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ABSTRACT

‘We derive improved bounds on the number of k-dimensional sim-
plices spanned by a set of n points in R? that are congruent to
a given k-simplex, for k < d — 1. Let f,&d)(n) be the maximum
number of k-simplices spanned by a set of » points in R? that
are congruent to a given k-simplex. We prove that f§3) (n) =
O(n5/3 . 20@* D), £ ) = O(n2+e), £{¥ (n) = ©(n"/3), and
f_,(f)(n) = O(n%4t€), We also derive a recurrence to bound
f,gd) (n) for arbitrary values of k and d, and use it to derive the
bound f{¥(n) = O(n4/2) for d < 7 and k < d — 2. Following
Erdés and Purdy, we conjecture that this bound holds for larger
values of d as well, and for k < d —2.

1. INTRODUCTION

Let P be a set of n points in R?, and let Ao be a pre-
scribed k-dimensional simplex, for some 1 <k < d—1. Let
f,gd) (P, Ag) be the number of k-simplices spanned by P that
are congruent to Aog. Set

79 (n) = max f{ (P, Ao),

where the maximum is taken over all sets of n points in R?
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and over all k-simplices in R?. We wish to obtain sharp
bounds for f,gd)(n).

2, .2
Crixz+zi=1,
1 =:t2=0

Figure 1: A construction for 1(4) (n) = Q(n?).

The case k = 1 is the well-studied problem of repeated
distances, originally considered by Erdés [7] in 1946: How
many pairs of points of P lie at a prescribed distance from
each other. This special case is interesting only for d = 2,3
because fl(d)(n) = O(n?) for d > 4. Indeed, as observed
by Lenz [11], one can construct in R* two orthogonal unit
circles C) :zi+ 23 =l,z3 =24 =0and C2 : 71 = 23 =
0, z%+23 = 1 and place n/2 points on each of the two circles.
The distance between any two points p € C; and g € C: is
/2, thereby obtaining a set P of n points with Q(n?) pairs of
points at distance V2. The known upper bounds for d = 2,3
are £ (n) = O(n*/®) [6, 15, 16] and f{* (n) = O(n*/*f(n))
[6], where B(n) = 20(e*() jg 5 slowly growing function of n,
defined in terms of the inverse Ackermann’s function a(n).
However, neither of these bounds is known to be tight. The

best known lower bounds are £ (n) = n”’n(ml"?) and
¥ (n) = Q(n*%loglog n); see e.g. [12].

Note that we have excluded the cases k = 0 and k = d.
The case k = 0 is uninteresting because, trivially, féd) (n) =
n. The case k = d is also uninteresting because one eas-
ily has féd) (n) = O( fé‘i)l (n)). It is conceivable, though,
that féd)(n) is significantly smaller than fﬁ)l (n). How-
ever, we are not aware of any instance where this has been
shown to be the case. Another easy observation is that
£ (n) = ©(n**+!) for any k < |d/2] — 1. The upper bound
is trivial, and the lower bound can be proved by generaliz-
ing the construction for the case k = 1, namely, by placing
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the points of P on k + 1 mutually orthogonal unit-radius
circles centered at the origin. Erdés and Purdy [9] proved

that f{*)(n) = O(n'®/?). The bound was later improved by
Akutsu et al. [2] to O(n®/®) and then by Brass [5] to O(n"/4).
Akutsu et al. [2] also proved that f{*)(n) = O(n®/23+) and
7 (n) = O(n®/?3+) for any € > 0.! Erdés and Purdy [10]
conjectured that £{*)(n) = O(n%2) for even values of d.

We prove that f{*)(n) = O(n%38%/3(n)), ¥ (n) = O(n?**),

2 (n) = ©(n"/?), and f{"(n) = O(n®***). The best lower
bound that we know for f2(3) (n) is Q(n*/3). This is obtained
by placing one point at the origin and n—1 additional points
on the unit sphere, so that there are Q(n*/3) pairs of those
n—1 points at distance v/2 from each other (see [8] for such
a construction). The bound on féo (n) is almost tight be-
cause it can be shown that féd)(n) = Q(n?) (e.g., add the
origin to the set of points in Lenz’ construction).

‘We also derive a recurrence for f,Ed)(n) for general values
of k and d. The solution of this recurrence is O(n$(¢:F)+¢),
where ((d, k) is a rather complicated function of d and k.
Although we are currently unable to provide sharp explicit
bounds for {(d, k), for arbitrary values of k and d, we can
prove that {(d,k) < d/2ford < 7Tand k < d-2. We
conjecture that {(d, k) < d/2 for all d and k < d—2. Proving
this bound on ((d, k) will (almost) settle in the affirmative
the above-mentioned conjecture of Erdés and Purdy.

A novel feature of our analysis is a round-robin recur-
rence scheme. In each round of this scheme some of the
given points are treated as points while others are treated
as spheres of various radii (equal to the lengths of the cor-
responding edges of the given simplex A). The recurrence
then follows from a space partitioning process, based on a
(1/7)-cutting of these sets of spheres; see Sections 3 and 5
for details.

