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INTRODUCTION 

This goal of this work is to extend the current statistical methodology for the analysis of multiple 
outcome data, to include a more flexible class of modeling techniques. The method proposed by 
Wei, Lin, and Weissfeld (1989) has been found to be an extremely flexible and useful statistical 
method for the analysis of multiple outcome data. However, this method suffers from the 
limitation that each outcome must follow the proportional hazards model. In the extension of the 
methodology that is developed through the work on this grant, we present an extension of the 
method of Wei, Lin and Weissfeld (1989) that incorporates a spline based version of the Cox 
proportional hazards model that is proposed by Gray (1992). We extend this methodology in 
several different directions; including spline-based models with the spline on the covariate space, 
a time-varying coefficients model, introduce new pseudospline methods for estimation in the 
spline based model and introduce model assessment techniques. 

The advantages of the proposed approaches to the use of these techniques are several fold. One 
advantage is that the proportionality assumption is not needed for the modeling of each outcome. 
The relaxing of this assumption allows for flexibility in describing the relationship between any 
given predictor and the time to event. In fitting these models to the outcome data, one obtains a 
more detailed view of the relationship between failure time and the given covariates of interest. 
The introduction of the pseudosplines allows for another level of flexibility, allowing for the 
development of model assessment techniques which are not readily available for the spline-based 
models of Gray (1992). 

BODY: 

The work included in the statement of work involves several components, the development of 
flexible marginal models for multiple time to event data using penalized B-spline based models, 
to extend these models using pseudosplines, and the development of regression diagnostics and 
goodness-of-fit tests for these models. Substantial progress has now been made on several of 
these aims. 

The investigators, Dr. Kiros Berhane and Dr. Lisa Weissfeld, are at the University of Sourthem 
California and the University of Pittsburgh, respectively. There is a graduate student researcher 
at the University of Pittsburgh site who works closely with both Dr. Berhane and Dr. Weissfeld. 
This individual, Zekarias Berhane has been working on the grant since its beginning. He is now 
very experienced in the use of the software that is needed and has been instrumental in its 
development. With the ending of the grant, Mr. Berhane is now working with Dr. Joyce Chang. 
She is working with the same models and some of the remaining work from the current grant has 
been folded into Mr. Berhane's work with her. Dr. Chang is interested in the same models and is 
also interested in the development of assessment techniques for this model, so that some work is 
still ongoing. There have been two meetings over the past year. Dr. Berhane traveled to 
Pittsburgh (funded through overhead from Dr. Weissfeld's grants) for approximately one week at 
the beginning of the summer. The purpose of this meeting was to finish work on revisions for 
the first manuscript and to refine the programming for the pseudospline models. The second 
meeting took place in August at the Joint Statistical Meetings in New York City, NY. Dr. 
Berhane, Mr. Berhane and Dr. Weissfeld were all present at this meeting and spent 
approximately 20 hours together during this time period working on software, manuscripts, and 
refining the proposed methodology. 



Throughout much of the past year the work on the grant has required a substantial portion of the 
investigators' time. Many of the past problems with implementation of the methodology were 
solved and the investigators moved on to finish the implementation of the methodology based on 
pseudosplines. This work is close to completion with the investigators now finishing up the 
simulations for this part of the work. In addition, Mr. Berhane, defended his dissertation 
proposal and worked on the techniques for model assessment. Several of the diagnostics have 
already been implemented in the pseudospline setting and this work should be finished shortly. 
Past problems have now been addressed and the work moved forward quite smoothly over the 
past year. 

Much time was focused on the publication of the first paper introducing the method. The 
investigators resubmitted the revised version to the journal Biometrics. Further revisions were 
then requested. These revisions are rather minor and the paper is back with the journal at this 
point in time. We are expecting to hear shortly regarding the acceptance decision. We are now 
focused on finishing the writing for the pseudospline paper and the regression diagnostics work, 
which are part of Mr. Berhane's dissertation. 

A second Ph.D. student of Dr. Weissfeld, Mr. Zdenek Valenta has also been worked on parts of 
the grant as a topic for his Ph. D. dissertation. One paper has appeared in Statistics in Medicine 
and the second is nearing submission. 

Specific Aim 1: 

The goal of this aim is to develop flexible marginal models for multiple time to event data using 
penalized B-spline based models. We spent parts of the past year revising this paper for 
publication. The paper was submitted to Biometrics. We made revisions based on the 
reviewers' comments and resubmitted the paper. The paper was then returned several months 
later with a request for further revisions. These revisions were rather minor. We resubmitted the 
paper at the beginning of 2003 and have heard fi-om the editor that the paper is accepted. 

The major goal of this specific aim is now virtually complete and we are putting the final touches 
on the paper. In addition to the work initially proposed for this aim, there have been several 
additional pieces of work that are currently underway: 

a. the extension of the method of Wei, Lin and Weissfeld (1989) and Andersen and Gill (1982) for 
the modeling of recurrent event data. This work is being done by Zekarias Berhane as part of his 
Ph.D. dissertation and was presented at the ENAR meetings in March 2002. This is potentially 
important work since the WLW method based on the Cox proportional hazards model does not 
perform well for the modeling of recurrent data. This poor performance is due to the lack of 
proportional hazards in the margins causing the Cox based approach to break down. Use of 
Gray's model for the margins should improve on this method. Mr. Berhane is finishing up work 
that extends these methods for time-varying coefficient models. As of this point in time the 
programming is done and we have initial simulation resuhs indicating that the method based on 
time-varying coefficients outperforms the standard methods for recurrent event analysis. 

b. An examination of the power of the WLW method based on Gray's model. This work is 
included in the papers that have been submitted. 

c. Inclusion of the model with time-varying coefficients. This work is analogous to that done for 
the spline-based covariate model and is near completion. 



Specific Aim 2: 

The goal of this aim is to develop flexible marginal models for multiple time to event data using 
pseudospline based models for the time to event data. This piece of work was delayed due to the 
problems encountered in implementing Aim 1. While preliminary software development and a 
draft of a manuscript are underway, much of this work was held up by the problems encountered 
in developing Aim 1. These problems were fixed and the work is nearing completion. We are 
currently finishing simulation studies for the publication and in the process of revising our initial 
draft manuscript. At this point in time, the programming is finished for the generalized additive 
model extension of this approach and the extension based on time-varying coefficients. We are 
in the process of drafting the paper, looking to include new test statistics for trend. 

Specific Aim 3: 

We have been working on this aim over the past seven months. Mr. Berhane has met with Dr. 
Chang, who developed the projected and recursive residuals for the Cox model. Mr. Berhane 
now has initial results for this aim. As details were wrapped up fi-om Aim 1, this work became a 
large part of Mr. Berhane's time as the GSR. Mr. Berhane is now the GSR on Dr. Chang's grant 
which is looking at more general spline-based models. The work on this grant resulted in 
substantial changes in Dr. Chang's proposed work, since all modeling proposed in her grant is 
now being done in the pseudospline fi-amework rather than the b-spline framework. Dr. Chang is 
also interested in model assessment techniques as part of her grant and Mr. Berhane is working 
on these techniques for his dissertation. 

This work is now part of Mr. Berhane's dissertation work. Preliminary results are to be 
presented at the Eastern North American Region of the International Biometric Society in 
Tampa, Florida in March of 2003. 

Specific Aim 4: 

This work was to be the second paper for Mr. Valenta's dissertation. Mr. Valenta dropped this 
piece of the work, due to time constraints and the difficulty of the problem. Because of the 
nature of the spline-based model, extensions of standard goodness-of-fit tests were not feasible. 
Under the pseudospline framework, however; many of the extensions turned out to be feasible so 
Mr. Berhane is pursuing them as part of his dissertation work. Mr. Valenta focused on the 
properties of the estimated survival curve under various models and this work is now close to 
submission. Mr. Berhane has already programmed several of his proposed diagnostics and we 
are in the process of checking the results. The initial results that he has obtained are 
encouraging. 

Another student, Rana Ezzeddine, has also been working on assessing the effectiveness of 
properties of the various tests for proportionality for the Cox proportional hazards model. We 
have used this work to make decisions about the tests that Mr. Berhane is including in his 
dissertation work. The draft of this paper is attached. 



KEY RESEARCH ACCOMPLISHMENTS: 

The key research accompUshments to data from this work are: 

A program for rumiing the muhiple outcomes model based on the spHne-based version of Cox's 
model as proposed by Gray. This program will be available at the website 
http://hydra.usc.edu^erhane as part of the publication process. 
A program for the multiple outcomes model based on the pseudo-spline based model. 
Software to run simulations for aim 1. The results of the simulation study are in the attached 
manuscript "Inference in Spline Based Models for Multiple Time-to-Event Data: With 
applications to a breast cancer prevention trial. 
Development of software for the pseudospline approach. 
Publication of the manuscript "Estimation of the Survival Function for Gray's Piecewise- 
Constant Time-Varying Coefficients Model" in Statistics in Medicine. Software is available by 
contacting valenta@euromise.cz. 
Development of software for the modeling of recurrent event data using the approach of 
Andersen and Gill (1982). This software can be obtained by contacting ztbstl@imap.pitt.edu. 
Development of software for the implementation of regression diagnostics for the pseudospline 
based model. 

REPORT ABLE OUTCOMES: 

Attached manuscript "Inference in Spline Based Models for Multiple Time-toEvent Data: With 
applications to a breast cancer prevention trial" for which the second requested revision has been 
submitted. The paper and the letter accompanying it are attached. 
Attached manuscript "Estimation of the Survival Function for Gray's Piecewise-Constant Time- 
Varying Coefficients Model" which appeared in Statistics in Medicine. This is attached as well. 
Attached draft manuscript "On the use of pseudosplines in modeling multivariate survival data: 
with applications to the NSABP-BCPT". This manuscript is to be submitted by the end of April. 
Attached draft manuscript "Model misspecification effect in univariable regression models for 
right-censored survival data". 
Attached draft manucscript "A Comparison of Test statistics for proportionality of the hazards in 
the Cox regression model". 

CONCLUSIONS: 

This work provides researchers with another tool for the analysis of multiple outcome survival 
data. The advantage of this work is that the underlying modeling technique allows for greater 
flexibility when specifying the relationship between time to event and a given covariate. This is 
particularly applicable for the risk stratification variable used in the NSABP BCPT. For this 
variable the level of risk is quite different for individuals with a risk score of 10 or greater versus 
individuals with a risk score of less than 10. This illustrates the potential usefiilness of this 
approach for the analysis of survival data. The analysis of the multiple outcomes verifies the fact 
that endometrial cancer is a significant side effect for women using tamoxifen for breast cancer 
prevention. 

The work on Aim 1 for the grant is now complete. However, this work has lead to many new 
ideas that are being pursued through other venues. For example, the graduate student researcher, 
Zekarias Berhane, will be examining extensions to the recurrent event problem based on this 



work. Mr. Valenta also completed work on a survival function estimator that was used for 
formulating the variance-covariance estimator for the WLW extension. Dr. Joyce Chang's 
research work has also benefited from the funding of this project. Based on this work, much of 
the modeling proposed in her K award will be reframed under the pseudospline framework. We 
will also spend time examining the properties of the proposed test statistics under various 
scenarios, focusing on power. The work for Aims 2 and 3 is almost finished. The work on Aim 
4 is now part of Mr. Berhane's research and work related to Aims 3 and 4 will be presented by 
Mr. Berhane at the Eastern North American Region of the International Biometric Society 
Meetings at the end of March in 2003. 
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Summary 

As part of the National Surgical Adjuvant Breast and Bowel Project, a controlled clinical 

trial known as the Breast Cancer Prevention Trial (BCPT) was conducted to assess the 

effectiveness of tamoxifen as a preventive agent for breast cancer. In addition to the incidence 

of breast cancer, data were collected on several other, possibly adverse, outcomes such as 

invasive endometrial cancer, ischemic heart disease, transient ischemic attack, deep vein 

thrombosis and/or pulmonary embolism. In this paper, we present results from an illustrative 

analysis of the BCPT data, based on a new modeling technique, to assess the effectiveness of 

the drug tamoxifen as a preventive agent for breast cancer. We extended the flexible model of 

Gray (1994: Biometrics;50,640-652) to allow inference on multiple time-to-event outcomes 

in the style of the marginal modeling setup of Wei, Lin and Weissfeld (1989: JASA; 84, 

1065-1073). This proposed model makes inference possible for multiple time-to-event data 

while allowing for greater flexibility in modeling the effects of prognostic factors with non- 

linear exposure-response relationships. Results from simtilation studies on the small sample 

properties of the asymptotic tests will also be presented. 

KEY WORDS: Survival analysis; Smoothing; Ridge regression; Additive models; Splines; 

Proportional hazards. 



