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iechnical Section 

Technical Objectives 

Our goal was to explore the dynamics of nonlinear complex systems with coupling, feedback, 
external forcing, and noise. Engineering of chemical complexity can lead to optimal local and 
global chemical reaction rates in production and in power generation. Special attention was 
dedicated to synchronization properties of laboratory systems with inherent heterogeneities. 
Synchronization of oscillators may increase power of lasers, improve communication, and aid in 
understanding biological systems. 

Technical Approach 

A chemical reactor consisting of an array of electrodes has been designed with the following 
characteristics: (i) the sites have measurable rates of reaction and are individually addressable; (ii) each site 
has rich dynamics (periodic, chaotic) depending on reactor parameters; (iii) the strength and length scales 
of coupling among the elements are controllable; (iv) feedback control and external forcing or noise can 
be applied; (v) heterogeneities among elements model the characteristics of engineering and natural 
systems. 

Progress 
Diuing the grant period we made progress in several areas with support from ONR. 

Emerging Coherence in a Population of Chemical Oscillators 
The theory of synchronization of coupled oscillators developed in the 1970s by Winfree and 

Kuramoto has played a fundamental role in the development of a field of nonlinear science dealing with 
collective dynamics. Applications in engineering may be found not only in coupled chemical reactions, 
but also in other areas such as microwave systems, lasers, and digital logic circuitry. It has also been 



shown to be an important process in the functioning of heart pacemaker cells and of yeast cells as well as 
in the synchrony of flashing fireflies and chirping crickets. However, a systematic experimental 
verification has been missing. Using as an example a population of globally coupled electrochemical 
oscillators, we have provided a proof of the main predictions of the tiieory; we confirm the phase 
transition and the dependence of order on coupling strength predicted by the theory (Fig. 1). 
Furthermore, we have shown a strong enhancement of fluctuations near the critical point and have shown 
that the principal predictions hold also for relaxation and even weakly chaotic oscillators that often occur 
in physical systems. [3] 

Collective dynamics of weakly coupled chaotic electrochemical oscillators 
In chemically reacting systems the rate of reaction is often a fimction of both space and time. The spatial 
scale of variations in fluid/solid or electrochemical systems can range fi-om nano- through micro- to 
macroscopic and variations at several scales can occur simultaneously, e.g., small-scale on a catalyst 
surface up to the larger scale of the reactor. The degree of interaction among the reacting sites is 
influenced both by the local reaction rate and the strength and range of the coupling.   We have carried out 
experimental studies on electrochemical reaction sites in which the coupling is weak so that there are no 
qualitative effects on the local chaotic dynamics. We have shown that these small effects can nevertheless 
produce significant changes in the collective, or overall, behavior of the system and that the collective 
behavior can be quite different from the local behavior; for example, even when the local dynamics are 
chaotic the collective behavior can be periodic or almost constant (Fig. 2). Phase synchronization 
obtained at weak coupling strengths is shown in Fig. 3; for comparison, behavior with stronger coupling is 
also shown. In chemically reacting systems this spatially averaged reaction rate is usually tiie quantity of 
interest since it determines the overall conversion in the reactor. [4, 8] 

Organizing spatiotemporal patterns with global interactions: coupling, forcing, and feedback 
Experiments were carried out on arrays of chaotic electrochemical oscillators to which global 

coupling, periodic forcing, and feedback were applied. The characteristics of the three methods in the 
development of structures are compared. Globd coupling, as well as forcing and feedback control applied 
to wealdy coupled systems, synchronizes populations of chaotic oscillators. More complicated structures 
involving the existence of clusters of states have also been found in the experiments; many stable 
structures can arise under a given set of conditions. States with from two to four co-existing cluster states 
have been found. By controlling the external variations or system feedback desired states can be obtained 
(Fig. 4). Such studies on the engineering of chemical complexity, that is, using coupling, feedback 
control, external forciag, and added noise to influence spatiotemporal patterns and system behavior, can 
lead to optimized behavior of chemical processes. Furthermore, an extemal forcing signal on nonlinear 
oscillators can simulate periodic environmental variations on complex systems such as those found in 
biological contexts. [2,10] 



Fig. 1. Emerging coherence in a population of nonidentical periodic 
oscillators. 
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Fig. 2. Collective dynamics of population of chaotic oscillators 
The collective (spatially averaged) behavior of populations can be qualitatively different form the 
local behavior. In the example shown here, the global nearly periodic oscillations of averaged Ni 
dissolution rate are produced with chaotic variations of local rates. 
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a. Average current vs. time. 
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b. Local current vs. time. 

