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1. INTRODUCTION 

Conventional classical supercomputers will likely reach their computational and/or feasible 
commercial cost limit in 20-30 years. It te extremely unlikely that many of the most difficult 
and important non-linear field theories Uke Navier-Stokes, QCD, General Relativity, and 
quantum gravity will be solved before these limits are reaiized. By far the most promising 
way forward appears to be through quantum computer development. It is also generally ac- 
knowledged that quantum computers will provide the mcBt powerful system for simulation 
of quantum mechanics. 

This paper develops primarily type-II quantum computer lattice-gas algorithn^ because of 
the apparently formidable unsolved technological obstacle of establishing completely globally 
phase-coherent type-I quantum computation. In particular the Weyl ID, 2D, and 3D and 
Dirac ID lattice-gas equations for relativistic quantum point particles are given. 

Section two contains a derivation of the orthonormal properties of the W matrices. Section 
three dkcusses the lattice-gas algorithms of the ID Weyl and Dirac equations in the context 
of the papers of [BialynicM-Birula, I., 1994] and [Meyer, D. A., 1996]. Explicit lattice-gas 
algorithms, first order solutior^, and implementations are presented for a specific represen- 
tation. In section four an explicit first order lattice-gas solution of the 2D Weyl equation in 
a specific representation k prMented. The exact two component spinor solution to the 2D 
Dirac equation is given, A numerically untestedresult and possible methods for obtaining 
the 2D Dirac lattice-gas solution is included. Imection five an explicit first order lattice-gas 
solution to the 3D Weyl equation is presented in a specific representation. 



2. ORTHOGONALITY AND UNITARITY CONDITIONS OF THE DISCRETE 
WEYL AND DIRAC PROPAGATOR 

The Weyl equation describes the spinor of a rest-massless relativistic quantum point object 
while the Dirac equation describes the spinor of a massive relativistic quantum point object. 
For the Weyl solution, [Bialynicki-Birula, I., 1994] postulates a two component spinor </• on 
a manifold with a body-centered 3D discrete EucUdean space lattice and a Newtonian time 
with the following Huygens-like propagation for each discrete update time r. W{h) is a 2x2 
matrix operating at space point f+h, 

<l>ir,t + r) = '^W{h)<f>ir + h,t), (1) 
ft 

but for the Dirac solution W becomes a 4x4 matrix D and 4> becomes a four component 
spinor <^ ^ . Each of the members of the set of eight primitive lattice vectors h start at f* 
and end at one of the eight corners of the cube defined by the first octant of the coordinate 
system originating at r. 

To determine the algebra of the 2x2 W matrices first consider two equal-time independent 
spinors: 

<f>{ri,t + r)   =   J2^{hi)<l>{r1 + hr,t) (2) 
hi 

h2 

Now consider the overlap sum: 

Thus for set elements satisfying h ^ h'. the above Kronecker delta function allows the prod- 
uct of partially overlapping [n ^ TJ) spinors to be non-trivial. But we will demand, as 

^All tilded operators following are 4x4 matrices and non-tilded matrices are 2x2. 



Bialynicki-Birula did, that the sum of these products is trivial. The Kronecker delta also 
defines a maximum separation for non-trivial overlap that occurs when h = -h', e.g. at 
opposite corners of the first octant. Equivalently, and using Eq. (2): 

j:/ih,t + r)<f>{rut + T)S,^^^.^^j^_f;,   = (4) 

h 1 ,h2 ,fi ,r2 

Hence: 

J2<t>Hfi + h-h',t + T)<l>{fi,t + T)     = (5) 

_ E WKH'W{hi)^\r'i ^h-h' + h2,i)m + hi,t). 
hi,h2,Ti 

The normalization condition, 

^ <f>Hf,t)<j>if,t) = 1 (6) 
f 

can be re-written for the new time t -1- r as 

E #(r1 + K - h',t + T)<l>in,t + r) = %_^-,„ (7) 
fi 

and hence: 

E ^^('1 + ^-^' + 4tMrl + ftl,t) = tf^_,,^^^,- (8) 