1    Introduction 

The advent; of promising chemoprevention agents for the prevention of breast and other 

cancers has brought both hope and controversy to the scientific world and the general public. 

Central to the assessment of the usefulness of chemoprevention agents are careful study 

of the costs, potential benefits and possible harmful side effects of any drug used for the 

purpose of disease prevention. Thus clinical trials must be carefully designed to collect 

information on all potential outcomes of interest and the analysis must account for both 

the beneficial and potentially harmful effects of any chemoprevention agent that is used 

to prevent a disease. Unlike treatment trials, prevention trials are, by nature, designed to 

monitor multiple outcomes. The outcomes are multivariate in nature and are not subjected 

to competing risks since the development of a cardiovascular outcome does not preclude the 

development of a cancer at a later point in time. In fact both outcomes are of interest in a 

prevention study, since the goal is to determine the overall impact of the chemopreventive 

agent. This leads to the assumption of an independent censoring mechanism for each of the 

outcomes, making it different from the competing risks problem. 

An important example of a chemoprevention trial is the National Surgical Adjuvant 

Breast and Bowel Project's Breast Cancer Prevention Trial, hereafter referred to as the 

BCPT (Fisher et al, 1996). The goal of this randomized controlled clinical trial was to as- 

sess the effectiveness of tamoxifen as a preventive agent for breast cancer. There were several 

outcomes of interest in this trial, namely, the development of breast cancer, invasive endome- 

trial cancer, ischemic heart disease, transient ischemic attack, deep vein thrombosis and/or 

pulmonary embolism. Subjects were followed for a minimum of five years or until death. 

Several of these outcomes are of particular interest (invasive endometrial cancer, ischemic 

heart disease, deep vein thrombosis and pulmonary embolism) since they are negative out- 



comes associated with the iise of tamoxifen. Thus, in order to assess the overall effectiveness 

of tamoxifen, these outcomes must be treated in a simultaneous and comprehensive manner. 

As an example of this, it would be difficult to argue that tamoxifen is of benefit if the drug 

has little or no effect on the development of breast cancer and a large number of subjects 

developed a deep vein thrombosis, pulmonary embolism or an invasive endometrial cancer. 

For this reason it is important to consider these outcomes simultaneously in an analysis. The 

analytic method should also allow for time dependent treatment effects, because treatment 

is likely to be stopped after onset of one outcome even though subjects are usually followed 

to monitor for other possible outcomes up to the time of death or termination of the trial. 

There are several methods available for the analysis of multivariate survival data, such 

as that collected in the area of prevention, with the Wei, Lin and Weissfeld (1989) approach 

being one of the more general methods. Using this approach, each outcome is modeled 

separately using a Cox proportional hazards model (Cox, 1972). The variance-covariance 

matrix of the resulting parameter estimates is then obtained via a sandwich estimator. While 

this method is quite useful, it may fail to appropriately model exposure-response relationships 

that may have nonlinear forms. Given the fact that it has already been demonstrated that 

important prognostic factors (e.g. BMI) have a markedly non-linear effect on breast cancer 

survival and/or prognosis (Gray, 1994), there is a need for flexible models that could model 

nonlinear effects of prognostic factors, but also allow for simultaneous inference on several 

time-to-event outcomes. Most of the research on flexible models for time-to-event data has 

concentrated on single time-to-event outcomes (e.g., O'Sullivan (1988), Hastie and Tibshirani 

(1990a), Gray (1994)). 

In this article, we propose a new method for inference on multiple time-to-event outcomes 

by extending the Wei et al. (1989) approach to allow flexibility in modeling each of the 

outcomes. This method allows for flexibility through a spline on the covariate space in the 



style of Gray (1992, 1994). In §2 we give background details on the Cox (1972) and Gray 

(1994) models. In §3, we discuss the proposed flexible model for multiple outcomes and we 

derive the variance covariance matrix and inference for the extension to Wei et al. (1989) 

based on Gray's model. In §4, we present results from an extensive simulation study on the 

empirical size of the proposed tests in small sample settings. In §5, we present results from 

a detailed analysis of the BCPT data. In §6, we discuss various areas for further extensions. 

Additional technical details on calculations in estimating the variance estimator for inference 

on multiple outcomes are given in the Appendix. 

2    Background 

2.1    The Cox model 

Consider a study in which multiple, say G different, time-to-event outcomes are imder con- 

sideration. For any one, say the g*'', outcome, Cox (1972) proposed a proportional hazards 

model of the form 

\i{f) = >^Ai>M^Pj<,z,,i], / > 0, (1) 
j 

where Xgo{l') is an unspecified baseline hazard function and /3jg, j = l,...,p, denotes the 

regression parameter associated with the j*^ risk or prognostic factor. Here, one observes 

data for each of the outcomes that is of the form {Xgi, Zgi, Agi), where Xgi = m.in(Xg{, Cg{), 

Cgi is the censoring time, Zgi{t) = {Zigi{t),...,Zj,gi{t))'^ and A^i = 1 if Xgi = Xgi and 0 

otherwise. Note that under these assumptions each outcome is independently censored by 

its own censoring time Cgi. For this ftilly linear model, the partial likelihood is given as 

PI(3)-U-      ( '"^P^f^^mZgiiXgi)} NA, 
^Lg[(^) - ll.=i [J:^^^^^^^^^ eM^iT)Zg,{XgO])       ' ^'^ 



where /3^ = {(3ig, ...,/3p,)^ and Tlgit) — {I : X^i > t} denotes the set of subjects at risk just 

prior to time / with respect to the g*^ type of failure. The solution to the score equation 

Ug{f3g) = dlogPLg{^g)/df3g = 0, 3g) can be shown to be a consistent estimator of /3g 

provided that the model is correctly specified (Anderson and Gill, 1982). Specifically, letting 

Pq(T) be the vector of true parameter values for the 5"* outcome, inference is based on the 

asymptotic normality of the score vector C(g(/3g(7)). Based on this result, \/ri,[^g — ^g(T)) '^^ 

asymptotically normal with mean 0 and variance given as the limit of nA~^ where. 

For more details on the Cox proportional hazards model, see Cox and Oakes (1984). 

2.2    Gray's Model 

Gray (1994) proposed a penalized B-spline based model by replacing the linear model form, 

J2j (^jq^jqi-, by the flexible form, Ylj fjgi'^jq)-: in the proportional hazards model given by (1). 

In practical applications, the effects of most covariates are known to have some parametric 

form, while some of them are best modeled via non-parametric smoothers. So, for simplicity 

of discussion and without loss of generality, we discuss most details for a model with p 

covariates with parametric forms and one additional covariate with non-parametric function, 

say hg. We also suppress the dependence of the covariates on Xgi. We first let 

\iii) = >^Ai')^^p{E(^jaZjsi + f.iKi)}, ^ > 0, (4) 
j 

where j = 1, ...,p. The penalized regression spline approach is used to estimate fg{hgi), i.e., 

m+3 

M^g) = lighg + Yl ^la^iaikg) ■ (5) 
9=2 

Note that the constant term has been dropped since it is accounted for by the baseline 

hazard, and only (m-|-2) of the B-spline basis functions are used for identifiability (De Boor, 



1974). See Appendix A for more details. Following Gray (1994), let 7^ = (7^2, ••■,7fl(m+3)) 

and r]g = (713,7t,)- Then, a penalized partial likelihood that includes a penalty function to 

allow for smoother alternatives would be defined as 

PLli/3,,ri^) = PL,{^,,V,) - 1/2X J[f'J{u)rdu , (6) 

where A controls the amoimt of smoothing. Note that setting A = 0 and A -> 00 lead to a 

no penalty regression spline function and a linear term, respectively. Recognizing that the 

penalty function given above is quadratic in the parameter vector rj = (71, ...,7m_(_3), one 

could rewrite (6) as 

PLli^^.V,) = PU^,%) - l/2A,77jK,77, , (7) 

where K is a non-negative definite matrix that is a function of the covariate hg. Note that 

K is an (m + 3) X (m + 3) matrix with the first row and column as zeros, since the linear 

function passes unpenalized. Note also that the quadratic form in the penalty matrix K is 

due to the accumulation of squared second diff"erences. For more details on the actual steps 

involved in calculating the penalty matrix A', see Green and Silverman (1984, §2.1-§2.5). 

The hypotheses of interest with respect to the smooth function are then rjg = 0 and 7 = 0, 

representing the hypotheses of "no effect" and "linear effect" respectively. 

'^'-g(Pg,Vg) - i<i=l I ^     _   ^__ ^^r^p       V   . o   .   ,   U   ^, ^    ,   v-m+.3  D    fU   \..    ^   I '        \^) 

For model (4), the unpenalized part of equation (7) can be written as 

expjZU ZgAj + hglg^ + E^^f B,g{hg)^,g] 
^T.sen,(x,,) e.^p{Ei=i Zgj(3gj + hg-^g^ + ^^=^2^^ Bqgihghqg]' 

where all components are as defined in §2.1, for the 5"* type of failure.  Let ^   = (/3 , »7 ) 

and Pg = {Z\g : ... : Zpg : hg : B2g{hg) : ... : Bm+3,g{hg)) with Pg(^r) denoting the r*'' column 

vector, r = 1,..., (m + p + 3).  Letting Ag be the unpenalized information matrix as in (3) 

for the g^^ outcome as a function of ^, it can be shown that 

V^i'^g - ^giT)) = n{Ag + \J<)-'n-'/%{i/jg^T)) + Op(l) 

5 



where ^/^(V'om) '^^ ^^e unpenalized score vector, V'S(T) '^ ^^e vector of true parameter values 

for the g*'' outcome (Gray, 1994) and K is the expanded penalty matrix that augments rows 

and columns of zeros to K to account for the unpenalized terms in the model. Then, it 

follows from the asymptotic normality of [/^('^^(T)) t^^hat \/n(V'p - V'.9(T)) '^ asymptotically 

normal with mean 0 and variance given as the limit of nVg where 

V, = {A, + Xnk)-'A,{A, + Kk)-' . (9) 

Note thai the above asymptotic results assume that the number of terms in the spline 

function is held fixed as n ^ oo (Gray, 1994). Gray's model also uses {Ag + A„A')~^ in all 

tests. The reference distribution for the test statistics under HQ is given by a weighted sum of 

xfs, where the weights are given by eigenvalues of the matrix lim^nniWjl^nnii/) + '^^^)~^ 

for the g"" outcome, with A .^ = Ajjr] — ^nib^^'^^'^'n- ^"^ contrast, test statistics 

that are based directly on (9) have a x% reference distribution, with the number of degrees 

of freedom equal to the rank of the covariate vector under the null hypothesis (Wang and 

Taylor, 1995). Note that tests that are based on these two approaches may result in different 

orderings of outcomes in the sample space, because they are based on different quadratic 

forms (as pointed out by one of the referees). For theoretical developments along the lines 

of Wei et a1. (1989), the test form that is based on (9) is more suitable. 

3    A flexible model for multiple outcomes 

While making inference on each of the margins is often of interest, this could be done easily 

by using developments in Gray (1994). The focus of our interest here is in being able to 

conduct simultaneous inference on several time-to-event outcomes in models that have non- 

parametric smooth terms. Once the marginal distributions are modeled, then the methods 

described in Wei et al. (1989) can be extended to test for trends across parameter estimates 
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and to combine estimates across margins to test for covariate effects of interest. 

To develop the simultaneous inferential procedures for several outcomes, we first note 

that the ^^'s across the G multiple outcomes (defined in §2.2) are generally correlated. 

Then, analogous to developments in Wei et al. (1989), the asymptotic covariance matrix 

between ■\/n{'tpg - ip^) and \/n(i/'^ - V'^) can be consistently estimated by 

DM,.^.) = Ws)CM,^^MM , (10) 

where Cg„(V',,'0J = n''j:7=i ^A^^gWvi{'^^f, Vgii^g) is an evaluation of Eqn.(9) at 

V'^. Based on the results from the Appendix, the covariance matrix of (■^j,...,^^) can be 

consistently estimated by 

/ Ai(V',,V'i)   •••   AG(I/'I,V'G) \ 
Q = n-' (11) 

Note that Wgi and W^i in Cgy{ipg,'ipJ are defined in terms of the unpenalized score con- 

tributions, because the penalty contributions are asymptotically negligible under the null 

hypothesis, as discussed in the Appendix. The penalty terms, however, could prove to be 

important in extensions of any existing finite sample correction methods for the Cox regres- 

sion (e.g. Fay and Graubard, 2001). Such finite sample correction extensions are beyond the 

scope of this paper. 

