

AFRL-IF-RS-TR-2003-110
Final Technical Report
May 2003

DEFACTO: A DESIGN ENVIRONMENT FOR
ADAPTIVE COMPUTING TECHNOLOGY

University of Southern California

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-110 has been reviewed and is approved for publication.

APPROVED:
MARTIN J. WALTER
Project Engineer

 FOR THE DIRECTOR:
JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MAY 2003

3. REPORT TYPE AND DATES COVERED
Final Apr 98 – Jun 02

4. TITLE AND SUBTITLE
DEFACTO: A DESIGN ENVIRONMENT FOR ADAPTIVE COMPUTING
TECHNOLOGY

6. AUTHOR(S)
Mary Hall and Pedro Diniz

5. FUNDING NUMBERS
C - F30602-98-2-0113
PE - 62301E
PR - D002
TA - TC
WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
4676 Admiralty Way
Marina Del Rey California 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-110

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Martin J. Walter/IFTC/(315) 330-4102/ Martin.Walter@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This report describes the activities of the DEFACTO project, a Design Environment for Adaptive Computing Technology
funded under the DARPA Adaptive Computing Systems and Just-In-Time-Hardware programs. The goal of DEFACTO
is to derive system-level implementations of mappings to FPGA-based systems, from a high-level algorithmic
description in standard C. We have demonstrated synthesis time reductions to 100-10000X with the automated design
space exploration algorithm. The current reduction in design time, including human effort, has been approximately 40-
60X for two case studies, SLD from Sandia ATR and Sobel edge detection. We have demonstrated end-to-end
mapping on the Annapolis Wildstar board for both examples, with no minimal intervention, at DarpaTech on 31 July
2002.

15. NUMBER OF PAGES
35

14. SUBJECT TERMS
FPGAs, Design Tools, Parallelizing Compliers, Behavioral Synthesis

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

ii

Table of Contents

Abstract ... 1
I. Introduction ... 1
II. Key Results .. 2
III. Infrastructure... 25
IV. Additional Activities... 28
V. Technology Transfer .. 29
VI. Summary... 30
Publications (in chronological order).. 31

List of Figures

Figure 1: Input and output sample Images for the automatically mapped Sobel. 2
Figure 2: Manual design space exploration.. 3
Figure 3: Our approach to automatic design space exploration. 4
Figure 4-7: Balance, execution time and area for FIR, MM codes. ………………..… 6
Figure 8-10: Balance, execution time and area for JAC, PAT and SOBEL codes. …...7
Figure 11: Example of usage of tapped delay lines.. 9
Figure 12: Execution time breakdown for tested applications. 12
Figure 13: Comparison of custom layouts ... 16
Figure 14: Memory access times versus unroll amounts. ... 16
Figure 15: Speedups. ... 18
Figure 16: Machine vision example. .. 23
Figure 17: The DEFACTO design flow. .. 26

List of Tables

Table 1: Speedup results for pipelined and non-pipelined design using DSE. 8
Table 2: Compilation and synthesis results. ... 10
Table 3: Data reuse analysis results. .. 10
Table 4: Performance metrics of simulated target designs... 11
Table 5: Synthesis and timing results... 13
Table 6: Synthesis metrics for channel controller. .. 14
Table 7: Performance expectation for hand designs .. 15
Table 8: Size breakdown for the various kernel data reorganization engines.............. 20
Table 9: Implementation metrics for selected set of data reorganization patterns. 20
Table 10: Stage S1 results for different unroll factors.. 24
Table 11: Stage S2 results for different unroll factors.. 24
Table 12: Stage S3 results for different unroll factors.. 24

1

Abstract
This report describes the activities of the DEFACTO project, a Design Environment For
Adaptive Computing TechnOlogy, funded under the DARPA Adaptive Computing
Systems and Just-In-Time-Hardware programs. The goal of DEFACTO is to derive
system-level implementations of mappings to FPGA-based systems, from a high-level
algorithmic description in standard C. We have demonstrated synthesis time reductions
of 100-10000X with the automated design space exploration algorithm. The current
reduction in design time, including human effort, has been approximately 40-60X for two
case studies, SLD from Sandia ATR and Sobel edge detection. We have demonstrated
end-to-end mapping on the Annapolis WildstarTM board for both examples, with no
manual intervention, at DarpaTech on July 31, 2002.

I. Introduction

The DEFACTO project is a high-level design tool for developing application-specific
hardware in FPGA-based systems through a collaboration between parallelizing compiler
technology and high-level hardware synthesis. The original goal of the project was to
derive system-level designs in an end-to-end open design environment. Estimation and
module generators were considered essential to reducing the synthesis time, to be used in
an automated design space exploration algorithm. The design environment was to be
retargetable, so that multiple input languages and multiple hardware platforms were
supported. We anticipated that these techniques would reduce synthesis time by 10X,
and overall design time, including human effort, by several person-years.

We planned several demonstrations. First, an end-to-end demonstration of the SLD code
from Sandia ATR, specified in C and mapped to the Annapolis WildstarTM board. Later,
we would show retargetability of the system by starting with a MATLABTM frontend, and
subsequently, mapping to the SLAAC 1-V board.

This report describes the accomplishments of the DEFACTO project. In terms of
reducing synthesis time, we have exceeded our goal of 10X, demonstrating reductions of
100-10000X with the automated design space exploration algorithm. The current
reduction in design time, including human effort, has been approximately 40-60X for two
case studies, SLD from Sandia ATR and Sobel edge detection. We have demonstrated
end-to-end mapping on the Annapolis Mirosystems Inc.’s WildstarTM board for both
examples, with no manual intervention, at DarpaTech on July 31, 2002. The end-to-end
demonstrations use the external host, multiple memories and a single FPGA. We have
also demonstrated in simulation automatically-generated multi-FPGA designs, and have
mapped a multi-FPGA design for the SLD code from Sandia ATR to the WildstarTM
board with modest manual intervention. We were redirected by DARPA to limit the
scope of the project, and eliminate the MATLABTM frontend and SLAAC 1V
demonstrations, so this work was not completed.

The DEFACTO project will continue under NSF funding, and we plan to complete
automatically-generated multi-FPGA designs to the WildstarTM board in the near term, as

2

well as explore algorithms to partition computation and data across multiple FPGAs and
memories.

In the remainder of this report, we highlight the key technical results from DEFACTO in
the next section. These results are discussed in more depth in the five publications that
accompany this report. We then discuss the complex infrastructure developed for this
project in Section III. In Section IV, we present subcontract activities as well as auxiliary
ISI activities. Section V presents technology transfer activities. We conclude with a
summary and a list of publications supported by this effort.

II. Key Results

1. Automated Mapping from C to Annapolis WildStarTM Board

We have developed a complete compilation and synthesis infrastructure that successfully
maps applications written in sequential C to the Annapolis Microsystems Inc.’s FPGA-
based WildStarTM board. This tool flow is fully integrated and automated. We have
developed a suite of compiler analysis and transformations in SUIF that are specific to
adaptive computing, as well as auxiliary tools to derive an integrated design flow.

Input Image 256x256 8-bit gray-scale Output Image 256x256 8 -bit gray-scale
Figure 1: Input and output sample Images for the automatically mapped Sobel

computation on the WildStarTM board.

Using the current DEFACTO compilation system we have automatically mapped the
Sobel Edge Detection application code written on C to the WildStarTM board. This
mapping takes a total of 42 minutes, 40 of which accounted for by the logic synthesis and
Place&Route of the FPGA design. The remaining 2 minutes are spent by the DEFACTO
compiler performing internal analysis and intermediate code generation. The automatic
mapping is attained in a single compilation cycle and is a correct implementation of the

3

original Sobel computation. For comparison purposes, the same design was manually
mapped to the same board in about 2 weeks. Although the automated mapping using the
DEFACTO compiler is about 59% slower than the manual mapping, it is achieved in 42
minutes, a roughly two orders of magnitude reduction in design time. This modest
increase in execution time is a small price to pay for a fully automated design approach.
Figure 1 below depicts sample input and output images using the automated mapping on
the WildStarTM board. For this particular mapping, the compiler uses 2 memories.

2. Automated Design Space Exploration

A significant contribution to design time for FPGA systems is the cost of design space
exploration, which is the iterative process of selecting a design among a set of candidates.
The standard approach to design space exploration is shown in Figure 2 below. The
designer specifies the implementation in structural VHDL and synthesizes the design.
This process is iterative in that the design may not be valid, and even if it is, may not
meet the designer’s area and speed requirements. Each design iteration usually requires a
minimum of a few hours and possibly as much as a week.

Logic Synthesis /
Place&Route

Design Specification (Low-level VHDL)

Validation / Evaluation

Correct?
Good

design?

Design
Modification

Figure 2: Manual design space exploration.

