

AFRL-IF-RS-TM-2003-2
In-House Technical Memorandum
February 2003

COMMON PITFALLS IN F77 CODE CONVERSION

Walter A. Koziarz

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TM-2003-2 has been reviewed and is approved for publication.

APPROVED:
 STEVEN L. DRAGER, Technical Advisor
 Advanced Computing Architecture Branch
 Information Technology Division
 Information Directorate

 FOR THE DIRECTOR:
 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2003

3. REPORT TYPE AND DATES COVERED
In-House Technical Memo, June 2001 – June 2002

4. TITLE AND SUBTITLE

COMMON PITFALLS IN F77 CODE CONVERSION

6. AUTHOR(S)

Walter A. Koziarz

5. FUNDING NUMBERS

PE - 637550
PR - 558T
TA - PR
WU - OJ

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/IFTC
26 ELECTRONIC PKY
ROME, NY 13441-4514

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFRL-IF-RS-TM-2003-2

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTC
26 ELECTRONIC PKY
ROME, NY 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TM-2003-2

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Walter A. Koziarz/IFTC/315-330-2536

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Differences between recognized standardization, i.e. ANSI standards and common usage ‘de-facto’ standards,
occasionally lead to incompatibilities and inconsistencies. These often impede efforts to compile and execute
supposedly standard software in a different hardware and software environment than that in which it was originally
created/targeted. One such instance is described herein as a service to persons who may one day be called upon to
perform similar code porting. The code addressed in this example performs a statistical analysis of the background
clutter content of imagery data. This analysis can be used to pre-select appropriate digital filtering algorithms to de-
emphasize the predominant background and other clutter data. The original input data is RADAR imagery, but the
statistical analyses are applicable to sources such as acoustical and video data as well. Code examples are included
as appropriate to illustrate changes required.

15. NUMBER OF PAGES
27

14. SUBJECT TERMS
software code conversion, code porting

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

List of Example Code Fragments ii
Acknowledgements iv
Summary 1
Typographic Conventions 1
Introduction and Background 2
Methods, Procedures, and High-level Discussion 2
 Absence of structured data support 3
 Default ‘MXUNIT’ of 99 4

Absence of Data Translation and Variable-
Expressions in FORMAT Statements 4

Conclusions 5
Reference 6
Appendices 7
 Structured Data Issues 7

Larger Input/Output Unit Specifier 12
Data Translation 13
Keeping Your Fortran Programs Portable 17
Is it “FORTRAN” or “Fortran”? 19

Symbols, Abbreviations, and Acronyms 20

 ii

List of Example Code Fragments

Code Fragment 1 Extended Fortran 77
Original extended Fortran 77
record code construction 8

Code Fragment 2 ANSI Fortran 77
Use of two arrays to duplicate functionality of
the record in the code fragment Excerpt 1 9

Code Fragment 3
Alternate form ANSI Fortran 77
duplicates functionality of
the statements in code fragment 2 9

Code Fragment 4
Example showing usage of STRUCTURE to
create data structure “foo” 10

Code Fragment 5
Illustrating use of RECORD with the
previously defined data structure “foo” 10

Code Fragment 6
One possible alternate form implementing the
equivalent variable definitions 11

Code Fragment 7
Extended Fortran 77 illustrating use of ‘DECODE’
within the legacy code 13

Code fragment 8A
Example DECODE with fixed formatting 14

Code fragment 8B
Example READ with fixed formatting
identical functionality to fragment above 14

Code Fragment 9 ANSI Fortran 77
Illustration of error checking utilized in ‘DECODE’
work-around function (ensures 1 ≤ ‘index’ ≤ 20) 15

 iii

List of Example Code Fragments Continued

Code Fragment 10 ANSI Fortran 77
‘computed goto’ 15

Code Fragment 11 ANSI Fortran 77
Illustrates repetitive code structure
utilized by the ‘DECODE’ replacement 16

 iv

Acknowledgements
The author wishes to acknowledge the work of Mr. Keith Dittl, a summer student employee in
The Advanced Computing Architectures Branch of the Air Force Research Laboratory. Mr. Dittl
typed and debugged much of the ANSI Fortran 77 code required to replace the non-ANSI
equivalents within the existing source code files. The author also wishes to acknowledge Mr.
Zenon Pryk for his valuable assistance in the use and application of standard development tools
in the LINUX environment.

 1

Summary
Differences between recognized standardization, i.e. ANSI standards and common usage ‘de-
facto’ standards, occasionally lead to incompatibilities and inconsistencies. These often impede
efforts to compile and execute supposedly standard software in a different hardware and software
environment.

One such instance is described in detail herein as a service to persons who may one day be called
upon to perform similar code porting. Three difficulties representative of those that may be
encountered are analyzed in-depth to illustrate changes required. These were the absence in
GNU Fortran 77 (used interchangeably with “g77” herein) of structured data support via
STRUCTURE and RECORD, a default limit of 100 (0-99) input/output units, and retention of
DECODE with variable format length. The code alterations ranged from simple editing of unit
specifiers to implementation of specialized functionality provided in extended Fortran but absent
in ANSI Fortran 77 or GNU Fortran 77.