The problem is motivated by the problem of ezact pattern
matching: We are given a set E of n points in R? and a “pat-
tern set” P of m < n points (in most applications m is much
smaller than n), and we wish to determine whether E con-
tains a congruent copy of P, or, alternatively, to enumerate
all such copies. A commonly used approach to this problem
is to take a simplex Ao spanned by some points of P, and
find all congruent copies of Ag that are spanned by E. For
each such copy A, take the Euclidean motion(s) that map
Ag to A, and check whether all the other points of P map
to points of E under that motion. The efficiency of such an
algorithm depends on the number of congruent copies of Ag
in E. Using this approach, de Rezende and Lee [13] devel-
oped an O(mn?) algorithm to determine whether E contains
a congruent copy of P. For d = 3, Brass recently developed
an O(mn"/*B(n) log n+n""/7*¢) algorithm, which improves
an earlier result by Boxer [4]. Our improved bounds can
be applied to derive more efficient algorithms for the corre-
sponding variants of this problem (see, e.g., a note to that
effect at the end of Section 2).

2. CONGRUENT TRIANGLES IN THREE
DIMENSIONS

! We follow the convention that an upper bound that involves
the parameter € holds for any € > 0 and the constant of
proportionality depends on ¢, and generally tends to infinity
as £ tends to 0.

THEOREM 2.1. Let P be a set of n points in R®. The
number of triangles spanned by P that are congruent t6 a
2

fized triangle is O(n®/3 . 290770y

Proof: Let the fixed triangle be A = zoy020, with side
lengths |zoyo| = &, |zozo| = 0, |yoz0] = ¢. Let p be the
distance between zp and the line passing through zoyo. Fix
a pair of points p,q € P such that |pg| = £&. Let v be a
point of P such that pgv is congruent to A (with |pg| = ¢,
lpv| = 1, lgu] = ¢). Let £y, be the line passing through p
and ¢, and let v* be the projection of v on £,. Then v* is
independent of v (and depends only on A) and any such v
lies on a circle 7y, of radius p centered at v* and orthogonal
to £pq; see Figure 2. Repeating this analysis for each pair
P,q at distance £, we obtain a (multi)set € of congruent
circles, one for each such pair of points, and the number
of triangles under consideration is equal to the number of
incidences between the circles of € and the points of P. It
is easily checked that at most two pairs of points p,q can
give rise to the same circle in €, so we may assume that all
circles in € are distinct. Since each circle in @ is generated
by a pair of points of P at distance £ apart, we have, by the
results of [6], [C] = O(n¥2B(n)), where f(n) = 20(*®) jg
as above.

Figure 2: Illustration to the upper bound.

For each u € P, let o, denote the sphere of radius 5
centered at u. Let 8 denote the resulting collection of n
spheres. Let P, = PNoy and €, = {yuy | v € P, |uv| = £}
(all circles in €y lie on 0y). Put m, = |P,| and ¢, = [C,].
We have

Y om. = O(m**B(n)) 2.1)
uEP

S = |6 =0n¥p(n)).

u€P

We claim that the number of incidences between the points
of P, and the circles of G, is

O(mﬁ/scz/s + my +cy).

This follows exactly as in the proof of a similar bound on
the number of incidences between points and unit circles in
the plane (cf. [6, 16]; in fact, the proof in [16] translates
practically verbatim to the case of congruent circles on a
sphere).
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The number of incidences between the circles of € and the
polnts of P is thus (using (2.1))

{Z(mz/a 2/3+mu+cu)]

ue P

O(n*?B(n)) + O (Z m2/3¢ ?/3) )

u€P

To obtain an upper bound for the second term, we need
the following properties.

LEMMA 2.2. The number of containments between a sub-
set 8o of spheres of 8 and the circles of € is

O (n¥/4180/*/*B(n) + m + 8ol -

Proof: Let Py C P denote the set of centers of the spheres
of 8p. Consider a containment between a sphere o, for
u € P, and a circle vy, of C. Then v is a point of P at
distance £ from u. That is, u lies on the sphere of radius §
centered at v. Conversely, any such point v gives rise to a
circle y,, € € that is contained in o,. The asserted bound is
now an immediate consequence of the bound on the number
of incidences between points and unit spheres in R?, as given
in [6]. ]

For a given integer k > 0, let t>x = |P>i| denote the
number of spheres in § that contain at least k circles of
C. An immediate corollary of the previous lemma is the
following.

COROLLARY 2.3.

tsr =|Psk| =0 (" if") k) . (2.2)

Proof: Let 8>; C 8 denote the set of spheres that contain
at least k circles of C (P> is the set of centers of these
spheres). The number of sphere-circle containments between
the spheres of 8>« and the circles of € is at least k¢>,. Using
Lemma 2.2, we have

ktsk = O (n3/ B +n + tZk) ,
from which the asserted bound follows easily. |
We now obtain a bound on the expression 3 . p m2/3c2/3,

Fix a threshold parameter k, whose value will be spec1ﬁed
later. We have

Zmi/scz/s - Z 2/3 2/3 +Z Z mz/s .2/3

uEP uEPy j2k u€P;
< k2/3 } : m?‘/s +Zj2/3 E : mi/a
u€Psp i2k u€EP;

Using Hélder's inequality and (2.1), the first sum is at most

2/3
k2/3 Z mi/:i S k2/3 (Z mu) .nl/s

u€EPcy ueEP
= k3p13.0 ((ns/zﬂ(n))z/a)
O(k2/3n4/3ﬂ2/3(n)).

