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ABSTRACT 
We derive improved bounds on the number of fc-dimensional sim- 
plices spanned by a set of n points in R'^ that are congruent to 
a given fc-simplex, for fc < d - 1. Let f^ '{n) be the maximum 
number of fc-simplices spanned by a set of n points in R"* that 
are congruent to a given fc-simplex. We prove that /j (n) = 
0(„5/3 .20(a^(n)))_ y(4)(„) ^ 0{n^+n, A^\n) = 0(n^/3), and 

/^^'(n) = 0(TI^/**+^). We also derive a recurrence to bound 
fjf'^ (n) for arbitrary values of k and d, and use it to derive the 

bound fjfhn) = 0{n^/'^) for d < 7 and A; < d - 2. Following 
Erdos and Purdy, we conjecture that this bound holds for laxger 
values of d as well, and for fc < d — 2. 

1.   INTRODUCTION 
Let P be a set of n points in R"*, ajid let Ao be a pre- 

scribed fe-dimensional simplex, for some \ <k <d — \. Let 
fjf\P, Ao) be the number of fc-simplices spanned by P that 
are congruent to Ao- Set 

fi''\n) = mBxfi'\P,Ao), 

where the maximum is taken over all sets of n points in R** 
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and over all fe-simplices in R**.   We wish to obtain sharp 
bounds for fl''\n). 

C2 '■ X3 + X4 = 1, 
Xi = X2 = 0 

C\:x\-\-x\ — 1, 

X3 = a;4 = 0 

Figure 1: A construction for /^ '{ri) = Q{n ). 

The case A; = 1 is the well-studied problem of repeated 
distances, originally considered by Erdos [7] in 1946: How 
many pairs of points of P lie at a prescribed distance from 
each other. This special case is interesting only for d = 2,3 
because fi^\n) = 6(n^) for d > 4. Indeed, as observed 
by Lenz [11], one can construct in R'* two orthogonal unit 
circles Ci : xl + xl = 1,X3 = X4 = 0 and C2 : xi = X2 = 
0, X3-I-X4 = 1 and place n/2 points on each of the two circles. 
The distance between any two points p € Ci and g 6 C2 is 
\/2, thereby obtaining a set P of n points with ft(n^) pairs of 
points at distance •\/2. The known upper bounds for d = 2,3 
are f[^\n) = 0{n^'^) [6, 15, 16] and f[^\n) = 0{n^'^fi{n)) 

[6], where ^(n) = 2®^" ^"^^ is a slowly growing function of n, 
defined in terms of the inverse Ackermann's function a{n). 
However, neither of these bounds is known to be tight. The 

(2), _       l+"(logU>gn) and best known lower bounds are f\ '{n) = n 
/P^(n) = n(n^/*loglogn); see e.g. [12]. 

Note that we have excluded the cases fc = 0 and k = d. 
The case fc = 0 is uninteresting because, trivially, /Q (n) = 
n. The case fc = d is also uninteresting because one eas- 
ily has ff\n) = 0{ff}-^{n)).   It is conceivable, though, 

that /d (n) is significantly smaller than /d_\(n). How- 
ever, we are not aware of any instance where this has been 
shown to be the case. Another easy observation is that 
f'j^\n) = e(n*+^) for any fc < Ld/2J -1. The upper bound 
is trivial, and the lower bound can be proved by generaliz- 
ing the construction for the case fc = 1, namely, by placing 
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the points of P on A; + 1 mutually orthogonal unit-radius 
circles centered at the origin. Erdos and Purdy [9] proved 
that f^^\n) = 0(n^^/^). The bound was later improved by 
Akutsu et al. [2] to 0{n^^^) and then by Brass [5] to 0{n'''*). 

Akutsu et al. [2] also proved that f^*\n) = 0{n^^^^^+') and 
f^*\n) = 0{n^^^"+') for any £ > 0.' Erdos and Purdy [10] 

conjectured that fk^^n) = 0(n^^'^) for even values of d. 

We prove that/l^^(n) = 0{n^/^p*/^{n)), /^''^(n) = 0{n^+'), 
fi'\n) = Q{7{"% and fi'\n) = 0(n«/''+=). The best lower 
bound that we know for /j^'Cn) is Q.[n*'^). This is obtained 
by placing one point at the origin and n-1 additional points 
on the unit sphere, so that there are Q.{n^/^) pairs of those 
n-1 points at distance \/2 from each other (see [8] for such 

a construction). The bound on f2^\n) is almost tight be- 
cause it can be shown that /^''^(n) = n(n^) (e.g., add the 
origin to the set of points in Lenz' construction). 

We also derive a recurrence for f^\n) for general values 
of k and d. The solution of this recurrence is 0(n^*'''*'+'), 
where (^{d, k) is a rather complicated function of d and k. 
Although we are currently unable to provide sharp explicit 
bounds for (i{d,k), for arbitrary values of k and d, we can 
prove that l{d, fc) < d/2 for d < 7 and fc < d - 2. We 
conjecture that C(d, k) < d/2 for all d and fc < d-2. Proving 
this bound on C(d, k) will (almost) settle in the affirmative 
the above-mentioned conjecture of Erdos and Purdy. 

A novel feature of our analysis is a round-robin recur- 
rence scheme. In each round of this scheme some of the 
given points are treated as points while others are treated 
as spheres of various radii (equal to the lengths of the cor- 
responding edges of the given simplex A). The recurrence 
then follows from a space partitioning process, based on a 
(l/r)-cutting of these sets of spheres; see Sections 3 and 5 
for details. 

