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Abstract 
Decision theory does not traditionally include uncer- 
tainty over utility fiinctions. We argue that the a per- 
son's utility value for a given outcome can be treated 
as we treat other domain attributes: as a random vari- 
able with a density fiinction over its possible values. 
We show that we can apply statistical density estima- 
tion techniques to learn such a density function from a 
database of partially ehcited utility functions. In par- 
ticular, we define a Bayesian learning framework for 
this problem, assuming the distribution over utilities 
is a mixture of Gaussians, where the mixture compo- 
nents represent statistically coherent subpopulations. 
We can also extend our techniques to the problem of 
discovering generalized additivity structure in the util- 
ity functions in the population. We define a Bayesian 
model selection criterion for utility function structure 
and a search procedure over structures. The factoriza- 
tion of the utilities in the learned model, and the gen- 
eralization obtained from density estimation, allows us 
to provide robust estimates of utilities using a signif- 
icanUy smaller number of utility elicitation questions. 
We experiment with our technique on synthetic utility 
data and on a real database of utility functions in the 
domain of prenatal diagnosis. 

1   Introduction 

The principle of maximizing expected utility has long been 
established as the guide to making rational decisions [21]. 
It rests on two components: probabilities for representing 
our uncertainty about the situation, and utilities for repre- 
senting our preferences. 

Traditional decision theory ignores, however, any uncer- 
tainty we may have about the utilities of a given user. To 
apply it, we need to acquire the entire utility function. We 
cannot use any prior knowledge, either in the form of ex- 
perience with other users or in the form of constraints. By 
treating utilities as random variables, we can utilize tools 
that have been used with great success when reasoning 
about events in decision problems. For example, we can 
use value of information to decide whether a utility elicita- 
tion question is worth asking [4]. 

Before we can apply these tools, however, we need to 
address the issue of acquiring distributions over utilities. 

The problem of model acquisition is well-understood in the 
context of probabilistic models, with a significant body of 
work both on eliciting models from experts and on learning 
from sample data. By contrast, the problem of acquiring 
utility functions is not understood nearly as well. In some 
sense, utility elicitation is innately harder. There are no ex- 
perts to ask about the model; every person's utility function 
may be different. Thus, in the traditional approach, each in- 
dividual's utility for each of the possible outcomes must be 
elicited. In domains involving more than a few outcomes, 
this elicitation process is time consuming and cognitively 
difficult. It is also noisy and prone to errors [15]. 

The use of structure is crucial for probabilities, simpli- 
fying both the model and the associated knowledge acqui- 
sition process. Structure also exists in utilities. Utility 
functions can often be decomposed as a linear combination 
of subutility functions, each of which involves only a few 
of the relevant variables. Decomposable utility functions 
can be used to support more efficient inference [14, 20]. 
In principle, as they require fewer parameters to be speci- 
fied, they should also ease the knowledge acquisition pro- 
cess [15]. 

In practice, however, we see that decomposable util- 
ity functions are rarely used. (Except in certain settings 
where everything easily reduces to a common basis, such 
as money.) The problem is that the structure in utility func- 
tions seems elusive, perhaps because there is little method- 
ology for discovering it. Several papers [9, 17] have tried 
to detect simple additive decompositions in a database of 
elicited utility functions using linear regression; unfortu- 
nately, additive structure rarely seems to exist in these 
databases, so one typically resorts back to explicit utility 
elicitation for the entire outcome space. We know of no 
attempts to learn more complex utility functions from data. 
Alternatively, one could ask specific individuals about their 
decomposition. However, this approach is difficult to im- 
plement. Unlike probabilities, utilities cannot be marginal- 
ized. The utility of a specific instantiation of one state at- 
tribute does not have any intuitive meaning and cannot be 
assessed without making some assumptions about the val- 
ues of other attributes. Thus, the decomposition of utility 
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functions is much less intuitive for people to understand 
than the decomposition of probability functions. 

In this paper, we take a much more general approach to 
the problem of discovering the structure of utility functions. 
We assume that we have access to a database of (partially) 
elicited utility functions for some set of individuals. This 
assumption is not unreasonable: many medical informatics 
centers collect large databases of utility functions for var- 
ious decision problems or for cost-benefit analyses of new 
treatments [10,18]. Given such a database, we apply statis- 
tical learning techniques to discover a decomposition that 
fits the data well. More specifically, we postulate a model 
where the population is comprised of several statistically 
coherent subpopulations, or clusters. The utility functions 
in each cluster are assumed to be decomposed in some way, 
and the parameters of the subutilities are assumed to come 
from a Gaussian distribution. Note that we do not assume 
that any of these model parameters are known. We do not 
know which person belongs to which cluster, or even which 
decomposition is used in the different clusters. Rather, we 
are given only a standard database of fully explicit utility 
functions (where some of the values may be missing). 