Using once again Hoélder’s inequality, in conjunction with
(2.1) and (2.2), the second sum can be bounded by

2/3
st (S m)

ik u€P; ik wEP;
2/3 1/3
< | XX m (D AIA
i<k u€P; ik
2/3 1/3
< (zmu) TR T
u€EP i>k

0 ((n*/2B(m))**) - ["—m + nk

)

i>k

/
O(nﬁz/s(n)) . ('ﬂ iz(n) +n2)1 3

22
0 (nog?/s(m) + L)

Hence, the total number of triangles in f§3)(P, A)is

0 (Worontssg5(m) + /2715 ) + ).

Choosing k = n*/28(n), we obtain the asserted bound. O

An immediate corollary of this result is that we can de-
termine, in time O(mn®*p(n) log n), whether a set S of n
points in R? has a congruent copy of a set P of m points.

3. CONGRUENT TRIANGLES IN HIGHER
DIMENSIONS

We now prove near-optimal bounds on féd)(n), for d > 4.
Recall that the problem is interesting only for d = 4,5 be-
cause f; d)(l) = O(n®) for d > 6. Let P be a set of n
points in R*, and let A = zoyozo be the fixed triangle,
with side lengths |zoyo| = &, |zozo| = n, and Iyozol = (.
For a given triple of sets A, B, C of points in R?, let
¥(A,B,C; A) denote the set of triangles uvw such that
(u,v,w) € AxBxC, |uww| = ¢ |uw| = 0, and jpw| =
¢. Set (4,B,C;A) = |¥(4,B,C;A)| and ¥ (a,b,c) =
max (A, B, C; A), where the maximum is taken over all
sets A, B, CmR with |A| = a, |B| = b, and |C] = ¢ and
over all triangles A. Set 99 (n) = @ (n, n,n). Obviously,
£D(P,A) = ¥(P, P, P; &) and £ () < ¢ (n). It there-
fore suffices to obtain a bound on ¥ (a,b,c).

Let A, B, C, and A be as defined above. We apply the fol-
lowing randomized divide-and-conquer process, which con-
sists of three substeps. Let r be a sufficiently large con-
stant, depending on &, whose value will be specified later.
In the first step, which we refer to as the A-step, we re-
gard A as a set of points but map B and C to spheres.
Denote by o,(z) the (d — 1)-sphere of radius p centered at
z. With each point p € B (resp. ¢ € C), we associate the
sphere o¢(p) (resp. oq(a))- Set Tp = {oe() | p € B},
Sc ={on(g) | g€ C},and £ =Xp U Z¢.




A subdivision Z of R? into constant-description-complexity

cells (in the sense defined in [14]) is called a (1/r)-cutting
of T if each cell in Z is crossed by at most b/r (resp. c/r)
spheres of Ep (resp. £¢). Using a result of Agarwal et al. [1]
and the generalized zone theorem by Aronov et al. [3], it
can be shown that there exists a (1/r)-cutting of T of size
O(r%log 7). By splitting the cells of = further as necessary,
we may assume that each cell contains at most a/r? points
of A.

For each cell T € E, let A, = AN+, B, ={peB|7C
o¢(p)}, and B; = {p € B| 7Noe(p) # 0 and 7 ¢ o¢(p)}.
That is, a point p € B is in B; if the sphere o¢(p) contains
the (necessarily lower dimensional) cell 7, and it is in B} if
o¢(p) crosses 7. Similarly, we define C, = {g€ C |7 C
on(q)}, Cr = {g € C | TNay(g) # Pandr ¢ o4(g)}. By
construction, |4.| < af/r?, ¥ |A-| = a, |B:| < b/r and
|C7| < ¢fr. Since the point sets A, B, and C are not in
general position, the subset B, (resp. C;) could be as large
as B (resp. C). Note that B, and C; can be nonempty only
if 7 is a lower-dimensional cell.

If a triangle Auvw is in (A, B,C), then u € o¢(v) N
on(w). If u € A, then v € B,UB} and w € C, UC:}.
Therefore,

¥(A, B,C; A)
< Z[«»(AT,B:,c;;A)+¢(AT,BT,0;A)
r€EE

+¢(A"') B’ CT; A)]

IA

O(r%logr) - @ (_‘f_ b E) + (3.1)

rd’ 'y

> [¢(A,, B.,C;A) +¢(A-, B, Cr; A)].

TEE

We now obtain bounds on ¥(A, B-,C; A) and ¥(A,, B,Cr; A)

for d = 4,5, and substitute them in the above recurrence to
derive the corresponding bounds for the general values of
Y*) and 9.

3.1 The four-dimensional case

LeMMA 3.1. Let A, B, and C be three point sets of sizes
a,b, ¢, respectively, in R*. For any cell T in the correspond-
ing subdivision E,

¢(AT’ BT1 C; A) + ¢(A77 B1 C"'; A) =
O(|A-|IB] + |A-|IC| + |B]|C)).

Proof: As noted above, we may assume that 7 is a lower
dimensional cell.

We first bound ¥(A-, B;,C;A). The assertion is obvi-
ous if min{|A.|,|B-|} < 2, so assume that each of the two
sets has at least three points. Recall that each point of A,
lies at distance £ from every point of B,. This implies that
there exist two orthogonal concentric circles v4, v5 such
that A, C 44 and B, C vg; see Figure 3. Indeed, let
u1, u2,u3 be three distinct points of A,. The intersection of
the spheres o¢(u1), 0¢(u2), o¢(us) is a circle; it cannot be a
2-sphere because a 2-sphere can lie on only two 3-spheres of
a given radius. Let yp denote this intersection circle, and
let 7w be the 2-plane containing vg. Clearly, B, C 5. The
center o of B; is such that 10, u20, uso are all orthogonal

Figure 3: Illustration to the upper bound.

to m. This implies that u;, u2, u3 lie in the (unique) plane
mt containing o and orthogonal to . Applying a symmet-
ric argument in which the roles of A, and B, are reversed
completes the proof of the claim.

