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1. INTRODUCTION

Conventional classical supercomputers will likely reach their computational and/or feasible
commercial cost limit in 20-30 years. It is extremely unlikely that many of the most difficult
and important non-linear field theories like Navier-Stokes, QCD, General Relativity, and
quantum gravity will be solved before these limits are realized. By far the most promising
way forward appears to be through quantum computer development. It is also generally ac-
knowledged that quantum computers will provide the most powerful system for simulations
of quantum mechanics.

This paper develops primarily type-II quantum computer lattice-gas algorithms because of
the apparently formidable unsolved technological obstacle of establishing completely globally
phase-coherent type-I quantum computation. In particular the Weyl 1D, 2D, and 3D and
Dirac 1D lattice-gas equations for relativistic quantum point particles are given.

Section two contains a derivation of the orthonormal properties of the W matrices. Section
three discusses the lattice-gas algorithms of the 1D Weyl and Dirac equations in the context
of the papers of [Bialynicki-Birula, I, 1994] and [Meyer, D. A., 1996]. Explicit lattice-gas
algorithms, first order solutions, and implementations are presented for a specific represen-
tation. In section four an explicit first order lattice-gas solution of the 2D Weyl equation in
a specific representation is presented. The exact two component spinor solution to the 2D
Dirac equation is given. A numerically untestedresult and possible methods for obtaining

the 2D Dirac lattice-gas solution is included. Insection five an explicit first order lattice-gas

solution to the 3D Weyl equation is presented in a specific representation.




2. ORTHOGONALITY AND UNITARITY CONDITIONS OF THE DISCRETE
WEYL AND DIRAC PROPAGATOR

The Weyl equation describes the spinor of a rest-massless relativistic quantum point object
while the Dirac equation describes the spinor of a massive relativistic quantum point object.

For the Weyl solution, [Bialynicki-Birula, I., 1994] postulates a two component spinor ¢ on
a manifold with a body-centered 3D dlscrete Euclidean space lattice and a Newtoman time
~ with the following Huygens-like propagation for each discrete update time 7. W(h) is a 2x2

'matnx operating at space point 7+ h,

$(7t+7) = ZW(h)¢(r+h t), 1

but for the Dirac solution W becomes a 4x4 matrix D and ¢ becomes a four _component
spinor ¢ ! . Each of the members of the set of eight primitive lattice vectors & start at 7
and end at one of the elght corners of the cube defined by the first octant of the coordinate
system ongmatxng at 7.

To determine the algebra of the 2x2 W matrices first consider two equal-time independent
* spinors:

$(F,t+1) = S W(h)G( + i, t) | (2)
i;1 ‘ !

S t+7) = 3 WHE)S' (7% + bay t).
Fo

- Now consider the overlap sum:

Zq& (73, t+71)¢ ('rl,t+'r)6r~+h +F (3)

1 1"2

Thus for sét elements satisfying h # h’ the above Kronecker delta function allows the prod-
uct of partially overlapping ( 7y # 7, ) spinors to be non-trivial. But we will demand, as

1Al tilded operators following are 4x4 matrices and non-tilded matrices are 2x2.



Bialynicki-Birula did, that the sum of these products is trivial. The Kronecker delta also
defines a maximum separation for non-trivial overlap that occurs when h = -, eg. at
opposite corners of the first octant. Equivalently, and using Eq. (2):

Z (é’f( Fz’t+T}¢(F1’t+T)552,F1+E—f? = (4)

71, T2

> WHE)W (h)$h (75 + ha, (7 + iy, £)6

ra,ri+h~h',
h1,h2,71,73

Hence:
S o (Fr+h— Rt +7)p(Frt+1) = (5)

> WHR)W (RS (7 + b — B + Fi, )6 (55 + B, 1).

hi,h2si
The normalization condition,
2 'R ae(rt) =1 (6)
can be re-written for the new time ¢t + 7 as
S S A =Rt +1)p(F, t+7) = Siivo (7)
1

and hence:

Z éf(?‘-i -+ E - );;;} + h?z,t)é(?’_i + h;: t) = 5}:—!;‘-3— gz,h;x (8)
1

Thus , we have equivalently from Egs. (5), (7), and (8) the orthonormal conditions for the

trices: y 2
W matrices 5 R = Z‘ WT(hz)W(ha){Sf?—f?’-}-h},&;- ©)
h1,he

And equivalently the orthonormal conditions are more simply:

Shpo =3 WHhi+ R/ — R)W(k). (10)

hy




3. THE ONE-DIMENSIONAL WEYL AND DIRAC .EQUATIONS

Bialynicki-Birula’s 1D Weyl algorithm and Meyer’s 1D Dirac algorithm [Meyer, D. A., 1996,
e.g. Eq. (1), both have the same implicit form,

