
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

An On-line Occlusio-CuUing Algorithm for Fast Walkthrough
in Urban Areas^

Yusu Wang* Pankaj K. Agarwal* and Sariel Har-Peled^

Abstract
We describe a fast algorithm to speed up rendering of scenes for walkthroughs in urban environments. Our oc-
clusion culling algorithm takes advantage of temporal coherence in image space. As such, occlusion calculation
is performed online only when needed. This enables us to employ intelligent occluder-selection and culling al-
gorithms. We do not preprocess visibility information or preselect occluders. Therefore, we can update scenes
dynamically at a little cost. The algorithm features a tradeoff between accuracy and efficiency. While it approxi-
mates visibility testing, our experiments show that errors occur rarely.

1. Introduction

In urban walkthroughs, a user virtually navigates through a
3D city model as a pedestrian or as an auto driver. Optimally,
we would like interactive rendering of 30 to 60 frames a
second. Unfortunately, data gathering techniques have out-
stripped advances in rendering hardware, making interactive
rendering of massive data sets impossible without reducing
the number of primitives rendered at each frame. Occlusion
culling is one popular technique for this reduction.

Occlusion culling is especially suitable for urban environ-
ments since the scenes are usually densely occluded. How-
ever, the characteristics of urban environments also raise
several challenging issues for occlusion culling algorithms.
First, large amounts of objects in urban environments are
hidden by the combination of several, not necessarily con-
nected occluders, therefore, the effect of multiple occluders
— occluders fusion — has to be considered for a city model.
Second, most buildings in city models are of similar sizes, so

t Work is supported by Army Research Office MURI grant
DAAH04-96-1-0013 and an NSF grant CCR-9732787. P.A. is
supported by Army Research Office MURI grant DAAH04-96-1-
0013, by a Sloan fellowship, by NSF grants ITR-333-1050, EIA-
9870724, EIA-997287, and CCR-9732787, and by a grant from the
U.S.-Israeli Binational Science Foundation.
t Department of Computer Science, Duke University; Durham, NC
27708; USA. E-mail: wys, pankaj @cs . duke. edu
S Department of Computer Science, University of Illinois; Urbana,
IL 61801; USA. E-mail: sar ielScs. uiuc. edu. This work was
done while the author was in Duke University.

Figure 1: Visualization of our algorithm on a Manhattan
city model with 27,400 polygons, (a) is a bird-eye view, (b)
is a view along a street, (c) shows light grey city map over-
layed with black view frustum, dark grey culled objects, and
black occluders. In this view, our algorithm culls 88% of the
polygons.

a few occluders seldom suffice and occluder-selection meth-
ods only relying on heuristics such as size and distance may
fail to capture significant occlusion in a city model (see Fig-

© Tlic Eurographics Association 2001.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited 20030612 053

Wang, Agarwal and Har-Peled / Occlusion Culling Algorithm in Urban Walkthroughs

Figure 2: None of the buildings inside region B has large
size or is close to the viewpoint, but they together form good
occlusion.

ure 2). Besides, urban models are always deep; namely at
most viewpoints, a significant number of buildings are far
away from the viewpoint. As the viewpoint moves contin-
uously, faraway buildings that are occluded remain so for
a "long" period of time. Thus strong temporal coherence
— the scene does not change much within two consecutive
frames — exists in urban walkthrough applications.

In this paper, we present a simple and fast occlusion-
culling algorithm for urban environments. The algorithm se-
lects the occluders based on a novel measure of importance.
The key features of our algorithm are its selection of effec-
tive occluder and its exploitation of temporal coherence by
means of occluder set shrinkage. The algorithm performs oc-
clusion culling in only a small subset of all the frames due to
the utilization of temporal coherence. The shrinking allows
tradeoff between accuracy and efficiency. For the purposes
of this paper, we assume the input model to be 2.5D, al-
though our algorithm can be extended to the 3D case. Given
a hierarchical representation of the scene, the proposed al-
gorithm does not require any pre-processing or prior knowl-
edge about the walkthrough path. It computes and maintains
the occluder set and the necessary visibility information in
an on-line fashion, and can update the scene dynamically.
The algorithm is simple and can be integrated wifli most ex-
isting occlusion-culling algorithms to improve their culling
rate at little extra cost.

The resulting algorithm has been implemented on a SGI
Octane Mips R10000 platform, and tested on both static and
simulated dynamic environments. Considerable speedup in
both culling rate and overall frame rate has been achieved,
as demonstrated by the experimental results.

