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1 Work Performed and Results Obtained

The objectives of the contract were to develop computational methods for stable
distributions. This section will describe the work performed and the results ob-
tained, organized by topics in approximate chronological order. The second section
discusses technical feasibility of Phase II work, and a short third section discusses
miscellaneous issues.

We note that there is more extensive documentation on these topics in the
monthly reports and delivered software. The six monthly reports, the extensive re-
port on simulations evaluating parameter estimation methods, and the user manual
for the STABLE matlab interface totaled over 200 pages of detailed information.
The information below is a summary of that work, it is not intended as a complete
record.

There are multiple parameterizations for stable laws and much confusion has
been caused by these different parameterizations. We define two parameterizations
below, at least six more have appeared in print. In most of the recent literature, the
notationSα(σ, β, µ) is used for the class of stable laws. We will use a modified
notation of the formS(α, β, γ, δ; k) for three reasons. First, the usual notation
singles outα as different and fixed. In statistical applications, all four parameters
(α, β, γ, δ) are unknown and need to be estimated; the new notation emphasizes
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this. Second, the scale parameter is not the standard deviation (even in the Gaussian
case), and the location parameter is not generally the mean. So we use the neutral
symbolsγ for the scale (notσ) andδ for the location (notµ). And third, there
should be a clear distinction between the different parameterizations; the integerk
does that explicitly.

The first parameterization is continuous in all four parameters and is used in
all our statistical work. The second parameterization is the one used in most recent
publications it is simpler to use for theoretical work. It has a discontinuity as
α → 1, which makes it impractical for numerical and estimation purposes.

A random variableX is S(α, β, γ, δ; 0) if it has characteristic function

E exp(iuX) ={
exp

(−γα|u|α [
1 + iβ(tan πα

2 )(signu)(|γu|1−α − 1)
]
+ iδu

)
α 6= 1

exp
(
−γ|u|

[
1 + iβ 2

π (signu) ln(γ|u|)
]
+ iδu

)
α = 1.

A random variableX is S(α, β, γ, δ; 1) if it has characteristic function

E exp(iuX) =

{
exp

(−γα|u|α [
1− iβ(tan πα

2 )(signu)
]
+ iδu

)
α 6= 1

exp
(
−γ|u|

[
1 + iβ 2

π (signu) ln |u|
]
+ iδu

)
α = 1.

1.1 Discrete Stable Distributions

Given a continuous stable distributionZ ∼ S(α, β, γ, δ; k), and two cutoff values
c1 < c2, the quantized and truncated r.v.

X =





c1 Z ≤ c1 + 1/2
round(Z) c1 + 1/2 < Z < c2 − 1/2
c2 Z ≥ c2 − 1/2

is called a discrete stable distribution. In the examples, parameterizationk = 0 and
cutoffsc1 = −128 andc2 = +127 are used, corresponding to the common values
used in digital signal processing.

Five new functions for discrete/quantized stable distributions were written.

• sgendiscrete generates discrete stable random variates. It works by
generating continuous stable random variables using the Chambers-Mallows-
Stuck method, rounding them to the nearest integer, and then cutting off if
the value is too high or too low.

• spdfdiscrete computes the pdffdisc of a discrete stable distribution.
This works by computing the probability that the continuous random variable
is in the interval of width one centered at the current value:P (X = x) =
P (x− 1/2 < Z ≤ x + 1/2).
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• scdfdiscrete computes the cdfFdisc of a discrete stable distribution. It
works in a similar way:P (X ≤ x) = P (Z ≤ x+1/2). (Both the latter two
functions have special conditions forx ≤ −128 andx ≥ 127.)

• sdiscretefindgamma computes the value of the scale functionγ needed
to achieve a certain saturation probabilitypsat = P (X = c1) + P (X = c2).
This is used in cases where a certain saturation probability, say 0.02, is
needed.

• sgendiscrete2 generates discrete stable random variates. It is similar to
sgendiscrete , but instead of requiring the scale parameterγ, it uses a
user specified saturation probability to determine the scale (using the previ-
ous function) and then generates the random variates.