The problem is motivated by the problem of exact pattern 
matching: We are given a set E of n points in R"* and a "pat- 
tern set" P of m < n points (in most applications m is much 
smaller than n), and we wish to determine whether E con- 
tains a congruent copy of P, or, alternatively, to enumerate 
all such copies. A commonly used approach to this problem 
is to take a simplex Ao spanned by some points of P, and 
find all congruent copies of Ao that are spanned by E. For 
each such copy A, take the Euclidean motion(s) that map 
Ao to A, and check whether all the other points of P map 
to points of E under that motion. The efficiency of such an 
algorithm depends on the number of congruent copies of Ao 
in E. Using this approach, de Rezende and Lee [13] devel- 
oped an 0{mn'') algorithm to determine whether E contains 
a congruent copy of P. For d = 3, Brass recently developed 
an 0{mn'^*P{n)logn + n^^^''+^) algorithm, which improves 
an earlier result by Boxer [4]. Our improved bounds can 
be applied to derive more efficient algorithms for the corre- 
sponding variants of this problem (see, e.g., a note to that 
effect at the end of Section 2). 

2.   CONGRUENT TRIANGLES IN THREE 
DIMENSIONS 

We follow the convention that an upper bound that involves 
the parameter e holds for any e > 0 and the constant of 
proportionality depends on e, and generally tends to infinity 
as e tends to 0. 

THEOREM 2.1. Let P be a set of n points in R^. The 
number of triangles spanned by P that are congruent to a 
fixed triangle is 0{n^'^ ■ 2®(°^("))). 

Proof: Let the fixed triangle be A = loyo^o, with side 
lengths |xoyo| = ^, |a;oZo| = »/, \yoZo\ = C,. Let p be the 
distance between zo and the line passing through xoj/o- Fix 
a pair of points p,q € P such that \pq\ = ^. Let D be a 
point of P such that pqv is congruent to A (with |pg| = ^, 
\pv\ = ri, \qv\ = C). Let £p, be the line passing through p 
and q, and let v' be the projection of t; on £pg. Then v* is 
independent of v (and depends only on A) and any such v 
lies on a circle 7p, of radius p centered at v' and orthogonal 
to ipq- see Figure 2. Repeating this analysis for each pair 
p,q at distance ^, we obtain a (multi)set 6 of congruent 
circles, one for each such pair of points, and the number 
of triangles under consideration is equal to the number of 
incidences between the circles of 6 and the points of P. It 
is easily checked that at most two pairs of points p, q can 
give rise to the same circle in C, so we may assume that all 
circles in 6 are distinct. Since each circle in 6 is generated 
by a pair of points of P at distance ^ apart, we have, by the 

results of [6], |e| = 0{n'''''l3{n)), where /3(n) = 2®(°'("» is 
as above. 

Figure 2: Illustration to the upper bound. 

For each u € P, let o-„ denote the sphere of radius 77 
centered at u. Let S denote the resulting collection of n 
spheres. Let P„ == P n (T„ and e„ = {7^^ \v € P, \uv\ = $} 
(all circles in £„ lie on <T„). Put m^ = \P„\ and Cu = |e„|. 
We have 

Y^TUu    =   0(n^^^f3{n)) (2.1) 
ti€P 

E'^    =    m = 0{n'/'p{n)). 

We claim that the number of incidences between the points 
of P„ and the circles of Cu is 

This follows exactly as in the proof of a simileir bound on 
the number of incidences between points and unit circles in 
the plane (cf. [6, 16]; in fact, the proof in [16] translates 
practically verbatim to the case of congruent circles on a 
sphere). 



The number of incidences between the circles of 6 and the 
points of P is thus (using (2.1)) 

O "^{ml'^d'J^ + m^+Cu) 
uSP 

0{n^'^P{n))+o[Y,mTcT\ 
\u€P ) 

To obtain aji upper bound for the second term, we need 
the following properties. 

LEMMA 2.2. The number of containments between a sub- 
set §0 of spheres of § and the circles of G is 

Proof: Let Po Q P denote the set of centers of the spheres 
of So. Consider a containment between a sphere ay., for 
u € Po, and a circle fuv of G. Then v is a point of P at 
distance | from u. That is, u lies on the sphere of radius | 
centered at v. Conversely, any such point i; gives rise to a 
circle 7„„ € G that is contained in (r„. The asserted bound is 
now an immediate consequence of the bound on the number 
of incidences between points and unit spheres in R^, as given 
in [6]. a 

For a given integer k > 0, let t>k = \P>k\ denote the 
number of spheres in S that contain at least A; circles of 
e. An immediate corollary of the previous lemma is the 
following. 

COROLLARY 2.3. 

t>-^-\^>-^\=o{^-^l). (2.2) 

Proof: Let S>fc C S denote the set of spheres that contain 
at least k circles of G {P>k is the set of centers of these 
spheres). The number of sphere-circle containments between 
the spheres of S>t and the circles of G is at least kt>k. Using 
Lemma 2.2, we have 

kt>k = O (n^^YJ^Pin) + n + t>k) , 

from which the asserted bound follows easily. O 

We now obtain a bound on the expression X)„gp'"u Cu . 
Fix a threshold parameter k, whose value will be specified 
later. We have 

J2mrcV'  =     i:   m^c^/^ + ^XZ^^-^'j''^' 
u€P «6P<J: j>* ^€Pj 

<  k'l'   Y:   rnT + Y^f'Y.^' 2/3 

u^Pj 

Using Holder's inequality and (2.1), the first sum is at most 

2/3 

tiep< \ueP      / 

k'^W^^ ■ O ((n^/^;3(n))^/^) 

0(fe='/^n''/^/?'/'(n)). 

Using once again Holder's inequality, in conjunction with 
(2.1) and (2.2), the second sum can be bounded by 

j>k       t»ep, 3>k        \^ePj     I 

j<kuePi     I \i>k I 

11/3 

1/3 

< 

,1/3 

\u€P        / \ J>* 

=   0(„,-<„),.(=V(2)+„=)'" 

=   o(„./V/-(„) + 2^). 