The remainder of the paper is organized as follows. Sec-
tion 2 gives a review of previous work. Section 3 describes
the outline of the algorithm, while Sections 4-6 elaborate
on the key stages of our algorithm. Section 7 presents the
results and performance analysis, and finally. Section 8 con-
cludes by discussing future work and open problems.

2. Previous Work

Cohen-Or et al.* survey recent results on occlusion culling
and visibility. In what follows, we distinguish between two

classes of occlusion-culling algorithms: preprocessing ap-
proaches and online approaches.

Preprocessing methods typically partition the view space
into cells, then pre-compute and store visibility information
for each region *• '^^ "•"' '^' "• ^°. Occluders fusion is inher-
ently difficult to be computed for a view cell, and some ap-
proaches exploit the idea of "virtual" occluders 2.'. i6. por the
special case of urban walkthroughs, Cohen-Or et al.^ pro-
vide a modeling method for densely occluded city data sets
and pre-compute hidden buildings for each view cell. Wonka
et al. 22 apply a shrinking idea in the object space and cull
maps in the image space to perform visibility preprocessing.
The above approaches are fast during real-time applications,
but are considerably costly with respect to time and mem-
ory during the preprocessing, and may not be generalized to
dynamic scenes well.

Unlike the above preprocessing approaches, most on-line
methods perform little preprocessing and apply occlusion
tests and culling with respect to current viewpoint at each
frame. Many of them ^ '• ^'" preselect a few large occluders
and do on-line computation in object space. Zhang et al. ^^
use the image-space idea and store the "opacity" information
into a hierarchical occlusion map, which are generated with
the help of texture-mapping graphics hardware, though they
still need to preselect a set of occluders (see also'"). Wonka
etal.'^^ apply a similar cull map idea using z-buffer to urban
environments and allow dynamic occluders selection. One
different approach proposed by Klosowski et al. ''■ ■'' is to
render on a budget (on demand) using a novel prioritized-
layered projection technique. Our algorithm takes a similar
idea for occluder selection.

In some ways, our algorithm is similar to the approach of
Wonka et al. ^^ — we also use the shrinking idea and focus
on urban walkthroughs. But as illustrated later in the paper,
we provide a much faster on-line shrinking process in the
image space and solve the problem caused by shrinking ob-
jects separately. As in some earlier approaches '■ 10.21,23^ our
algorithm utilizes the graphics hardware to fuse an occlusion
mask to do culling in the image space. But we take further
advantage of the strong temporal coherence existed in urban
environments and perform an image-space culling only once
per several frames.

3. Algorithm Outline

We propose an on-line occlusion-culling algorithm for walk-
through applications in dynamic urban environments. Al-
though our occlusion culling algorithm might generate
wrong pixels in the resulting image, thus not being con-
servative, we can obtain a tradeoff between accuracy and
culling rate. To the best of our knowledge, our algorithm is
the first on-line algorithm to utilize the temporal coherence
in the image space. The algorithm computes a hierarchical
occlusion mask with the help of the graphics hardware, and

© The Eurographics Association 2001.

Wang, Aganval and Har-Peled/Occlusion Culling Algorilhm in Urban Walkthroughs

Figure 3: Occlusion test: (a) shadow frustum in object
space; (b) mask in image space.

marks a subset of objects that are occluded by the mask.
It also computes a conservative estimate of the time, called
time stamp, until when all of these objects would remain oc-
cluded. Therefore all objects whose time stamps are greater
than the current time are currently occluded. Since we use
"time" instead of one bit to mark the occluded objects, we do
not have to unmark them when they are no longer occluded
— we simply compare their time stamps with the current
time. Our algorithm also supports dynamic insertions and
deletions of new objects during the walkthrough.

Most of the early culling algorithms perform occlusion
culling in the object space, where all objects inside the
shadow frustum formed by the occluder and the viewpoint
are culled. This approach becomes impractical when there
are relatively large number of occluders, and occluders fu-
sion is required. We extend the image-space approach pro-
posed by Green '" to do visibility tests using occlusion
masks.

Occlusion masks: For a single viewpoint v, an occlusion
mask is a regular 2D grid on the image plane. Each cell
stores the maximum depth value of all the objects visible
inside this cell, where depth refers to the distance of the ob-
ject from the current viewpoint. An object O is occluded by
a mask M if for any point p on O, the depth of p is greater
than the value stored in the cell on the mask intersected by
the segment vp. See Figure 3 (b). In our implementation, an
occlusion test is performed by an overlap test followed by a
depth test.

Critical frames: As we mentioned earlier, at some of the
frames our algorithm recomputes the visibility information
and masks a subset of the objects that are not visible for
several consecutive frames. We call these frames critical. In
current implementation, the critical frame happens when (i)
real time reaches the value of the time stamp, (ii) a dramatic
change happens in the view-direction, or (iii) an occluder is
deleted from the scene.

