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Physiological Sensors for Speech Recognition 

Mike Scanlon, Francis Fisher, Steve Chen 

Abstract. Systems designers are expressing greater 
interest in speech-based user interfaces for a variety of 
civilian and military applications. Such interfaces provide 
hands-free operation and a more natural way for humans 
to interact with systems. One difficulty with speech-based 
user interfaces is poor operation in noisy environments 
such as military operations. The Physiological Sensor, 
developed at ARL, is an example of an alternative sensor 
for automatic speech recognition. This sensor detects 
speech by measuring acoustic signals through the 
speaker's skin. While the signal produced is not typical of 
that from an airborne acoustic microphone, the possibility 
exists for using this sensor as a microphone. We 
investigate several possible methods for using the 
Physiological Sensor as a microphone for automatic 
speech recognition. 

1. Introduction 

With recent advances in automatic speech recognition 
(ASR) technology has come an increased interest in 
applying this technology to the design of user interfaces. 
For a system being operated in a benign environment such 
an interface can be based on commercial or custom 
software and an airborne acoustic microphone. However, 
most systems of this type are difficult or impossible to use 
in noisy environments such as those presented in military 
or industrial scenarios. In such cases we must find 
alternative ASR software or speech sensors in order to 
enhance operation in these environments. Efforts to 
improve operation in noisy environments by removing the 
noise from the microphone output have proven difficult 
without knowledge of the external noise source. 

The Physiological Sensor, a medical sensor developed at 
Army Research Laboratory, is a device that physically 
couples to a patient to record medical information such as 
respiration and heartbeat. With some slight modifications 
to the electronics, ARL has converted this sensor to a 
microphone to be worn around the throat. 

2. Physiological Sensor - Background 

ARL has developed a new method to measure human 
physiology and monitor health and performance 
parameters. This consists of an acoustic sensor positioned 
inside a fluid-filled bladder in contact with the human 
body.   Packaging the sensor in this maimer minimizes 

outside environmental interferences, and signals within 
the body are transmitted to the sensor bladder with 
minimal losses. This fluid-coupling technology 
comfortably conforms to the human body, and enhances 
the signal-to-noise-ratio (SNR) of human physiology to 
that of ambient noise. An acoustic sensor system can 
detect changes in a person's physiological status resulting 
from exertion or injuries such as frauma, penetrating 
wound, hypothermia, dehydration, heat sfress, and many 
other conditions (or illnesses). Furthermore, a sensor 
contacting the torso, head, or throat region picks up the 
wearer's voice very well through the flesh, with fidelity 
sufficient to be used as an auxiliary microphone for 
communications or hands-free voice activation 
mechanism. Automatic speech recognition software, in 
conjunction with this enhanced body-coupling sensor, 
could improve mission performance by reducing false 
voice commands through improved SNR in noisy 
environments. Civilian technology transfer applications 
include clinical surveillance, medical transport, hospitals, 
and telemedicine applications. Fire, rescue, and police 
personnel may benefit from hands free voice 
communications with embedded health and performance 
monitoring [Scanlon, patents]. 

2.1 Sensor Description 

The neck-band sensors shown in figures 1 and 2 consists 
of a housing, gel-coupling sack with sensor embedded 
within, neck strap, preamplifier, and battery pack with 
hardwired signal egress and push to talk button.. The 
headband sensor in figure 3 does not use a liquid 
coupling, but rather an acoustically conductive silicone 
rubber. 

Data were collected at the side of the neck using a sensor 
of similar geometry to the sensor in figure 1 [Scanlon, 
1998]. The test included a spoken word count from 1 to 
10, then mouth breathing for the remainder of the data set. 
Naturally, the heartbeat is always present. The time and 
frequency representations are shown in figure 4. Figure 5 
compares data from a B&K microphone in front of the 
speaker's mouth to that of a fluid-coupled physiological 
sensor held in contact with the neck by a sfrap. Data from 
both locations were taken simultaneously in a typical 
office environment. Comparing the amplitudes of the 
voice to the non-vocal ambient noise surrounding the 
voice gives approximately 40 dB SNR for the B&K 
airborne microphone, and approximately 75 dB SNR for 
the fluid-coupled sensor. The fluid coupling represents an 

♦Previously published in the Computer Science Handbook for Displays, Editors; Thomas Huang, Marius Vassiliou 
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improvement of better than 30 dB in speech SNR with 
minimal waveform degradation, as observed by the 
similarity of spectrograms and by Hstening to the data 
through headphones. 

Timr (s) 
Time (s) 

The ability of body-coupled sensors to detect 
physiology and reduce background noise was 
investigated. A physiological sensor was attached to 
one side of a speaker's neck, and an omnidirectional 
electret microphone was place in fi-ont of the mouth. 
Figures 6 and 7 show simultaneously collected breath 
and voice data before, during, and after a speaking 
subject is immersed in a C-weighted noise field of 
105 dB (referenced to 20 micropascals) noise field. 
The person wearing the sensors repeatedly vocalized 
a 1 to 10 count between the times of 14- and 19-s, 25- 
to 33-s, 65- to 7I-S, and 71- to 77-s, and vocalized 
"105 dB" between 47- and 50-s. 

The boom microphone in figure 6 does not detect any 
voice during the high amplitude noise between 20- 
and 71-s. However, in figure 7, the counting is 
clearly visible throughout the loud noise with 
the body-coupled gel 
sensor. Playing the data collected through headsets, 
the listener could clearly hear and understand the 
spoken words from the gel sensor in 105 dB noise, 
but could not discern the presence of any speech in 
the boom microphone data. 

3.   Automatic Speech  Recognition  Using the 
Physiological Sensor 

Army Research Laboratory (ARL) and Rockwell Sciences 
Center (RSC) have developed several experimental 
systems that use the Physiological Sensor as input to 
automatic speech recognition (ASR) systems. These 
efforts are discussed below. 

3.1 RSC   Integration   &   application   of   the 
Physiological Sensor 

3.1.1    General   Signal  Characteristics  of the 
Physiological Sensor 

By coupling directly to the user's neck, the physiological 
sensor was able to achieve extraordinary signal to noise 
performance as compared to airborne acoustic 
microphone technologies. While providing significant 
rejection of ambient noise, the sensor was not entirely 
immune to ambient sound. For instance, it was quite 
possible to detect other persons speaking to the wearer of 

the physiological sensor, though at greatly attenuated 
levels. Due largely to the method of transduction, the 
output signal of the ARL physiological sensor was 
significantly different from typical acoustic microphone 
signals. Specifically, higher fi-equencies tended to be 
significantly attenuated. Human listeners listening to the 
output signal of the physiological sensor indicated that the 
distortion was analogous to listening to a person in 
another room through a wall. 

3.1.2    Physiological 
Recognizers 

Sensor     and     Speech 

Because of the inherent distortions of speech associated 
with the ARL physiological sensor, many commercial, 
off-the-shelf ASR technologies, like IBM's ViaVoice, 
were unable to successfully recognize speech using the 
physiological sensor signals. Such recognizers often rely 
on Hidden-Markov Models of speech, where the models 
are pre-estimated using statistical methods and large 
databases of human speech. Such databases would have 
been collected with conventional airborne acoustic 
microphones, so any speaker-independent speech 
recognizer would have an inherent expectation about the 
signal characteristics of speech as normally acquired 
through airborne acoustic microphones. Hence, in 
performing speech recognition with the physiological 
sensor, speaker-dependent recognizers tended to work 
more reliably. As recommended by ARL, the initial 
speech recognition engine utilized was the Clamor engine, 
a dynamic-time-warping speech recognizer developed by 
the Lexicus business unit of Motorola. Clamor recorded 
templates of each word or phrase ("token") to be 
recognized as provided by the user (2 instances of each 
token were kept as matching templates). Performance 
with the Clamor recognition engine was adequate for 
discrete, speaker dependent recognition of up to several 
distinct tokens. 

Later, Rockwell Science Center developed a speaker- 
dependent, Hidden-Markov Model based discrete speech 
recognizer for use with the physiological sensor. The 
HMM-based recognizer was designed using HTK, a 
product of the former Entropic Research Laboratories. 
Like the DTW-based Clamor recognizer, RSC's HMM- 
based recognizer provided discrete recognition for up to 
several distinct tokens. The key difference was that with 
an HMM-based recognizer, additional training samples 
could be used to re-estimate the speech models, and 
presumably build a more robust, statistically accurate 
model of each token as more and more training utterances 
were collected from the user. The refined HMM models 
should perform better, while still maintaining the same 
level of computational complexity. With the DTW 
approach,   the   use  of additional   user  utterances   for 



recognizer training would necessarily increase the 
computational burden of speech recognition at runtime - 
the more templates that were collected, the longer each 
match would take. 

In order to support rapid integration and testing of user 
interfaces involving the physiological sensor, it was 
integrated with Rockwell's Automatic Speech 
Recognition (ASR) Server technology. The ASR Server 
provided abstraction of an encapsulated speech 
recognition engine (Clamor was used for the 
physiological sensor) through a platform-neutral TCP/IP 
socket interface. Applications could be quickly designed 
to exploit speech recognition services of the ASR Server 
through a simplified protocol. The ASR Server could, in 
turn, provide speech recognition through either the 
physiological sensor, or a conventional acoustic 
microphone. The physiological sensor was demonstrated 
in conjunction with Rockwell's Multimodal Integrated 
Displays Testbed in early 1999. 

In early 2000, RSC's HMM-based recognizer for the 
physiological sensor was integrated with RSC's Bimodal 
ASR Server. The Bimodal ASR Server employed a 
subset of the same client/server interface protocol used by 
the ASR Server; whereas the ASR Server encapsulated 
COTS acoustic speech recognizers, the Bimodal ASR 
Server encapsulated more experimental recognition 
technologies, including both the HMM-based recognizer 
for the physiological sensor, as well as the visual lip- 
tracking based speech recognizer described in elsewhere 
in this text. The physiological sensor and Bimodal ASR 
Server were demonstrated as components of Rockwell's 
Integrated Displays Testbed v2 in early 2000 [Vassiliou, 
GO]. As part of the demonstration, a user could 
dynamically switch between speech recognition using 
either the lip tracker or the physiological sensor. 

The natural extension of this work would be development 
of a hybrid speech recognition technology that 
concurrently uses both the physiological sensor and the 
visual speech recognizer. The two technologies are 
uniquely complementary because while the visual speech 
recognizer leverages key visible features of speech 
articulator motion (vital for recognition of consonant 
sounds), it is unable to distinguished voiced from 
unvoiced speech, and indeed is fairly unsuitable for 
discrimination of vowel sounds from one another. On the 
other hand, because of its nearly direct coupling to the 
vocal tract, the physiological sensor is advantageously 
placed for detecting voicing and discriminating vowel 
sounds, while its ability to capture subtle acoustic 
transients of consonant production may be compromised 
by its body-coupled nature. The visual speech recognizer 
is already HMM based, so significant research 
opportunities exist for the development of appropriate 

feature vectors and HMM topologies to integrate the two 
distinct signal sfreams (visual & acoustic). 

3.1.3 Ergonomics 

The physiological sensor was found to be generally 
comfortable to wear, though there were some issues with 
the design. One obvious problem was that users wearing 
a collared dress shirt could have problems fitting the 
physiological sensor band either above or under the 
collar. Generally, with a shirt collar closed, fitting the 
physiological sensor inside the collar band was not 
practical. Wearing the physiological sensor higher on the 
neck than a closed shirt collar tended to limit head 
movement. Possibly, a narrower band and smaller sensor 
capsule could help with these issues. 

The neck band itself was fairly easy to secure due to the 
use of Velcro surfaces. The fabric of the neck band was 
of a dense weave, which could lead to the accumulation 
of perspiration under the neck band under some 
conditions. A thinner, more loosely woven fabric, 
perhaps an elastic one, might be helpful. 

The physiological sensor was also compared to a similar 
COTS throat worn microphone product, the LASH II 
microphone distributed by Television Equipment 
Associates. While the LASH II did use a thinner, 
narrower, elastic collar band, the plastic hook assembly 
for closing and securing the LASH II was not as easy to 
use as the Velcro design of the ARL physiological sensor. 
Further, the LASH II design caused two rigid plastic 
nodes to be pressed against the user's throat, which could 
cause significant discomfort when worn over extended 
periods. In contrast, wearers generally did not find the 
ARL physiological sensor to increase in discomfort over 
time. 

Some hesitance and psychological resistance to wearing 
the physiological sensor was also reported of prospective 
users. An obvious safety concern for any neck worn 
apparatus is the possibility of choking, either by accident 
or by assailants. Also, while head worn microphones of 
some styles have come to be socially acceptable to 
wearers and even fashionable or "cool" in certain 
contexts, the visual appearance of the neck worn 
physiological sensor was less acceptable to some users. 

3.1.4 Physiological Sensor Integration Issues 

In early 1999, Rockwell received first samples of the 
ARL Physiological Sensor technology. Early samples 
used a fairly large (~5"x3"x2") preamplification module, 
which was rather bulky and not well suited to bodywom 
applications.    Despite having a fiill metal casing, the 



combination of physiological sensor and preamplification 
module was also susceptible to grounding problems, 
which would cause a strong 60Hz hum to be present in 
the output signal. The grounding problems were 
corrected in the next received prototype early in 1999 and 
the physiological sensor was successfully mated to a PC- 
based sound card using the line level input. Some speech 
recognizers are designed with the assumption that the 
microphone input of a sound card will be used for speech 
acquisition, so the user of line level input could have been 
an integration issue for some speech recognition 
technologies. 

Newer versions of the physiological sensor supplied by 
ARL in late 1999 and early 2000 used a much smaller and 
lighter preamplification module (~2"xr'x.5") in a plastic 
rather than a metal housing. The new preamplification 
module was light enough to be carried with the user, and 
the signal level was suitable for use with the microphone 
inputs of typical PC sound cards. It also included a 
momentary push-to-talk switch. Conceptually, a push-to- 
talk switch is helpful in speech recognition applications 
because if the press and release events for the switch can 
be detected by the speech recognizer, then delimitation of 
user utterances becomes fairly easy. Also, the use of a 
push-to-talk switch helps to prevent false recognition 
(insertion) errors where extraneous noises or speech not 
intended for the recognizer are acquired by the transducer. 
In the case of the current versions of the physiological 
sensor though, the implementation of the push-to-talk 
switch is suboptimal for speech recognition. First, the 
switch is electromechanical and entirely embedded in the 
preamp module of the physiological sensor, so there is not 
a deterministic way (e.g. additional connector pin) for an 
attached device or computer to ascertain when the switch 
is pressed and released. The switch also induces 
significant transients in the sensor's output signal when it 
is pressed and released. Such transients in the speech 
signal are apt to confuse most existing speech recognition 
technologies. The workaround solution employed to 
address these issues was to keep the push-to-talk switch 
depressed at all times while using a speech recognition 
system, and to rely on other, external push-to-talk switch 
mechanisms that were more readily tracked by the 
Rockwell ASR Server. Additionally, because the push- 
to-talk switch was of a momentary-on design, additional 
external fixtures were required to keep the switch 
depressed. 

For some applications, it was desirable for the user of the 
physiological sensor to be free to move about untethered. 
Attempts were made to connect the physiological sensor 
to a wireless microphone transmitter module (Audio 
Technica ATW-T75), but the output signal levels and 
impedance were found to be not fiilly compatible with the 
input   stages   available   on   the   wireless   transmitter. 

Although a signal could be sent wirelessly, additional 
distortions were introduced, which ultimately degraded 
speech recognition accuracy. 

RSC has provided ARL with recommendations for 
improvements to the design of fijture Physiological 
Sensor based microphones. 

3.2 Army Research Laboratory 

ARL has conducted two experiments using the 
Physiological Sensor as an input device for ASR. The first 
effort used the Entropic HTK as the automatic speech 
recognition (ASR) engine and compared the capabilities 
of the Physiological Sensor with an acoustic microphone. 
The second effort utilized Dragon Systems Naturally 
Speaking, a commercial ASR product to evaluate the 
possibility of using the Physiological Sensor with 
commercial speech engines. 

All applications of the Physiological Sensor as a speech 
input device must take into account the difference in 
frequency response of this sensor as compared to a typical 
airborne acoustic microphone. This difference in 
frequency response typically precludes the use of acoustic 
language models provided with most ASR systems. 

3.2.1    Physiological Sensor with Entropic HTK 

For the experiment using HTK, ARL teamed with the 
United States Military Academy (USMA) to develop 
speech models appropriate for use with the Physiological 
Sensor [Bass, 99]. The Entropic HTK, a Hidden Markov 
Model based system, was chosen because it provides the 
flexibility required to adapt the internal configuration of 
the ASR engine for use with the Physiological Sensor. 

The test consisted of trying to recognize one of 50 phrases 
using both an airborne sensor (microphone) and the 
Physiological Sensor. Two recognizers were used, each 
trained on one of the sensors being tested. Phrases 
consisted of two to ten words each, with a total of 153 
unique words. Each test subject spoke the phrases in an 
environment that yielded speech to noise ratios of 0-, 3-, 
and lOdB SNR through the airborne sensor, while 
wearing both the airborne and physiological sensors. 

Speech training and testing was conducted by USMA at 
their facilities. Training was performed using data 
collected from 21 subjects speaking the 50 phrases in a 
quiet environment. The result of the training is a speaker 
independent model for recognition of the 50 test phrases. 
Testing was then performed on data collected using 14 
new subjects to speaking the 50 phrases in each of the 
given noise environments. 



The results of this experiment are shown in tables 1 and 2. 
In all cases the Physiological Sensor and related 
recognizer outperformed the airborne acoustic sensor and 
related recognizer for the given noise levels. Further, the 
% accuracy of the Physiological Sensor degrades at a 
much lower rate with increased noise as compared to the 
airborne acoustic sensor. 

3.2.2   Physiological    Sensor 
Naturally Speaking 

with    Dragon 

In order to evaluate other possible application areas for 
the Physiological Sensor we decided to perform a limited 
test with a commercial ASR product. We selected Dragon 
Naturally Speaking for the test because we had 
considerable experience using this product. To simplify 
the experiment we used the same set of phrases as used 
with the HTK testing. One user trained the system using 
the standard user training session. In addition, all of the 
words in the command phrases were trained separately. 

With this very limited data set, 50 phrases and one user, 
recognition rates were found to vary between about 60% 
and 80%. While not outstanding, this is a fairly good 
result considering that the ASR engine was developed for 
an airborne acoustic microphone. It should be noted that 
the worst recognition rates were obtained when the user 
removed and reattached the Physiological Sensor. We 
assume that changes in the sensor pressure and position 
are the cause for these variations. No tests were 
performed in the presence of noise. 

3.2.3    Future Research and Experimentation 

Experiments with the Physiological Sensor have 
demonstrated its capability to be used as a speech sensor 
for specially trained and configured ASR systems. The 
requirement for special configurations prevents the 
application of this sensor with many of the commercial 
ASR products on the market. Since the private sector is 
investing heavily in the development of these continually 
improving commercial ASR products it makes sense to 
leverage this effort. As a result, ARL will work to develop 
methods to convert the output of the Physiological Sensor 
into a signal that more closely approximates that of an 
acoustic sensor. If we can accomplish this then the 
Physiological Sensor should be suitable for use with any 
commercial ASR product. The resulting system would 
have the improved capabilities of the commercial ASR 
products with the noise rejection capability of the 
Physiological Sensor. 

4.   Summary, Conclusions (Lessons Learned), 
and Recommendations 

Several areas exist to improve the operation of the 
Physiological Sensor as a microphone. The sensor already 
has good airborne noise rejection, but more can be done 
to limit the amount of airborne noise that couples to the 
sensor. An acoustic insulation material can be 
incorporated around the shroud of the sensor that contacts 
the skin to prevent the airborne noise from contacting the 
sensor's gel pad. Additionally, sensors could be mounted 
on both sides of the throat and their outputs summed 
simultaneously so that the speech would add 
constructively, whereas the noise would be reduced by 
common mode rejection. Since the vocal folds are not 
always symmetrical, the combined left and right signal 
may improve intelligibility through construction of an 
enhanced signal. 

One potential problem in the application of the 
Physiological Sensor as an input to ASR systems is the 
substantial variation in signal due to changes in sensor 
pressure and position. We will research this issue in the 
future and attempt to minimize these effects in order to 
improve operation with ASR software. 

Circuit modifications can made to eliminate noises from 
switch activation, match impedance for interaction with 
other devices, and adjust the filtering to create a more 
accurate representation of the speech. The preamplifier 
used in all of the experiments described herein had a flat 
response, and did not enhance or boost the high 
frequencies that are lower in amplitude than the very 
dominant lower formants. Developing a non-linear 
amplifier (filter) can reduce the "through the wall" 
perception developed by some listeners, and may produce 
waveforms that better match what the commercial ASR 
engines expect. In addition, refinement of ergonomics and 
packaging would be worthwhile for maturing this 
technology into a product. 
The physiological sensor has demonstrated exceptional 
capabilities for the detection of voice in high noise 
environments. In addition, the physiological parameters 
detected by this sensor provide health and performance 
indication, but might ultimately provide invaluable 
emotional or physiological data that can be used to adapt 
and optimize ASR algorithms under diverse situations. 
This is important in almost every military and civilian 
application. Acoustics can provide invaluable clues to 
help understand the interrelations between the soldier's 
physiology, the task at hand, the spoken word's intent, 
and the surrounding environment. 
Areas requiring future research include the development 
of a user independent HMM model set to assist 
developers working with of the Physiological Sensor, 
development of algorithms or filters to enhance operation 
of the sensor for use with commercial ASR products, and 
refinements in overall operation. 
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Figure 1: Gel sensor pad. Figure 2: Neck assembly for voice. 

Figure 3: Sensor in helmet headband. 
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Figure 5: Comparison of spoken word "papa" taken with ambient microphone (left) and throat pad (right). 
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Figure 6: Boom microphone detecting voice. 
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Table I. Sentence Loop Language Model Table 2. Word Loop Language Model 

Sentence Loop Model 
(% Perfect Sentence Recognition) 

dB Airborne Physiological 
0 40.6 96.5 
3 60.7 98.7 
10 98.7 99.4 

Word Loop Model 
(% Perfect Sentence Recognition) 

dB Airborne Physiological 
0 -0.1 39.6 
3 12.8 50.5 
10 51.5 66.8 



A Surface Vibration Electromagnetic Speech 
Sensor 

Jonathan L. Geisheimer, Eugene F. Greneker, Scott A. Billington, Ittichote Chuckpaiwong 

Abstract—As researchers continue to improve speech in noisy 
environments, more interest is being placed on sensors with 
modalities that can be fused with traditional acoustic sensors. 
The standard literature has shown that electromagnetic sensors 
can be used to detect glottal motion. Also, accelerometers placed 
on the throat and nasal areas have been used to detect skin 
surface vibrations corresponding to speech and that data has 
been used for noise reduction. The Georgia Tech Research 
Institute (GTRI) is transitioning a 24 GHz radar technology 
originally used for non-contact vital signs monitoring to a 
technology able to measure surface motion on the order of 
microns, which can detect skin surface vibrations corresponding 
to speech. The radar has been shown to measure the same 
motion as accelerometers using electromagnetic waves. This 
paper describes the theory and preliminary work in developing a 
surface vibration electromagnetic speech sensor to be used for 
noise reduction in conjunction with acoustic sensors. 

Index Terms—radar, speech, noisy environments, sensor 
fusion. 

I. INTRODUCTION 

Every time a person speaks, the acoustical pressure waves 
from speech couple through many parts of the body, 

which causes structures such as the head, neck, chest, and face 
to vibrate. If a hand is placed on the chest or throat when 
speaking, these vibrations can be readily felt. The acoustic 
pressure waves due to speech have been translated to 
mechanical vibrations. This has been confirmed by various 
researchers who have looked at the head and chest vibrations 
in signers.' Other researchers have detected mechanical 
vibrations off of the neck using contact accelerometers and 
have been successfiil in using the resultant vibration signal to 
cancel noise when fused with acoustic data.^'' 

An electromagnetic-based sensor called the Glottal 
Electromagnetic Micropower Sensor (GEMS), developed at 
Lawerence Livermore National Laboratories," has been used 
to detect internal body vibrations. This sensor uses a low 
power, wideband pulsed radar that is able to penetrate through 
the body and detect glottal movement.' It operates at 
microwave frequencies less than 3.0 GHz.   In general, lower 
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microwave frequencies will achieve better penetration into the 
body. 

The surface vibration electromagnetic speech sensor 
concept uses electromagnetic waves in the millimeter wave 
region to measure the slight vibrations of the body on the skin 
corresponding to human speech, down to micron levels of 
motion. At the proposed operational frequency of 35.0 GHz, 
the electromagnetic waves pass through clothes but do not 
penetrate into the body as does the GEMS sensor. The radar 
is detecting only surface vibrations and therefore directly 
measures the surface skin vibration and not the internal body 
structures. Since the device is directly picking up speech 
vibrations, it will be referred to as a "radar microphone". A 
diagram of the concept is shown in Figure 1. 

-4 C X\f^< Alqoritfan TransmttedSignsI ^    j^^> 

ASR System 

Speech Signal 

Vibrating Ciiest 

Figure 1. Radar Microphone concept 

Referring to Figure 1, the radar microphone fransmits a 
continuous wave (CW) electromagnetic signal towards the 
person's chest or neck area. Next, the signal is reflected back 
to the sensor where it is demodulated and converted to a 
baseband signal, sampled by an analog-to-digital converter, 
and then run through digital signal processing algorithms to 
convert the radar signal into displacement that correlates with 
the surface vibrations due to speech. The resultant speech 
signal can then be fused with other more fraditional speech 
sensors and then passed on to an automatic speech recognition 
system if desired. 