The foundation of this code port effort is an in-house developed clutter characterization
algorithm. Following its development, several additional individuals utilized and altered the
original program, wrapping the algorithm with varying main program routines structured for
individual requirements. Ultimately the algorithm was modified into a parallel processor hosted
code. This program performs statistical analyses of the background clutter content of imagery
data. The results can then be used to preselect appropriate digital filtering algorithms to de-
emphasize the predominant background and other clutter data. The input data processed by the
original program is RADAR imagery, but the statistical analyses can also work with additional
sources such as acoustical and video data. The parallel processor code-variant was selected
under the High Performance Computing to be re-hosted on a PC-based (Beowulf) cluster
computer. This cluster has Linux as its operating system and the GNU software tools as its
development environment. Ostensibly written in Fortran 77 and utilizing Message Passing
Interface (MPI) for process communication, it appeared readily portable to any parallel
processing system with Fortran 77 and MPI availability. This proved not to be the case and will
be examined below as the significant work-arounds applied to this particular piece of code are
described. The three examples presented below were selected for their impact on time consumed
in identifying the source of an error reported by the compiler or logic flaw and developing an
appropriate resolution. The criteria for selection of the illustrative examples was not complex
issues, but instead the subtle and time-consuming. Some familiarity is assumed on the part of the
reader with Fortran in general and GNU Fortran 77 in particular.

Typographic conventions
Title of external documents: Bold Times New Roman Italic
Quoted material from an external document: Standard Times New Roman Italic
Reference to identifiers, etc. within body text: Standard Times New Roman Italic
Fortran 77 keyword in body of text: BOLD TIMES NEW ROMAN CAPITALS
Example code fragments: Courier New 10 point
Fortran 77 keyword in code fragments: Bold Courier New 10 point

 2

Introduction and Background
Difficulties of varying severity are often encountered while porting source code from one host
environment to another even when the code in question is authored in a language as well
understood and as well established within the scientific community as Fortran 77. The case in
point addresses a legacy piece of software, authored in non-ANSI-standard Fortran 77, that had
previously undergone numerous modifications with varying degrees of in-line comments and
little else for documentation. Combined with industry-standard, but not ANSI-standard,
extensions to the Fortran 77 language used by interim programmers porting to a computing
environment utilizing a strict ANSI Fortran 77 was time-consuming and difficult. This technical
memo intends to provide insight from information gained through experience to facilitate future
code porting efforts.

This memo derives directly from the project described above. The discussions and in-depth
analyses are general so as not to tie too closely to a single application, but rather to provide a
collection of generally applicable information. It is well to describe some common aspects of
resolving standard versus non-standard software issues as background before delving deeply into
the examples. The first step is to attempt to compile the original source file(s). Successful
compilation is unlikely, but not impossible. Be aware, however, that successful compilation
does not indicate the resulting executable will be logically correct. An example of this situation
is included herein. The error messages generated by the compiler provide clues to portions of
code requiring editing, but do not necessarily precisely locate erroneous code. This is a subtle
and very significant point. Some knowledge of the original and intended language semantics is
necessary to successfully identify the true sources of compile-time errors. Be aware that
compiler errors are often cascading, one actual syntax error resulting in the generation of
numerous subsequent error messages. Always begin with the first error reported, identify the
cause, edit as needed, recompile, and continue this pattern until an error free compile is achieved.
Reference to the target language processor documentation is essential in determining the best
method by which to troubleshoot these errors. Approaches will vary according to actual products
and code in use, but the Free Software Foundation’s documentation for GNU Fortran 77 includes
examples for common work arounds necessary when converting extended Fortran 77 to GNU
Fortran 77. This document is available on the World Wide Web and the URL is provided in the
References section of this memo. Reiterating, address compiler errors one at a time beginning
with the earliest error and attempt compilation following each edit session. The preceding
material summarizes one viable generalized approach to resolution of incompatibilities
encountered.

Methods, Procedures, and High Level Discussion
The GNU g77 Fortran compiler did not compile the source code received for this porting effort
without errors due to incorporation of non-ANSI Fortran 77 constructs as well as the absence in
g77 of one feature of ANSI standard Fortran 77. Proceeding methodically through the sequence
of first locating the identified line that is the target of the earliest-occurring error message
reported by the compiler, identifying the purpose of the statement or function, researching the
best method of providing identical processing with available language elements, testing the

 3

replacement code, inserting the tested lines into the source file, and finally recompiling to ensure
that error message is no longer reported. These steps can be generalized as follows:

1) Attempt compilation
2) Identify the portion of source code to which the error is related
3) Determine the purpose of the original statement(s)
4) Determine appropriate substitution of code to provide the required result
5) Test the substitute code and ensure that range testing or error mitigation is addressed
6) Incorporate the tested substitute code into the original source and repeat Step 1 as

necessary
This sequence is similar to a reasonable approach to debugging any program; but it differs in that
language elements absent in one implementation versus another are the source of these errors
rather than typography. It is well to use the practice of commenting-out original source file lines
rather than deleting them until the new code is deemed logically correct. Examination of the
code constructs in the files comprising the as-received legacy source code and the alterations and
work-arounds utilized will highlight this discussion. Excerpts from the Using and Porting GNU
Fortran (1), Sun Microsystems Workshop Documentation: Fortran 77 Language Reference
(2), and Keeping Your Fortran Programs Portable (3) documents will be interspersed as
necessary to illustrate discussions. World Wide Web links to these documents are provided in
the References. The next three sections will examine the incompatibilities that were most time
consuming to rectify. These three sections are written for persons familiar and experienced with
Fortran. Detailed and tutorial treatments of these issues, with coding examples, are included as
appendices.