Thus , we have equivalently firom Eqs. (5), (7), and (8) the orthonormal conditions for the 

W matrices: . .,7-^ rxrUCxrtr/^M- 

hi,hi 

And equivalently the orthonormal condition are more simply: 

k-9,0 = E wHh + 9- h)w(h). (10) 
hi 



3. THE ONE-DIMENSIONAL WEYL AND DIRAC EQUATIONS 

Bialynicki-Birula's ID Weyl algoritlim and Meyer's ID Dirac algorithm [A/et/er, D. A., 1996], 
e.g. Eq. (1), both have the same hnpHcit form, 

(f>{x,t + T) = Wi-h)(j){x-h,t) + W{h)4>{x + h,t) (11) 

but the explicit matrix elements are different. Though it is not by design, Meyer's matri- 
ces (equation (17) of [Meyer, D. A., 1996]) substituted for Bialynicki-Birula's ID matrices 
reproduces the required orthonormality and Bialynicki-Birula's helicity relation, 

W{-h) = (TyW*(h)ay. (12) 

The Bialynicki-Birula ID algorithm (see Eqs. (39) and (40) of [Bialynicki-Birula, I., 1994]), 
for the Dirac equation yields the same correct result as Meyer's because the four-spinor 
difference update equations decouple into two independent particle and anti-particle two- 

component spinor update equations, each equivalent to Meyer's result. Writing 0 = ( f ^ ), 
K'PR J 

expandmg and collecting components the difference update equations are: 

((l>Lix,t + T)\_(Cos{e)   iSin{e)\fi>L{x + h,t)\ ,,„. 
\<l>R{x,t + r)J      \iSin{e)   Cos{9))\4>R{x-h,t)J ^^^^ 

Now by using a streaming operator Sx, 

„   ( <f>L{x,t)\   _    ( (l> L{X + h,t) \ 
^'[4>n{x,t))   =    [4>R{x-h,t)) (14) 

one can re-write the lattice-gas equation (13) as: 

(<l>L{x,t + T)\     _     / \(^Lix,t)\ 
[<l>n{x,t + T))   -   l^   ^')[<l>nix,t)) (15) 

with C given by the coUision operator shown in(13) above. UsingMathematica[W^o//ram,5., 
2001] this lattice-gas algoritlmi can be implemented using symbohc terms which can then 
be expanded in terms of the lattice spacing. The following symbolic psuedo-code difference 
scheme has lattice period r = 2 and the amplitudes (f) are initialized at time t=0: 

if mod[n,2] =0; 
<I>L[1, n] = Cos{e)(j)L[l, n - 1] + iSin{e)(j)R[l, n - 1]; 



<t>Rll,n\ = iSin{e)q>iXl,n- 1] + Cos{e)<l)ji[l,n - 1]; 
if mod[n52] = 1; 

#i[i,n] = #i[l + l,n-l]; 
<^iiP,n] = #ijp-l,n-l]; 

do l,l,numberofgridpoints 
#i[l,0]=pWL[l]; 
4^R[hO]=phiR{l]] 

end do 

Once the above has been executed, the Mathematics [Wolfram, S., 2001] command 

ToWe[{#i[l, nl<f>R[l, n]}, {t, 0,2}], (16) 

or some equivalent form of Do loop then produces the values of # for all the integer t values. 
These tern^ then must be expanded to first order in the lattice spacing usmg fourier series 
(see equation (24) for an example). 

For # = 0 Bialynicki-Birula's Weyl equation algorithm m recovered and to first order in 
the lattice spacmg & (e.g. me approximations like ^^[1 -1,0] = ^L[1, 0] + fe#^^'°'[l, 0]), this 
reproduces the ID massless Weyl equation. Bialynicki-Birula's ID Weyl matric^ can be 
explicitly found from linear combinations of his P matrices: W(h) = (Fi + Pz)/2 and W(-h) 
= (^2 - Pi)/2. For the case 9 = me where e k an infinitesimal scalar the ID massive Dirac 
equation r^ults to first order in both e and the lattice spacing. This te, of courae, what Feyn- 
maa proved \Feynm.an, R. P. and Hibbs, A. R., 1965]. And, as required, the Weyl equation 
results for m=0 and this is mathematically equivalent to the case # = 0. Although there ap- 
peared no recognizable symbolic r^ult for a finite and non-trivial 6 Meyer giv^ some r^ults 
[Meyer, D. A., 1996] connecting non-trivial finite d values with finite velocity propagation. 