II. TECHNOLOGY BACKGROUND 

The Georgia Tech Research Institute (GTRI) has been 
sensing small-scale biological motion using radar for almost 
20 years, beginning with the Radar Vital Signs Monitor 
(RVSM). RVSM technology is able to detect both respiration 
and heartbeat signatures from individuals without contact. 
The first GTRI RVSM system was developed in the mid- 
1980s under sponsorship of the United States Department of 
Defense (DOD); a patent on the system was issued in 1992.* 
This frequency modulated (FM) radar was used as a battlefield 
vital signs monitor. The system was tested on soldiers 
wearing a chemical or biological warfare suit to allow vital 
signs to be monitored without opening the suit and risking 
contamination of the subject.^ 



A later version of the RVSM was developed for use in the 
1996 Olympics held in Atlanta, Georgia and was addressed in 
a paper presented by one of the authors.* This system was 
built to monitor the heartbeat of competitors in the archery and 
rifle events and was able to penetrate through the heavy 
leather flak jackets typically used by competitors. Finally, a 
variant called the RADAR Flashlight was developed for use 
by law enforcement personnel to detect the radar respiration 
signature of individuals concealed behind a wall or within an 
enclosed space under the sponsorship of the National Institute 
of Justice (NIJ).' A picture of the latest Radar Flashlight 
prototype is shown in Figure 2. 

Figure 2. Radar Flashlight prototype 

Recent advances in the technology have increased the 
resolution of the sensor so it is able to detect motion on the 
order of microns. The associated hardware and signal 
processing advancements have now enabled the sensor to 
detected vibrational skin motion associated with speech 
directly off of the body. 

III.   SURFACE VIBRATION SPEECH SENSOR THEORY 

The radar microphone is based on a phase detection 
technique to achieve a sensitivity high enough to pick up 
surface vibrations due to human speech. The key to the 
technique is that it does NOT use the Doppler effect or time of 
flight measurements common in most traditional radar 
designs. The key to the GTRI technique is that the sub- 
wavelength phase is measured with high accuracy. Motion 
less than the transmitted wavelength is being measured. 

The radar microphone detects motion similar to a laser 
vibrometer, however, millimeter microwaves are used instead 
of light and a homodyne detection technique is being used 
instead of an interferometer. Typically, when electromagnetic 
waves are used in the context of radar or other remote sensing 
applications, the object of interest is moving through multiple 
wavelengths. If that object is moving relative to the 
transmitter, the received frequency will be different then the 
transmit frequency. This is the well-known Doppler effect. 
However, when an object moves less than a wavelength, such 
as the case in detecting chest vibrations, a different 
phenomenology, phase modulation, is at work. 

To prove the basic fijndamentals of the concept, the 
vibration of the chest was first recorded with a contact 
accelerometer and the corresponding acoustic speech was 
recorded with a microphone. The accelerometer was a high 
frequency   PCB   352C68   placed   on   the   chest   and   the 
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microphone was a standard acoustical transducer. The 
simultaneously recorded output from the two sensors for the 
segment of speech "hickory dickory dock" is shown in Figure 
3. The accelerometer data clearly shows many of the same 
characteristics as the audio signal. The radar microphone will 
measure the same vibrations as the accelerometer in a non- 
contact manner. Past research by the authors has shown that 
signal detected by the radar correlates well with accelerometer 
outputs.'" 

'mm 

Hi kory 

l^'^'^'^mm^ \ fr^ '^^l|j|b'*^' 

Di kory Dock 
Accelerometer Output 

Figure 3. Simultaneous microphone and accelerometer 
speech data for "hickory dickory dock" 

iV. PROTOTYPES 

A prototype has been constructed to demonstrate the 
technology for a different application; however, the results are 
useful to show the current state of the technology as well as 
the promise of the radar microphone. The resulting hardware 
was tested using a linear motor with an optical encoder. 

Figure 4 depicts the hardware configuration of the test 
setup. A target was attached tightly to a moving portion of a 
linear motor. The target surface was covered with a flat metal 
sheet that is used as a reflector. The radar sensor and the 
linear-motor encoder were set to take simultaneous 
measurements. The displacement from the radar sensor and 
the encoder were compared, consequently the radar sensor 
could be calibrated and compared. 
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Figure 4. Radar microphone test setup 

The results are illustrated in Figure 5. The top graph is a 
plot of both the radar sensed motion, and the ground truth 
motion as recorded by the encoder. It can be seen that the 
radar sensor was able to track actual displacement of an 



arbitrary motion. The residual (difference between the radar 
and encoder calculated displacement) on the lower graph is the 
difference between displacements measured by the radar 
sensor and the reference, or error, of the radar sensor. 
According to this graph, the accuracy of the radar sensor can 
be given to within ±1 mm over a displacement range of 
50mm. Looking at smaller portions of the displacement, it can 
be seen that the error if often less than 0.1 mm. 

Also, the residual being measured in this case is absolute 
displacement. Relative displacement errors have been 
measured down to 20 microns. Note that the residual is not 
randomly distributed, but a periodic fiinction of displacement. 
The periodic error is caused by multipath reflections between 
the metal target and the metal radar hardware. Sensing of 
speech motion will yield significantly less multipath and 
distortion due to the less coherent reflecting surface. 

Compare the displacement calculated from the radar signal and the encoder 
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Figure 5. Example data taken from test setup 

Some initial recordings have been taken using this prototype 
along with simultaneous acoustic recordings. After processing 
the radar signal, the presence of speech information is readily 
apparent at fi-equencies bellow 500 Hz and the signal 
correlates well with the acoustic data, however, the radar- 
derived speech is not yet intelligible. Increases in 
performance will occur both through signal processing, as well 
as better antenna design, which will increase the frequency 
response, as discussed below. 

V. MODAL ANALYSIS 

Critical to the successful operation of a radar microphone 
is the "spot size" of microwave energy illuminated by the 
antenna. This is critical because the sensor is measuring 
vibrations that are propagating along the surface of the chest. 
Waves with peaks and nulls are moving through the chest at 
different frequencies. One analogy would be the waves that 
move outward in water when a stone is dropped into a pond. 
There are peaks and nulls in the water corresponding to the 
propagating surface waves. 

The work of Dr. Kevin Riggs at Stetson University has 
produced holographic images of vibratory modes in different 
materials. Figure 6 shows an example vibratory mode for a 
six inch square steel plate. The peaks and nulls on the plate 
are readily apparent. It is critical for accurate measurement of 
the vibration signal that the illumination area not detect both 
peaks and nulls at the same time, which may smear the output 
signal in the frequency domain. 

Because the radar is receiving the sum of reflections from 
all illuminated points, the peaks and nulls could cancel each 
other out and distort the signal of interest. Therefore, the 
bandwidth of the radar microphone is limited by the antenna 
spot size on the chest. The smaller the spot size, the higher the 
frequencies that can be adequately picked up by the sensor. 

Figure 6. Example image of vibratory modes on a steel 
plate (K. Riggs, Stetson University) 

As the standoff distance from the radar to the target of 
interest increases, the area illuminated by the radar beam 
increases, affecting the frequency sensitivity of the sensor. 
The spot size in centimeters vs. distance in meters for various 
antenna beam sizez (in degrees) is shovm in Figure 7. 
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Figure 7. Spot size for given antenna beamwidths and 
distances 

For the sensor to be viable, an antenna must be designed 
that projects a small spot size onto the neck, face, or chest of 
the person. If the application is in traditional military 
communications, the soldier or pilot will typically be wearing 
a headset, to which a sensor can be placed close to the face or 
neck. For larger standoffs, more exotic antennas will need to 
be designed. Moving the radar to a higher transmitted 
frequency will  also  enable  smaller spot sizes,  enhanced 
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resolution, and improved frequency response. As advances in 
commercial radar technology drive prices down for operating 
at higher frequencies (such as 77 GHz for automobile collision 
control), the ability of the technology to detect high resolution 
speech will be improved. 

VI.   CONCLUSION & FUTURH DIRHCTIONS 

The concept of using a radar device as a surface vibration 
electromagnetic speech sensor has been introduced. The radar 
acts as a sensitive motion detector able to detect the surface 
vibration of skin due to speech. Testing of a 35.0 GHz sensor 
has shown the ability to measure motion down to microns. 
The next step is to take the 35.0 GHz radar sensor and record a 
corpus of simultaneous radar and audio data to process and 
compare. Signal processing algorithms will be necessary to 
extract speech information out of the radar data. Initial 
recordings using the sensor have shown the presence of speech 
information at 500 Hz and below in the radar signal. 
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Abstract 

This paper addresses the testing and analyzing of 
various microphones versus the Physiological 
Microphone (provided by Pete Fisher of the 
Army Research Laboratory) in different working 
conditions   [1,2]. We   explore   different 
techniques and environments in which a user 
interfaces a selected ASR program. The testing 
of multiple microphones provided us with varied 
results based on environment. The software of 
choice for our research was Dragon Naturally 
Speaking 5.0. 

1.   Introduction 

Automatic Speech Recognition systems enable 
users to operate their computer through the use 
of their voice. This advancement has benefited 
casual consumers, professionals and handicapped 
individuals alike. The development of a 
microphone allowing the user to move about 
freely and eliminate background noise has 
become necessary for practical use by 
professionals and consumers alike. Although 
significant progress has been made in ASR there 
are still limitations that must be taken into 
consideration. The technology that is on the 
market for consumers today, operates efficiently 
only under controlled conditions and through 
dictation, not conversation. 

Factors to be considered in recognition accuracy: 
• Environment   (background   noise, 

room size) 
• Computer Hardware (CPU speed, 

RAM, soundcard) 
• Amount of training with software 
• Position of microphone 
• Speaking style and clarity 

Microphone type 
Variability in the consumers speech 
(e.g., stress, colds) 

These factors are considered to determine the 
most effective speech recognition procedure for 
each microphone based on environment. 

2. System Descriptions 

Our research was recorded based on the results 
provided by two test machines. The machines 
were both using Intel based processors. 

System A 
• Pentium III 0.5 GHz 
• 256Mbpcl33RAM 
• Yamaha DS-XG Sound Card 

System B 
• Pentium IV 1.4 GHz 
• 256 Mb RDRAM 
• Sound Blaster Live! 5.1 

System C 
• Pentium IV 1.4 GHz 
• 256 Mb RDRAM 
• Sound Blaster Live! 5.1 

System D 
• Pentium IV 1.8 GHz 
• 256 Mb RDRAM 
• SoundBlaster Live! 5.1 

The testing phase  of the research continued 
through the use of four styles of microphones. 
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Microphone types: 4.   Procedure for Microphone Testing 

• Telex H-551 Headset Microphone 
(Reference Mic.) (System B) 
- USB digital stereo headset 

• Physiological Microphone (P-Mic) 
- Throat Microphone that detects 
vibration through skin and bone 
(System A) 

• Telex M-60 
Super-directional   linear  array 

microphone (System C) 
• Telex M-40 

Standard desktop microphone 
(System D) 

Our findings were based on the aforementioned 
hardware combined with a predetermined 
method of testing. All computers exceeded the 
hardware requirements of Dragon Naturally 
Speaking v5.0. Through preliminary testing, we 
found all recognizer engines operated at the same 
speed when dictating. Therefore, microphones 
were arbitrarily assigned to each computer. 

3.   P-Mic Description 

The Physiological Microphone is optimized for 
hands-free use. The microphone is designed to 
eliminate most background noise. It has its own 
power source, which is a 7.5-volt silver-oxide 
battery. Two of the microphones we used were a 
stationary desktop microphone (Telex M-40) and 
a super-directional linear array based 
microphone (Telex M-60). The P-Mic has a 
power switch allowing the user to pause in 
dictation with out having to remove the 
microphone or stop the program. The Telex M- 
40 is lacking a power switch, which inconvenient 
in ASR. Physically, the P-Mic does not 
resemble a typical microphone. The P-Mic is 
worn like a collar, and has a silicon contact 
sensor which is placed slightly to the left or right 
of the throat, due to the symmetrical nature of 
the throat. The P-Mic is small and lightweight. 
The width of the collar and diameter of the 
sensor is about 1 inch. With the P-Mic the user 
can move about freely and have both hands 
available. Traditional microphones used in ASR 
require that the user remain stationary, thus 
limiting productivity in the workplace. The P- 
Mic plugs into the "Line-In" jack on the sound 
card via a phono plug, whereas traditional 
microphones use the microphone jack. 

Testing was performed in a typical, quiet 
research laboratory environment. Our research 
lab's dimensions are 22' x 17'. The room is prone 
to little outside noise interference. A radio 
playing a recorded talk radio conversation at 
variable volumes was used to produce 
background noise. The recorded talk radio show 
was selected for consistency, allowing each 
microphone to be subject to the same 
interference. The simulated conversation source 
was emitted 10' behind the speaker. 

Before testing we positioned four computers 
such that they could be tested simultaneously by 
one user. Each of the four microphones was 
assigned arbitrarily to a computer. We then 
performed the basic training required according 
to the Dragon Naturally Speaking 
documentation. Next a 400-word passage was 
dictated once while correcting and training all 
errors that occurred. The 400-word passage 
contained general vocabulary. After training, the 
Telex M-40 and Telex M-60 were attached to a 
microphone stand and positioned directly in front 
of the speaker. The user then attached the H-551 
and the P-mic enabling all four microphones to 
be tested at the same time. The speaker tested 
each microphone with background noise set at; 
no additional noise, 60dB, 70dB, and 80dB 
respectively. The environment where we tested 
had an average of 50 dB of background noise. 
The quiet conditions were to facilitate the peak 
performance of each of the four microphones. 

The speaker then started Dragon Naturally 
Speaking on all four computers. The speaker 
read the passage speaking at an average volume 
of 80dB. With the speaker speaking at 80 dB 
and noise at 50 dB, the difference of 30 dB 
provides an ideal speech-to-noise ratio for ASR. 
The speaker's volume was chosen to keep him 
from resisting the urge to compete with the 
added background noise, especially at the highest 
level of noise (80dB). This allowed the 
experiment to be performed at speech-to-noise 
ratios varying from excellent to very poor for 
speech recognition purposes. Each test was 
performed three times per sound level and the 
results were averaged. The dictated passages 
were printed and saved for analysis of mistakes 
made during dictation. 
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5. Results Figure. 1 (Combined Results) 

The results for the four microphones tested are 
documented in the plot below. Results per 
microphone in each environment are the average 
of three test sessions, recording the accuracy 
rate. The equation we used was [(Errors / Total 
Words)*100= Percent Error]; then, [100 - 
Percent Error = Accuracy Rate]. Each 
capitalization error, period, paragraph 
indentation, etc. was counted as an error, and a 
wrong word or a skipped word was counted as 
one error. Therefore, Type I and Type II errors 
were counted as one error. Multiple word 
phrases recorded in error in the place of one 
word were counted as one error (example: user 
says, "comma" and program records, "come on", 
= one error). 

Table 1 contains the results for the microphones 
tested at each level of background noise. The 
last column depicts the total percentage change 
from quiet conditions to 80dB background noise. 

Table 1. (Performanee in ' /o) 

Mie. 
Type 

No 
Noise 

60dB 70dB 80dB Total 
Chg. 

H551 99.0 98.5 96.5 89.75 9.25% 
M-60 98.75 97.25 92.5 85.25 13.5% 
M-40 95.5 94.25 87.5 81.75 13.75% 
P-Mic 97.5 96.0 93.75 92.0 5.5% 

The graph below illustrates that microphone 
performance was above 94% accuracy when 
speech-to-noise ratios were ideal. Notice that the 
steepest drop for the acoustic microphones 
occurred between 70 and 80 dB, whereas the 
slope of the P-Mic continues along a fairly 
straight line. The P-Mic never dropped more 
than 3% between increased levels of background 
noise. 

Microphone ResuHs 

Table 2 breaks down the percent change in 
increased background noise. The acoustic 
microphones' performance all dropped in 
parallel as the levels of background noise were 
increased. The P-Mic's performance, on the 
other hand, did not decrease at a higher 
percentage with the addition of background 
noise. (Specifically from 60 to 70dB versus 70 
to 80dB. 

Table 2. (Percent Change) 
Mic. 
Type 

No Noise 
to 60dB 

60        to 
70dB 

70         to 
80dB 

H551 0.5% 2.0% 5.25% 
M-60 1.5% 4.75% 7.25% 
M-40 1.25% 2.75% 5.75% 
P-Mic 1.5% 2.25% 1.75% 

s    m    m    m    7s 

5. Conclusions 

It is concluded that the Physiological 
Microphone out performed its competition the 
most at the most stressful speech-to-noise ratios. 
The physiological microphone's performance 
was relatively unhampered by very poor speech- 
to-noise ratios. Our acoustic microphones' 
largest drop in recognition accuracy occurred at 
80dB. The acoustic microphones dropped at 
least 5% at this level, whereas the P-Mic dropped 
only 1.75%. The P-Mic's total percent change of 
errors was about to half that of the reference 
microphone. Although the P-Mic performed 
above the rest, the 99% accuracy at quiet 
conditions still eluded it. Our data leads us to 
believe that the P-Mic has great potential when 
used in high background noise areas. We feel 
that the addition of an acoustic sensor used in 
tandem with the Physiological Microphone will 
boost recognition accuracy. 

6. Future Endeavors 

In the near fiiture, we plan on acquiring a more 
accurate sound level meter, with a low range of 
30dB. We would also like to acquire an 
elecfronic mouth to aid in our normalization 
process. Plans to create and implement a 
throat/neck simulator are also being arranged. 
This simulator, used with the electronic mouth 
will allow for a minimum of user errors and a 
near complete normalization of the test 
environment when using a pre-recorded file. We 
are  also  interested  in  acquiring  other throat 

15 



sensors and testing their performance versus the 
Physiological Microphone. 
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ABSTRACT 

In this work we consider the bimodal fusion problem in audio- 
visual speech recognition. A novel sensory fiision architecture 

based on the coupled hidden Markov models (CHMMs) is pre- 
sented. CHMMs are directed graphical models of stochastic 

processes and are a special type of dynamic Bayesian networks. 
The proposed fiision architecture allows us to address the statis- 
tical modeling and the fusion of audio-visual speech in a unified 
framework. Furthermore, the architecture is capable of capturing 
the asynchronous and temporal inter-modal dependencies be- 
tween the two information channels. We describe a model trans- 
formation strategy to facilitate inference and learning in 
CHMMs. Results from audio-visual speech recognition experi- 

ments confirmed the superior capability of the proposed fusion 

architecture. 

1. INTRODUCTION 

Incorporating visual information into automatic speech recogni- 
tion (ASR) has been demonstrated as an effective approach to 
improve the performance and robustness over the audio-only 
systems, and has received much attention in recent years [7]. 
One of the most challenging issues in bimodal ASR is how to 
fiise the audio (i.e. acoustic speech signal) and the visual (i.e. lip 
motion) modalities. 

The fusion of audio and visual speech is an instance of the 
genera! sensory fusion problem. The sensory fusion problem 
arises in the situation when multiple channels carry complemen- 
tary information about different components of a system. In the 
case of audio-visual speech, the two modalities manifest two 
aspects of the same underlying speech production process. From 
an observer's view, the audio channel and the visual channel 
represent two interacting stochastic processes. We seek a 
framework that can model the two individual processes as well 
as their dynamic interactions. 

One interesting aspect of audio-visual speech is the inherent 
asynchrony between the audio and visual charmels. Most early 

integration approaches to the fusion problem assume tight syn- 
chrony between the two. However, studies have shown that 
human perception of bimodal speech does not require rigid syn- 
chronization of the two modalities [6]. Furthermore, humans 
appear to use the audio-visual asynchronies as multimodal fea- 
tures.   For example, it is well known that the voice onset lime 

(VOT) is an important cue to the voicing feature in stop conso- 
nants. This information can be conveyed bimodally by the inter- 

val between seeing the stop release and hearing the vocal cord 
vibration. Therefore, a successful fusion scheme should not only 

be tolerant to asynchrony between the audio and visual cues, but 

also be apt to capture and exploit this bimodal feature. 

2. SENSORY FIISION USING CHMMS 

It's a fundamental problem to model stochastic processes that 
have structure in time. A number of frameworks have been pro- 
posed to formulate problems of this kind. Among them is the 
hidden Markov model (HMM), which has found great success in 
the field of ASR. In recent years, a more genera! framework, the 
Dynamic Bayesian Networks (DBNs), has emerged as a power- 

ful and flexible tool to model complex stochastic processes [3]. 

f=l f-2 f= 3 f= 7" 

Figure 1. DBN representation of an HMM 

The DBNs generalize the hidden Markov models by representing 

the hidden states as state variables, and allow the states to have 
complex interdependencies. Under the DBNs framework, the 
conventional HMM is just a special case with only one state 
variable in a time slice. DBNs are commonly depicted graphi- 
cally in the form of probabilistic inference graphs. An HMM 
can be represented in this form by rolling out the state machine 
in time, as shown in Figure 1. Under this representation, each 

vertical slice represents a time step. The circular node in each 
slice is the muhinomial state variable, and the square node in 
each slice represents the observation variable. The directed links 

signify conditional dependence between nodes. 
It is possible to just use HMM to carry out the modeling 

and fiision of multiple information sources. This can be accom- 
plished by attaching muhiple observation variables to the state 
variable, and each observation variable corresponds to one of the 
information sources. Figure 2 illustrates the fusion of audio and 
visual information using this scheme. Because both channels 
share the single state variable, this approach in effect assumes 
the two information sources always evolves in lockstep.  There- 
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visual; 
channel; 

Figure 2. Audio-visual fusion using HMM 

fore, it is not able to model asynchronies between the two chan- 
nels. 

An interesting instance of the DBNs is the so-called Cou- 
pled hidden Markov models (CHMMs). The name CHMMs 

comes from the fact that these networks can be viewed as paral- 

lel rolled-out HMM chains coupled through cross-time and 

cross-chain conditional probabilities. In the perspective of 

DBNs, an w-chain CHMM has n hidden nodes in a lime slice, 

each connected to itself and its nearest neighbors in the next time 
slice. For the purpose of audio-visual speech modeling, we con- 

sidered the case of n=2, or the 2-chain CHMMs. Figure 3 shows 
the inference graph of a 2-chain CHMM. 

f= 1 i'2 f=3 f-r 

Figure 3. Audio-visual fusion using CHMM 

There are two state variables in the graph. The state of the sys- 

tem at certain time slice is jointly determined by the states of 
these two multinomial variables. More importantly, the state of 

each state variable is dependent on both of its two parents in the 
previous lime slice. This configuration essentially permits un- 
synchronized progression of the two chains, while encouraging 

the two sub-processes to assert temporal influence on each 
other's slates. Note that the Markov property is not jettisoned by 
introducing the additional state variable and the directed links. 
Given the current state of the system, the future is conditionally 
independent of the past. Furthermore, given its two parents, a 
state variable is also conditionally independent of the other state 
variable. 

In addition to the two state variables, there are two observa- 
tion variables in each time slice. Each observation variable is a 

private child of one of the state variables. The observation vari- 

ables can be either discrete or continuous. It is possible with this 

framework that one of the state variable is continuous and the 
other one is discrete. 

In the context of audio-visual speech fusion, the audio and 

visual channels are associated with the two state variables re- 

spectively through the observable nodes. Inter-channel asyn- 

chrony is allowed. The overall dynamics of the audio-visual 
speech is determined by both modalities. 

In general, the time complexity of exact inference in DBNs 
is exponential in the number of state variables per time slice. 

For systems with large number of state variables, exact inference 
quickly becomes computationally intractable. Consequently, 

much attention in the literature has been paid to approximation 
methods that aim to solve the general problem. Existing ap- 

proaches include the variational methods [4] and the sampling 

methods [5]. However, these methods usually exhibit nice com- 

putational properties in an asymptotic sense. When the number 

of states is very small, the computational overhead embedded in 

the approximation method is often large enough to offset the 

theoretical reduction in time complexity. In this situation, the 

approximation becomes superfluous and exact inference be- 
comes more desirable. In the following section, we describe a 

model transformation strategy that facilitates inference and learn- 
ing in CHMMs. 

3. CHMM TRANSFORMATION 

The state of a 2-chain CHMM is jointly determined by the two 
state variables in the parallel chains. If the two state variables 
can take Q, and Q^ discrete values respectively, then the 
CHMM in effect has g, ^Q^ possible states. The same slate 
space can also be represented by a conventional HMM that has 

gi xgj hidden slates. Moreover, in CHMM, the output distri- 
bution of a joint state can be obtained by taking the product of 

the two output densities of the two individual state variables; 
Similarly, in a 2-stream HMM, the output distribution of a slate 

is the product of the two stream-dependent densities. Hence, it 
is also possible to represent the output configurations of a 2- 

chain CHMM with a 2-slream HMM that has an equivalent state 
space. However, the observable nodes of a g, -xQ^ CHMM are 
fully specified by a table containing Q, + Q^ entries. On the 
other hand, an unconstrained 2-slream HMM with Q^ xQ^ hid- 
den stales has 2xQ^ xQ^ distinct output densities. This differ- 
ence arises because in the CHMM an output node is only de- 

pendent on its single parent, while in the state-equivalent HMM 
the output is effectively conditioned on both slate variables in 
the original CHMM. Fortunately, this discrepancy can be read- 
ily resolved through tying the appropriate output densities in the 
2-stream HMM according to the mapping from CHMM states to 
HMM states. This state mapping and parameter lying procedure 
is easy to visualize graphically. 

Figure 4 illustrates the state-machine diagram of 2-slream 
HMM obtained by n-ansforming a 2-chain CHMM with Q,=i 

and Q2 =2 .   The slate space of the original CHMM is repre- 
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Figure 4. Transform CHMM to HMM through state-space 
mapping and parameter tying 

sented by the 6 hidden states in the HMM. This mapping is 
explicitly depicted in the diagram. E.g., the state 3 in the HMM 
is equivalent to the state {g, =2,^^ =1} in the CHMM. The 
output densities of the HMM are tied according to the mapping. 
In the figure above, the observation nodes with the same color 
shade are tied. For example, the output densities modeling the 
lower stream in state 2, 4, and 6 are tied, because they all corre- 
spond to the entry p{o, | ^j = 2) in the CPT of the CHMM. 