Absence of Structured Data Support
This difficulty results from the absence in g77 of the STRUCTURE, and RECORD keywords
found in later revisions of Fortran and many extended implementations of Fortran 77. The
benefit afforded by these language elements is code readability, ease of definition, and clarity
during subsequent use of the data structures. The GNU documentation (3) states the following:
“This set of extensions is quite a bit lower on the list of large, important things to add to g77,
partly because it requires a great deal of work either upgrading or replacing libg2c.” While
this may be true, their absence does hamper code portability in those cases where a previous
author had access to these language elements and chose to utilize them. A successful work-
around involved placing the data originally in the record into a DATA statement, and using an
implied-read DO loop construct to perform the assignment of values. Two such constructs were
used as the original record consisted of two arrays.

The difference the programmer must be aware of when utilizing this work-around is the change
to the subsequent usage of the resultant data structures. The extended Fortran example results in
creation of a record structure consisting of one or more arrays. Elements of the array(s) are
identified via a “record-name.array-name” convention with an appropriate index into the array.
The ANSI Fortran approach is to declare the required number of arrays to mimic the original
record and simply utilize the arrays in the normal manner. This does place an added burden on
the programmer to track usage of these arrays without benefit of the former record name. Please
refer to Appendix 1 for in-depth treatment of this material.

 4

Default ‘MXUNIT’ of 99
This is a subtle and counter-intuitive effect of performing a default installation of GNU g77
development tools under LINUX. It is reasonable to presume virtually all g77 development
environments were prepared using the default settings during software installation and will
exhibit this problem. The observed effect is the result of the default limit on input/output (I/O)
unit specifier; a maximum value for I/O unit specifier of 99 exists in a standard, unedited,
installation of GNU g77 development tools under LINUX. For those unfamiliar with Fortran, a
unit-specifier is a numeric label assigned to one of an input device, an output device, or a file.
Subsequent input or output actions rely on the numeric label to uniquely identify the file or
device. One may edit a libg2c source-file macro named MXUNIT, in the file
“f/runtime/libI77/fio.h” in the g77 source file directory structure to a value larger than the default
of 100 (recall a maximum of 100 yields 0-99 as legal unit identifiers; 1000 should suffice in all
reasonable instances) prior to installation of the compiler. This fact is not clearly evident in the
portions of the installation instructions for the g77 development tools. The work-around chosen
ensures all input/output unit specifiers are less than 100. Obviously, in the event a large number
of I/O units were required, a reinstallation of the g77 compiler would be necessary. This issue
was, in this example, solved once the origin of the cryptic error message: ‘illegal unit number’
issued at run-time was determined. The solution selected was identification of I/O unit specifiers
and replacing three-digit specifiers with two-digit specifiers and inclusion of comments at each
edited location reflecting original specifier and replacement specifier. Please refer to Appendix 2
for additional detail.

Absence of Data Translation and Variable Expressions in FORMAT Statements
This is the last of the purely-Fortran issues encountered. It is a two-part difficulty. The first part
is that the g77 compiler does not include support for the DECODE statement. In this example
DECODE simplified data extraction from an external initialization file used with the subject
source code. Secondly, g77 does not provide support for variable expressions in FORMAT
statements; this is included in the ANSI standard F77 language. Variable expressions in
FORMAT statements allow field widths to be assigned as necessary at runtime. For example,
FORMAT(I<J>) will provide I/O formatting for one integer with a number of digits specified
by the value of “J”, where “J” may be any integer-valued expression. The Fortran 77 Language
Reference (http://www.ictp.trieste.it/~manuals/programming/sun/fortran/f77rm/4_statements.doc.html - 3560)
states more formally: “In general, any integer constant in a format can be replaced by an
arbitrary expression enclosed in angle brackets.” The Using and Porting GNU Fortran
document offers the following insight: “g77 doesn't support `FORMAT(I<J>)' and the like.
Supporting this requires a significant redesign or replacement of libg2c”
(http://www.delorie.com/gnu/docs/g77/g77_618.html) and “g77 doesn't support ENCODE or DECODE”
(http://www.delorie.com/gnu/docs/g77/g77_625.html). Since the code to be ported incorporated
DECODE statements, which further required a variable format expression, resolving this issue
proved cumbersome. The solution described below is a reasonable, effective, and
straightforward work-around.

