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Abstract 
We describe a fast algorithm to speed up rendering of scenes for walkthroughs in urban environments. Our oc- 
clusion culling algorithm takes advantage of temporal coherence in image space. As such, occlusion calculation 
is performed online only when needed. This enables us to employ intelligent occluder-selection and culling al- 
gorithms. We do not preprocess visibility information or preselect occluders. Therefore, we can update scenes 
dynamically at a little cost. The algorithm features a tradeoff between accuracy and efficiency. While it approxi- 
mates visibility testing, our experiments show that errors occur rarely. 

1. Introduction 

In urban walkthroughs, a user virtually navigates through a 
3D city model as a pedestrian or as an auto driver. Optimally, 
we would like interactive rendering of 30 to 60 frames a 
second. Unfortunately, data gathering techniques have out- 
stripped advances in rendering hardware, making interactive 
rendering of massive data sets impossible without reducing 
the number of primitives rendered at each frame. Occlusion 
culling is one popular technique for this reduction. 

Occlusion culling is especially suitable for urban environ- 
ments since the scenes are usually densely occluded. How- 
ever, the characteristics of urban environments also raise 
several challenging issues for occlusion culling algorithms. 
First, large amounts of objects in urban environments are 
hidden by the combination of several, not necessarily con- 
nected occluders, therefore, the effect of multiple occluders 
— occluders fusion — has to be considered for a city model. 
Second, most buildings in city models are of similar sizes, so 
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Figure 1: Visualization of our algorithm on a Manhattan 
city model with 27,400 polygons, (a) is a bird-eye view, (b) 
is a view along a street, (c) shows light grey city map over- 
layed with black view frustum, dark grey culled objects, and 
black occluders. In this view, our algorithm culls 88% of the 
polygons. 

a few occluders seldom suffice and occluder-selection meth- 
ods only relying on heuristics such as size and distance may 
fail to capture significant occlusion in a city model (see Fig- 
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Figure 2: None of the buildings inside region B has large 
size or is close to the viewpoint, but they together form good 
occlusion. 

ure 2). Besides, urban models are always deep; namely at 
most viewpoints, a significant number of buildings are far 
away from the viewpoint. As the viewpoint moves contin- 
uously, faraway buildings that are occluded remain so for 
a "long" period of time. Thus strong temporal coherence 
— the scene does not change much within two consecutive 
frames — exists in urban walkthrough applications. 

In this paper, we present a simple and fast occlusion- 
culling algorithm for urban environments. The algorithm se- 
lects the occluders based on a novel measure of importance. 
The key features of our algorithm are its selection of effec- 
tive occluder and its exploitation of temporal coherence by 
means of occluder set shrinkage. The algorithm performs oc- 
clusion culling in only a small subset of all the frames due to 
the utilization of temporal coherence. The shrinking allows 
tradeoff between accuracy and efficiency. For the purposes 
of this paper, we assume the input model to be 2.5D, al- 
though our algorithm can be extended to the 3D case. Given 
a hierarchical representation of the scene, the proposed al- 
gorithm does not require any pre-processing or prior knowl- 
edge about the walkthrough path. It computes and maintains 
the occluder set and the necessary visibility information in 
an on-line fashion, and can update the scene dynamically. 
The algorithm is simple and can be integrated wifli most ex- 
isting occlusion-culling algorithms to improve their culling 
rate at little extra cost. 

The resulting algorithm has been implemented on a SGI 
Octane Mips R10000 platform, and tested on both static and 
simulated dynamic environments. Considerable speedup in 
both culling rate and overall frame rate has been achieved, 
as demonstrated by the experimental results. 

The remainder of the paper is organized as follows. Sec- 
tion 2 gives a review of previous work. Section 3 describes 
the outline of the algorithm, while Sections 4-6 elaborate 
on the key stages of our algorithm. Section 7 presents the 
results and performance analysis, and finally. Section 8 con- 
cludes by discussing future work and open problems. 