The allowed state transition in the HMM is also derived 
from the state space mapping. In this example, it is assumed that 
the conditional probabilities concerning the two state variables 
in the CHMM satisfy the following condition. 

Pi^l, I?,'.?,') = 0 if gl, *q', and q^, *q',+'\ (1) 

This condition essentially enforces the left-to-right no-skip pol- 
icy in the sense of conventional HMM for the two state variables 
in the CHMM, which is commonly used in audio-only speech 
recognizers. For example, a possible state path in the CHMM 
could be {9, =1,^2=1)->{?,= 2,9J =l}->{9, =3,^2 =2) , 
this is equivalent to the allowed state path I -> 3 -> 6 in the 
HMM. 

Other meaningful model configurations can be obtained 
through manipulating the allowed state transitions. For instance, 
it might be reasonable to model the dynamics of the lip motion 
using an ergodic state variable, i.e., no restriction on the possible 
state transitions for this variable. 

It is worthy noting that the 2-stream HMM approach to au- 
dio-visual fusion as shown in Figure 2 can be considered as a 
special case of the CHMM-based fusion architecture. In that 
case, the number of the audio states must be equal to the number 
visual states, and the two state variables always progress in lock 
step, i.e. g, = ft , and q] = q1 for al! /. The CHMM-based 
fusion architecture permits a much richer space for modeling 
interactions between the two modalities. 

The model transformation strategy described is fairly gen- 
eral and can be implemented on any HMM-based ASR platforms 
that support multiple observation streams and parameter tying. 

4. AUDIO-VISUAL ASR EXPERIMENTS 

The experiments carry two objectives. The first is to evaluate 
the improvement in noise robustness brought by the bimodal 
approach to ASR. The second is to compare the performance of 
the proposed fusion architecture with other fiision techniques. 

To fulfill the first objective, we built an acoustic speech 
recognizer as the baseline system. The recognizer was trained 
using clean speech. Noisy condition of a particular SNR level 
was simulated by adding white Gaussian noise to the clean 
speech samples. The same acoustic feature sets were also used 
in the audio channel of the bimodal system. However, it is as- 
sumed that visual channel is not affected by any additional noise 
during testing. A visual-only recognizer was buih and used as a 
benchmark. To achieve the second objective, we implemented a 
common form of the early integration approach, i.e. fusion by 
concatenating the audio and visual feature vectors. The systems 
were developed using HTK. 

Evaluation of the bimodal speech recognition system was 
performed on an audio-visual speech dataset [1] collected by 
Chen et al. at the Carnegie Mellon University. The vocabulary 
consists of 78 words commonly used in scheduling applications. 
The visual features were derived from the lip-fracking data pro- 
vided with the bimodal speech dataset. The primary visual fea- 
tures considered in the experiments are composed of A,, Aj , 
which measure the vertical openings of the upper and lower lips, 
and the distance between the two mouth-comers, w. Deha fea- 
tures were also included, thus the actual visual feature vector is 
six-dimensional. The acoustic speech was processed using a 
25ms Hamming window, with the frame period set at 10ms. For 
each frame, 12 MFCC coefficients were calculated from the 
result of filterbank analysis using 26 channels. Deha coefficients 
were also computed and then appended to the static features 
resulting in a 24-dumentional acoustic feature vector. 

We constructed the acoustic and the audio-visual speech 
models at the word level. The audio-only system is based on 
HMMs with nine states, left-to-right topology, and no skips. 
The HMMs used in the visual-only system have a similar topol- 
ogy, but with only five states. HMM configuration identical to 
the audio-only system is used in the early integration bimodal 
system. The CHMM-based bimodal system uses five states to 
model the audio channel and three states for the visual channel. 
The allowed state transitions follow the policy specified in equa- 
tion (1). Recognition was performed in the connected-word 
mode without the help of any grammatical constrains. A cross- 
validation scheme was used in the evaluations due to the limited 
amount of data. Specifically, the recognizers were trained on a 
subset containing 90% of the available data and tested on the 
remaining 10%; this process was repeated until all data had been 
covered in testing.  The results are summarized in Table 1. 

In the recognition results, it is evident that both of the bi- 
modal systems demonstrate improved noise robustness in com- 
parison to the audio-only system. However, at lOdB, the gain in 
robustness achieved by the early integration system is very lim- 
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Figure 5.   Forced alignment using audio only HMM and 
audio-visual CHMM 

iled. On the other hand, the CHMM approach managed to give a 
clear improvement in performance at the same SNR level. At the 
30dB, which is the SNR of the clean speech data, the recognition 
accuracy of the CHMM-based system is slightly worse than both 
the audio-only recognizer and the early integration bimodal sys- 
tem. 

Table]. Summary of recognition results (measured in %word 

accuracy). 'A' indicates the audio-only system; 'V indicates the 
visual-only system; 'A+V indicates the bimodal system using 

early integration; and 'CHMM' indicates the CHMM-based 
system. 

SNR lOdB 20dB 30dB 
A 4.03 43.61 99.10 
V 42.95 42.95 42.95 

A+V 10.58 72.79 99.74 
CHMM 35.32 86.58 93.32 

An important cue the visual modality provides in bimodal 

speech perception is the information about boundary locations of 
the speech units within an utterance. It would be interesting to 
see if this effect can be observed in our audio-visual ASR sys- 

tem. We computed forced alignment of a speech segment in the 
20 dB test set using both the acoustic only recognizer and the 
CHMM-based bimodal recognizer. The results are illustrated in 
Figure 5. 

Figure 5 covers a 10-second segment of the alignment re- 
sult. The two subplots on the bottom show the word boundaries 

superimposed with the speech waveform. The upper one is the 
alignment obtained using audio-visual CHMMs; the lower one 

shows the alignment obtained using acoustic only HMMs. The 

three subplots on the top display the static visual features used in 

the bimodal system. All five plots are time-aligned so that the 
correspondence among them can be visualized. 

From the plot, we see that the audio-only recognizer almost 
always give the incorrect end-of-word boundary at this noise 

level. In contrast, the bimodal system was able to precisely de- 
termine the end boundaries in 6 out of 7 cases. It is interesting 
to observe that the bimodal recognizer consistently introduced a 

lead-time before the audible starting point of a word. This ob- 

servation is consistent with the finding from human speech 
perception, that the visual speech usually leads the visual speech 

by a varying time window. The duration of the visual lead-in 

shown in Figure 5 ranges from about 40ms to 150ms. 

5. CONCLUSIONS 

We have described a novel sensory fusion architecture based on 

the CHMMs. A model transformation strategy that maps the 

slate space of a CHMM onto the state space of a classic HMM is 
proposed to carry out inference and learning. Bimodal speech 
recognition experiments demonstrate that the CHMM-based 

fusion scheme can utilize the information in the visual channel 
effectively in noisy conditions. 
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Agenda 
% 

• Overview of current sensor technologies 

• Possible future technologies 
• Possible sensor fusion methods 
• Military requirements 

• Conclusion 

^ ^       Possible Methods for 
Improved ASR in Noise 

Reduce or eliminate noise through the 
processing of the speech signal based on 
properties of the signal components 
Detect speech without detecting noise 
- Many alternative sensors have reduced signal 

information 

Combinations of the above 
- Specialized sensors and processing 
- Multiple speech sensors and fiision of signals 

1. 1 '•' 
Current Sensor Technologies 

Airborne acoustic microphones 

Contact acoustic microphones 
Bone conduction microphones 
Other alternative speech sensors 
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Airborne Acoustic Microphones 

» Handheld microphones (Shure, etc) 

• Headsets (Knowles, Shure, Telex, etc) 
- Noise canceling, close talking 

• Super-directional microphones (Telex, etc) 
- Narrow band through beam forming 

- Linear arrays in a reinforcing pattern 

Contact Acoustic Microphones 

• Throat microphones (TEA, Genesys, Temco) 
- ARL Physiological Microphone 

• 32dB noise rejection 

• Acoustic response differs from a regular microphone 

• Ear microphones (Jabra, Temco) 
- Some ear microphones are bone conduction 

• See next slide 

Bone Conduction Microphones 

• Navy bone conduction microphone 

• Ear mounted bone conduction microphone 
- Invisio (TEA) 

• Top of head bone conduction (Temco) 

• Tooth mounted bone conduction 
microphone 
- Developed through a SBIR at CECOM 

Other Alternative Speech Sensors 

• Glottal Electromagnetic Micropower Sensor 
(GEMS) 
- Developed at Lawrence Livermore Nat. Labs 
- Commercial developer Aliph 
- Uses RADAR to measure internal motion 
- Reduced bandwidth 

• Lip reading system (camera/computer) 
- Provides limited information, not a speech signal 
- Robust to noise 
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Other Alternative Speech Sensors 

• Ultrasonic lip reader 
- Uses ultrasonic sensor to measure mouth 

opening 

- Have not been able to locate one of these 
devices, but have heard of them 

ik 
Possible Future Technologies 

"Camera like" sensor that detects surface 
skin differently than tissues in the mouth 
- Would simplify detection of voiced speech 

- 3-5 and 8-12 micron FLIRs not suitable 

- Possibly some Near-Infrared technology? 

Novel vibration sensors 
- Technology? 

• Accelerometer? RADAR? 

What to Sense? 
Vibration 
- Direct reading of speech or components 

- Close connection to avoid noise 

Alternatives? 
- Measure motion of speech articulators? 

• Tongue, teeth, glottis, sinuses 

- Modem jewelry? 
• Nose ring, cheek stud (microphones) 

Other methods? 

m fe 

Sensor Fusion 

Combining the outputs of one or more 
sensors to produce an improved speech 
signal 
Most appropriate in noisy environments 
where one or more sensors can be used to 
attempt to capture components of the 
speech signal while rejecting noise 
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Possible Sensor Fusion Methods 

• Combine signals from multiple sensors in a 
cooperative fashion 
- Some non-standard speech sensors capture 

speech data while minimizing noise, but do not 
detect the full bandwidth of the speech signal 

- Could extract the cleanest spectral components 
of each sensor for input to ASR software 

Possible Sensor Fusion Methods 

• Use "clean speech" from noise robust 
sensors to remove noise from a primary 
sensor (airborne microphone) 
- Difference in secondary sensor signals and 

primary sensor signal is the noise (in the 
acoustic bands covered by the secondary 
sensors) 

- Could use correlation to remove noise that 
extends beyond the signal range of the sensor 

^m #, 

Alternative Concept 

Work to improve a non-standard speech 
sensor and a matched ASR system to provide 
an integrated speech-in-noise package 
- Need a sensor with good noise rejection and 

"sufficient" signal capture capability 

- Need to tune the ASR engine to the peculiarities 
of the alternative speech sensor 

'^ 
Military Requirements 

^1 

• Different for each application 
- Just like in the commercial world 

• Selection of domain can be used to limit the 
problem 
- Command and control (C2) domain 

• Vocabulary of I-5K words 

• Typically command phrases 

• Limited perplexity 
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^^P" 

Military Requirements (II) 

Most military environments will be noisy 
- Vehicles, people, weapons, generators, aircraft... 

Capability to use existing microphones 
desirable in some cases 
- Communications via radio and vehicle intercoms 

- Difficulty of replacing all field equipment with 
improved or multi-modal speech sensors 

- Difficulty of getting more sensors on a soldier 

1 
'Wf 

What Do Military Users Want? 
They want a system that: 
- Works perfectly in all conditions 

- Weighs nothing 

- Is unbreakable 

- Does not interfere with their mission 

- Produces more energy than it uses 

Field soldiers are already overloaded 
- Make systems small (hand held), or make the 

software portable to platforms that are already 
carried by the soldier 

Military Domains For SR 

C2 (command and control) 
- Constrained vocabulary, limited perplexity 

- "Tongue operated keyboard" 

- Electronic map navigation, radio settings 

Form completion 
- Repetitive task, limited vocabulary 

- Field reports, logistics (ordering supplies/ammo) 

• Might be performed over a low bandwidth field radio 

Military Domains For SR (II) 
• Information gathering 

- Vocabulary fnay not be constrained 
• User may have the option to enter free text fields with 

observations or other comments 

- Vehicle inspection, quality control 
• An actual military application of SR technology 

• Monitoring of enemy communications 

- A much larger and more difficult application 

- Not amenable to application of alternative sensors 
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Conclusion 
• There are a wide variety of alternative 

speech sensors available for exploitation for 
SR in military applications 

• While many of these sensors do not detect 
the full range of human speech, their 
intrinsic noise rejection makes them useful 

• Combinations of these alternative sensors 
may provide good solutions for the 
application of speech recognition in military 
environments 
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Abstract 

We present our findings from audio-visual speech 
recognition experiments for connected digit recognition in 
noisy environments. We derive hybrid (geometric- and 
appearance-based) visual lip features using a real-time lip 
tracking algorithm that we proposed previously. Using a 
small single-speaker corpus modeled after the TIDIGITS 
database, we build whole-word HMMs using both single- 
stream and 2-stream modeling strategies. For the 2- 
stream HMM method, we use stream-dependent weights to 
adjust the relative contributions of the two feature streams 
based on the acoustic SNR level. The 2-stream HMM 
consistently gave the lowest WER, with an error reduction 
of 83% at -3dB SNR level compared to the acoustic-only 
baseline. Visual-only ASR WER at 6.85% was also 
achieved. A real-time system prototype was developed for 
concept demonstration. 

1. Introduction. 

By combining acoustic and visual lip features for speech 
recognition, the resulting bimodal speech recognizer is 
markedly more robust in the presence of a variety of 
acoustic noise, when compared to the acoustic-only 
counterpart. The idea was pursued in a number of past 
studies [2][5][6][7][8][12][13][14][15][16][17][21]. Two 
key elements of an audio-visual speech recognition system 
are: (1) a front end for visual feature extraction, and (2) an 
information fijsion architecture for integrating features 
from the two modalities. In recent years, considerable 
progress has been made in the first area [4][13][15][16], as 
well as in the second area [6][8][14][15][17]. 

There are primarily two categories of visual feature 
representation in the context of speech recognition. The 

first is model-based or geometric-based. Examples of such 
features are the width and height of the mouth (and their 
temporal derivatives) that can be estimated from the 
images using a fracking procedure. The second category is 
pixel-based or appearance-based; that is, the features are 
directly derived from the raw pixel values. The first 
category is more intuitive, but there is typically a 
substantial loss of information because of the data 
reduction involved. There is little loss of information in 
the second representation, but the high dimensionality of 
the image space is a computational disadvantage, and 
pixel-based features do not directly relate to observable 
articulator motion. Furthermore, normalization needed to 
account for lighting changes, translation and other effects 
is more difficult compared to the geometric-based 
counterpart. 

We had experimented with a visual feature representation 
that combined the two types of features in our previous 
work and demonsfrated its effectiveness in simple isolated 
digit recognition experiments [4]. The technique is 
adopted in the work reported in this paper. Here we 
develop new experiments to evaluate our system using 
stream-weighted 2-sfream Hidden Markov Models 
(HMMs) as well as the traditional single stream HMMs in 
the context of connected digit recognition. 

The rest of the paper is organized as follows. We first 
briefly describe our lip localization and fracking 
algorithms that allow geomefric-based features to be 
extracted automatically, and pixel-based features to be 
subsequently normalized. We then focus on the proposed 
hybrid feature and its efficacy in the context of visual-only 
speech recognition. Finally, we describe the recognition 
experiments we performed, and report our findings from 
these experiments involving audio-visual speech 
recognition of connected digits in the presence of aircraft 
cockpit noise of varying SNR levels. 
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2. Visual Tracking and Localization. 

To automate machine lipreading, we need to locate and 
track movements and appearance changes of the lips. 
Several model-based approaches for tracking lip 
movements that have been proposed include snake models 
[10], deformable templates [20], active shape models [12], 
and active contours [11]. We have developed an integrated 
approach addressing both lip localization and lip tracking 
[2][3]. The first part is based on Gaussian mixture model- 
based clustering using hue in the HSV color space. The 
largest elliptical connected region detected with the 
expected range of hue values is identified as the lips. It is 
usually quite effective and can be used to initialize the lip 
tracking part. Tracking is based on a user-specific 2D B- 
spline model that can be constructed offline, or estimated 
from sample images [3]. To optimize tracking stability, the 
model deforms only in an affine subspace, which is 
adequate for capturing most lip movements that occur in 
normal speech utterances. The model is driven (or fitted) 
based on locations of steepest gradient in the image, in a 
linearly transformed color space given by 

s= ar + Pg + yb, 

where {cc, P, y\ are speaker-dependent and are estimated 
based on linear discriminant analysis on the RGB content 
[3]. This overcomes problems associated with often fuzzy 
definition of lip boundary in the luminance channel, and 
the algorithm is consequently markedly more robust 
compared to most snake-based algorithms and other 
approaches based on grayscale information alone. Another 
unique element is that the residual fitting error is used to 
monitor tracking errors and outlier measurements, and can 
trigger the lip localization module for automatic re- 
initialization. We have implemented a real-time tracking 
system on a 195MHz SGI 02 workstation that runs at 
30fps. Figure 1 shows a few tracking examples. 

3. Hybrid Visual Features. 

Hybrid features are comprised of both geometric- and 
pixel-based features. Using tracking results obtained from 
the algorithm described above, geometric-based features, 
including the width and height of the mouth area and their 
temporal derivatives, can be estimated automatically. 
Pixel-based features are derived from the vertical intensity 
profile calculated based on a subset of the pixels, 
delimited by the boundary of the upper and lower lips 
explicitly estimated by the tracking algorithm. The number 
of pixels that defines the profile varies over time as the 
lips open and close. By proper sub-sampling and linear 

f=8 f=12 

Figure 1: Snapshots of output from our lip tracking and 
visual feature extraction system in a few video frames. 
Geometric-based features were extracted irom the 
tracking contour. Normalized pixel-based features 
were calculated based on the vertical intensity profile 
in the middle mouth region (plotted horizontally in 
light blue against a vertical axis). 

interpolation, we map the vertical profile to a feature 
vector of constant length (e.g., 32 in our experiments). 
Therefore, information about the height of the mouth is 
largely decoupled from the pixel-based features. This is in 
contrast to cropping a rectangular region in the image that 
encompasses the lips in a sequence of image frames in an 
utterance, and subsequently taking the central vertical 
profile as the ROl. In practice, the ROI consists of a thin 
strip of pixels, where smoothing in the orthogonal 
direction is performed. 

Robustness of ROl estimation for pixel-based features and 
the accuracy of tracking are known to be important for 
improving accuracy of visual speech recognition [9][13]. 
The approach we proposed could also be applied to the 
whole ROl defined by the tracking contour as opposed to 
only to the vertical profile. Furthermore, transform-based 
features similar to that in [15] could also be derived and 
used as features instead. Comparison with these variants 
will be a subject of future study. In our experiments, the 
center profile contained much of the information about the 
appearance of the teeth and tongue, as well as their spatial 
relationship, and good recognition accuracy was 
achievable even in visual-only speech recognition. 

Figure 1 illustrates the application of the tracking 
algorithm for the extraction of visual features (both 
geometric- and pixel-based). 

4. HMM for Audio-Visual Speech. 
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Here we describe the basic elements of the HMMs in our 
approach. 

An N-state HMM is characterized by a state transition 
matrix,     {ay},]<i,j < N,    and    a    set    continuous 

observation density functions, one for each state, which 
can be written as a Gaussian mixture 

M 

bM>) = J.<^jr„G{o,;H,^Vj„\    \<j<N, 

where o, is the observation vector at time /, Cj^ is the 

mixture coefficient, G is a multi-variate Gaussian 

distribution with mean ^Ij^ and covariance Vj^ for wth 

mixture in the statey". 

The acoustic and visual features were combined in two 
different ways in our HMM-based ASR experiments. In 
the first scheme, acoustic and visual feature vectors are 
concatenated to form individual feature vectors. In the 
second scheme, we model acoustic and visual features in 
separate feature streams. The mixture weights, mean 
vectors and covariance matrices in each observation 
density function are modeled separately in individual 
streams. The corresponding observation density is given 
by 

b.{o.)- ^(^aiMOanf^a,mKJ ^oc,,Mo„;n.,„,KiJ 

where subscripts a and v are used to denote the audio and 
visual  channels,  and  the  density  of each  channel   is 

weighted by exponents P^ and /3^ respectively, where /3^ 

+ j3^ = 1. This is the multi-stream HMM formulation. The 

implicit assumption is that the audio and video 
observations are independent, which is really not exactly 
accurate. However, to be able to estimate reliably the 

parameters of b^ fi-om limited amount of training data, it 

is customary to assume a diagonal covariance, and hence 
the assumption can be applied justifiably at least in the 
single Gaussian case with equal stream weights. 
Empirically, the stream weights can be used to give 
different emphasis to the observations, for example, based 
on the relative reliability of each channel. 

5. Speech Recognition Experiments. 

We performed a few evaluation experiments to compare 
various visual feature choices and investigate the relative 
merits of the various possible feature combinations. We 
focused on the connected digit recognition task. The 

Table I: Visual-only connected digit ASR's word 
error rate (WER %) for geometric (G), pixel-based 
(P), and hybrid (G+P) features described in this 
paper. The second and third rows are results with 
delta and delta-delta features. The size of the base 
feature vector is indicated in parentheses. 

G(2) P(32) G(2)+P(32) 
Static 36.89 22.66 20.29 

Static+A 26.88 11.59 9.88 

Static+A+AA 27.80 9.49 6.85 

eleven digits were 0-9 and 'oh.' The digit strings were 
taken from TIDIGITS, where utterances of up to seven 
digits were used. From a small database of 1518 audio- 
visual speech utterances, 759 were used for training and 
759 for testing. Speech samples from one speaker were 
used to isolate the effects of speaker variability in this 
particular study. We used Hidden Markov Models to build 
word-model based recognizers. Gaussian mixtures were 
used to model the observation densities. The optimal 
number of mixtures (1-10) and number of hidden states (5- 
10) in the HMMs were determined empirically. A 3-state 
silence model was also used. The acoustic features were 
12 Mel fi-equency cepstral coefficients (MFCC) plus the 
0* order cepstral coefficient, as well as their first and 
second temporal derivatives, resulting in an acoustic 
feature vector of size 39. They were computed every 10ms 
using a 25ms fi-ame analysis window. Per-utterance 
cepstral mean normalization was also applied. 

The geometric features were derived from the width and 
height of the mouth normalized with respect to the 
corresponding dimensions when the speaker's mouth was 
closed. The pixel-based features were also normalized 
with respect to the mean value of the vertical profile when 
the speaker's mouth was closed. Interpolation of visual 
features was performed to generate samples at the audio 
feature frame rate of lOOHz. 

In the audio-visual experiments, the audio features and 
visual features were concatenated to form a single feature 
vector for the single stream HMM case. The 2-stream 
HMM was also considered where the stream exponents 
were optimized using a linear step search. Alternatively, 
they could be discriminatively trained [17]. The Baum- 
Welch algorithm was used for EM-style embedded HMM 
training, and the Viterbi decoding algorithm for 
recognition. The HTK Toolkit [19] was used to design 
these experiments. 

Table 1 shows first a summary of the recognition 
experiments employing visual features alone. One general 
trend we observed was that dynamic features (delta and 
deha-delta) in general carry additional information for 
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Table 2: Recognition WER (%) for the audio-only 
baseline (A), visual-only baseline (V), single stream 
audio-visual (AVI), 2-stream audio-visual (AV2) ASR at 
different SNR levels (dB). The reference visual feature 
used here was G+AG+P. p^ is the optimal stream weight 

on the audio channel for AV2. Note that AVI was worse 
than the visual-only ASR at -3dB, whereas AV2 
remained better. 

clean    20       15       10       5        3         0        -3 

A 0.13    0.66    5.53  23.58 67.19 75.63 80.11   85.11 
V 17.26  17.26  17.26  17.26  17.26  17.26  17.26  17.26 

AVI 0.13    0.53    1.32    2.50    7.38   10.14  15.55 22.79 
AV2 0.13    0.26    0.53    2.50    6.59    9.75  12.12  14.49 

P. 0.95    0.85      0.8    0.65      0.5    0.45    0.35    0.35 

recognition. Visual-only ASR word error rate as good as 
6.85% was achieved, which was remarkable since no 
acoustic information was used and the pixel-based features 
were derived only from a small subset of pixels. 

In the second experiment, we evaluated the effectiveness 
of the hybrid feature in the context of audio-visual speech 
recognition in the presence of noise. To be consistent with 
the visual features used in our previous work [4], the 
hybrid features employed were the combination of the 
base static pixel-based features, and the width and height 
of the mouth together with their first temporal derivatives 
(i.e., G+AG+P). We added F-16 cockpit noise (from the 
NoiseX database) to the audio channel systematically at 
various SNR levels (20dB to -3dB) only to the testing 
data. Table 2 summarizes the results. We observe that the 
bimodal recognizers consistently outperformed the audio- 
only counterpart at all SNR levels. Furthermore, the 2- 
stream HMM outperformed the single-stream HMM, and 
the performance difference increased as the SNR 
decreased. That was possible because the 2-stream HMM 
allowed stream weights to be applied selectively based on 
reliability of the acoustic features. In fact, the optima! 
stream weight on the audio channel decreased 
monotonically with the SNR level. We expect the overall 
performance will be higher if we use all delta and delta- 
delta visual features. 

Figure 2 shows a screenshot of the tracking and audio- 
visual ASR system prototype that we have developed for 
experimentation. 

6. Conclusion. 

We overviewed a real-time visual lip tracking system that 
we used to define the ROI for visual feature calculation. 