In our approach, shown in Figure 3, we have reduced design time in several ways: (1) the
designer specifies a much higher-level algorithmic specification; (2) validation is
guaranteed, assuming tools work correctly; and, (3) we avoid numerous iterations of
place-and-route, which is the costliest component of synthesis. The automated algorithm
relies on behavioral synthesis, which is one of the distinguishing features of our system
as compared to other ACS programs. It quickly provides a rough estimate of area and
performance, which can be used to guide the compiler in selecting a design without

4

requiring full place-and-route. It also derives structural VHDL, by performing
scheduling, allocation and binding of resources, a process that other ACS programs are
doing manually or are building into their tools.

 Algorithm (C/Fortran)

Compiler Optimizations (SUIF)
• Unroll and Jam
• Scalar Replacement
• Custom Data Layout

SUIF2VHDL Translation

Behavioral Synthesis Estimation

Unroll Factor Selection

Logic Synthesis / Place&Route

Figure 3: Our approach to automatic design space exploration.

The automated design space exploration algorithm uses a collection of compilation
techniques to exploit the functional and memory parallelism in a computation, as well as
exploit reuse of data on chip, to avoid costly accesses to external memory, whenever
possible. Unroll-and-jam, which is a loop nest optimization whereby outer loops are
unrolled and resulting inner loop bodies are fused, exposes parallel operations and
memory accesses to behavioral synthesis optimizations and scheduling. Scalar
replacement replaces accesses to array variables with scalar temporaries, to signal to
behavioral synthesis that variables can be placed in registers, avoiding off-chip accesses
to memory. Custom data layout, described in Section II.4.2 below, lays out data in
multiple memories such that memory parallelism can be maximized.

The algorithm employs a compiler-derived metric called balance to determine unroll
factors for loops in a nest, such that the computation rate on the FPGA and the fetch rate
to external memories are matched. Balance is important, because it allows us to derive
the most space-efficient design among the set of designs that have the best performance.
Conserving space has two direct benefits. First, it frees up FPGA hardware that can then
be used for other computations. Second, a less complex design can achieve a faster clock
rate, due to simpler routing. Thus, it may actually yield better performance than a larger
design. We also use another metric, called the memory saturation point, to define a
solution where the rate of memory accesses matches or exceeds the bandwidth of the
architecture platform.

5

We have demonstrated this approach on the following five multimedia kernels: FIR filter,
Matrix multiply, Sobel edge detection, String pattern matching, Jacobi 4-point stencil
relaxation. The compiler automatically derives the best design for a single FPGA with
multiple memories (see the next section) among a set of candidates.

The experimental results are shown in Figures 4 through 10. The graphs show a large
number of points in the design space, substantially more than are searched by our
algorithm, to highlight the relationship between unroll factors and metrics of interest.
The first set of results in Figures 5 through 8 plots balance, execution cycles and design
area in the target FPGA as a function of unroll factors for the inner and outer loops of
FIR and MM. Although MM is a 3-deep loop nest, we only consider unroll factors for
the two outermost loops, since through loop-invariant code motion the compiler has
eliminated all memory accesses in the innermost loop. The graphs in the first two
columns have as their x-axis unroll factors for the inner loop, and each curve represents a
specific unroll factor for the outer loop.

For FIR and MM, we have plotted the results for pipelined and non-pipelined memory
accesses to observe the impact of memory access costs on the balance metric and
consequently in the selected designs. In all plots, a squared box indicates the design
selected by our search algorithm. For pipelined memory accesses, we assume a read and
write latency of 1 cycle. For non-pipelined memory accesses, we assume a read latency
of 7 cycles and a write latency of 3 cycles, which are the latencies for the Annapolis
WildStarTM board. In practice, memory latency is somewhere in between these two as
some but not all memory accesses can be fully pipelined. In all results we are assuming 4
memories, which is the number of external memories that are connected to each of the
FPGAs in the Annapolis WildStarTM board. In these plots, a design is balanced for an
unrolling factor when the y-axis value is 1.0. Data points above the y-axis value of 1.0
indicate compute-bound designs whereas points with the y-axis value below 1.0 indicate
memory-bound designs. A compute-bound design suggests that more resources should be
devoted to speeding up the computation component of the design, typically by unrolling
and consuming more resources for computation. A memory-bound design suggests that
less resources should be devoted to computation as functional units that implement the
computation are idle waiting for data.

The design area graphs represent space consumed (using a log scale) on the target Xilinx
Virtex 1000 FPGAs for each of the unrolling factors. A vertical line indicates the
maximum device capacity. All designs to the right side of this line are therefore
unrealizable.

6

UnobFuof I
UnnllFuarJ
liiinlFHor4

l'iirjlFAacirl&

'T.
(a) Balance

I
I.

I~l vkflcd (kagn

(b) Execution Time (c) Area

Figure 4: Balance, Execution Time £ind Area for Non-pipelined FIR.

I OuUf Loop Unroll Fttuf 1
I Oita Loop llqnjil FiClM 2
tOiUl Loap LIODII Ficln l

+ Oun UNip linroll FKW 16
tMH Loop UBDII FartiX J^
OHcrlAOp Urmll FKUH bd

,

:\

•-• OHT L«ii ITimlL FaOar 1
■-a OBBloqi Uorvll F*:tjr J
t-^COETLxfi IIDIDII FICIV4
^-AOm-Uqi UDDII Fnat &
-1—t CHFf LAf Uarori Faai K

Oaali<rf\laaA\Ftati^

iV__ 1 sdcOdJ dif l£B

;V^ V^. :
0 1^4 fl 16 3i

•** I.

(3

Q tflrcwl^kii^

.t

(a) Balance (b) Execution Time (c) Area

Figure 5: Balance, Execution Cycles and Area for Pipelined FIR.

■ OH Lix^ UBTOQ FuHf 2

f Otfa LfnTi L^nU Faka]«

I I ndcdcd dcBpi

•-•OKTidvLia mlll^w t
B-fl OWD tjvfi Ui *lacn:
■-^OmrrUiriiUB [DQPXKI-]

^^OaaCfCfilJi iQlaiMrH
J—f. Onto LOT I'll njiiii>ni le

QimLwpUa mllF»cia??

muqun

■
Q idcncddco^

1

H j*
•' * - • •

(c) Area (a) Balance (b) Execution Time

Figure 6: Balance, Execution Cycles and Area for Non-pipelined MM.

Iina Lnop UHQU FXHX

(a) Balance

.

:\

«-«Odtf lof limvll ■«■[■ 1
■-■ IhB-Loq] Unnill PiAr ?
4-« On? lacf Uordl Ft! 4
&-A OK-Uqi IhBDll Fnr A
■t—l-OW-LrcfilluDflFnar \6

■ OmaLOqiLlirQllFicKi.l^

^=S:t

1 sdcdcddBi^

■"" "^ ■ ■ -T
Oil* s 14

(b) Execution Time

B

I I KECCIHI ikSlfD

(c) Area

Figure 7: Balance, Execution Cycles and Area for Pipelined MM-

7

With pipelined memory accesses, there is a trend towards compute-bound designs due to
low memory latency. Without pipelining, memory latency becomes more of a bottleneck
leading, in the case of FIR, to designs that are always memory bound, while the non-
pipelined MM exhibits compute-bound and balanced designs.

The second set of results, in Figures 8 through 10, show performance of the remaining
three applications, JAC, PAT and SOBEL. In these figures, we present, as before,
balance, cycles and area as a function of unroll factors, but only for pipelined memory
accesses due to space limitations.

We make several observations about the results. First, we see that Balance is monotonic,
increasing until it reaches a saturation point, and then decreasing. The execution time is
also monotonically nonincreasing. In all programs, our algorithm selects a design that is
close to best in terms of performance, but uses relatively small unroll factors. Among the

1 k

•-#{>» U(^ (.nidi F*;ta 1

^-^ OHH LAP LUKJI Fmt'
^^ OWi Lnv Inull Ivmt a
4—f CUBS LJK^ Lhic^l fnit 14

^ KkdDddHip

a -rrdtt^^^^^—
D 1 7 fl It

•
r~| ^ckcKd den^

™ ■pn

B' ••
*

■ *

: ■

•

 ^ 1 1

Sf«4ki-Kjcdi

(c) Area (b) Execution Time

Figure 8: Balance, Execution Time and Area for Pipelined JAC.

(a) Balance

I™-
I-™-

UBIDII lici' 1
l.liRillFiruir2
liDrcJE F^ur .1
U>ndlFH«4
LiimllFsliirb
llBroD ?iail i
Uonril FKIOT I?
UDIII'I limiT It
UDiullFEUr2d
L]Drcd]1vUr4a

(b) Execution Time

' " * ' □idoatdfcngi

• . r * •

(c) Area

Figure 9: Balance, Execution Cycles and Area for Pipelined PAT.

Oiilci Lwp Umll FKKV I
■-« [hria Lmp UHDII fKha 7

OiUr Lwip VMM I^Khf 4
OuW Loop Uonll FKVf 8
Oula Lnv*^"^!'■'*>'1^
CUd Loop LADII FUor .12
one Loop Umn FKIV ti

LorvVvqllltevI

.OmalaarVtnarKvt

■
■m tpacc

f~] Kkafd ikijfii

••

0 '•• ••■ • V- •V

■■A0 Lwp UrrofI F

Execution Time
(rBxikrunBii

(c) Area

Figure 10: Balance, Execution Time and Area for Pipelined SOBEL.