Our approach allows us to learn substantially more ex- 
pressive models than the naive linear regression approach, 
and thereby discovers structures that are invisible to lin- 
ear regression. Furthermore, the model produced by our 
learning algorithm can be used to make the utility elicita- 
tion process more robust and easier for the user. 

2   Factored Utility Functions 

The naive representation of a utility function is a vector of 
real numbers, ascribing a utility to each possible outcome. 
This representation is quite reasonable in domains involv- 
ing a small number of distinct outcomes. Many real-life 
domains, however, involve fairly complex outcomes. Con- 
sider, for example, the domain of prenatal testing. Prenatal 
testing is intended to diagnose the presence of a chromo- 
somal abnormality such as Down's syndrome in the early 
weeks of pregnancy, an event whose probability increases 
with maternal age. The two tests currently available to 
diagnose it, chorionic villus sampling (CVS) and amnio- 
centesis (AMNIO), carry a significant risk of miscarriage 
above the baseline rate. The risk is higher for CVS, but it 
is more accurate and can be performed earlier in the preg- 
nancy. Both miscarriage and elective termination of the 
pregnancy may reduce the chances of future pregnancy. In 
this domain, a typical outcome is "healthy fetus, early test 
(CVS), accurate test result, procedure-related miscarriage, 
no future pregnancy". 

In such cases, it is convenient to describe the space of 
outcomes as the set of possible assignments of values to 
a set of relevant variables. Here, we have five utility at- 
tributes: testing T (none, CVS or amniocentesis), fetus's 
status D (normal, affected by Down's syndrome), possible 
loss of pregnancy L (no loss, miscarriage, elective termi- 

nation), knowledge of the fetus's status K (none, accurate, 
inaccurate), and future successful pregnancy F (true, false). 
The utility is a function of all of these values. In general, 
we define each outcome as an assignment to a set of at- 
tribute variables \ = {X\,...,X„). Each variable X; has a 
domain Dom(X,) of two or more elements. 

Clearly, the number of outcomes is exponential in the 
number of attributes. Thus, the specification of the util- 
ity function in full can become expensive. In many med- 
ical domains, there are tens of outcomes. In our domain, 
there are 108 distinct outcomes; even after simplification 
and elimination of very unlikely outcomes, 66 outcomes 
remain. Utility elicitation, which in the best of cases is a 
long and tiring process, is extremely difficult for outcome 
spaces of this size.' 

In many cases, however, the utility function is not a 
single amorphous function over the space of outcomes. 
Rather, it exhibits some structure. One particularly impor- 
tant subclass of utility functions are those that decompose 
into components associated with smaller sets of attributes. 
For example, in a vacation planning domain, we might be 
able to construct our overall utility as a sum of functions 
associated with the cost of the vacation, with the weather 
in our destination, with the quality of the accommodations, 
etc. This type of decomposition lies at the heart of multi- 
attribute utility theory [15]. 

Definition 2.1: Let C be a set of clusters of variables 
Ci,... ,Cr. We say that a utility function is factored ac- 
cording to C if there exist functions M, : Dom(C,) i-> R 
(/=!,...,/■) such that M(X) = E,«i(c,) where c,- is the as- 
signment to the variables in C,- in x. We call the functions 
Ui subutility functions. | 

The factorization of the utility function induces observ- 
able patterns for the utilities of related outcomes. Some of 
these cases have received a lot of attention in the literature. 
For example, if the clusters are disjoint, then the change 
in the utility resulting from changing the assignment to the 
variables in one cluster does not depend on the assignments 
to the variables in the other clusters. In this case, the util- 
ity function is said to be additive over C. The intuitive 
behavior induced by additive utility functions makes them 
relatively easy to describe to a user and to test for during 
the process of utility elicitation. 

A related concept is that of conditionally additive utility 
functions. Let Y,Z,V be a disjoint partition of X. We say 
that Y and V are conditionally additively independent given 
Z if, for any fixed value z of Z, we have that Y and V 
are additively independent in the utility function M(Y, V,z). 
This type of decomposition is also relatively easy to test for, 
and hence is usable. 

'in this prenatal testing domain, the speed of utility elicita- 
tion was around 10 outcomes per hour [16]. We were also told 
by several utility elicitation practitioners that the probability of 
inconsistent answers rises sharply after the first few questions as 
the fatigue grows. 



However, the definition of factored utility functions cov- 
ers many more cases than these special cases. Consider, 
for example, a set of clusters C consisting of the three clus- 
ters {A,B}, {B,C}, {C,A}. As pointed out by Bacchus and 
Grove [1], a utility function that factorizes in this way does 
not have any of the commonly defined additive indepen- 
dence properties. They call such models generalized addi- 
tively independent. They continue to say that, while utility 
functions that factorize in this way may well be useful in 
practice, their lack of intuitive semantics makes them hard 
to incorporate into a utility elicitation process. 