3.1    Testing statistical hypotheses 

For the non-parametric term, one could conduct simultaneous inference on the "overall" 

effect and/or "linearity" of h across failure types. Let rj^ denote the components of i/) 

that correspond to the relevant components of the non-parametric term hg and f denote 

the relevant sub-matrix of Q corresponding to ^ = (?)i, ...,7)G).   Then, one could use the 
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quadratic form 

{ri,,...,rja)r-'{r},.,...,r}Gf^xl, (12) 

under Ho, (where u is the number of terms in 77) to conduct a joint test on the null hypotheses 

given hy Ho ■ r]g = 0, g = I,..., G. Note that the tests for "overall" significance or "linearity" 

are done in the above setup by choosing the last (m + 3) and (m + 2) elements of r[)g 

respectively. Note that (12) is based on a direct application of (9). A different testing 

procedure, as discussed in §2.2 and described in Wang and Taylor (1995), could also be 

given by using {Ag -\- XnKg)~^ and {A,, + A„A'^)~^ in (11) instead of Vg and Vy respectively. 

Under the null hypothesis, this modified Wald test statistic would then have an asymptotic 

distribution of the form 
G 

5=1   i 

where the (jSj are independent standard normal random variables, and the A^j's are the 

eigenvalues of the matrix lim^7jn|W)(^777j|'j/) + ^^'^)~^i for the g*'' outcome. The arguments 

that lead to this form are given in Gray (1994) for a single outcome.   The extensions to 

multiple margins are straightforward. Note that the use of penalized B-splines, as opposed 

to fully nonparametric smoothers such as smoothing splines, makes the computation of the 

Xgj''s possible. 

A linear contrast could be constructed to test hypotheses with respect to a group of 

parameters (e.g. all parameters to a spline term on each margin) across outcomes. For 

example, one could test the hypothesis that 7]^ = ... = T/Q = r] and then estimate the common 

T] by constructing a linear combination of the 77^'s in a way that takes the appropriate 

variance-covariance matrix into account. For linear terms, it may also be of interest to obtain 

a common across-outcomes estimate of the regression parameter, say rjg, via J2n=i ^s'?? with 

Ylf=-[ ^.9 = 1: where weights c^'s that have the smallest asymptotic variance among all of the 



linear estimators (Wei et a]., 1989) are chosen as c = (ci, ...,CG)'^ = (e'^r~^e)"T"'e and e = 

(1,...,!)^. But, spline terms usually involve multiple parameters and the multicollinearity 

among them should be taken into account in taking the linear combinations via the ofF- 

diagonal covariance terms. Trends in regression effects across margins could also be examined 

via sequential multiple testing procedures as in Wei and Stram (1988). 

A suite of Splus functions along with supporting FORTRAN programs for conducting si- 

multaneous inference on several outcomes will be available at http://hydra.usc.edu/berhane. 

These programs use previous developments by Robert Gray that have been kindly dissemi- 

nated to the research community via the STATLIB archive. We also plan to put the complete 

set of software on popular online statistical libraries such as STATLIB. 

3.2    Choice of smoothing parameters,  degrees of freedom,  and 
placement of knots 

In the above setup, we assume that the amount of smoothing (i.e., the value of the smoothing 

parameter) is fixed by the analyst via prior knowledge or through a grid search. It is also 

possible to develop automatic procedures for selecting the smoothing parameters by using 

criteria such as cross validation. While this cotild lead to optimal estimation of the functional 

forms, its implications for hypothesis testing are not obvious. Operationally, one specifies 

the degrees of freedom for each non-parametric term and the corresponding value of the 

smoothing parameter is then calculated. As a general operating guide, we use a relatively 

small number of degrees of freedom (Gray, 1994). The number of the knots that determine 

the B-spline basis functions are generally set to be at least twice the number of the degrees of 

freedom in order to avoid wild fluctuation in the smooth function estimates, and are usually 

set between 10-15, per outcome. We will discuss the potential effects of various choices of 

number of knots in our simulation studies. In this paper, we follow Gray (1994) in putting the 
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knots at locations that yield approximately equal mimbers of failure observations between 

knots. The calculation of degrees of freedom is analogous to that given in Gray (1994) 

and Wei et al. (1989). For example, to test whether all parameters in a spline model are 

equivalent across G outcomes, the degrees of freedom are computed as Yl'^=\ dfgi where 

^/, = trace{lim^^'^l^(^(;)^,^ + A,A',)-}. 

4    Simulation Study 

Extensive simulation studies were conducted to examine the performance of the proposed 

procediires for conducting simultaneous inference on several time-to-event outcomes. We 

focused on the bivariate case, where two time-to-event outcomes are considered under various 

levels of dependence. To generate data, the family of bivariate exponential distributions of 

Gumbel (1960) was used. Consider two marginal distributions, say Fi and F2, from the 

univariate exponential with hazard rates given by exp(/3iZ) and exp(/?2Z), respectively. 

Then, the distribution function of the bivariate exponential distribution is of the form 

F{x,,x,) = F,{x,)F2ix,)[l + e{l - F,{xr)}{l - F.ix^)}] . 

The quantity 0/4 measures the correlation between the two event times, where — 1 < ^ < 1. 

In the above models, Z denotes any vector of covariates that may include binary indicators, 

or covariate effects that assume various functional forms. 

In the simulations that test for overall significance, we set the covariate values in the 

two margins to be equal. Specifically, the null hypothesis is 77^ = 0 as defined in §2.2 and 

the test statistic is based on the Wald test as described in (12). Censoring indicators were 

generated independently using uniform distributions gauged to depict various percentages 

of censoring (30%, 50%).    Empirical sizes of the spline based tests, based on 2000 runs 
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were examined under various specifications of sample sizes (n = 200,300,400), degrees of 

freedom {df = 3,5), number of knots (10,15,20) and levels of dependence between the margins 

{6 = 0.5,1.0). Note that the degree of correlation between the two outcomes is given by 6/4 

and ^ = 1 is the maximum correlation allowed by the bivariate model of Gumbel (1960). 

Table 1 gives results from the simulation with low levels of dependence {6 = 0.5) between 

the outcomes. The results indicate that the empirical size is reasonably close to the corre- 

sponding nominal values only when the sample size is at least 200 per margin. This relatively 

poorer performance is probably due to the fact that we are dealing with spline-based models 

when the outcomes are correlated. Based on these simulation results and similar observations 

in Gray (1994), it would be advisable to use a smoother that has relatively small number of 

degrees of freedom, with number of knots not exceeding 15 for most practical applications. 

(Table 1 around here) 

Table 2 gives results from simulation with high levels of dependence {6 = 1.0) between 

the outcomes. Here, due to the added level of dependence between the margins, the empirical 

sizes for n = 200 were still unacceptably high (results not shown). But, the empirical sizes 

for n = 300,400 give more reasonable results. Once again, the use of a large sample size 

is advised for most practical applications. The results from both Tables 1 and 2 indicate 

that the number of knots should be kept between 10 and 15. Specifically, the results for 

10 knots and 15 knots provided empirical sizes that are reasonably close to the nominal 

sizes for models that use 3 and 5 degrees of freedom, respectively. The simulation results 

also indicate that the models performed better when the correlation between outcomes was 

marginal (/.e., 0 = 0.5). 

(Table 2 around here) 
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5    Analysis of the BCPT Data 

The Breast Cancer Prevention Trial, hereafter referred to as BCPT, (Fisher et al, 1998) 

was initiated in 1992 enrolling 13388 women that were at increased risk for breast cancer 

due to their relatively old age (>60 years of age), relatively high 5-year predicted risk for 

breast cancer (a risk of at least 1.66% for those 35-59 years of age) and/or history of lob- 

iilar carcinoma in situ. Siibjects were then randomly classified into placebo and treatment 

groups (6707 subjects into a placebo group and 6681 subjects receiving 20mg/day of ta- 

moxifen for up to 5 years). The main aim was to examine the effectiveness of tamoxifen 

in preventing the possible occurrence of invasive breast cancer in high-risk women. Data 

were also collected on other outcomes (some of them unwanted adverse side effects) such 

as invasive endometrial cancer, ischemic heart disease, transient ischemic attack, deep vein 

thrombosis and pulmonary embolism. The treatment regimen was terminated when any one 

of the outcomes was observed, but subjects were followed up to the end of the trial to collect 

information on the other outcomes. 

Analysis of data from the BCPT has shown (Fisher et al, 1998) that there was a 49% 

reduction in the risk of invasive breast cancer in those high risk women that received ta- 

moxifen treatment (for up to five years) compared to those that received placebo. But, the 

benefits of tamoxifen were tempered by adverse side effects that significantly increased the 

risk of endometrial cancer, deep vein thrombosis, pulmonary embolism and some other car- 

diac effects. In fact, the issue of whether the benefits of tamoxifen outweighs the potential 

risk was controversial enough that the NCI sponsored a workshop on the subject in July, 

1998, leading to a risk-benefit analysis as reported in Gail et al. (1999). 

The results indicate that age and baseline predicted risks for breast cancer play a sig- 

nificant role in determining whether the benefits of tamoxifen outweigh the associated risks. 
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In this paper, we use the newly developed techniques to simultaneously analyze several out- 

comes in a way that allows for risks that may not be constant across factors such as age. We 

focus on invasive breast cancer (IBC), ischemic heart disease (IHD) and endometrial cancer 

(ENDO) as our outcomes of interest. The primary covariates of interest were treatment 

(TRT, placebo vs. tamoxifen), age at time of entry (AGE, in years), 5 year breast cancer 

risk at time of entry (based on a multivariate logistic model of Gail et al. (1989)) (PR5YR), 

lobular carcinoma in situ (LCIS) and atypical hyperplasia of the breast (ATYPH, history 

at entry). The two continuous covariates that could be modeled using the spline approach, 

in order to examine non-linearity in their effects, were age and the five-year breast cancer 

probability from the Gail model. 

The results from the marginal models on each of the three outcomes are given in Table 3 

and the corresponding smooth function estimates for AGE and PR5YR are given in Figure 

l(a,-f). Note that the panels of Figure 1 depict penalized B-spline based estimates of the 

functions on AGE and PR.5YR along with 95% pointwise confidence bands. The results 

from the marginal models indicate that use of tamoxifen is associated with reduced risk of 

invasive breast cancer {p < 0.01), but it was also associated with significantly increased risk 

of endometrial cancer. The increased risk in ischemic heart disease appeared to be marginal 

and not statistically significant. Age of the subjects appeared to be positively associated 

only with ischemic heart disease, but this association appeared to be linear (Figure 1(c)). 

On the other hand, the 5yr probability of breast cancer (as estimated form Gail model) 

was non-linearly associated with onset of invasive breast cancer (Figure 1(d)). Here, the 

estimated curve (Figure 1(b)) indicates an initial rise in risk up to 6-7 with a decline in risk 

starting at about 10. The test for non-hnearity was marginally significant indicating that a 

simple linear term may not suffice to control for this variable. 

(Table 3 around here) 
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(Figure 1 around here) 

The question still remains as to whether there was evidence of an overall beneficial or 

detrimental effect of tamoxifen and other prognostic factors when inferences are drawn simul- 

taneously on more than one outcome. This is the question that the new modeling techniques 

are best suited to answer. Here, we considered bivariate models that simultaneously model 

invasive breast cancer with ischemic heart disease and endometrial cancer and the results 

from these two bivariate models are given in Table 4. These results indicate that the ben- 

efits of tamoxifen as a preventive agent significantly outweigh the detrimental effect of an 

increased risk in ischemic heart disease. The appropriately weighted combined estimate of 

treatment effect for IBC and IHD was -0.41 (p < 0.01). It is also interesting that even 

though there was a significant increased risk in endometrial cancer that was associated with 

the use of tamoxifen, it did not appear to wash out its benefit of reducing the risk of breast 

cancer. In fact, there was still a statistically significant protective effect of tamoxifen when 

the risks for breast cancer and endometrial cancer were considered simultaneously. The 

inverse-variance weighted combined estimate of treatment effect for IBC and ENDO was 

-0.55 (p < 0.01). The results indicate a strong linear effect of age in the bivariate model for 

invasive breast cancer and ischemic heart disease. On the other hand, PR5YR appears to 

have a strong non-linear effect in both bivariate models, indicating that it should be modeled 

as a non-linear term. Note that the common estimates on bivariate outcomes for each of 

the prognostic factors are obtained by using a linear combination of the ?7^'s in a way that 

takes the appropriate variance-covariance matrix into account. So, they allow for a truly 

combined inference across outcomes, as opposed to the relatively ad-hoc methods of visually 

comparing the marginal estimates. 

(Table 4 around here) 
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6    Discussion 

The analyses in t,his paper demonstrate that, in examining the effectiveness of chemopreven- 

tive agents on diseases such as breast cancer, appropriate modeling techniques are needed 

to (i) to allow for simultaneous examination of the beneficial and potentially adverse effects 

of the agent, and (ii) enable the proper modeling of prognostic and/or risk factors that may 

have nonlinear exposure response relationship. 