8

designs with comparable performance, in all cases our algorithm selected the design that
consumes the smallest amount of space. As a result, we have shown that our approach
meets our optimization goals. In most cases, the most balanced design is selected by the
algorithm. When a less balanced design is selected, it is either because the more
balanced design is before a saturation point (as for non-pipelined FIR), or is too large to
fit on the FPGA (as for pipelined MM).

Table 1 below presents the speedup results of the selected design for each kernel as
compared to the baseline, for both pipelined and non-pipelined designs. The baseline is
the loop nest with no unrolling (unroll factor is 1 for all loops) but including all other
applicable code transformations.

Kernel Non-Pipelined Pipelined
FIR 7.67 17.26
MM 4.55 13.36
JAC 3.87 5.56
PAT 7.53 34.61

SOBEL 4.01 3.90
Table 1: Speedup results for pipelined and non-pipelined design using DSE.

Although in these graphs we present a very large number of design points, the algorithm
searches only a tiny fraction of those displayed. Instead, the algorithm uses the pruning
heuristics based on the saturation point and balance. This reveals the effectiveness of the
algorithm as it finds the best design point having only explored a small fraction, only
0.3% of the design space consisting of all possible unroll factors for each loop. For larger
spaces, we expect the number of points searched relative to the size to be even smaller.

To speed up design space exploration, our approach relies on estimates from behavioral
synthesis rather than going through the lengthy process of fully synthesizing the design,
which can be anywhere from 10 to 10,000 times slower for this set of designs. To
determine the gap between the behavioral synthesis estimates and fully synthesized
designs, we ran logic synthesis and place-and-route to derive implementations for a few
selected design points in the design space for each of the applications. We synthesized
the baseline design, the selected designs for both pipelined and non-pipelined versions,
and a few additional unroll factors beyond the selected design.

In all cases, the number of clock cycles remains the same from behavioral synthesis to
implemented design. However, the target clock rate can degrade for larger unroll factors
due to increased routing complexity. Similarly, space can also increase, slightly more
than linearly with the unroll factors. These factors, while present in the output of logic
synthesis and place-and-route, were negligible for most of the designs selected by our
algorithm. Clock rates degraded by less than 10% for almost all the selected designs as
compared with the baseline, and the speedups in terms of reduction in clock cycles more
than made up for this. In the case of FIR with pipelining, the clock degraded by 30%, but
it met the target clock of 40ns, and because the speedup was 17X, the performance
improvement was still significant. The space increases were sublinear as compared to the
unroll factors, but tended to be more space constrained for large designs than suggested
by the output of behavioral synthesis.

9

The very large designs that appear to have the highest performance according to
behavioral synthesis estimates show much more significant degradations in clock and
increases in space. In these cases, performance would be worse than designs with smaller
unroll factors. Our approach does not suffer from this potential problem because we
favor small unroll factors, and only increase the unrolling factor when there is a
significant reduction in execution cycles due to memory parallelism or instruction-level
parallelism.

Selecting the desired behavioral design requires less than 5 minutes for our system, and
then at most another 2 hours to fully synthesize the result. To produce a comparable
design by hand for Sandia ATR SLD required up to 2 months. Thus, this algorithm has
demonstrated several orders of magnitude improvement in design time. A more detailed
description of automated design space exploration can be found in reference [11].

3. Tapped Delay Line Analysis

As part of the DEFACTO project we developed a code transformation to exploit reuse of
data on chip and avoid accesses to external memory. The compiler generates VHDL
code with links to hardware modules that exploits that reuse by storing the data read from
memory in a hardware structure called tapped delay line. Figure 11 below illustrates the
use of tapped delay lines in an implementation of the Sobel edge detection algorithm as 3
sets of interconnected registers on the left hand side.

Figure 11: Example of usage of tapped delay lines.

Table 2 below presents characteristics for 3 kernels. For each of the kernel codes we
report on the number of source code lines for both the C input and the generated VHDL
(excluding comments and blank lines). We report the number of loop nests in each
application and the number of loops the compiler selected for hardware execution. For

10

the generated VHDL source code we report on the number of distinct components and
instances used. Finally we report on the compilation analysis and synthesis speed.

Table 2: Compilation and synthesis results.
 Source Code Metrics VHDL Code Metrics Analysis & Synthesis Time

Kernel Code
Lines

Loop
Nests

Loop
Hard

Code
Lines

Num
Comps

Num
Inst

Analyzes
Time

Emit
Time

Synthesis
Time

Sobel 80 3 1 2,340 39 134 < 1 sec < 1 sec 10 min
Pattern 98 4 1 2,445 32 111 < 1 sec < 1 sec 8 min.

ATR 300 5 3 4,400 38 386 < 1 sec < 1 sec 780 min.

Table 3 presents the results of the compiler analysis. For each kernel we report on the
number and length of the data queues the algorithm has identified and the unrolling factor
that has the lowest memory access metric.

Table 3: Data reuse analysis results.
Kernel Unrolled

Loops
Reuse
Vector

Data
Queues

Length
Queues

Data
Reuse

Mem
bandwidth

Sobel --- (x,y) = (0,1) 3 3 6 1.0
Pattern {i} (i) = (1) 2 16 31 0.5

ATR {i,j} (m,n) = (0,1) 2 32-by-32 2016 8.25

For the Sobel kernel the compiler recognizes the opportunities of two reuse directions.
The compiler implementation chooses the lowest memory access. As for Pattern the
analysis recognizes that unrolling loop j is highly profitable as the pat variable becomes
loop invariant. The resulting implementation should have a single queue of length 16 for
the str variable and another queue of the same length for the pat variable. Finally the ATR
application has 3 loops in which there is a substantial amount of reuse. We present only
the results for the unrolling of loop i and j, which reveals a maximum reuse for a 32-by-
32 queue for the mask variable which is loop invariant and a 32-by-32 queue for the img
variable. Unfortunately the design corresponding to the full unrolling of the two inner
loops is too large to fit on a single FPGA. Instead we partially unroll each of the two
inner loop by a factor of 16, therefore creating 16-by-16 data queues. This consumes less
FPGA resources but significantly increases the control complexity and therefore the
simulated execution time.

Table 4 shows the simulated performance results for the generated designs. It includes the
overall simulated clock speed, the number of flip-flops and latches used and the number
of LUTs and equivalent gates counts. For raw performance comparison we included the
number of execution cycles required to complete the entire loop nest computation of each
application. Finally we report on the area fraction used on the FPGA by the P&R tool.

11

Table 4: Performance metrics of simulated target designs.
Kernel Core

Datapath
Clock (MHz)

Global Design
Simulated

Clock (MHz)

Number
FF & Latch

Number
LUTs

Equiv.
Gates

Simulated
Execution

Cycles

Virtex1000
Area

Sobel 56.5 26.5 840 727 11,375 2,196,480 5%
Pattern 56.5 26.0 782 771 11,239 287 5%

ATR 52.5 25.7 9,163 9,649 145,759 182,272 55%

Table 4 reveals the three designs attain respectable clock rates for automatically derived
designs. Recall these designs were generated automatically by manually using the results
of the analysis with the library of code generation functions we have implemented using
generic, and simple, parameterized modules (e.g, adders, sub, comparators, multiplexors,
etc.). These results reveal the compiler is able to identify the opportunities for data reuse
and generate the data required to automatically generate complete VHDL design.
Because of their relative small size, the generated designs for Sobel and Pattern are
synthesized and routed fairly quickly. The design corresponding to the ATR application
uses 55% of a single FPGA resource and takes much longer to synthesize (even with
hierarchical P&R). We attribute this discrepancy to memory trashing effects.

The performance results (simulated clock rates) also reveal that the limiting factor is the
control datapath as the core datapaths are capable of much higher clock rates. Several
factors contribute to this. First the generality of the modules used. As an example our
memory access subunit is fairly generic as it can handle both SRAM and DRAM
modules. This clearly introduces latency in terms of clock cycles. Our interfaces allow
for the presence of multiple memory interface module for distinct memory banks with a
common pipelining control unit. Several other design aspects have not been described
here as our focus was the design of a compiler analysis algorithm to allow the automatic
generation of hardware implementations. We have not explored the trade-offs in the
design of the pipelining control unit and the possible refinements of pipelined memory
access unit. As such our simulation performance results can be improved by using control
units with more advanced features, which we will describe in subsequent sections of this
report.

4. Multi-Memory Designs

Each FPGA on the WildStarTM board has several external SRAM memory chips from/to
which it can read and write its data. A straightforward mapping based on a conventional
compilation approach would map all data to a single memory. To exploit the multiple
memories, and therefore increase the memory bandwidth of the FPGAs, we have
developed and automated several techniques, used to derive the results in the previous
sections.