 5

The functionality of DECODE was required; but was complicated by the need to selectively
apply DECODE to DOUBLE PRECISION or INTEGER or CHARACTER data which
further required variable format lengths. A suitable parsing subroutine was available in the
legacy code and returned the format length (as an integer) as well as the data (as CHARACTER
data type with a number of characters equal to the format-length). Inspection of the legacy code
provided data type information for each DECODE call. This solution made use of direct file
input/output and a straightforward code architecture consisting of several FORMAT statements
and an associated several READ statements. This was repeated for each of the required data
types. Since these instructions were executed only once per run in the set-up portion of the code,
little effort was applied to optimization. Please refer to Appendix 3 for greater detail and code
examples.

Conclusions
Legacy code conversion, while seeming simple to the uninitiated, can be very time-consuming.
This is especially true when the starting point is code written for a specific platform, including a
specific and extended (non-standard) language processor, and the resulting code must be
platform-independent. Several examples illustrating the reduction of non-ANSI standard code to
ANSI standard were examined. These portions of code were selected from a larger conversion
task as these were time consuming to recognize and resolve. They do not represent exceptionally
complex issues, but rather realistic situations. The motivation remains clear since a great body
of scientific software written in any of a number of non-ANSI Fortran 77 dialects does exist.
Therefore, it is desirable to edit portions of this legacy to benefit from the efforts of previous
algorithm research and development on faster computing machinery.

 6

References

(1) Online document -- Using and Porting GNU Fortran
Reference material specific to GNU Fortran 77
(http://www.delorie.com/gnu/docs/g77/g77_toc.html)

(2) Online document -- Sun Microsystems Workshop Documentation:

 Fortran 77 Language Reference
Reference material specific to one of many defacto-standard Fortran compilers, representative of
the extended language elements addressed here-in
(http://www.ictp.trieste.it/~manuals/programming/sun/Fortran/f77rm/index.html)

(3) Web page document – Keeping Your Fortran Programs Portable
Reference material with tips to aid portability of code
(http://fusion.gat.com/docview/portable.html)

(4) Online document -- The frequently asked questions (FAQ) at the Fortran Company’s web
site
(http://www.fortran.com/fortran/FAQ/)

 7

Appendix 1
Structured Data Issues
The STRUCTURE and RECORD keywords available in many extended Fortran 77
implementations provide support for defining data structures in a convenient manner. The
related data are accessed in a straightforward method and program readability as well as
maintainability are improved. Two pieces of code immediately below are extracted from the
original source code and the revised g77-compatible code. They are functionally similar,
differing in method to access an arbitrary value within each data representation. The differences
will be highlighted with additional code examples and reference material.

Presented below, as code excerpt 1, is the definition of the data structure named “keywords” and
the declaration of the record named “kywrd” which is of type “keywords”. The result of
executing these statements was creation of a data structure comprised of two unique arrays which
are accessible as “kywrd.klen(index)” and “kywrd.name(index)”. The value contained in the
INTEGER variable “ientries” was initialized elsewhere in the code and equaled 28, as there
were 28 entries in both the arrays. The resulting arrays were utilized during initialization to
receive data from an external initialization file. These data subsequently were passed to a series
of DECODE calls. More detail relating to DECODE can be found in Appendix 3. The
ampersand (&) in the code segments below is a continuation character. Fortran historically
placed a limit of 72 characters on a source code line. This limit arose from the 80 column cards
onto which code was once punched. The first five columns were, and remain, reserved for
labels. Column 6 is reserved for a continuation character; this is used in instances where the
source code lines are too long and/or where the author wishes to improve code readability.
Columns 7 through 72 were reserved for Fortran statements. Columns 73-80 held a sequence
number intended to facilitate automated card re-ordering.

 8

 structure /keywords/
 integer klen(ientries) /7,7,9,5,8,3,6,5,5,9,2,2,6,6,5,
 & 7,6,6,4,5,4,6,5,4,4,7,12,7/
 character*12 name(ientries) /
 & 'infile1 ',
 & 'infile2 ',
 & 'data_type ',
 & 'nsame ',
 & 'ave_tech ',
 & 'nid ',
 & 'njoint ',
 & 'nptsb ',
 & 'ntype ',
 & 'n_ref_est ',
 & 'al ',
 & 'bl ',
 & 'gamma1 ',
 & 'gamma2 ',
 & 'itype ',
 & 'npoints ',
 & 'nstart ',
 & 'answer ',
 & 'ifit ',
 & 'idfam ',
 & 'nans ',
 & 'nidans ',
 & 'idist ',
 & 'par3 ',
 & 'par4 ',
 & 'errfile ',
 & 'conf_ellipse',
 & 'samples '/
 end structure
 record /keywords/ kywrd

Code Fragment 1 Extended Fortran 77
Original extended Fortran 77

record code construction

The statements comprising code excerpt 2 provide the same utility, i.e. initialization of two
arrays named (note subtle difference in naming from previous discussion) “klen(index)” and
“name(index)”; the prefix (“kywrd.”) is absent. As above, the value assigned to “ientries” is 28.
The DATA statement initializes the 28 elements of the klen array with the 28 integer values
following the implied DO loop, (klen(i), i = 1, ientries). The implied DO is an alternative form
for the sequence of statements shown in code excerpt 2a. The resulting functionality is identical
between the two examples.