Factored utility functions can be incorporated very nat- 
urally into influence diagrams [13]. Moreover, a factored 
utility function can be exploited by standard clique tree in- 
ference algorithms to make decision making more efficient, 
in much the same way as factored probability distributions 
are exploited in Bayesian network inference [14, 20]. 

Factored utilities admit a representation in terms of 
subutility functions over a much smaller domain. They can 
therefore be specified using a much smaller set of param- 
eters. However, there are many slightiy diiferent ways to 
parameterize a factored utility function over C. We choose 
one that will allow us to make our learning algorithm more 
efficient. 

Definition 2.2: We say that two functions h,h' over some 
domain Q are orthogonal if Y.^eaK'^)' h'{(£>) = 0.1 

Our goal will be to construct a fixed basis he of orthog- 
onal functions, and represent a factored utility function u 
over C as a linear combination of the functions in this basis. 
The coefficients w of the different basis functions would be 
the parameters specifying u. The orthogonality property 
will allow us to perform the computation described in the 
subsequent sections more efficiently. 

The atomic units in the construction of our basis are the 
basis functions that depend only on a single variable. For 
each variableX with valuesxi,...,Xk, we define a set of k 
basis functions ftf,..., ft^ : Dom(X) i-^ R. Our construc- 
tion is such that: 

• /if = 1, i.e., /if (x,) = 1 for all i; 

• the /if functions are pairwise orthogonal. 

For a binary-valued attribute B, we simply define: 

/if(xi)    =       1 
/lf(x2)      =      -1 

For a three-valued attribute C, we define: 

M : X i-¥ R, there exist coefficients w\,...,Wk such that 
« = l/=iw,/if. 

We now use these basic building blocks to construct an 
orthogonal basis for functions over the entire set of out- 
comes. With a slight abuse of notation, we will view a 
function hf as a function over Dom(V). Let o be an out- 
come; recall that o defines a value X[o] for each variable 
X 6 V. We simply define hf{o) = /if (X[o]). 

We can now define a basis for a cluster of variables C 
as the set of all functions that are composed as products of 
basis functions for the individual variables in c: 

XBC 
h^ e !H[x]}. 

Proposition 2.3: The Junctions in ^[C] are pairwise or- 
thogonal, and the set ^[C] exactly spans the set of all pos- 
sible functions over C. 

By taking the union of the bases for the appropriate clus- 
ters, we can span any set of factored utility functions. 

Corollary 2.4: Let C be a set of clusters. The set of Junc- 
tions !H[C] = Uc6C^[C] spans the set of all factored utility 
functions over C. 

We can therefore parameterize any factored utility func- 
tion over C using a set of coefficients w,-, one for every 
function in ^[Cj. How many parameters are required? 
For each cluster C, we have |Dom(C)| functions in ^[C]. 
However, the bases for the different clusters are not dis- 
joint. 

Example2.5: Assume that our clusters are {A},{B,C} 
and {C,D}, and that all of our variables are ternary. We 
have 3 functions in ^[A], and 9 in each of :H[{B,C}] and 
9{[{C,D}]. However, the h\ (all 1) function is common to 
all clusters, and the three h^ functions are common to the 
two clusters that contain C. Of course, we must be careful 
not to undercountby doublecounting the overlap: hi is also 
among the three functions in !H[C]. A careful count reveals 
that the total number of distinct functions in our basis is 
3-t-94-9-3-l-l4-l=17.| 

In general, we can compute the total number of distinct 
functions in our basis by a simple inclusion-exclusion for- 
mula, keeping in mind that the overlap between the bases 
for two clusters C and C' is precisely the basis for C D C 
(taking ^[0] to be the single vector hi): 

h^,{xi)    = 1 /if(x,)    = 1 mc]\ -- = Sl^[c,]|-Sii^[c,-,uc,gi 
h^ixi)    = 0 /I?(x,) = -2 i                          Ii#i2 

/if(x,)    = -1 h^,{xi)    = 1 =      +    E    l^[C,-,UQ,UC,-3]|- 

In general, we can define a set !^[X] of orthogonal ba- 
sis functions for any ^-ary variable X. Note that, as the 
functions are orthogonal, they span the space of all possi- 
ble functions over X.  In other words, for every function 

Thus, the total number of basis functions, and thereby of 
parameters required, grows (at most) linearly with the num- 
ber of clusters and exponentially with the size of each one. 



3   The Basic Framework 

Our approach relies on a few basic assumptions about the 
population of users whose utility we are trying to model. 
The first assumption is that the population is composed of 
several disjoint subpopulations, or types (which we model 
using a random variable T), where the utility functions of 
the individuals of each type are statistically similar. Each 
subpopulation may utilize a different factorization Q of the 
utility function. Thus, every individual is associated with a 
vector w, of dimension m, = \^[C,]\, where each Wj is the 
coefficient of the jth basis function hj € ^[Q]. The vector 
vf,[j] represents the user's subutility functions. 