Let w be any point in C. If w lies at distance 5 from at
most two points of A, then ¥(4,, B, {w}; A) < 2|B,|, for
an overall bound of 2|B.[|C]. Similarly, if w lies at distance
¢ from at most two points of B, then ¥/(A., By, {w}; A) <
2|A;|, for an overall bound of 2|A4,||C|. If w is at dis-
tances 7 and ¢ from at least three points of A, and B;,
respectively, then w lies on a circle 4¢ that is orthogo-
nal to both 74 and 4g. But this is impossible in R?, so
Y¥(Ar, B-,C;A) < 2(JA;| + |B-|)IC|. A similar argument
shows that ¢(A., B,C:; A) < 2(|A-| + |C-|)|B|. Summing
all the bounds obtained above, the assertion of the lemma
follows. O

In other words, we can write (3.1) ford =4 as

Y(4,B,C;A) = O(r'logr)- [(ab +ac+bc) +

We now repeat this analysis a second time, using each
of the sets B; as the set of points and the two other sets
as representing sets of spheres of appropriate radii (this is
the B-step). Then we perform a third step, the C-step, in
which the resulting susbsets of C represent points and the
two other subsets represent spheres. In each of the second
and third steps, the size of each set of spheres decreases by
a factor of r, and the size of each set of points decreases by
a factor of r*. After the third round, we have O(r'? log®r)
subproblems in which the size of each point set has been
reduced by a factor of r®. Therefore we obtain the following
recurrence:

¥Om) =00 1og ryy® (Z) +0(m?),  (32)
where the constant of proportionality of the second term
depends (polynomially) on 7. For any constant € > 0, with
an appropriate choice of r as a function of the prescribed
€, it can be shown that the solution to (3.2) is ¥ (n) =
O(n?**), where the constant of proportionality depends on
€. Applying this bound for A = B = C = P, we obtain that
£9(n) = O(n®**). 1t can be shown that £$*(n) = Q(n?),
by generalizing Lenz’ construction. In fact, it can be shown
that this lower bound can be attained for any given triangle
A. Hence, we have the following theorem.
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THEOREM 3.2. Let P be a set of n points in R*. The
number of triangles spanned by P that are congruent to a
fized triangle is O(n***), for any € > 0, and can be Q(n?)
in the worst case.

3.2 The five-dimensional case

An argument similar but somewhat more involved than
the one used in Lemma 3.1 implies the following lemma for
d=>5.

LeMMA 3.3. Let A, B, and C be three point sets of sizes
a, b, c, respectively, in R5. For any cell T in the correspond-
ing subdivision E,

¥(Ar, Br,C; A) + ¥(Ar, B,Cr; A)
= O(A-|(|BI**|C*’® +|B| +|C|) + |BI|C).

Proof: The proof follows the same line as that of Lemma 3.1.
We first bound % (A, B-,C; A). Again, we can assume that
|A+|, |B-| > 3. Since each point of A, lies at distance £ from
every point of B, it follows, similar to the 4-dimensional
case, that only two cases are possible:

(i) A- lies on a circle y4 and B, lies on a concentric or-
thogonal 2-sphere ¢p.

(ii) A, lies on a 2-sphere w4 and B lies on a concentric
orthogonal circle yz.

Indeed, take three distinct points ui,u2,us € A.. Argu-
ing as above, B is contained in a 2-sphere that is concen-
tric with and orthogonal to the circle v that passes through
w1, Uz, us3. If B, contains at least four noncoplanar points
then the entire A, must be contained in v, and we get the
situation in case (i). Otherwise, the entire B, must lie on a
single circle and we get the situation in case (ii).

Let w be any point in C. If w lies at distance 7 from
at most three points of A then ¢(A-, B,, {w}; A) < 3|B-|,
for an overall bound of 3|B:||C|. So assume that w is at
distance 7 from at least four points of A,.

In case (i), w must lie on a 2-sphere p¢ that is concentric
with and orthogonal to 4, and thus lies in the same 3-
space containing wp. We have thus reduced the problem to
the following one: We have two concentric spheres, ¢, ¢', in
three dimensions and two finite point sets @, Q’, with @ C ¢
and Q' C ¢, and we wish to bound the number of pairs of
points in @ x Q' that are at distance ¢ from each other.
We claim that the number of such pairs is O(|Q|?/%|Q'|*/% +
|Ql +|Q']). This is proved exactly as in the analysis in [6] of
the number of repeated distances in a planar point set, and
as in the proof of Theorem 2.1. In other words, the number
of triangles under consideration is

0 (|4-1(B-*/*|CI*"* + |B-| +CD) .

In case (ii), w must lie on a circle ¢ that is concentric with
and orthogonal to @4, and thus lies in the same 2-plane
containing yg. In this case it is easily seen that the number
of pairs of points in B, x (C N~¢) at distance ¢ from each
other is at most 2|B;|, so the number of triangles under
consideration is O(|A-||B-]).