Hence, the total number of triangles in f^   {P, A) is 

O (k'^\'^'p'''{n) + n^/^/3^/^(n) + ^^0^) ■ 

Choosing k = n^^^/3(n), we obtain the asserted bound.     □ 

An immediate corollary of this result is that we can de- 
termine, in time 0{mn^'^p{n) logn), whether a set 5^ of n 
points in R^ has a congruent copy of a set P aim points. 

3.   CONGRUENT TRIANGLES IN fflGHER 
DIMENSIONS 

We now prove near-optimal bounds on f^ (n), for d > 4. 
Recall that the problem is interesting only for d = 4,5 be- 
cause f2'\n) = 0(n*) for d > 6. Let P be a set of n 
points in R , and let A = xoyozo be the fixed triangle, 
with side lengths |a;oyo| = Ci |a;oi^o| = '?, and \yozo\ = C- 
For a given triple of sets A, B, C of points in R*^, let 
*(J4,J3,C;A) denote the set of triangles ut;«; such that 
(«,t;,u;) € Ay. B X C, \uv\ = (,, \uw\ = r}, and |t;w| = 
C. Set V(^,B,C; A) = |*(A,B,C;A)| and ■4i^'^\a,h,c) = 
maxV'(A,B,C; A), where the maximum is taken over all 
sets A, B, C in R"* with \A\ = a, \B\ = 6, and \C\ = c and 
over all triangles A. Set ip'-^\n) = ij)''^\n,n,n). Obviously, 
/2^'*^(P, A) = iP{P,P,P;A) and f^''\n) < ip^-'^n). It there- 
fore suffices to obtain a bound on ^^''^(o,6,c). 

Let A, B, C, and A be as defined above. We apply the fol- 
lowing randomized divide-and-conquer process, which con- 
sists of three substeps. Let r be a sufiiciently large con- 
stant, depending on e, whose value will be specified later. 
In the first step, which we refer to as the A-step, we re- 
gard A as a set of points but map B and C to spheres. 
Denote by <Tp{x) the (d — l)-sphere of radius p centered at 
X. With each point p e B (resp. g € C), we associate the 
sphere cr((p) (resp. <Xn{q)). Set EB = {<^i(p) \ P & B}, 

Scr = {(Triiq) I 5 € C7}, and S = EB U Ec- 



A subdivision S of R'' into constant-description-complexity 
cells (in the sense defined in [14]) is called a (l/r)-cutting 
of E if each cell in E is crossed by at most b/r (resp. c/r) 
spheres of EB (resp. Ec). Using a result of Agarwal et al. [1] 
and the generalized zone theorem by Aronov et al. [3], it 
can be shown that there exists a (l/r)-cutting of E of size 
0(r''logr). By splitting the cells of E further as necessary, 
we may assume that each cell contains at most a/r'' points 
of A. 

For each cell T e E, let Ar = An T, BT = {p £ B \ T C 
fffCp)}, and B; = {p e B I r n orj(p) / 0 and T ?: (Tj(p)}. 
That is, a point p € B is in BT if the sphere a^{p) contains 
the (necessarily lower dimensional) cell r, and it is in B^ if 
cr^ip) crosses r. Similarly, we define CT = {q £ C \ T C 
<^',{q)}, C; = {qeC \ Tnar,{q) # 0andr ^ or„{q)}. By 
construction, \Ar\ < a/r'', Erl^rl = a, \B;\ < b/r and 
\(^T\ < c/r. Since the point sets A, B, and C are not in 
general position, the subset Br (resp. CT) could be as large 
as B (resp. C). Note that Br and Cr can be nonempty only 
if T is a lower-dimensional cell. 

If a triangle Auvw is in ^{A,B,C), then u € <T^{V) D 

(T^(u)). If u € Ar, then u € Br U B; and «; € CT U C*. 
Therefore, 

V(A,B,C;A) 

<    ^ V(^.,B;,C;;A)-|-V(Ar,BT,CiA) 

+rp{Ar,B,Cr;A)\ 

yr"  r r) 
(3.1) 

E ■<l>{Ar, Br,C; A) -I- i>{Ar, B, Cr-, A) 

We now obtain bounds on tpiAr, Br,C; A) and ip{Ar,B, CT] A) 
for d = 4,5, and substitute them in the above recurrence to 
derive the corresponding bounds for the general values of 
V-^^' and iP^^K 

3.1   The four-dimensional case 

LEMMA 3.1. Let A, B, and C be three point sets of sizes 
a, b, c, respectively, in R*. For any cell T in the correspond- 
ing subdivision E, 

ij{Ar,Br,C; A) -I-i>{Ar,B,Cr; A) = 

Oi\Ar\\B\ + \Ar\\C\ + \B\\C\). 

Proof: As noted above, we may assume that r is a lower 
dimensional cell. 

We first bound ip{Ar,Br,C;A). The assertion is obvi- 
ous if min{|Ar|, |Br|} < 2, so assume that each of the two 
sets has at least three points. Recall that each point of Ar 
lies at distance ^ from every point of Br. This implies that 
there exist two orthogonal concentric circles JA, 7B such 
that Ar C 7^1 and Br C 7B; see Figure 3. Indeed, let 
wi, "2, M3 be three distinct points of Ar. The intersection of 
the spheres cr^{ui), ^{(uj), cr^ius) is a circle; it cannot be a 
2-sphere because a 2-sphere can lie on only two 3-spheres of 
a given radius. Let 7B denote this intersection circle, and 
let TT be the 2-plane containing 7B. Clearly, Br C 7B. The 
center o of Br is such that uio, U20, U30 are all orthogonal 

Figure 3: Illustration to the upper bound. 

to n. This implies that ui, U2, M3 lie in the (unique) plane 
7r containing 0 and orthogonal to n. Applying a symmet- 
ric argument in which the roles of Ar and Br are reversed 
completes the proof of the claim. 