Figure 1.1 shows the output of these functions for one example: the top graph is
a histogram of 10000 simulated random variates, the second graph shows the exact
pdf, and the third graph shows the exact cdf for the quantized/discrete distribution.
The two key differences between this and the continuous case are that only integer
values in the range -128 to +127 are observed and that the truncation or saturation
causes a certain probability to be concentrated at the endpoints.

1.2 matlab Interface

In the second month of the contract, a matlab interface for the STABLE functions
was developed. The software was delivered to the Navy in late December. It
consists of

• stablemex.dll - a dynamic link library that contains the core functions of
STABLE, including the new discrete stable functions. For efficiency reasons,
these routines are coded in Fortran.

• matlab .m functions that define the matlab interface to stablemex.dll

• a user manual

• miscellaneous instructions and help files

The interface was updated later to incorporate the new methods described be-
low. This interface represents a significant advance in the availability of tools for
working with stable distributions. It allows engineers and scientists to analyze data
and work with stable distributions within the common matlab environment they
use. We comment briefly on the commercialization of this in the last section.
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Figure 1: A centered discrete stable distribution with(α, β, γ, δ) as shown.
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1.3 Parameter Estimation

For a given data setX = (x1, . . . , xn) of independent discrete, truncated stable
random variables, the underlying stable parameters can be estimated by using each
of the following methods, with references to their published descriptions.

• Quantile based estimationFama and Roll (1968), McCulloch (1986) and
Ojeda (2001).

• Characteristic function based estimation (char.fn.) Koutrouvelis (1980)
and Kogon and Williams (1998).

• Maximum likelihood estimation (mle) Nolan (2000).

• Discrete maximum likelihood estimation (dmle)

The first three methods are techniques were developed for continuous stable data,
without discretization and truncation. The fourth one is a new technique, developed
under this contract, where we explicitly take into account the discrete nature of the
data and the fact that it is truncated. Given values ofα, β, γ andδ, the likelihood
of a discrete data set with known cutoffsc1, c2 is

L(α, β, γ, δ|X, c1, c2) =
n∏

i=1

fdisc(xi|α, β, γ, δ, c1, c2),

wherefdisc(x| . . .) is the probability density (mass function) of a discrete, trun-
cated stable distribution. This likelihood can be numerically computed using the
program developed in earlier in this contract to evaluatefdisc(x| . . .) for a discrete
stable distribution. This likelihood is then numerically maximized in 4-dimensions
using a multivariate optimization routine. The first three methods can be applied to
discrete data, but will not work well in many cases. The next section describes the
evaluation of these methods.

The matlab interface includes the first three methods and was extended to in-
clude the last method. It is:

• stablefitdmle to compute the discrete maximum likelihood estimators for a
discrete stable fit to integer valued/truncated data.

Implementing this routine took longer than expected. The “typical” case worked
well, but there were problems at certain values of the parameters: near the Lévy
case (α = 1/2, β = ±1), nearα = 1, and near the Gaussian case (1.99 < α).
Specifically, if α andβ were in one of these special regions, the STABLE rou-
tine that computed the likelihood rounded the parameter values to nearby values to
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avoid computational difficulties. This had the hidden effect of making the likeli-
hood surface look flat near those regions, which caused the optimization routine to
get trapped in the region. These problems were fixed in late May.

1.4 Evaluation of Estimation Methods

A large scale simulation and evaluation of estimation procedures for discrete stable
distributions was done and a long (173 page) report was filed in month 5. We note
that Ojeda (2001) showed that for continuous data, the quantile method is least
efficient and the maximum likelihood method is most efficient. The characteristic
function is intermediate, in fact almost as efficient as maximum likelihood. This is
not the case for discrete stable data. We will not repeat the results of the month 5
report here, only give a brief summary of what we found for typical values of the
parameters.