The methods proposed here have the advantage of being able to estimate a relatively 

realistic functional form for the covariate effects of interest, while enabling formal inference 

on the overall significance or adequacy of a certain parametric form (e.g. linearity) across 

several time-to-event outcomes. This is made possible through the use of penalized B-splines 

that are known to offer an attractive compromise between fully non-parametric regression 

smoothers such as smoothing splines and flexible, but inherently parametric, techniques such 

as regression splines (Hastie and Tibshirani (1990b), Gray (1994)). 

In this paper, we have introduced a way of conducting simultaneous inference across 

several outcomes by extending the methods of Gray (1994) and Wei et al. (1989). The 

results from the analysis of the BCPT data demonstrate its immediate usefulness in health 

related research. The simulations demonstrate that the asymptotic inferential procedures 

are reliable when adequately large sample sizes are used and also provide rough guidelines 

on how to select realistic values for the degrees of freedom (hence smoothing parameters) 

and number and location of knots. The small sample properties of the proposed tests may 

be improved by extending a covariance estimator as in, say. Fay and Graubard (2001). Note 

that parametric regression splines are much simpler to apply and still play an important 

role in practical applications, especially when the number of knots are appropriate and the 

positions of such knots reasonably placed. 
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There are many open areas of research that would extend the methods in this paper. 

Some of the most important areas of research include development of diagnostic measures in 

the multivariate setting, testing for trends in some parametric but monotonic subclass of the 

genera] spline approach (linearity has been explored here) and a more in depth examination 

of the issue of proportionality of hazards. A more general class of models that is based on 

the notion of pseudosplines as in Hastie (1996) is currently being developed by our group 

and results will be reported elsewhere. In this class of models, examination of adequacy of 

increasingly complex forms of polynomials would be natural due to the general structure of 

orthogonal-polynomial based pseudosplines, as opposed to the penalized B-splines discussed 

in this paper. 

The issue of dependent censoring, and hence competing risks, was not particularly ger- 

mane to the analysis of the BCPT data. This was because of the fact that subjects were not 

censored after observation of any one of the outcomes. Rather, treatment was stopped but 

siibjects were followed until the end of the study, possible death and other non-informative 

censoring process. So, for the analysis of the BCPT data, allowing for time-dependent treat- 

ment was adequate. But, one could easily envision a scenario where subjects are censored for 

most outcomes as soon as one of the outcomes is observed. In such cases, the development 

of methods that allows for dependent censoring becomes important. Generally speaking, the 

marginal modeling paradigm that we have followed in this paper is not amenable to such 

dependent censoring problems. 
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Appendix: Calculation of Wg 

The robust variance estimator introduced by Wei et al. (1989) for inference across margins 

uses a plug-in estimator for covariances between the scores of the g*'^ and ?;"' margins. 

For the g*^ type of faihire, let 

Ngi{t) = I{Xgi<t,Agi = -[) , 

YAt) = nXgi > t) 

an( 

MA'') = ^dO - f yai{y)\i[^)du , 
Jo 

where /(.) denotes the indicator function.    Then, it is straightforward to show that the 

penalized score function has the form 

w here 

UAi',) = i:JlPA^^)dMM 

r* ELi Ygi{^L)Pgi{u)exp{1},'lPgi{v)] 

^0        T:=,Ygi{u)exp{tP'^Pgi{u)} 

and Mg{u) = EL, MAy)- 
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Based on arguments that are parallel to those in Wei et al.    (1989), the asymptotic 

covariance matrix between -v/n(V'g — tpg) and y/n{-i(j^ — ip^) is given by 

where 

n = £{PM - s^P{^,Vt)lsf{i^^;t)}dM,,{i) , 

.(;)(V,;0 = E%i{l)P,,{i)eMV,Pam]] , 

an( 

We then use a plug in estimate for E{wgi{'^g)wyi{-ip^)^} which takes the form of C as 

in (10). This estimator turns out to be asymptotically the same as the estimator proposed 

in Wei et al. (1989), since the penalty converges to zero under the null hypothesis. For this 

reason, the penalty term is dropped in the plug in estimate for E{2ngi[ipg)zvyi{-ip^)'^}. We 

define, 

w^A^g)=Ag^{PAXg^) -1^;^^} - E -^'^^^^-^'^-^^-^ 

Mp.dx,i)- i:/'\:^ (14) 
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Sl'\^; i) = n-> Y: Y,,{t)P,iit)exp{i,^P,i{t)} 

and 

5f (V;0 = n-' j:Y,,{t)exp{rP^P,i{t)] 
i=] 

The above asymptotic results are based on the approach used in Wei et al. (1989). 

Note that Q is constructed as a function of the information matrix, the penalty matrix, 

the smoothing parameter and the individual elements of the unpenalized score vector, that 

is, a separate term is computed for each of the n observations. Note that, for the above 

approximation, the penalized versions of the likelihood and the score functions are used to 

compute the information matrix while the unpenalized score vector is used in the plug in 

estimator for the computation of W as given in (14). Note also that the penalty matrix Kg 

contributes to the penalized score and information matrix only for the last (m + 2) compo- 

nents of V^ . Inferential procedures for the first p parametric terms are directly analogous to 

those outlined in Wei et al. (1989). 

22 



FIGURE LEGEND: 

Figure 1: Spline based estimates of the log hazard ratio for breast cancer as functions of 

age and five year probability of breast cancer for models on Invasive breast cancer (BRCA, 

Panels (a) and (b)), Ischemic Heart Disease (IHD, Panels (c) and (d)), and Endometrial 

Cancer (ENDO, Panels (e) and (f)) 
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Table 1:   Empirical sizes of robust inference on marginally correlated {6 = 0.5) bivariate 

time-to-event outcomes 

n = 200 n = 300 
Censoring Deg. of Number Nominal level Nominal level 
Prob. freedom of knots 0.01 0.05 0.10 0.01 0.05 0.10 

0.3 3 10 0.012 0.038 0.069 0.018 0.055 0.092 
15 0.022 0.070 0.121 0.029 0.079 0.130 
20 0.047 0.112 0.167 0.035 0.084 0.134 

5 10 0.030 0.068 0.114 0.022 0.071 0.121 
15 0.052 0.129 0.184 0.027 0.089 0.146 
20 0.103 0.200 0.270 0.051 0.137 0.206 

0.5 3 10 0.013 0.051 0.096 0.013 0.051 0.089 
15 0.032 0.098 0.151 0.023 0.073 0.130 
20 0.074 0.163 0.238 0.041 0.120 0.185 

5 10 0.016 0.042 0.081 0.008 0.031 0.061 
15 0.029 0.080 0.124 0.015 0.046 0.083 
20 0.068 0.152 0.216 0.035 0.078 0.123 
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Table 2:   Empirical sizes of robust inference on marginally correlated {6 = 1.0) bivariate 

time-to-event outcomes 

n = 300 n = 400 
Censoring Deg. of Number Nominal level Nominal level 
Prob. freedom of knots 0.01 0.05 0.10 0.01 0.05 0.10 

0.3 3 10 0.015 0.062 0.122 0.009 0.037 0.076 
15 0.033 0.092 0.156 0.012 0.051 0.086 
20 0.056 0.140 0.210 0.016 0.061 0.096 

5 10 0.028 0.085 0.144 0.012 0.045 0.081 
15 0.048 0.119 0.174 0.016 0.066 0.112 
20 0.078 0.166 0.237 0.024 0.073 0.131 

0.5 3 10 0.022 0.085 0.172 0.004 0.025 0.051 
15 0.044 0.125 0.206 0.007 0.030 0.057 
20 0.066 0.171 0.263 0.010 0.049 0.086 

5 10 0.013 0.052 0.095 0.024 0.077 0.119 
15 0.023 0.078 0.136 0.029 0.086 0.156 
20 0.040 0.123 0.198 0.040 0.096 0.170 
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Table 3: Marginal Proportional Hazards Models on Breast Cancer, Ischemic Heart Disease 

and Endometrial Cancer 

Outcome Covariate Estimate Test Statistic df P-value 

Invasive TRT -0.69 28.08 1.00 <0.01 
Breast LCIS 0.19 0.40 1.00 0.53 
Cancer AGE (overall) 2.89 4.00 0.61 

AGE (Linearity) 2.78 3.00 0.44 
PR5YR (overall) 17.26 4.00 <0.01 

PR5YR (Linearity) 6.94 3.00 0.05 

Ischemic TRT 0.13 0.54 1.00 0.47 
Heart LCIS -0.95 2.00 1.00 0.16 
Disease AGE (overall) 73.3 3.99 <0.01 

AGE (Linearity) 3.54 3.00 0.30 
PR5YR (overall) 5.33 4.00 0.24 

PR5YR (Linearity) 2.96 3.00 0.40 

Endometrial TRT 0.88 8.23 1.00 <0.01 
Cancer LCIS 0.60 0.32 1.00 0.57 

AGE (overall) 4.32 3.99 0.36 
AGE (Linearity) 3.84 3.00 0.26 
PR5YR (overall) 5.19 4.00 0.25 

PR5YR (Linearity) 2.50 3.00 0.50 
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Table 4: Bivariaie Proportional Hazards Models on Breast Cancer, Ischemic Heart Disease 

and Endometrial Cancer 

Outcome Covariate Combined 
Estimate 

Test Statistic df P-value 

IBC TRT -0.41 28.85 2.00 <0.01 
and LCIS -0.56 2.24 1.97 0.32 
IHD AGE (overall) 419.84 8.00 <0.01 

AGE (Linearity) 5.62 6.00 0.48 
PR,5YR (overall) 24.78 8.00 <0.01 

PR5YR (Linearity) 10.92 6.00 0.07 

IBC TRT -0.55 36.54 2.00 <0.01 
and LCIS -0.58 0.91 2.00 0.62 
ENDO AGE (overall) 7.96 8.00 0.44 

AGE (Linearity) 7.30 6.00 0.27 
PR5YR (overall) 27.27 8.00 <0.01 

PR5YR (Linearity) 13.76 6.00 0.02 
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SUMMARY 

Gray's extension of Cox's proportional hazards (PH) model for right-censored survival data allows for 
a departure from the PH assumption via introduction of time-varying regression coefficients (TVC). For 
this model estimation of the conditional hazard rate relies on the inclusion of penalized splines. Cubic 
penalized splines tend to be unstable in the right tail of the distribution and thus quadratic, linear and 
piecewise-constant penalized splines may be a favourable choice. We derive a survival function estimator 
for one important member of the class of TVC models - a piecewise-constant time-varying coefficients 
(PC-TVC) model. Using the first-order Taylor series approximation we also derive an estimate for 
the variance of the log-transformed and log(-log)-transformed survival function, which in turn leads to 
estimated confidence limits on the corresponding scales of the survival function. Accuracy in estimating 
underiying survival times and survival quantiles is assessed for both Cox's and Gray's PC-TVC model 
using a simulation study featuring scenarios violating the PH assumption. Finally, an example of the 
estimated survival functions and the corresponding confidence limits derived from Cox's PH and Gray's 
PC-TVC model, respectively, is presented for a liver transplant data set. Copyright © 2002 John Wiley 
& Sons, Ltd. 