 9

C comment – the arrays klen and name are declared elsewhere
C as – INTEGER klen(ientries)
C CHARACTER *12 name(ientries)
 DATA (klen(i), i=1, ientries)
 & / 7,7,9,5,8,3,6,5,5,9,2,2,6,6,5,7,6,6,4,5,4,6,5,4,4,7,12,7 /
 DATA (name(i), i=1, ientries) /
 & 'infile1 ', 'infile2 ', 'data_type ',
 & 'nsame ', 'ave_tech ', 'nid ',
 & 'njoint ', 'nptsb ', 'ntype ',
 & 'n_ref_est ', 'al ', 'bl ',
 & 'gamma1 ', 'gamma2 ', 'itype ',
 & 'npoints ', 'nstart ', 'answer ',
 & 'ifit ', 'idfam ', 'nans ',
 & 'nidans ', 'idist ', 'par3 ',
 & 'par4 ', 'errfile ', 'conf_ellipse',
 & 'samples ' /

Code Fragment 2 ANSI Fortran 77
Use of two arrays to duplicate

functionality of the record in the
code fragment Excerpt 1

C comment – alternative form without IMPLIED DO
C comment – the arrays klen and name are declared elsewhere
C as: INTEGER klen(ientries)
C CHARACTER *12 name(ientries)
 DATA klen
 &/ 7,7,9,5,8,3,6,5,5,9,2,2,6,6,5,7,6,6,4,5,4,6,5,4,4,7,12,7 /
 DATA names
 & / 'infile1 ', 'infile2 ', 'data_type ',
 & 'nsame ', 'ave_tech ', 'nid ',
 & 'njoint ', 'nptsb ', 'ntype ',
 & 'n_ref_est ', 'al ', 'bl ',
 & 'gamma1 ', 'gamma2 ', 'itype ',
 & 'npoints ', 'nstart ', 'answer ',
 & 'ifit ', 'idfam ', 'nans ',
 & 'nidans ', 'idist ', 'par3 ',
 & 'par4 ', 'errfile ', 'conf_ellipse',
 & 'samples ' /

Code Fragment 3

Alternate form ANSI Fortran 77
duplicates functionality of

the statements in code fragment 2

The preceding lines of Fortran code represent the translations actually required and performed.
They illustrate the real code substituted and verified. Following is a more generalized and formal
discussion of the work around for similar situations. The Fortran 77 Language Reference (2)
(http://www.ictp.trieste.it/~manuals/programming/sun/fortran/f77rm/4_statements.doc.html - 4672) provides the
very concise description “A STRUCTURE statement defines a form for a record by specifying
the name, type, size, and order of the fields that constitute the record. Optionally, it can specify

 10

the initial values.” A structure, once defined, is a template for a record. The record is a
generalization of a variable or an array; it differs from an array in that the fields of the record (as
defined by a structure) can be of different data types while the elements of an array must all be
the same data type. The example below illustrates this material.

C Comment – use of STRUCTURE statement
 STRUCTURE /foo/
 INTEGER ifoo1
 INTEGER ifoo2 /9999/
 REAL rfoo1
 REAL rfoo2 /99.99/
 CHARACTER*16 cfoo1 /’SOMETHING’/
 END STRUCTURE

Code Fragment 4
Example showing usage

of STRUCTURE to
create data structure “foo”

The above defines a structure with 5 fields (ifoo1, ifoo2, rfoo1, rfoo2, and cfoo1). Three of the
fields are initialized: ifoo2 is initialized to contain an integer value of 9999, rfoo2 is initialized to
contain a real value of 99.99, and cfoo1 is initialized to contain a character value of
‘SOMETHING’ (the quotes are not part of the value). The fields can be any valid Fortran data
type: scalars, vectors, or arrays. Once the structure is defined as above, records may be defined
as below.

C Comment – use of RECORD statement
C with previously-defined structure (foo)
 RECORD /foo/ bar1, bar2, lots(10)

Code Fragment 5
Illustrating use of
RECORD with the
previously defined

data structure “foo”

Both of the variables, bar1 and bar2 are records which have the foo structure and lots is an array
of 10 such records. Each such record has its ifoo2 initially set to 9999, its rfoo2 initially set to
99.99, and its cfoo1 initially set to SOMETHING. Porting the data structures resulting from
execution of the RECORD statement above to a strict ANSI F77 environment requires,
obviously, one new variable of appropriate data type to correspond to each of the variables
declared in the structure “foo” for each record created. The resulting increased number of
independent variable identifiers can be cumbersome and care must be used in selecting names to
ease future maintenance of the program. The code fragment below illustrates the necessary
translation of the above. Notice this author’s combination of the existing variable name (‘ifoo1’,
for example) and the record name (‘bar1’, for example) into ‘bar1ifoo1’, etcetera. Individuals

 11

may select any naming pattern, but should, as a service to those who may subsequently edit the
code use comments liberally to explain such variable names.