We demonstrated the efficacy of our hybrid visual features 
in the context of connected digit recognition. Although 
single stream audio-visual HMM using concatenated 
features outperformed the acoustic-only counterpart, the 2- 
stream HMM gave the lowest WER at all SNR levels. The 
optimal stream weight for the audio channel decreased as 
the SNR level was lowered. 

References 

[I] C. Bregler and Y. Konig, "'Eigeniips' for robust speech 
recognition," in Proc. International Conference on 
Acoustics Speech and Signal Processing, pp. 669-672, 1994. 

[2] M. T. Chan, Y. Zhang, and T. S. Huang, "Real-time lip 
tracking and bimodal continuous speech recognition," in 
Proc. IEEE Signal Processing Society 1998 Workshop on 
Multimedia Signal Processing, pp. 65-70, 1998. 

[3] M. T. Chan, "Automatic lip model extraction for 
constrained contour-based tracking," in Proc. IEEE 
International Conference on Image Processing. Vol. 2. pp. 
848-851, 1999. 

[4] M. T. Chan: "HMM-based audio-visual speech recognition 
integrating geometric- and appearance-based visual 
features." In Proc. IEEE Workshop on Multimedia Signal 
Processing, pp. 9-14, Cannes, France, Oct 3-5, 2001. 

[5] T. Chen, Rao, R. R., "Audio-visual integration in 
multimoda! communication," in Proceedings of the IEEE. 
Vol. 86, pp. 837-852, 1998. 

[6] S. Chu, T. S. Huang. "Audio-visual speech modeling using 
coupled hidden Markov models," In Proc. ICASSP, 2002. 

[7] S. Gurbuz, Z. Tufekci, E. Patterson, J. Gowdy, "Multi- 
stream product modal audio-visual integration strategy for 
robust adaptive speech recognition," In Proc. ICASSP, 2002. 

|8] M. E. Hennecke, D. G. Stork, and K. V. Prasad, "Visionary 
speech: looking ahead to practical speechreading systems," 
in D.G. Stork and M.E. Hennecke (eds.), Speechreading by 
Humans and Machines: Models Systems and Applications, 
Springer, 1995. 

[9] G. lyengar, G. Potamianos, C. Neti, T. Faruquie, and A. 
Verma, "Robust detection of visual ROI for automatic 
speechreading," Proc. IEEE Worshop on Multimedia Signal 
Processing, Cannes, 2001. 

[10] M. Kass, A. Witkin, and D. Terzopoulus, "Snakes: Active 
Contour Models," International Journal of Computer 
Vision, vol. 1, pp. 321-331, 1987. 

[II] R. Kaucic and A. Blake, "Accurate, Real-Time, Unadomed 
Lip Tracking," in Proe 6th International Conference on 
Computer Vision, pp. 370-375, 1998. 

[12] J. Luettin, N.A. Thacker, and S.W. Beet, "Visual speech 
recognition using active shape models and hidden Markov 
models," in Proc. IEEE International Conference on 
Acoustics, Speech, and Signal Processing, v 2. pp. 817-820. 
1996. 

[13] 1. Matthews, G. Potamianos, C. Neti, J. Luettin, "A 
comparison of model and transform-based visual features 
for audio-visual LVCSR." In Proc. International 
Conference on Multimedia Expo, 2001. 

[14] S. Nakamura, K. Kumatani, S. Tamura, "Robust bi-modal 
speech recognition based on state synchronous modeling 
and stream weight optimization," In Proc. ICASSP, 2002. 

30 



!;Start]   ?'::i •-■ ?.'•«;!   ! Relnit Stop '^'Caliiser A;jtJia Talk]   Lock ■;'P?!*^" ■■■■■Sijft 

,  88> FOUR (Video)   ' '     ■   .  . 
.  01> FIVE (Video) ■ 
f B2> THREE SEVEN THREE FOUR SIX NINE EIGHT (fl 

83> NINE ONE THREE SIX ZERO (A+ V.) 
i  04> ONE ZERO ONE ZERO THREE FOUR FIVE (A + ^ 
:  05> NINE ZERO TWO ONE OH (A + V) 

.j.h.-) 

.inModu: 

ipMode: 

^vModt■: 

■■■■*! 

, Recognise .«a 

Dem> ^\ 

J 

^^BB^V^    *^^S          Vocab: 

\^^^i."-J^l^   ■'                                   Network: 

I  •,;   . Local 

Digits  -. j 

Off - 

SSL I 

1 j^K \^Bk i^v               ^Mk.                  r 1,   ' ,1 
1 

Figure 2: A screenshot of an experimental tracking and audio-visual ASR system at Rockwell Scientific. The system 
allows online switching among three recognition modes: audio-only, visual-only, or audio-visual. It can also be used 

to collect synchronized audio-visual sample data at 301ps directly to a disk array. A lightweight head-worn audio- 
visual capture apparatus can also be employed to allow users the freedom of head movement. 

[15] C. Neti, G. Potamianos, J. Luettin, I. Matthews, H. Glotin, 
and D. Vergyri, "Large-vocabulary audio-visual speech 
recognition: A summary of the Johns Hopkins Summer 
2000 Workshop," In Proc. IEEE Workshop on Multimedia 
Signal Processing, Cannes, 2001. 

[16] E. D. Petajan, B. Bischoff, and D. Bodoff, "An improved 
automatic lipreading system to enhance speech 
recognition," in ACM SIGCHl-88, pp. 19-25, 1988. 

[17] G. Potamianos, C. Neti. "Stream confidence estimation for 
audio-visual speech recognition,'" in Proc. ICSLP, vol 111, 
pp. 746-749, 2000. 

[18] R. Rabiner and B.-H. Juang, Fundamentals of Speech 
Recognition, Prentice-Hall, New Jersey, 1993. 

[19] S.  Young,  J.  Odell,  D.  Ollason,  V.  Valtchev,  and  P. 
Woodland. The HTK-Hidden Markov Model Toolkit V2.1, 
Entropic Research, Cambridge, 1997. 

[20] A. L. Yuille, P. Hallinan, and D.  S.  Cohen, "Feature 
Extraction   from   Faces  Using   Deformable  Templates," 
International Journal of Computer Vision, vol. 1, pp. 99- 
112,1992. 

[21] Y.   Zhang,    S.   Levinson,    and   T.    Huang,   "Speaker 
independent  audio-visual   speech  recognition,"  in  Proc. 
International Conference on Multimedia and Expo, Vol 2, 
pp. 1073-6,2000. 

31 



Multimodal Dialog Systems Research at Illinois 

Stephen E. Levinson, Thomas S. Huang, Mark A. Hasegawa-Johnson, 
Ken Chen, Stephen Ghu, Ashutosh Garg, Zhinian Jing, 
Danfeng Li, John Lin, Mohamed Omai, and Zhen Wen 

J-une 5, 2002 

Abstract 

Maltimodal dialog sysbems research ai; the Uni^Brsity 
of Ilhnois seelts to develop algorithms and sysbems 
capa-ble of robastly extracting and adapitividy com- 
bining information a,bout the speech and gestures of 
a. na.%Te user in a. noisy environment. This pa.per will 
review our recent work in asven fields related to mul- 
timodal semantic understanding of speech: audiovi- 
sual speech recognition, multimodal user state recog- 
nition, gesture recognition, face traddng, bin aural 
hearing, noise-robust and high-performajice acoustic 
feature design, and recognition of ptosody 

1     Introduction 

The purpose of this paper is to summarize ongoing 
multimodal speech and dialog recognition research 
at the University of Illinois. A multimodal speech 
recognition system can be described in two distinct 
stages: (1) robust audiovisual feature extraction, and 
(2) speech and user state recognition using dynamic 
Bajesian nebworlcs. Features are extracted from au- 
diovisual input in ordet bo optimally represent pho- 
netic, visemic, gestural, and piosodic information. 
Our specific ongoing research projects include bin- 
aural hearing (array processing on a mobile plat- 
fiorm), biomimetic noise-robusb acoustic feature ex- 
traction, maximum mutual information acoustic fea^ 
ture design, and face traddng. Customized Dynamic 
Bayesian networlts have been designed for three dif- 
ferent recognition taslcs; audiovisual speech recog- 
nition using coupled HMMs, asa: state recognition 
using hierarchical HMMs, and recognition of spealt- 
ing rate using hidden-mode explicit-duration acoustic 
HMMs. 

Image and Speech Processing research at the Uni- 
versity of Illinois is currently bested in t;wo ongoing 
research prototype enviionmenbs. The firsb research 
prototype environmenb is an experimenbal computing 
facihty for beaching children aboub physics. The sec- 

ond research environment is an autonomous robob, 
Bly, who acquires language through the semantic as- 
sociation of audio, visual, and haptic sensory data 
Prior to implementation on one or both of these plat- 
forms, most of our algorithms are tested using stan- 
dard or locally acquired datasets. 

2    Pre-Processing 

2.1 Binaural Hearing 

Our research on binaural hearing addresses the ex- 
traction of noise-robust audio from abwo-micrcphone 
array mounted on a physically mobife platform (a 
language-learning aubonomous robob). The source 
bcalization algoribhm is based on a bwo channel 
Griffiths-Jim beamfbrmo' [3] and a new phase un- 
wrapping algorithm for accurate esbimation of time 
difference of arrival measures [8]. The new phase un- 
wrapping algorithm is trained using many measure- 
ments of TD OAs in order to create an accurabe spa- 
tial map of TDOA pattern as a function of arrival 
azimuth and elevation. These can then be used both 
to cancel interfering noise and to get a faithful rep- 
resentation of the desired speech signal. Preliminary 
results show that a speedi signal can be accurately 
located in noisy laborabory room within a few mil- 
liseconds and with ten degree accuracy at a distance 
of 2-4 meters (acoustic far field). 

In the current implementation, detection of a 
speech signal triggers physical rotation of the receiver 
platform (the robot's "liead") so tiiat it faces the pri- 
mary talloer. By physically aligning the "head" of the 
robot witii tiie direction of primary source arrival, we 
are able bo use exbremely efficienb off-axis cancellation 
algorithms for improved SNU [9]. 

2.2 Acoustic Features 

Standard speech recognition features (including 
MFCC, PLP,  and LPCC) result in isolated digit 
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Figure 1: WER: isolated digit recognition in white 
noise with two stajidaxd feature sets, MFCC ajid 
LPCC, and two novd. feature sets, LPCC with wioe 
index and with frame index (from [6]). 

recognition error rates of apprcodmately 60?'o at lOdB 
SNU, and nearly 80% at OdB SNU. In 1992, Med- 
dis and Hewitt proposed a biomimetic method for 
recognition of %Dioed speech in high noise environ- 
ments [10]. Meddis and Hewitt proposed filtaring 
a noisy speech signal into many bands, computing 
the autocorrelation function ^it('^) in each sub-band, 
and then estimating the speech autocorrelation R{T) 

by optimally selecting and adding together the high- 
SNR sub-band autocorrelatiions. In our work [6], we 
have replaced Meddis and Hewitt's optimal selection 
algorithm by an optimal scaling algorithm. Specifi- 
cally, we estimate the sub-band SISTR v^ using a stan- 
dard pitch prediction coefficient, i.e. 

«it 
Speech Energy in Band k ^ JJ|t(To) 

Tbtal Energy in Band k   ~ J?it(0) (1) 

where I^ is the gbbally optimum pitch period. The 
maximum hlielihood estimate of the noise-free speech 
signal autocorrelation is then 

%) = ^«,JJ,(T) (2) 

In isolated digit recognition ectperimentB, the use of 
equations 1 and 2 reduced word error rate by more 
than a factor of three in white noise at lOdB through 
-lOdB, and by more ttian a factor of two in babble 
noise at the same SNRs (Figure 1). 

The phonological features implemented at a speech 
landmark influence the acoustic spectrum at dis- 
tances of 50-100ms [i, 19]. CompiLete representation 
of a 100ms spectrogram requires a 120-dimensional 

NoLM Phone Bigram 
Features 35dB lOdB 35dB lOdB 
LPCC 56 40 59 46 
MFCC 58 42 63 48 
FM 58 42 62 46 
MMIA 59 43 63 49 

IkHe 1: Phonemerecognition correctnesBinfour con- 
ditions. Features sdected using a maximum mutual 
information criterion (MMIA) provide superior per- 
formance in all four conditions. 

acoustic feature vector. It is not possible to accu- 
rately train observation PDFs of dimension 120 using 
existing data sets, but it is possible to select a sub- 
vector using a quantitative optimality criterion. In 
our research, we select a 3 9-dimensional feature sub- 
vector from a list of 160 candidate features in order 
to optimi2e the mutual information between fisatures 
and phoneme labels [12]. Optimality is determined 
using a clean speech database (TIMIT) with no lan- 
guage model, but the resulting optimality generalizes. 
As shown in Table 1, the resulting MMIA (maximum 
mutual information acoustic) feature vector outper- 
forms all standard feature viectors under at least three 
conditions: in quiet and at lOdB SMB., without alan- 
gu age mo dd. an d with an optimized phoneme bigr am. 
Larger improviements may be obtained by testing the 
5-10 best feature viectars generated during the mutual 
infbrmation search. The best recognition accuracy, 
obtained using the feature set with second-best mu- 
tual information, was 62% with no language model 
in quiet conditions. 

2.3    E^ce Itacking 

Hesearch has shown that facial and vocal-tract mo- 
tions are highly correlated during speech produc- 
tion [20]. Speech recognition using both audio/visual 
features is shown to be more robust in noisy environ- 
ments [5]. Analysis of non-rigid human facial motion 
is a Ifey component for acquiring visual features for 
audio/visual speech recognition. 

In the past several jears, research in our group has 
led to a robust 3D facial motion tracldng system [16]. 
A 3D non-rigid facial motion model is manually con- 
structed based on piecewise Bezier volume deforma^ 
tbn model (PBVD). It is used to constrain the noisy 
low-IevTel optic al flow. The tr aclcing is done in a multi- 
resolution manner such that higher speed could be 
achieved. It runs at 5 fps on an SGI Onyx.2 machine. 
This traddng algorithm has been successfuEy used for 
audio-visual speech recognition and bimodal emotion 
recognition. 
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Figure 2: Demonstra.tion of our fare traclcing sysbem. 

2.4    Gesture Recognition 

Hand gestures are capable of delivTering information 
not presented in speech [14]. Controlling gpstore caji 
be used to provide commajids bo the system. Nav- 
igation gestures provide information for manipulat- 
ing virtual objects, and for selecting point objects or 
largp regions on the screen. Convia'sational gestures 
provide subtle cues to sentence meaning in normal 
human interaction. Automated hand traclcing and 
gesture recognition can hdp impro%-e the perform an oe 
of human-machine interface. 

We ha%e in^iestigabed both appearance-based ges- 
ture recognition (using neural network-based pat- 
tern recognition tediniques) and model-based gesture 
recognition [18, 17]. In moddL-based recognition, the 
configuration of a hand model is first determined by 
providing a set of joint angle parameters. The 2D 
projection of this hand model, determined by the 
translation and orientaticm of the model relati%-e bo 
a viewing portal, is compared with the hand ima^ 
from input video. Estimate of the correct input hand 
configuration is determined by the best matching pro- 
jection. A complete description of the gbbal hand 
position and all finger joint angles requires specificB/- 

tion of 21 joint angles. Using both Icncxwn anatom- 
ical constraints and PCA to reduce dimensionality, 
■we can initially reduce the dimensionaliiy of the ges- 
tural description from 21 bo 7 independent dimen- 
sions while Iceeping 95% of the information. In this 
7-dimensional space, it is possible bo define 28 ba^ 
sis configurations, consisting of the configurations in 
which each fings' is either fully folded or compLeteLy 
extended. A close examination of the motion trajec- 
tories between these basis states shows that natural 
hand articulations seem bo he largely in the linear 

manifold spanned by pairs of basis states. We be- 
lie^Te that, based on these preliminary results, it wiU 
be possible bo map all obser\Ted gestures into a Low- 
dimensional gestural manifold, resulting in efficient 
and accurate gpsture recognition. 

3    Dynamic Bayesian Networks 

3.1    Lip Reading 

The focus of our reseaxch in lip reading is a novel ap- 
proach bo bhe fusion problem in audio-visual speech 
processing and recognibion. Our fusion algorithm is 
built upon the framework of coupled hidden Marlcov 
models (CHMMs). CHMMs are probabilistic in- 
ference graphs that have hidden Marltov models 
(HMMs) as sub-graphs. Chains in the correspond- 
ing inference graph are coupled through matrices of 
conditional probabilities modeling temporal depen- 
dencies between their hidden state variables. The 
coupling probabilities are both cross diain and cross 
time The later is essential fiar capturing temporal in- 
fluences between chains. In a bimodal speech recog- 
nition sysbem, two-chain CHMMs are deployed, with 
one chain being associated with the acoustic obser- 
vations, the other with the visual features. Under 
this framework, the fusion of the two modalities tal^es 
place during the classification stage The particular 
topology of bhe CHMM ensures that the learning and 
classification are based on the audio and visual do- 
mains jointly, while allowing asynchronies between 
the two information channels. 

In essence, CHMMs are directed graphical models 
of stochastic processes and are a special type of Dy- 
namic Bayesian Networlts (DBNs). The DBNs gen- 
eralize the HMMs by representing the hidden states 
as state ^-axiables, and allow the states to have ccam- 
pLex. interdependencies. The DBN point of view fa^ 
cilitates the development of infa:ence algorithms for 
the CHMMs. Specifically, two inference algorithms 
are proposed in this work. Both of the algorithms are 
exact methods. The first is an extension of the weU- 
Itnown forward-badiward algorithm from the HMM 
literatures. The second is a strategy of con\TBrting 
CHMMs to mathematically equi^-alent HMMs, and 
carrying oub learning in bhe transformed modds. 

The benefits of the proposed fusion scheme are 
confirmed by a series of pxreliminary experiments 
on audio-visual speech recognition. Visual fear- 
tures based on lip geometry are used in the exper- 
iments. Furthermore, comparing with an acoustic- 
only ASR sysbem brained using only the audio chan- 
nel of the same dataset, the bimodal system consis- 
benbly demonsbrates improved noise robusbness across 
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SNR lOdB 20 dB 30dB 
A 4.03 43.61 99.10 
V 42.95 42.95 42.95 

A+V 10.58 72.79 99.74 
CHMM 35.32 86.58 93.32 

Ta.ble 2: Result of expffiments in audio vis aal speech 
recognition (measured in %word ajccurajcy). A indi- 
cates the audio-only system, V indicates the visual- 
only system; A-l-V indicates a bimodal system using 
early integration; and CHMM indicates the CHMM- 
based qfstem. 

a wide range of SNR levels. 

3.2    Prosody 

Our approach to the recognition of prosody is the 
use of a "hidden mode variable" [13] to condition the 
explicit duration PDFs of a CVDHMM [7]. In our 
prototype algorithm, the state space consists of par- 
allel phonetic state v'ariables (g^) and prosodic state 
variables (fc^). The dwell time of state g^ is a random 
%-axiable rf, with PDF depending p{dq\q,k). At the 
end of the specified dweU. time, the phonetic viable 
always diangies state (no self-loops), but the prosodic 
state viable may or may not change state. Thus, 
for example, if (kt esiow, medium, fast) represents 
spealdng rate, it may be reasonable to allow kt to 
change state at any word boundary with a small prob- 
ability. 

In order to allow efficient experiments, we have 
modified HTK to mal«e use of Ferguson's EM al- 
gorithm for explicit-duration HMMs [1, 2]. Fergu- 
son's algorithm is an order of magnitude faster thaa 
most algorithms for the explicit-duration HMMs. 
The computational complfixity of the algprithm is 
0(iVT(N -I- T)), where N is the number of stats, 
T is the number of frames in the input signal, and 
(0{N^T)) is the complexity of an HMM without ex- 
pUcit duration. The forward algorithm computes 

Q-i(j)    =   P(Oi.,...,Of,j commences att-f-1) 

=    ^ Q*(i)ay 

j 

Qt(i)    =   P{Oi,... ,Oi,i ends at i) 

3.3    User State Recognition 
Integration of a large number of sources for the pur- 
pose of multimodal user-state recognition can be ac- 
complished using a hia:archical dynamic Bayesian 

■:l:ccyi->!l«!iSiti-: 

■^    '^.    ^ 

.._ —5:l^liiigciF>f«^Si^:-:i 

^ -^   '^ 
^.^siflKi'ftf:': 

::>:<^?5ii(::::= 
I 
I 

r>'^- 

O,      IV, ^, 

ViSt*t »^>iwi.!iiii:i|jc 

f1<- 

Figure 3: Architecture for detecting eveaats in the of- 
fice scenario 

network (figure 3). In a hierarchical DBN, each 
modality (audio, lip reading, gesture, and prosody) 
is modeled using a modality-dependent HMM. Each 
modality-dependent HMM is searched in order to 
gpnerate the N transcriptions that best match the 
observed data in the givian modality. The liltelihood 
of each transcription is then estimated using a con- 
strained forward-backward algorithm, generating the 
probability of state residency daring svscy frame. 
These probabilities are fed forward to the supervisor 
HMM, which integrates them to determine a single 
transcription of the sentence in order to maximize the 
a posteriori transcription probabiUty. By imposing a 
prior on the probabihty distributions learned by the 
model for the purpose of increasing conditional en- 
tropy, we have demonstrated a 10% increase in user 
state classification parfbrmance [15, 11]. 

4     Conclusions 

Our research is intended to elucidate both the the- 
oretical and tiie practical requirements for effective 
mulbimodal speech understanding systems. The use 
of speech in multimodal systems will increase our the- 
oretical understanding of the problems of sensor fu- 
sion and representations of multimodal signals. In- 
creased theoretical understanding, in turn, wiE en- 
able us to produce practical results that can be di- 
rectly used in state-of-the-art speech recognition sys- 
tems and as part of larger systems for advanced 
human-machine oommuuication. 
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ABSTRACT 

There have been higher demands recently for Automatic Speech 
Recognition (ASR) systems able to operate robustly in acousti- 
cally noisy environments. This paper proposes a method to ef- 
fectively integrate audio and visual information in audio-visual 
(bi-modal) ASR systems. Such integration inevitably necessitates 
modeling of the synchronization and asynchronization of the au- 
dio and visual information. To address the time lag and correla- 
tion problems in individual features between speech and lip move- 
ments, we introduce a type of integrated HMM modeling of audio- 
visual information based on a family of a product HMM. The pro- 
posed model can represent state synchronicity not only within a 
phoneme but also between phonemes. Furthermore, we also pro- 
pose a rapid stream weight optimization based on GPD algorithm 
for noisy bi-modal speech recognition. Evaluation experiments 
show that the proposed method improves the recognition accu- 
racy for noisy speech. In SNR=OdB our proposed method attained 
16% higher performance compared to a product HMMs without 
the synchronicity re-estimation. 

1. INTRODUCTION 

The performance of ASR systems has been drastically improved 
recently. However, it is well known that the performance can be se- 
riously degraded in acoustically noisy environments. Audio-visual 
ASR [I, 2, 4] systems offer the possibility of improving the con- 
ventional speech recognition performance by incorporating visual 
information, since the speech recognition performance is always 
degraded in acoustically noisy environments whereas visual infor- 
mation is not. 

Audio and visual phonetic features have different durations. 
In other words, there is loose synchronicity between them, for in- 
stance, a speaker opens the mouth before making an utterance, 
and closes it after making the utterance. Furthermore, the time 
lag between the movement of the mouth and the voice might be 
dependent on the speaker or context. 

As audio-visual integration methods for ASR systems, early 
integration and late integration are well known [1,2]. In the early 
integration scheme, a conventional HMM is trained using audio- 
visual data. This method, however, cannot sufficiently represent 
the loose synchronization between the audio and visual informa- 
tion. Furthermore, the visual features of the conventional HMM 
may end up relatively poorly trained because of mis-alignments 
during the model estimation caused by the segmentation of the au- 
dio features. In the late integration scheme, the audio data and vi- 
sual data are processed separately to build two independent HMMs 

[1,4]. This scheme assumes complete asynchronization between 
the audio and visual features. In addition, it can make the best use 
of the audio and visual data because there is a smaller bi-modal 
database than the typical database for audio only. However, the 
audio and visual features are regarded as independent. In this pa- 
per, in order to model the synchronization between audio and vi- 
sual features, we propose pseudo-biphone product HMMs which 
realizes state synchronous audio-visual integration. The proposed 
model can represent synchronicity not only within a phoneme but 
also beyond phoneme boundaries. Furthermore, we propose a new 
method based on GPD algorithm to optimize stream weights of the 
proposed pseudo-biphone product HMMs. 

2. AUDIO-VISUAL INTEGRATION BASED ON 
PRODUCT HMM 

Figure 1 shows the outline of the acoustic model training for ASR 
systems in this paper. Figure 2 shows the proposed HMM topol- 
ogy. First, in order to create the audio and visual phoneme HMMs 
independently, audio features and visual features are extracted from 
audio data and visual data, respectively. In general, the frame rate 
of audio features is higher than that of visual features. Accord- 
ingly, the extracted visual features are incorporated such that the 
audio and visual features have the same frame rate. Second, the au- 
dio and visual features are modeled individually into two HMMs 
by the EM algorithm. Finally, an audio-visual phoneme HMM 
is composed as the product of these two HMMs based on HMM 
composition. The output probability at state ij of the audio-visual 
HMM is. 

biAOt) = bfiofr^ X bjioYr (1) 

which is defined as the product of the output probabilities of the au- 
dio and visual streams. Here, bf{Of)°'^ is the output probability 

( Audio HMM ) ( Visual HMM ^ 

[ Audio feaiure J-»|   Training   [ [   Training   \*~\ V'^uai feature J 

HMM composition 

I    Training     I* j    Audio-visual feature    j 

I   Audio-visua!   1 
IHMMJ 

Fig. 1. Procedure Overview 
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Visual HMM 

Fig. 2. Product HMM 

of the audio feature vector at time instance t in state i, bJ{OY)°^ 
is the output probability of the visual feature vector at time in- 
stance t in state j, and a A and ay are the audio stream weight and 
visual stream weight, respectively. In a similar manner, the transi- 
tion probability from state ij to state kl in the audio-visual HMM 
is defined as follows, 

Pij.kl Pa,,,   X p„^ , (2) 

where pa, j^ is the transition probability from state i to state k in 
the audio HMM, and p^.^, is the transition probability from state j 
to state / in the visual HMM. This composition is performed for all 
phonemes. In the method proposed by [4], a similar composition 
is used for the audio and visual HMMs. However, because the 
audio and visual HMMs are trained individually, the dependencies 
between the audio and visual features are ignored. This results in 
the following two problems. 