The Weyl equation and the Dirac equation can thus be modeled with the same algorithm 
but the Weyl model requires all finite matrix parameter values and the Dirac model requires 
some infinitesimal matrbc parameter values. Bialynicki-Birula's stated algorithms for the 
ID Weyl and Dirac equations are correct. Since it k not exactly clear how to interpret the 
Dirac algorithm using non-infinitesimal $ values one mmt choose some e magnitude that 
is sufficiently small for the precision required to reproduce the behavior of a Dirac object. 
Bialynicki-Birula's 2D and 3D algorithms behave similarly. 

One can derive the ID and 2D Dirac differential equations and the ID, 2D, and 3D Weyl 



differential equations by considering Dirac's equation 

he 
ihd tip = -7-a ■ Vip-hmc^/3ip (17) 

I 

where a and 0 are each replaced by one of the 2x2 Pauli matrices a^ and m=0 for the Weyl 
equation. Thus there are six possible representations, or equations, for the ID Dirac equation 
and three possible representations for the ID Weyl equation. The 'square' of each equation 
yields a Klein-Gordon equation. Only for the massive case in three space dimensions are 4x4 
matrices required for equation (17). [Jacobson, T. and Shulman, L. S., 1984] take a — a^ 
and /? = —cTx which gives 

he 
ihdtipi——T-dx'^i—mc^^2 

(18) 
he 

ihdtip2='—r 4'02—mc^ipi 
t 

These equations are solved to first order in both the lattice spacing and in e by the lattice-gas 
algorithm (15) and 

(cos{me)       isin{me)\ ,   . 
isin{me)       cos{me) j' ^   ' 



4. THE TWO-DIMENSIONAL WEYL AND DIRAC EQUATIONS 

As with Bialynicki-Birula we choose Wi = 1/2 Pi so the 2D W matrices are 

„,      1 / 1   0 ^   ...      1   / 0   1 \ 
^^ = 2(1   0r^'^ = 2  (0   1   )' (20) 

If 1    0\ 1   (0   -1 
2 l-l   0  i' "^^     2  10     1 

The 2D Weyl differential equation is obtained from Dirac's equation, (17), with m=0: 

he 
ihdtif=   . (a AiH-aydyip). (21) 

There are six possible representations, or equations, depending on which components of 0^ 
are substituted for which of a^ and Oy. One possible choice a^ = a^, ay = a^, gives the 
explicit equation 

(22) 
dtik2 = c(+a^#2 - dyij^). 

The following unitary lattice-gas algorithm reproduces this representation of the 2D Weyl 
equation to first order in lattice spacing: 

The exphcit result after one period r is given, i^ing Mathematical W^ol^om, S., 2001], by 

i(^i[i, m, T] - ct>L[l, m, 0])/e = -ifo(#i'''°' [I, m, 0] + 4>T'°^ [I, m, 0])/e, (24) 

where ^ and 5^ act as the streaming operator S from before but now act only on ths 
indicated variable.   The C matrices were determined algebraically by expanding out tb 



difference equation (21) and equating the corresponding matrix elements of relation (1) sub- 
stituted with the above 2D W matrices in (20): 

^" = ;^(1 i^)^'^''=7i(-i i)- (25) 

Then the helicity relation (12) yields 

W(K) W{-h) 
Wi W4 
W2 W3 
W3 W2 
W4 Wi 

Substitution of these 2 x 2 W matrices into equations (39) and (40) of [Bialynicki-Birula, I. 
1994] gives a four component difference equation for the 2D Dirac equation. 
The 2D Dirac equation is obtained from Eq. (17): 

he 
ihdtip = -T-(ai5xV + cnydyi/j) + Pmc^ip. (26) 

There are 3! possible representations, or equations, depending on which components of a* are 
substituted for which of ttj, ay and p. One possible choice a^ = ax, ay = Oy, and P = Og 
gives the explicit equation 

he 
ihdtrpi = — (9j;^2 - idyil)2) + mc^Vi 

1/ 

he 
ihdtil>2 = -ridxipi + idyih) - m(?'4>2. 