2. Previous Work 

Cohen-Or et al.* survey recent results on occlusion culling 
and visibility. In what follows, we distinguish between two 

classes of occlusion-culling algorithms: preprocessing ap- 
proaches and online approaches. 

Preprocessing methods typically partition the view space 
into cells, then pre-compute and store visibility information 
for each region *• '^^ "•"' '^' "• ^°. Occluders fusion is inher- 
ently difficult to be computed for a view cell, and some ap- 
proaches exploit the idea of "virtual" occluders 2.'. i6. por the 
special case of urban walkthroughs, Cohen-Or et al.^ pro- 
vide a modeling method for densely occluded city data sets 
and pre-compute hidden buildings for each view cell. Wonka 
et al. 22 apply a shrinking idea in the object space and cull 
maps in the image space to perform visibility preprocessing. 
The above approaches are fast during real-time applications, 
but are considerably costly with respect to time and mem- 
ory during the preprocessing, and may not be generalized to 
dynamic scenes well. 

Unlike the above preprocessing approaches, most on-line 
methods perform little preprocessing and apply occlusion 
tests and culling with respect to current viewpoint at each 
frame. Many of them ^ '• ^'" preselect a few large occluders 
and do on-line computation in object space. Zhang et al. ^^ 
use the image-space idea and store the "opacity" information 
into a hierarchical occlusion map, which are generated with 
the help of texture-mapping graphics hardware, though they 
still need to preselect a set of occluders (see also'"). Wonka 
etal.'^^ apply a similar cull map idea using z-buffer to urban 
environments and allow dynamic occluders selection. One 
different approach proposed by Klosowski et al. ''■ ■'' is to 
render on a budget (on demand) using a novel prioritized- 
layered projection technique. Our algorithm takes a similar 
idea for occluder selection. 

In some ways, our algorithm is similar to the approach of 
Wonka et al. ^^ — we also use the shrinking idea and focus 
on urban walkthroughs. But as illustrated later in the paper, 
we provide a much faster on-line shrinking process in the 
image space and solve the problem caused by shrinking ob- 
jects separately. As in some earlier approaches '■ 10.21,23^ our 
algorithm utilizes the graphics hardware to fuse an occlusion 
mask to do culling in the image space. But we take further 
advantage of the strong temporal coherence existed in urban 
environments and perform an image-space culling only once 
per several frames. 

3. Algorithm Outline 

We propose an on-line occlusion-culling algorithm for walk- 
through applications in dynamic urban environments. Al- 
though our occlusion culling algorithm might generate 
wrong pixels in the resulting image, thus not being con- 
servative, we can obtain a tradeoff between accuracy and 
culling rate. To the best of our knowledge, our algorithm is 
the first on-line algorithm to utilize the temporal coherence 
in the image space. The algorithm computes a hierarchical 
occlusion mask with the help of the graphics hardware, and 
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Figure 3:   Occlusion test: (a) shadow frustum in object 
space; (b) mask in image space. 

marks a subset of objects that are occluded by the mask. 
It also computes a conservative estimate of the time, called 
time stamp, until when all of these objects would remain oc- 
cluded. Therefore all objects whose time stamps are greater 
than the current time are currently occluded. Since we use 
"time" instead of one bit to mark the occluded objects, we do 
not have to unmark them when they are no longer occluded 
— we simply compare their time stamps with the current 
time. Our algorithm also supports dynamic insertions and 
deletions of new objects during the walkthrough. 

Most of the early culling algorithms perform occlusion 
culling in the object space, where all objects inside the 
shadow frustum formed by the occluder and the viewpoint 
are culled. This approach becomes impractical when there 
are relatively large number of occluders, and occluders fu- 
sion is required. We extend the image-space approach pro- 
posed by Green '" to do visibility tests using occlusion 
masks. 

Occlusion masks: For a single viewpoint v, an occlusion 
mask is a regular 2D grid on the image plane. Each cell 
stores the maximum depth value of all the objects visible 
inside this cell, where depth refers to the distance of the ob- 
ject from the current viewpoint. An object O is occluded by 
a mask M if for any point p on O, the depth of p is greater 
than the value stored in the cell on the mask intersected by 
the segment vp. See Figure 3 (b). In our implementation, an 
occlusion test is performed by an overlap test followed by a 
depth test. 