Let w be any point in C. If w lies at distance r] from at 
most two points of Ar, then V(>lr,Br, {w}; A) < 2|Br|, for 
an overall bound of 2|Br||C|. Similarly, if to lies at distance 
C from at most two points of Br, then t/'C-'lr, Br, {w}; A) < 
2|Ar|, for an overall bound of 2|Ar||C|. If w is at dis- 
tances Tj and C from at least three points of i4r and Br, 
respectively, then w lies on a circle 7c that is orthogo- 
nal to both jA and 7B. But this is impossible in R'', so 
V'(>lr,Br,C; A) < 2{\Ar\ + \Br\)\C\. A similar argument 
shows that V(Ar,B,Cr; A) < 2(|Ar| + |Cr|)|B|. Summing 
all the bounds obtained above, the assertion of the lemma 
follows. n 

In other words, we can write (3.1) for d = 4 as 

ip{A,B,C;A)    =   0{r* log r) ■ \{ab + ac +be) + 

We now repeat this analysis a second time, using each 
of the sets B^ as the set of points and the two other sets 
as representing sets of spheres of appropriate radii (this is 
the B-step). Then we perform a third step, the C-step, in 
which the resulting susbsets of C represent points and the 
two other subsets represent spheres. In each of the second 
and third steps, the size of each set of spheres decreases by 
a factor of r, and the size of each set of points decreases by 
a factor of r*. After the third round, we have 0{r^'^log^r) 
subproblems in which the size of each point set has been 
reduced by a factor of r®. Therefore we obtain the following 
recurrence: 

rP^'^ (n) = 0{r'^ V r)rP^*^ (^) + Oin\ (3.2) 

where the constant of proportionality of the second term 
depends (polynomially) on r. For any constant e > 0, with 
an appropriate choice of r as a function of the prescribed 
e, it can be shown that the solution to (3.2) is ip^^^n) = 
0{TV''^'), where the constant of proportionality depends on 
e. Applying this bound for J4 = B = C = P, we obtain that 
f^*\n) = 0(71^+'). It can be shown that f^*\n) = fi(n^), 
by generalizing Lenz' construction. In fact, it can be shown 
that this lower bound can be attained for any given triangle 
A. Hence, we have the following theorem. 



THEOREM 3.2. Let P be a set of n points in R*. The 
number of triangles spanned by P that are congruent to a 
fixed triangle is 0{n^'^^), for any e > 0, and can be Q{n^) 
in the worst case. 

3.2   The five-dimensional case 
An axgument similar but somewhat more involved than 

the one used in Lemma 3.1 implies the following lemma for 
d=^5. 

LEMMA 3.3. Let A, B, and C be three point sets of sizes 
a, b, c, respectively, in K^. For any cell r in the correspond- 
ing subdivision H, 

tP{Ar,Br, C; A) + tP{Ar, B, Cr\ A) 

=   0(|A.|(|Bf/'|Cf/^ + \B\ + \C\) + \B\\C\). 

Proof: The proof follows the same line as that of Lemma 3.1. 
We first bound V'C^T, BT,C; A). Again, we can assume that 
l^rl, \BT\ > 3. Since each point of AT lies at distance ^ from 
every point of BT, it follows, similar to the 4-dimensional 
case, that only two cases are possible: 

(i) AT lies on a circle 7A and BT lies on a concentric or- 
thogonal 2-sphere (pB- 

(ii) AT lies on a 2-sphere ipA and BT lies on a concentric 
orthogonal circle JB- 

Indeed, take three distinct points ui,«2,«3 € AT- Argu- 
ing as above, BT is contained in a 2-sphere that is concen- 
tric with and orthogonal to the circle 7 that passes through 
ui,U2,U3. If BT contains at least four noncoplcinar points 
then the entire AT must be contained in 7, and we get the 
situation in case (i). Otherwise, the entire BT must lie on a 
single circle and we get the situation in case (ii). 

Let w be any point in C. If w lies at distance rj from 
at most three points of AT then V(-Ar, BT, {W}; A) < 3|BT|, 

for an overall bound of 3|BT||C^|. SO assume that w is at 
distance 77 from at least four points of AT. 

In case (i), w must lie on a 2-sphere (pc that is concentric 
with and orthogonal to -yA, and thus lies in the same 3- 
space containing ipB • We have thus reduced the problem to 
the following one: We have two concentric spheres, (p, <p', in 
three dimensions and two finite point sets Q, Q', with Q Cf 
and Q' dp', and we wish to bound the number of pairs of 
points in Q X Q' that are at distance C from each other. 
We claim that the number of such pairs is 0{\Q\^'^\Q'\^'^ + 
\Q\ + \Q'\)- This is proved exactly as in the analysis in [6] of 
the number of repeated distances in a planar point set, and 
as in the proof of Theorem 2.1. In other words, the number 
of triangles under consideration is 

0{\AT\{\BTf'\C\^" + \BT\^\C\)) . 

In case (ii), w must lie on a circle 7c that is concentric with 
and orthogonal to tpA, and thus lies in the same 2-plane 
containing 7B ■ In this case it is easily seen that the number 
of pairs of points in BT x (C fl 7c) at distance ^ from each 
other is at most 2|ST|, SO the number of triangles under 
consideration is 0(|j4r||BT|). 

The estimation of IJJ(AT,B, CT] A) is fully symmetric, and 
yields the bound 

O (1^.1(1^^/^151'/' + \CT\ + \B\) + \BT\\C\) . 