KEY WORDS:    survival function; penalized splines; time-varying coefficients 

1. INTRODUCTION 

The Cox proportional hazards (PH) model has played a prominent role in both the statistical 
literature and for the analysis of right-censored survival data since its first introduction by 
Cox [1] in 1972. It has been widely used for the analyses of biomedical data from both 
longitudinal studies and clinical trials, mainly due to its appealing mathematical simplicity, 
as well as its general availability through most statistical packages. While the Cox PH model 
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is relatively simple to present, it relies on the assumption of proportionality which may not 
be met in all data sets. To address this issue, models that allow for non-proportionality of 
the conditional hazards through the introduction of penalized splines have been proposed. 
A family of models which can be used to model non-proportional data, the time-varying 
coefficient (TVC) models, have been considered by Gamerman and West [2] and Zucker and 
Karr [3]. A general treatment of the first-order asymptotic analysis of the penalized likelihood 
is due to Cox and O'Sullivan [4]. Building on the work of Tsiatis [5], Andersen and Gill 
[6] and Gill [7], O'Sullivan [8] treated non-parametric estimation in the Cox model using 
an approach complementary to that of Zucker and Karr [3]. The methodology of Zucker 
and Karr was further developed by Gray [9, 10], Time-varying coefficient models were also 
studied by Hastie and Tibshirani [11] and the use of regression splines in modelling the 
conditional hazard rate is discussed in Sleeper and Harrington [12] and Gray [9]. The use of 
time dependence in Cox's PH model was also investigated by Pettitt and Daud [13], Hess [14] 
and Verweij and van Houwelingen [15]. One of the more useful spline-based extensions of the 
Cox proportional hazards model is that proposed by Gray [9]. Gray's TVC extension of the 
Cox PH model employs products of the covariates of interest with the spline functions of time. 
This allows for a flexible approach to the modelling of covariate eff"ects without necessarily 
adhering to the assumption of proportional hazards, which may not be satisfied. The most 
appealing model within the framework of models proposed by Gray is the piecewise-constant 
TVC (Gray's PC-TVC) model since this model is similar to the original Cox PH model and 
retains much of the mathematical simplicity of the Cox model. The advantage of the PC-TVC 
models is their flexibility, since the proportional hazards assumption is only required for each 
of the time intervals between the successive knots (that is, time points allowing for a change 
in the regression coefficients). Gray's PC-TVC model may therefore be viewed as a piecewise 
proportional hazards model for the conditional hazard rate. The estimated survival function is 
often of interest when fitting a survival model to data, since this serves as a useful summary 
of the estimated survival experience of a given population. Gray's work on TVC models 
has focused on estimation of the model coefficients, inference and residual analysis and, to 
date, no estimator for the survival function has been presented. Andersen et al. [16] show that 
confidence limits for the survival function estimated from the Cox PH model are optimal when 
the estimates are based on a log-transformed or log(-log)-transformed scale for the survival 
curve. In this paper we present an estimator of the survival function under Gray's PC-TVC 
model. Estimation is based on the observation that between the successive knots, where the 
hazard regression coefficients are assumed to remain constant, the integration with respect 
to a differential of the cumulative hazard rate may proceed in a manner similar to that for 
the original Cox PH model. The estimated variance of the predicted survival function under 
Gray's PC-TVC model is derived for both the log-transformed and log(-log)-transformed scale 
of the survival function and corresponding estimates of the confidence limits are presented. 

2. ESTIMATED SURVIVAL FOR GRAY'S PC-TVC MODEL 

Within the TVC family of models we assume that the hazard fiinction can be modelled as 
follows: 

dA(f|x) = dAo(Oexp{x'/?(0} (I) 

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:717-727 
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where A(.) denotes the cumulative hazard function and Ao(.) denotes the cumulative baseline 
hazard. Here /?'(0 = (/^i(0,/?2(0,---.i?p(0), where i?/?) = Et ^#%(0, 7 = 1,---,P [9] are 
modelled with a full set of B-spline basis functions, Bjic{t) [17]. Unlike Cox's proportional 
hazards model where the hazard regression coefficients, ^(0, in (1) are fixed, they are a 
function of time under Gray's PC-TVC model. Specifically, the coefficients are assumed to 
be constant only for values of t£[Tj,Tj+i), j = 0,...,q. Here Xj, j=\,...,q, denote the in- 
ternal knots, To = 0, and T,y+i = r represents the maximum observed (survival or censoring) 
time. Under Gray's PC-TVC model, the coefficients, ji{t), are therefore right-continuous step 
functions of time with jumps possibly occurring at the knots Xj, j—\,...,q. Estimation of the 
regression parameters in Gray's PC-TVC model proceeds by maximizing the penalized partial 
likelihood, which involves a partial likelihood term as in the Cox model, plus the penalty 
term \^jYl'k^=2i0jk - Oj,k-iY, where q is the number of internal knots for modelling the 
splines [9]. An essential component of the survival function estimate under Gray's PC-TVC 
model is based on the corresponding estimate of the cumulative baseline hazard. We extend 
Breslow's estimator [18] of the cumulative baseline hazard function to derive an estimator 
of the baseline hazard function for the TVC model. We assume that the coefficients, P, in 
Breslow's formula can simply be replaced with their corresponding time-varying counterparts, 
P{t). Consequently, under the TVC model (1) for the conditional hazard rate the estimated 
cumulative baseline hazard function is of the form 

Ao(0=  /'TTTTT—^-T-TAT^EdMW (2) 
Jo E,F,(5)exp{-i^(^)}S 

where Yi(t) is an indicator function for the ith patient's risk status at time / (that is, Yi{t)= 1 
if the ith patient is in the risk set at time /, and 0 otherwise). 

For Gray's PC-TVC model the formula for the estimated survival function of a patient with 
p-variate covariate vector, Zo, will be 

(3) 

S{t\=o) = expj-^' dA{s\=o)\=cxpLj^cxp{z'J(s)}dAo{s)\ 

= exp|-/  /(5^0exp{4^(5)}dAo(5)| 

On the log-transformed scale of the survival function we obtain 

logS{t\zo)^ -f I{s^t)cxp{z'oPis)}dAo(s)= -£ exp{z;^(t,)}Aoy(0 (4) 
Jo /=0 

where 

Ao,(0- /        Iis^t)dAo{s)=  f        Ks^t)     J^'-^ ^f/ (5) 
J[y.VH) Jly,y+0 E,-^;(5)exp{z;^(5)} 

represents a contribution to the estimated (total) cumulative baseline hazard Ao(0 correspond- 
ing to an interval [xj,xj+\). Since P{xj) remains constant on [xj,Xj+\), we will make use of 
the following notation: Pj = P{xj), where l^j is a vector of length p. Given a covariate vector 

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Mecl. 2002; 21:717-727 
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=0, we thus obtain an estimate of the survival function, S{t\zo), as follows: 

S{t\zo)= cxpl -E exp{4^^.}AoXO (6) 

3. CONFIDENCE LIMITS BASED ON THE LOG-TRANSFORMATION 

Based on (4), the formula for the variance of the log-transformed estimator of the survival 
function is as follows: 

var(log5(/|.-o)) = cov I-E hjit)cxpiz'Jj),-t Aojit)oxp{z'Jj) 

1    1 
= E Ecov(Ao;i(Oexp(z;/?,),Ao/(/)exp(4/?,)) 

i=0/=0 
(7) 

Note that (7) requires an estimator of the covariance which can be derived from a Taylor 
series approximation. We also define the following functions: 

cMjj)^koj{t)cxp{z'Jj),    je{0,...,q] (8) 

The vector of the corresponding partial derivatives may be evaluated as follows: 

^cAftj,t)^ cxp{z',Pj) UAOXO + ^(AoXO) ) 
dPj V ^Pj ) 

Now, the first-order Taylor series approximation of g{fij) about the expected value of p, 
(which we will denote by fij) can be written as 

giPj,t)^g{Pj,t) + -^^((l(PpOM=Pj iPj-Pj) (9) 

The covariance terms in (7) can be approximated at time t using the delta method as follows: 

cov{^(^„/),<7(^„0} « W,{tycov(P,JiWi(t) (10) 

where 

Wjit) = 
d  '. 

sxpiz'oPj) izoAojit) + TjAoXO ,    j e {k, 1} (11) 
\iij = Pj 

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:717-727 
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and 

^A,,o=/    a.^o-^^^^^p^,tm(s). j.m        (,2, 
d[ij Jiy,rj,o        {EiYii^)^M-'Pj}V'=' 

is a /(-variate vector of partial derivatives of Aoy(0- 
At time t we also have 

--oAoy(0= /        /G^^O.   ' ^. . 7-;-T7^EdMiO (13) 

so that 

w^(0 = / /(».og'^'-"-'--''"^«:'"''''^'£dMw 
{E,Wi)exp{r;/S,.}) 1=1 

(14) 

14=ft 

Consequently, the formula for the estimated variance of the predicted survival function will 
take the following form: 

var(log5(?|-o))= E E W,itycov(lJ,)W,it) (15) 
i=0 1=0 

Finally, the 100(1 - a) per cent confidence limits for the survival function estimated under 
Gray's PC-TVC model are calculated as follows: 

exp(log5(?|^o) ±-i-./2y{var(log5(/|.'o))}) (16) 

where z\-a:/2 denotes an upper a/2-quantile of the standard normal distribution, var(log5(?|so)) 
is given by (15) and log5(?|-o) is estimated based on equation (4). 

4. CONFIDENCE LIMITS BASED ON THE L0G(-L0G)-TRANSF0RMAT10N 

On the log(-log)-scale of the estimated survival function we obtain the following: 

log(-Iog(5(?|-o)))= log I E AoXf)exp(4^,.) j (17) 

Let us denote the complete vector of time-varying coefficient estimates from Gray's PC-TVC 
model by j^ = {^Q,Pi,...,Py). Note that each component of the vector is itself a vector of 
length p (where p stands for the number of covariates being modelled by splines). Also, 
let ^0(^) = (^0(^),^^(/i),...,T^^(^)), where each of the q components of the vector of 

dp CjiQ (7Pi Cji^ 

partial derivatives of g{^) is itself a vector of length p. Using this notation we write at 
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time / 

cjiP,t)= \og(j:Aojit)cxpiz'Jj)\ (18) 

Thus the A:th component of the vector of partial derivatives (being itself a vector of length 
p) will be 

ilfXAO       = :r-J^  (19) 
W A EJ=o exp(--o^,)AoXO 

It follows from (14) that 

E,- Yls)i=o - --,)exp{(--o + z^yp,} 

■{El=oexpK4}AoXO}{E,-^(^)exp{--'/?JP 

WiO- (21) 

Using the first-order Taylor series approximation of the log(-log)-transformed survival fijnction 
we can estimate the variance as follows: 

var(log(- log(5(/|-'o)))) « W(tyvariP)W(t) (22) 

where var(/j) is the covariance matrix of the complete vector of time-varying coefficients with 
the partial derivatives in expression (22) evaluated as in (20). Consequently, the 100(1 - a) 
per cent confidence limits for the survival function estimated under Gray's PC-TVC model 
based on the log(-log) transformation of the survival function will be given by 

exp{-exp{log(-log5(?|-o))T"i-./2v/[var(log(-log5(?|zo)))]}} (23) 

where ::i_«/2 denotes an upper a/2-quantile of the standard normal distribution, logS{t\zo) is 
obtained from (4) and var(log(-log5'(r|zo))) is estimated using (22). 

5. SIMULATION STUDIES 

In order to assess the accuracy of both Cox's and Gray's survival estimators we designed two 
simulation studies allowing for comparison of the estimated survival quantiles and probabilities 
of survival obtained from Cox's and Gray's model with the true underlying values. We 
considered scenarios that violate the assumption of proportionality. In all instances throughout 
this paper. Gray's PC-TVC model was fitted with 10 knots selected automatically so that 
approximately the same number of events was observed between the successive knots, and 
4 degrees of freedom that fully specify the choice of the corresponding value of the smoothing 
parameter. 

Copyright © 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:717-727 
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We have generated survival data from the piecewise-exponential distribution with two time- 
points allowing for a change in the hazard at 0.3 and 0.8 years. For a set of survival prob- 
abilities {0.99,0.95,0.90,0.75,0.50,0.25,0.10,0.05,0.01}, the corresponding time-points were 
estimated using both Cox's and Gray's models based on 1000 samples of size 150. Also, 
for a set of time points of 3, 7, 14 and 30 days and 0.5, 1, 1.5 and 3 years, estimates of 
the corresponding probabilities of survival were calculated from each of the models. For this 
simulation study, all of the data are complete. The results we obtained for censored data were 
very similar to those for complete data. The introduction of censoring, however, leaves some 
quantities related to the right tail of the distribution inestimable (for example, time-points 
corresponding to small survival probabilities). 

In the first study, one third of each sample (associated with the first covariate being an 
indicator function for that group) was generated with hazards of (1.5,1,2), the second third 
of the sample (associated with the second covariate) was generated with the hazards reversed 
(that is, (2,1,1.5)), and the baseline hazards were all set to 1. In the second study, haz- 
ards of (2,1,0.5) were associated with the first covariate, those reversed ((0.5,1,2)) were 
associated with the second covariate and a constant hazard of 1 was again assumed for the 
baseline. 

We wrote two simple S-plus functions to compute the true survival quantiles and probabil- 
ities for the piecewise-exponential distribution. Figure 1 (consisting of four panels (a)-{d)) 
presents plots of the differences between the estimated and the true quantities (that is, prob- 
abilities and survival quantiles, respectively), as determined in both of the above studies. 
In both studies the survival curves were estimated at the covariate values (1,0) and (0,1), 
respectively, indicating a patient exhibiting the hazards specified by the first or second (that 
is, reversed) set of hazards used in each example. 

Panels (a) and (ci) of Figure 1, based on 1000 samples, reveal that the differences between 
the true and estimated survival quantiles (times) were consistently smaller for Gray's model 
(denoted by circles in the plot). For this model the four corresponding trends in the hazard 
implied average departures from the true underlying quantiles of less than 20 days with the 
exception of the 1 per cent quantile, for which the average departures ranged from 21 to 60 
days. For the Cox model (denoted by triangles in the plot), however, departures fi^om the 
true values greater than 50 days were observed for the 75, 50, 10, 5 and 1 per cent survival 
quantiles. Panel (d) reveals that the estimates of the two smallest survival quantiles based 
on the Cox model were actually off by more than I year for both trends in the hazard. The 
magnitude of error observed was generally higher for the hazard rates of (2,1,0.5) or reversed, 
than for those of (1.5,1,2) or reversed. 