We represent a probabilistic model over utilities by 
defining a vector random variable W,. For each value t 
of 7", P(W, I f) is a multivariate Gaussian with mean vector 
li, and covariance matrix S,. We assume that individuals 
in the population are IID samples from the P({W,}, | T) 
distribution. 

An individual's subutility vector w, defines a complete 
utility function, which specifies a utility for each of the 
n = |Dom(X)| outcomes o. We can define this implicit 
utility function using a simple matrix operation. Let A, be 
the n X ffi, matrix (cj^) where a\j = hj{oi) for o, the /th 
possible outcome. Then, the user's utility function ought 
to be u* = A,v/,. However, the utility elicitation process 
can be quite noisy. We accommodate for that by assuming 
that the user's actual utility vector u is modified by some 
white noise, i.e., for each o, we have that Uo is M* plus some 
random white noise e, sampled from a zero-mean Gaus- 
sian distribution with some variance aj. More formally, we 
have a vector random variable U of dimension n, which is 
a linear Gaussian whose mean is i4, W, and whose variance 
is ajl where I is the unit matrix. 

Note that, for each type r, the distribution over W,,U is 
a simple multivariate Gaussian, defined using a Gaussian 
distribution over W, and a conditional linear Gaussian for 
U given W,. However, the distribution as a whole is not 
exactly a mixture of linear Gaussians, as the dimension of 
the vector w, varies for the different types. 

A model such as this can be used for several purposes. 
The most basic use is to compute the most probable fac- 
tored utility function for a given user. More precisely, as- 
sume we are given a vector u representing the full utility 
function elicited from a certain user. Our goal is to compute 
the type t and vector w, such that the probability P(w, | u,/) 
is maximized. We perform a separate computation for each 
t. 

From the definition of our generative model, we have 
that: P{v/, I u,r) = ^iHi^tlM. The denominator is a con- 
stant, so it does not affect the choice of maximum. Fur- 
thermore, the individual components Ug of the vector vari- 
able U are conditionally independent given W,, so that our 
goal is to maximize {TloP{uo \ W,)) •P(W, | /)■ Max- 
imizing this function is equivalent to minimizing an er- 
ror function corresponding to its negative logarithm [2]: 

-S„InP(Mo I w,) - lnP(w, I r). The first term in our er- 
ror function (for the given vector u) can be simplified to 

~:^S(('^')''W'-«o)^ + nlncT,-(-^ln(2Tt)      (1) 

where {A,)o is the row of the matrix A, that corresponds to 
the outcome o. Simplifying - lnP(w, | /), we get: 

:^ln(27i)-flln|E,Kl(W,-/i,)'"Z,-'(W,-/i,).    (2) 

If we put together (1) and (2), and eliminate terms that do 
not depend on w,, we get as our final error function: 

where BJB, = S,"' . (We are guaranteed that such a decom- 
position exists because the covariance matrix of a Gaussian 
is guaranteed to be positive definite.) 

Thus, maximizing the posterior probability of the vec- 
tor w, is equivalent to minimizing a squared-error function. 
Let D, be the (n -f- m,) x m, matrix obtained by concatenat- 
ing the matrices ^A, and B,. We also define a vector u' of 

length n + m, defined by concatenating J-u and B,^. 
Note that we designed the matrix A, 'to guarantee that 

the columns of D, are linearly independent. Thus, we can 
compute the optimal solution to the least-squares problem 
by projection [19]: 

w,    =    iDjD,)-^Dju' 

The matrix {-ijAjA,+I.-^)-^DJ does not depend on u, 

and can therefore be computed once and reused for every 
individual for whom we want to estimate w,. 

This computation gives us, for each type f, the most 
likely vector w, for the user given that he is in class t. We 
can now easily compute the most likely pair (r, w,) for this 
user. 

This model can also be used to give us more informa- 
tion. Recall that the conditional distribution on W,,U is 
a multivariate Gaussian distribution. At the cost of a lit- 
tle more work, we can compute the entire posterior distri- 
bution P(W, I u,t). The result would also be a Gaussian 
distribution, over the variables W,. The mean of this distri- 
bution would be precisely the vector w, computed above. 
The covariance matrix of the distribution could be used as 
an indicator for how confident we are in our estimate w,. 
Clearly, there are situations where this information can be 
quite important, but it is not clear that it is always worth the 
computational overhead. On the other hand, unlike projec- 
tion, this technique can be used even if some of the values 
in the original utility vector are missing. 



4   Model Learning 

In the previous section, we defined a statistical model of 
utilities in a population of users, and showed how it can be 
used to compute a factorization of an elicited utility func- 
tion. We now move to tackling the problem of acquiring 
such a statistical model. 

Our goal is to acquire this model from a database of util- 
ity functions elicited from a random population of users. 
Even if the utility function is factored, the utility elicitation 
process is typically done in terms of utilities of full out- 
comes. This is certainly the case if, as we assumed, the 
factorization of the utility function is unknown in advance. 
Thus, we assume that the training data we are given is a set 
of utility vectors u[j], one for each individual. We assume 
that some of the components of the utility vectors may be 
missing. The type variable T and the corresponding de- 
composed utility vector W, are unobserved in the training 
data. 