The estimation of ¥(A,, B, Cr; A) is fully symmetric, and
yields the bound ‘

0 (4. |(1C-*/*|BI*"* +1C+| + |BI) +|B-I|C) .

Summing all the bounds obtained above, the assertion of
the lemma follows. o

We now apply Lemma 3.3 to each lower-dimensional cell
T € E, sum up the resulting bounds, and recall that r is
a constant, to conclude that the number of triangles that
satisfy the assumptions of the lemma, over all cells 7, is
O(a(®*3c¥® + b+ c) + be).

Hence, applying a round-robin decomposition process, as
in the 4-dimensional case, we obtain the following recurrence
for ¥®)(n):

@ (n) = O(r*® log® r)yp® (;"7) +0@™"3).  (3.3)

Using induction on n and choosing a sufficiently large con-
stant value for r, it can be shown that the solution to (3.3) is
¥®(n) = O(n"/?). A matching lower bound is constructed
as follows. Take a unit 2-sphere o and a unit circle vy that
are concentric and orthogonal. Place n/2 points on ¢ so
that there are Q(n*/®) pairs of these points at distance V2
apart (as in [8]), and place n/2 points arbitrarily on v. We
obtain a set of n points with Q(n"/3) equilateral triangles of
side length v/2. We thus obtain the following theorem.

THEOREM 3.4. Let P be a set of n points in R®. The
number of triangles spanned by P that are congruent to a
fized triangle is O(n"/3), and the bound is tight in the worst
case.

Remark 3.5 The number of congruent triangles in a set
of n points in the plane is O(n*/?), which is an immediate
consequence of the same bound for the number of repeated
distances in the plane. It is curious to note that each of .
these four bounds is close to O(n{4*?/3), where d is the
dimension. However, while for d = 4,5 these bounds are
nearly tight (for d = 4) and tight (for d = 5), they are
conjectured not to be tight for d = 2, 3.

4. CONGRUENT TETRAHEDRA IN FOUR
DIMENSIONS

We now bound the number of tetrahedra spanned by an
n-element point set P in R* that are congruent to a given
tetrahedron A = pgrs. Fix three points u,v, w € P so that
the triangle wvw is congruent to the face pgr of A. By
Theorem 3.2, the number of such triples is O(n**¢). Any
point z € P such that uvwz is congruent to A must lie on
a circle 4uyw that is orthogonal to the 2-plane spanned by
u, v, w, whose center lies at a fixed point in this plane, which
is the image (under the congruence) of the base point s* of
the height of A from s.

Let I" denote the collection of circles yuyw. Note that the
circle yyyw is fully determined from the points u,v,w, but
that it is possible that two different circles Yuvw, Yu'v'w’
coincide. In this case, «'v'w’ is obtained from wvw by a
rotation (and/or reflection) in the plane orthogonal to Yyvw
about the center of this circle. In other words, all the points
u € P that induce, with two other points of P, a fixed
circle ¥ = Yuyw S0 that u maps to p, must lie on a circle
C.,p, which is concentric with and orthogonal to 4. The
radius of C,,p is the distance between p and s*. Similarly,
the points that induce v and map to g (resp. r) lie on a
circle Cy,q (resp. Cy,r). The three circles C,,p,Cy,q, and
C,,» are concentric and coplanar. It is easily checked that




any of these three circles uniquely determines v and vice
versa. For simplicity of presentation, we only use one of
these three coplanar circles, say C,,. For a circle y € T,
there are O(|PNv|-|PNC,,p|) tetrahedra uwvwz spanned by
P such that z € v and u, v, w lie on the respective orthogonal
concentric circles C.y 5, Cy,q, Cy,r. Indeed, once the point
u has been chosen (from P N C, ), the point v that maps
to g must lie on C,,, and must be at distance |pg| from u.
There are at most two such points. Similarly there are two
candidate points for w in PN C,, and any point in P Ny
is a candidate for z.

Fix a threshold parameter k, whose value will be specified
later. If a circle 4 € T contains fewer than k points, then
the number of tetrahedra under consideration is at most
k times the number of triangles uvw that are spanned by
P, are congruent to pgr, and induce the circle yypw = 7.
Summing this bound over all such “low-degree” circles, we
obtain the bound O(n?*¢k).

The problem can thus be reduced to the following. We
have a set P of n points and a collection II of pairs of con-
centric orthogonal circles, in which no two pairs have a circle
in common, and at least one circle in each pair contains at
least k points of P. Our goal is to estimate the sum

Yo 1PNl Py < Y max{IPnql, PNy}
(v.7')en (vy")en

The problem of estimating the last sum can be restated as
follows: We have the point-set P and a collection € of circles,
so that each circle in € contains at least k points of P, and
our goal is to estimate the sum }°, .o |PN4|%.

LEMMA 4.1. The number of incidences between a set P of
n points and a set € of t circles in R* is O(n®/°t¥/5 4 n+1).