Similarly, Figure 1 parts (b) and (c) illustrate the superior performance of Gray's PC- 
TVC model over that of the Cox model in terms of the accuracy of the estimated survival 
probabilities associated with several predetermined time-points. For 1000 samples simulated 
with hazards (1.5,1,2) and (2,1,1.5), respectively, the probability estimates based on Gray's 
model were all within a distance of 0.01 from the true underlying values. For hazard rates of 
(2,1,0.5) and (0.5,1,2), estimates obtained from Gray's model exceeded the 0.01 distance in 
3 of 18 cases with the maximum departure from the true value being 0.017 (associated with 
the time-point of 6 months). Based on the Cox model, however, departures below 0.01 were 
observed in only 10 of 36 cases. In 16 of the 36 cases the magnitude of error associated 
with the Cox model exceeded the level of 0.025. The magnitude of error was again generally 
higher for the hazard rates (2,1,0.5) or reversed, than for those of (1.5,1,2) or reversed. 
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Differences Between Estimated and True 
Survival Quantiles (1000 simulations) 

(a) 

O hazard rates = (2.1.1.5) 
A hazard retes = (2,1. 1.5) 
• hazardraes=(1 5. 1.2) 
A hazard races = (1.5.1. 2) 

"T" 
123456789 

9 Survival OuarSiles Evaluated;    .99,.95..90..75..60..25..10. 05..01 

Hazard Rates (1,5.1.2) and (2.1.1.5). Change Points 3 and .8 Year 

SS = 150 (No Censoring). Gray = Circles. Cox = Tnanglos 

Differences Between Estimated and True 
Survival Probabilities (1000 simulations) 

(c) 

hazard raes = (0 5.1. 2) 
A hazard raes = (0.5. 1.2) 
• hazard raes = (2. 1.0 5) 
A      hazard raes = (2.1.0 5] 

"T" T- 
123456789 

9 Times Evaluated;    3. 7.14. 30 days and 5. 1. 1.5. 2. 3 years 

Hazard Rates (2.1.0.5) and (0.5.1.2). Change Points 3 and .8 Yea 

SS = 150 (No Censonng). Gray = Circles. Cox = Triangles 

Differences Between Estimated and True 
Survival Probabilities (1000 simulations) 

a 

(b) 

O hazardraes = (2. 1, 1.5) 
A hazardraes = (2.1.1.5) 
• hazard raes = (1.5, 1, 2) 
A hazardraes = (1.5. 1.2) 

1 
n^ ^^ 1^ -r 

4 5 6 7 8 9 

9 Times Evaluated;    3.7.14. 30 days and .5.1.1.5. 2. 3yei3fs 

Hazard Rates (1.5.1.2) and (2.1,1.5). Change Points 3 and 8 Year 

SS = 150 (No Censonng). Gra/ = Circles, Cox = Tnangles 

Differences Between Estimated and True 
Survival Quantiies (1000 simulations) 

- (d) 

--^=t^ 

O hazard raes = (0.5.1. 2) 
A hazard raes = (0.5.1. 2) 
• hazard raes = (2,1. 0.5) 
A hazard raes = (2,1,0.5) 

"T" T- -r 

9 Sun^ival Quantiles Evaluated    .99..95.90,.75..60.25..10,05,.01 

Hazard Rates (2,1.0.5) and (0 5.1.2). Chaige Points .3 and .8 Yea 

SS = 150 (No Censonng), Gray = Circles. Cox = Triangles 

Figure 1, Simulation studies results summary. 

The averaging effect of the Cox model is well documented in Figure 1 (h) and (c). Since the 
simulated hazard rates stabilized after 0.8 years, we observe that the departures from the true 
underlying values decreased dramatically after 1 year. As a result of the lack of flexibility on 
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the part of Cox's model, however, this led to subsequent departures in the opposite directions 
at the right tail of the distribution. 

Results obtained from the simulation studies indicate that a high level of accuracy is main- 
tained by the survival function estimates based on Gray's model, even in the tails of the 
distribution. Estimates obtained using Gray's model were generally close to the true values, 
while those derived from the Cox model occasionally showed large departures from the true 
underlying values. This resulted from a violation of the proportionality assumption in the data. 
The lack of precision in Cox's model was caused by the averaging of the time-varying effects, 
which is a built-in feature of Cox's model. In contrast, a high level of accuracy has been 
maintained by Gray's survival estimator, even in the tails of the distribution. 

6. UNOS DATA EXAMPLE 

In this section we present a real data example comparing survival function estimators derived 
from Cox's and Gray's model, respectively. It features a data set from the UNOS (United 
Network for Organ Sharing) database of cancer patients who underwent a liver transplant. 

Here we estimate the graft survival for a subject whose covariate values are set to the 
median sample values. In graft survival analysis a failure is defined as an organ failure or 
a death of the recipient. We compare the best Cox and Gray models found for the data. 
The best models featured the following covariates (with corresponding sample median values 
listed in the parentheses): donor's anti-CMV IGG result (dcmvgr, 1); indicator of whether the 
recipient had any prior transplant (priortx, 0); log-serum creatinine (Icreat, 0); log-total serum 
bilirubin (Itbili, 1.224); blood match indicator (abo.mtch, 1), and log-prothrombin time (Iptp, 
2.695). A summary of the modelling results may be found in Table I. Covariates found to be 
significant under the best Cox model for the liver transplant graft survival of UNOS cancer 
patients were icreat', itbili', 'dcmvgr' and 'abo.mtch', with log-total serum bilirubin (Itbili) 
being identified as marginally non-proportional with regard to the effect on the hazard rate 
(p-value 0.0499). The best Gray's model included 'Icreat', 'Iptp', 'abo.mtch' and 'priortx'. 
Here the log-prothrombin time (Iptp) was identified as having a highly non-proportional effect 
on the hazard rate (p-value 0.007). 

Survival functions and 95 per cent confidence limits estimated by the two models at the 
sample median covariate values are presented in Figure 2. Although the confidence bands for 
the two survival curves overlap (Gray's estimated survival function actually follows closely 

Table I. Results summary for UNOS cancer patients (502 observations with 278 failures). 

Covariates Cox's model Gray' s model 

Coeff p-value n.prop. Coeff (range) p-value n.prop. 

Icreat 0.266 0.014 0.789 (0.154:0.555) 0.001 0.277 
Itbili 0.182 0.001 0.050 — — — 
dcmvgr 0.307 0.011 0.936 — — — 
abo.mtch -1.147 0.049 0.642 (-2.936:0.205) 0.007 0.142 
Iptp — — ■— (-0.244:1.688) 0.000 0.007 
priortx — — — (-5.999:3.228) 0.040 0.769 
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Figure 2. UNOS cancer patients' post-liver transplant graft survival with 95 per cent CLs: Cox and 
Gray model results for a subject with median-valued covariates. 

the upper confidence band estimated by the Cox's model), we can still observe a notable 
difference between the two survival estimates. The real data example of this section further 
illustrates the differences in survival estimates that might be obtained for data which does not 
follow the proportional hazards assumption. 

7. CONCLUSIONS 

Gray's piecewise-constant time-varying coefficients model for right-censored survival data is 
a flexible alternative to the Cox proportional hazards model in scenarios where the PH as- 
sumption may not be satisfied. The survival function estimator that we derived for this model 
provides a useful summary of the modelling results based on the patient's covariate values. 

Simulation studies presented earlier have shown a lack of accuracy on the part of the Cox 
model with regard to estimating survival probabilities and predicting survival quantiles when 
the survival distribution does not satisfy the PH assumption. 

Finally, based on Cox's and Gray's model, respectively, a differing graft survival experience 
was demonstrated for a UNOS cancer patient after a liver transplant. 
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Abstract 

Penalized B-splines have been applied to time-to-event data, providing an extension of 

the proportional hazards model for a single outcome (Gray, 1994). We use this technique 

to extend the marginal models of Wei, Lin and Weissfeld (1989). This allows for greater 

flexibility in modeling the margins and makes formal development of inferential procedures 

possible. Applications to data from the NSABP-BCPT on the effectiveness of the drug 

Tamoxifen as a prevention tool against breast cancer will be discussed in detail. Results 

from extensive simulation studies on the small sample properties of the asymptotic tests will 

also be presented. 

KEY WORDS: Survival analysis; Smoothing; Ridge regression; Additive models; Sphnes; 

Proportional hazards. 



1    Introduction 

The advent of promising drugs like tamoxifen in the treatment and/or prevention of breast 

cancer has ignited both hope and controversy in the scientific world and the general pubhc. 

The controversy revolves around the issue of whether the benefits of the drug offset its 

known adverse side effects. One of the main studies that has been conducted to study 

the effectiveness of tamoxifen as a preventive agent for breast cancer is the Breast Cancer 

Prevention trial, hereafter referred to as BCPT (Fisher et al, 1998). It has been shown that 

tamoxifen, when used for at least 5 years, was effective in prolonging disease free survival 

and in reducing the rate of recurrences of second primary tumors in contralateral breast and 

ipsilateral breast tumor. It has also been shown that tamoxifen reduces the risk of invasive 

breast cancer in women that are at elevated risk due to various factors. But, there is also 

evidence that use of tamoxifen is positively associated with invasive endometrial cancer, 

ischemic heart disease, transient ischemic attack, deep vein thrombosis and/or pulmonary 

embolism. In order to demonstrate the positive or negative effectiveness of tamoxifen, one 

needs to compare the advantages of the drug to its disadvantages in a simultaneous and 

comprehensive manner. To do this, one needs to be able to make simultaneous inference on 

several time-to-event outcomes and also be able to flexibly model the effect of risk and/or 

prognostic factors that have non-linear effects. Considerable progress has been made over 

the years in the development of models that handle multiple time-to-event outcome data and 

models that allow for flexible modeling of effects of prognostic factors for single time-to-event 

outcome. But, to date, flexible methods do not exist that allow for simultaneous inference 

of multiple time-to-event outcomes. In this paper, we develop new inferential methods that 

allow for simultaneous inference on flexible models for multiple time-to-event outcomes. 

The proportional hazards model (Cox 1972) has received considerable attention as a 



popular way of modeling, possibly censored, time-to-event data. In addition to the propor- 

tionality of the hazards, the model assumes that the effects of the predictors (risk factors) on 

the response follow a parametric (mostly linear) form. Recently, this assumption has been 

relaxed to allow for data-dependent, and possibly non-linear, covariate effects by exploiting 

the flexibihty of nonparametric regression techniques (Hastie and Tibshirani 1990). Fully 

non-parametric proportional hazards models (O'Sullivan (1988) and Hastie and Tibshirani 

(1990)), while attractively flexible, usually suffer from heavy computational load and lack of 

formal inferential procedures. Gray (1994) used the concept of pseudo-smoothers, with em- 

phasis on penahzed B-splines, to develop formal inference for proportional hazards models. 

Penalized B-splines provide an elegant compromise between regression splines and smoothing 

splines. 

Another issue in the analysis of time-to-event data is the modeling of multiple outcomes. 

This problem has received considerable attention in the statistical literature. For example, 

Wei, Lin and Weissfeld (1989) propose the use of marginal modeling. However, most avail- 

able methods have not been extended to include flexible and possibly nonlinear effects of 

prognostic factors. On the other hand, many researchers have demonstrated that important 

prognostic factors (e.g. BMI) have a markedly non-linear effect on breast cancer survival 

and/or prognosis (Gray, 1994). These methods, however, are limited to single outcomes and 

do not lend themselves to simultaneous inference of several time-to-event outcomes. 

In this article, we extend the marginal models of Wei, Lin and Weissfeld (1989) to allow 

modeling flexibihty via the use of penalized B-sphnes in the style of Gray (1994). See 

also Hastie (1996) for a detailed discussion on a more general class of pseudo-smoothers. 

The remainder of the paper is organized as follows. In §2, we introduce the spline based 

proportional hazards model that fits a separate marginal model for each of several time-to- 

event outcomes.   In §3, we discuss theoretical and computational details of the proposed 



simultaneous inferential procedures. In §4, we present results from an extensive simulations 

study on the empirical size of the proposed tests in small sample settings. In §5, we present 

results from a detailed analysis of the BCPT data. The last section discusses the main 

findings of the paper and various modeling and model checking issues (including diagnostics 

measures) that extend the additive model to allow for testing the proportionality of hazards 

and multi-dimensional modehng. 