We preprocess the set of input polygons and store them
into a kd-tree T, which induces a hierarchical subdivision of
the object space. The algorithm then does the following at
each frame:

I. If it is a critical frame, it performs the occlusion marking
operation as follows:

(1.1) Choose a set of occluders.
(1.2) Apply the image-space shrinking algorithm.
(1.3) Generate a hierarchical occlusion mask.
(1.4) Compute a time stamp and mark all objects lying be-

hind the mask with this value of the time stamp.

II.For any frame:

(II. 1) If the environment has changed, then perform the dy-
namic update algorithm.

(II.2) Pass all objects that are inside the view frustum and
whose time stamps are less than the current time to the
graphics hardware.

4. Preprocessing of the Input

Let S be the set of input polygons. Since a city model is
2.5-dimensional, namely all objects are placed on top of a
ground plane, we use a invariant of 2D kd-tree to store the
xy-projections of the polygons in S, along with the height
information. The data structure is constructed as follows.

For each polygon A G S, let Bj\ be the smallest orthog-
onal box containing A, and let p^ be the A^j-projection of
the bottom-left comer of B^. We construct a 2D kd-tree T
on the point set P = {PA | A e 5}. Each node T of T is
associated with a subset PxCP and a rectangle Rx, which
is the smallest enclosing rectangle of Pt. We also associate
a 3D box ST, which is the smallest orthogonal box contain-
ing all polygons A such that p^ e PT- For the root u of T,
Pu = P and Ru= M^. If |Px| is less than a certain parameter
p, then T is a leaf. At each leaf t, we store the set of polygons
{A I PA € Px). Otherwise, we choose an axis-parallel line
/T, called splitter, and partition Rx into two rectangles, each
of which is associated with a child of T. Points of PT lying in
each of the rectangles are associated with the corresponding
child of T.

There are many possibilities of choosing a splitter Ix. We
could simply bisect the points in Px and alternate between
horizontal and vertical splitters, or we could use a more so-
phisticated method.

Note that the rectangles associated with the leaves of T
are disjoint, but the xy-projections of the bounding boxes as-
sociated with the leaves could intersect because they bound
the polygons. Each polygon is stored at only one leaf. The
interior nodes do not store the polygons. The total size of
the data structure is 0{n), where n is the number of input
polygons.

5. Occlusion Marking Operation

At each critical frame, the algorithm first performs an
occlusion-marking operation. The goals of this step are to
take advantage of the temporal coherence, to choose a set of

(c) The Eurographics Association 2001.

Wang, Agarwal and Har-Peled/ Occlusion Culling Algorithm in Urban Walkthroughs

viewfrustum

image
'plane

Figure 4: The relationship between shrinkage in image-
space and in object-space.

O^
Figure 5: Shrinking the union of projections may cause a
leak as shown in (b). But this leak will not cause error on
the resulting image if other objects (as C in (d)) or other
occluders (as D in (e)) still cover it.

occluders, and to generate the hierarchical occlusion masks
such that the marked objects would remain occluded for sev-
eral subsequent frames.

5.1. Temporal coherence

Let V be the current viewpoint, and let BgCv) be a ball of
radius 5 centered at v. For an object a, the shrinking of O
by 6 is the Minkowski difference (JQB5 = {X\ BS(A;) C a}.
The following lemma is straightforward.

Conservative Visibility Lemma: Let E be an occlud-
ers set, and let v be the viewpoint E' = {CTG B5 | a £ E}. //^
a point p is occluded from v by S', then p is occluded by S
from any v' £ Bg(v).

The lemma suggests that if we use S' instead of S to do
occlusion culling at the viewpoint v, the culling would re-
main valid as long as the viewpoint remains inside B^{v).
Shrink occluder P by 5, and let P' be the new polygon. If a
polygon Q is occluded by P' and the viewpoint is moving
with a maximum velocity V at the moment, then Q will re-
main occluded by P for the next 6/K time units. In such a
case, one can set the time stamp to ic + 5/K, where tc is the
current time.

In the image space, how much the projection of a polygon
P shrinks as we shrink P by 5 in the object space depends on
the distance between P and the viewpoint. More precisely,
let the image resolution be 5 x .j, the minimum distance be-
tween P and V be D, the angle formed by the view frustum be
e, and let A be the amount by which we shrink the projection
of P (see Figure 4). Then

6>2A-
D

stan(e/2)' (1)

The analysis indicates that by shrinking the projection of
each occluder P in the image space by A, the resulted image,
i.e., fusing the shrunk projection into one occlusion mask, is
conservative in visibility for all viewpoints inside B5(v).