¢(z,t +7) = W(=h)p(z — h,t) + W(h)p(z + h,t) (11)

but the explicit matrix elements are different. Though it is not by design, Meyer’s matri-
ces (equation (17) of [Meyer, D. A., 1996]) substituted for Bialynicki-Birula’s 1D matrices
reproduces the required orthonormality and Bialynicki-Birula’s helicity relation,

W(=h) = o, W*(R) 0, (12)

The Bialynicki-Birula 1D algorithm (see Eqs. (39) and (40) of [Bialynicki-Birula, ., 1994]),
- for the Dirac equation yields the same correct result as Meyer's because the four-spinor
difference update equations decouple into two independent particle and anti-particle two-
- component spinor update equations, each equivalent to Meyer’s result. Writing ¢ = ( 2 L ),

R

expanding and collecting components the difference update equations are:

(3iin)- (&0 &9) () o

Now by using a streaming operator S,
¢ L(xy t)

Sz
( ¢ R(xi t)

_one can re-write the lattice-gas equation (13) as:
pr(z,t+71) ) _ ¢ L(z,t) |
(¢§(m,t+~r)) = (¢ s:) (¢§(m,t)) (15)

with C given by the collision operator shown in(13)above. UsingMathematica[ Wolfram,S.,
2001] this lattice-gas algorithm can be implemented using symbolic terms which can then
- be expanded in terms of the lattice spacing. The following symbolic psuedo-code difference
scheme has lattice period 7 = 2 and the amplitudes ¢ are initialized at time t=0:

(k)

_if mod(n,2] = 0;
¢ Lll,n] = Cos(0)¢L[l,n — 1] + iSin(8)¢r[l,n — 1];



¢ rll,n] = iSin(0)¢L[l,n — 1] + Cos(8)prll,n — 1];
if mod[n,2] = 1;

dLlln] =@l +1,n - 1];

¢ rll,n] = @[l — 1,n - 1];
do 1,1, numberofgridpoints

¢ L[1,0] = phiL(l];

¢ r[l,0] = phiR[l];
end do

Once the above has been executed, the Mathematica [Wolfram, S., 2001] command

T&éle[{gbdf, ?’P,], ¢’R[£sn}}7 {ts 0: E}L (16)

or some equivalent form of Do loop then produces the values of ¢ for all the integer t values.
These terms then must be expanded to first order in the lattice spacing using fourier series
(see equation (24) for an example).

For ¢ = 0 Bialynicki-Birula’s Weyl equation algorithm is recovered and to first order in
the lattice spacing 6x (e.g. use approximations like ¢ [l — 1, 0] = ¢r[l,0] + 52::;5531’3} [Z,0]), this
reproduces the 1D massless Weyl equation. Bialynicki-Birula’s 1D Weyl matrices can be
explicitly found from linear combinations of his P matrices: W(h) = (P, + Ps)/2 and W(-h)
= (P2 — P;)/2. For the case 6 = me where ¢ is an infinitesimal scalar the 1D massive Dirac
equation results to first order in both € and the lattice spacing. This is, of course, what Feyn-
man proved [Feynman, R. P. and Hibbs, A. R., 1965]. And, as required, the Weyl equation
results for m=0 and this is mathematically equivalent to the case 8 = 0. Although there ap-
peared no recognizable symbolic result for a finite and non-trivial 4 Meyer gives some results
[Meyer, D. A., 1996] connecting non-trivial finite 8 values with finite velocity propagation.

The Weyl equation and the Dirac equation can thus be modeled with the same algorithm
but the Weyl model requires all finite matrix parameter values and the Dirac model requires
some infinitesimal matrix parameter values. Bialynicki-Birula’s stated algorithms for the
1D Weyl and Dirac equations are correct. Since it is not exactly clear how to interpret the
Dirac algorithm using non-infinitesimal 8 values one must choose some € magnitude that
is sufficiently small for the precision required to reproduce the behavior of & Dirac ob ject.
Bialynicki-Birula’s 2D and 3D algorithms behave similarly.