Critical frames: As we mentioned earlier, at some of the 
frames our algorithm recomputes the visibility information 
and masks a subset of the objects that are not visible for 
several consecutive frames. We call these frames critical. In 
current implementation, the critical frame happens when (i) 
real time reaches the value of the time stamp, (ii) a dramatic 
change happens in the view-direction, or (iii) an occluder is 
deleted from the scene. 

We preprocess the set of input polygons and store them 
into a kd-tree T, which induces a hierarchical subdivision of 
the object space. The algorithm then does the following at 
each frame: 

I. If it is a critical frame, it performs the occlusion marking 
operation as follows: 

(1.1) Choose a set of occluders. 
(1.2) Apply the image-space shrinking algorithm. 
(1.3) Generate a hierarchical occlusion mask. 
(1.4) Compute a time stamp and mark all objects lying be- 

hind the mask with this value of the time stamp. 

II.For any frame: 

(II. 1) If the environment has changed, then perform the dy- 
namic update algorithm. 

(II.2) Pass all objects that are inside the view frustum and 
whose time stamps are less than the current time to the 
graphics hardware. 

4. Preprocessing of the Input 

Let S be the set of input polygons. Since a city model is 
2.5-dimensional, namely all objects are placed on top of a 
ground plane, we use a invariant of 2D kd-tree to store the 
xy-projections of the polygons in S, along with the height 
information. The data structure is constructed as follows. 

For each polygon A G S, let Bj\ be the smallest orthog- 
onal box containing A, and let p^ be the A^j-projection of 
the bottom-left comer of B^. We construct a 2D kd-tree T 
on the point set P = {PA | A e 5}. Each node T of T is 
associated with a subset PxCP and a rectangle Rx, which 
is the smallest enclosing rectangle of Pt. We also associate 
a 3D box ST, which is the smallest orthogonal box contain- 
ing all polygons A such that p^ e PT- For the root u of T, 
Pu = P and Ru= M^. If |Px| is less than a certain parameter 
p, then T is a leaf. At each leaf t, we store the set of polygons 
{A I PA € Px). Otherwise, we choose an axis-parallel line 
/T, called splitter, and partition Rx into two rectangles, each 
of which is associated with a child of T. Points of PT lying in 
each of the rectangles are associated with the corresponding 
child of T. 

There are many possibilities of choosing a splitter Ix. We 
could simply bisect the points in Px and alternate between 
horizontal and vertical splitters, or we could use a more so- 
phisticated method. 

Note that the rectangles associated with the leaves of T 
are disjoint, but the xy-projections of the bounding boxes as- 
sociated with the leaves could intersect because they bound 
the polygons. Each polygon is stored at only one leaf. The 
interior nodes do not store the polygons. The total size of 
the data structure is 0{n), where n is the number of input 
polygons. 

5. Occlusion Marking Operation 

At each critical frame, the algorithm first performs an 
occlusion-marking operation. The goals of this step are to 
take advantage of the temporal coherence, to choose a set of 
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viewfrustum 

image 
'plane 

Figure 4:   The relationship between shrinkage in image- 
space and in object-space. 

O^ 
Figure 5: Shrinking the union of projections may cause a 
leak as shown in (b). But this leak will not cause error on 
the resulting image if other objects (as C in (d)) or other 
occluders (as D in (e)) still cover it. 

occluders, and to generate the hierarchical occlusion masks 
such that the marked objects would remain occluded for sev- 
eral subsequent frames. 

5.1. Temporal coherence 

Let V be the current viewpoint, and let BgCv) be a ball of 
radius 5 centered at v. For an object a, the shrinking of O 
by 6 is the Minkowski difference (JQB5 = {X\ BS(A;) C a}. 
The following lemma is straightforward. 