Proof: The analysis is similar to the one used in [6] to
obtain the same bound for the planar case. First, the point-
circle incidence graph does not contain K3 as a subgraph
(with 3 points and 2 circles), so the incidence graph can
have at most O(nt*/® + t) edges. We then project P and €
onto some generic 2-plane, and apply the divide-and-conquer
analysis of [6] to the projected points and curves, to obtain
the asserted bound. A similar proof is also given in [2]. O

LEMMA 4.2. The number t>; of circles in C that contain
at least j points of P is

3
0 ( =+ P.—) :
J J
Proof: The number of incidences between these ¢>; circles

and the points of P is at least jt»;. Using Lemma 4.1, we

thus have jty; = O('na/"’t‘;/j5 + n + ty;), from which the
asserted bound follows easily. (m]

Let t; denote the number of circles in € that contain ex-
actly j points of P. We then have

D_IPNA = 3 75% = Kitee+ Y (25 + Dtz
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Hence, the overall number of tetrahedra spanned by P and
congruent to Ag is

(0] (n2 + n_3 + n2+ek)
k3 )

Choosing k = n'/4, we obtain the following bound.

THEOREM 4.3. Let P be a set of n points in R*. The
number of tetrahedra spanned by P that are congruent to a
fized tetrahedron is O(n®**€), for any e > 0.

S. THE GENERAL CASE

Let P be a set of n points in R? and let 3 < k < d—1. Let
A =aja3---ar41 be a fixed k-simplex. We wish to bound
the number of k-simplices spanned by the points of P that
are congruent to A.

We assume that we are given k + 1 sets of points in R?,
call them Pi,... s Pri1- Initially, P, =P, = ... = Pryy =
P. Let Wi (Py,...,Piy1;A) denote the set of (k + 1)-tuples
(p1,p2y. .. yPk+1) E A X Py X -+- X Pi4y such that the k-
simplex p1p2 -+ - px+1 is congruent to A and |pip;| = |a:a;|
for 1<i<j<k+1 (ie., p; maps to a;). Set

Ye(P1y .o, Pey1;A) = [Ui(Py,. .., Pegr; Q)|
and
Yr(ny, ..., ne1) = maxyu(P, ..., Pey1; ),

where the maximum is taken over all (k + 1)-tuples of sets
Pi,... Py in R? with |P;| =n;, fori=1,... ,k+1, and
over all k-simplices A. For brevity, we will use 9(n) to
denote i (n,... ,n). The following lemma will be crucial
for our analysis.

LEMMA 5.1. Let P and Q be two point sets in R?, so that
[P, |Ql > d+1, and so that |pg| = a for eachp € P, g€ Q,
for some fized a. Then there ezist two spheres T'p, g, of
respective dimensions dp, 8g and centers cp, cq, such that

(i) PCTp and Q C To;
(1) 1< ép,6g <d—3 and 6p + 6o < d —2; and

(i11) Tp is orthogonal to I'q and both are orthogonal to the
segment cpcq. (If6p +8g =d—2 thencp =cg.)

Conversely, the ezistence of such a pair of spheres implies
that all distances |pq|, for each p € P and q € Q, are equal.

Proof: P is contained in the intersection I = Neco 76(9),
where 04(q) is the (d — 1)-sphere of radius a centered at g.
This intersection is a sphere of dimension at most d — 3.
Indeed, two of these (congruent) (d — 1)-spheres intersect in
a (d — 2)-sphere, which cannot be contained in any other
(d — 1)-sphere of the same radius. Let I'p C T be the
smallest-dimensional sphere containing P, and let §p de-
note its dimension. A symmetric argument implies that Q
is also contained in some (smallest-dimensional) sphere T'p,
of dimension dq. Clearly, 1 < 8p,8q < d~—3. Let cp, cg de-
note the respective centers of I'p, I'q, and let rp, 7o denote
their respective radii.

Since the affine hull Hp of P is equal, by assumption,
to the affine hull of I'p, which is a (§p + 1)-dimensional




L
+ 8

space, there exist ép + 2 points, p1,...,psp+2, of P, and
redl coefficients A, ..., Asp42, S0 that

Sp+2 Sp+2
Z Ai=1 and Z Aipi =cp ,
i=1 i=1
or, in other words,
Sp+2
Z /\,-(p,-—cP)=0.
=1

Similarly, there exist g + 2 points, ¢1,... ,gsq+2, of @, and
coefficients p1,... , ptsq+2, S0 that

5Q +2 JQ +2

S ui=1 and Y (g —cq)=0.
j=1 j=1

We have, for each i, j,

a® = |pi-gql®

= |(pi —cp) + (cp — cq) + (c@ — gi)I

= r5+ ré + |c11ncq|2 +2(p; — cp) - (cp — cq@)

+ 2(cq — gj)-(cp — cq) + 2(pi —cp)-(cq — ¢;)-
Hence

sp+28g+2

a® =Y > Mpa® =rp +rg +|cpcel’,
=1l j=1

which implies that
Di; = (pi—cp)-(cp —cq) +(cQ — ¢j)-(cp — Q)
+(pi —cp) - (cq —¢;) =0,
for each 4,j. Then, for any fixed j, we have

Z)\iDij = (cQ — ¢;) - (cp —¢q) =0,

implying that the affine hull Hg of I'q is orthogonal to cpcq.
By a symmetric reasoning, the same holds for the affine hull
Hp of I'p. This also implies that

(pi —cp) - (c@ —gj) =0,

for each i, j, so Hp and Hg are also orthogonal to each other.
This implies that dp + dg < d — 2, and thus completes the
proof of the first part of the lemma. The converse part is
trivial. ]

By applying the above lemma inductively, we can prove the
following.