Summing all the bounds obtained above, the assertion of 
the lemma follows. O 

We now apply Lemma 3.3 to each lower-dimensional cell 
r € H, sum up the resulting bounds, cind reccJl that r is 
a constant, to conclude that the number of triemgles that 
satisfy the assumptions of the lemma, over all cells r, is 
0(a(6='/V/' + 6-^c) + 6c). 

Hence, applying a round-robin decomposition process, as 
in the 4-dimensional case, we obtain the following recurrence 
for rP^^Hn): 

rP^'\n) = 0{r'' log' r)tp^'^ (^) + 0{n''^'). (3.3) 

Using induction on n and choosing a sufiiciently large con- 
stant value for r, it can be shown that the solution to (3.3) is 
^(*)(n) = 0{n'^^). A matching lower bound is constructed 
as follows. Take a unit 2-sphere <7 and a unit circle 7 that 
are concentric and orthogonal. Place n/2 points on or so 
that there are n(n*/') pairs of these points at distance y/2 
apart (as in [8]), and place n/2 points arbitrarily on 7. We 
obtain a set of n points with fl(n^/') equilateral triangles of 
side length \/2. We thus obtain the following theorem. 

THEOREM 3.4. Let P be a set of n points in K^. The 
number of triangles spanned by P that are congruent to a 
fixed triangle is 0{n'^^), and the bound is tight in the worst 

Remark 3.5 The number of congruent triangles in a set 
of n points in the plane is 0{n^^^), which is an immediate 
consequence of the same bound for the number of repeated 
distances in the plane. It is curious to note that each of. 
these four bounds is close to 0{n^^*^^'^), where d is the 
dimension. However, while for d = 4,5 these bounds are 
nearly tight (for rf = 4) and tight (for d = 5), they are 
conjectured not to be tight for d = 2,3. 

4.   CONGRUENT TETRAHEDRA IN FOUR 
DIMENSIONS 

We now bound the number of tetrahedra spanned by an 
n-element point set P in R^ that are congruent to a given 
tetrahedron A = pqrs. Fix three points u,v,w £ P so that 
the triangle uvw is congruent to the face pqr of A. By 
Theorem 3.2, the number of such triples is ©(n'"*"^). Any 
point z Q P such that uvwz is congruent to A must lie on 
a circle 7U«TO that is orthogonal to the 2-plane spanned by 
u, V, w, whose center lies at a fixed point in this plane, which 
is the image (under the congruence) of the base point s* of 
the height of A from s. 

Let r denote the collection of circles 7u«iu. Note that the 
circle 7U„TO is fully determined from the points u, v, w, but 
that it is possible that two different circles 7ui,u,, 7u'„'u,' 
coincide. In this case, w'v'w' is obtained from uvw by a 
rotation (and/or reflection) in the plane orthogonal to 7U„TO 

about the center of this circle. In other words, all the points 
u £ P that induce, with two other points of P, a fixed 
circle 7 = 7uvw so that u maps to p, must lie on a circle 
CT.P, which is concentric with and orthogonal to 7. The 
radius of C^,p is the distance between p and s'. Similarly, 
the points that induce 7 and map to q (resp. r) lie on a 
circle C-,,q (resp. C^,T). The three circles C-j,p,Cy,q, and 
C',,T are concentric and coplanar. It is easily checked that 



any of these three circles uniquely determines 7 and vice 
versa. For simplicity of presentation, we only use one of 
these three coplanar circles, say C-,,,,. For a circle 7 e F, 
there are 0(|Pn7| • [PDC^.p!) tetrahedra uvwz spanned by 
P such that 267 and it, v, w lie on the respective orthogonal 
concentric circles C^,p, C^,,, C-y,r- Indeed, once the point 
u has been chosen (from P n C^.p), the point v that maps 
to q must lie on C^,, and must be at distance \pq\ from u. 
There are at most two such points. Similarly there are two 
candidate points for w m Pf\ Cy,r and any point in P n 7 
is a candidate for z. 

Fix a threshold parameter k, whose value will be specified 
later. If a circle 7 e F contains fewer than k points, then 
the number of tetrahedra under consideration is at most 
k times the number of triangles uvw that are spanned by 
P, are congruent to pqr, and induce the circle f^vw = 7- 
Summing this bound over £ill such "low-degree" circles, we 
obtain the bound 0{n''^^k). 

The problem can thus be reduced to the following. We 
have a set P of n points and a collection 11 of pairs of con- 
centric orthogonal circles, in which no two pairs have a circle 
in common, and at least one circle in each pair contains at 
least k points of P. Our goal is to estimate the sum 

Y^ 1^0 71-IPn7'|< Yl max{|pn7|, iPnyi}^ 
(7.y)€n (7,7')6n 

The problem of estimating the last sum can be restated as 
follows: We have the point-set P and a collection C of circles, 
so that eeich circle in C contains at least k points of P, and 
our goal is to estimate the sum Y^iy^e \^ ^ fl^- 

LEMMA 4.1. The number of incidences between a set P of 
n points and a set 6 oft circles in R"* is 0{n^^^t*^^+n + t). 

Proof: The analysis is similar to the one used in [6] to 
obtain the same bound for the planar case. First, the point- 
circle incidence graph does not contain 1^3,2 as a subgraph 
(with 3 points and 2 circles), so the incidence graph can 
have at most 0{nt^^^ +1) edges. We then project P and C 
onto some generic 2-plane, and apply the divide-and-conquer 
analysis of [6] to the projected points and curves, to obtain 
the asserted bound. A similar proof is also given in [2].    D 

LEMMA 4.2. The number t>j of circles in C that contain 
at least j points of P is 

<hiy 
Proof: The number of incidences between these t>j circles 
and the points of P is at least jt>j. Using Lemma 4.1, we 
thus have jt>j = 0{n^^^t*~/^ +n + t>j), from which the 
asserted bound follows easily. D 

Let tj denote the number of circles in 6 that contain ex- 
actly j points of P. We then have 

76e j>* i>k 

+ n 

Hence, the overall number of tetrahedra spanned by P and 
congruent to Ao is 

Choosing k = n}^*, we obtain the following bound. 