C Comment – replacement code for the structure and record example
 INTEGER bar1ifoo1, bar1ifoo2 = 9999
 REAL bar1rfoo1, bar1rfoo2 = 99.99
 CHARACTER#16 bar1cfoo1 = ‘SOMETHING’
C Comment – replacement for record “bar1”
C
 INTEGER bar2ifoo1, bar2ifoo2 = 9999
 REAL bar2rfoo1, bar2rfoo2 = 99.99
 CHARACTER#16 bar2cfoo1 = ‘SOMETHING’
C Comment – replacement for record “bar2”
C
 INTEGER lotsfix, lotsifoo1(10), lotsifoo2(10)
 REAL lotsrfoo1(10), lotsrfoo2(10)
 CHARACTER#16 lotscfoo1(10)
C Comment – must assign values as present in the original structure
 DO 1 lotsfix = 1, 10
 lotsifoo2(lotsfix) = 9999
 lotsrfoo2(lotsfix) = 99.99
 lotscfoo1(lotsfix) = ‘SOMETHING’
1 CONTINUE
C Comment – replacement for record “lots”

Code Fragment 6
One possible alternate
form implementing the

equivalent variable definitions

As mentioned above, the variable name selection can ease the burden of readability and
maintainability. The above information and examples should prove to be sufficient to allow
translation of these code types to ANSI Fortran 77. Further information can be found in
reference (2).

 12

Appendix 2
Larger Input/Output Unit Specifier
The following paragraph is excerpted from Using and Porting GNU Fortran(1)
(http://www.delorie.com/gnu/docs/g77/g77_529.html) and explains very well the edit required in the
event code to be ported requires an I/O specifier greater than 99. Editing I/O unit specifiers
within the source code is preferable to performing the edit described below. Note that various
system configurations may place additional restriction on the maximum number of files that may
be open simultaneously.

“As distributed, whether as part of f2c or g77, libf2c accepts file unit numbers only in the range
0 through 99. For example, a statement such as ‘WRITE (UNIT=100)’ causes a run-time crash
in libf2c, because the unit number, 100, is out of range. If you know that Fortran programs at
your installation require the use of unit numbers higher than 99, you can change the value of the
‘MXUNI’' macro, which represents the maximum unit number, to an appropriately higher value.
To do this, edit the file ‘f/runtime/libI77/fio.h’ in your g77 source tree, changing the following
line: #define MXUNIT 100. Change the line so that the value of ‘MXUNIT’ is defined to be at
least one greater than the maximum unit number used by the Fortran programs on your system.
(For example, a program that does ‘WRITE (UNIT=255)’ would require ‘MXUNIT’ set to at
least 256 to avoid crashing.) Then build or rebuild g77 as appropriate. Note: Changing this
macro has no effect on other limits your system might place on the number of files open at the
same time. That is, the macro might allow a program to do ‘WRITE (UNIT=100)’, but the
library and operating system underlying libf2c might disallow it if many other files have already
been opened (via OPEN or implicitly via READ, WRITE, and so on). Information on how to
increase these other limits should be found in your system's documentation.”

No code examples are required or presented for this appendix.

 13

Appendix 3
Data Translation
Data translation in this appendix refers to the inclusion in the legacy source code which provided
motivation to write this tech memo the DECODE instruction. The frequently asked questions
(FAQ) at the Fortran Company’s web site (http://www.fortran.com/fortran/FAQ/tech.html - 3.3.2)
“3.3.2) What are ENCODE and DECODE statements, and how are they translated
 to standard Fortran? How can I convert numbers to character strings
 (and vice-versa)?

 ENCODE and DECODE are vendor extensions to Fortran (invented in
 the sixties, long before X3.9-1978 added internal I/O to the
 language) which are most often used to convert data between
 numeric and character representations. They may be viewed as
 formatted writes to (ENCODE) or reads from (DECODE) memory.
 The standard-conforming alternatives are internal write and
 internal read statements respectively.”
Internal read statements provided the fix for this extension. There was another part to this
problem. The legacy code utilized variable expressions within the DECODE statement. This is
significant because GNU F77, as previously shown, does not support variable expressions within
FORMAT statements. Code fragment 7 shows the use of DECODE. The parameters of the
instruction len2, field2 are an integer and a character representation of an integer value,
respectively. The ‘(i<len2>)’ is the variable expression within this statement and the
complicating factor. This particular variable expression provides formatting for an integer with
length, of course, determined by len2; character and floating point were also required with
similar format length determination. This requirement for three data types was satisfied in the
work around by writing three functions, one for each data type. Code fragments 8A and 8B
show the substitution that can be used when variable expression formatting is not required.

 decode (len2, '(i<len2>)' , field2) ntype_z

Code Fragment 7
Extended Fortran 77

illustrating use of ‘DECODE’
within the legacy code

Comparing Code Fragment 8A with Code Fragment 8B one sees the similarity of form. In both
cases, ‘chr1’ is the desired data represented as text contained within a character variable. The
value held by int1 in Code Fragment 8A is equal to 4, as 4 is the format length set by the (i4) in
the parameter list of the decode call. Note in Code Fragment 8B the absence of int1. The result
of executing either of these code fragments is assignment of the equivalent numeric value held as
character data in chr1 to the 4-digit integer variable int2. These examples are sufficient to allow
replacement of fixed format length decode instructions. The program utilizes variable format
lengths and requires the additional work to address this omission from GNU F77.