Conservative Visibility Lemma: Let E be an occlud- 
ers set, and let v be the viewpoint E' = {CTG B5 | a £ E}. //^ 
a point p is occluded from v by S', then p is occluded by S 
from any v' £ Bg(v). 

The lemma suggests that if we use S' instead of S to do 
occlusion culling at the viewpoint v, the culling would re- 
main valid as long as the viewpoint remains inside B^{v). 
Shrink occluder P by 5, and let P' be the new polygon. If a 
polygon Q is occluded by P' and the viewpoint is moving 
with a maximum velocity V at the moment, then Q will re- 
main occluded by P for the next 6/K time units. In such a 
case, one can set the time stamp to ic + 5/K, where tc is the 
current time. 

In the image space, how much the projection of a polygon 
P shrinks as we shrink P by 5 in the object space depends on 
the distance between P and the viewpoint. More precisely, 
let the image resolution be 5 x .j, the minimum distance be- 
tween P and V be D, the angle formed by the view frustum be 
e, and let A be the amount by which we shrink the projection 
of P (see Figure 4). Then 

6>2A- 
D 

stan(e/2)' (1) 

The analysis indicates that by shrinking the projection of 
each occluder P in the image space by A, the resulted image, 
i.e., fusing the shrunk projection into one occlusion mask, is 
conservative in visibility for all viewpoints inside B5(v). 

5.2. Image-space shrinking and fusing 

Shrinking each occluder in object space separately has two 
major disadvantages: (i) it is expensive and complicated ^^; 
and (ii) unnecessary leaks may appear if two connected poly- 
gons are shrunk independently. The problems are further ex- 
acerbated if the model is finely tessellated or if the input is 
given as a set of polygons without any connectivity informa- 
tion between them. Our algorithm instead shrinks the union 
of the projections of occluders on the image plane. Thus the 
algorithm puts no restrictions on the input data and preserves 
the connectivity between polygons during shrinking. 

Shrinking the union may cause error sometimes, such as 
illustrated in Figure 5. Object A is in front of Object B, but 
their projections overlay each other. The result of shrink- 
ing them separately is depicted in Figure 5 (c), which con- 
tains a small leak where a third object could be visible if no 
other objects were covering this slit and thus hiding the ob- 
ject from the viewpoint. However, if one shrinks the union 
of the two objects together, as depicted in Figure 5 (b), the 
leak does not appear and the resulting visibility is thus ap- 
proximate. The maximum size of each error on the resulting 
image is bounded by the shrinkage A. 

However, if we consider the visual error, i.e., the mis- 
drawn pixels on the resulting image, the slit as illustrated in 
Figure 5 (c) would produce little or no error since: (i) as will 
explain later, the occluders chosen by the algorithm are rel- 
atively far from the viewpoint, there is high probability that 
closer objects would occlude the slit (see Figure 5 (d)); (ii) 
we choose a "thick" layer of occluders (we will address this 
issue in Section 5.3), thus other occluders may cover this slit 
(see Figure 5 (e)); (iii) A is small and thus the visible portion 
through the slit is tiny; and (iv) the user is generally walking 
along the streets, and buildings along the streets and objects 
close to him are the focus of the view, while the errors occur 
in places of less visual importance. So, although larger A po- 
tentially allow larger slits, as we will see in Section 7, errors 
rarely occur. 

Though larger A means more possible errors and less cov- 
erage on the occlusion mask, it can increase the frame rate 
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(the speed), until it reaches the point that it damages the 
culling rate more severely. So A is an important parameter 
in the tradeoff between accuracy and speed. 

5.3. Occluder selection 

We use the following criteria to design the occluder selection 
algorithm: (i) the selection process is fast, (ii) R, the number 
of occluders in O, is not too big, (iii) the mask generated is 
well-covered, and (iv) the distance between an occluder and 
the viewpoint v is at least some parameter D in order to take 
advantage to temporal coherence (refer to Equation (1)). 