Our key subroutine is the parameter estimation task for 
a given model. While we cannot use full Bayesian esti- 
mation in the presence of partially observable data, it will 
nevertheless be useful to view the model parameters as hav- 
ing a prior and a posterior. This perspective will be useful 
both for smoothing our numerical estimates and to provide 
the appropriate bias for the structure selection task. 

Suppose that, for every value t of the variable T, we have 
an m, dimensional multivariate Gaussian with an unknown 
mean vector /i, and an unknown covariance matrix S,. An 
appropriate conjugate prior over //, and S, is the Normal- 
Wishart [7]. We use a Normal-Wishart prior for the pa- 
rameters of each of the type-specific Gaussian distributions 
over W, (one for each type t) and for the parameters of the 
conditional Gaussian over the Uo given U*{o) = A,(o)Wr. 
We assume that the parameters 9, representing the prior 
probability P{T = t) are distributed with a Dirichlet dis- 
tribution. 

The main problem is that our data is only partially ob- 
servable, rendering full Bayesian estimation infeasible. We 
therefore resort to finding the MAP parameter estimate 
using the expectation-maximization (EM) algorithm [8]. 
More precisely, we use our parameter prior to define a 
Gaussian prior distribution over W,,U. For each instance 
j and each type t, we condition this distribution on u[j], 
and obtain a Gaussian posterior P(W/[y] | ^,u[7]). We use 
these Gaussian distributions to compute expected sufficient 
statistics: the expected empirical means and expected em- 
pirical covariances. These are used to update the Wishart 
priors, which then generate a new Gaussian prior distribu- 
tion over W,,U. A similar update is done to the Dirichlet 
distribution over the types. The process iterates until con- 
vergence. We describe this process in detail in Appendix A. 

Now, we consider the problem of finding a good struc- 
ture. We focus on the problem of discovering the struc- 
ture of the subutility functions within the clusters, and as- 
sume the number of clusters is given. (Our techniques eas- 

ily extend to the more standard problem of discovering the 
number of clusters.) We apply Bayesian model selection to 
this task. More precisely, we define a discrete variable S 
whose states s correspond to possible models, i.e., possible 
decompositions of the subutilities in the different clusters; 
we encode our uncertainty about S with the probability dis- 
tribution P{s). For each model s, we define a continuous 
vector-valued variable Yj, whose instantiations \|fj corre- 
spond to the possible parameters of the model. We encode 
our uncertainty about Y^ with a probability density func- 
tion P{\]fs I s), as described above. 

We score the candidate models by evaluating the 
marginal likelihood of the data set D given the model 
5 [12]. That is, we want to compute 

P{D \s) = JpiD\ x|;„5)P(\|;, I s)P{s)d\\is. 

The exact computation of the marginal likelihood is in- 
tractable for models with hidden variables. We approx- 
imate it using a scheme introduced by Cheeseman and 
Stutz [5]. This approximation is based on the fact that 
P{D I s) can be computed efficiently for complete data. If 
Dc is any completion of the data set D, we have 

P{D\s)=P{Dc\s) 
SP{D,\\ls\s)d\]ls 

fP{Dc,Ws\s)dyVs' 

Letting iffj be either an MAP or an ML estimate for Xj/j, we 
can apply the BIC/MDL approximation to the numerator 
and denominator, and get; 

logP(D I s) «logP(D^ I s) + logP{D I \ifs,s)-logPiDc \ V,,j) 

(In our case, the dimension of the complete data is the same 
as the dimension of the actual data, so the model complex- 
ity term cancels out.) We can compute the last two terms 
in this estimate fairly efficiently by running our EM algo- 
rithm from the previous section. Chickering and Hecker- 
man [6] showed that this approximation is surprisingly ac- 
curate, much more so than a direct use of BIC/MDL [6]. 

The first term, P{Dc \s),is the probability of a complete 
data set, where the distribution of the continuous variables 
in the network, conditioned on each instantiation of the dis- 
crete variable Type, is a multivariate normal distribution. 
Geiger and Heckerman [11] show that, in the case of com- 
plete data, the marginal likelihood has a closed form that 
decomposes (as usual) as a product over separate famillies 
in the model. We omit the (straightforward) details. 

Given a scoring function, we can apply standard tech- 
niques for finding a high-scoring structure. We use a greedy 
hill-climbing search with random restarts. Our search 
space operators modify the subutility structure of each type 
separately. An operator can add a variable to an existing 
subutility function, delete a variable from a function, or in- 
troduce a new subutility function with a single variable. We 
evaluate each candidate successor structure by running EM 
on it, and then scoring it using the Cheeseman-Stutz ap- 
proximation to the Bayesian score. 



5   Using the Model for Utility Elicitation 

There are many ways to use the model we learn to facilitate 
utility elicitation and improve the quality of the results. 