• Quantile based estimationworked reasonably well when the data was not
too saturated. For reasonable saturations, say less than 5% on either tail, the
quantile method is unaffected by the masses at the cutoff points, as it only
uses the 5-th, 25-th, 50-th, 75-th and 95-th percentiles of the data. The dis-
cretization causes some rounding in the estimation of these quantiles, and
hence some inaccuracy in parameter estimates. When compared to the sec-
ond and third methods, this method is less efficient for continuous data, see
Ojeda (2001), but generally works better than either for discrete data.

• Characteristic function based estimationworks well for continuous data,
but poorly for discrete data. As in the mle case, the problem is in the trun-
cation. This method works by estimating the sample characteristic func-
tion/Fourier transform. The shape of this function near the origin is used to
estimate parameters. The values of the sample characteristic function near
the origin are determined by large values of the data. The truncation elim-
inates those large values, and makes the characteristic function estimator
perform poorly for truncated data in almost all cases.

• Maximum likelihood estimation did not seem to be much affected by round-
ing (quantization), but could be significantly affected by the truncation. Roughly
speaking, the chopping off of the tails resulted in a “light tailed” data set,
which this method regularly estimated as Gaussian (α = 2).

• Discrete maximum likelihood estimationgenerally works best. This is as
expected, because the method explicitly models the exact model for the data,
taking into account the discretization and truncation. It is slower than the
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other methods, due do the computationally intensive nature of the process.
The symmetric case is faster, as it uses the fast approximation to the contin-
uous cdf described below.

For illustration purposes, we show results of one simulation. The test case we
examined usedα0 = 1.5, β0 = 0, δ0 = 0 and varying saturation probabilitypsat.
M = 100 i.i.d. samples of sizen = 1, 000 were generated and each parameter
was estimated using each of the methods. The results were saved to a file and then
analyzed using a separate program. The analysis computed the means squared
error (MSE) of each parameter, e.g. MSE(α) = (1/M)

∑M
i=1(α̂i−α0)2, whereα̂i

is the estimate ofα from theith sample. Figure 2 shows the plots of the MSEs for
each parameter and each of the estimation methods.

There are a few cases where parameter estimation will not work well for dis-
crete stable distributions. If the granularity is too coarse, all the data will be
clumped at a few values. Likewise, if the saturation probability is very high, then
the distribution is close to two large point masses at -128 and +127. In either case,
it is not possible to recover parameters. There were two cases where the simula-
tions in month 5 showed poor performance of the DMLE method. Whenα was
near 2 or whenα was near 1/2, the truncated tail resulted in some initial estimates
of α being 2 and the computational problem discussed above caused the DMLE al-
gorithm to get trapped atα = 2. These initial estimates caused an artificially large
MSE for the DMLE algorithm. That problem has been fixed and the performance
of the DMLE method is much improved in these cases.

1.5 Fast Approximation of Densities and Cumulatives

The STABLE routines for computingF andf , scdf and spdf, use numerical eval-
uation of certain integrals, see Zolotarev (1986) and Nolan (1997). The numerical
integration gets about 12 digits of absolute significance. These routines have a
few weaknesses: they are slow when doing intensive computations (e.g. numerical
maximum likelihood estimation), when computing the cdf or pdf on the extreme
tails, and on the light tail, e.g.x < 0 whenβ = +1, the quantities get very small
(< 10−12) and are hard to accurately estimate. Also, asα gets smaller, the stable
pdf gets extremely peaked asα ↓ 0, yet also have very heavy tails. It is very hard
to accurately compute the cdfF and pdff for smallα.

We will focus on the cdf in what follows. Our approach uses the transformation

Y = X<α> := (signX)|X|α

to handle the computational problems whenα is small. LetG(y|α, β; 0) denote
the cdf ofY , whenX has cdfF (x|α, β; 0). The first nice property of the signed
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Figure 2: MSE plots from one simulation run.
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power transformation is that it is 1-to-1 and easily invertible:y = x<α> if and only
if x = y<1/α>, i.e. if we knowG(·), then we can easily computeF (·). Second, in
the symmetric case, we only need to considery ≥ 0. Third, the tail probabilities
all behave the same now: fory >> 1,

P (Y > y) = P (X > y1/α) ∼ cαy−1,

hence the tail approximation becomes very simple. Finally, it can be shown that as
α ↓ 0, G(y|α, β; 0) → G(y|0, β; 0), where the right-hand side is a smooth, proper
distribution function. This means that the degenerate behavior seen inF (x|α, β; 0)
asα ↓ 0 is eliminated by the transformation. These features ofG make it a useful
tool for developing a compact, fast, and accurate approximation toF for all values
of α.