1. The product HMMs can not represent the loose synchronic- 
ity within phonemes as it is. 

2. The product HMMs force a strict synchronization on every 
phoneme boundary. 

This paper proposes a new approach to solve the two prob- 
lems. The approach proposes re-estimation of the product HMMs 
parameters by using a small amount of audio-visual synchronous 
adaptation data, and pseudo-biphone product HMMs which repre- 
sent loose state synchronicity beyond the phoneme boundary. 

2.1. State Synchronous Modeling within a Phoneme 

The first problem is from the inability of the conventional product 
HMMs to represent loose state synchronicity within a phoneme. 
This problem is caused by the fact that the transition probabilities 
and output probabilities are obtained by the multiplication of prob- 
abilities from independent states of audio and visual HMMs. We 
propose new product HMMs whose parameters are re-estimated 
using audio-visual synchronous adaptation data [3]. The re-estimation 
is able to introduce the loose state synchronicity of the states of two 
modalities into the product HMM. The re-estimation procedure is 
carried out using a small amount of audio-visual synchronous data. 
After the composition of two HMMs, the product HMMs can be 
re-estimated based on the Baum-Welch aleorithm for multi-stream 
HMMs. 

Figure 3 shows results comparing audio HMMs, visual HMMs, 
early integration, late integration, and product HMMs with and 
without re-estimation [3]. The experimental conditions are the 
same as those in a later section except that the audio HMMs are 
trained using clean speech data. The figure shows that the product 
HMMs with re-estimation achieve the best performance, while the 
product HMMs without re-estimation are worse than those of the 
early and late integration schemes. 

2.2. State SynchronousModeling Beyond The Phoneme Bound- 
ary 

The second problem is that the conventional product HMMs force 
a strict synchronization on every phoneme boundary. This is be- 
cause the speech organs normally move earlier than the speech to 
be produced. Sometimes, the speech organs are already articulated 
in the previous audio phoneme utterance. Accordingly, we have to 
consider state synchronous modeling beyond the phoneme bound- 
ary. We have carried out preliminary experiments using audio- 
visual word HMMs and confirmed that synchronicity is not always 
kept on a phoneme boundary looking at the optimal paths[5]. 

We propose new product HMMs that include extra asynchronous 
states on phoneme boundaries as indicated in Fig. 4. The core 
states of the phoneme HMMs are the same as those of context in- 
dependent phoneme product HMMs. In addition, the new product 
HMMs have two extra HMM states aiming to work similarly to 
the word HMMs. The first extra state is composed of the initial 
audio state and final visual state of the preceding phoneme HMM. 
The second extra state is composed of the initial visual state and 
final audio state of the preceding phoneme HMM. Since these ex- 
tra states are dependent on the preceding phoneme, they can only 
be re-estimated in a manner similar to the biphone HMMs. There- 
fore, we call these HMM pseudo-biphone product HMMs. The 
proposed HMMs can tolerate one state asynchronicity beyond a 
phoneme boundary. 

3. STREAM WEIGHT OPTIMIZATION 

As methods for estimating stream weights, maximum likelihood 
[6] based methods or GPD (Generalized Probabilistic Descent)[7] 
based methods have been proposed. However, the former meth- 
ods have a serious estimation drawback because the scales of two 
probability are normally very different and so the weights can not 
be estimated optimally. The latter methods have substantial pos- 
sibility for optimizing the weights. However, a serious problem 
is that these methods require a lot of adaptation data is necessary 

Fig. 3. Results of Product HMMs 
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Fig. 4. Pseudo-biphone product HMMs 

for the weight estimation. In this paper, we propose a GPD-based 
simph"fied adaptive estimation of stream weights using GMMs for 
new noisy acoustic conditions. 

The approach by the GPD training defines a misclassification 
measure, which provides distance information concerning the cor- 
rect class and all other competing classes. The misclassification 
measure is formulated as a smoothed loss function. This loss func- 
tion is minimized by the GPD algorithm. Here, let Lc{f^) be the 
log-likelihood score in recognizing input data x for adaptation us- 
ing the correct word model, where A = {A^i, Av}. 

In a similar way, let Ln\l^) be the score in recognizing data 
X using the n-th best candidate among the mistaken word models. 

The misclassification measure is defined as, 

j(^)    _ -L (I) (A) + log[^f;exp{,7i^->(A)}]^ (3) 

where 77 is a positive number, and N is the total number of candi- 
dates. The smoothed loss function for each data is defined as, 

/'^'    =    [l-)-exp{-Qd^^^(A)}] (4) 

where Q is a positive number. In order to stabilize the gradient, the 
loss function for the entire data is defined as. 

m = ^z<^'(A) (5) 

where X is the total amount of data. The minimization of the 
loss function expressed by equation (5) is directly linked to the 
minimization of the error. The GPD algorithm adjusts the stream 
weights recursively according to, 

Afc+i    =    Ak-ekEkVl{\),k=l,.., (6) 

where £k > 0, J^kLi ^^ — °°' Sfcli ^l < 00, and £ is a unit 
matrix. 

In this paper, we propose to use GMMs instead of HMMs to 
find optimal stream weights not for the recognition. GPD training 
on GMMs is quite simple and requires smaller amount of training 
data. We use 18 mixture Gaussians for GMMs and train them 
using all of the training data. 

4. EVALUATION EXPERIMENTS 

The audio signal is sampled at 12 kHz (down-sampled) and ana- 
lyzed with a frame length of 32 msec every 8 msec. The audio fea- 
tures are 16-dimensional MFCC and 16-dimensional delta MFCC. 
On the other hand, the visual image signal is sampled at 30 Hz with 
256 gray scale levels from RGB. Then, the image level and loca- 
tion are normalized by a histogram and template matching. Next, 
the normalized images are analyzed by two-dimensional FFT to 
extract 6x6 log power 2-D spectra for audio-visual ASR. Finally, 
35-dimensional 2D log power spectra and their delta features are 
extracted. For each modality, the basic coefficients and the delta 
coefficients are collectively merged into one stream. Since the 
frame rate of the video images is 1/30, we insert the same im- 
ages so as to synchronize the face image frame rate to the audio 
speech frame rate. For the HMMs, we use a two-mixture Gaussian 
distribution and assign three states for the audio stream and two 
states for the visual stream in the late integration HMMs and the 
baseline product HMMs. In this research, we perform word recog- 
nition evaluations using a bi-modal database [1]. We use 4740 
words for HMM training and two sets of 200 words for testing. 
These 200 words are different from the words used in the training. 
We perform experiments using 15, 25, and 50 words. The con- 
text of the data for the adaptation differs from that of the test data. 
In order to examine in more detail the estimation accuracy in the 
case of less adaptation data, we carry out recognition experiments 
using three sets of data, each as different as possible from the con- 
text. The size of the vocabulary in the dictionary is 500 words 
during the recognition of the adaptation data. The GPD algorithm 
convergence pattern is known to greatly depend on the choice of 
parameters. Accordingly, we set Af = 1 in (3), N = 0.1 in (4), 
N = 100/fc, and the maximum the iteration count = 8. 

We compared the processed product HMMs without re-estimation 
(Product-HMM(W/0 Re-est.)), the proposed product HMMs with 
re-estimation (Product-HMM(W Re-est.)), the proposed pseudo- 
biphone product HMMs without re-estimation (Pseudo-Biphon(W/0 
Re-est.)), the proposed pseudo-biphone product HMMs with re- 
estimation (Pseudo-Biphon(W Re-est.)), and GMM for GPD-based 
stream weight optimization for acoustic SNR=15, 0, and -5dB. 
White noise was used to reduce the acoustic SNR in this exper- 
iment. The audio HMMs were trained using the SNR=15dB data. 
The results indicate that the re-estimation of the product HMMs is 
quite effective to improve the performance. The re-estimation is 
able to introduce the loose state synchronicity of the states of two 
modalities into the product HMMs. The state synchronous mod- 
eling beyond the phoneme boundary by a pseudo-biphone prod- 
uct HMM also results in significant improvements to the product 
HMMs. It is also confirmed that the re-estimation further im- 
proves performance of pseudo-biphone product HMMs. The fig- 
ures show optimal stream weights for the maximum performance 
vary according to each method and acoustic SNR. The solid ar- 
rows show the results by simplified GPD-based stream weight es- 
timation using 25 adaptation words. The proposed GPD-based 
simplified stream weight optimization algorithm successfully es- 
timated stream weight with almost the best performance. In the 
SNR=-5dB environment, the estimated weight is not the optimal 
one. Figure 8 shows standard deviation of the word accuracy over 
various SNRs, a number of adaptation words, and a number of can- 
didates in GPD training. It is confirmed the standard deviation in 
SNR=-5dB is bigger than the others and smaller number of adap- 
tation words gives bigger standard deviations. In SNR=OdB our 
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proposed method attained 16% higher performance compared to a 
product HMMs without the synchronicity re-estimation. 

laboratively. This research was supported in part by the Telecom- 
munications Advancement Organization of Japan. 

5. CONCLUSION 

This paper proposes a new HMM structure to effectively inte- 
grate audio and visual information in audio-visual (bi-modal) sys- 
tems. Our state synchronous modeling of audio-visual informa- 
tion is based on the product HMM. The proposed model can rep- 
resent synchronicity not only within a phoneme but also between 
phonemes. Evaluation experiments show that the re-estimation of 
the model parameters using audio-visual synchronous data further 
improves the product HMMs. In addition, pseudo-biphone HMMs 
that introduce two extra asynchronous states are shown to improve 
the bimodal speech recognition accuracy. Furthermore, we also 
proposed a rapid stream weight optimization based on GPD algo- 
rithm for noisy bi-modal speech recognition. 
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Abstract 

Improving the accuracy of speech recognition technology by ad- 
dition of visual information is the key approach to multi-modal 
ASR research. In this work, we address two important issues, 
which are lip tracking and the visual speech feature extraction 
algorithm. In order to utilize the multi-modal ASR for natural 
speech, the visual front end algorithm must extract affine and 
lighting condition invariant visual speech features. 

This paper focuses on both the lip tracking algorithm using 
the Bayesian framework and a novel pixel based visual speech 
feature extraction algorithm based on kurtosis measures of the 
frequency profile of the local image blocks. We compare the 
results of the proposed features with the results of outer lip con- 
tour based affine-invariant visual features, and global 2D DCT 
features. Experimental results in this paper are presented for 
a visual-only connected digit recognition task for performance 
comparison of the visual features. 

Keywords: Lip tracking. Visual feature extraction, Kur- 
tosis measure. 

1. Introduction 
The addition of visual information to audio features im- 
proves speech understanding and offers key advantages in 
human-computer interfaces especially in difficult environ- 
ments [1-6]. Improving the existing state-of-the-art auto- 
matic speech recognition (ASR) performance by integrat- 
ing the visual information of the speaker's mouth region is 
receiving significant attention from the speech recognition 
communities. 

Some of the initial difficulties difficulty associated with 
computer lipreading (visual speech recognition) are the ac- 
curate and consistent visual region of interest (ROI) extrac- 
tion, and lip tracking algorithm on the fly, which needs to 
be robust to a speaker's ethnic and gender variability, and 
other visual appearances such as glasses, facial hair, various 
skin color, lip color, and different lip shapes. Another dif- 
ficulty difficulty is the robust and consistent visual speech 
feature extraction. 

The development of a successful audio-visual speech 
recognition technology capable of adapting itself to chang- 
ing environments will support both industrial and military 
applications. Audio-visual speech recognition research is a 
relatively new and advancing research area. A noise robust 
audio-visual speech recognition system will facilitate use 
of computers, increase reliability and worker productivity, 
and naturalize communications between human and com- 
puters. In addition, audio-visual speech recognition tech- 
nology can facilitate new commercial applications such as 

Multimodal Speech Recognition Worl(shop 

text-driven audio-visual talking head, audio-visual speech- 
to-speech translation, and speech-to-video conversion for 
the hearing impaired. 

In our earlier research [1,7], we have implemented 
both late integration and early (multi-stream state syn- 
chronous) integration schemes for a controlled audio-visual 
data set. For both integration schemes, the experimental re- 
sults showed that addition of visual information improves 
the recognition performance. In this paper, the following 
objectives will be sought: 

1. Development of a lip tracking algorithm, and 

2. A novel visual speech feature extraction algorithm 
that satisfies the following three criteria: 

i. Affine (rotation, scale, and shear) invariance, 

ii. Chrominance space shift invariance, and 

iii. Chrominance space scale invariance. 

In our proposed visual speech feature extraction method, 
the criteria in step (i) is satisfied by affine correction, the 
criteria in step (ii) is satisfied by removing of the DC com- 
ponent of the 2D DCT coefficients, and the criteria in step 
(iii) is satisfied by the normalized higher order moments of 
the DCT coefficients of the lip image blocks. 

This work is organized as follows. In section 2, we 
present a Bayesian framework for lip tracking, parametric 
formulation of the Gaussian parameters and adaptation of 
the parameters on the fly. Section 3 discusses the removal of 
affine (rotation, scale, shear) effects from the segmented lip 
image. In section 4, we discuss contour based affine invari- 
nat features, pixel based normalized 2D DCT features, and 
describe a novel visual speech feature extraction algorithm 
based on kurtosis measures of the frequency profile of the 
local image blocks of the mouth. We present the experimen- 
tal setup and the results in Section 5. Section 6 gives the 
concluding remarks and the proposed future work. 

2. Lip Tracking Using the Bayesian 
Framework 

The basis of the audio-visual speech recognition system is 
an efficient lip tracking algorithm. Computational time 
constraints required by applications such as audio-visual 
speech recognition, animated talking head design, etc., con- 
tribute to the difficulty of the task. Most lip tracking algo- 
rithms build upon the eigenspace based face detector and 
an ensemble of feature detectors which are used to extract 
pre-specified landmarks such as nostrils and lip comers to 
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locate the ROI (mouth region) [8,9]. The deformable tem- 
plate and snake based methods [10,11] have also been used 
for this task. AH techniques have reported good results, 
but accuracy has decreased when there are occlusion (pro- 
file view), lighting condition change, texture changes, and 
quick motion. The technique we propose uses color images 
with Bayesian framework for classification which requires 
the estimation of the a priori probabilities and class condi- 
tional density models. The class conditional density and a 
priori probability estimation processes are described in the 
following sections. 

In the lip tracking problem there are two distinct 
classes, lip and non-lip. Therefore, in this section, the two 
class classification problem is discussed because each sam- 
ple in the image frame either belongs to lip class, wi or non- 
Zip class, W2. The conditional density functions and theapn- 
ori probabilities are estimated using the training data that 
may require extensive search to locate the lip and non-lip 
regions in the first frame in practice which will not be dis- 
cussed here. The Bayes decision rule determines whether 
an observation, x, belongs to wi or ■W2- One of the most 
commonly utilized probability density functions in practice 
is the Gaussian density function due to its computational 
simplicity and because it models a large number of cases in 
nature. The Gaussian parameters are estimated parametri- 
cally using the information from the previous frame on the 
fly which leads to an adaptive real time lip tracking and seg- 
mentation algorithm. 

2.1. Parametric Formulation of Gaussian Density from 
Sample Data 

In the parametric formulation of the multivariate Gaussian 
density, estimation of the mean vector and covariance ma- 
trices of the two classes, wi and W2, are required. Let N be 
the number of samples drawn from a class, Wi, with respect 
to X in the n-dimensional feature space. Then the general 
multivariate Gaussian (normal) density given by 

p(x|u;,) = exp{--(x-/ii)''Si'(x-pi)},    (I) VWrWi 
I = Wl,W2. 

where fn = E[x] is the mean value of the class Wi, and Ej is 
the n X 71 covariance matrices defined as 

Ei = E[(x-/.0(x-Mir] (2) 

||E,|| represents the determinant of Ej and E[.] is the ex- 
pected value of a random variable. The parameters fn and 
Ei can be estimated without bias by the sample mean and 
sample covariance matrix as 

fii 
2 
N 

,(*) W\,W2 (3) 

^'-N^f2(^f^-f^i)i^T-l^*f^    i^wuW2    (4) 

2.1.1. Class Conditional Mixture Density Estimation 

Given the data sets for lip and non-lip classes from the previ- 
ous frame, we can form the class conditonal mixture density 
function in general as follows. 

1. Form a 6-dimensional attribute data set for each class 
from color and texture measures (R, G, B, R^, Gv, 
By) for each pixel location, and cluster it (possibly 
into three clusters for lip, tongue, and teeth) using an 
unsupervised K-means clustering algorithm. 

2. Form the parametric class conditional density models 
P(x I w['^) using the method described in Section 2.1 
for each cluster, where i represents the cluster i.d. 

3. Similarly, repeal step 2-6 to form the parametric class 
conditional density models P{x | W^'l) for non-lips 
(nL). 

4. Form the conditional density mixture models using 
weighted sum of the conditional densities belonging 
to clusters. That is, 

c 
P{x I Wi) = J2 (^Pi^ I w.-"').    i = L,nL   (5) 

m=l 

where C is the number of cluster for the lip or non- 
lip class, and Cm — rim IN is the mixture weight ob- 
tained by taking the ratio of the number of pixels in 
cluster m to total number of pixels in that class. 

2.1.2. A Priori Probability Estimation 

As shown in Equation 10,apriori probability specification is 
an important task for a Bayesian classifier since the thresh- 
old value of the likelihood ratio is based on the a priori class 
probabilities. Basically, it is desired to obtain a speaker and 
time (frame) dependent Bayesian parameter set to adapt the 
skin tone color variations and lighting variations on the fly. 
The selection of the sample data for obtaining class mean 
vectors and covariance matrixes has direct effect on the 
parametric representation of the class conditional density 
models. Calculating the a priori class probabilities based 
on the number of pixels in each class data is biased to the 
sample data so it would be a poor choice. By careful ex- 
amination of the multi-variate Gaussian density function in 
Equation 1, one intuitional choice of the a priori class proba- 
bilities would be biasing them to determinant of the covari- 
ance matrixes of the classes, as 

p(wi) - l|S,|| 
IIS1II + IIS2II' 

Wj,W2 (6) 

i=t 

where p(«;i) +p{w2) = 1. Figure 1 shows the class regions 
based on the threshold value of the likelihood ratio (Bayes 
decision rule) and the effect ot a priori class probability se- 
lection. 

2.2. Bayesian Decision Rule 

Let X be an observation vector (a set of features belong to 
a pixel location in the image frame). Our goal is to design 
a Bayes classifier to determine whether x belongs to wj or 
102. The Bayes test using a posteriori probabilities may be 
written as follows: 

where xj'^ is the jth sample vector from the ith class. 
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p(wi I x) ^ p{Wi I x), (7) 



P(w2) P(ji|w2) 

Figure I: Bayes decision rule and the effect of the a priori class 
probability values. 

where ^{wi | x) is a posteriori probability of wi given x. 
Equation 7 shows that, if the probability of w\ given x is 
larger than the probability of wi, then x is declared be- 
longing to V3\, and vice versa. Since direct calculation of 
p{wi I x) is not practical, we can re-write the a poste- 
riori probability of w, using the Bayes theorem in terms 
of a priori probability and the conditional density function 
p(x I Wi), as 

p{wi I x) = 
p(x \wi)p{wi) 

p(x) 
(8) 

where p(x is the mixture density function, and is positive 
and constant for all classes. Then, the decision rule shown 
in Equation 7 can be written as 

p(x I Wl)p{wi)  ^ p(x I W2)p{W2) 

or re-arranging both sides, we get 

p(x \wi)   'p p{W2) 
L(x) = 

p(x I Wi) 5^ p{wi) 

(9) 

(10) 

where L{:x) is called the likelihood ratio, and p{w2)/p{wi) is 
called the threshold value of the likelihood ratio for the deci- 
sion. As shown in Equation 10 a priori probability specifica- 
tion is an important task for a Bayesian classifier. Because 
of the exponential form of the involved densities in Equa- 
tion 10, it is preferable to work with the monotonic func- 
tions called discriminant functions foUowing discriminant 
functions obtained by taking the logarithm of both sides of 
the Equation shown in 9. 

g,(x) = Inipix I Wi)p{wi)), or (11) 

9i(x) = -2(x-//irSi '(x-/ii) +Inp(wi) + ci     (12) 

where a = -(1/2) In 27r - (l/2)||Ei || is a constant. In gen- 
eral Equation 12 has a nonlinear quadratic form and using 
Equation 12, the Bayes rule is as follows, which is preferable 
for the efficiency of calculation speed. 

g,(x)^g2(x). (13) 

2.3. Lip Tracking Algorithm and ROl Selection 

The Bayesian framework descibed in this paper utilizes 
color images with no prior labeling. The goal is to segment 
the lip region in the current frame and select the ROI for 
the following frame to limit the search space. The basic lip 
tracking and ROI selection procedures are described below. 

Obtain gi (x) and 92 (x) using Equation 11 for every 
pixel in the image. 

Use an averaging filter on the gi (x) and 92 (x) to ob- 
tain {5i(a;)} and {S2(x)}. The smoothing operation 
reduces the noise effect. 

Apply the Bayesian classification rule to every pixel in 
the image frame to obtain binary lip candidate pixels, 
as 

W2 

5i(x)^52(x). (14) 

• Segment the lip region (using the heuristics such as 
largest region between nostrils and chin) in the bi- 
nary image resulted from the Bayes classifier. 

The Bayesian classifier is applied to the full image array 
for the first frame. But once the lip region is detected on 
the current frame, the next frame's search space is bounded 
by a rectangular ROI, obtained by enlarging the current lip 
region by 25% of width and height in vertical and horizon- 
tal directions, respectively. Thus, the Bayesian classifier Is 
applied to the ROI on the next frame to enable the real time 
lip tracking instead of the full image array search. 

Adapting classifier parameters on the fly makes algo- 
rithm more robust to lighting changes between frames. Also 
the initial color information extracted from the first image 
frame may have several problems viith changing conditions. 
Firstly, the color features obtained for a person by a camera 
is influenced by the ambient lighting conditions and orienta- 
tion of the speaker's face during speech. Secondly, different 
cameras produce significantly different color features even 
for the same person under same lighting conditions. Our 
work aims to overcome this difficulty by adapting the clas- 
sifier parameters on the fly using the information from the 
previous frame. The procedure is described as 

• Extract the color features for lip class. 

• Extract the color features for non-lip class. 

• Update the classifier parameters using the data ab- 
tained from above two steps. 

3. Removing Affine Parameters from Lip 
image 

In the audio-visual speech and speaker recognition task, 
both contour based and pixel based visual features need to 
be independent from the affine (rotation, scale, shear and 
translation) parameters. In order to utilize the audio-visual 
speech and speaker recognizer for natural speech, the lip 
image for every frame needs to be pre-processed for remov- 
ing the afline parameters before the visual feature extrac- 
tion process described in the folloviing sections is applied. 
Then, a question can be posed whether if affine (rotation, 
scale, shear and tranlation) parameters convey linguistic in- 
formation to utilize for the recognition task. 

3.1. Lip-Rotation Problem 

Lip-rotation correction on the fly for natural speaker move- 
ment is essential for robust audio-visual speech and speaker 
recognition. Utilizing lip comers or some other facial fea- 
tures such as nostrils and eye comers may be problematic 
for rotation correction due to the complexity of locating 
such facial features accurately during natural speech [9,12]. 

43 



(b) (c) 

Figure 2: Lip rotation correction: a) rotation correction using 
the PCA, b) outer lip contour after rotation correction, c) gray 
lip image after ration correction and scaling to 96x64 pixels. 

We propose a principal component analysis (PCA) based 
rotation estimation and correction method to overcome the 
difficulties mentioned above. Jump 

3.1.1. Rotation Correction Using PCA 

Principal component analysis (PCA) is a method for analyz- 
ing multi variate data to identify a set of new orthogonal axes 
known as principal components. The first principal compo- 
nent is the axis that describes most variance of the data, the 
second principal component is the orthogonal axis that de- 
scribes the second most variance of the data, and so on. PCA 
is also called the Hotelling transform or Karhunen-Loeve 
expansion [13]. 

Let X = [21X2]'^ be a 2-dimensional random variable 
with mean rrix and covariance matrix C based on N sam- 
ples of a lip image pixel locations. The mathematical repre- 
sentation of PCA as follows. 

rrixk 
1 
iv 2-^ N 

Xki, fc = 1,2 so 

m-x — [mx\ rnx2Y^   and 

1       " 
C = J^-—^ Y^(^i - mx){xi - ruxf, 

(15) 

(16) 

(17) 

where T represents the transpose operation. The task is to 
find the new set of orthogonal axes and estimate the rotation 
angle with the standard coordinate system, and then undo 
the rotation of the lip pixel coordinate data. Figure 2 shows 
the rotation correction using the PCA coordinate rotation. 