The most obvious use is simply to use the model as a 
guide to the range of utility functions within the population. 
In particular, our model incorporates a built-in measure of 
confidence. When we assess a new user's utility function, 
we can immediately discover if he or she is an "outlier" — 
a person with an atypical utility function. We can ask such 
a person additional questions to make sure that there was 
no error in the process. 

A somewhat deeper use of the model, along the same 
lines, is for smoothing the results of the utility elicitation 
process for a particular individual based on trends in the 
population as a whole. Given the amount of noise in the 
utility elicitation process, smoothing of this type is likely 
to be very useful in getting robust utility estimates. 

We can also use the model in a much more funda- 
mental way to change the entire utility elicitation process. 
For (conditionally) additive decompositions, Keeney and 
Raiffa [15] describe a utility elicitation procedure which 
exploits the structure to reduce the number of questions 
asked. A separate scale is established for every utility func- 
tion component and the user is asked a series of questions 
about its parameters. At the end, a new set of assessments 
must be made to discover the scaling constants. This pro- 
cedure has become a gold standard in many applications. 

This method cannot take advantage of the more general- 
ized factorizations allowed by our algorithm. We propose 
an alternative procedure which is general enough to han- 
dle all factorizations. When we assess the utility function 
of a new user, we only need to ask as many questions as 
the number of parameters in our model. The simplest way 
to choose the outcomes to assess is to convert the projec- 
tion matrix to the reduced row echelon form and discard 
the outcomes corresponding to the rows consisting entirely 
of zeros. Once the values of all the subutility functions are 
known, we can compute the utility values for the remaining 
outcomes. It would be good practice to double check that 
the chosen decomposition really matches the new user's 
utility function structure by asking a few more "redundant" 
questions and comparing the answers with those predicted 
by the function we had computed. 

This procedure can also be modified to utilize the model 
in a more principled way. We can view the utilities elicited 
for different outcomes as evidence in the distribution de- 
fined by the model. We can then use standard probabilistic 
inference to compute the distribution over the user's subu- 
tility functions. The more utilities we elicit, the more ev- 
idence we have, the more certain we are about the actual 
value of the user's subutility functions. We can apply tech- 
niques such as conditional mutual information or variance 
reduction to decide, at each point in time, which utility elic- 
itation question is likely to be the most informative about 
the subutility variables. We can also make principled deci- 
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Figure 1: Best decomposition for Visual Analog Scale (a) 
and Standard Gamble (b). 

sions on when to stop the elicitation process by considering 
our uncertainty about these variables. 

Finally, we can use probabilistic models of the utility 
function as the basis for a more targeted process of utility 
elicitation. In a given decision making task, the utilities 
of different outcomes typically influence the decision, and 
the resulting expected utility, to radically different extents. 
Most simply, some outcomes may have very low probabil- 
ity in the current setting, so their utility is largely irrelevant. 
Having a distribution over the utility functions in the pop- 
ulation, we can compute the value of information of every 
elicitation question; we can then focus our efforts on those 
that have the highest impact on our actual decision [4]. 

6   Experimental Results 

We tested our approach on both real and synthetically gen- 
erated data. 

Our primary dataset consists of utility functions elicited 
in a prenatal diagnosis study performed by [17]. All study 
subjects were recruited from the University of Califor- 
nia at San Francisco (UCSF) Prenatal Diagnosis Center. 
Study subjects were recruited from a counseling session for 
women who have not yet decided which prenatal diagnos- 
tic test to undergo, or, in some cases, whether to undergo 
prenatal diagnosis at all. 

Out of 70 subjects we selected 51 who completed the 
entire interview, which involved assessing utilities for 22 
outcomes using two elicitation methods: standard gamble 
(SG) and visual analog scale (VAS). These two methods 
are known to produce very different utility values, thus we 
treated the two sets of utilities as two distinct databases. 
We treated the values of all the outcomes the women were 
not asked about as missing. 

We searched the space of 1-, 2- and 3-cluster models. 
The best models we learned for our two databases were in 
both cases 3-cluster models. They are presented in Fig- 
ure 1. The nodes correspond to utility attributes in our 
domain: testing (T), Down's status (D), pregnancy loss 
(L), knowledge (K) and future pregnancy (F). Additive 
and conditional additive independence corresponds to ver- 
tex separation. While the size of the database does not al- 
low us to treat our models as representing the true structure 
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Figure 2: Learning curves for several models. Figure 3: Least-squares projection vs. MAP projection 

of the utility functions in the population, some of the corre- 
lations found are very interesting. For example, the corre- 
lation between the utilities for pregnancy loss and utilities 
for Down's status and future pregnancy are highly intuitive. 

We note that, in both cases, structures having multiple 
clusters received substantially higher scores than structures 
having a single cluster. Furthermore, structures where the 
different clusters had different decompositions scored more 
highly than structures where all clusters used the same de- 
composition. This supports our hypothesis that different 
subpopulations exist, and have different decompositions. 