4.1 Custom Memory Controllers
We have developed a code generation approach for handling the scheduling of external
memory accesses in a parameterized way and with application-specific knowledge. In

12

this approach, the compiler generates a customized memory controller for a particular
application, exploiting the ability to pipeline memory accesses in a streamed mode as
well as reduce the number of states in the memory controller. Our preliminary
experimental results reveal these transformations yield a substantial reduction in the
cycles for accessing memory in external memories, of great importance for FPGA-based
computing engines. We first describe the methodology used in these experiments and
then present the results obtained for three image processing kernel computations running
on a real FPGA-based computing board.

We have mapped three (3) computation kernels from C to VHDL using DEFACTO:
Sobel Edge Detection (SOBEL), a kernel from Sandia ATR, and MAZ, a multiply-
accumulate-zero kernel. Next, we have manually modified the memory channel interface
for the target architecture to allow the implementation of two distinct flavors of the
round-robin memory access scheduling strategy, namely naïve (N), pipelined(P), group
(G) and pipelined with grouping(P+G) scheduling. We then compare the performance
of the designs using the different strategies. This performance comparison was carried
out in a functional simulator, ModelSim, where we are able to extract more precise clock
cycle counts. We also confirmed the performance improvements via real executions on
the WildStar board. To exacerbate the problems of memory access scheduling, we
mapped all of the data onto a single memory module. This approach allowed us to
determine the severity of the memory scheduling issue. Techniques such as the custom
data layout for multiple memory banks as discussed below are orthogonal to this
scheduling approach.

We begin this discussion by first characterizing the execution of each of the kernels using
the default round-robin naive memory access scheduling strategy. Figure 12 below
presents a breakdown of the execution time for the steady state of the main computation
loop in each of these applications for a single memory bank implementation.

0% 20% 40% 60% 80% 100%

MAZ

ATR-8

ATR-4

SOBEL

A
pp

lic
at

io
ns

Percentage

Computation
Time

Memory Access
Latency

Scheduling
Oveherad

Figure 12: Execution time breakdown for tested applications.

13

As expected, and given that in these experiments memory accesses are blocking, the bulk
of the execution time (60% to 80%) is spent stalling on memory accesses. Approximately
8% to 9% is spent checking the status of the input/output FIFO queues.

Table 5 shows the performance results for all applications for the different scheduling
strategies. These results exclude the initial data loading and final data retrieval from the
board. We report the overall design size in terms of FPGA slices; the maximum allowed
clock rate for the design; the simulated execution time using a 25 MHz clock and the
speedup measured as the ratio of the execution time of each version with respect to the
computation using the naïve scheduling strategy.

Table 5 reveals that all designs are small (12.5% maximum FPGA occupancy) and
therefore exhibit good performance characteristics in terms of maximum attainable clock
rates. Table 5 also reveals the performance advantages of pipeline with an average
speedup of 1.9 over the four tested kernels. Group scheduling by itself yields modest
performance improvement with an average speedup of 1.1. When combined with
pipelined, group scheduling boosts the average speedup to 2.05. This improvement is
most noticeable for ATR-8 where the number of channels with the same input/output
behavior is the largest.

Table 5: Synthesis and timing results.

Kernel
Slices

(out of
12,288)

Max. Freq.
(MHz)

Simulation Time
(nsecs)

Speedup

N 1,144 30.1 1,312,020 1.00
P 1,061 31.5 738,540 1.78
G 1,160 31.7 1,312,140 1.00

SOBEL

P+G 1,068 31.6 697,660 1.88
N 1,968 25.9 120,040 1.00
P 1,980 25.6 66,600 1.82
G 1,974 33.9 102,280 1.17

ATR-4

P+G 1,984 26.9 59,600 2.00
N 2,771 25.9 188,440 1.00
P 2,707 25.9 71,840 2.62
G 2,718 30.8 163,440 1.15

ATR-8

P+G 2,730 25.9 69,480 2.71
N 1,027 30.4 85,760 1.00
P 1,191 36.2 62,360 1.38
G 1,226 31.5 78,680 1.09

MAZ

P+G 1,003 29.6 55,520 1.55

Table 6 shows the synthesis metrics for the synthesis of the channel controllers for each
design. Overall the more sophisticated group-scheduling controller has clock rates in the
100MHz range and therefore appears not to impact the critical path of the whole design.
By itself, the implementation of the group-scheduling controller requires no more than 21
additional slices than the simpler naïve controller does for a total a maximum of 75 slices
barely 5% of the designs.

14

Table 6: Synthesis metrics for channel controller (N: Naïve, P: Pipelined, G: Group
P+G: Pipelined with Grouping).

Applications CLBs Gates Clock Rate
(MHz)

N 29 381 140.1
P 25 333 130.3
G 35 431 87.5 SOBEL

P+G 35 448 134,7
N 35 458 127.3
P 42 568 125.0
G 40 531 105.2

ATR-4

P+G 46 635 120.7
N 54 679 106.2
P 74 937 82.2
G 57 758 77.9

ATR-8

P+G 75 1,010 69.4
N 30 383 120.5
P 34 450 112.8
G 36 450 115.6

MAZ

P+G 45 559 116.4

The experimental results, not surprisingly, reveal that pipelining techniques substantially
improve the overall design performance. The implementation of group-scheduling
techniques marginally increases the performance for the whole design with negligible
impact in terms of area and very little influence on the maximum clock rate.

While we are able to eliminate almost all the memory overhead by pipelining and
aggressive group scheduling there are several techniques that have been explored in other
contexts and could be explored for the context of FPGA-based designs, namely:

• Reducing the sharing of physical bus channels will reduce the memory latency.

• Assigning multiple memory modules to disjoint input array for concurrent
accesses.

• Aggressive pre-fetching and overlapping memory accesses with computations.

In this work we have focused exclusively on application-level techniques that impact the
design of the memory controller, rather than on architecture related approaches for
reducing memory latency. We focused on the scheduling of memory accesses within a
single computational task where memory accesses are statically scheduled. The
scheduling in the context of multiple tasks may require a more flexible run-time
scheduling strategy to minimize memory access contention. In the future we plan to
address the implementation of dynamic, run-time scheduling, where a schedule is setup
only at run-time rather than statically for both single and multiple tasks.

Given the trade-off between generality and performance, we have estimated the
performance gap between the currently automated applications in this empirical study
and what a designer could achieve exploiting the overlapping of computation in the core
datapath with the communication with external memory. In Table 7 we compare the
performance of the generated designs against an optimal solution where the memory

15

accesses are perfectly scheduled and are fully overlapped with the computation in a zero
latency scenario.

Table 7: Performance expectation for hand designs (P+G+O: Pipelined with
Grouping and Overlapping, OPT: Optimal Scheduling Design).

Kernel

Speedup

Kernel

Speedup

N 1.00 N 1.00
P+G 1.88 P+G 2.71

P+G+O 3.60 P+G+O 4.41

SOBEL

OPT 7.99

ATR-8

OPT 7.00
N 1.00 N 1.00

P+G 2.00 P+G 1.55
P+G+O 3.56 P+G+O 2.91

ATR-4

OPT 7.50

MAZ

OPT 6.48

While Table 7 reveals there is still a substantial performance gap between the
automatically generated codes and the possibly infeasible optimal version, the effort and
time investment for a hand design is still substantial, in particular for a novice
programmer. While our designs take a few seconds to generate and about 30 minutes to
synthesize and download onto the board, a hand design can take days if not weeks to
design and verify its correctness. This work is described in more detail in reference [8].

4.2 Custom Data Layout
To maximize parallelism of memory accesses, we have developed techniques for custom
data layout, whereby elements of an array are spread across multiple memories according
to their access patterns. In this way, we can potentially achieve the full external memory
bandwidth of the FPGA. An example of the data layout resulting from this approach for
Sobel edge detection, where the inner and outer loops are unrolled by a factor of 2, is
shown in Figure 13, below. As compared to a naïve layout, where only a single memory
is used, the custom layout can take full advantage of the four available memories (as is
possible on the WildstarTM). We also compare with modulo unrolling, a technique used
in the Raw compiler (another ACS program), where only the leading dimension of an
array is laid out across multiple memories. Our approach is more effective in the
presence of multi-loop code transformations. This work is distinguished from data layout
solutions designed to map well to cache-based architectures, such as that of the DARPA
DIS Adaptor project, in that in the latter, the emphasis is on eliminating conflict misses
from the cache. It is also distinguished from the large body of work on data partitioning
for large-scale multiprocessor systems, where the goal is to promote coarse-grain
parallelism and avoid communication (vs. increased instruction-level parallelism in our
approach).

16

M 0

M 1

M 2

M 3

N a iv e

M o d u lo -u n ro l l in g

C u s to m

 D a ta (2 D a r ra y) M e m o r ie s

Figure 13: Comparison of custom layout with naïve (single-memory) and modulo

unrolling.

The results of a study of the effectiveness of this technique for five multimedia
benchmarks (described in Section II.2 above), is shown in Figures 14. Figure 14 shows
the time (in cycles) spent accessing memory, for each of the three layout schemes as a
function of unroll factors for the loops in each application. With higher latencies, the
benefits of memory parallelism increase, so we conservatively assign a low memory
latency for both read and write of one cycle each. We assume all memory accesses are
pipelined.