(27) 

The formal solution to Eq. (26) is obtained by determination of S for 

%h'{x',y',t') = Srp{x,y,t), (28) 



with the result: 

1 p-c 
lE + mc^ I     ^%      BW 

^^'    2mc ^+"-'        '■ (29) 

Bialynicki-Birula's 4x4 D matrices for 

4>if,t + T) = ^Dih)4,if+h,t) (30) 

are explicitly represented by: 

Di=4 

D,=4 

f Cos{me) 0 0 -iSm{m€)\ 
Cos{m€) 0 0 iSin{me) 
iSin{me) 0 0 —005(7716) 

\ iSin{me) 0 0 Cos{me)  ) 

(Cos{me) 0 0 iSin{me)   \ 
—Cos(me) 0 0 iSin{m€.) 
iSin{me) 0 0 Cos{me) 

\-iSin{me) 0 0 Cos{me)    J 

Do=- 

D4=-^ 

f 0 Cos{me)     iSin{m€) 0\ 
0 Cos{mt)   —iSin{me) 0 
0 iSin{me)     Cos{me) 0 

V 0 iSin{me)   -Cos{m€) O/ 

fO —Cos{me)   iSin{me) 0\ 
0 Cos(m€)     iSin{m€) 0 
0 —iSin{m€)   Cos{me) 0 

V 0 iSin{me)     Cos(me) 0/ 

(31) 

Since Bialynicki-Birula's difference equation for the 2D Dirac equation uses four-component 
spinors but the solution of the 2D Dirac equation mathematically only necessitates two- 
component spinors, a lattice-gas equation explicitly equivalent to Eki. (23) was postulated, 
again with 2x2 matrices, and thrae coefficients were equated to the coefficients of some two- 
component subset of Bialynicki-Birula's four-component spinor equation. The exact form of 
a free four-component Dirac spinor in 2D was solved and used as a guideliae for choosing 
the spinor components. Here are the positive and negative energy spinors in the rrat frame 
at t=0: 

Positive energy 

Qh ;p) = 
E + mc^ 

2mc^ 

1 
0 
0 u\v) = 

E + mc^ 
2m(? 

0 
1 

E+nu? 
\    0 

(32) 



Negative energy 

E + mc^ 
2mc2 

/  0    \ 

1 
0 

u'ip) 
E + mc^ 

I 

P-C 
E+mc^ 

0 
0 
1 

(33) 

/ 

It is interesting that for infinitesimal 9 values the elements of the rows of Bialynicki-Birula's 
D matrices have a similarity to the large and small magnitude elements of the fundamen- 
tal orthonormal Dirac spinors in the above shown 'large and small' representation and in 
the case of the null lightcone surface p^a;'' = 0. The resulting equations are inconsistent. 
Thus to obtain the lattice-gas representation of the 2D Dirac equation using 2x2 matri- 
ces one has to either guess, derive the explicit form of the 2x2 propagator solutions as 
Feynman[Schweber, S. S., 1986] attempted (and remains currently unsolved), or try to "re- 
verse engineer" Bialynicki-Birula's non-unitary four component spinor difference equation. 
Doing the latter did yield some unitary results. The lattice-gas equation obtained is: 

U^{x,y,t) = ^{x,y,t + T), 

where f/ is a 4x4 matrix and 

U = {S^OlSy + GS^ChSy + S^O^SyG + GS^O4SyG)S0 

vith 

A _({A^+ A,)/2   -{Dr + D2)/2\     - _ / (Ai + ^2)72    (Dj + r>2)/2 \ 
""^ ~[iCi- C2)/2     {B, - B2)/2 ) ' ^' -\(Ci - C2)/2   -{B, - B2)/2 j' 

A_({Bi + B2)/2     (Ci-fC2)/2\   ^ _(-{B, + B2)/2   (Cl + C2)/2^ 
^3     \^_p^_£>2)/2   {A^-A2)/2)'^'-[{D^-D2y2    (^ - ^2)72 j ' 

and. 