We also tested our algorithm on synthetic data. In our 
artificial domain, we had 3 utility attributes, one ternary 
and two binary, and 12 outcomes. We had three ba- 
sic structures: fully additive; structured, in which u{p) = 
Mi(Xi,X2) -fM2(-^2,^3); and fully connected (no indepen- 
dencies). We generated 10-20 distributions for each struc- 
ture, using different parameters. 

In one cluster tests, we were always able to recover 
the structure of the original distribution. For the addi- 
tive model, the correct structure was chosen after seeing 
at most 2 data points. (This result was to be expected given 
the well-known bias towards simpler structures in Bayesian 
learning.) For the structured model, the number of samples 
needed ranged from 100 to 750. For the fully connected 
model, we needed 2(H)-500 samples. 

In two-cluster tests, small amounts of data (10-100 sam- 
ples) always resulted in a model with one fully connected 
and one fully additive structure, regardless of the underly- 
ing distribution. Given more data (1000-5000), we were 
able to learn either the correct structure or one differing by 
only one variable's presence or absence in a subutility func- 
tion. We obtained these results for models with the same as 
well as with differing decompositions in the different clus- 
ters. 

We also tested our algorithm as a density estimator. For 
these tests, we used a domain with 4 attributes, one ternary 
and three binary. We had two structures: one fully ad- 
ditive and one structured in which u{p) = u\{Xi,X2) + 
U2{X2,X-}) + Ui{X2,X4). We created several 1- and 2-cluster 
models, with the same decomposition in different clusters 

in some models and different decompositions in other mod- 
els. The learning curve tests are presented in Figure 2. As 
the number of samples grows, the learned parameters gen- 
erally seem to converge to the generating distribution. 

Finally, we tested the smoothing effect of using param- 
eter priors in our algorithm. After learning the parame- 
ters of the model (using the structure our data was gener- 
ated from), we computed the values of the weight vector 
w, using least-squares projection and MAP projection (as 
described in Section 3) for the samples in oiu- test set. We 
compared these values to the true weights w, used to gen- 
erate these samples. Figure 3 shows the results on 1- (solid 
lines) and 2-cluster (dotted lines) structured models. The 
upper curve in both cases corresponds to the least-squares 
projection, the lower to MAP projection. The error for 
MAP projection is not only lower, it also decreases more 
rapidly. 

7   Conclusion and Extensions 

This paper introduces a new approach to acquiring and us- 
ing preference information. Treating utilities as random 
variables allows us to deal in a principled way with the un- 
certainty inherent in utility assessments. It also helps us 
utilize any prior knowledge we may have. 

We have presented an algorithm for learning a proba- 
bilistic model of the utility functions in a population of 
users. Our approach uses Bayesian learning techniques, 
and utilizes some of the same principles that have been used 
successfully in structure search for probabilistic models. 

Our approach allows us to discover the factorization 
structure of the utility functions appropriate for a given do- 
main. It accommodates a wide range of possible factoriza- 
tions, including those corresponding to additive, condition- 
ally additive, and generalized additive independence. 

Our approach is significantly more expressive than the 
naive linear-regression approach in several respects. First, 
it allows more general notions than simple additive inde- 
pendence; these are far more realistic assumption in many 
domains. Second, it explicitiy accounts for different clus- 
ters of users that may use different decompositions. Indeed, 



our approach discovers interesting structure in the prenatal 
diagnosis domain of [17], where the traditional linear re- 
gression model failed to do so. 

The statistical learning perspective also has other bene- 
fits. By learning a statistical model of utilities in the popu- 
lation, we are able to associate a "confidence" in our assess- 
ment of an individual's utility: if it is extremely unlikely 
given our model, perhaps fatigue or some other source of 
noise interfered with the elicitation process. We can also 
use the model to "smooth" our estimates in a user's utility 
function, reducing the effects of noise. Finally and most 
importantly, we can use this statistical model to substan- 
tially ease the elicitation process (see [4]). 

There are several interesting extensions of this line of 
work that we would like to pursue. So far, most work (in- 
cluding ours) has focused on notions of independence at the 
level of variables. In probabilistic settings, this notion has 
been refined to that of context-specific independence [3], 
which allows independence of two variables X and Y in 
the context of a particular value z of a third variable Z, but 
not in the context of a value z' for Z. An analogous no- 
tion can also be defined for utilities. We hope to extend 
our approach to handle these more refined factorizations of 
utility functions. In another extension, we hope to capture 
relations between utility variables and other variables. For 
example, it has been observed that people who have expe- 
rienced an outcome tend to assign it a higher utility value 
than those for whom the outcome is imaginary [18]. This 
type of correlation can be represented very naturally as a 
dependence in our probabilistic model; we hope to extend 
our approach to handle this type of situation. 
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A   EIVI Computation 

A Normal-Wishart prior defines a distribution over the 
mean and covariance matrix of a Normal distribution. It 
is parameterized by: a precision matrix R,; a number 
P; > wi, - 1; a mean vector X,; and a number v, > 0. Es- 
sentially, R, and |3, define a Wishart distribution w{R,,^,) 
over m, x m, matrices Q,. The conditional distribution of ^ 
given Q, is a Gaussian with mean X, and covariance VjQ,"'. 