 14

 decode (int1, '(i4)' , chr1) int2

Code fragment 8A
Example DECODE

with fixed formatting

 read (chr1, 4) int2
4 format (i4)

Code fragment 8B
Example READ

with fixed formatting
identical functionality

to fragment above

The above examples and discussion conclude the steps necessary to translate decode into read
statements when the format length is not variable. Where the format length is variable, this
author chose a significantly different approach. Examination of the original source file revealed
presence of a subroutine to return the format length. Inspection further revealed that under no
condition possible in the program would that length ever exceed twenty, nor would it ever be less
than 1. In general, the range of variable format length can be determined apriori just as it was in
the case-study example. Some method to check the range of the length variable should be
provided and the arithmetic IF was selected. This conditional test takes the form IF(expression)
label1, label2, label3 where expression is any valid arithmetic expression, either integer or
floating point, lable1, label2, and label3 are target statement labels and control is transferred to
label1 if expression evaluates to a result less than 0, to label2 if expression evaluates to exactly
0, and to label3 if expression evaluates to a result greater than 0. Code Fragment 9 is taken from
the case study program and is a portion of the decode work around for integer value variables. A
Fortran FUNCTION subprogram was, as is evident from the declaration of function idecode in
the first line of the code fragment, chosen to implement the required processing. Inspection of
this code reveals the hard-coded limit of 20 as the maximum format length, hence the declaration
of field as character data type of length 20. Additionally, inspection of the conditional tests
reveal index is being verified as 1 ≤ index ≤ 20. This can be generalized somewhat, but for the
requirement of the rest of the function, use of the limits determined through inspection of the
program may as well be used. Code Fragment 10 is the first line in the normal processing flow
following verification that the index is in a valid range.

 15

 function idecode(field, index)
 character field*20
C COMMENT – conditional test: ‘is the expression in parentheses
C less than 0, equal to 0, or greater
C than 0’
C control will be transferred to the appropriate labeled
C statement: (expression)<0 – left-label (line number)
C (expression)=0 – center-label
C (expression)>0 – right-label
 if (index) 997, 997, 998
998 continue
 if (index-20) 999, 999, 997
999 continue

[normal processing sequence]
.
return

997 continue
[appropriate error handler]
.
return
end

Code Fragment 9 ANSI Fortran 77
Illustration of error checking
utilized in ‘DECODE’ work-

around function (ensures
1 ≤ ‘index’ ≤ 20)

Persons familiar with C, Pascal, and other comparatively modern programming languages are
familiar with the CASE and SWITCH conditional transfer structures. Fortran 77 has a similar
facility in the computed goto statement. The variable index is presumed here to be the same
variable which was tested in code fragment 9 and contains an integer value between 1 and 20.
The result of executing this computed goto is transfer of control to statement label 1 if index = 1,
to statement label 2 if index = 2, to statement label 3 if index = 3, and so on through index =20.
It is obvious the computed goto as shown in code fragment 10 may be extended as needed to
accommodate the required range of possibilities. Note, however, there is no requirement for the
statement labels to progress from 1 to n as was chosen for convenience here. The statement label
to which processing will transfer is determined by position, i.e. an index value of 4 will transfer
to the fourth statement label in the list.

 goto (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20) index

Code Fragment 10 ANSI Fortran 77
‘computed goto’

With an understanding of the computed goto described above, examination of the code fragment
11 below reveals the processing associated with each target of the goto. This repetitive construct
was necessitated by g77 lacking variable format length. The code fragment below will,

 16

assuming the omitted statements are supplied, provide the integer decode functionality required
by the program. It is a simple matter to change format descriptor to f (for floating point) or to a
(for character) while retaining the rest of the code. This work around required insertion of 100
lines of code to replace 3 lines of code.

1 read (field, 100) idecode
100 format(i1)
 return
2 read (field, 200) idecode
200 format(i2)
 return
3 read (field, 300) idecode
300 format(i3)
 return
4 read (field, 200) idecode
400 format(i4)
 return

[several lines omitted for brevity]

19 read (field, 1900) idecode
1900 format(i19)
 return
20 read (field, 2000) idecode
2000 format(i20)
 return

Code Fragment 11 ANSI Fortran 77
Illustrates repetitive code structure

utilized by the ‘DECODE’ replacement

The floating point code will require identical structure, but every instance of idecode must be
replaced by fdecode (or other appropriate identifier), every I in the format field must be replaced
with f followed by an appropriate floating point format designator. Floating point numeric
formats are defined by the form ‘TotalDigitsPresent.DigitsToRightOfPoint’. For example,
100.25 is of format f5.2; 5 total digits with 2 to the right of the decimal point. Therefore,
inspection of the data to be utilized will be necessary before implementing this fix. The creation
of the text decoding function is simpler. One need declare the function as character type and
change idecode as necessary to match new name and change the I in the format statements to a
indicating alphabetic data.