5.2. Image-space shrinking and fusing

Shrinking each occluder in object space separately has two
major disadvantages: (i) it is expensive and complicated ^^;
and (ii) unnecessary leaks may appear if two connected poly-
gons are shrunk independently. The problems are further ex-
acerbated if the model is finely tessellated or if the input is
given as a set of polygons without any connectivity informa-
tion between them. Our algorithm instead shrinks the union
of the projections of occluders on the image plane. Thus the
algorithm puts no restrictions on the input data and preserves
the connectivity between polygons during shrinking.

Shrinking the union may cause error sometimes, such as
illustrated in Figure 5. Object A is in front of Object B, but
their projections overlay each other. The result of shrink-
ing them separately is depicted in Figure 5 (c), which con-
tains a small leak where a third object could be visible if no
other objects were covering this slit and thus hiding the ob-
ject from the viewpoint. However, if one shrinks the union
of the two objects together, as depicted in Figure 5 (b), the
leak does not appear and the resulting visibility is thus ap-
proximate. The maximum size of each error on the resulting
image is bounded by the shrinkage A.

However, if we consider the visual error, i.e., the mis-
drawn pixels on the resulting image, the slit as illustrated in
Figure 5 (c) would produce little or no error since: (i) as will
explain later, the occluders chosen by the algorithm are rel-
atively far from the viewpoint, there is high probability that
closer objects would occlude the slit (see Figure 5 (d)); (ii)
we choose a "thick" layer of occluders (we will address this
issue in Section 5.3), thus other occluders may cover this slit
(see Figure 5 (e)); (iii) A is small and thus the visible portion
through the slit is tiny; and (iv) the user is generally walking
along the streets, and buildings along the streets and objects
close to him are the focus of the view, while the errors occur
in places of less visual importance. So, although larger A po-
tentially allow larger slits, as we will see in Section 7, errors
rarely occur.

Though larger A means more possible errors and less cov-
erage on the occlusion mask, it can increase the frame rate

(c) The Eurographics Association 2001.

Wang, Agarwal and Har-Peled/ Occlusion Culling Algorithm in Urban Walkthroughs

(the speed), until it reaches the point that it damages the
culling rate more severely. So A is an important parameter
in the tradeoff between accuracy and speed.

5.3. Occluder selection

We use the following criteria to design the occluder selection
algorithm: (i) the selection process is fast, (ii) R, the number
of occluders in O, is not too big, (iii) the mask generated is
well-covered, and (iv) the distance between an occluder and
the viewpoint v is at least some parameter D in order to take
advantage to temporal coherence (refer to Equation (1)).

Since the occlusion mask is generated in the image space
with the help of graphics hardware, our algorithm can afford
to choose a relatively large set of occluders than allowed by
the object-space approaches. The influence of i? will be ad-
dressed in Section 7.1. Given a fixed number R, the goal of
the occluder-selection algorithm is to find R most "impor-
tant" objects among all the objects that lie inside the view-
frustum and whose minimum distance from v is at least D.
The "importance" of an object or a node in the kd-tree refers
to their contribution to the occlusion mask, namely, how well
they occlude objects that are farther away from the view-
point. For a node ^ of T, let ^{%) represent the inverse of
"importance" value of a kd-tree node ^, thus a smaller ^{i,)
means node ^ is more important. The occluder-selection al-
gorithm is depicted in Figure 6. The algorithm works by
maintaining a priority queue of the kd-tree nodes to be vis-
ited, based on the value of (j).

ALGORITHM Occluder-selection(r, v, R)
Input: kd-tree T, viewpoint v, ttoccluders R
Output: R polygons chosen as occluders.

Insert root(r) into Q;
while ((2 :^ 0) and (count < R))

I, = get-min(e);
if (size(^) is small) and (mindist(^, v) > D)

Output polygons in ^ as occluders;
update couru;

else
Insert two children of ^ into Q\

end if
end while

end Occluder-selection

Figure 6: Occluder selection algorithm; get-min(Q) returns
the node in Q with the minimum ^ value, and mindist{t,,v)
returns the minimum distance between t, and v.

We can simply choose (t)(^) to be the minimum distance
between ^ and v. This is equivalent to choosing all objects
in an annulus with an inner radius D; the size of the annulus
depends on the value of R. See Figure 7 (a) for illustration.
This works well for dense models with almost uniform dis-

Figure 7: F is the view frustum. D is the minimum distance.
In (a), objects in the dark region will be chosen as occlud-
ers based on distances. In (b), buildings in region A will be
chosen as occluders based on distances. Buildings in B are
missed, although they contribute a lot to the occlusion mask
too.

tribution of buildings.