THEOREM 4.3. Let P be a set of n points in R". The 
number of tetrahedra spanned by P that are congruent to a 
fixed tetrahedron is 0{n^^*'^'), for any e > 0. 

5.   THE GENERAL CASE 
Let P be a set of n points in R"* and let 3 < fc < d-l. Let 

A = 0102 • • -a/t+i be a fixed fc-simplex. We wish to bound 
the number of fc-simplices spanned by the points of P that 
are congruent to A. 

We assume that we are given k + 1 sets of points in R"*, 
call them Pi,... ,Pk+i. Initially, Pi = P2 = • • ■ = P^+i = 
P. Let*fc(Pi,... ,Pt+i;A) denotethesetof (A;-|-l)-tuples 
(P1.P2,... ,Pk+i) € Pi X P2 X • • • X Pk+i such that the k- 
simplex pip2 • • -pk+i is congruent to A and \piPj\ = |a,aj| 
for 1 < i < j < A; -(-1 (i.e., pi maps to Oi). Set 

and 

V'A(Pi,...,Pfc+i;A) = |*i(Pi,...,Pt+i;A)| 

ipk{ni,... ,nk+i) = inaxxpk{Pi,... ,Pk+i;A), 

where the maximum is taken over all (fc + l)-tuples of sets 
Pi,... ,Pfe+i in R"* with |Pi| = ni, for I = 1,... ,A; -»-1, and 
over all A;-simplices A. For brevity, we will use ipk{n) to 
denote tpkin,... ,n). The following lemma will be crucial 
for our analysis. 

LEMMA 5.1. Let P and Q be two point sets in R"*, so that 
\P\, \Q\ > rf+1, oni so that \pq\ = a for each peP, q&Q, 
for some fixed a. Then there exist two spheres Tp, VQ, of 
respective dimensions 5p, 5Q and centers cp, CQ, such that 

(i) PcTp andQc TQ; 

(ii) 1 <6P,SQ <d-3 and Sp +6Q <d- 2; and 

(Hi) Tp is orthogonal to TQ and both are orthogonal to the 
segment CPCQ . (If 5p + 5Q = d - 2 then cp = CQ .) 

Conversely, the existence of such a pair of spheres implies 
that all distances \pq\, for each p & P and q€Q, are equal. 

Proof: P is contained in the intersection F = f) gg o-o(g), 
where 0-0(9) 'S the (d — l)-sphere of radius a centered at q. 
This intersection is a sphere of dimension at most d — 3. 
Indeed, two of these (congruent) (d— l)-spheres intersect in 
a (d — 2)-sphere, which cannot be contained in any other 
(d - l)-sphere of the same radius. Let Fp C F be the 
smallest-dimensional sphere containing P, and let 5p de- 
note its dimension. A symmetric eu-gument implies that Q 
is also contained in some (smallest-dimensional) sphere TQ, 

of dimension 5Q. Clearly, 1 <SP,SQ < d-3. Let cp, CQ de- 
note the respective centers of Fp, TQ, and let rp, rQ denote 
their respective radii. 

Since the affine hull Hp of P is equal, by assumption, 
to the affine hull of Fp, which is a {5p + l)-dimensional 



space, there exist dp + 2 points, pi,--. ,pjp+2, of P, and 
real coefficients Ai,... , Xsp-i-2, so that 

Sp+2 4p+2 

V^ A, = 1    and     2_, ■^•P> — ^P ' 
t=i 1=1 

or, in other words, 

Sp+2 

y^ Ai(pi -cp)=0. 
t=l 

Similarly, there exist 5Q+2 points, qi,--- ,q5Q+2,oiQ, and 

coefficients /ii,... JIJ^SQ+Z, so that 

«Q+2 «o+2 

^ PJ = 1    and     Y2 W(* - CQ) = 0 • 

We have, for each i, j, 

a     = \Vi-qif 

= \{Pi - cp) + {cp - CQ) + {CQ - qj)\^ 

- rp+rQ + |cpco|^+ 2(pi-Cp)-(cp-CQ) 

+ 2(cQ - qj)-{cp - CQ) + 2(pi - Cp)-(CQ - gj). 

Hence 

ip+2i5e+2 

«' = Zl   £ '^•''^''' = r|. + r| + |cpCQ|^ 
i=l     J=l 

which implies that 

Dij   = (pi- cp){cp - CQ) + {cQ - qj)-{cp - CQ) 

+{pi - cp) ■ {CQ - qj) = 0, 

for each i,j. Then, for any fixed j, we have 

^ Ai Aj = {CQ -qj)- {cp - CQ) = 0, 

implying that the affine hull HQ of TQ is orthogonal to CPCQ . 
By a symmetric reasoning, the same holds for the affine hull 
Hp of Tp. This also implies that 

{pi - Cp) ■ {cQ - qj) = 0, 

for each i, j, so Hp and ffc? are also orthogonal to each other. 
This implies that 5p + SQ < d — 2, and thus completes the 
proof of the first part of the lemma. The converse paxt is 
trivial. n 

By applying the above lemma inductively, we can prove the 
following. 