2    The model 

To model marginal distributions of multivariate time-to-event data, let us consider a flexible 

proportional hazards model for each of the G failure types. For the g'*'' type of failure of the 

i*^, i = 1, ...,n, subject, the model can be written as 

Xgi{t) = X,o{t)exp{J2 fjgiZjgi)} ,   t>0 , (1) 
j 

where Ago(^) is an unspecified baseline hazard function and fjg, j = l,...,p, denotes the 

unspecified smooth functions. In the usual setup (Cox, 1972), one observes data of the form 

{Xgi, Zgi, Agi), whcrc Xgi = mm{Xgi, Cgi), Cgi is the censoring time, Zgi{t) = {Zigi{t),..., Zpgi{t)) 

and Agi = 1 if Xgi = Xgi and 0 otherwise. 

Model (1) is fully non-parametric and quite general. Note also that the fully linear model 

of Wei, Lin and Weissfeld (1989) forms a special case of (1) where fjg{Zjgi) = PjgZjgi. For 

this fully hnear model, the partial hkelihood is given as 

\^ien,(x,i)exp{/3g^T)Zgi{Xgi)}J 

where Pg = {fd^g, ...,/3pg)'^ and TZgit) = {I : Xgi > t} denotes the set of subjects at risk just 

prior to time t with respect to the g''^ type of failure. The solution to dlogPLg{f3g)/df3g = 0, 

T 



^g, can be shown to be a consistent estimator of Pg provided that the fully linear model is 

correctly specified (Anderson and Gill, 1982). 

In practical applications, the effects of most covariates are known to have some parametric 

form, while some of them are best modeled via non-parametric smoothers. For simphcity 

of discussion, we discuss most details for a model with p parametric and one additional 

non-parametric term. We first let 

\ai{t) = \,{t)exp{'£/SjgZjgi + fg{h,i)} ,   i > 0 , (3) 
j 

where j = l,...,p. We propose to estimate fg{hgi) using the penaHzed regression sphne 

approach, i.e., 

m+3 

/fl(^s) = lighg + E ^gBqgihg) ■ (4) 
q=2 

Note that, we have dropped the constant term since it is accounted for by the baseline hazard, 

and only (m-|-2) of the B-spline basis functions are used for identifiability (De Boor, 1974). 

Following Gray (1994), let 7^ = (7^2,-•,7s(m+3)) and r]g = {l\g,lg)- Then, a penalized 

partial likelihood that includes a penalty function to allow for smoother alternatives would 

be defined as 

PUgiPg, rig) = FL,(/3„ 7?,) " l/2A j[f^{u)fdu . (5) 

Recognizing that the penalty function given above is quadratic in the parameter vector 

7 = (7o,7i,---,7m+3), one could rewrite (5) as 

PL^(/3„ 77,) = PLg{Pg,Vg) - l/2XgV^Kgrjg . (6) 

where K is a positive definite matrix that is a function of the covariate hg. Note that K is 

an (m -|- 3) X (m + 3) matrix with the first row and column as zeros, since the linear function 

passes unpenalized. 



The hypotheses of interest with respect to the smooth function are then 7^ == 0 and 

r]g = 0, representing the hypotheses of "no effect" and "hnear effect" respectively. 

A model that is more focused towards testing proportionality of hazards via the use of 

time-varying coefficients could be considered as follows: 

Kiit) = Mt)exp{Y,l3jgZj,i + Ut)hgi} ,  t>0 . (7) 
i 

It is straightforward to extend either of the above two models to allow for multiple, say M, 

non-parametric terms. In this case, r]g would be a bigger vector that augments contributions 

from the basis functions of the M terms. Here, 77^ = {rjg^ : ... : rfgj^) would be of dimension 

M{m -I- 3) X 1 and the penalty term would be the sum of the M penalty functions where 

each non-parametric term has its own smoothing parameter, and penalty matrix. One could 

then test for the "overall" effect or "linearity" of the individual non-parametric terms or for 

a combination of them. 

3    Inference 

While making inference on each of the margins is important, this could be done easily by 

using developments in Gray (1994). Our interest here is mainly in being able to conduct 

simultaneous inference on several time-to-event outcomes in models that have non-parametric 

smooth terms. Once the marginal distributions are modeled, then the methods described in 

Wei, Lin and Weissfeld (1989) can be extended to test for trends across parameter estimates 

and to combine estimates across margins to test for covariate effects of interest. 

Let us consider the case where we have p parametric terms and one additional non- 

parametric term as given by (3). Then, for outcome g, the unpenalized part of equation (6), 



suppressing the dependence of the regression parameters on Xgi, can be written as 

where all components are as defined in §2, for the g*'^ type of failure. Let Vg = {Pg, Vg) and 

Pg = {Zig : ... : Zpg -. kg '. ^gg(/ig) i ... ! 5^+3,p(/ig)) wlth Pgr deuotlng the r*'* column vector, 

r = 1,..., (m + p + 3). Letting Ag be the unpenalized information matrix for the 5'*'* outcome 

as a function of t/', it can be shown that 

Mi^g - -^giT)) = niAg + XnK)-'n-'/^Ug{iPg^T)) + Oril) 

where Ug{ipgfT\) is the score vector and V'g(T) is the vector of true parameter values for the 

g^^ outcome (Gray, 1994) and K is the expanded penalty matrix that augments rows and 

columns of zeros to K to account for the unpenalized terms in the model. Then, it follows 

from the asymptotic normality of Ug{ipg^T)) that \/n{'il)g — ipg{T)) is asymptotically normal 

with mean 0 and variance given as the limit of nVg where 

Vg    =    {Ag   +   Xr,K)-'Ag{Ag   +   A^^)"!      , (9) 

To develop the simultaneous inferential procedures for several outcomes, we first note that 

the i/'p's across the G multiple outcomes are generally correlated. Then, analogous to de- 

velopments in Wei, Lin and Weissfeld (1989), the asymptotic covariance matrix between 

\/ri{'^g — il)g) and •\/n(V'„ — '^v) ^^'^ be consistently estimated by 

Dgvi^gM    =   Vgi'^g)Cg.{i^gMKM     , (lO) 

where Cgy{'ipg,'il)y) = n~^ Y,"=i ^gi{''Pg)Wvii'^vV^ ^^^ ^gi ^i^d W^i are defined in terms of 

the unpenaHzed score contributions as discussed in §4.1. below. Based on these results from 

§4.1, the covariance matrix of (•^j,..., ^Q) can be consistently estimated by 

6 



Q — n -1 
/ Ai(V'i,V'i)    ■•■    AG(V'I,V'G)  \ 

(11) 

3.1    Calculation of Wg 

The robust variance estimator introduced by Wei, Lin and Weissfeld (1989) for inference 

across margins uses a plug-in estimator for covariances between the scores of the g^^ and v*^ 

margins. 

For the g^'^ type of failure, let 

Yg,it) = I{Xg, > t) 

and 

Mgi{t)    =    Ngi{t)    -      f     Ygi{u)Xgi{u)dU     , 
JQ 

where /(.) denotes the indicator function. Then, it is straightforward to show that the 

penahzed score function has the form 

t/f(V',) = [/,(V,)-A,A',V;, 

where 

Ugi^g)   =   J2[Pgi{u)dMg,iu) 

/*   Etl   Ygi{u)Pg,{u)eXp{7P^Pgi{u)}^^-^ 

Jo       EUYAu)exp{^^Pg,iu)}     ^"^^^^^ ^''^ 



where Mg{u) = E^Li Mgi{u). Based on arguments that are parallel to those in Wei, Lin and 

Weissfeld (1989), the asymptotic covariance matrix between •yn(V'g -■0^) and i/n('0„ -'0„) 

is given by 

where 

^9J 

and 

sf\^^;t) = E[Yg,{t)exp{i,^^Pg,m . 

We then use a plug in estimate for E{wgi{'ij)g)wyi{'^^Y} which takes the form of C as in 

(10). This estimator is the same as the estimator proposed in Wei, Lin and Weissfeld (1989), 

since the penalty converges to zero under the null hypothesis. For this reason, the penalty 

term is dropped in the plug in estimate for E{wgi{'ipg)wyi{'ijj^)'^}. We define. 

*■ bg   [Wg^^gi)^      1=1 

5W(V,;  Xg,)  ] ^   AglYgi{Xgl)eXp{'iP';PgiiXgl)} 

nSf\il,g-Xgi) 

^{^''^^'"-fgj}' 
5W(V;t) = n-'Y.ygiit)Pgiity^P{'^''gPgii.t)} - 

1=1 

and 

Sf\^; t) = n-' Y. Ygiit)exp{il,^gPgi{t)} 
1=1 

The above asymptotic results are based on the approach used in Wei, Lin and Weissfeld 

(1989).   Note that Q is constructed as a function of the information matrix, the penalty 

8 



matrix, the smoothing parameter and the individual elements of the unpenalized score vector, 

that is, a separate term is computed for each of the n observations. Note that, for the 

above approximation, the penalized versions of the likelihood and the score functions are 

used to compute the information matrix while the unpenalized score vector is used in the 

plug in estimator for the computation of W as given in (13). Note also that the penalty- 

matrix Kg contributes to the penalized score and information matrix only for the last (m + 

2) components of ipg. Inferential procedures for the first p parametric terms are directly 

analogous to those outhned in Wei, Lin and Weissfeld (1989). 

3.2    Testing statistical hypotheses 

For the non-parametric term, one could conduct simultaneous inference on the "overall" 

effect and/or "linearity" of h across failure types. Let 7^ denote the components of -ipg 

that correspond to the relevant components of the non-parametric term hg. Let also T 

denote the relevant sub-matrix of Q corresponding to 7 = (7i, ■••,7G)- Then, one could use 

the quadratic form (71, ...,7(j)r~^(7]^, ...J'JQ)'^ to conduct a joint test on the null hypotheses 

given hy Ho : 7^ = 0, g = 1, ...,G. Note that the tests for "overall" significance or "hnearity" 

are done in the above setup by choosing the last (m -I- 3) and (m + 2) elements of ipg 

respectively. A testing procedure that is more in the spirit of Gray (1994) uses {Ag+XnKg)~^ 

and (Ay + XnKy)~^ in (11) instead of Vg and Vy respectively. Under the null hypothesis, the 

modified Wald test statistic would then have an asymptotic distribution of 

S=l    j 

where the (pj are independent standard normal random variables, and the A^/s are the 

eigenvalues of the matrix \imA^^.^{A^^.^ + XK)~^, for the g*'^ outcome. The arguments 

that lead to this form are given in Gray (1994) for a single outcome.   The extensions to 



multiple margins are straightforward. Note that the use of penahzed B-sphnes, as opposed 

to fully nonparametric smoothers such as smoothing splines, makes the computation of the 

\g/s possible. 

A hnear contrast could be constructed to test a group of parameters (e.g. all parame- 

ters to a spline term on each margin) across outcomes. For example, one could test the 

hypothesis that 7i = •■• = 7G = 7- One could then estimate the common 7 by using 

a linear combination of the 7g's in a way that takes the appropriate variances-covariance 

matrix into account. UnUke the tests discussed in Wei, Lin and Weissfeld (1989), where one 

is concerned with a single parameter from each margin, spline terms usually involve multiple 

parameters and the multicoUinearity among them should be taken into account in taking 

the Hnear combinations via the off-diagonal covariance terms. Trends in regression effects 

across margins could also be examined along the lines of Wei, Lin and Weissfeld (1989) via 

sequential multiple testing procedures as in Wei and Stram (1988). 

3.3    Choice of smoothing parameters,  degrees of freedom,  and 
placement of knots 

In the above setup, we assume that the amount of smoothing (i.e., the value of the smoothing 

parameter) is fixed by the analyst via prior knowledge or through a grid search. It is also 

possible that one could develop automatic procedures for selecting the smoothing parameters 

by using criteria such as cross validation. While this could lead to optimal estimation of the 

functional forms, its implications for hypothesis testing are not obvious. Operationally, one 

specifies the degrees of freedom per a non-parametric term and the corresponding value of 

smoothing parameter is then calculated. As a general operating guide, we use a relatively 

small number of degrees of freedom (Gray, 1994). The number of the knots that determine 

the B-spline basis functions are generally set to be at least twice the number of the degrees 

10 



of freedom in order to avoid wild fluctuation in the smooth function estimates, and are 

usually set to be between 10 and 15, per outcome. We will discuss the potential effects of 

various choices of the number of knots in our simulation studies. In this paper, we follow 

Gray (1994) in putting the knots at locations that yield approximately equal numbers of 

failure observations between knots. The calculation of degrees of freedom is analogous to 

that given in Gray (1994) and Wei, Lin and Weissfeld (1989). For example, to test whether 

all parameters in a spline model are equivalent across G outcomes, we use E^=i dfg, where 

df, = trace{lim^^iy|^(^!;^|^ + A,^,)-^ . 