Figure 14: Memory access times versus unroll amounts.

For both the FIR 1x4 case in Figure 14(a) and the PATTERN 1x4 case in Figure 14(d),
all three layout schemes perform approximately the same. This is due to the fact that the

(d) PATTERN
Lluroll PacNirs

(e) SOBEL

17

bulk of the memory accesses in the kernel are associated with multiple induction variable
(MIV) array accesses. Scalar replacement cannot eliminate these accesses without
further unrolling. The argument is the same for the 4x1case for both kernels as well.
There are slightly more array accesses whose access expressions contain the outermost
loop i in the lowest dimension and this accounts for the slight decrease in memory cycles.

 In the 2x2 cases for FIR and PATTERN, in the custom data layout, we are able to take
advantage of the unrolling in two dimensions, affecting not only the lowest order
dimension in array access expressions but any dimension related to the i or j loop, and
derive a custom layout to achieve the maximum parallelism available to the system.
Therefore, our layout outperforms modulo unrolling which can only take advantage of
unrolling in the lowest dimension of a given array access expression. The better
performance of our custom layout is also attributed to the scalar replacement of further
exposed MIV array accesses not exposed in modulo unrolling. Via our design space
exploration algorithm, we would choose an optimal unroll amount of 8x4 and 24x4 for
FIR and PATTERN, respectively, to expose further reuse and thereby decrease memory
access time.

For both the JACOBI and SOBEL 1x4 cases in Figure 14(b) and 14(e), we see that
modulo unrolling and the custom layout decrease the memory access time by 3/4 over the
naive layout time. This is because unrolling the inner j loop by four allows for the
maximum parallel data layout to be used for arrays with j in their lowest dimension
access expression. For both 4x1 cases for these kernels, the custom data layout
outperforms modulo unrolling since our algorithm is powerful enough to detect and take
advantage of unrolling in any array dimension. For the JACOBI and SOBEL 2x2 cases,
modulo unrolling decreases the memory access time by 1/2 over the naive layout due to
unrolling by two in the j loop as opposed to our custom layout which again decreases the
memory accesses by 3/4 over the naive layout. Since there is no array distribution in the
dimension corresponding to the i loop for modulo unrolling, the maximum available
memory parallelism is not exploited as it is for our custom layout where we distribute
across memories for the dimensions corresponding to both the i and j loops.

Although MATMUL is a three-deep loop nest, we only consider unroll factors for the
two outermost loops, since the compiler eliminates all memory accesses in the innermost
loop through loop-invariant code motion. A subtle point is that the same mechanism does
not eliminate all memory accesses in the peeled loops. Looking at the 1x1x4 case in
Figure 14(c), there is a decrease in memory access cycles in modulo unrolling and
custom layout over the naive case due to unrolling in the lowest array dimension. This
win is due to the now parallelized memory accesses in the peeled loops. For the
MATLMUL 1x4x1, 2x2x1, and 4x1x1 cases, the arguments are similar to those for the
JACOBI and SOBEL 1x4, 2x2 and 4x1 cases in that our custom data layout outperforms
modulo unrolling when unrolling occurs in an array dimension other than the lowest
order dimension or a combination of lowest and non-lowest order dimensions.

18

Figure 15: Speedups.

For the speedup results, the execution times are normalized to the naive 1x1 (i.e. not
unrolled) time for each kernel. Scalar replacement was also performed in this baseline
case. The speedups for FIR and PATTERN are shown in Figure 15(a) and 15(d). The
speedup, due mostly to additional parallel computation, is equivalent for all three layout
schemes in the 1x4 cases. The slightly higher speedups in the 4x1 cases are attributed to
the fact that there are slightly more array accesses whose lowest order dimension contains
the outermost loop i. The speedups for the 2x2 cases reflect the win from an increase in
useful parallel memory accesses and are directly proportional to the decreases in overall
memory cycles as shown in the earlier graphs.

The speedups for JACOBI and SOBEL are shown in Figure 14(b) and 14(e). The
speedups for the 1x4 cases are proportional to the decreased number of memory cycles
for each layout. In the 2x2 cases, while our custom layout is able to decrease the time
spent accessing memory by a factor of three over the naive scheme, this is not reflected in
the speedups. This is because JACOBI and SOBEL are highly compute bound kernels
and are not able to take advantage of the additional memory parallelism exposed by our
custom layout. For the 4x1 cases, modulo unrolling does exhibit a speedup over the
naive scheme even though the memory access cycles are the same for these two layouts.
This is due to the fact that we assume in our memory access accounting model that a read
and write to different memories may not occur in parallel. This is important in JACOBI
and SOBEL because many memory accesses are in the form of A(i,j) = B(i,j). In reality,
the schedule that Monet generates does allow for a memory read and write to different
memories to occur in parallel and coupled with the assumption that entire arrays are
spread across multiple memories in modulo unrolling, we see a speedup over the naive
case. The speedup for MATMUL is shown in Figure 15(c). In all cases, the speedups are
proportional to the decreases in memory accesses shown in Figure 14.

(a) FIR
UiiioU Faoiiirs

(b) JACOBI

Unroll Fatiurs

(d) PATTERN

(c) MATMUL

(e) SOBEL

19

Overall, we demonstrated a 3-5X improvement in performance with this technique as
compared to mapping all data to a single memory. This work is described in more detail
in reference [12].

5. Multi-Task Designs

As part of our focus on memory optimization, we have developed several techniques for
multiple tasks, possibly mapped to distinct FPGAs. We designed and implemented data
reorganization engines that reorganize data between tasks with different data access
patterns. For example, in Inverse Discrete Cosine Transform, two tasks access the same
array data, but one loop accesses the data in a transpose order as compared to the other
loop. We have experimented with a suite of reorganizations common in DSP
applications.

5.1 Data Reorganization Engines
We have implemented code generation functions in C that emit templates in structural
and behavioral VHDL for a set of standard data reorganization engines described below.
Each is parameterizable in terms of the number of the memory modules to which it
interfaces. Each memory controller is parameterizable in terms of the number of entries
and sizes of the base address and offsets. In addition we have generated selected data
patterns in the switching network module and integrated it with the data engine design.

We compared the resources required for different units with distinct data access patterns.
For each comparison we present the maximum achievable clock rate, number of CLBs
(Configurable Logic Blocks) the unit uses in an FPGA implementation and the maximum
achievable bandwidth between the input and output ports.

In this application experience we have focused on a small set of kernel data patterns,
namely, transposing, row-wise and column-wise accesses and data packing and
unpacking. For the purpose of the experiments we have focused on particular
implementations for these operations in terms, with different parameters, of the number
of channels and bit widths used, namely:
• Merging (MG-4/8) – In this kernel we merge 4 8-bit input streams into a single 32-bit

output stream by interleaving each of the 8-bit data elements in a single word.
• Transpose (TP) – In this kernel the output stream is a transpose of the input data

stream for a known fixed stride for both the input and the output. Both streams have a
32-bit width format.

• Stripping (ST-4/8) – In this kernel a single 32-bit word input stream is striped across 4
8-bit outputs.

• Replication (RP-8/32) – In this kernel a single 32-bit data stream is replicated across 8
outputs.

We have encoded these data access patterns and generated the VHDL descriptions for the
data engines that implement them, and synthesized the result. From the implementation,
we observed its metrics as presented in Table 8 and Table 9 below. We then tested the

20

implementation of these kernel data reorganizations on an existing real FPGA-based
board by applying the data reorganization to copy and reorganize data between two
external memories of the same FPGA device on the WildStarTM board .

Table 8 presents the size in terms of number of slices used in the FPGA for the memory
controllers and network required for each of the data reorganization engines as well as the
total for the data engine (along with the corresponding percentage occupancy of the
FPGA). For each of the data reorganizations (except for the transpose) we have included
results from different parameters. For example, we include results for the merging
operation for 4 streams of 8 bits wide each (MG-4/8) and results for merging with 2
streams of 16-bit wide (MG-2/16).

Table 8: Size breakdown for the various kernel data reorganization engines.
Kernel Memory

Controllers
Network Total (%)

MG-4/8 487 38 525 (4.2)
MG-2/16 325 36 361 (2.9)
TP-32 195 37 232 (1.9)
ST-4/8 477 39 516 (4.2)
ST-2/16 252 39 291 (2.4)
RP-8/32 475 103 578 (4.7)
RP-2/32 323 59 382 (3.1)

Table 9 addresses the performance of each of the variants of data engines by presenting
the maximum clock rate and the sustained rate transfer in MegaBytes per second
(MB/sec).

Table 9: Implementation metrics for selected set of data reorganization patterns.
Kernel

Rate
MHz

Bandwidth
MB/sec

MG-4/8 40.3 80
MG-2/16 40.1 80
TP-32 40.2 80
ST-4/8 40.4 80
ST-2/16 43.4 86
RP-4/32 40.3 20 to 80
RP-2/32 40.8 20 to 80

For the replication operation the sustained rate varies between 20 to 80 MB/sec
depending on the number of distinct target memory modules. A 20MB/sec rate is
imposed on single memory reorganization operations due to contention on the particular
FPGA memory bus interface used in these experiments.