However, it ignores the objects that are far away but nev-
ertheless contribute significantly to the occlusion mask. Fig-
ure 7 (b) illustrates one such scenario, where the above dis-
tance criteria only choose the building in region A even
though the buildings in region B would be good occluders.

In the following, we consider only the objects that are in-
side the view frustum and are at least D distance away from
V. Intuitively, the definition of ^{%), for a node ^ in the kd-
tree, should depend on how many polygons closer than t,
occlude the objects stored at ^. In other words, if ^ covers a
spot s on the image plane, and several closer polygons (par-
tially) have already covered s, then ^ is not a good candidate
to be an occluder, as it potential contribution to the occlu-
sion of s is small (i.e., see the buildings with light color in
Figure 7 (b)). We therefore use the following approach.

We divide the image plane into cells, and assign a "cov-
erage" value C(c) for each cell c. At any moment during the
occluder-selection algorithm, C(c) is defined as the number
of polygons encountered so far whose projections overlap c.
For a kd-tree node ^, we define

(t)(4) — min {C(c,)} *mindist(^,v),
i=l..k

where c,-, for i = 1,... ,^, are sampled cells that the pro-
jection of % covers, and mindist(5,v) returns the minimum
distance between node ^ and viewpoint v. In the current im-
plementation, k is set to be 3. More precisely, for a node ^
with a bounding box B^, we choose 3 points, namely, the
center point(pi) of B^, and the two endpoints (p2 and p^)
of one diagonal of B^, and c,- is the cell that ray vp,- passes
through. Whenever a node § is added to the occluders set,
each cell it covers updates its coverage to

C{ci)new = C{ci)oid + (# polys in Q/(#cells ^ covers).

Figure 8 illustrates the idea in 2D.

We have implemented both methods described above for
computing (t)(^). Figure 9 shows the different outputs of the
occluder-selection algorithm under the same viewpoint and

© The Eurographics Association 2001.

Wang, Agarwal and Har-Peled / Occlusion Culling Algorithm in Urban Walkthroughs

Figure 8: The 3 light cells are chosen to decide (t)(^) for
node ^ while the dark cells will be updated if polygons in t,
are outputed as occluders.

Figure 9: In both city maps, dark polygons are occluders
selected by the algorithm. The value of^ is defined by dis-
tance only in (a), and by the more complicated method in
(b).

view direction, using tliose two different versions of <[). Tlie
occluder selection based on the combined criteria is slightly
slower than the distance criteria. However, since it results in
better culling rate and the time spent in this step is relatively
insignificant (refer to Figure 10), it overall results in faster
frame rates.

5.4. Hierarchical occlusion mask

Our algorithm sends all the occluders to the graphics hard-
ware and reads the contents of the z-buffer. The background
is assumed to be at infinity with the maximum depth value.
We call the non-background regions in the z-buffer occluder
regions, which is the union of the projections of occluders
on the image plane. The algorithm shrinks the union by A
and then computes the time stamp using (1). However, since
we exploit the standard OpenGL rasterization, the z-buffer
is not a conservative mask for current viewpoint due to the
partially covered but drawn pixels on the silhouette edges.
Similar to the technique proposed by Wonka et al. 2^, our al-
gorithm shrinks one extra pixel to guarantee that only fully
covered pixels would be counted. The shrinking operation
mentioned above is the same as the erosion operation in im-
age processing community.

After the algorithm shrinks the occluder regions in the im-

age acquired from the z-buffer by A +1 pixels, the resulting
image serves as a primary occlusion mask MQ. In order to
accelerate the occlusion test operation against the mask, in
the implementation, as in Zhang ", our algorithm uses a set
of hierarchical masks Mo,M\,...,Mm- Starting from the pri-
mary mask MQ, the hierarchy is built up by creating lower
resolution versions of MQ. We fix a parameter b, each pixel
in M,+i is obtained by combining a block B of bxb pixels
of Mi. The value for this pixel in M,+i is the maximum z-
value in B, which guarantees that occlusion tests involving
Af,+i are conservative.

Zhang et al.^ accelerate the construction of their hierar-
chical occlusion maps by graphics hardware that supports bi-
linear interpolation of texture maps. The step is made faster,
but can introduce artifacts. Our conservative mask genera-
tion algorithm is slower but is performed at only a subset of
all the frames.