In order to estimate the rotation angle Q between x-axis 
and u-axis shown in Figure 2a, we solve for the eigenvalues 
{A], A2} of the covariance matrix C and find the eigenvector 
ei corresponding to the largest eigenvalue. The process is as 
follows: 

\C - XI\ = 0, (18) 

and then find the eigenvectors (also called proper vector or 
characteristic vector), calculated as 

Cci — Xid,    t = 1,2 (19) 

where ei = [eiiCj,]]^. The eigenvector belongs to largest 
eigenvalue defines the rotation angle Q, as 

Q = aton(ej,]/eii). (20) 

Then the rotation correction matrix R ' can be written as 

R-' = COS(Q)    —sin{a) 
sin{a)      cos(a) (21) 

Figure 3: An example of the scaling problem due to speaker's 
distance to camera or speaker's lip physical dimensions. 

y 

Figure 4: An illustration of the shearing in the horizontal direc- 
tion. 

The rotation corrected lip image is obtained by multiplying 
R~^ with the coordinates of lip pixel locations, as 

Vn 
R- 1,2, ...,7V (22) 

where (x„, 3/„)^ represents the cartesian coordinates of the 
Hp pixel locations, and (x'„,i/^)^ represents the cartesian 
coordinate of the lip pixel locations after the rotation correc- 
tion. Figure 2c shows the orientation of the lip shape after 
rotation correction and scaling of lip shown in Figure 2a. 

3.2. Scaling Problem 

The scaling problem occurs due to the speaker's distance to 
camera, the camera zoom factor and the speaker's actual lip 
dimensions. In this case, any pixel based visual feature ex- 
traction method such as DCT or wavelet transform method 
which utilizes the frequency content of the lip image may 
generate inconsistent (noisy) observation vectors. To over- 
come this problem, we propose to interpolate every lip im- 
age to same size, N x M. Figure 3 shows the scaling prob- 
lem example for two different speakers and the lip images 
of them after interpolation (scale correction). 

3.3. Shearing (Uneven Scaling) Problem 

Shearing occurs when the speaker's head position is not per- 
pendicular to camera optical axis. For example, one side of 
the lips which may look larger than the other. Solving the 
shearing problem using the single 2D image information is 
not theoretically possible. There can be various practical 
approaches to minimize the shearing effect such as using 
the symmetry information of the lips may enable us to esti- 
mate the shear matrix by utilizing the least squares estimate 
method and undo the shearing. Figure 4 illustrates a typical 
example of a shearing effect in the horizontal direction. 

The shearing may also be associated with the accent of 
a speaker, depending on certain visimes. Then, the similar 
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question can be posed whether shearing conveys a linguistic 
information. 

4. Visual Speech Feature Extraction 
Lipreading clearly meets at least two practicable criteria: 
It mimics human visual perception of speech recognition, 
and it contains information that is not always present in 
the acoustic signal [3,4,14-16]. Petajan is one of the first 
researchers who built a lipreading system using oral-cavity 
features to improve the performance of an acoustic ASR sys- 
tem 117]. Silsbee et al. [18] utilized vector quantization (VQ) 
of acoustic and visual data for their HMM based audio and 
video subsystems. Teissier et al. [19] utilized 20 FFT based 
1-bark wide channels between 0 and 5 Khz for acoustic fea- 
tures and inner lip horizontal width, inner lip vertical height 
and inner lip area for the visual features. Chiou et al. [20] 
utilized active contour modeling to extract visual features of 
geometric space, the Karhunen-Loeve transform (KLT) to 
extract principal components in the color eigenspace, and 
HMMs to recognize the combined video only feature se- 
quences. Potamianos et al. [14,21] used Fourier descrip- 
tor magnitudes for a number of Fourier coefficients, width, 
height, area, central moments, normalized moments as con- 
tour features, image transform features, and hierarchical 
discriminant features. 

In order to utilize audio-visual ASR for natural speech 
in varying lighting conditions, the visual front end algo- 
rithm that extracts the visual features must satisfy the three 
criteria presented in Section 1. The contour based feature 
described in Section 4.1 satisfy step (i) in the Fourier do- 
main and is relatively independent of step (ii) and step (iii). 
For pixel based visual feature extraction methods, step (i) is 
explained in Section 3. Steps (ii) and (iii) are explained for 
both 2D DCT based visual features and kurtosis measure 
based visual features which are described in Sections 4.2, 
and 4.3, respectively. 

4.1. AI-FDs Based Visual Features 

In general, for the video feature extraction, the relationship 
between observed parametric outer-lip contour data x and 
parametric reference data x" can be written as. 

x[n] - Ax''ln -I- r] -1- b, (23) 

where A represents a 2 x 2 arbitrary affine matrix, det{A) ^ 
0, that may have scaling, rotation, and shearing affect, b 
represents a 2 x 1 arbitrary translation vector, and r is start- 
ing point. These are removed in the Fourier domain [7,22] 

The video feature extraction algorithm extracts twelve 
affine-invariant Fourier descriptors (AI-FDs) of the para- 
metric outer lip contour data as well as four affine-invariant 
oral cavity features which are width, height, ratio of width 
to height, and outer lip's inner area by normalizing the next 
frame's corresponding oral cavity features. Dynamic co- 
efficients, which are used as a video observation features, 
are obtained by differencing the consecutive image sequence 
features. 

4.2. Normalized 2D DCT Based Visual.Features 

The Discrete Cosine Transform is one of the many trans- 
form methods that transforms its input into a linear combi- 
nation of weighted basis functions. The 2D DCT on a NxN 

lip image can be written as 

Y = C^X C (24) 

where X is an NxN lip image, Y contains the NxN DCT 
coefficients, and C is an NxN transform matrix defined as 

Cmn = kn COs[^  ^oN      ^]'   ""^^^^ (25) 
2N 

when    n = 0, 
otherwise 

and m, n = 0,1,..., N-1. Our goal is to extract visaul features 
satisfying step (ii) and step (iii), and most relevant informa- 
tion of the lip shape from the NxN DCT coefficients. Let J" 
and / be lip shape images which differ in a scale and shift 
factors (lighting condition), i.e.. 

/ = al° -F 5. (26) 

where a and 5 are scale and shift factors in the acceptable 
range' of the chrominance/luminance space. 

From Equation 25, we know that the zeroth coefficient 
of the DCT transform contains the DC information (S in 
Equation 26) which doesn't convey any shape information. 
It is also known that DCT is a linear transform and the scale 
factor a just scales all the DCT coefficients. So normalizing 
all the coefficients in the DCT domain by a coefficient Ymn 
makes the DCT transform scale independent. Then, 35 co- 
efficients from the lower frequencies are selected excluding 
the DC information. Figure 5 shows the normalized 2D DCT 
based visual feature extraction process. 

0    12      • • •        N ■ Ixm Obsen'ation veclor, O 

Subse( of 2D DCT coefricienls. 
where m is ihe number of (scale 
and shift invariant) coefficients. 

NxN DCr Coefficients 

Figure 5: Normalized 2D DCT baseti visual feature extraction. 

4.3. 2D Kurtosis Measure of the Probability Density Distri- 
bution of the DCT Coefficients 

After the rotation correction and size normalization of the 
lip image, the resulting lip image is divided into 16 x 16 
sub-blocks with 50% overlapping or non-overlapping sub- 
blocks, and then the two-dimensional DCT of the each 
block is calculated. For simplicity, let Y be the matrix of 
16x16 DCT coefficients. Y(0,0) depends only on the chromi- 
nance/luminance space shift shown in Equation 26, and con- 
veys no shape information. Thus, the Y(0,0) coefficient is 
removed. The remaining coefficients are now only chromi- 
nance space scale dependent (see Equation 26). We remove 
the dependency on the chrominance space scale by calculat- 
ing the 2D kurtosis of the frequency profile (probability dis- 
tribution of DCT coefficients) of each block in the lip image 
discussed in the following sections. Figure 6 shows the pixel 

'Reference and observed lip image contents are clearly visible for a 
range of a and 6. 
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Figure 6: Illustration of FPM visual feature extraction {ki is an 
appearance based visual coefficient for the ith lip image block). 

based visual front end process, where ko, fci,..., Jki7 are co- 
efficients for the pixel (appearance) based visual features of 
the lip image. In this work, we will refer these pixel based 
features as frequency profile measures (FPMs), which are 
2D kurtosis measures of the probability density distribution 
of the DCT coefficients. 

In the theory of probability, the classical measure of the 
non-Gaussianity of a random variable is the kurtosis mea- 
sure. Kurtosis measures the departure of a probability dis- 
tribution from the Gaussian (normal) shaped Kurtosis is 
dimensionless ratio, and greater than zero for most non- 
Gaussian random variables'. Specifically, for a given 2D im- 
age block function I(n. m), where m,n = 0,1,..., N, the 
corresponding 2D DCT coefficients Y(x, y) can be obtained 
as described in Section 4.2, where x and y are the spatial 
frequencies in the DCT domain. The high-frequency DCT 
coefficients'* are discarded to minimize the video noise effect 
which is discussed in Section 4.3.1. The rest of the lower fre- 
quency DCT coefficients Y(x, y) for x, y = 1, 2,... N/2, are 
normalized to form the bi-variate probability density func- 
tion p(x, y). Using the notation of [23], for a given univariate 
random variable x with marginal probability mass function 
p(x), mean fi^, and existing finite moments up to the fourth 
moment, then, the univariate kurtosis is defined by: 

kurt{x) — 02 
rrn 

(27) 

where m^ and m<i are the second and fourth central mo- 
ments, respectively. In general, the kth central moment is 
defined by: 

mu^E[{x-tj.^)''] = Y,{x-yi.^fp{x),        (28) 

where marginal density function of x is 

p(x) = 5]))(x,y), (29) 
y 

where E denotes the probability expectation [24]. If xi and 
X2 are two independent random variables, then kurtosis has 
the following linearity properties: 

kurt{x^ + Xi) — kurt{xi) + kurt{x2)    and (30) 

kurt{axy) = Q^kurt(x\) (31) 

where is a is an arbitrary scalar. Clearly, any scale factor 
in Equation 27 cancels out. Let IV be a p-dimensional ran- 
dom vector with finite moments up to the fourth, and y. and 

^The smaller the kurtosis. the flatter the lop of the distribution. 
'Kurtosis is 3 for any univariate Gausain distribution. 
''The upper half of the DCT coefficients are discarded. 
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Figure 7: In search of the lip region type with 96x64 pixel size 
to extract visual speech features: a) exact lip region, b) exact 
rectangular lip region, c) extended rectangular lip region. 

r be the mean vector and covariance matrix of W, respec- 
tively. Mardia [25] proposed the p-dimensional multivariate 
kurtosis as: 

p2,p = E[{w-^lfT-\w-^l)f (32) 

where T denotes the transpose of a vector. Zhang [23] used 
2D kurtosis of random vectors for a sharpness measure of 
Scanning Electron Microscopy (SEM) images. The 2D kur- 
tosis /92,2 is calculated by 

/32,2 = [74,0+70,4+272,2+4p(p72,2-7l,3-73,l)]/(l-p^)^, 
(33) 

where 

X       y X 

P{^)f^'{Y.^x-fi.fp{x))"\ (34) 
V 

aly = E[{x - H:,)(y - fiy)l    al = E[{x - fi^f],    (35) 

and 
P = CflyKOxCTy). (36) 

The 2D kurtosis measure, /32,2, is dimensionless and scale 
and shift invariant as seen in Equation 33. In this work, 
the 2D kurtosis defined in Equation 33 is calculated using 
the probability density distribution of the DCT coefficients 
of the image block function /(n, m). We will refer to the 
;82,2 measure as the frequency profile measure (FPM) of an 
image block. The image blocks, which have zero marginal 
variances of x or y, are discarded for /92,2 calculation, and 
their FPMs are arbitrarily assigned to the 74,0 value when 
Ox ^ Q and Oy = 0, to the 70,4 value when cr^ / 0 and 
Ox — 0, and to -1 when both ffy =0 and Ux = 0. 

4.3.1. Reducing the Effect of Video Noise in FPM Visual Fea- 
tures 

It is known that the low-frequency coefficients in the DCT 
of the video signal contain the large details and the high- 
frequency coefficients contain the finer details of the im- 
age. Video noise' is clearly represented in the DCT coef- 
ficients and using the full spectrum of the image leads to 
noisy (distorted) visual features. That is why some of the 
high-frequncy DCT coefficients were discarded in the calcu- 
lation of FPM of the image blocks described in Section 4.3. 
The pixel based visual front end research requires further 
investigation on how to minimize the effects of video noise 
and the dependence of FPM on the selection of the cut-off 
frequency. 

'Motion blur, coding artifacts, quantization errors, electronic noise, 
etc., are considered to be video noises. 
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Figure 8: In search of the lip region type with 80x48 pixel size 
to extract visual speech features: a) exact lip region, b) exact 
rectangular lip region, c) extended rectangular lip region. 

Figure 9: Effect of interpolating on pixel based visual feature 
extraction: a) re-interpolated from 96x64 pixels to 60x60 pixels, 
b) re-interpolated from 80x48 pixels to 60x60 pixels. 

Table 1: Visual-only recognition accuracy for connected digit 
task using the subset of the normalized 2D DCT features, FPM 
features, and concatenated AI-FDs and FPM features. (LR: 
lip region, R-LR: rectangular LR, ER-LR: extended R-LR, bl.: 
blocks). 

Sub. of norm. 2D DCT using TRV% TSV% 
exact LR with ini. 80x48 pixels 22.40 21.60 
exact LR with ini. 96x64 pixels 23.00 20.80 
R-LR with ini 80x48 pixels 24.60 17.20 
R-LR with ini. 96x64 pixels 24.00 19.60 
ER-LR with ini. 80x48 pixels 22.80 24.40 
ER-LR with ini. 96x64 pixels 21.60 21.60 

FPMs using 

exact LR with overlapping bl. 41.80 19.60 
exact LR with non-overlapping bl. 35.00 24.00 
R-LR with overlapping bl. 38.80 23.60 
R-LR with non-overlapping bl. 34.60 22.00 
ER-LR with overlapping bl. 39.00 22.00 
ER-LR with non-overlapping bl. 34.20 19.60 

Concat. AI-FDs and FPMs using 

only AI-FDs 18.55 21.33 
exact LR with overlapping bl. 19.20 18.40 
exact LR with non-overlapping bl. 17.60 18.40 
R-LR with overlapping bl. 18.40 20.40 
R-LR with non-overlapping bl. 17.40 18.40 
ER-LR with overlapping bl. 18.40 17.60 
ER-LR with non-overlapping bl. 17.80 18.80 

5. Visual-Only Experimental Setup and 
Results 

This paper discusses visual modality speech recognition 
(lipreading) system setup and results. The HMM states were 
modeled with continuous density Gaussians viith single mix- 
ture components. The aim of this work is to investigate an 
affine and lighting conditions invariant visual feature ex- 
traction method. Therefore, the HMM model structure was 
kept basic. The HMM implementation was word level, left- 
to-right with no skip transitions with ten (eight emitting and 
two non-emitting) states, and diagonal covariance Gaussian 
mixture components since we assume that the coefficients in 
the observation vectors are naturally independent. All the 
model parameters were initialized using the Viterbi train- 
ing algorithm and re-estimated using the Baum-Welch re- 
estimation algorithm. Viterbi recognition (dynamic pro- 
gramming) algorithm is utilized for the recognition. 

The Clemson University Audio-visual Experimental 
(CUAVE) connected and continuous audio-visual digit 
database, which is a thirty six subject dataset, was utilized 
for the experiment. The visual-only experimental results 
are presented for a connected audio-visual digit recognition 
task. The following visual features from exact lip region, 
exact rectangular lip region, and generous rectangular lip 
region as shown in Figures 8 and 9 are utilized in the visual- 
only speech recognition system. 

1. Subset of normalized 2D DCT features 

2. FPM features 

3. Al-FD features 

4. Concatenated AI-FDs and FPM features 

The subset of the 36 speaker dataset, containing 15 
speakers each is uttering five times 0-9. The speakers are 
split into training (TR) and testing (TS) set of ten and five 
subjects, respectively, leading to speaker independent visual 
only recognition system. The results are shown in Table 1. 

6. Concluding Remarks and Future Work 
Table 1 shows the visual-only connected digit recognition 
results, where TR corresponds to training set performance 
and TS corresponds to test set performance, for various vi- 
sual features discussed in this paper. The subset of the nor- 
malized 2D DCT features based on the training set results 
from exact rectangular lip region gives better results than 
the exact lip region and extended lip region (see in Figure 
9). Another observation is that slight change in lip image 
content due to the linear interpolation has effects on the sys- 
tem's performance. 

In the results obtained using FPM features, the train- 
ing set performance is much better than the test set per- 
formance. Similar performance behavior was observed for 
a speaker dependent recognition task. Therefore, we con- 
clude that FPM based features are highly video noise sen- 
sitive. The overlapping block based FPM features outper- 
formed the non-overlapping block based FPM features sig- 
nificantly in the training set. Among the three different lip 
regions shown in Figure 9, the exact lip region with over- 
lapping blocks method outperforms the results of outer two 
regions. 

In the results obtained using concatenated AI-FDs and 
FPMs. the training set and test set performances are close 
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to each other and worse than FPMs-only results. Therefore, 
we conclude that each feature should be treated as a sepa- 
rate stream and weighted properly to bring the additional 
information from one another. Similarly, the slight perfor- 
mance increase due to the overlapping block of FPM fea- 
tures over non-overlapping block based FPM features can 
be noticable. 

We also report that the number of mixtures in the Gaus- 
sian mixture model (GMM) selection and teh number of 
states in the silence model affects the performance of visual- 
only system. For example, setting GMM to twelve and us- 
ing embedded training of the FPM based visual only system 
achieved 98% recognition accuracy on the training set, but 
about 16% on the speaker independent test set (which is less 
than the result of single GMM reported in Table 1. The 
similar beha\ior is observed for the speaker dependent set. 
That is, the system is being well trained with the FPM fea- 
tures, but the both test sets are behaving like an unmatched 
system due to the resulting noisy observations. 

We conclude that visual noise is an important factor in 
visual speech feature extraction, and overlapping local im- 
age block based FPM features outperform normalized 2D 
DCT features, AI-FD features, and concatenated AI-FDs 
and FPM features. Future work will include initial lip seg- 
mentation for the Bayesian framework training and further 
study on the noise robust FPM feature extraction. 
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Abstract 

Automatic lip-reading has been focused as a complimentary 
method of automatic speech recognition in noisy environments. 
One of the most competitive lip-reading algorithms is the image 
transform based lip-reading (ITLR) algorithm. However, ITLR 
has severe performance degradation under illumination variations. 

RASTA is a kind of inter-frame filtering method. It is used for 
rejecting stationary and convolutional noise in speech signal 
processing. In this paper, we apply RASTA approach to ITLR 
and analyze the performance of this method. We propose two 
merging techniques of pre-integration (PRE-I) and post- 
integration (POST-I). In PRE-I RASTA, inter-frame filtering is 
performed ahead of the image transform process. In POST-I, 
inter-frame filtering is done after the image transform process. 
We also compare the effectiveness of high-pass filtering and 
band-pass filtering as inter-frame filtering. 

Experimental results show that pre-integration is very effective 
to reject illumination variances. And it is observed that high-pass 
filtering is enough to enhance the performance of lip-reading. 

1. Introduction 

Recently, researches on automatic lip-reading using the video 
sequence of the speaker's mouth have attracted significant 
interest. Automatic lip-reading under noisy environments is very 
effective in compensation for the decrease of speech recognition 
rate with an audio-only speech recognition (ASR) system [I]. 
The bimodal based on audio-visual informafion is an important 
part of the human-computer interface (HCI). We allow more 
weighting value to visual data than to audio one under a bad 
SNR but, on the contrary, more to audio data than to visual one 
under a clean SNR [2]. Under noisy circumstances, this bimodal 
approach has been a good alternative showing superior 
recognition rate to audio-only ASR system. 

In this paper, we concentrate on the image transform based 
approach for automatic lip-reading (ALR) for bimodal speech 
recognition system. This approach is known to be superior to a 
lip-contour-based method for visual-only HMM recognition tasks. 
However, while the lip-contour based approach needs only 
several visual data, for example, outer, inner lip contour and lip 
width, the image-transform-based approach requires much larger 
visual feature vectors since it is based on the whole transformed 
image data of the speaker's mouth. Thus, for a fast algorithm, the 
necessity to reduce those data size has arisen. 

To reduce the dimensionality of feature vectors, principal 
components analysis(PCA) has been suggested as a good method, 

which is based on linearly projecting the image space to a low 
dimensional feature space [3]. By the way, ITLR has the problem 
of robustness. Under varying illumination, the observed image 
sequences are suffered from rapid performance degradation. 
Illumination variation from the inconsistency of training and test 
conditions interferes the recognition process such as exact feature 
extraction. This interference causes a mismatching between the 
correct word and the related feature model and, after all, reduces 
the recognition rate. Our preliminary experiment in lip-reading 
system showed that even only a small amount of intensity 
variation caused large degradation of lip-reading performance [4]. 

To tackle those problems we propose the inter-frame filtering 
method, which is very similar with RASTA filtering in automatic 
speech recognition (ASR). According to reference [5], RASTA 
filtering is very successful in ASR under convolutional noisy 
environment. We propose two kinds of integration methods, pre- 
integration and post-integration. We examine usefulness of the 
inter-frame approach with our own lip-reading system. 

In section 2, we briefly describe the algorithm for real-time 
automatic visual-only lip-reading system and mention about the 
necessity of the proposed method. Section 3 describes methods 
to diminish the illumination noise for the improved recognition 
rate. Finally, section 4 presents experimental results. 

2. Baseline system : visual-only HMM-based lip- 
reading system 

To develop a robust lip-reading algorithm, we implemented an 
automatic image transform based lip-reading system using HMM 
based word model. Figure 1 shows the overall block diagram of 
the implemented system based on the proposed algorithm. Given 
image sequence containing speaker's mouth, the overall process 
to extract the visual feature data consists of two sub-processes. 
One is ROI (region of interest) extraction process and the other is 
feature parameter extraction process. 

2.1 ROI extraction 

Since lip-reading is based on the visual information of moving 
lip, extraction of appropriate interesting regions containing only 
moving lip area is important. ROI extraction from each image 
frame of given sequence is performed before feature extraction. 
As shown in figure 1, ROI extraction process consists of three 
steps; 1) gray-level transformation, 2) masking filtering and 3) 
binary-level transformation. 

To find lip area efficiently, color image is first transformed 
into gray level image and then into binary-level image. 
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Figure 1. Block diagram of the proposed method for real- 
time visual-only HMM based lip-reading system 

Both lip-ends of moving lip are extracted from this binary- 
level image by applying Y-projection and then X-projection. The 
vertical and horizontal center of speaker's mouth is obtained 
from these X, Y-projection. Then, the square pixel window of 
ROI is constructed around speaker's mouth. Since the lip width 
information of moving lip is important, we keep the width of 
ROI obtained at the first frame of each word to the last frame of 
that word. During the ROI extraction process, 'masking filter' is 
applied to diminish the unbalanced illumination of facial area 
from various lighting source. 

2. 2 Feature extractions 

To reduce the visual feature parameter size, each ROI is 
downsampled into a 16 x 16 pixel window for fast algorithm. 
This operation is necessary not only to reduce the feature data 
size but also to normalize the difference between each ROI size 
due to variations such as speaker's lip widths and the distances 
from camera. 

To reduce the parameter size, dimensionality of visual feature 
vector, PCA (principal component analysis) is applied. PCA is 
known as a simple method to implement and to guarantee good 
performance in automatic lip-reading [6]. And, we use lip- 
folding technique before PCA process. Lip-folding is based on 
the symmetric property of lip along the vertical axis. Lip-folding 
makes 16 x 16 image size to half size of 8 x 16. The mean half- 
sized image needs smaller principal components to represent it 
than the original unfolded one. Additionally, the mean image 
compensates the illumination unbalance between the left lip area 
and the right lip area and. therefore, shows robustness under 
various lighting conditions!?]. 

2. 3 HMM based word recognition 

For everj' video field, a static observation feature vector is 
acquired and  those vectors obtained  from  the given  video 

sequence are used for HMM based word modeling. Our 
automatic lip-reading system uses continuous density HMMs as 
a means of statistical pattern matching. The HMM observation 
probabilities are modeled as multi-dimensional Gaussian 
mixtures with diagonal covariance matrices. For the specific lip- 
reading recognition tasks considered in this paper, we use whole 
word, 3-6 state, left-to-right models with 3-8 mixtures per state. 
All HMM parameters are estimated by maximum likelihood 
Viterbi training. 

3. Inter-frame filtering 

One of ASR problems is the robustness. The performance of 
ASR is commonly worse in noisy environments. In general, 
noise is classified into additional and convolutional noise. 
RASTA filtering is one of methods used in ASR for preventing 
the degradation of ASR performance. RASTA is the abbreviation 
of 'relative spectral smoothing'. It was found that filtering time 
trajectories could compensate greatly for the effect of the 
convolutional noise induced by communication channel[5]. 
RASTA filtering is performed with bandpass filter. In RASTA 
filtering slow varying components, corresponding to the 
frequency characteristics of communication channel, are 
suppressed. The low-pass filtering helps to smooth some of the 
fast frame-to-frame spectral change present. The commonly used 
bandpass filter is as follows. 

//(z) = 0.1z 
4 2 + z"'-z-'- •2z" 

1-0.98Z" 
(I) 

Based on these results, we discuss how inter-frame filtering is 
applied to lip-reading problems to enhance the performance of 
automatic lip-reading. 

3.1 Integration of inter-frame filtering with lip-reading 
system 

According to original work of Hermansky, RASTA filtering is 
applied to speech feature vector (SFV) sequence after obtaining 
SFVs. The RASTA filter is a kind of bandpass filter to reject 
slow and fast varying components. In our lip-reading system, 
feature extraction processing is PCA and the feature parameters 
are projection values of original image into most important axis. 
Thus, we can integrate inter-frame filtering after PCA in our lip- 
reading system, a simple imitation of ASR structure adopting 
RASTA filtering. We call this approach as post-integration (Post- 
I). Figure 2 shows the block diagram of Post-I method. 