21

5.2 Communication and Pipelining Analysis

We have also developed a communication analysis compilation algorithm that aims at
automating the remapping of data across multiple tasks and possibly globally in the
context of pipelined execution. This work can determine more sophisticated remapping
transformations other than transpose. It also identifies opportunities for task pipelining,
and determines communication placement to maximize pipeline overlap. Currently this
communication analysis implementation is able to generate correct simulation results but
has not been demonstrated on the WildStar board. It has been demonstrated on five
programs, SLD from Sandia ATR, MVIS, a machine vision code, Inverse Discrete
Cosine Transform, and Histogram, a global histogram equalization calculation. For two
of the programs, IDCT and Histogram, the analysis identifies that data requires
reorganization. For the other two, the data is accessed in the same order across tasks, and
so data is communicated as it is produced, in a fully pipelined fashion.

6. Multi-FPGA Designs

In the last phase of the project, we have concentrated on extending the infrastructure and
the compiler analysis to adequately support, in an automated fashion, multi-FPGA
designs. We have currently upgraded most of our interfaces and target VHDL
abstractions to allow the compiler to specify which portions of the computation should be
mapped to which computing elements and how should the data be partitioned across the
various local memories on the target board.

6.1 Mapping Multi-FPGA Designs to the WildstarTM Board
We have taken a staged approach to the mapping of computations to multiple FPGAs.
We have extended the current infrastructure and have successfully mapped one
computation to multiple FPGAs and multiple memories, with some manual intervention.
This computation is a pared-down version of the original Sandia SLD ATR computation
and has been mapped manually by hand to the Annapolis WildStarTM board. Our
preliminary results indicate that the extended infrastructure is capable of supporting a
wide variety of mappings and offers all the flexibility a compiler analysis requires.
Looking forward, the next step will be to bring together what we have done with the
automated approach and the version requiring manual intervention so that we can
automatically map multi-FPGA designs to the WildStarTM board.

6.2 Partitioning Across Multiple FPGAs
For designs with more tasks than the number of FPGAs, an additional task is to partition
the tasks across the FPGAs so that system-level performance is maximized. To address
this problem, we combined the automated design space exploration algorithm with
communication analysis and the data reorganization analysis previously described. For
a machine vision code excerpt, we show how these results can guide the compiler to
perform computation and data partitioning across multiple FPGAs by matching producer
and consumer rates in pipelined computations, in reference [10].

22

The following set of results is derived automatically for each of the three pipeline stages
from the MVIS machine vision code example in Figure 16. Each pipeline stage has
access to 4 memories, and the data for each stage is automatically mapped to these
memories to exploit memory parallelization. For the purposes of this experiment, we
assume that communication and memory latency are the same: 1 cycle for either reads or
writes. This optimistically assumes full pipelining of memory accesses or
communication, which is possible but not guaranteed on the Annapolis WildstarTM.

Our implementation of communication and pipelining analysis automatically derived the
communication requirements and appropriate placement of communication to enable
pipelining between stages. We have not yet implemented computation and data
partitioning, but we plan to generalize the solution for the example presented here. In the
remainder of this section, we will examine the selected design for the individual stages,
and show how an automated approach would arrive at a fully integrated solution.

23

 signal(host);

 // Step 1. Extract features with SOBEL
 for(x = 0; x < IMAGE_SIZE-2; x++){
 for(y = 0; y < IMAGE_SIZE-2; y++){
 // u is read only
 peak[x][y] = …;
 write(peak[x][y]);
 }
 }

 // Step 2. Select features above threshold
 for(x=0; x < IMAGE_SIZE-2; x++){
 for(y=0; y < IMAGE_SIZE-2; y++){
 read(peak[x][y]);
 if(peak[x][y] < threshold){
 features_x[x][y] = …;
 features_y[x][y] = …;
 } else {
 features_x[x][y] = …;
 features_y[x][y] = …;
 }
 send(features_x[x][y]);
 send(features_y[x][y]);
 }
 }

 // Step 3. Compute Distance Across Images
 for(i = 0; i < IMAGE_SIZE-2; i++) {
 for(j=0; j < IMAGE_SIZE-2; j++) {
 receive(features_x[x][y]);
 receive(features_y[x][y]);
 ssd[i][j] = 0;
 if((features_x[i][j] != 0) &&
 (features_y[i][j] != 0)) {
 ssd[i][j] = …;
 }
 send(ssd[i][j]);
 }
 }
 receive(host);

(b) Application Mapping to a Two FPGA Architecture

int U0[66][17],U1[66][17],U2[66][17],U3[66][17];
int V0[66][17],V1[66][17],V2[66][17],V3[66][17];
int SSD0[66][17],SSD1[66][17],SSD2[66][17],SSD3[66][17];
int FEATURE_X0[66][17], FEATURE_X1[66][17];
int FEATURE_X2[66][17], FEATURE_X3[66][17];

/* intialize registers
 v_0_33,v_1_33,v_2_32,v_0_17,v_1_17,v_2_16,v_3_32,
 v_3_16,v_0_32,v_0_16,v_1_32,v_1_32 */
 for (i = 0; i <= 63; i++) {
 /* intialize registers v_0_1,v_1_1 */
 for (j = 0; j <= 15; j++) { /* unrolled by 4 */
 /* unroll section 0 */
 ssd_0_0 = 0;
 u_0_0 = U0[i][1+j]; v_2_0 = V2[2+i][1+j];
 if (FEATURE_X0[i][1+j] != 0)
 ssd_0_0 = (u_0_0 - v_0_33)*(u_0_0 - v_0_33) +
 (u_0_0 - v_1_33)*(u_0_0 - v_1_33) +
 (u_0_0 - v_2_32)*(u_0_0 - v_2_32) +
 (u_0_0 - v_0_17)*(u_0_0 - v_0_17) +
 (u_0_0 - v_1_17)*(u_0_0 - v_1_17) +
 (u_0_0 - v_2_16)*(u_0_0 - v_2_16) +
 (u_0_0 - v_0_1) *(u_0_0 - v_0_1) +
 (u_0_0 - v_1_1) *(u_0_0 - v_1_1) +
 (u_0_0 - v_2_0) *(u_0_0 - v_2_0);
 SSD0[i][1+j] = ssd_0_0;
 /* unroll section 1 */

 /* unroll section 2 */

 /* unroll section 3 */
 ssd_3_0 = 0;
 u_1_0 = U3[i][1+j]; v_1_0 = V1[2+i][2+j];
 if (FEATURE_X3[i][1+j] != 0)
 ssd_3_0 =
 (u_1_0 - v_3_32)*(u_1_0 - v_3_32) +
 (u_1_0 - v_0_32)*(u_1_0 - v_0_32) +
 (u_1_0 - v_1_32)*(u_1_0 - v_1_32) +
 (u_1_0 - v_3_16)*(u_1_0 - v_3_16) +
 (u_1_0 - v_0_16)*(u_1_0 - v_0_16) +
 (u_1_0 - v_1_16)*(u_1_0 - v_1_16) +
 (u_1_0 - v_3_0)*(u_1_0 - v_3_0) +
 (u_1_0 - v_0_0)*(u_1_0 - v_0_0) +
 (u_1_0 - v_1_0)*(u_1_0 - v_1_0);
 SSD3[i][1+j] = ssd_3_0;
 shift_registers(v_0_0,....,v_0_33);
 shift_registers(v_1_0,....,v_1_33);
 shift_registers(v_2_0,....,v_2_32);
 shift_registers(v_3_0,....,v_3_32);
 } /* end of for j */
 } /* end of for i */

(c) Optimized Loop Nest in Stage 3.

FPGA 0 FPGA 1

MEM 1

u1, v1

u2, v2

u0

internal memories

peak_0

ssd_0

coeff0

S
T
A
G
E
2

S
T
A
G
E
1

S
T
A
G
E
3

peak_1

peak_2

peak_3

u1

u2

u3

coeff3

coeff2

coeff1

u3, v3

u0,v0

feature_x_3
feature_y_3

feature_x_2
feature_y_2

feature_x_1
feature_y_1

feature_x_0
feature_y_0

ssd_1

ssd_3

ssd_2

(d) Mapping of Example Code to Pipelined Architecture

Figure 16: Machine vision example.

24

The following tables show behavioral synthesis estimates (augmented by compiler
models) of the compiler-optimized pipeline stages for each of the three stages of the
MVIS example. These results were derived automatically by our system. Tables 10-12
contain three rows. The first is Balance, as defined in Section II.2. If Balance < 1, then
the design is memory bound; otherwise, it is compute bound. Assuming computation and
memory access can be overlapped, Balance permits the design space exploration to limit
unroll factors. For example, if a design is memory bound and memory bandwidth is fully
utilized, there will be little or no performance advantage to increasing the unroll factor,
and in fact, the increase in design complexity might degrade the achievable clock rate.