4    Simulation Study 

Extensive simulation studies were conducted to examine the performances of the proposed 

procedures for conducting simultaneous inference on several time-to-event outcomes. We 

focused on the bivariate case, where two time-to-event outcomes are considered under various 

levels of dependence. To generate data, the family of bivariate exponential distributions of 

Gumbel (1960) was used. Consider two marginal distributions, say Fi and F2, from the 

univariate exponential with hazard rates given by exp(/5iZ) and exp{(52Z), respectively. 

Then, the distribution function of the bivariate exponential distribution is of the form 

F{xuX2) = F,{x,)F2{x2)[l + e{l - Fi(xi)}{l - F2{x2)}] . 

The quantity 6/4. measures the correlation between the two event times, where -1 <9 <1. 

In the above models, Z denotes any vector of covariates that may include binary indicators, 

or covariate effects that assume various functional forms. 

In the simulations that test for overall significance, we set the covariate values in the 

two margins to be equal. Censoring indicators were generated independently using uniform 

11 



distributions gauged to depict various percentages of censoring (30%, 50%). Empirical sizes 

of the spline based tests, based on 2000 runs were examined under various specifications of 

sample sizes (n = 200,300,400), degrees of freedom {df = 3,5), number of knots (10,15,20) 

and levels of dependence between the margins (a = 0.5,1.0). Note that the degree of 

correlation between the two outcomes is given by a/4 and a = 1 the maximum correlation 

allowed by the bivariate model of Gumbel (1960). 

Table 1 gives results from simulation with low levels of dependence (a = 0.5) between 

the outcomes. The results indicate that the empirical size is reasonably close to the corre- 

sponding nominal values only when the sample size is at least 200 per margin. Based on 

these simulation results and similar observations in Gray (1994), it would be advisable to 

use a smoother that has relatively small number of degrees of freedom, with number of knots 

not exceeding 15 for most practical applications. 

(Table 1 around here) 

Table 2 gives results from the simulation with high levels of dependence (a = 1.0) between 

the outcomes. Here, due to the added level of dependence between the margins, the empirical 

sizes for n = 200 was still unacceptably high (results not shown). But, the empirical sizes 

for n = 300,400 give reasonable results. 

(Table 2 around here) 

5    Example: The NSABP-BCPT Data 

As an illustration of the proposed methods, we present results from a detailed analysis of 

data from the Breast Cancer Prevention Trial, hereafter refered to as BCPT, (Fisher et al, 

1996). The BCPT was initiated in 1992 enrolling 13388 women that were at increased risk 

12 



for breast cancer due to their relatively old age (>60 years of age), relatively high 5-year 

predicted risk for breast cancer (a risk of at least 1.66% for those 35-59 years of age) and 

history of lobular carcinoma in situ. Subjects were then randomly assigned to placebo or 

treatment groups (6707 subjects into a placebo group and 6681 subjects receiving 20mg/day 

of tamoxifen for up to 5 years). The main aim was to examine the effectiveness of tamoxifen 

in preventing the possible occurences of invasive breast cancer in high-risk women. Data 

was also collected on other outcomes (some of them unwanted adverse side effects) such 

as invasive endometrial cancer, ischemic heart disease, transient ischemic attack, deep vein 

thrombosis and pulmonary embolism. 

Analysis of data from the BCPT has shown (Fisher et al, 1998) that there was a 49% 

reduction in the risk of invasive breast cancer in those high risk women that received ta- 

moxifen treatment (of up to five years) compared to those that received placebo. But, the 

benefits of tamoxifen were tempered by adverse side effects that significantly increased the 

risk of endometrial cancer, deep vein thrombosis, pulomanry embolism and some other car- 

diac effects. In fact, the issue of whether the benefits of tamoxifen outweighs the potential 

risk was controversial enough that the NCI sponsored a workshop on the subject in July, 

1998, leading a risk-benefit analysis as reported in Gail et al. (1999). 

The results indicate that age and baseline predicted risks for breast cancer play a signif- 

cant role in determining whether the benefits of tamoxifen outweigh the associated risks. In 

this paper, we use the new developed techniques to simultaneously analyze several outcomes 

in a way that allows for risks that may not be constant across factors such as age. We focus 

on the invasive breast cancer (IBC), ischemic heart disease (IHD) and endometrial cancer 

(ENDO) as our outcomes of interest. The primary covariates of interest were treatment 

(TRT, placebo vs. tamoxifen), age at time of entry (AGE, in years), 5 year breast cancer 

risk at time of entry (based on a multivariate logistic model of Gail et al. (1989)) (PR5YR), 

13 



lobular carcinoma in situ (LCIS) and atypical hyperplasia of the breast (ATYPH, history 

at entry). The two continuous covariates that could be modeled using the spline approach, 

in order to examine non-linearity in their effects, were age and the five-year breast cancer 

probabihty from the Gail model. 

The results from the marginal models on each of the three outcomes are given in Table 3 

and the corresponding smooth function estimates for AGE and PR5YR are given in Figures 

1-3. The results from the marginal models indicate that use of tamoxifen is associated 

with reduced risk of invasive of breast cancer (p < 0.01), but it was also associated with 

significantly increased risk of endometrial cancer. The increased risk in ischemic heart disease 

appeared to be marginal and not statistically significant. Age of the subjects appeared to 

be positively associated only with ischemic heart disease, but this association appeared to 

be linear (Figure 2). On the other hand, the Syr probability of breast cancer (as estimated 

form Gail model) was non-linearly associated with onset of invasive breast cancer. Here, the 

estimated curve (Figure 1) indicates an initial rise in risk up to 6-7 units for the risk score 

with a decline in risk starting at about 10 units. The test for non-linearity was marginally 

significant indicating that a simple linear term may not suffice to control for this variable. 

(Table 3 around here) 

(Figures 1-3 around here) 

The results from two bivariate models that simultineously model invasive breast cancer 

with ischemic heart disease and endometrial cancer are given in Table 4. The results indicate 

that the benefits of tamoxifen as a preventive agent significantly outweighs the side effect of 

increased risk in ischemic heart disease. On the other hand, the significant increased risk in 

endometrial cancer that is associated with the use of tamoxifen warrants a closer look since it 

appears to wash out its benefit of reducing the risk of breast cancer. However, these results 

should be interpreted cautiously due to the small number of events in the data set.   The 
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results also indicate a strong linear effect of age in the bivariate model for invasive breast 

cancer and ischemic heart disease. Additionally, PR5YR appears to have a strong non-linear 

effect in both bivariate models, indicating that it should be modeled as a non-linear term. 

(Table 4 around here) 

6    Discussion 

The methods proposed here have the advantage of being able to estimate a relatively re- 

alistic functional form for the covariate effects of interest, while enabling formal inference 

on the overall significance or adequacy of a certain parametric form (e.g. linearity) across 

several time-to-event outcomes. This is made possible through the use of penalized B-splines 

that are known to offer an attaractive compromise between fully non-parametric regression 

smoothers such as smoothing splines and flexible, but inherently parametric, techniques such 

as regression spHnes (Hastie and Tibshirani (1990), Gray (1994)). 

In this paper, we have introduced a method for conducting simultaneous inference across 

several outcomes by extending the methods of Gray (1994) and Wei, Lin and Weissfeld 

(1989). The results from the analysis of the breast cancer data demonstrate its immediate 

usefulness in health related research. The simulated studies demonstrate that the asymptotic 

inferential procedures are reliable in finite sample settings and also provide rough guidehnes 

on how to select realistic values for the degrees of freedom (hence smoothing parameters) 

and number and location of knots. 

There are many open areas of research that would extend the methods in this paper, some 

of which are currently active areas of reasearch for our group. Some of the most important 

areas of research include dealing with proportionalty of hazards, diagnostic measures in the 
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multivariate setting, testing for trends in some parametric but monotonic subclass of the 

general spline approach (linearity has been explored here) and a more in depth examination 

of the issue of proportionaHty of hazards. A more general class of models that is based on 

the notion of pseudospUnes as in Hastie (1996) is currently being developed by our group 

and results will be reported elsewhere. In this class of models, examination of adequacy of 

increasingly complex forms of polynomials would be natural due to the general structure of 

orthogonal-polynomial based pseudosplines, as opposed to the penalized B-splines discussed 

in this paper. 
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FIGURE LEGENDS: 

1. Spline based estimates of the log hazard ratio for breast cancer as functions of age and 

five year probability of breast cancer 

2. Spline based estimates of the log hazard ratio for ischemic heart disease as functions 

of age and five year probability of breast cancer 

3. Spline based estimates of the log hazard ratio for endometrial cancer as functions of 

age and five year probability of breast cancer 
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Table 1:  Empirical sizes of robust inference on marginally correlated (a = 0.5) bivariate 

time-to-event outcomes 

n = 200 n = 300 
Censoring Deg. of Number Nominal level Nominal level 
Prob. freedom of knots 0.01 0.05 0.10 0.01 0.05 0.10 

0.3 3 10 0.012 0.038 0.069 0.018 0.055 0.092 
15 0.022 0.070 0.121 0.029 0.079 0.130 
20 0.047 0.112 0.167 0.035 0.084 0.134 

5 10 0.030 0.068 0.114 0.022 0.071 0.121 
15 0.052 0.129 0.184 0.027 0.089 0.146 
20 0.103 0.200 0.270 0.051 0.137 0.206 

0.5 3 10 0.013 0.051 0.096 0.013 0.051 0.089 
15 0.032 0.098 0.151 0.023 0.073 0.130 

c 20 0.074 0.163 0.238 0.041 0.120 0.185 

5 10 0.016 0.042 0.081 0.008 0.031 0.061 
15 0.029 0.080 0.124 0.015 0.046 0.083 
20 0.068 0.152 0.216 0.035 0.078 0.123 
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Table 2: Empirical sizes of robust inference on moderatelyy correlated {a = 1.0) bivariate 

time-to-event outcomes 

n = 300 n=-400 
Censoring Deg. of Number Nominal level Nominal level 
Prob. freedom of knots 0.01 0.05 0.10 0.01 0.05 0.10 

0.3 3 10 0.015 0.062 0.122 0.009 0.037 0.076 
15 0.033 0.092 0.156 0.012 0.051 0.086 
20 0.056 0.140 0.210 0.016 0.061 0.096 

5 10 0.028 0.085 0.144 0.012 0.045 0.081 
15 0.048 0.119 0.174 0.016 0.066 0.112 
20 0.078 0.166 0.237 0.024 0.073 0.131 

0.5 3 10 0.022 0.085 0.172 0.004 0.025 0.051 
15 0.044 0.125 0.206 0.007 0.030 0.057 

( 20 0.066 0.171 0.263 0.010 0.049 0.086 

5 10 0.013 0.052 0.095 0.024 0.077 0.119 
15 0.023 0.078 0.136 0.029 0.086 0.156 
20 0.040 0.123 0.198 0.040 0.096 0.170 
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Table 3: Marginal Proportional Hazards Models on Breast Cancer, Ischemic Heart Disease 

and Endometrial Cancer 

Outcome Covariate Estimate Test Statistic df P-value 

Invasive TRT -0.69 28.08 1 <0.01 
Breast LCIS 0.19 0.40 1 0.53 
Cancer AGE (overall) 2.89 4 0.61 

AGE (Linearity) 2.78 3 0.44 
PR5YR (overall) 17.26 4 <0.01 

PR5YR (Linearity) 6.94 3 0.05 

Ischemic TRT 0.13 0.59 1 0.44 
Heart LCIS -0.95 2.00 1 0.16 
Disease AGE (overall) 73.3 3.99 <0.01 

AGE (Linearity) 3.54 3 0.30 
PR5YR (overall) 5.33 4 0.24 

PR5YR (Linearity) 2.96 3 0.40 

Endometrial TRT 0.88 8.23 1 <0.01 
Cancer LCIS 0.60 0.32 1 0.57 

AGE (overall) 4.32 3.99 0.36 
AGE (Linearity) 3.84 3 0.26 
PR5YR (overall) 5.19 4 0.25 

PR5YR (Linearity) 2.50 3 0.50 
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Table 4: Bivariate Proportional Hazards Models on Breast Cancer, Ischemic Heart Disease 

and Endometrial Cancer 

Outcome Covariate Test Statistic df P-value 

IBC TRT 28.92 2 <0.01 
and LCIS 2.24 1.97 0.32 
IHD AGE (overall) 419.50 8 <0.01 

AGE (Linearity) 5.61 6 0.48 
PR5YR (overall) 24.80 8 <0.01 

PR5YR (Linearity) 10.93 6 0.07 

IBC TRT 36.57 2 <0.01 
and LCIS 0.44 2 0.62 
ENDO AGE (overall) 7.96 8 0.44 

AGE (Linearity) 7.29 6 0.27 
PR5YR (overall) 27.26 8 <0.01 

PR5YR (Linearity) 13.75 6 0.02 
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