Since the occlusion mask is generated in the image space 
with the help of graphics hardware, our algorithm can afford 
to choose a relatively large set of occluders than allowed by 
the object-space approaches. The influence of i? will be ad- 
dressed in Section 7.1. Given a fixed number R, the goal of 
the occluder-selection algorithm is to find R most "impor- 
tant" objects among all the objects that lie inside the view- 
frustum and whose minimum distance from v is at least D. 
The "importance" of an object or a node in the kd-tree refers 
to their contribution to the occlusion mask, namely, how well 
they occlude objects that are farther away from the view- 
point. For a node ^ of T, let ^{%) represent the inverse of 
"importance" value of a kd-tree node ^, thus a smaller ^{i,) 
means node ^ is more important. The occluder-selection al- 
gorithm is depicted in Figure 6. The algorithm works by 
maintaining a priority queue of the kd-tree nodes to be vis- 
ited, based on the value of (j). 

ALGORITHM Occluder-selection(r, v, R) 
Input: kd-tree T, viewpoint v, ttoccluders R 
Output: R polygons chosen as occluders. 

Insert root(r) into Q; 
while ((2 :^ 0) and (count < R)) 

I, = get-min(e); 
if (size(^) is small) and (mindist(^, v) > D) 

Output polygons in ^ as occluders; 
update couru; 

else 
Insert two children of ^ into Q\ 

end if 
end while 

end Occluder-selection 

Figure 6: Occluder selection algorithm; get-min(Q) returns 
the node in Q with the minimum ^ value, and mindist{t,,v) 
returns the minimum distance between t, and v. 

We can simply choose (t)(^) to be the minimum distance 
between ^ and v. This is equivalent to choosing all objects 
in an annulus with an inner radius D; the size of the annulus 
depends on the value of R. See Figure 7 (a) for illustration. 
This works well for dense models with almost uniform dis- 

Figure 7: F is the view frustum. D is the minimum distance. 
In (a), objects in the dark region will be chosen as occlud- 
ers based on distances. In (b), buildings in region A will be 
chosen as occluders based on distances. Buildings in B are 
missed, although they contribute a lot to the occlusion mask 
too. 

tribution of buildings. 

However, it ignores the objects that are far away but nev- 
ertheless contribute significantly to the occlusion mask. Fig- 
ure 7 (b) illustrates one such scenario, where the above dis- 
tance criteria only choose the building in region A even 
though the buildings in region B would be good occluders. 

In the following, we consider only the objects that are in- 
side the view frustum and are at least D distance away from 
V. Intuitively, the definition of ^{%), for a node ^ in the kd- 
tree, should depend on how many polygons closer than t, 
occlude the objects stored at ^. In other words, if ^ covers a 
spot s on the image plane, and several closer polygons (par- 
tially) have already covered s, then ^ is not a good candidate 
to be an occluder, as it potential contribution to the occlu- 
sion of s is small (i.e., see the buildings with light color in 
Figure 7 (b)). We therefore use the following approach. 

We divide the image plane into cells, and assign a "cov- 
erage" value C(c) for each cell c. At any moment during the 
occluder-selection algorithm, C(c) is defined as the number 
of polygons encountered so far whose projections overlap c. 
For a kd-tree node ^, we define 

(t)(4) — min {C(c,)} *mindist(^,v), 
i=l..k 

where c,-, for i = 1,... ,^, are sampled cells that the pro- 
jection of % covers, and mindist(5,v) returns the minimum 
distance between node ^ and viewpoint v. In the current im- 
plementation, k is set to be 3. More precisely, for a node ^ 
with a bounding box B^, we choose 3 points, namely, the 
center point(pi) of B^, and the two endpoints (p2 and p^) 
of one diagonal of B^, and c,- is the cell that ray vp,- passes 
through. Whenever a node § is added to the occluders set, 
each cell it covers updates its coverage to 

C{ci)new = C{ci)oid + (# polys in Q/(#cells ^ covers). 

Figure 8 illustrates the idea in 2D. 