 17

Appendix 4

Keeping Your Fortran Programs Portable
The following excellent information is reproduced from the frequently asked questions at the
Fortran Company’s website (4).
“Despite widespread efforts at standardizing programming languages and operating systems,
software portability persists as one of the most time- and labor-consuming problems encountered
when dealing with computers. The great majority of programming in the Fusion environment is
done in Fortran, so at least conversion between languages is rarely a[sic] issue. On the other
hand, there are so many dialects of Fortran, referencing so many libraries in so many operating
systems on so many hardware platforms, that portability is still a major issue for us in the
Fusion community.
The recent and ongoing conversion of the CRAY supercomputers at NERSC from the CTSS to the
UNICOS operating system, though relatively painless from the users' point of view, brought up
the question of software portability once again. What follows are some general programming
guidelines that, if adhered to, will make life easier for future conversions - and there will always
be future conversions.
There is no one "standard" Fortran, but Fortran-77 and, to a lesser degree, the new Fortran-90,
come close. Writing strictly in Fortran-77, which is supported by nearly every compiler vendor,
is a good first step in making your programs portable. Constructs like ENCODE/DECODE,
NAMELIST, and packed Hollerith strings, though widely implemented, are not in fact part of the
standard and should be avoided if possible. ENCODE/DECODE is particularly easy to avoid, as
the equivalent functionality is available in the (standard) internal READ/WRITE. NAMELIST
has no standard equivalent, but its implementation is so widespread that using it rarely causes
problems.
On the other hand, packed Hollerith strings create problems not only because Hollerith is not
supported in Fortran-77 (though most compilers have at least this extension), but also because
the number of characters that can be packed into a word depends upon the machine architecture,
often resulting in the need for significant recoding. (For example, VAXes hold four characters,
while CRAYs hold eight.) Another complication arises when Hollerith text is stored in both
integer and real variables - strange things can happen on some machines when one is assigned
to the other. More generally, any code which is wordsize-dependent, involves bit manipulation
(masking and shifting, for example), or depends upon the particular implementation of floating
point arithmetic or storage, should be avoided or at least isolated.
Because most porting difficulties arise in the I/O, that is where coding should be kept most
conservative. Using the full form of the formatted READ and WRITE statements:
 READ (NIN , 10) iolist
 WRITE (NOUT, 20) iolist
where NIN and NOUT are variables or parameters, is far preferable to using list-directed I/O,
PRINT statements, and other shortcuts. And having the I/O unit numbers in a common block
helps even more.
Finally, libraries are a major source of non-portablility[sic], with graphics libraries one of the
chief culprits. We in Fusion are standardizing on the NCAR Graphics package - new
applications should use it whenever possible. Math libraries like NAG and IMSL are

 18

indispensible[sic] but will cause serious problems if your codes depend heavily upon them and
they are not available at the target site. And runtime library routines are usually operating
system-specific, although most systems have a subset of these in common. If you embed runtime
library calls in your programs you are almost guaranteeing that these sections will have to be
reworked when the code is ported, unless you are willing to write your own replacements for the
referenced routines.
Of course, not all code need be portable. If you are creating an application that is very closely
tied to a particular architecture, such as the Screen Management Facilty[sic] in VMS on the
VAX, then your code will be so hopelessly non-portable that there is no point in writing it
conservatively.
Most modern Fortran-77 compilers have extensions to the standard, but of course you are under
no obligation to use them. These compilers usually will have a switch that can be turned on to
test for Fortran-77 compliance. Warning messages are then issued when a non-complying
statement is encountered. Most of us routinely use language extensions without even knowing it -
running your code through the checker can be a rude awakening! Fortunately, most Fortran-77
manuals highlight the language extensions so you know what you are getting into.”

 19

Appendix 5

Is it “FORTRAN” or “Fortran”?
There was an effort to “standardize” on spelling of programming languages just after F77
became a standard. The rule: if you say the letters, it is all caps (APL, C); if you pronounce it as
a word, it is not (Cobol, Fortran, Ada). See, for example the definitive article describing Fortran
77 in the Oct 1978 issue of the Communications of the ACM. Of course, there are those who
still think it is not truly Fortran if not written with all caps.

 20

Symbols, Abbreviations, and Acronyms

ANSI -- American National Standards Institute

Fortran -- FORmula TRANslator

Fortran 77 -- A specific and standard version of Fortran

FSF -- Free Software Foundation

g77 -- GNU Fortran 77 compiler

gcc -- GNU C compiler

GNU -- A project of the FSF, it is not truly an acronym but, rather, is a palindrome

for GNU is Not Unix

MPI -- Message Passing Interface

≤ -- is less-than or equal-to