One can derive the 1D and 2D Dirac differential equations and the 1D, 2D, and 3D Weyl




differential equations by considering Dirac’s equation

ihd ¢ = %c—a - Vip+mc? By | : (17)

- where a and [ are each replaced by one of the 2x2 Pauli matrices 3 and m=0 for the Weyl
equation. Thus there are six possible representations, or equations, for the 1D Dirac equation
and three possible representations for the 1D Weyl equation. The 'square’ of each equation
 yields a Klein-Gordon equation. Only for the massive case in three space dimensions are 4x4
matrices required for equation (17). [Jacobson, T. and Shulman, L. S., 1984] take a = o,
and # = —o, which gives

ih 0y =if Bathi— mciay

h
thOppy = *—,LE & Pa— mc*y

*" These equations are solved to first order in both the lattice spacing and in € by the lattice-gas
algorithm (15) and
' _ [ cos(me) isin(me)

a ( isin(me)  cos(me) ) (19)




4. THE TWO-DIMENSIONAL WEYL AND DIRAC EQUATIONS

As with Bialynicki-Birula we choose W; = 1 /2 P; so the 2D W matrices are

\ , 1 /(01

}5 HZ - 9 01 3 (20)
1 /0 -1

Jowe=s (67)

The 2D Weyl differential equation is obtained from Dirac’s equation, (17), with m=0:

ihO = 7’: (@ 2Bat+ 0y 8,1). (21)

There are six possible representations, or equations, depending on which components of 7

are substituted for which of o, and o,. One possible choice Qp = 0, Qu = 0, gives the
explicit equation

3;"’{91 = C("a@wl - y?ri’Z)

(22)
Orthy = c(+0,10e — Oyt1).

The following unitary lattice-gas algorithm reproduces this representation of the 2D Weyl
equation to first order in lattice spacing:

dr(z,y,t+7)\ _ é1(z,y,t)
(Giyiid)=( s o s) (el 2)

The explicit result after one period 7 is given, using Mathematica] Wolfram, S., 2001), by

pLllm, 7] = drfl,m, 0)) /e = —ids(6G 1, m, 0] + $309 [1,m, 0]) /e, (24)

where S; and S, act as the streaming operator S from before but now act only on the
indicated variable. The C matrices were determined algebraically by expanding out the




difference equation (21) and equating the corresponding matrix elements of relation (1) sub-
stituted with the above 2D W matrices in (20): ‘

bl a0

Then the helicity relation (12) yields
W(E) | W(=h)

W, W,
W, W3
W3 W,
Wy W1

Substitution of these 2 x 2 W matrices into equations (39) and (40) of [Bialynicki-Birula, I.
- 1994] gives a four component difference equation for the 2D Dirac equation.
~ The 2D Dirac equation is obtained from Eq. (17):

iho) = -hi—c(azaztb + 0,1 + Bmc*y. (26)

There are 3! possible representations, or equations, depending on which components of 3 are
substituted for which of a;, e, and . One possible choice o, = 05, oy = 0y, and f =0,
~ gives the explicit equation

B :
ROy = = (Bt — i6yhs) + mePy

| (27)

ihdph, = %(azwl +18,41) — mcyhy.

The formal solution to Eq. (26) is obtained by determination of S for
¥(a,y,t) = S(z,y,1), (28)




with the result:

= — 1 e
E + me? c E4mc?

Bialynicki-Birula’s 4x4 D matrices for

o(F,t+7) = 3 D(R)G(7+ h, 1) (30)
R
are explicitly represented by:
[ Cos(me) 0 0 —iSin(me) [ 0 Cos(me) iSin(me) 0
) _ 11 Cos(me) 0 0 iSin(me) b _ 110 Cos(me) —iSin(me) 0 (31)
Y72 | iSin(me) 0 0 —Cos(me) | “27 32| 0 iSin(me) Cos(me) 0]’
iSin(me) 0 0 Cos(me) / \ 0 iSin(me) —Cos(me) 0
Cos(me) 0 0 iSin(me) 0 —Cos(me) iSin(me) 0
P _1[—Cos(me) 0 0 iSin(me) s _ 110 Cos(me) iSin(me) 0
79 | iSin(me) 0 0 Cos(me) |’ 732 |0 —iSin(me) Cos(me) 0
\—iSin(me) 0 0 Cos(me) \0 iSin(me) Cos(me) 0

Since Bialynicki-Birula’s difference equation for the 2D Dirac equation uses four-component
spinors but the solution of the 2D Dirac equation mathematically only necessitates two-
component spinors, a lattice-gas equation explicitly equivalent to Eq. (23) was postulated,
again with 2x2 matrices, and these coefficients were equated to the coefficients of some two-
component subset of Bialynicki-Birula’s four-component spinor equation. The exact form of
a free four-component Dirac spinor in 2D was solved and used as a guideline for choosing

the spinor components. Here are the positive and negative energy spinors in the rest frame
at t=0:

Positive energy

1
E +mec? 0 . E + mc? 1
—lf= 2 _ | B meT
+




- Negative energy

‘ 0 Bt _ ‘

.3 E4mc® |25 .4 E + mc? EBmC ‘

w(p) = 2mc? 1 » GH(P) = 2mc? 0 (33)
0 1

It is interesting that for infinitesimal 6 values the elements of the rows of Bialynicki-Birula’s
D matrices have a similarity to the large and small magnitude elements of the fundamen-
tal orthonormal Dirac spinors in the above shown ’large and small’ representation and in
the case of the null lightcone surface p,z* = 0. The resulting equations are inconsistent.
Thus to obtain the lattice-gas representation of the 2D Dirac equation using 2x2 matri-
ces one has to either guess, derive the explicit form of the 2x2 propagator solutions as

- Feynman([Schweber, S. S., 1986] attempted (and remains currently unsolved), or try to *re-

verse engineer” Bialynicki-Birula’s non-unitary four component spinor difference equation.
Doing the latter did yield some unitary results. The lattice-gas equation obtained is:

- and,

qu‘;(xa v, t) ‘= 43(1, yit + T)’ ‘ ) (34)
where U is a 4x4 matrix and ' '
U = (5,0:5, + G5.0, 8, + 5,0:5,G + GS,0,8,G)$, (35)
| with ‘
o, __((A1+A2)/2 - D1+Dz)/2) (A1+A2)/2 (D1+D2)/2) (36)
—\(C C2)/2  (Bi— By)/2 (Ci—-C2)/2 —(B1-By)/2 )’
5 _((Bl+Bz)/2 (cl+02)/2) &, =( (B + By)/2 (C1+Cz)/2)
BTN =(Dy-Dy)/2 (A —A5)/2)° (D1 —Dy)/2 (A -A)/2 )’
~ and,
1000 |
. S, 0 - (8, 0 - 0001
Sﬁ(o s,) Sﬂ:( 0 s,,)* $%=1o0010] (87)
0100

10



and,
=Gt oo ) A2=( Sy SHG0) o
_ (—;S’zﬁ((mﬁ)) gosgmeg) B, =( EiSz’ﬂ(T;le) gosgmeg)
__( iSin(me) Cos(me) ) c —iSin(me) —Cos(me)
~\ Cos(me) iSin(me) |’ ~ 27\ Cos(me) iSin(me) )

Cos(me) -ﬁhﬂm@) Dzz(—{hﬂma a%ﬂmd)

iSin(me) —Cos(me) iSin(me) —Cos(me)

with G a swap matrix for a two-component spinor, and S, and Sy are the usual streaming
operators that act on two-component spinors. All component matrices of U are unitary.

Since the streaming operators do not have explicit form in this representation the following
assignments develop the unitarity of U.

The following operator equalities are found to hold:

0}04 = -0l03 (40)
030} = —0,0}.

By considering terms from U0 = 1, we are led to determine the constants a and b in:
0104 = —010; = a8,GSMW (41)
050} = —0,0} = b3,GS].

Using Eq. (41) in U gives the following terms,




* which when substituted into gives, with a=2 and b=1:

-5,0,5,5, ' (43)

This U is unitary and is thus suitable for type-II quantum computers.

12




5. THE THREE-DIMENSIONAL WEYL AND DIRAC EQUATIONS

The 3D Weyl differential equation is obtained from Dirac’s equation, (17), with m=0:
. hc
thop) = o Vi (44)

There are 3! possible representations, or equations, depending on which components of @
are substituted for which components of @. One possible choice o, = 0z, Qy = 04 and
o, = oy gives the explicit equation

Oy = c(=0g1)1 — Oyiha + 10,909)
(45)
O = c(+0:102 — Oty — 10,701).

The following unitary lattice-gas algorithm reproduces this 3D Weyl equation to first order
in lattice spacing:

‘75 (w,y,z,t+'r) _ ¢L(x1y3z>t)
(@ﬁ(x,y,z,ﬁm) =(C: 5. G 5, G Sm)(m(:c,y,z,t)) (46)

where S;, Sy, and S, act as the streaming operators. The C matrices are determined alge-
braically by expanding the two component spinor difference equation (46) and equating the
corresponding matrix elements of equation (1) substituted with the 2x2 W matrices given
in Eq. (12) of [Bialynicki-Birula, 1., 1994]. These W’s are simple multiples of the 2D W’s
used above. Three equivalent matrices are then:

1 (-exp(z‘:rr/él) — exp (im/4)

C1 :\/?,3 exp (—im/4) —exp (—é?f/4)) and G5 =Gy = (. (47)

Equation (46) solves our particular representation, (45), of the 3D Weyl equation. The
lattice-gas solutions to the 3D Dirac equation may emerge from algebraic comparison similar
to one of those stated above. The W matrices required are supplied in Bialynicki-Birula and
four component spinor lattice-gas matrices may be required.
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