After the Y = X<α> transformation we use another 1-1 transformationTα

that is smooth and explicitly invertible, and that makes

H(y, α, β) := P ( Tα(Y ) ≤ y )

relatively smooth. We then evaluateH(y, α, β) on a grid ofy, α, β values, compute
a spline interpolant forH, and save the spline coefficients. Then the cdf ofX can
be recovered by

F (x|α, β) = H(T−1
α (x<α>), α, β).

The choice ofTα is a technical issue, and relates to the goal of having a fast
and accurate approximation over the range of the parameter space. In general there
are four cases where approximations are difficult: (i)α small, (ii) α near 1 in the
non-symmetric case, (iii)α near 2, (iv)β near±1. The transformationY = X<α>

works well on the first problem, and using the continuous 0-parameterization works
well on the second problem. However, we have not been able to find a general
solution to the third and fourth problems.

We have developed a quick approximation method for the important special
case of symmetric stable cdfs. It has a reasonable work-around for the third prob-
lem above, and the symmetry avoids the last problem. It usesTα(y) = log y,
computesH(y, α, 0) for α ∈ [0, 1.999], and uses a 2-dimensional spline to approx-
imate the values ofH everywhere. The code is implemented in Fortran subroutine
QKSCDFSYM (QuicK Stable CDF SYMmetric) and speeds up the evaluation of
symmetric stable cdfs by a factor of over 200.

The accuracy of this approximation is quite good, except asα approaches 2.
It turns out that the signed power transformation eliminates most of the problems
for small alpha, but aggravates problems for largeα. We planned to use duality
of stable laws withα > 1 to stable laws withα < 1 to eliminate the need to
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consider largeα. However, the problem is complicated by the fact that the duality
relation requires the use of non-symmetric stable cdfs withα < 1 to compute the
symmetric stable cdfs withα > 1. We have tried more than 10 transformationsT
to deal with the nonsymmetric case, but have not been to handle it in a satisfactory
way yet.

We summarize the existing fast functions in STABLE:

• qkscdfsym - a fast approximation to symmetric stable cdfs for allα ∈ (0, 1.999]

• qkscdf - slower approximation to the stable cdf in the general (skewed) case.
It uses the numerical integration formulas to compute the cdf on a grid ofx
values, and fits a spline to these values. This setup process takes some time,
but if there are a large number ofx values at which to evaluate the cdf, this
method is faster than evaluating each by numerical integration.

• qkspdf - a fast approximation to all stable pdfs withα ∈ [0.4, 1.99]. It
uses a precomputed 3-dimensional spline approximation, with no numerical
integration. It is fast, but requires a lot of storage (over 20,000 lines of
precomputed constants).

1.6 Nonlinear Function

The nonlinear function, also called the score function for the location, is

g(x) = −f ′(x)
f(x)

.

This function is used in the locally most powerful detector. We have developed
four methods of computing it, calledg0, g1, g2 andg3 below.

1.6.1 g0 numerical evaluation using pdf

The first method of evaluatingg uses the numerical quadrature routines to evaluate
the pdff(x). It then uses Ridder’s method to numerically find the derivative of
the pdf at a point. It is accurate, but slow; we use it as our baseline method. It
typically takes∼16 pdf evaluations to estimate the derivative, so it typically takes
∼17 numerical quadratures to evaluatef ′(x)/f(x) at a singlex.

1.6.2 g1 numerical evaluation using approximation to the pdf

The first improvement in calculatingg(x) is to replace the the pdf routine used
in the calculation ofg0(x) by the faster approximation for the pdf (qkspdf). The
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resulting function we will callg1(x). The same number of pdf calls are made, but
wheng(x) is evaluated at a large number of points, the evaluation off(x), and
hencef ′(x), are much faster. There is some cost to setting up the approximation,
so this routine is only useful if evaluatingg(x) at a moderate or large number of
x’s.