COROLLARY 5.2. Let Pi, P2, ■ • • ,Pt bek sets of points in 
R'', each of size at least d+1, so that for all pairs 1 <i < j < 
£ and for any p e Pi and q e Pj, \pq\ = |aiOj|. Then there 
exist I spheres Fi,... , F/ of respective dimensions 5i,-.. ,5t 
and centers Ci,... , c/, such that 

(i) Pi C Fi for each l<i<i; 

(ii) 1 < Si < d-3 for every i and X;'^i 5i < d - £ (if 

Z)i=i Si = d — £ then ci ■■ C(); and 

(Hi) for i /: j, Ti is orthogonal to Fj and all spheres are 
orthogonal to the affine hull of c\,... ,ct. 

We extend the divide-and-conquer procedure described ia 
Section 3 to bound tpk- Initially, each Pi is an arbitrary set 
of points in R"^, but at each step the procedure will decom- 
pose a problem into subproblems in which some "cUques" 
of the point sets will satisfy the conditions of Corollary 5.2. 
We therefore define a generalized version of the function 
tpk by introducing a weighted graph G = {V,E,X), where 
V = {1,--- ,k + l}- A pair {i,j) e E ii \pq\ = \aiaj\ for 
every p € Pi and q € Pj- We associate a weight function 
A:{1,... ,jfc + l}i-^{l,... ,d} with the vertices of G, which 
we simply write as a sequence (Ai,... , Afc+i). Here A» is the 
dimension of the smallest sphere that contains Pj. By Corol- 
lary 5.2, G satisfies the following property. 

(G) If {ii,... , it} is a clique in G, then 

t 
^Ai. <d-£. 

j=i 

We now define ipk ("1 > ■ ■ • > "fc+i) to be the maximum value 
of jpk{Pi,--- ,P«;+i;A), taken only over sets Pi,... ,P*+i 
that satisfy the following properties: 

{ip.i) \Pi\ > d + l for each i = l,... ,fe + l; 

(«/).ii) If Ai < d then Pi is contained in a Ai-dimensional 
sphere Fi (if Ai = d, then Pi is an arbitrary set of 
points in R''); and 

(Vj.iii) If {ii,... ,i/} is a clique in G, then Fi,,... ,Fi^ are 
orthogonal to each other, and all of them are orthogo- 
nal to the aifine hull of their centers. 

As a special case, the original bound tpk{ni,--- ,nt+i) can 

be written as il>k^°\ni,... ,nk+i), where 

Go = {V,ID,{d,d,--.,d)) 

is an empty weighted graph, with no constraints on any Pj. 
We apply a round-robin decomposition method to bound 

■ipf\n) = ipf\n,... ,n). Let Pi,... , Pt+i be sets satis- 
fying {■tjj-i)-{ip-m), each of size n. The process consists of 
k + 1 rounds, which are then repeated recursively. In the 
jth round, Pj is regarded as a set of points, and each Pi, 
for i / j, is regarded as a set of congruent spheres of radius 
\aiaj\- Consider the first round, in which we regard Pi as a 
set of points, and let Vi denote the collection of all vertices 
j ^ 1 of G such that {l,j) ^ E- If Vi = 0, we skip the first 
round altogether (see below for details). If G contains an 
edge of the form {l,j), then Ai < d - 3, and Pi lies on a 
Ai-dimensional sphere Fi. We set Ui to be the affine hull 
of Fi. Otherwise, if Ai = d then we set Fi = Ui = R"*. 
Regard any point p in some Pj, for j € Vi, as defining a 
A1-dimensional sphere crj{p), obtained as the intersection of 
Ui with the {d — l)-sphere centered at p and having radius 

\aiaj\. Set S^ = {(Tj{p) | p € P,} and S = U.gVi ^i- 
As above, a subdivision S of Fi into constsmt-description 

cells is called a (l/r)-cutting of E if each cell of H is crossed 
by at most \Ilj\/r spheres of Sj for every j eVi- Arguing 
as in Section 3, we have 

LEMMA 5.3. For any given parameter r > 0, there exists 
a {l/r)-cutting ofS of size 0{r^^ logr). 

We fix a parameter n and compute a (l/ri)-cutting of S. 
By splitting cells further as necessary, we may assume that 



each cell contains at most n/rl^ points of Pi; the number of 
cells is still 0(7-^' logri), with a larger constant of propor- 
tionality. Let E denote the resulting set of cells. For each 
T 6 E, set Pi'' = Pi n r. Obviously 

V-tCPi,... ,P/c+i; A) = ^V)t(A',■P2,... ,P/t+i; A). 
res 

Let A' = 02 • • • Ofc+i be the facet of A opposite to oi. Let G; 
denote the weighted subgraph of G induced by the vertices 
y\{i}. Fix a cell r e E. We say that a point p, € Pj, for any 
I > 1, is light inr if either \Pi\ < dorp< is at distance \aiai\ 
from at most d points of Pj"; otherwise, it is heavy in r. Let 
LJ (resp. P-') be the subset of points of Pj that are light 
(resp. heavy) in r, for i = 2,... , fc + 1. Let p2 • • -Pk+i be a 
(A;-l)-simplexin1'fc_i(P2,... ,LJ,... ,P*+i;A'). Sincepi 
is light in r, p2 • • -Pk+i contributes at most d simplices to 
*t(Pr,... , Lf,... ,Pfc+i; A). Therefore the light points of 
Pi contribute at most 

di,fj^(n,...,n)<di>fj^{n) 
simplices, which implies that 

V'it(Pr,P2,...,P/b+i;A) 

<dE V-I-^'W + MPi, PL ■ • ■ ,P;+i; A). 
t=2 

For each i > 1, let P[ = {p G Pf | T C CTi(p)}, and let 
QF = {P e PT I Tn<Ti(p) # flandr ?: CTi(p)}. That is, a 
point p is in Qf if ^iip) crosses T. By definition, if i 0 Vi 
then Qi = 9 and Pi = Pf. Since E is a (l/ri)-cutting 
of E, we have \QJ\ < n/n for each i € Vi.   If a simplex 
Pi---Pfc+i e *t(^i",--- ,.Pfc+i;A), th^enpi e nS«^<(Pi)- 
Since pi € r, we have that pi e P[ U Qf for 2 < i < 
k + 1. Hence, we obtain (in the first term, for simplicity of 
notation. Si denotes Qi for i € Vi and P[ for i ^ Vi): 

MP{,---,Pk+uA)< 

Y^MPi,S2,...,Sk+i;A) + 
T€=. 