We have implemented both methods described above for 
computing (t)(^). Figure 9 shows the different outputs of the 
occluder-selection algorithm under the same viewpoint and 
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Figure 8: The 3 light cells are chosen to decide (t)(^) for 
node ^ while the dark cells will be updated if polygons in t, 
are outputed as occluders. 

Figure 9: In both city maps, dark polygons are occluders 
selected by the algorithm. The value of^ is defined by dis- 
tance only in (a), and by the more complicated method in 
(b). 

view direction, using tliose two different versions of <[). Tlie 
occluder selection based on the combined criteria is slightly 
slower than the distance criteria. However, since it results in 
better culling rate and the time spent in this step is relatively 
insignificant (refer to Figure 10), it overall results in faster 
frame rates. 

5.4. Hierarchical occlusion mask 

Our algorithm sends all the occluders to the graphics hard- 
ware and reads the contents of the z-buffer. The background 
is assumed to be at infinity with the maximum depth value. 
We call the non-background regions in the z-buffer occluder 
regions, which is the union of the projections of occluders 
on the image plane. The algorithm shrinks the union by A 
and then computes the time stamp using (1). However, since 
we exploit the standard OpenGL rasterization, the z-buffer 
is not a conservative mask for current viewpoint due to the 
partially covered but drawn pixels on the silhouette edges. 
Similar to the technique proposed by Wonka et al. 2^, our al- 
gorithm shrinks one extra pixel to guarantee that only fully 
covered pixels would be counted. The shrinking operation 
mentioned above is the same as the erosion operation in im- 
age processing community. 

After the algorithm shrinks the occluder regions in the im- 

age acquired from the z-buffer by A +1 pixels, the resulting 
image serves as a primary occlusion mask MQ. In order to 
accelerate the occlusion test operation against the mask, in 
the implementation, as in Zhang ", our algorithm uses a set 
of hierarchical masks Mo,M\,...,Mm- Starting from the pri- 
mary mask MQ, the hierarchy is built up by creating lower 
resolution versions of MQ. We fix a parameter b, each pixel 
in M,+i is obtained by combining a block B of bxb pixels 
of Mi. The value for this pixel in M,+i is the maximum z- 
value in B, which guarantees that occlusion tests involving 
Af,+i are conservative. 

Zhang et al.^ accelerate the construction of their hierar- 
chical occlusion maps by graphics hardware that supports bi- 
linear interpolation of texture maps. The step is made faster, 
but can introduce artifacts. Our conservative mask genera- 
tion algorithm is slower but is performed at only a subset of 
all the frames. 

5.5. Marking algorithm 

We traverse the T in a top-down manner to mark the oc- 
cluded nodes of T with the computed time stamp . At each 
node T, we use the hierarchy of masks and the 3D bound- 
ing box Bx to speedup the occlusion test. The algorithm tra- 
verses T as follows: For the current node T, let B* denote the 
smallest orthogonal rectangle enclosing the projection of the 
box Bx on the image plane. If B* is occluded by the masks, 
the algorithm marks T. Otherwise, it recursively visits the 
children oft. In order to determine whether B* is occluded, 
depending on the size of B*, the algorithm first selects an ap- 
propriate level of mask M,-. It then searches the hierarchy of 
masks, starting from M,-, with B* in a standard manner. We 
check all cells b G M,- that intersect B*.IibcB*is not cov- 
ered, we conclude that B* is not occluded. If b intersects B* 
partially, we recursively check the cells of M,_i lying inside 
b to determine whether B*nbis occluded by the occluders. 

At each node T of T, we also store the number of objects 
stored in the subtree rooted at T. During the marking step, 
instead of going all the way to a leaf, we stop visiting the 
descendants of a partially visible node if only few objects 
— below a chosen threshold p — are stored in the subtree 
because the time spent in determining the visibility of these 
nodes will offset the time saved in not sending the occluded 
objects. We refer to the threshold p, which determines where 
to terminate the visibility test, as leaf size. 