5.5. Marking algorithm

We traverse the T in a top-down manner to mark the oc-
cluded nodes of T with the computed time stamp . At each
node T, we use the hierarchy of masks and the 3D bound-
ing box Bx to speedup the occlusion test. The algorithm tra-
verses T as follows: For the current node T, let B* denote the
smallest orthogonal rectangle enclosing the projection of the
box Bx on the image plane. If B* is occluded by the masks,
the algorithm marks T. Otherwise, it recursively visits the
children oft. In order to determine whether B* is occluded,
depending on the size of B*, the algorithm first selects an ap-
propriate level of mask M,-. It then searches the hierarchy of
masks, starting from M,-, with B* in a standard manner. We
check all cells b G M,- that intersect B*.IibcB*is not cov-
ered, we conclude that B* is not occluded. If b intersects B*
partially, we recursively check the cells of M,_i lying inside
b to determine whether B*nbis occluded by the occluders.

At each node T of T, we also store the number of objects
stored in the subtree rooted at T. During the marking step,
instead of going all the way to a leaf, we stop visiting the
descendants of a partially visible node if only few objects
— below a chosen threshold p — are stored in the subtree
because the time spent in determining the visibility of these
nodes will offset the time saved in not sending the occluded
objects. We refer to the threshold p, which determines where
to terminate the visibility test, as leaf size.

6. Dynamic Update Algorithm

We simulate the dynamic scenes by inserting or deleting
some random buildings at some randomly chosen frames.
A "lazy" approach is employed to perform the update. We
omit the details here and related experimental results later
because of lack of space from current short abstract version.

© The Eurographics Association 2001.

Wang, Agarwal and Har-Peled / Occlusion Culling Algorithm in Urban Walkthroughs

0.05 0.1 0.15 02 02S 0.3 0.3S ''"l^fs)

Figure 10: The time consumed by each sub-step of an oc-
clusion marking operation for the 4 models.

7. Implementation and Performance

We tested the performance of the above algorithm on an
SGI Octane Mips RIOOOO with a 196MHZ CPU and 128MB
main memory. The program provides a GUI for the user
to select a walkthrough path. All of our testing paths are
along the streets since this is the most realistic case. We
demonstrate the performance of our algorithm on four sets
of city models of Manhattan suburb and middle Manhattan.
The sizes of the models are model 1 with 3,657 polygons,
model 2 with 27,437 polygons, model 3 with 109,748 poly-
gons, and model 4 with 438,992 polygons. All of them con-
sist only of buildings, and each building is composed of a
few polygons. Most polygons are quadrangles, though there
are also a small number of polygons with more than 4 ver-
tices.

7.1. Analysis of parameters

We split one marking operation into five steps: (i) selecting
occluders, (ii) drawing occluders and reading z-buffer , (iii)
shrinking to get the primary mask MQ, (iv) generating the hi-
erarchical occlusion masks, and (v) marking the kd-tree T.
Figure 10 shows the average time taken by each sub-step for
four different data sets. Note that time spent by sub-steps (i)
-(iv) does not vary much as the size of data sets grows, since
it is mainly determined by the graphics hardware configura-
tions. The time of the last step dominates the overall time.
It increases as the dataset becomes larger because the algo-
rithm has to do occlusion test on more kd-tree nodes against
the mask for larger data sets.

Several crucial parameters are involved in each step, such
as the minimum/maximum distance of the occluders, the size
and the number of levels of the hierarchical occlusion masks,
the size of the leaves p in T, and the shrinkage A in image
space. The final frame rates are determined by the overhead
of the occlusion marking operation occurred at each critical
frame, by the frequency of critical frames, and by the culling
rate. All these parameters have a compound effect on the
frame rate. We performed many experiments with different

(a) (b)

Figure 11: Shrinking size of the mask can decrease the
culling rate as depicted in (a), but (b) shows that it still en-
hances the frame rate until the shrinkage is too large.

II
I 4t 1 hi BL It ,1 1 ■iiilM il L lb

li*m«

271 y

^ 200 1

4™- I 1
50- MN 1 £ LI 1,1, ,1 1^ ■1 1 Id ul 1 U i

Irani es with errof.

(a) (b)

Figure 12: (a) Number of error pixels for each frame tested
on Sun Ultra 5. (b) Number ofmisdrawn pixels for frames in
which error occurs, tested on a SGI Octane. A = 6 pixels in
both tests.

configurations to inspect their influence, but omit the results
and analyses from current short paper. Interested reader are
referred to the full version •.

7.2. TVadeoff between accuracy and speed

Figure 11 (a) depicts how A affects the number of polygons
sent to the graphics hardware (culling rate) for model 3 con-
sisting of around 100,000 polygons. As the value of A in-
creases, it has little affect on the culling rate in the beginning,
but after a while, it starts reducing the culling rate since the
coverage on the occlusion mask is too sparse. Eventually, the
number of polygons sent to the hardware converges to the
number of polygons inside the view frustum. The curve in
(b) reflects the relationship between A and the overall frame
rates. As the figures show, before A reaches the point that
it starts to reduce the culling rate significantly, it enhances
the frame rates. On the other hand, larger A potentially allow
more error. Thus before A meets the threshold, the shrinking
size provides a way to achieve tradeoff between accuracy
and speed.