E E V"^(^l^ P2'",..., pl,... p;;+u A) 
T€H.eV, 

/,(G)|   n 
r{ ,   

\ *-|Vl| |Vi| / 

+ E E ^-^(^i^-P^^ • • •'^'• • •-P*+i; A). 

<0(^^logrl)vfM -^,n,...,n,n/n,...,n/ri 

Fix an i € VI. As before, if |PI| < d, then 

t/.f'(Pf,... , Pi,... , P^+i; A) < d^l^-i^n). 

If l-P[| >d + l, apply Lemma 5.1 to Pf and Pi to conclude 
the existence of two spheres F D Pf, T' D P[ that satisfy 
the properties of that lemma. We clearly have F C Fi and 
F' C Fi, and proper inclusions are possible. Let S,5' denote 
the respective dimensions of F, F'. Note that for any j ^Vi, 
F and Fj continue to satisfy the properties of Lemma 5.1 
(as did Fi and Tj, except that the dimension of F may be 
smaller than that of Fi). The same holds for any edge (i, i') 
in G incident to i, with F' replacing Fj. We now replace G 
by the augmented weighted graph G+(i,i), whose edge set is 

E U {(1, i)}, and in which Ai is replaced by 5, Aj by 5', and 
for I < j ^ i, Xj is set to the smallest integer s such that 
P/ lies in an s-sphere. This step does not increase the value 
of any A;. We Ccm thus rewrite the above recurrence as: 

i>f\Pu... 

0(rf Mogn)t/.f) 

*:+l 

+ EO(t^i-V(n))+EO(V'f^'''''\n)). 
•=1 tgVi 

(5.1) 

We now repeat this step for each of the remaining k rounds. 
In the ith round we compute a (l/ri)-cutting of an appro- 
priate set of spheres (where Pj is mapped to a set of spheres 
of common radius loia^l if {i,j) f E), so that the size of the 
cutting is 0{ri^ logr;). To derive the final resulting recur- 
rence, we argue as follows. Fix an index i € {1,... , fc -fl}. 
In the ith round, the size of the ith set in the leading recur- 
sive term (i.e., the term that involves the same rpl^^ func- 

tion) is reduced by a factor of r^'. At the jth round, for 
any j i^ i, there are two cases: (a) If {i,j) ^ E, then the 
size of Pi in the leading recursive term is reduced by ry. (b) 
If ihj) € E, then Pi does not change. Thus the total size 
of the ith set in the finjil leading recursive term is at most 
Hri')Uu.iHE 7J- For each i = 1,... ,k + l, put n = r^-, 
for some sufficiently large constant pareimeter r, and for ex- 
ponents ij > 0 that are required to satisfy the following 
k + l inequalities: 

Kxi +   E   ^J >1,    fori = l,... ,fc + l; 

that is, we want the size of each set in the final leading 
recursive term to be at most n/r. Let A = A{G) be the 
symmetric {k + l) x {k + 1) matrix, defined by 

Aij = < 
^i    i = 3, 
1     i¥^3Ah3)iE, 
0     ijtj,{i,j)eE. 

Define ^(G) to be the optimum value of the lineM program 
min A • x subject to Ax > 1. Let x = (xi,... ,Xd+i) 
be a vector that attains the minimum. Set r; = r'^\ for 
i = l,... ,k+l. Then the leading term of the recurrence be- 
comes 0{r^'-°'> log*"*"* r)ipl^'' {n/r), and the full recurrence 
becomes 

^f)(n)<0(r««)log*+V)^f>(J) 
k+l _ 

+ EO(^i-i'("))+       E      0(^f+"-'^(n)), 

where the weighted graphs G+(ij) are defined in a manner 
similar to the definition of G+(i,j), given above. Let Cid,k) 
denote the msiximum value of ^(G) over jJl graphs with 
k + l vertices satisfying property (G). Then the solution 
to the above recurrence is i>i^\n) = C>(n''^'*'*'+'^), for any 
e > 0. Unfortunately, so far we were unable to derive a sharp 
explicit bound on ({d, k), but conjecture the following. 

CONJECTURE 5.4. For anyd>4 andk<d-2, C(d,k) < 
d/2. 



For G = Go = {V, 0, (d,... , d)), we have 

C(G) ^ d{k + l)/(d + A;) < d/2    (for k<d-2) 

by choosing Xi = l/(d + A;) for each i = 1,... ,k + l. We 
believe that C(G) is maximized when G = Go and k = d — 2. 
While deriving (5.1), if S or 6' becomes 1, then one can 

argue that MPi, ■ ■ ■ ,Pk+i\ ^) < dCV-fiiW + V'fiiW)- 
Using this observation and a few others, we prove, using case 
analysis on the possible matrices A(G), that C{d,k) < d/2 
for d < 7 and fc < d - 2. 

The technical difficulty in proving a bound on (^{d, k) lies 
in the fact that, as G is augmented, the number of recursive 
subproblems decreases, but the size of the point sets in each 
recursive subproblem is larger than what it was in the un- 
constrained case. In particular, sets connected in G to the 
current set do not change at all. The tradeoff between these 
two "trends" is not obvious. 
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