6. Dynamic Update Algorithm 

We simulate the dynamic scenes by inserting or deleting 
some random buildings at some randomly chosen frames. 
A "lazy" approach is employed to perform the update. We 
omit the details here and related experimental results later 
because of lack of space from current short abstract version. 
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Figure 10:  The time consumed by each sub-step of an oc- 
clusion marking operation for the 4 models. 

7. Implementation and Performance 

We tested the performance of the above algorithm on an 
SGI Octane Mips RIOOOO with a 196MHZ CPU and 128MB 
main memory. The program provides a GUI for the user 
to select a walkthrough path. All of our testing paths are 
along the streets since this is the most realistic case. We 
demonstrate the performance of our algorithm on four sets 
of city models of Manhattan suburb and middle Manhattan. 
The sizes of the models are model 1 with 3,657 polygons, 
model 2 with 27,437 polygons, model 3 with 109,748 poly- 
gons, and model 4 with 438,992 polygons. All of them con- 
sist only of buildings, and each building is composed of a 
few polygons. Most polygons are quadrangles, though there 
are also a small number of polygons with more than 4 ver- 
tices. 

7.1. Analysis of parameters 

We split one marking operation into five steps: (i) selecting 
occluders, (ii) drawing occluders and reading z-buffer , (iii) 
shrinking to get the primary mask MQ, (iv) generating the hi- 
erarchical occlusion masks, and (v) marking the kd-tree T. 
Figure 10 shows the average time taken by each sub-step for 
four different data sets. Note that time spent by sub-steps (i) 
-(iv) does not vary much as the size of data sets grows, since 
it is mainly determined by the graphics hardware configura- 
tions. The time of the last step dominates the overall time. 
It increases as the dataset becomes larger because the algo- 
rithm has to do occlusion test on more kd-tree nodes against 
the mask for larger data sets. 

Several crucial parameters are involved in each step, such 
as the minimum/maximum distance of the occluders, the size 
and the number of levels of the hierarchical occlusion masks, 
the size of the leaves p in T, and the shrinkage A in image 
space. The final frame rates are determined by the overhead 
of the occlusion marking operation occurred at each critical 
frame, by the frequency of critical frames, and by the culling 
rate. All these parameters have a compound effect on the 
frame rate. We performed many experiments with different 

(a) (b) 

Figure 11: Shrinking size of the mask can decrease the 
culling rate as depicted in (a), but (b) shows that it still en- 
hances the frame rate until the shrinkage is too large. 
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Figure 12: (a) Number of error pixels for each frame tested 
on Sun Ultra 5. (b) Number ofmisdrawn pixels for frames in 
which error occurs, tested on a SGI Octane. A = 6 pixels in 
both tests. 

configurations to inspect their influence, but omit the results 
and analyses from current short paper. Interested reader are 
referred to the full version •. 

7.2. TVadeoff between accuracy and speed 

Figure 11 (a) depicts how A affects the number of polygons 
sent to the graphics hardware (culling rate) for model 3 con- 
sisting of around 100,000 polygons. As the value of A in- 
creases, it has little affect on the culling rate in the beginning, 
but after a while, it starts reducing the culling rate since the 
coverage on the occlusion mask is too sparse. Eventually, the 
number of polygons sent to the hardware converges to the 
number of polygons inside the view frustum. The curve in 
(b) reflects the relationship between A and the overall frame 
rates. As the figures show, before A reaches the point that 
it starts to reduce the culling rate significantly, it enhances 
the frame rates. On the other hand, larger A potentially allow 
more error. Thus before A meets the threshold, the shrinking 
size provides a way to achieve tradeoff between accuracy 
and speed. 