1.6.3 g2 spline approximation

The next method of approximation uses a spline interpolant to the nonlinear func-
tion. It usesg0(x) to compute the nonlinear function on a grid of points, then fits
a shape preserving spline to those points. An ad hoc tail approximation is used to
approximateg(x) outside of the range of grid points. This approximation is called
g2(x).

For g1, a spline was fit to the pdff(x), and then that was used to numerically
computeg(x) at eachx. In contrast, this method fits a spline directly tog(x),
so after the setup cost, evaluatingg2(x) involves some searching for the correct
interval, and then computing a cubic polynomial.

Currently the grid consists of 101 evenly spaced points on the interval [-20,20].
In addition to evaluatingg0 at these 101 points, there is a noticeable setup cost of
computing the spline interpolant. For a large number ofx’s, the resulting approxi-
mation is faster than eitherg0 or g1.

1.6.4 g3 rational approximation

The last approach uses a rational approximation tog(x) of the form

g3(x) =
x + c1x

3

c2 + c3x2 + c4x4
.

It was motivated by the fact that in the symmetric case,g(x) is odd (g(−x) =
−g(x)), is linear near the origin and has tail behaviorg(x) ∼ (1 + α)/x as
x → ±∞. A rational function of the above form has this behavior and can do
a reasonable job of approximatingg(x) in the symmetric case whenα > 1.

The constants depend on the value ofα; simple expressions were given for
them in the report for month 6. This approximation is much faster than any of
the above methods. It requires no calculations of the pdf, no computing of spline
interpolants, no numerical derivatives, no interval searching, and almost no storage
or code requirements. For a givenα, the coefficients are computed once andg3(x)
is evaluated directly for eachx. Algebraic rearrangement of the formula forg3(x)
makes it possible to evaluate it with 3 additions, 6 multiplications and 1 division.
Finally, because evaluatingg0, g1 and g2 require many complicated operations,
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seconds time(g0)/time(gk)
g0 182.672 1
g1 0.390 467
g2 84.032 2.2
g3 0.031 5870

Table 1: Timing results forg function approximations,n = 20, 000 evaluations.

there is no guarantee that they behave well at all points. In contrast, because of the
simple form ofg3, it is always well behaved.

We repeat that this method is good forα > 1 andβ near 0. Since this region
is what seems to be of most interest in engineering applications, we believe this
method is valuable even though the range is limited. We tried to adapt this approach
to the nonsymmetric case, but found it difficult to get a reasonable method that
works well for allα andβ.

Figure 3 shows plots of the various functions in the symmetric case. Table 1
shows the results of a test run to determine the time required by the different meth-
ods by evaluatinggk, k = 0, 1, 2, 3 atn =20,000x values. The time taken naturally
depends on the computer used, so relative times (column 3) should be considered,
not the absolute times (column 2). Also note that the times forg0 andg3 should be
of the formckn. In contrast,g1 andg2 times include the initial setup time; hence
the time for these two are of the form (setup time)k + ckn. If n is larger, the time
per function evaluation decreases.

• stablenonlinfn computesg0

• stableqknonlinfn to approximate the approximations to the nonlinear func-
tion g1, g2 andg3 as described above. A parameter indicates which method
to use.

We note that all of these routines behave poorly whenα is small, sayα < 1/2
or whenβ is near +1 or -1. In the first case, the pdf varies very quickly and it is
difficult to calculatef(x) and even harder to accurately calculatef ′(x). Whenβ
is ±1, the light tail decays much faster than in all other cases. In the case of the
Lévy distribution,g(x) has a vertical asymptote; similar behavior appears to occur
for all α < 1. Forα ≥ 1, the nonlinear function is also poorly behaved whenβ is
near±1.
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1.7 Graphical Diagnostics and Test Script

The following matlab functions have been provided for visual assessment of a sta-
ble fit and for testing the STABLE matlab interface. They use the core STABLE
functions.