COROLLARY 5.2. Let P, P,..., Py be k sets of points in
R?, each of size at least d+1, so that for all pairs1 < i< j <
£ and for any p € P; and q € P;, |pq| = |aiaj|. Then there
exist £ spheres T'1,... ,T'¢ of respective dimensions 61,... ,68;
and centers ci,... ,cq¢, such that

(i) P; CT; for each1 <1< ¢;

(ii) 1 < 8 < d— 3 for every i and Ef=15i <d-¢(if
Ef=15i=d—fthenc1=...=cl),. and

(iii) for i # j, I'i is orthogonal to T'; and all spheres are
orthogonal to the affine hull of c1,... ,ct.

We extend the divide-and-conquer procedure described in
Section 3 to bound ). Initially, each P; is an arbitrary set
of points in R?, but at each step the procedure will decom-
pose a problem into subproblems in which some “cliques”
of the point sets will satisfy the conditions of Corollary 5.2.
We therefore define a generalized version of the function
¥y, by introducing a weighted graph G = (V, E,\), where
V ={1,...,k+1}. A pair (3,5) € E if |pq| = |aiaj| for
every p € P; and ¢ € P;. We associate a weight function
A:{1,... ,k+1} — {1,... ,d} with the vertices of G, which
we simply write as a sequence (A1,... , Ak+1). Here A; is the
dimension of the smallest sphere that contains P;. By Corol-
lary 5.2, G satisfies the following property.

(G) If {1,... ,4¢} is a clique in G, then
¢
Y N <d-e
i=1

‘We now define ¢£G)(n1 s+ -+ yNk+1) to be the maximum value
of Yx(P1,...,Prs1; ), taken only over sets Pi,..., Pey
that satisfy the following properties:

(i) |P|>d+1foreachi=1,... ,k+1;

(3.i) If A; < d then P; is contained in a \;-dimensional
sphere T'; (if \i = d, then P; is an arbitrary set of
points in R%); and

(t.iii) If {¢1,... ,4¢} is a clique in G, then I';;,... ,T;, are
orthogonal to each other, and all of them are orthogo-
nal to the affine hull of their centers.

As a special case, the original bound ¥x(ni,... ,nk41) can
be written as ¢,£G°)(n1, ... yTik+1), where

Go = (V,0,(d,d, ... ,d))

is an empty weighted graph, with no constraints on any F;.

We apply a round-robin decomposition method to bound
1/),(06')(7;) = q/;,(f)(n,... ,n). Let Pi,...,Pry1 be sets satis-
fying (1.i)-(¢.iii), each of size n. The process consists of
k + 1 rounds, which are then repeated recursively. In the
jth round, P; is regarded as a set of points, and each F;,
for i # j, is regarded as a set of congruent spheres of radius
laiaj|. Consider the first round, in which we regard P as a
set of points, and let Vi denote the collection of all vertices
j # 1 of G such that (1,5) ¢ E. If Vi = 0, we skip the first
round altogether (see below for details). If G contains an
edge of the form (1,j), then A\; < d—3, and P; lieson a
Ai-dimensional sphere I';. We set U to be the affine hull
of I'1. Otherwise, if A1 = d then weset I')y = U1 = R?.
Regard any point p in some P;, for j € Vi, as defining a
A1-dimensional sphere o;(p), obtained as the intersection of
U, with the (d — 1)-sphere centered at p and having radius
laia;|. Set B; = {oj(p) | p € P;} and T = U, ¢y, Z;-

As above, a subdivision = of I'; into constant-description
cells is called a (1/r)-cutting of X if each cell of Z is crossed
by at most |Z;|/r spheres of ; for every j € V1. Arguing
as in Section 3, we have

LeEMMA 5.3. For any given parameter v > 0, there exists
a (1/r)-cutting of T of size O(r*' logr).

We fix a parameter r; and compute a (1/r1)-cutting of X.
By splitting cells further as necessary, we may assume that




each cell contains at most n/ri\‘ points of Py; the number of

cells is still O(r} logry), with a larger constant of propor-
tionality. Let £ denote the resulting set of cells. For each
T € B, set P{ = P, N 7. Obviously

Ve(Pry. .o, Peri; A) =Y i (P, Pay..., Pryr; A).
TEZ
Let A’ = a3 ---ax+1 be the facet of A opposite to a1. Let G;

denote the weighted subgraph of G induced by the vertices
V\{i}. Fixacell T € E. We say that a point p; € P;, for any
i > 1, is light in 7 if either |P]| < d or p; is at distance |a;a;]
from at most d points of P{; otherwise, it is heavy in 7. Let
L} (resp. P[) be the subset of points of P; that are light
(resp. heavy)in 7,fori=2,... ,k+1. Let p2--+pry;1 be a
(k—1)-simplex in ¥y_y(P,,...,L],..., Pey1; A’). Since p;
is light in 7, p2---pr41 contributes at most d simplices to

Wi (Py,...,L],..., Pcy1;A). Therefore the light points of
P; contribute at most
dC(n,... ,n) < dpC(n)
simplices, which implies that
¢k(PIT’P2:" . 7Pk+1;A)
k41
Sdz¢£€l1)(n) + ¢k(P{1 P2T7 e 7Pl;:r+1; A)
i=2