We tested the size of error, i.e., the number of pixels mis- 
drawn on the resulting image compared with displaying the 
scene using the view-frustum culling algorithm. Namely, we 
read the z-buffer and frame buffer from the hardware after 
applying our algorithm and the view-frustum culling algo- 
rithm respectively, and then compare these buffer. We per- 
formed the same algorithm on two platforms, a SUN Ultra 5 
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j i 1 
(b) 

Figure 13: Light grey city maps are overlapped with black 
view frustum and black occluders in both figures. Dark grey 
building in (a) are marked occluded by our algorithm, while 
dark grey boxes in (b) are the bounding boxes of the marked 
nodes. 

and a SGI Octane, and observe very different number of mis- 
drawn pixels. Figure 12 (a) shows the number of error pixels 
at each frame for a path consisting of 800 frames. However, 
very few error pixels appear for the same path when tested 
on the SGI platform. So we instead apply the algorithm to 
a long path (11,558 frames) throughout the city model on 
the SGI machine. Errors only appear in 158 frames. See Fig- 
ure 12 (b). Experiments for other models show similar pat- 
terns. Furthermore, we did not observe any substantial in- 
crease in the visual error as A becomes larger. This somewhat 
counterintuitive behavior, follows from the fact that closer 
objects and other occluders cover the leaks produced. Also, 
note that our analysis is rather conservative, and as such, in 
practice, it is rather "pessimistic" in estimating the visual er- 
rors. 

7.3. Performance 

We demonstrate the performance of the algorithm by com- 
paring the culling and frame rates with the view frustum- 
culling algorithm. Our main purpose is to prove the effec- 
tiveness of our algorithm, so the algorithm has not focused 
on accelerating the frame rates using graphics hardware such 
as using display lists or triangle strips. Instead, we send a set 
of polygons in each frame. 

In Figure 13, the viewpoint is on a very long street, with 
the view direction along that street. Figure 13 (a) shows that 
the culling is effective since most unmarked objects are those 
buildings along the street sides. In that case, other culling al- 
gorithm would only do worse if they are not careful about 
the occluders set. The efficiency of the culling is shown in 
Figure 13 (b) where the dark boxes are the bounding boxes 
of the nodes marked occluded in the kd-tree. Most marked 
nodes are close to the root, except for those whose projec- 
tions are on the boundary of the occluded region. In this 
specific case, nodes close to the streets and near the view 
frustum have to be broken down to lower level during the 
marking. 

In our algorithm, a polygon is culled either because it is 

.-,k  

(a) (b) 

Figure 14: Culling rates achieved by our algorithm for (a) 
model 2 (27,437 polygons) and (b) model 4 (438,992 poly- 
gons). In both plots, the upper curve shows CRo while the 
lower curve shows CRv 

Data Hardware Viewfrustum Our 
size only culling algorithm 

3,657 328.57 58.93 56.63 
27,437 9.26 14.78 41.27 

109,748 1.86 3.26 38.53 
438,992 0.43 1.17 20.13 

Table 1: Frame rates using (i) z-buffer directly, (ii) viewfrus- 
tum culling, and (Hi) our algorithm. The unit for the frame 
rate is frames/sec. 

outside the view frustum, or alternatively, an ancestor of the 
leaf storing the polygon is marked occluded. Let 

j-,„      #polygons culled by the algorithm 
CRv = -''f^^ -^"^"-^ -^  
and 

#polygons inside view frustum 

fp — #polygons culled by the algorithm 
" ~        #polygons in trie data set       ' 

The value of CRv shows the improvement in the culling 
rate performance achieved by our algoriflim over the view 
frustum culling approach, while CRv refers to the culling 
rate compared to the original data set. The graphs depicted 
in Figure 14 show the changes of these two culling rates 
with respect to time. The high culling rate is achieved 
because the algorithm includes most of the "useful" objects 
as occluders. 

Table 1 shows the frame rate (averaged over 800 frames) 
obtained by our algorithm. There is no benefit in using our 
new algorithm for small data sets due to the overhead at 
critical frames. The big gains appear when our algorithm 
is applied to medium to large inputs, where our more ag- 
gressive culling pays off. In the current implementation, the 
time required at each frame is not balanced since a critical 
frame needs to perform the expensive occlusion-marking op- 
eration. As the rendering and occlusion-marking steps can 
be performed independently, we can use multiple threads to 
perform these two steps, which would amortize the cost of 
occlusion marking over several frames. 
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