On the other hand, our AV database (DB) was recorded at 
various lighting conditions with illumination not regulated when 
visual DB was recorded. Thus, we may think that our AV DB 
was originally suffered from illumination noise. If the 
illumination noise was variant and dynamic, the result of PCA 
may include the influence of illumination noise. So, the m 
important axes would contain the components induced by 
illumination noise. This concept makes us change the order of 
PCA and inter-frame filtering. Figure 3 shows the second 
integration method of pre-integration (Pre-I). 

3.2. Filters for inter-frame filtering 

The band-pass filter used in ASR is shown in eq. (I). It is not 
impossible to use this filter   for filtering image sequence.    It's 
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Table 1. Experimental environments. 
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Figure 2. Post-integration method(Post-I). 
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Filtered 
Feature 
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Inter-Frame 
Filtering -> PCA 

Figure 3. Pre-Integration method(Pre-I). 

because the sampling frequency is very low in case of image 
capture operation compared with speech sampling. For speech 
signal 100 feature vectors per second is common. But, in our 
case, sampling frequency for image signal is 30Hz/second. So, 
we used very simple IIR filter for inter-frame filtering as follows. 

High-pass filter: 

Y,[n,m] = 0.n5S-{X,[n,m]-X,_,[n,m]) 

+ 0.9716-Y,_,[n,m] 
Low-pass filter: 

Y,[n,m] = 0M3S-iX,[n,m] + X,_,[n,m]) 

+ 0.7257 •};_,[«, w] 

(2) 

(3) 

Both filters are IIR(1,1) filters designed using MATLAB tool. 
Figure 4 shows the original image sequence and the filtered 
image sequences. 

pppr" 

(a) Original image sequence (16 x 16) 

r^ f™' w~~~ w~ w^ 

lU, 4— |K, ^ ^ 

I      I'     f     f     f 

F"   r"   f-   r" 
pW pB^ ptttt IpiUt 

(b) High-pass filtered image sequence (8 x 16) 

P^    S*" jP"     p^ j*^ 
ii.',..    m^ m^ 
^^   8^^ iP^ 

¥• ¥  M} ^" r' m m^ 
(c) Band-pass filtered image sequence (8 x 16) 

r^ it. 

Camara SONY digital home video camera 

Frame rate 30 frames/sec 

Words 22 Korean words 
selected from the command menu 

for car navigation system 

Training speakers 52 male speakers 

Test speakers 18 male speakers different from 
training speakers 

Recording condition All recording are performed at 
different rooms at different time 

Figure 5. Some examples of our database recorded. 

4. Experimental Environments and Results 

4.1 Experimental environments 

The experimental environment is shown in table 1. The 
database is composed of 22 Korean words spoken by 70 speakers. 
Figure 5 shows sample images of the AV database. As shown in 
the figure, our database recorded at different rooms and at 
different time, reveals illumination variations. 

4.2 Experimental results 

In this subsection, we describe the results of two proposed 
integration methods; Pre-I and Post-I, in the point of feature 
vector dimension and recognition results. Table 2 shows the 
dimension of features in Pre-I and Post-I integrations. From table 
2, it is observed that post integration method is very effective in 

Table 2. Comparison of feature dimensions in cases of 
Pre-I and Post-I 

Figure 4. Inter-frame image filtering results 

Filter PCA 90% PCA 95% 

Post- 
Integration 

Bandpass 24 44 

Highpass 24 44 

NonFilter 24 44 

Pre- 
Integration 

Bandpass 6 14 

Highpass 6 14 

NonFilter 24 44 
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reduction of principal component numbers. The reason for tiiis 
achievement could be that the pre-filtering rejects the influence 
of illumination noise before PCA process. 

The other observation is that the low-pass filtering does not 
reduce the feature vector dimension. This result is not remarkable, 
for the sampling rate of image signal is much lower than that of 
speech signal. Anyway, using the post-integration, the feature 
vector dimension is reduced up to approximately 30%. The 
recognition results are shown in figure 6 and 7. From these two 
figures we can observe the following facts. 

1) The post-integration doesn't improve the lip-reading 
performance. It makes the lip-reading performance worse. 
But the pre-integration enhance the recognition rate of the 
lip-reading system. This fact is the different point 
compared with the ASR. 

2) The band-pass filtering, especially low-pass filtering is 
not decisive to increase the recognition rate. In other 
words, high-pass filtering is enough to the lip-reading 
system. As discussed above, it's because the sampling 
rate of video data is high when we consider the rate of lip 
movements in speaking. 

It is obvious that pre-integration of inter-frame filtering is very 
effective in automatic lip reading. Pre-integration not only 
reduces the dimension of feature space but also improves the 
recognition rate of image-based lip-reading system. 

5. Concluding Remarks 

In general, lip-reading performance, especially image 
transform based lip-reading, is ver>' sensitive to illumination 
variance. So, it is necessary to develop the robust version of lip 
reading to use automatic lip-reading in real service environments. 

In this paper, we proposed inter-frame filtering approach as 
one of robust lip-reading methods and analyzed the performance 
of the proposed methods. From our experimental results we 
showed that pre-integration of inter-frame filtering enhanced lip- 
reading performances. The achievements are as follows. 

1) Inter-frame filtering reduced feature vector dimension. 
2) Inter-frame filtering improved the recognition rate of 

automatic lip reading. 
In the future work, we will enlarge our AV database and study 

more robust methods so that automatic lip-reading can be used in. 
real environments 
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Abstract 

This paper examines a new robust color scheme 
and an adaptive object tracking technique. 
There are several popular color schemes used in 
face tracking which include Normalized RGB, 
Hue, Saturation, and Hybrid type of colors. 
Hybrid color schemes provide improved results 
compared to any single color scheme technique. 
Extensive experiments show the new robust 
Hybrid color scheme produced superior results 
in various lighting conditions. In conjunction 
with the robust hybrid color scheme to track 
head movements a supporting algorithm was 
needed to approximate the random path of the 
head movement. Kalman filter is a famous 
estimation technique in many areas to predict 
the route of moving object. We tested and 
developed a random-walk Kalman filter to track 
unpredictable and fast moving objects. The 
random-walk Kalman filter tolerates for tracking 
of quick random movements made by a person, 
which was not accommodated by linear tracking 
techniques. 

1. Introduction 

For many computer vision applications, such as 
automatic speech recognition, 3D animation, and 
surveillance a robust and reliable automatic head 
tracking technique in various unmodified 
environments is vital. Recent research in this 
area shows great progress and promise. There 
are many approaches to track the head position 
on an image sequence. Some tracking modules 
are based on feature invariant, which is used to 
find out a structural feature, some are based on 
template matching, which is using a stored 
pattern to track head position (pattern can be 2D 
or 3D). Others include appearance-based 
method, which is using a trained model from a 
set of images to capture the representative 
variability of facial appearance. In this paper we 
explore a combination of a hybrid color scheme 

module and a random-walk Kalman filter to 
track random head movement in a variety of 
environments. 

Many researchers have exploited the relative 
uniqueness of skin color to track faces. Human 
skin color has been used and proven to be an 
effecfive feature in many applications. A 
weakness of these systems is their heavy reliance 
upon skin color that forbids skin-colored objects 
in the background and, more importantly, forbids 
the subject Irom turning around so that the back 
of his head, rather than this face, is visible [1]. 

Color image histogram is an effective method for 
the purpose of object recognition, segmentation 
or tracking. Color histograms are relatively 
invariant to many complicated, non-rigid 
motions like translation, rotation about the 
imaging axis, small off-axis rotations, scale 
changes and partial occlusion. The color 
histogram percentile features are usefiil to 
recognize the pattern of human face with 
relatively low complexity. Many methods have 
been proposed to build a skin color model. In 
this paper we proposed a new Hybrid color 
scheme with the support of additional Hue and 
Saturation analysis features that provide 
noticeable improvement in performance in 
various lighting conditions. 

The Kalman filter is an optimal estimator to 
predict the next position of a moving object. It 
addresses the general problem of trying to 
estimate parameters of interest fi-om indirect, 
inaccurate and uncertain measurements. 
However, general pui^ose of Kalman filter is 
only working well under slight movement and 
gradual speed on the image sequence. We need 
adaptive methods to overcome this problem. 

Section 2 will cover the color performance 
analysis in head tracking to show the improved 
result of our new color scheme compared to 
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result of other systems. Section 3 covers random- 
walk Kalman filter to trace correct location of 
unpredicted and rapidly moving object. Finally, 
section 4 will provide conclusion of experiment 
result. 

2. Analysis of Color Scheme for Head 
Tracking 

In the RGB model, a color is expressed in terms 
that define the amounts of Red, Green and Blue 
light it contains. Normalized color space is a 
popular color representation to specify human 
skin color patterns. Since under normal lighting 
conditions the brightness of the face is not 
important for characterizing skin colors, we can 
represent skin-color in the chromatic color space. 
Chromatic colors, known as "pure" colors in the 
absence of brightness, are defined by a 
normalization process [2]. 

Cr = R / (R + G + B) 
Cb = B / (R + G +B) 

Even though the most common way of 
representing color is through the RGB color 
space. In this paper we can see this color model 
is quite sensitive to lighting conditions since the 
color attribute is combined with the brightness. 
Hue (color) component can be used for facial 
region localization because it is comparatively 
insensitive to illumination changes. Hue image is 
obtained by logarithmic color-space transform, 
RGB to HSV. However, simple Hue image can 
be easily affected by complex background 
texture. Additional Saturation component can 
compensate this lack of robustness to the 
intricate environment. 

S. Birchfield [2] introduced his own color 
scheme; in our experiments we call it the 
Stanford scheme, which uses color space 
consisting of scaled versions of the three axes B- 
G, G-R, and B+G+R. The first two contain the 
chrominance information and are sampled into 
eight bins each, while the last one contains the 
luminance information and is sampled more 
coarsely into four bins. The big difference in his 
method is that he also considers luminance 
information. By using this scheme we could get 
fairly good tracking result. However, this scheme 
shows partial dependency on light condition and 
background texture. 

We attempted to find a new color scheme that is 
robust enough for various light and background 
conditions. From our previous experiment, 
Stanford scheme showed a better result 
compared to other methods. But in addition to 
this scheme, the characteristic of insensitivity to 
illumination is required for a practical and 
dependable tracking module. A new Hybrid 
color scheme that utilizes additional Hue and 
Saturation features is the one we chose to 
achieve this goal. 

The research was executed with various 
sequences of images under different light 
condition, background, and persons. For the 
objective comparison of result, all of four 
sequences were obtained from Vision lab 
website of Stanford University'. Person in a 
sequence is always inside of frame by controlling 
the camera movement. These sequences include 
different races, light condition and background. 
Importantly, linear prediction technique was 
exploited to predict next head position for this 
test. 

Table I and 2 shows head tracking result of 
various color schemes we chose for test. As it is 
shown below. Hybrid color histogram with 
(20(Stanford) + 4(Hue) +4(Saturatlon)) bins 
gives the best results compared to Hue (16), Hue 
and Saturation (8 + 8), Normalized RGB. 
Stanford scheme (20) and Hue-hybrid (20 + 
8(Hue)) color histogram. 

We employed the average distance from the true 
center (Table 1) and the average success rate 
(Table 2) as performance measurements. True 
center of each frame was firstly obtained by 
manual operation through the whole sequence. 
Average distance was calculated based on this 
series of true center points. Each test was 
implemented both of .V and )' directions to 
provide a better benchmark of tracking result 
evaluation. 

+ 

Figure I: Manually grabbed facial region 
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Figure 1 shows the facial area and center point of 
that region. Hit number for each sequence of 
Table 2 is counted up when the destination point 
is located inside of this rectangular region. There 
is acceptable error range of five to ten pixels 
depends on the image. 

From the result of Table 1 and Table 2, Hybrid 
color (20+4+4) gives 5.86 pixels distance to the 
X axis and 8.96 pixels to the Y axis. This is 
fairly good result compared to other two 
competent color schemes of Hybrid (20+8) and 
Stanford's (20). The result of Table 2 well 
supports this consequence. 

We can expect better result only with additional 
Hue color (20+8). However, this color gave 
worse result for the sequence 3. Success ratio to 
the Y axis of sequence 3 is less than 50%. This 
means that Hue information is not stable enough 
to support Stanford color completely. 

Stanford color scheme includes Normalized 
color and Regular RGB color. Even though their 
color system provides comparatively good 
results, it is still not robust enough under 
different conditions. Our test result shows that 
additional Hue and Saturation color features can 
attenuate the performance limitation of Stanford 
color. 

3. Random-walk Kalman Filter 

A robust head tracking requires a reliable 
prediction module for the estimation of the of the 
random moving objects. Our approach is on the 
base of Stan Birchfield's [2] method, which 
using intensity gradients, color histograms, and 
simple linear prediction. In gradient, an ellipse 
template is used to calculate the total gradient 
value around this ellipse within a suitable search 
window and then acquires a maximum value. In 
color, a face color histogram model will be 
created and used to match within the above 
search window. Birchfield also used a linear 
prediction to predict the search window on the 
oncoming frame according to the position of the 
previous 2 frames. 

The main problem of the Birchfield method is 
the lack of accuracy if the moving speed of the 
head is too fast or the frame rate is too low. The 
result is a unreliable prediction window and the 
head position will be disfracted. In this case, the 
way to improve the tracking performance is to 
increase the search range of search window. 

however this will cause the processing speed 
down. So, there exists a limitation in using the 
linear prediction algorithms used by Birchfield. 

In order to overcome this problem, we propose a 
random walk Kalman filter to predict the search 
window with a center of head position and a 
suitable range on the consecutive frames, and 
then update this prediction using the 
measurement value of the fracking head. 

Kalman filter is an optimal estimator. It 
addresses the general problem of trying to 
estimate parameters of interest from indirect, 
inaccurate and uncertain measurements. Due to 
its recursion, new measurement data can be fed 
back to system as they arrive, so it can be used in 
real-time image processing system. 

Kalman filter estimates a process by using a 
form of feedback control: the filter estimates the 
process state at some time and then obtains 
feedback in the form of (noisy)measurements. As 
such, the equations for the Kalman fiher fall into 
two groups: time update equations and 
measurement update equations [4]. The time 
update equations are responsible for projecting 
forward (in time) the current state and error 
covariance estimates to obtain the a priori 
estimates for the next time step. The 
measurement update equations are responsible 
for the feedback-i.e. for incorporating a new 
measurement into the a priori estimate to obtain 
an improved a posteriori estimate. To adapt this 
prediction method to our random fracking needs 
we infroduce new algorithms. 

In our system, we construct the system model as 
random walk. Some related equations are as 
follows: 

The state vector X^ = [x^»J'^t ] > where x^, y^ 

indicate the center position of head on the kth 
frame image. 

The   measurement   vector   Z^ = [x^ »JV'z ] > 

where x^^, yzk express the measurement value 
from our approach. 

(1) x~=u(t), 
u(t) = unity Gaussian white noise, that is random 
walk which means it has zero mean and unity 
variance [3]. 

(2) z^=Hx,+v, 
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From (1), (2), we can construct parameters of 
Kalman filter as follow: 
Transmition matrix 

A = 
"1    0" 

0    1 
I—                 _ 

,H = 
"1    0" 

0    1 
) 

Q- 
'1    0' 

0    1 
,R- 

"0.1 

0    ( 

0" 

DA 
The initial a priori estimate error 

1    0' 

0    1 Po- 

It will show different performance by using 
different frame rate sequence of image. We 
captured some different image sequence with 
different frame rate, 10,24 frames per second. If 
we use 24 fps image sequence, there are no 
problems. Following sample results are from a 
10 fps image sequence. In this sequence, the 
maximum head displacement between 2 
consecutive frames is about 62 pixels. If using 
the linear prediction, the center of search 
window on the next frame would be out of 
tracking, particularly on turnover motion. That 
means it can't get the good result. However, we 
got good results in our approach using random 
walk Kalman filter. Figure 2 (a) and (b) show 
our experiment result of head tracking by using 
random walk Kalman filter. 

(a) (b) 
Figure 2 : Sample results from a 10 fps image 
sequence 

Figure 3 shows the x-coordinate comparison of 
head position of Kalman filter, Birchfield's, and 
true center. The real head positions are recorded 
manually. There are several pixels calibration 
between Kalman filter and Birchfield's 
approach. 

4. Conclusion 

This paper presents a robust automatic visual 
tracking module that utilizes a new Hybrid color 
scheme with hue and saturation support and 

random-walk Kalman filter for the prediction of 
the head. From our test result, we can conclude 
that proper mixture of all of RGB, chromatic 
color. Hue, and Saturation gives the best result 
compared with other currently available color 
schemes to track the human face. Moreover, if it 
can be combined with random-walk Kalman 
filter, the resulting module should provide a 
robust and reliable tracking method that 
overcomes many current problems in predicting 
the correct position of random and fast moving 
objects. The improvements in these two 
modules shows great promise for the 
development of a robust head tracking for ASR 
and other computer vision applications. 

References 

[1] J. Yang, A. Waibel. A real-time face tracker. 
In Proc. ofWACV'96, 1996, pp. 142-147. 

[2] Stan Birchfield. Elliptical Head Tracking 
Using Intensity Gradients and Color 
Histograms, In Proc. of the IEEE 
Conference on Computer Vision and Pattern 
Recognition, Santa Barbara, California, 
pages 232-237, June 1998. 

[3] Robert G. Brown and Patrick Y. C. Hwang, 
"Introduction to Random Signals and 
Applied Kalman Filtering", Second Edition, 
John Wiley & Sons, WC, p273-274, 1992. 

[4] "Open Source Computer Vision Library 
Reference Manual", Intel Corporation, 
Chapter 19, Copyright © 1999-2001 

56 



Table 1 : Averag 'e Distance from the True Center (unit: pixef ) 
Seq. 1 Seq. 2 Sec ,.3 Seq. 4 Avg. (pixel) 

Hybrid 
(20+4+4) 

5.49 8.49 7.44 5.98 5.31 9.9 5.19 11.46 5.86 8.96 

Hybrid (20+8) 4.49 8.49 8.5 7.03 16.09 17.45 3.38 8.17 8.12 10.29 
Stanford 16.99 9.61 8.72 11.49 3.52 10.08 3.4 7.82 8.16 9.75 

Hue+Saturation 23.86 21.51 15.05 14.28 3.15 9.56 6.44 9.13 12.13 13.62 
Hue 33.56 20.29 13.7 12.31 9.3 10.88 7.65 10.18 16.05 13.42 

Normalized 25.21 9.89 34.13 36.8 30.83 17.82 4.85 10.97 23.76 18.87 
X Y X Y X Y X Y X Y 

X : X direction tracking result 
Y : y direction tracking result 

Table2 : Avera 
sequence) 

ge Success Rate (Possibility to stay in the facial region through the whole 

Seq.] (40*) Seq. 2 (65) Seq. 3 (85) Seq. 4 (101) Avg.(%) 
Hybrid 

(20+4+4) 
37 29 59 61 80 61 .93 77 92.4 78.4 

Hybrid (20+8) 39 33 51 59 59 40 101 97 85.9 78.7 
Stanford 25 27 47 49 82 56 101 98 87.6 79.0 

Hue+Saturation 14 18 36 35 81 62 91 81 76.3 67.4 
Hue 14 21 33 39 62 49 84 80 66.3 64.9 

Normalized 19 27 20 17 46 30 94 85 61.5 54.6 
X Y X Y ■r::X'm Y X Y X Y 

* : # of frames in a video sequence 

Seql Stanford Seql Hybrid(2044+4) 

93 

60 

■m 

20 
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Seq1 Hue-Sat 
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Figure 1 : (a) Stanford (B-G)+(G-R)+(R+G+B/3) (b) Stanford + Hue(4) + Saturation(4) 
(c) Hue + Saturation Color Scheme (d) Normalized Color 

40 
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Figure 3 : Comparison x-coordinates of head position with Kalman filter, Birchfield, and real 
center position (manually recorded). 
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The Validation of Military Callsign Intelligibility 
Celestine A. Ntuen & Misty Blue 
The Institute for Human-Machine Studies 
Department of Industrial & Systems Engineering 
North Carolina A&T State University 

Abstract 
This study was conducted to evaluate the performance of human perception of speech generated 
by computers under normal and stressful military environments. Performance intensity (PI) 
functions for speech intelligibility were developed. Results are used to determine human speech 
awareness thresholds (SAT) for quite and noise environments. 

1. DVTRODUCTION 
Our ability to perform tasks 

effectively in environments such as the 
battlefield, airspace management (pilots and 
air traffic controllers), hospitals, and 
manufacturing systems, depend in part oin 
our ability to process speech signals. 
Effective speech communication requires 
clear speaking by the talker, nonrestrictive 
transmission channel (medium), and good 
hearing and speech comprehension by the 
listener. These capabilities have been tested 
using various speech material and trained 
takers (speech understanding tests) or 
listeners (speech intelligibility tests) 

One of the several methods to 
measure our ability to process information 
generated by sound or speech signals is 
known as speech intelligibility (Logan, 
Greene, & Pisoni, 1989). 
Speech Intelligibility (SI) is an index for 

measuring the minimum absolute threshold 
of perceiving sound in a given environment. 
SI is quantitatively defined as the percentage 
of speech units that can be correctly 
identified by a listener over a given 
communication system in a given acoustic 
environment or the degree to which speech 
can be understood during given conditions 
(Letowski, Karsh, Vause, Shilling, Ballas, 
Brungart & McKinley, 2001). Intelligibility 
tests evaluate the number of words or other 
speech units that can be correctly identified 
within a controlled situation. Some 
examples of speech intelligibility tests are 
documented in ISO (1986). The relevant 
ones to this study are: 

Diagnostic Rhyme Test (DRT): The DRT 
uses a set of isolated words to test for 
consonant intelligibility in initial position 
(Goldstein, 1995; Logan, Greene & Pisioni, 
1989). The tests consist of 96 word pairs 
that differ by a single acoustic feature in the 
initial consonant. Word pairs are chosen to 
evaluate the phonetic characteristics. 
Modified Rhyme Test (MRT): The MRT is an 
extension of DRT, tests for both initial and 
final consonant apprehension (Logan, 
Greene & Pisoni, 1989'). The test consists 
of 50 sets of 6 one-syllable words that make 
a total set of 300 words. The set of 6 words 
is played one at the time and the listener 
marks which word he think he hears on a 
multiple choice answer sheet. 
Diagnostic Medial Consonant Test (DMCT): 
The DMCT is the same type of test as the 
rhyme tests described before. The material 
consists of 96 bi-syllable word pairs like 
"stopper-stocker" which were selected to 
differ only with their intervocalic consonant. 
2. MILITARY CALLSIGN TEST (CAT) 
The Auditory Research Team at the United 
States Army Research Laboratory developed 
the CAT test (Letowski, Karsh, Vause, 
Shilling, Ballas, Brungart, & McKinley, 
2001). The CAT test utilizes military 
callsigns for calling phrase. A single callsign 
for CAT consists of a word and a number. 
The word is a two-syllable military alphabet 
code and a one-syllable number, for 
example, alpha 1 or bravo 2. due to their 
familiarity with test material and task 
environments. To maintain its ecological 
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validity, it is important to test the CAT in had pure-tone hearing thresholds better than 
quiet conditions so as to establish a standard or equal to 20dBHL at audiometric 
and a reference SI metric for comparison frequencies from 250Hz through 8000Hz 
with other standard SI metrics( ISO 1986). (ANSI S3.6-1996) and no history of otologic 
The test material seems to be a good pathology. An audiometric screening test 
compromise between (1) simplicity and poor was performed prior to participation in the 
predictive value of monosyllabic signals and study. 
(2) complexity and memory load of Each listener was seated at the listener 
nonsense sentences and long number station in a sound treated test booth using an 
sequences (Letowski, 2001). IBM PC/586 computer and wearing TDH-39 

The CAT test has been informally testing earphones.All the instructions were 
used by the ARL-ART in several studies but displayed on the computer screen and the 
is still lacking proper validation and participant was able to use either the 
standardization. Such a process requires computer mouse or the computer keyboard 
several steps that need to be completed for data input. The listener was asked to 
before the final version of the test may be listen to the series of the CAT (military 
released. One of these steps is the alphabet callsigns and one syllable numbers 
standardization of SI and evaluation of the 1-8) items and identify them by pressing 
related performance intensity (PI) curve for appropriate keys on the computer keyboard. 
CAT both in quiet and with background Also, the main screen showed the display 
noise CAT test (Peak or RMS) and the signal-to- 

noise ratio (SNR) given by -18 dB, -12dB, - 
3. PROCEDURE & METHODOLOGY 8dB,0dB,6dB, 12dB. 

Participants 
A group of 24 listeners between the 

ages of 18 and 45 participated. All listeners 

The listeners repeated the test with signal spreadsheet for analysis. Each listener 
level increasing in 5dB steps until they participated in a single listening session. The 
achieve 95% or better on both tests (RMS session lasted about four hours and included 
and PEAK recordings). All the listeners' audiometric screening, instructions, testing 
responses were stored in a file and and several 10-15 minute long breaks. 
subsequently imported into an ExceF'^ 

The PI function showed some 
4. SAMPLE RESULTS characteristics of logistics distributions See 
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Figure 2: Sample logistics PI fiinction for CAT intelligibility 

1 
-O.U235*SNR 

R^ = 90% Score =- 
1 + e" 

(Peak) (1) 
0<SNR< 11.77 

; R^= 88.24% Score = 

(RMS) 
1 + e -0.745*SW7? 