We tested the size of error, i.e., the number of pixels mis-
drawn on the resulting image compared with displaying the
scene using the view-frustum culling algorithm. Namely, we
read the z-buffer and frame buffer from the hardware after
applying our algorithm and the view-frustum culling algo-
rithm respectively, and then compare these buffer. We per-
formed the same algorithm on two platforms, a SUN Ultra 5

© The Eurographics Association 2001.

Wang, Agarwal and Har-Peled/ Occlusion Culling Algorithm in Urban Walkthroughs

j i 1
(b)

Figure 13: Light grey city maps are overlapped with black
view frustum and black occluders in both figures. Dark grey
building in (a) are marked occluded by our algorithm, while
dark grey boxes in (b) are the bounding boxes of the marked
nodes.

and a SGI Octane, and observe very different number of mis-
drawn pixels. Figure 12 (a) shows the number of error pixels
at each frame for a path consisting of 800 frames. However,
very few error pixels appear for the same path when tested
on the SGI platform. So we instead apply the algorithm to
a long path (11,558 frames) throughout the city model on
the SGI machine. Errors only appear in 158 frames. See Fig-
ure 12 (b). Experiments for other models show similar pat-
terns. Furthermore, we did not observe any substantial in-
crease in the visual error as A becomes larger. This somewhat
counterintuitive behavior, follows from the fact that closer
objects and other occluders cover the leaks produced. Also,
note that our analysis is rather conservative, and as such, in
practice, it is rather "pessimistic" in estimating the visual er-
rors.

7.3. Performance

We demonstrate the performance of the algorithm by com-
paring the culling and frame rates with the view frustum-
culling algorithm. Our main purpose is to prove the effec-
tiveness of our algorithm, so the algorithm has not focused
on accelerating the frame rates using graphics hardware such
as using display lists or triangle strips. Instead, we send a set
of polygons in each frame.

In Figure 13, the viewpoint is on a very long street, with
the view direction along that street. Figure 13 (a) shows that
the culling is effective since most unmarked objects are those
buildings along the street sides. In that case, other culling al-
gorithm would only do worse if they are not careful about
the occluders set. The efficiency of the culling is shown in
Figure 13 (b) where the dark boxes are the bounding boxes
of the nodes marked occluded in the kd-tree. Most marked
nodes are close to the root, except for those whose projec-
tions are on the boundary of the occluded region. In this
specific case, nodes close to the streets and near the view
frustum have to be broken down to lower level during the
marking.

In our algorithm, a polygon is culled either because it is

.-,k

(a) (b)

Figure 14: Culling rates achieved by our algorithm for (a)
model 2 (27,437 polygons) and (b) model 4 (438,992 poly-
gons). In both plots, the upper curve shows CRo while the
lower curve shows CRv

Data Hardware Viewfrustum Our
size only culling algorithm

3,657 328.57 58.93 56.63
27,437 9.26 14.78 41.27

109,748 1.86 3.26 38.53
438,992 0.43 1.17 20.13

Table 1: Frame rates using (i) z-buffer directly, (ii) viewfrus-
tum culling, and (Hi) our algorithm. The unit for the frame
rate is frames/sec.

outside the view frustum, or alternatively, an ancestor of the
leaf storing the polygon is marked occluded. Let

j-,„ #polygons culled by the algorithm
CRv = -''f^^ -^"^"-^ -^
and

#polygons inside view frustum

fp — #polygons culled by the algorithm
" ~ #polygons in trie data set '

The value of CRv shows the improvement in the culling
rate performance achieved by our algoriflim over the view
frustum culling approach, while CRv refers to the culling
rate compared to the original data set. The graphs depicted
in Figure 14 show the changes of these two culling rates
with respect to time. The high culling rate is achieved
because the algorithm includes most of the "useful" objects
as occluders.

Table 1 shows the frame rate (averaged over 800 frames)
obtained by our algorithm. There is no benefit in using our
new algorithm for small data sets due to the overhead at
critical frames. The big gains appear when our algorithm
is applied to medium to large inputs, where our more ag-
gressive culling pays off. In the current implementation, the
time required at each frame is not balanced since a critical
frame needs to perform the expensive occlusion-marking op-
eration. As the rendering and occlusion-marking steps can
be performed independently, we can use multiple threads to
perform these two steps, which would amortize the cost of
occlusion marking over several frames.

