated (Souza et al., 2000; Paxinou et al., 

2001). Lewy bodies are nitrated in PD, suggesting that peroxynitrite mediated oxidative damage 

may contribute to disease pathogenesis (Giasson et al., 2000). a-Synuclein increases oxidative 

damage in vitro, and sensitizes cells to oxidative insults (Hsu et al., 2000; Ko et al., 2000; 

Ostrerova-Golts et al., 2000; Lee et al., 2001b). 

In order to further explore the function of a-synuclein in neurotoxicity, we examined 

whether a deficiency of a-synuclein alters susceptibility to mitochondrial toxins. We examined 

the effects of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), a toxin which produces an 

animal model of PD in a-synuclein deficient mice (Abeliovich et al., 2000). We also examined 

the susceptibility of these mice to the mitochondrial toxins malonate and 3-NP, which produce 

striatal toxicity which closely mimic HD. 

Discussion 

In the present experiments we examined the susceptibility of a-synuclein deficient mice 

to the neurotoxin MPTP, which has been used to model PD in mice (Seal, 2000). We found that 

a-synuclein mice are resistant to both dopamine depletion and loss of tyrosine hydroxylase 

immunostained neurons in the substantia nigra pars compacta. This resistance did not appear to 

be due to altered uptake or processing of MPTP, since we found no significant differences in 

MPP^ levels in the mutant as compared to control mice. Although we found increases in 

vesicular transport we found no changes in Complex I activity, which is inhibited by MPP"^ in 
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mitochondria (Takahashi et al., 1997). Sequestration of MPP"" into vesicles is therefore unlikely 

to account for the protection we observed. 

In the present experiments we also examined the susceptibility of a-synuclein deficient 

mice to the mitochondrial toxins malonate and 3-NP. Malonate and 3-NP are respectively 

reversible and irreversible inhibitors of succinate dehydrogenase, which replicate many of the 

characteristics of pathologic and phenotypic features of HD (Beal et al., 1993; Brouillet et al., 

1995). We found that the striatal lesions produced by both of these toxins were significantly 

decreased in a-synuclein deficient as compared to control mice. 

We also examined whether the a-synuclein deficient mice are resistant to oxidative 

stress. We previously showed that malonate increases hydroxyl radical generation, and that 

malonate induced striatal lesions are significantly attenuated by free radical scavengers (Schulz 

et al., 1995). Furthermore malonate lesions are exacerbated in mice deficient in free radical 

scavenging enzymes (Klivenyi et al., 2000; Andreassen et al., 2001). In the present experiments 

we found that a-synuclein deficient mice show reduced hydroxyl radical generation following 

intrastriatal administration of malonate, consistent with the neuroprotective effects seen in mice. 

How might a-synuclein modulate oxidative damage. a-Synuclein appears to be 

important in vesicular loading of dopamine (Abeliovich et al., 2000). A recent study showed 

reduced MPTP induced release of dopamine was reduced in another line of a-synuclein deficient 

mice (Dauer et al., 2001). When a-synuclein expression is reduced in cultured rat neurons the 

number of vesicles in the distal pool of the presynpatic terminal is reduced (Murphy et al., 2000). 

A reduction in dopamine release may reduce the generation of free radicals produced by 

monoamine oxidase metabolism, or autooxidation of dopamine itself (Sulzer et al., 2000). The 

importance of cytoplasmic dopamine to PD cell death is supported by the finding that the 
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dopaminergic neurons of the ventral tegmental area, which are resistant as compared to the 

substantia nigra, express high levels of the VMAT, which promotes vesicular sequestration of 

dopamine, and low levels of the dopamine transporter which pumps dopamine into the cytoplasm 

(Takahashi et al., 1997). Furthermore neuromelanin containing neurons, which are a 

polymerization product of dopamine-derived orthoquinone, are relatively sensitive to cell death 

in PD (Sulzer et al., 2000). 

If reduced dopamine release contributes to neuroprotection in the a-synuclein deficient 

mice, this may help to explain the paradox that transgenic mice overexpressing wild-type or 

mutant a-synuclein do not show increased vulnerability to MPTP (Rathke-Hartlieb et al., 2001). 

In these mice increased a-synuclein expression above a threshold may not alter vesicular release 

of dopamine. In transgenic mice which overexpress either wild-type mutated a-synuclein under 

a tyrosine hydroxylase promotor however there is an increase in the dopamine transporter and 

enhanced vulnerability to MPTP (Richfield et al., 2002). This is consistent with other evidence 

that there is direct and functional binding of a-synuclein to the dopamine transporters to 

accelerate dopamine induced apoptosis (Lee et al., 2001a). A reduction in vesicular release of 

dopamine may also explain the neuroprotection seen in the a-synuclein mice against both 

malonate and 3-NP neurotoxicity. Striatal lesions produced by malonate and 3-NP, as well as 

the generation of reactive oxygen species, are significantly attenuated in rats with 6- 

hdyroxydopamine lesions of the striatum, or pharmacologic depletion of dopamine (Maragos et 

al., 1998; Reynolds et al., 1998; Xia et al., 2001). Furthermore systemic or intrastriatal 

administration of L-DOPA or dopamine, respectively, restores malonate toxicity and generation 

of reactive oxygen species in 6-hydroxydopamine lesioned rats (Xia et al., 2001). 
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The present findings are consistent with a role of a-synuclein in modulating dopamine 

release and oxidative damage in PD. There may be a complex interaction as suggested by the 

observation that oxidative forms of dopamine can promote a-synuclein protofibril generation 

(Conway et al., 2001). Expression of mutant a-synuclein causes increased susceptibility to 

dopamine toxicity, and an a-synuclein fragment produces neurotoxicity to dopaminergic neurons 

both in vitro and in vrvo (Forloni et al., 2000; Tabrizi et al, 2000). Furthermore administration 

of rotenone, a selective mitochondrial complex I inhibitor which generates ROS, can produce, 

selective damage to substantia nigra neurons, and a-synuclein positive Lewy bodies (Betarbet et 

al., 2000). MPTP can upregulate a-synuclein expression in both mice and primates (Kowall et 

al., 2000; Vila et al., 2000). Other environmental toxins which produce oxidative damage and 

are implicated PD pathogenesis also upregulate a-synuclein (Manning-Bog et al., 2002). Lastly 

oxidative damage may contribute to Lewy body generation (Giasson et al., 2000). The mutations 

in a-synuclein in familial PD may promote the ability of a-synuclein to generate protofibrils. In 

sporadic PD exposure to environmental toxins may produce oxidative damage, and promote a- 

synuclein expression and aggregation, which is then exacerbated by dopamine. 
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