(2) 
0<SNR< 12.36 

Figure 2: Sample logistics PI 
function for CAT intelligibility 

5. CONCLUSION 

The logistics PI models show 
that speech awareness threshold (SAT) 
occurs at signal-to-noise-ration (SNR) > 
0, with the average listener achieving an 
SI value of 95% at SNR values of 11.64 
for Peak and 12.22 for RMS. By using 
simple one parameter linear model, 
speech awareness threshold occurs at 
SNR values of approximately 2 for both 
Peak and RMS tests, with the average 
listener achieving an SI value of 95% at 
SNR values between 7.7 and 7.9. 
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Large Vocabular>^ Audio-Visual Speech Recognition 

Chalapaihy Neli & Gerasimos Polamianos 

IBM T. J. Waison Research Center 

Yorktown Heights. NY 10598 

•Motivation 

"AA/ speech recognition architecture 

•Visual feature extraction 

•Audio-visual fusion 

•Results 

•Challenges and conclusions 

Pervasive Speech recognition 

> Pervasive deployment of speech will require better 
recognition in degraded acoustic conditions: 
• High noise ("speech babble'") e.g. 

^Military applications 
'^ Automobiles                                              FBHH 
"^ Video Games* Interactive television   ^      ISn 

• Whispered Speech                               Li^M 
• Privacy 

• Lombard speech                         ;   fit 
• High-noise conditions                      Iwiw™^ 

• Speech pathology 

' 

Audio-Visual speech recognition is a key enabler 

IBM's AA^ speech effort 
Histor>' (w-w-w research ibm com/AVSTG) 

- Aboul a 3 year old cfTorl 

- Led Ihc JHU Workshop team on A/V speech rccognilion, 2(HIII 
- AVSTG department formed in 2IHH 

- Taught an invited ELSNET tutorial on AA' speech recognition (Pragiic. 2t)IH) 

HighJighls'difTcrenliators of our work 

- OneofaVinddaiabascforAVLVCSR 
- Slatc-of^he-a^ audio ASR subs>sicm (LVCSR) 
- Fulh automated visual front end 

• MuJiiicst>lutk>n face dclcction 
• Aupmcntnl viwcO iq>ccch ROI {jav. icpiim In-lcnJ of mmithl 
• Multitape itinmr lrar»*f<inii twscd)MMHI Tcatitrc cMtaction 

~   Sub-phonetic visual speech models 
• Scalw lo larpc-vocoKi1ar> rontpnhinn 

- Phonc-Icvel as>Tichronous AA' fusion 
• Jmni aA' mnjcl iratninp 
• Maximum cnttojn ba-jn! slrram wtiphl cstimatjim ((iliitvil nnJ lixrni) 

- Multiple domain exploration 
• Read tpoxh <tlipi1s/CAC/l,VCSR). rmjwircd spc«h. Aiitiwmtbilc nrowJc^tt Nnii 
• Visual ndaptiiTon to nc" domnin^ 

Audio-visual speech recognition: architecture 

Visual 
Model 

H 
Joint 
Model 

H 

h\pothcsis 

I Search I 

t 

Audio 
Features 

eg Cepstra 

Audio 
Model 

Language 
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Visual Front-End 

* Multiresolution face detection: 
»- Search for skin-tone pixels 
p- Searrfi image pyramid across scales & locations- 
f Eac*i square mxm region is considered as a face. 
»■ Hierarchical, pixel based approach, 

using LDA and PCA. 

i iioi EXTi<i\rr-i!>s 

- Stn^ih }i(ii>!!^b center aixi ah*? 

f\i;sfAt, Ft^ATVR 

li>r data r/t "Ty  « 

H; M(n»->^   '-IDA/ 

MI<LT; I   X S. 

K r r   »t *n ft —^       n -RTtr   '—' / 

HHT'HTH^I •Mil 

AjipJy ft^wr «wxtT> n<^?3d'-!:Ja?>(-W! for Stg^tifi^ i:wCTff^?*ifJs*"- 

Audio-visual Fusion Techniques 
• Feature fusion 

- Enhancement approach 
- Discriminant fusion 

(HiLDA) 

• State Synchronous 
Multistream HMM 
- Allows weighting decisions 

• Phone synchronous 
Multistream HMM        — 
- Allows asynchrony within a 

phone 

- StMff syndltrtmy:      |is} = {h} • a == ^» = *> . 

• M?^H?.iM psra«»»tft tr^«fng; 

— M<>tM ipafameters;   § = i*»-S'^■■*'■•! • *''«'"' ^> ^ ^*^ 
««ij!o- <w vfesisl-ftajfy HMM strcarn jusratiE*. 

v ie^fif a«dit>-vfe«M MS-K^tM E-str-j>, M-sM^. ^abm^, 

i:  Afsf!i!?;K»B c^atMjS'MhoK error f MCE) traifllsiR hy GPV». 
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IBM WAV databases 
LVCSR 

- Hrst-of-a-kwJ aiidio-xisua! 
database for largv-vncahiihry 
contiminus SI speech 
recopiiunn O.VCSR) 

- 290 subjects 

- 70 hrs. conlinuous speech, 
10.400 word vocabulary' 

Digits 
- 50 subjects 

- 8 46 hrs. continuous speech. 11 
word vocabulan.' 

Database Fonnat 
- Frontal face color video. 

704x480, 30 Hz. MPEG2 

- 16l:H7-'l6biI pcm 

Experiments on Digits 

Results - Summary 
EfTective gain of 10 dB @ 10 dB SNR (relative to mismatched audio) 
Effective gain of 10 dB @ 10 dB SNR (relative to matched audio) 

Digits Task 

Matched 

Audio + visual 

CffiCCeCTCD OiOR* tAJK. ^ 

"* Mismatched 

Audio + visual 

SlfWAl.TOKOIPK RATIO (fWRj. m 
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Experiments on LVCSR 

Results: LVCSR 

IBM WAV LVCSR database 
- Training (261 spljs, 35 hrs) 
- Test (26 spkrs, 2.5hrs), Sl- 
- VocabuIar>-10,400 words 
- Frontal face video, 704x480 

pixels. MPEG2 
NOISE: "Speech-babble" 

t.'^X 

Bia\'Ai,io sows sxao <SMa 

Results: Human .vs. Machine 

•IBM WAV LVCSR database 
-Training (261 spkrs, 35 his) 
-Test (26 spkrs, 2.5his), SI. 
-Vocabulaix" 10,400 words 
-Frontal face video. 704x480 

pixels, MPEG2 

•NOISE: "Speech-babble"" 

MAcmsKtxaiKi 

AV-human 
SGKALTONOK; KAtlO (SKItt. cB) 

Super-human performance below 7dB SNR 

Challenges 
IBM WAV data 

~   Audio 
>    Read Sprrd). siiit>l«nilcmphnfir 
• Additivr-spMch babOIr' nohr 

- VWco 
• Frontal Face, uniform background 
• Uniform lighting 

Broadcast Video data 
- Audio 

• SpoRtaneoun speech 
• Additive musk, varjing channel, etc. 

• Limiled pose variation, background clutter 
• Uniform lighting 

Automobile data 
- Audio 

• Spontaneous speech 
• Automobile noise (speed variation, radio, seal belt, etc. 

- Video 
• Pose variation, var>'ing background 
• Non-uniform lighting Conditions 

65 



i VfStAM.V rHAl.LKNCING rK)MAINS: PUFMMINAIIV RKSri.1S| 

jiHrrts fa'r drUrhfm. HOf 

ih^v- w-wil. «mi AV.ASIl 

•  FrtfV rlt-trrtiiii! t-rn» 
l..r WAV. At TO 

t.r \'VAV v>   \\\0 

iArniaVlSTAI. SPF.AKFR ADAPTATION | 

• ltnp<»OAnt fr,r »p^ltT ifir..lluM-iii ami limHif) <latn ilofiitiim, hwt 
fc/in/fprtfT rrn**wl*-rr*l in ihf? AV-ASIt liHrnilttrr 

- MI.I.Rr Xin\M n>ln[ttniutn of HMM MTpnm comi»nt;mi mmn 

- MAP; BavTsinit niijm^vrh. ii(tn[>1it all ItMM (wmmrtrr*. 
- n^:- ViozA ft>^ uiInfrtMiofi of LDA/MllT malnm. 

• Tiw ikim»!ni>'tA^lo om^WWt'H- 

- Ta.fcH i.vrsu. ninrrs. 

VI AU AV     \l AV AV 
Mismatched     Aiiapted 

Conclusions 

Consistent and significant gains for all audio conditions 
Significant performance gains in "speech-babble" noise 
- EfTeclivc gain of 10 dB @ 10 dB SNR for digils 
- EfTeclive gains of 7.5 dB @ 10 dB for LVCSR 

Significant gains in relatively clean environments 
- 52% relative gain for digils (0.75 -> 0.28) 
- 8% for LVCSR 

Super-human performance at high-noise levels 
Asynchrony modeling helps for digits 
Further research required in visually challenging domains 
Visual adaptation is a promising approach 
- Upto 67% relative improvement in visual speech recognition 
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Who ? What ? Where ? How ? 

Perceptually Aware User Interfaces 

Alex Waibel 

June 11,2002 
Interactive Systems Laboratories 

Carnegie Mellon University 
University of Karlsruhe 

http://www.is.cs.cmu.edu 
Email: waibelfS)cs.cmu.edu 

Inlcraclive Systems Labs 

1  ■                                    1 

Meetings 

o 

i'Wk>..... 

.3.*^   .   '^ 
 ,:_*iiS.-o™.w™_  r 

# 

^^^^H 
Interactive Systems Labs 

1                                                1 

Meeting Browser 

^»» Iritcractnel^^eiiis'Labs O 

Interpreting Human Communication 
"Why did Joe get angry at Bob about the budget ?" 

Need Recognition and Understanding 
of Multimodal Cues 

Verbal: 
- Speech 

• Words 
• Speakers 
• Emotion 
• Genre 

- Language 
- Summaries 
- Topic 
- Handwriting 

Interaclivc Systems Labs 

Visual 
- Identity 

- Gestures 

- Body-language 

- Track Face, Gaze, Pose 

- Facial Expressions 

- Focus of Attention 

Multimodal Speech Recogntion Workshop 2002 67 



Human Interaction 
• People ID-Who? 

- Speaker ID. Face ID 

- Type: Dominan!. Submissive, cic, 

- Relationship: Family. Friends. Colleague 

• Speech and Discourse - What ? 
- Speech: Transcript 

- Discourse States (Speech Acts. Topics). Games. Turn Taking 

- Discourse T>pes and Genres (Negotiation. Chatting. Lecturing) 

• Emotional State, Affect - How ? 
- Angr\'. Happy. Sad. Afraid:...  Busy. Ncr\'ous. Relaxed 

- Discourse St>le: Sloppy. Formal. Colloquial 

• Localization and Speaker and Focus of Attention - Where ? 
- Speaker Localization 

^^-   -  Focus of Attention Tracking r 
^••" Inlcraclive S>slcms Lobs ^> 

Main Challenge and Goal 

Robustness in Real-Life Situations 

Inlcractnc Sxsicms Labs 

Visual Challenges 

Low quality 

Illumination 

Head pose 

Occlusion 

f^ lnicracti\-c Systems Labs 

1 , 

Acoustic Challenges 

• Sloppy Speech                                 •    Acoustic Scene Analysis 

■   Noise                                            .   Cross Talk 

• Reverberation                                   •    Distant Mic 

-.. li   .«Jtt 

# Inlcraclive Systems Labs O 
1                                                                                                                            1 
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1                     1 

Where? 
• Face Tracking (Visual) 
• Sound Source Localization (Acoustic) 
• People Tracking (Visual) 
• Behavior and Movement Models 

^^*                                               Interactive Systems Labs o 
1 

Tracking People 
^>^^W^^3f ''•^'^SWi'^'  g^ ,j I''.''"'"^^"""K^^ZJEl\Z^ ^„„ pi, }'• 

Tracking People 

IZ^ 

Interactive S>stcms Labs 

Tracking Multiple People 

Interactive Systems Labs 

From Tracking to Modeling Activity 

Interactive Systems Labs 
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Real-Time Face Tracker 
Three Types of Models have been employed 

• skin-color model to register the face 
" motion model to estimate Image motion 
• camera model to predict and compensate for camera motion (pan. till, zoom) 

The Face Tracker 
• tracks a persons face while person is 

freely moving (e.g. walks, jumps, 
sits down and stand up) 

• Framerate : 30+ frames per second 
using a low end workstation (HP9000) 
or Pentium M 266 PC. 

1^ Inlcraciivc Systems Labs 

Real-Time Face Tracker 

Inlcraciivc Systems Labs 

Using a Panoramic Camera Pose Tracking by Modeling Shape 
Image 1 Iters 523 Time 4 34SSs 

LT-^t ' n\i 
BBtiitJ;_ 

Li" 
I— -f 

i 1^ V y~ —t - 1 

1 

1 1 
Interactive S> slcms Labs 
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Face and Pose Tracking What? 
Large Vocabulary Speech Recognition 
- Issues: 

• Sloppy Speech 
" Distant Microphones 
• Mismatch in Vocabulary 
• Other Languages 

- Many Other Aspects: Topic Detection, Named Entity, Translation, 
Discourse, .... 

Multimodal Dialog 

- Fuse Speech, Pointing, Gesture, Handwriting 
- Fusion Usually at Semantic Level 

Audio-Visual Speech 
- Combine Speech and Visual Info 

Interactive Systems Labs " 

1  -                                         1 

From Read Speech to 
Conversational Speech 

f) •  Wall Street Journal Dictation 

•  Broadcast News Database 

^ - Transcription and Information Retrieval on News Casts 

1 - Multilingual Speech Recognition 

g •   Switchboard & Callhome 
to - Human to Human Telephone Speech 

m •  Meetings and Discussion Database 
3- - Newshour(I8h) 

\ 7         - Crossfire (9h) 

A/ '             ~ Group Meetings                                                                ^^^ 

Interactive Systems Labs                                               ^B^ w 
1                                             1 

Transcribing Speech in Meetings 
Run-On Transcription of Meetings 

• Mismatched Recording Conditions 
- Remote Microphones 
- Cross-Talk 
- Recording Always on ! 
- Noise 
- Multiple Speakers 

• Mismatched Speaking Style: 
~   Spontaneous and Conversational 

Human to Human Speech 
- Emotional Speech 

• Mismatched Language and Vocabulary 
- Special Ideosynchratic Topic 

Three Tasks: 
- Newshour 
- Crossfire 
- Group Meetings 

Interactrve Svstems Labs 
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Recognition of 
Conversational Speech 

1                    __, 

Audio-Visual Speech: 
(When Acoustic Processing is not Good Enough) 

• Duchnowski. Manke. Brcgler. Meier. Waibel 
- ICASSP'93. ICSLP'9'1, ICASSP95. ... 

;     ■...__ i         i  _                    j 

If^  .,...1 

%•*'                                                Inlcraciivc S\sicnis Labs O 
1                                                                  1 

Visual Preprocessing 
grayvalue modification - example histogram : /(/)) = 7"(/(/))) 

/(/>) 

/ 
, /: ? ^•'■■^"-":z^:r:j np) 

LdllL. 

original grayvalue 

modirication function 

new grayvalue 

•_..;-j 

''   :/ 

;,. r 1 

f^ 

cxtgfrvd 

Inlcraciivc Systems Lobs 

Audio-Visual Recognizer 

Features 
• What Features to Use? 

Fusion Level 
• Feature Vector 
• Photie Streams 
• Word Level 

Fusion Methods 
• Trained Weights 
• Entropy Weights 
• SNR Weights . 

Inicractivc Systems Labs 
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Experiments 

• Task: Continuous Letter Spelling 
• Difficult, but smaller Vocabulary 

• Speaker dependent 
audio-visual results 

• Fusion by Entropy Weights 
• LDA Front End 
• Phone Level Fusion 

# Inlcractive Systems Labs o 

Audio-Visual Fusion 

3 acoustic only    ■grayfevel    DLDA    DPCA 

100--^ 

s  ^Y 
S ^ =    60r 

I    « 
I    20K 

oM 
clean acoustic    16 dB white   8dB white noise 

noise 

Interacthe S\stcins Labs 

w^ 

Fusion Weights and Noise 

Kombtnation Buf Phonstischvr Eben* 

Ml 

Interactive Systems Labs 

Who? 
• Once we have found the Face 

• Face ID 
- Problems: Occlusion 

• Speaker ID 
- Problems: Distant Mies, Noise, Jamming Noise 

- Phonetic Speaker ID, Qin Jing 

Interactive Systems Labs 
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People Identification: Challenges 

Low quality 

Illumination 

Head pose 

Occlusion 

i 
0 

m^ iy 

Inlcraclivc S> stems Labs w 

How? 
Detect Emotional State 

- Happy, Angty. Sad, Afraid 

- Distress, Busy, Relaxed... 

Techniques: 

- Acoustic: (Polzin. 1999) 

• Prosody: Intensity, Pilch, Rhythm, 

• Language: Words and Expressions Used 

- Visual: (Cohen) 

• Facial Expressions 

Inlcraclivc Syslcms Labs 

Emotion: Acoustic Information 

-MJ^.M2^ 

^ 

i. 
Inicracijvc Svstctns' 

Emotion: Language Information 

' Lexical metaphors 
Son of a bitch! 
lA-tGooJnsilGciO 

• Connotation-loaded lexems 
You 're a spoiled rotten little brat! 
iKrimKT vcTsiB Kramtr) 

• Intensification 
We ain 't got the slightest/... idea what happened . 

That makes me very very mad ... 
(The Swrcl Hcrcallei) 

Inlcraclivc Syslcms Labs 
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Performance Comparison 
(Movies) 

Verbal and Non-Verbal Information 

^S^ 
I aHunMin ■ System        | 

Interactive Svslcms Labs 

To Whom ? 
Focus of Attention Tracking 
- R. Stiefelhagen, PUl'98, Humanoids'Ol, PhDThesis'02 

- Who is addressee of an utterance ? 

- Who is someone making talking to ? 

- What is a human user attending to ? 

Observation: 

- FoA is a Psychological State, can only be infered or 
'guessed' from correlates 

- Both Observed User and Target are important: 

• Pose, Eye-Gaze 

• Possible Targets: Noise, Movement, Faces, Speech 

Interactive Systems Labs ^ 

Focus of Attention Tracking 

#■ Interactive Systems Labs O 

Conclusion 
Complete Model of Human Communication is Needed 
~ Include all modalities 
- Include different not only what was said, but also: 

M>ho, where, to whom, how... 

Challenges: 
- J?o/«/5/Processing of Component 
- Proper Level and Method of Fusion 
- Robust and Dynamic Fusion of Useful Clues 

Interactive Systems Labs 
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Joint Audio-Visual Speech Recognition 
and CMU Audio-Visual Speech Data Set 

Prof. Tsuhan Chen 
Carnegie Mellon University 

Thanks to Dr. Simon Lucey and Jle Huang 

Input Video 
(Low FrameRate) 

Where We Started. 
[1993/1994] 

Image Warping 

1 

Face/Lip- 
Tracking 

""T"  

(r- 

Mouth Shapes 
and PosKlons 

Audio 

Audlo-to- 
Vlsual 

Mapping Mouth Shapes 
(Viseme) 

Output Video 
(High Frame R^te) 

Temporal 
Smoothing i 

Lip-Reading 

Input Video 

Face/Llp- 
Tracklng 

1^- 
zn K. 

Audio 

Feature 
Extraction 

Fusion ►Text 

Audio-Visual Speech Data Set 
• Thanks to Intel                        •  Lip parameters extracted 

• 78 isolated words 10 times       •  Noises 

- Date/time/month/day/etc.              ■> Gaussian white/pink noise, 
» Audio: 44.8 kHz, 16 bits                      car, factory (Nolse-X 92) 

■• Video: 30/60HZ, 720x640               * Babble/crosstalk 
» Lombard Effect 

^Efc^^K 
dm. w \ 

m.    -'T^v    ■•''TJ^',;" 

Wmk i^^ 
Tsuhan Chen 

Multimodal Speech Recogntion Workshop 2002 



Face Tracking Lip Tracking 

» Modeling color distribution of 
mouth pixels 
♦ Gaussian mixture 

« Deformable template 

/        *'    \ /    W                              \ 

Tsuhan Oien 

^ h.y^ 

Customers... 
"^Signal Processing for Media Integration," ICASSP 2002 
* Coupled HMM for Audio-Visual Speech Recognition, Nefian et al., Intel 

* Visual Speech Feature Extraction for Improved Speech Recognition, 
Zhang, Mersereau, Clements, Georgia Tech 

■• Audio-Visual Speech Modeling Using Coupled HMM, Chu, Huang, UIUC 

Others 
California Kate University 

Chunghwa Telecom Lab, Taiwan 

DongYang Univwsity, Korea 

Fabbrica Servizi Telematici, Italy 

UT Bombay, India 

InstJtuto Tecnologrco de Buenos Aires 

On2.com 

Queensland University of Technology 

National TsJnghua University 

National University of Singapore 

Norwegian Computing Center, Norway 

Shanghai JiaoTong University, China 

Washington University 

Fusion Techniques 

T 

Early 
integration 

Middle 
integration 

(MI) 

Ute 
integration 

(U) 
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Middle Integration (1^1) 
<» Multistream HMM 

/ :./  :.. 

/\  /'. 
•  '   . 

<»O*:J ti'f »f-i 

Tsuhan Chen 

Lombard Effect 
» Feedback 

* Voice changes with bacl<ground noise 
-» Lip movement changes too 

a Data set 

€       € 
€    #     ^ 

^^^         FntsdiollwSut^ecrs 

Nohc 

Weak            Strong 

Tsuhan Chen 

Result 

w. ah Lombard BTcct 

1 
r 

strong Lombard Effaot 
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Tsuhan C hen 

Product Rule vs. Sum Rule 
(For Speaker Identificaticn) 
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Product Rule vs. Sum Rule 

■——IZ~—♦- 
"'■"-'•■«.■,-■•■." .■^TrTtyrr:^-_g__^^y 

._„ 

\ .i^iS- ■■• 

\ \ „™,„™..™„™-. 

\ \ 
\ 

Product rule fells ^^ 
dramatically In large "*^-^-.. 
lialn/test mismatd). \ ■^■,„^ 

Hybrid provides good x^ •■'~ -* 
performance in all ^v 
contexts. '*"---. * .. -.-, 

Quick Recap 
« Asynchronous MI (LI) has more freedom than 

synchronous MI (El) -> Better performance 

a Product rule is better in Bayesian sense, but 
sum rule is more robust to mismatch 

a Robustness to weighting 

« Need to be careful about Lombard Effect 

« Key to multimodal fusion 
* To model dependency between audio and visual 

signals 
* To dampen independent audio and visual noises 

Beyond Multimodal ASR. 

Visual-Assisted Speech Enhancement 

Input Video 

*r- 
Audio 

Face/Lip- 1 
Tracking I 

Adaptive 
Filtering 

Filter Perfermanee Rssults 

S 20 

? 

-   ' 
;-^ND*vAdaf*«F»eff;^ 

' ' • Adaplove w/o 

\^ 

^v. 
V 

^<<t, 

-28  -18  -7.9 207 12.1 22.1 32.1 42-1 52-1 62,1 

inptifSNR(dB) 

hr 
Cleaned Audio 
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Multimodal Biometrics Data Collection 

1 JBa^^^ 

3 lighting 

sources 

Microphone 
Array 

Iris 

Sensor 

Sony Fingerprint          {_  ^"V Camcorder   j 
^         Sensor 

1 Tsuhan Chen 

Other Sensors CMU Multimodal Biometrics Database 
Face: 

■   30 subjects with 300 images eacti 

• Image size: 720*480 

• Different lighting conditions, with/without glasses and ambient lighting 

ftsw 

Fingerprint: 

• Image size: 192*128 

• 50 images each finger 

Iris 

• Iris size: about 400*'100 

• 10 images each eye 

I   I 
FS^I Index     Righl Uddle 
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Fingerprint and Iris Images 
i^ultimodal User Interfaces 

[CMU-GM Lab] 

Face/Eye/Hand Tracking: 
. Driver-Vehicle Interfaces 
. Cognitive Overflow Study 

Interview Video 

Airtag Deployment Control 
MIrror/wheel/panel/seat adjustment 

Driver ID and Encryption: 
Security, Safety, User Preference 

Demo Vehicle Demo Vghicje  

Tsuhan Chen 
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FaceCa m/Gestu reCa m 

Visual is not noise-free" 

Pose/Registration 

Illumination 

Expression 

Challenges... 

....__._._   .           ).          k 

Tsuhan Chen 

\i_   •^,k4^ i '4" I 

CMU PIE Database 

CamerasK^ lashes 
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Pose Variation 

c25 c09 c31 

Mi m 
ir^fl""'    '^ ;" wm   ...-'.^-ifsmmm        ■— 

c22        c02 c37 COS    m^H   c29          ell 

c07 

Cl4         C34 

Tsuhan Chen 

Illumination Variation 

' 22 illumination conditions with background light 

■'it;. ■ 

■ 21 illumination conditions without background light 

Conclusions 
o Database is essential 

♦ Need to consider Lombard Effect 

a Fusion is important 
■» We can learn from acoustic ASR; we can 

perhaps lead ASR 

a Confidence estimation is important 

<* Visual channel is not noise-free 

Tsuhan Chen 

Related Forums 
IEEE Multimedia Signal Processing (MMSP) Technical 
Committee, iggs-- 

Proceedings of IEEE, Special Issue on MI^ISP, 1998 

IEEE MMSP Workshops 
* Princeton 1997, Los Angeles 1998, Copenhagen 1999, Cannes 

2001, St. Thomas 2002 

IEEE International Conf. on Multimedia and Expo. (ICME) 
* New York 2000, Tokyo 2001, Lausanne 2002, Baltimore 2003 

IEEE Transactions on Multimedia, March 1999~ 
* Special issues: networked multimedia 2001, multimedia database 

2002, multimodal interface 2003 
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Advanced Multimedia Processing Lab 

Please visit us at: 

http://amp.ece.cmu.edu 

Or, please email me at 
tsuhan@cmu.edu 

Tsuhan Chen 
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