-{0"     5rj'    ^~{   0      Sy)^     ^'- 

/l   0   0   ON 
0   0   0   1 
0   0   10 

Vo 1 0 0/ 
and. 

G = G   0 
0   G 

),.ithG=(j   J)   , 

(34) 

(35) 

(36) 

(37) 

(38) 

10 



and, 

A   ^f<^os(TOe)   iSin{me)   \ _( Cos{me)      iSin{me) \ .„ . 
'     \iSin{me)   Cosime)   j ' ^ ^ ~ ^-iSm(me)   -Cosime)) ' ^^^' 

g  ^(-iS%n{m,e)   Cos{mt)\    ^   ^f -iSin{mt)     CosimeY 
^     \-Cos{me)   iSin(me)j '     ^     ^ Cos{m€)     -iSin(me) 

Q  ^f iSm{me)   Cosime) \    p   _(-iSin{me)   -Cos{me) 
^     \ Cosime)   iSin{me) }'     ^~\ Cos{me)      iSin{me) 

D =((^o^i'^^)   -iSinime)\    j^  ^( -Cosime)    iSm(me) 
^     \iSinime)   -Cosime)) '     ^     \ iSinime)    -Cosime) 

with G a swap matrix for a two-component spinor, and S^ and Sy are the i^ual streaming 
operators that act on two-component spinors. All component matrices of tJ are unitary. 
Since the streaming operators do not have explicit form in this representation the following 
assignments develop the unitarity of U. 

The following operator equalities are found to hold: 

6IO4 = -OlOs (40) 
O36I = -OiOl 

By coMidering terms from U^U = 1, we are led to determine the constants a and b in: 

d|04 = -6IO3 = aSyGS^v (41) 

O3OI = -OiOl = bS^GSl 

Using Eq. (41) in U gives the following terms^ 

b 
GSASy = -\sASy (42) 

SASyG = -i^OsOlOa^j, 

GS^O^SyG = -\S:,6zO\dzSy, 
ab i       j 

11 



which when substituted into U gives, with a=2 and b=l: 

U = -S^OpSySo (43) 

Op = O3OIO3. 

This U is unitary and is thus suitable for type-II quantum computers. 

12 



5. THE THREE-DIMENSIONAL WEYL AND DIRAC EQUATIONS 

The 3D Weyl differential equation is obtained from Dirac's equation, (17), mth m=0: 

he 
ihdtip = —a ■ Vilj (44) 

There are 3! possible representations, or equations, depending on which components of a^ 
are substituted for which components of ^. One possible choice aj, = a^, ay = a^;, and 
Oz = ay gives the exphcit equation 

(45) 
dti)2 = c{+d^%ij2 - dyi)i - id^ipi). 

The followmg unitary lattice-gas algorithm reproduces this 3D Weyl equation to first order 
in lattice spacing: 

-^  -{C,   S,   C,   Sy   C,   S^)\.)l\ (46) 

where ^, Sy, and S^ act as the streaming operators. The C matrices are determined alge- 
braically by expanding the two component spinor difference equation (46) and equating the 
corresponding matrix elements of equation (1) substituted with the 2x2 W matrices given 
m Eq. (12) of [Bialynicki-Birula, L, 1994]. These W's are simple multiples of the 2D W's 
used above. Three equivalent matrices are then: 

<^^ = -k(~"7 ^'If    " "^ ^'"1\1 = and C3 = Ca = C. (47) V2  \exp(-t^/4)   -exp{-iir/4)j' "^       ^        ^ ^ ^ 

Equation (46) solves our particular representation, (45), of the 3D Weyl equation. The 
lattice-gas solutions to the 3D Dirac equation may emerge from algebraic comparison similar 
to one of those stated above. The W matric^ required are supplied in Bialynicki-Birula and 
four component spinor lattice-gas matrices may be required. 

13 
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