The second row provides the number of clock steps on a Xilinx Virtex 1000-BG560
FPGA. The third row provides an estimate of space; this number does not directly
correspond to CLBs on the Virtex; in our experience with place-and-route following
Monet estimation, we have determined that a number above about 32000 exceeds the
capacity of the Virtex. The results are presented for different unroll factors of the
innermost loop for these three stages. Note that in Tables 10 and 12, an unroll factor of
32 represents full unrolling due to loop peeling used to initialize registers for scalar
replacement.

Table 10: Stage S1 results for different unroll factors
Unroll Factor 1 2 4 8 16 32

Balance 1.50 1.50 1.50 1.25 1.13 0.95

Cycles 12344 6297 3177 2653 2385 2554

Space 12470 9745 15619 25583 45889 79928

Table 11: Stage S2 results for different unroll factors
Unroll Factor 1 2 4 8 16 32 64

Balance 1.00 1.00 1.00 0.83 0.75 0.71 0.69

Cycles 12352 6208 3136 3136 3136 3136 3136

Slices 249 327 384 532 717 1116 1470

Table 12: Stage S3 results for different unroll factors
Unroll Factor 1 2 4 8 16 32

Balance 2.00 1.67 2.00 1.63 1.44 1.34

Cycles 16632 10266 8229 6699 5919 5420

Space 16817 31954 45912 83340 132656 262054

The columns that are in bold face represent the desired unroll factor. To see how we
arrived at this result, let us first consider the optimal unroll factors selected for each
individual stage. Without unrolling, stage S1 is compute bound. The best solution for
stage S1 in isolation is the balanced solution obtained with an unroll factor of 16. Stage
S2 without unrolling is balanced, but performance improves up to the unroll factor of 4,

25

where the memory bandwidth is fully utilized, which we call the saturation point.
Beyond the saturation point, the design is memory bound, and performance does not
improve. In stage S3, the design is compute bound because, as shown in Figure 15(C),
scalar replacement has eliminated most of the memory accesses. By fully unrolling the
loop nest, the design is nearly balanced.

To arrive at the final solution, we make several observations:

• Stage S3 is the slowest pipeline stage, so it is possible to reduce unroll factors for
stages S1 and S2 without slowing down overall performance. This leads us to
select unroll factors of 4 for both stage S1 and stage S3.

• Stage S3 is much larger than the other stages, so it is placed on an FPGA by itself.
Stage S1 and stage S2 are placed on the same FPGA.

• Accordingly, the v, features_x and features_y arrays are placed in memories that
may be shared by stages S2 and S3. Array u is replicated.

Assuming this implementation meets the capacity constraints of the FPGA, we will
derive the mapping shown in Figure 15(d).

Note that on a Virtex, capacity may be limited for Stage 3, and an unroll factor of 2 is the
upper limit. In this case, we would also limit the unroll factor for Stages 1 and 2 to a
factor of 2 as well. We are currently working to automate this partitioning (the remainder
of the implementation is complete).

III. Infrastructure

In this project we have addressed system-level issues that were not addressed by industry
or any other academic project. We have focused on design space exploration using
estimation techniques as an approach for the tool to generate designs that will physically
fit on the target FPGA devices. In addition we have also focused on memory access
optimization and customization as a technique to increase the effective data bandwidth
for the designs – a major concern for important application domains such as digital image
processing. In this section, we describe the complex infrastructure we have developed
for this project.

The DEFACTO compilation and synthesis tool was and still is a major undertaking. The
current infrastructure contains about 100K lines of C/C++ code in the SUIF system,
several thousand lines of structural VHDL, and additional few thousand lines of scripts to
run the synthesis tools. It includes numerous internal code generation tools interfacing
two compilers, a behavioral synthesis tool as well as logic synthesis and place-and-route
(P&R) tools.

DEFACTO uses the SUIF (Stanford University Intermediate Format) front end to convert
C and FORTRAN programs to its internal representation. It also leverages data
dependence and other parallelization analyses, and code transformations from SUIF. In

26

addition, DEFACTO includes commercially available EDA tools and also interfaces with
other standalone C compilers on PC platforms.

As outlined in Figure 16, the system starts with a high-level algorithm description in
standard C and generates two sets of files. One file contains the original program, with
the portion of the computation that executes on the FPGAs removed and replaced with
library calls that manage execution on the FPGA as well as transfer data to and from the
configurable architecture. Another set of files specifies the computation to be executed on
the FPGAs and contains numerous internal components. These components interact with
the hardware to effectively transfer data to and from its internal memories and
synchronize its execution with the C code. These files must then be compiled using the
native C compiler of the target processor (in our case a PC using the Visual C++
compiler) as well as commercially available logic synthesis tools. We have used Mentor
Graphics Monet to translate a behavioral VHDL file into a netlist formatted file which we
feed to Synplify’s Synplicity logic synthesis tool and P&R tools to generate the final bit-
stream executable file for programming each FPGA

We now describe the fundamental infrastructure building blocks of the DEFACTO
compilation system. The front end consists of the C/Fortran SUIF compiler front-end that
translates the input code to the SUIF intermediate format.

name.c

name_fct0.vhdl

name_fct0_synplify.prj

name_fct0_meminterf.vhdlname.post.c

name_fct0.struct.vhdl

name_fct0.x86

DEFACTO Compiler

MonetTM Behavioral
Synthesis

C Compiler Synplify Logic Synthesis and P&R

name.exe

defactoAPI.lib

Figure 17: The DEFACTO design flow.

As part of the DEFACTO front-end, we have developed numerous analysis passes
beyond the SUIF v1.2 release, briefly described below.

1. Data Reuse Analysis. This analysis identifies when a data value accessed through
a memory reference is accessed by another reference, across all loops of a given
loop nest. This analysis also permits elimination of unnecessary memory
accesses.

27

2. Delay Line Analysis. This analysis scans each inner loop data access pattern
attempting to identify simple data reuse opportunities. It then converts these
opportunities into tapped-delay lines in the generated code to reduce the number
of memory accesses.

3. Communication Analysis. This analysis pass identifies the set of loop nests that
share data either in the form of complete arrays or in the form of array section. It
is used to determine which loop nests (or loops within each nest) should be
aggregated into hardware tasks to match the data partition strategy.

4. Pipelining Analysis. This analysis identifies the data access patterns across
different loops. The compiler uses this information to determine good data
partition and placement strategies in conjunction with communication analysis.

5. Memory Interface Library and Annapolis Library Interface. This pass is
responsible for generating a series of structural VHDL definitions that are used by
the designs in each FPGA to access memory. It has been integrated with the
pipelined memory access features offered by the target board for enhanced
performance. This pass can also generate various memory controller
configurations for increased memory subsystem performance, as discussed in
Section II.4.

6. Script Generation Tools. This set of tools is responsible for the generation of
EDA tools scripting languages and encapsulate most of the naming schemes used
to identify bit-stream and VHDL files the compiler generates.

To interface with behavioral synthesis, we have also developed a tool that translates SUIF
constructs to behavioral VHDL amenable to be processed by the Mentor Graphics Monet
behavioral synthesis tool. This tool called SUIF2VHDL generates a set of VHDL
constructs that perform the computation of a loop or set of loops and interfaces with a set
of VHDL abstractions we have developed to allow the implementation to actually read
and write data to the memories on the target board. The main abstraction of the VHDL
generated code is a task, which reads and writes data to and from a set of memories via
channels. Tasks can also communicate via direct links as directly supported in the
Annapolis WildStarTM board.

A significant component of the infrastructure has to deal with providing a set of VHDL
abstractions the compiler can use to generate behavioral VHDL. We have developed the
notions of hardware channels and channel controllers. These abstractions allow for the
compiler and its analysis algorithms to perform a wide variety of optimizations leading to
an effective increase in the available memory bandwidth to the design (see Section II.4).

A significant challenge of this project was making design execute consistently and
reliably on the target architecture, the Annapolis WildStarTM board. In this context we
have faced and overcome several challenges:

1. Annapolis Hardware problems: An earlier board had intermittent memory
errors causing application failure and the inability to develop other components of
the system. Eventually the board was replaced by Annapolis without any report of
the cause of the problem.

28

2. Annapolis Board Interface problems: Annapolis interfaces have been hard to
use due to their proprietary nature. The initial version of the board interfaces were
later replaced to adequately support the Mezzanine Cards that allowed us to
access more memories and effectively exploit more FPGA computing capabilities.
Once the Annapolis libraries were revised, we had to update our entire design
flow, which resulted in a significant delay in advancing to implementations of
multi-FPGA designs.

3. EDA Tool Integration: Because our goal was to use behavioral synthesis and the
Annapolis WildStarTM board, we were forced to integrate tools from four different
vendors, and encountered many incompatibilities. In the last year, we had to
accommodate a complete release overhaul of our synthesis flow – MonetTM v4.2
and Synplicity v7.0 to comply with the Annapolis compatibility and tool
requirements.