For each i > 1, let P; = {p € P/ | 7 C 0i(p)}, and let
Qi ={pe P/ | Tﬂa.(p) # Qandr ¢ oi(p)}. That is, a
point p is in Q7 if 0i(p) crosses . By definition, if i ¢ V;
then Q7 = @ and P; = P]. Since Eis a (l/rl)-cutting
of ¥, we have |Q7| < n/r; for each i € V;. If a simplex
P Pesr € Wu(Pl,..., P{yy; A), then pi € N2, 0:(pi).
Since p; € 7, we have that p; € P, UQT for 2 < § <
k + 1. Hence, we obtain (in the first term, for 51mphclty of
notation, S; denotes Q7 fori € Vi and P; for i ¢ Vi):

Ye(Pl,..., Py A) <
Y (P, Ss,... , Sk1; A) +
TEZ
Zz¢k(PlaP2a 1 Pk+1)A)
TEZIEV)
50(1"1\‘ logrl)zp,(cc) %,n,... Y, nfr,. .. nfr
r D e R ———
E—|Vi] A
+3 > (P, P,... ,Pi,... Pl A).
rEZieV;
Fix an i € V1. As before, if |P; | < d, then
WP, Pl Pl A) < dgB)(m).

If |P;| > d+1, apply Lemma 5.1 to P{ and P; to conclude
the existence of two spheres I' D Py, I' O P; that satisfy
the properties of that lemma. We clearly have I' C I'; and
I'" C Ty, and proper inclusions are possible. Let 4,4’ denote
the respective dimensions of I',I'. Note that for any j ¢ Vi,
I’ and T'; continue to satisfy the properties of Lemma 5.1
(as did T'1 and T, except that the dimension of ' may be
smaller than that of I'1). The same holds for any edge (4, ')
in G incident to i, with I' replacing I';. We now replace G
by the augmented weighted graph G (3 ;), whose edge set is

EU{(1,1)}, and in which ), is replaced by §, ; by &', and
for 1 < j # 4, A; is set to the smallest integer s such that
P lies in an s-sphere. This step does not increase the value
of any A;. We can thus rewrite the above recurrence as:

PP, Pip1; ) <

G n
oM logrl)qp,(: ) T_Af’n"” y,nfr,.. ., nfn
N N e’
1

LA Vi
k41 G
+Y0@Cm) + 3 0wt ). (5.1)
i=1 i€V

We now repeat this step for each of the remaining & rounds.
In the ith round we compute a (1/r;)-cutting of an appro-
priate set of spheres (where P; is mapped to a set of spheres
of common radius |a;e;| if (4,7) ¢ E), so that the size of the
cutting is O(r,-"" logr;). To derive the final resulting recur-
rence, we argue as follows. Fix an index ¢ € {1,... ,k+1}.
In the ith round, the size of the ith set in the leading recur-
sive term (i.e., the term that involves the same ¢,£G) func-
tion) is reduced by a factor of r?". At the jth round, for
any j # i, there are two cases: (a) If (,5) ¢ E, then the
size of P; in the leading recursive term is reduced by ;. (b)
If (¢,7) € E, then P; does not change. Thus the total size
of the ith set in the final leading recursive term is at most
(n/r} O, ngsr Foreachi=1,... ,k+1, put r; = r%,

for some sufﬁcxently large constant pa.ra.meter r, and for ex-
ponents x; > 0 that are required to satisfy the following
k + 1 inequalities:

Aizi + Z z; 21,
GAEE
that is, we want the size of each set in the final leading

recursive term to be at most n/r. Let A = A(G) be the
symmetric (k + 1) x (k + 1) matrix, defined by

fori=1,... ,k+1;

’\i 1‘=J7
Aij =41 i#3 (i,j) ¢ E,
0 i#j (i,j) €E.

Define {(G) to be the optimum value of the linear program
min A - x subject to Ax > 1. Let x = (zi1,...,Zd41)
be a vector that attains the minimum. Set r; = r®¢, for
i=1,...,k+1. Then the leading term of the recurrence be-
comes O(r¢(®) log"+1 r)yp{%) (n/r), and the full recurrence
becomes

(G)(n) < O(,,.C(G) logk'H r)¢(G) (r)

k41
0w+ 3 0w ),
i#j, (i.,j)¢F

where the weighted graphs G.(; ;) are defined in a manner
similar to the definition of G, ), given above. Let {(d, k)
denote the maximum value of {(G) over all graphs with
k + 1 vertices satisfying property (G). Then the solution
to the above recurrence is %{%(n) = O(n¢@"+) for any
€ > 0. Unfortunately, so far we were unable to derive a sharp
explicit bound on ¢(d, k), but conjecture the following.

ConJECTURE 5.4. For anyd >4 andk < d-2, ((d, k) <
d/2.




For G = Go = (V,0,(d,... ,d)), we have
C(G)=dk+1)/d+k)<d/2 (fork<d-—2)

by choosing z; = 1/(d+ k) foreach i = 1,... ,k+1. We
believe that {(G) is maximized when G = Gp and k =d—2.
While deriving (5.1), if § or 6’ becomes 1, then one can
argue that Yx(PY ..., Pi11;4) < d(¥t;(n) + ¢;2,(n).
Using this observation and a few others, we prove, using case
analysis on the possible matrices A(G), that {(d,k) < d/2
ford<T7and k<d-2.

The technical difficulty in proving a bound on ¢(d, k) lies
in the fact that, as G is augmented, the number of recursive
subproblems decreases, but the size of the point sets in each
recursive subproblem is larger than what it was in the un-
constrained case. In particular, sets connected in G to the
current set do not change at all. The tradeoff between these
two “trends” is not obvious.
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