• stabledensityplot to produce a diagnostic plot showing smoothed data den-
sity and the density of a stable fit

• stableqqplot to produce a diagnostic plot showing the quantiles of the stable
fit and the data

• stableppplot to produce a diagnostic plot showing the cdf of the fit and the
cdf of the data

• stablezzplot to produce a diagnostic plot showingΦ−1 (the inverse of the
normal cdf) applied to a both axes of a pp-plot

• stablediag to produce all four of the above

• stabletest to test most of the functions in STABLE from matlab. It is also a
source of examples on how to use the different routines.

2 Technical Feasibility

The results of this Phase I contract show that it is possible to develop computation-
ally efficient methods for working with stable distributions. There are now accurate
and reliable routines to compute densities, cumulative distribution functions and
many other quantities quickly and accurately. And there have been simulations to
evaluate the estimation routines and we have a solid understanding of what works
and what does not.

There are still one dependency on the IMSL routines in our Fortran routines.
The one case that we have not been able to eliminate the IMSL routines is in com-
puting some of the spline function interpolants. In certain cases the function we are
fitting with a spline change rapidly, typically asx → ∞ or α ↑ 2 or α ↓ 0. Even
though the function values are calculated accurately, a spline computed by the tra-
ditional methods introduce oscillations in the approximation in the region where
the function changes rapidly. We have had to resort to using a special spline rou-
tine DCSCON from the IMSL libraries. This routine computes a ‘shape preserv-
ing’ spline that follows the concavity of the data. This solves one of the problems,
but slows things down a bit, and it relies on proprietary routines that don’t always
converge. There has recently been some new work on this problem, see Dontchev
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et al. (2002), which claims to have a globally convergent method. We have been
in contact with those authors, and are considering coding their improvements and
obtaining a non-proprietary method.

There is still work to be done to make these routines faster and use less mem-
ory. This is especially true if these methods are to be used in a real-time DSP
environment. For such an application, methods like the rational approximation to
the nonlinear function, calledg3 above, are probably necessary. In such applica-
tions it is probably reasonable to restrict the parameter space to1 < α ≤ 2 and
β = 0, or at least|β| << 1. It is likely not important to get high precision in all
calculations, but is important to have a reasonable approximation that captures the
key features of the quantity of interest.

We caution that the analysis done in this contract were based on simulated
stable distributions. It is not clear how well these methods will work with real
data. It is hoped that these methods, while not giving an exact fit to the data,
give a better fit than a Gaussian distribution. Discrepancies from an exact stable
distribution may not be important if an approximate fit with a stable model gives
practical, robust methods for working with radar and other signals.

3 Miscellaneous

A summary CD-ROM is being delivered to the TPOCs. That CD contains: the
contract proposal, the agreed upon work plan, the 6 monthly reports, this report,
the matlab interface to STABLE, and the user manual for the STABLE routines.

The work described, particularly the matlab interface, took more time than
expected. A subcontractor, Dr. Alex White, was hired to implement initial versions
of some of the computational and graphical routines and to run and analyze the
simulations of the estimation methods. He did 320 hours of work. The PI put in
more work than planned, because of the reasons mentioned above. Significant time
was spent on the matlab interface, on the implementation of the discrete maximum
likelihood method of estimating stable parameters, on the fast approximation of the
cdf and on the nonlinear function. The work for Dr. John Nolan totaled 550 hours.

Finally, we comment briefly on commercialization of this work. We have an-
nounced the availability of the STABLE interface on our website1, and have three
copies of the matlab interface and one Mathematica interface. Recently Math-
Works, the company that sells matlab, accepted Robust Analysis as a “Connection
Partner”, and lists STABLE on their website2. The PI has used an S-Plus interface

1http://www.RobustAnalysis.com
2http://www.mathtools.net/MATLAB/Add-on functions/index.html
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for doing the development and testing of many routines and we are working with
Insightful, the maker of S-Plus, on a Phase II proposal to continue this work.
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