4. Behavioral VHDL idiosyncrasies: We spent a significant amount of time and
energy understanding the style of VHDL constructs that would map well to
hardware to be generated by the SUIF2VHDL tool.

Overall all these challenges substantially hampered our progress in the early and
intermediate phases of the projects. Over the course of the last 18 months, we have
progressed the capabilities at a rapid and steady pace, now that we have a reliable
hardware and software design flow. As we continue this work under separate funding,
we will build on this complex infrastructure and continue to enhance its capabilities.

IV. Additional Activities

The UCLA group supported the DEFACTO effort in two ways. They contributed
significantly to debugging the design flow presented in the previous section, working
through case studies, iterating with the synthesis tool vendors, and deriving scripts to run
the tools. They also developed module generators and determined how to integrate them
into the design flow. Among the modules developed by UCLA include an
RC_adder/subtractor, AdderTree, On-line Adder, On-line DA 4 coefficient MAC,
borrow-save adders, vector register modules, and FIR filters. In addition, in conjunction
with the previously described compiler work on generating code for tapped delay lines,
UCLA developed tapped delay line libraries, for representing 1-dimensional and 2-
dimensional arrays. The need for a library was motivated by the observation that
synthesized designs with tapped delay line structures led to inefficiencies. By using
placement constraints on the tapped delay line library in the Xilinx Foundation tool
(vertical placement), we achieved an implementation of the library that used a 36% faster
clock and 25% fewer slices. These libraries tie in nicely with the compiler analysis that
identifies when the libraries can be used.

Angeles Design Systems supported DEFACTO by participating in the early system
design. Subsequently, Angeles developed the S2VHDL tool, which derives behavioral
VHDL from a SUIF intermediate representation. Angeles worked with ISI and UCLA on
case studies to derive a flavor of VHDL that could be supported well by the synthesis
tools. Angeles also provided a specification of the channel library implementation.

29

Integrated Sensors’ task for DEFACTO was to integrate the HRTExpress / MATLAB
programming environment to provide MATLAB level FPGA programmability for the
DEFACTO system. Integrated Sensors’ efforts involved definition of the required
MATLAB-to-SUIF conversion process and HRTExpress GUI changes required to
support DEFACTO. DEFACTO compatible, annotated SUIF vector functions can be
obtained by leveraging existing C math library functions and by using the Math Works
MATLAB-to-C translator. Through modification of the HRTExpress pre and post
translator passes, GUI selection and specification of the required hardware information is
passed, through SUIF annotations, to the VHDL backend. After DARPA redirection in
fall 2000, the MATLAB frontend for DEFACTO was discontinued.

ISI completed an evaluation of requirements to map to System C rather than Behavioral
VHDL, as stated in last quarter’s project summary. What we found was that mapping the
datapath to System C instead of Behavioral VHDL was straightforward, and we
completed a prototype implementation. However, a number of automatically-generated
Structural VHDL libraries are included in our current designs. We are not aware of any
good approach to mixing VHDL and SystemC code in synthesis, so a move to SystemC
does not appear feasible at this time. Under direction from DARPA, we revised our plans
and will not implement the SystemC port.

V. Technology Transfer

Most recently, on July 31, 2002, an important technology transfer activity was a
demonstration by Pedro Diniz and Mary Hall of the end-to-end mapping and design
space exploration at the DarpaTech conference. There were a large number of people
who dropped by our demonstration, but there was significant interest from Randy
Carlson, the CTO of Red Hawk Inc., who expressed an interest in establishing a
collaboration.

In the last years of the project, we met with a number of industrial representatives to
discuss our technology and how it might be incorporated into their future product lines.
In particular, Mary Hall and Pedro Diniz gave a company-wide seminar at Synopsys, and
spoke with Synopsys CTO Raul Camposano about how DEFACTO technology might be
used in mixed hardware/software designs, particularly if the emerging SystemC standard
is used as the input to synthesis tools rather than VHDL. Pedro Diniz and Mary Hall also
visited C-level and spoke with Vice President of Marketing David Park about how
DEFACTO technology could be used in conjunction with higher level languages, such as
using C-level as a target output (instead of VHDL) for DEFACTO.

We have had discussions with many other interested individuals from industry, including
Nick Dragiewicz from CoWare, John Glosner from Lucent Technologies, J. Tresher from
Philips Research and Mike Vahey from Raytheon. Recently, we had a request from
Raytheon for copies of our software.

30

VI. Summary

This report describes the results of the DEFACTO project, which is an end-to-end design
environment deriving application-specific hardware for FPGA-based systems from a
high-level algorithm specification in C. This project has demonstrated reductions in
synthesis time of 100-10000X with the automated design space exploration algorithm.
The current reduction in design time, including human effort, has been approximately 40-
60X for two case studies, SLD from Sandia ATR and Sobel edge detection. We have
demonstrated end-to-end mapping on the Annapolis WildstarTM board for both examples,
with no manual intervention, at DarpaTech on July 31, 2002. The end-to-end
demonstrations use the external host, multiple memories and a single FPGA. We have
also demonstrated in simulation automatically-generated multi-FPGA designs, and have
mapped a multi-FPGA design for the SLD code from Sandia SLD ATR to the WildstarTM
board with modest manual intervention. The DEFACTO project will continue under
NSF funding, and we plan to complete automatically-generated FPGA designs to the
WildstarTM board in the near term, as well as explore algorithms to partition computation
and data across multiple FPGAs and memories.

The products of the DEFACTO project were a complex infrastructure for end-to-end
design, and a set of technical results obtained from the resulting system. We produced 12
papers in a broad range of conferences, including synthesis, FPGA, compiler and parallel
computing conferences. Details on the key technical results can be found in the
publications listed.

31

Publications (in chronological order)

[1] Kiran Bondalapati, Pedro Diniz, Phillip Duncan, John Granacki, Mary Hall, Rajeev Jain, Heidi

Ziegler, "DEFACTO: A Design environment for Adaptive Computing Technology," In Proc. of the
Reconfigurable Architectures Workshop, held in conjunction with the International Parallel and
Distributed Processing Symposium, April, 1999.

[2] Byoungro So, Heidi Ziegler and Mary Hall, “Parallelizing Compiler Technology for Adaptive

Computing Systems,” In Proceedings of the Workshop on Reconfigurable Computing, held in
conjunction with the Parallel Architectures and Compilation Techniques Conference, October, 1999.

[3] Pedro Diniz and Joonseok Park, “Automatic Synthesis of Data Storage and Control Structures for

FPGA-Based Computing Engines,” In Proceedings of the IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM'00), IEEE Computer Society Press, Los Alamitos, CA, April, 2000.

[4] Pedro Diniz and Ashok Venkatachar, "A Behavioral Synthesis Estimation Interface for Configurable

Computing", In Proceedings of the IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM'01), IEEE Computer Society Press, Los Alamitos, CA, April, 2001.

[5] Joonseok Park and Pedro Diniz, "An External Memory Interface for FPGA-based Computing

Engines", To appear in the Proceedings of the IEEE Symp. on FPGAs for Custom Computing
Machines (FCCM'01), IEEE Computer Society Press, Los Alamitos, CA, April, 2001.

[6] Pablo Moisset, Pedro Diniz and Joonseok Park, "Matching and Searching Analysis for Parallel

Hardware Implementation on FPGAs" In the Proceedings of the ACM Symposium on FPGAs
(FPGA'2001), ACM Press, New York, Feb. 2001, pp. 125-133.

[7] Pedro Diniz, Mary Hall, Joonseok Park, Byoungro So, Heidi Ziegler, “Bridging the Gap Between

Compilation and Synthesis in the DEFACTO System,” In Proceedings of the Workshop on
Languages and Compilers for Parallel Computing (LCPC ’01), August, 2001.

[8] Joonseok Park and Pedro Diniz, “Synthesis of Pipelined Memory Access Controllers for Streamed

Data Applications on FPGA-Based Computing Engines,” In Proceedings of the 14th International
Symposium on System Synthesis (ISSS ’01), Montreal, Canada, October, 2001.

[9] Pedro Diniz and Joonseok Park, “Data Reorganization Engines for the Next Generation of System-

On-a-Chip FPGAs,” In Proceedings of the ACM Symp. on Field-Programmable-Gate-Arrays
(FPGA'02), ACM Press, New York, Feb. 2002, pp. 237-244.

[10] Heidi Ziegler, Byoungro So, Mary Hall and Pedro Diniz, “Coarse-Grain Pipelining for Multi-FPGA

Architectures,” In Proceedings of the ACM Symposium on FPGAs for Custom Computing Machines
(FCCM ’02), April, 2002.

[11] Byoungro So, Mary Hall and Pedro Diniz, “A Compiler Approach to Fast Design Space Exploration

for FPGA-Based Systems,” In Proceedings of the ACM Symposium on Programming Language
Design and Implementation, June, 2002.

[12] Byoungro So, Heidi Ziegler and Mary Hall, “A Compiler Approach for Custom Data Layout,” In

Proceedings of the Workshop on Languages and Compilers for Parallel Computing, July 2002.