The conditional distribution of vectors y given //, and Q, 
sampled from this distribution is a Gaussian with mean n, 

and covariance VtQT^ ■ 
The Normal-Wishart distribution is conjugate to the 

Gaussian distribution. In other words, if we have a 
Normal-Wishart prior (/?f, P^jXf, v?), and we observe vec- 
tors y[l],...,y[^ from the associated Gaussian, then the 
posterior distribution over the parameters is also Normal- 
Wishart, with the following update rule: 

V, 

S, 

Rt 

-     vO 

1    I 

v°X» + ^y 

vf-l-^ 

-    po 

S(y[y]-y)(y[7]-y)^ 
7=1 

v?-l-£ 
(X?-y)(X?-y)^ 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

In our setting, we assume that the parameters /i,,S, of 
P(W, 11) are distributed Normal-Wishart with parameters 
(i?f,P{',X°,vf). We also assume that the variance a^ as- 
sociated with all of the variables Uo is distributed one- 
dimensional Wishart with parameters pf, vf and ri°. p,, 
YJ and Tlf correspond to /?r) Pr and v, in the distribution over 
W, and their update rules are analogous to update rules 7, 
8 and 5 respectively. 

To do inference with this model, we need to marginalize 
out the parameter prior and obtain a distribution over the 
domain variables only. Given a Normal-Wishart parameter 
distribution (^,,P,,X,,v,), the distribution over W, given t 
is an n dimensional t distribution, which can be approxi- 
mated using a multivariate Gaussian. For the type-specific 
distributions, we get: 

/i,    =   A,, 

Sr    = 
v,-l-l 

v,-(P,-m,-l) R, 

For the variance a^ we set 

fi, + i 
tir-{Yr-2)' 

The marginalization for a Dirichlet distribution over the 
type, with hyperparameters a,, is the standard one: 6, = 
a,/(S,'a,/). 

When applying EM to our model, the parameters to be 
estimated are ej,/i,,Zt and a} for every t. The hidden vari- 
ables are T and W,. In order to complete the data, we 
must compute P{T[j],yit[j\ \ u[y],para/n5). We marginal- 
ize the parameter prior, as we just described. The result is 

a Gaussian distribution P(W,,U 11). For each t, we com- 
pute P(W, I r,u[;]) and the marginal P{v\j] 11). We also 
compute the posterior probability of the different types as 
P{t\n[j])^P{t)-P{nmt). 

Using these probabilities, we can easily compute the (ex- 
pected) sufficient statistics required for the update of our 
various parameter priors. For the Dirichlet, we merely need 

the expected count N{t) = S;P(^ I "W)- Por the various 
type specific Gaussians, we must compute the expected 
value of X, and 5,. Intuitively, we have to take tiie expec- 
tation over uncountably many "completed" data cases — a 
continuum of possible completions for each j. Fortunately, 
this turns out to be easy. The key is that the posterior dis- 
tribution over Wr[7] given f is a multivariate Gaussian with 
mean/i,[j] and covarianceS,[j]. Let7t,[y] denoteP(f | u[j]); 
intuitively Ttjy] is the extent to which the yth sample be- 
longs to type t, and therefore the extent to which it influ- 
ences the estimate of its parameters. It is straightforward to 
verify that 

1  ^ 
y/  =   jE^'W'^W 

Finally, we must compute the expected empirical vari- 
ance St needed to update p, and in turn of. Simple linear 
algebra shows that, if W, is distributed Gaussian with mean 
H,[j] and variance Ii/[y], then U* = A,W, is distributed 
Gaussian with mesaA,Hj[j] and variance Y,[7] =/4fEf[y]Af. 
Thus, we get that 

s,    =    J:n,[j]'ZiMo,o)[j] + i{A,n,[j])o-Uof) 
;=i 

and 

p, = pj' + i,+ 
■r]fn£ 

^YMJ]iiAtli,[J])o-iio, .-. ^2 

o  j=l 

Essentially, the empirical variance has components for 
different data cases j (which determines P(W,[y] | r)), and 
outcomes o. The contribution for a type t is weighted by its 
probability. For each j and o, there is a contribution for the 
difference between the mean oft/* and the observed utility 
for outcome o, and a contribution for the inherent variance 
oft/;. 

We can now use these expected sufficient statistics in 
place of the exact sufficient statistics in Equations (4), (5), 
(7) and (8). This gives us new estimates of the posterior 
over the parameters relative to the completed data. We 
then marginalize the posterior to induce new parameters, 
and continue. 