© The Eurographics Association 2001.

Wang, Agarwal and Har-Peled/Occlusion Culling Algorithm in Urban Walkthroughs

Acknowledgments

We would like to thank Claudio Silva for helpful comments.

References

1. P. K. Agarwal, S. Har-Peled, and Y. Wang. An on-line
occlusion culling algorithm for fast walkthrough in ur-
ban areas, http://www.cs.duke.edu/~wys/research. 7

2. F. Bemardini, J. El-Sana, and J. T. Klosowski. Direc-
tional discretized occluders for accelerated occlusion
culling. In Proa. Eurographics Conf., volume 19, 2000.
2

3. J. Bittner, V. Havran, and P. Slavik. Hierarchical visi-
bility culling with occlusion trees. In Proc. of Comp.
Graphics Intemat.'98, pages 207-219,1998. 2

4. D. Cohen-Or, Y. Chrysanthou, and C. T. Silva. A survey
of visibility for walkthrough applications, 2000. Course
notes of EUROGRAPHICS'00. 2

5. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario.
Conservative visibility and strong occlusion for views-
pace partitioning of densely occluded scenes. Com-
puter Graphics Forum, 17(3):243-253,1998. 2, 6

6. D. Cohen-Or and E. Zadicario. Visibility streaming
for network-based walkthroughs. Graphics Interface,
pages 1-7,1998. 2

7. S. Coorg and S. Teller. Temporally coherent conserva-
tive visibility. In Proc. 12th Annu. ACM Sympos. on
Comput. Geom., pages 78-87,1996. 2

8. S. Coorg and S. Teller. Real-time occlusion culling for
models with large occluders. In Proc. oftheACMSIG-
GRAPH Sympos. on Interactive 3D Graphics, pages
83-90,1997. 2

9. F. Durand, G. Drettakis, J. Thollot, and C. Puech. Con-
servative visibility preprocessing using extended pro-
jections. In Proc. ofSIGGRAPH '00, pages 239-248,
2000. 2

10. N. Greene, M. Kass, and G. Miller. Hierarchical z-
buffer visibility. In Proc. of SIGGRAPH '93, pages
231-240,1993. 2,3

11. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and
H. Zhang. Accelerated occlusion culling using shadow
frusta. In Proc. of the 13th ACM Sympos. on Comput.
Geom., pages 1-10,1997. 2

12. W. F. H. Jimenez, C. Esperanca, and A. A. F. Oliveira.
Efficient algorithms for computing conservative portal
visibility information. In Proc. Eurographics Conf,
volume 19,2000. 2

13. J. T. Klosowski and C. T. Silva. Rendering on a bud-
get: A framework for time-critical rendering. In IEEE
Visualization'99, pages 115-122,1999. 2

14. J. T. Klosowski and C. T. Silva. Efficient conserva-
tive visibility culling using the prioritized-layered pro-
jection algorithm. 2000. manuscript. 2

15. V. Koltun and D. Cohen-Or. Selecting effective occlud-
ers for visibility culling. In Proc. Eurographics Conf,
2000. 2

16. G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Con-
servative volumetric visibility with occluder fusion. In
Proc. ofSIGGRAPH '00, pages 229-238, 2000. 2

17. J. Stewart. Hierarchical visibility in terrains. In Euro-
graphics Rendering Workshop, pages 217-228, 1997.
2

18. S. Teller and P. Hanrahan. Global visibility algorithms
for illumination computation. In Proc. of SIGGRAPH
•93, pages 239-246,1993. 2

19. S. Teller and C. Sequin. Visibility preprocessing for
interactive walkthroughs. In Proc. ofSIGGRAPH '91,
pages 61-69,1991. 2

20. Y. Wang, H. Bao, and Q. Peng. Accelerated walk-
throughs of virtual environments based on visibility
processing and simplification. In Proc. Eurographics
Conf, volume 17, pages 188-194,1998. 2

21. P. Wonka and D. Schmalstieg. Occluder shadows for
fast walkthrough of urban environments. Computers
and graphics, 23i6):&3l-S3S, 1999. 2

22. P. Wonka, M. Wimmer, and D. Schmalstieg. Visibil-
ity preprocessing with occluder fusion for urban walk-
throughs. Technical report. Technical Report TR-186-
2-00-06, Institute of Computer Graphics, Vienna Uni-
versity of Technology, March 2000. 2,4, 6

23. H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III.
Visibility culling using hierarchical occlusion maps. In
Proc. ofSIGGRAPH '97, pages 77-88,1997. 2,6

(c) The Eurographics Association 2001.