Fig. 3. The effect of global coupling on populations of chaotic oscillators 
With increasing the global coupliag strength (K) transitions are seen from unsynchronized through phase 
synchronized and clustered states to identical synchronization. 

Unsynchronized 
oscillators 

Snapshot 
of 

currents •©•©•o«o 

•••®o®®« 
•oooooo® 
•o©oo#®® 

rrequenvics ©o®«®®0O 
ooo®®®oo 
®0®®®®0® 
®0OOO®O© 

I 
0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

K=0A2 
Phase 

Synchronization 
®©©®o©®© I 
®®oo®®®® I 
©®®®#®®® 
®®®®®®®© 
Q®®®®®®C) 
®®C)®O0OO 

i/mA 

i: 

ii.24 OOOOOOGG 
OOOOOOOO 

,„ OOOOOOOO 
^•^^ OOOOOOOO 

OOOOOOOO 
OOOOOOOO 
OOOOOOOO 
OOOOOOOO 

1.18 

I'/mA 

iM 

1.22 

ffHz 

1.2 

1.18 
f/Rz 

K=3 
Dynamical 
Clustering 

/•~^r-^,—^r-\r\t 

COOCOOTC 
GOCOOCOO 

C'~0000'~0 

Identical 
Synchronization 

OOOOOOG 
©oooooo 
O0OOOOO 
OGOOOOO 
OOOOOOG 
OOOOOOG 
onooooo 
oooooor 

i/mA 

o 
o 
o 
o 

o 

146       00 '^r-1^ \r^ ■ ̂ o 

0"C000?0 
ooooc>ooo 
OG'^OIJOCO 
(^'^C'"^OGO0 

b'^'^O'^'Oooo 

f 
:.;  0, 

10.2 

i/mA 

P 

\ 

I 
fmi 

1.25 

/"/Hz 

Global Coupling Strength 



The effects of coupling and forcing on the synchronization characteristics of small sets of chaotic 
electrochemical oscillators 

The effect of external forcing of a single chaotic chemical oscillator has been investigated: phase 
synchronization and suppression of chaos through interraittency have been observed depending on the 
amplitude and frequency of the forcing. Phase synchronization has been experimentally confirmed in a 
coupled two-oscUlator system. Experimental tests of different forms of synchronization of such small sets 
of oscillators are useful since these have been proposed as ways of communication and encrypting. [1,5] 

The constructive effects of noise on the synchronization characteristics of chaotic electrochemical 
oscillators 
The effects of noise on synchronization have been studied in both small sets and in larger populations of 
coupled chaotic oscillators. In the region below phase synchronization noise has been found to enhance 
the extent of phase synchronization. The constructive effect of noise is interpreted by the synchronization 
properties of unstable periodic orbits embedded in the chaotic attractor. The exploration of the 
counterintuitive effects of noise on two coupled oscillators is important for experimental implementation 
of communication techniques. With larger populations the fmdings are significant in understanding the 
cooperative effects of noise and weak coupling in physical, chemical, and biological systems.; for 
example, environmental fluctuations may play a role in synchronization of population oscillations over 
large geographical regions. [6,9] 

Stabilizing and tracking unknown steady states of dynamical systems 
An adaptive dynamic state feedback controller for stabilizing and tracking unknown steady states of 
dynamical systems was proposed. We proved that the steady state can never be stabilized if the 
system and controller in sum have an odd number of real positive eigenvalues. For two dimensional 
systems, this topological limitation states tiiat only an unstable focus or node can be 
stabilized with a stable controller and stabilization of a saddle requires the presence of an unstable degree 
of freedom in a feedback loop. The use of the controller to stabilize and track saddle points (as well as 
unstable foci) is demonstrated both numerically and experimentally with an electrochemical Ni dissolution 
system. [7] 

Fig. 4. Engineering chemical complexity. 
A wide variety of patterns are obtained with coupling, forcing or feedback. 
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Abstract 

We carried out experiments and supporting simulations on the dynamics of nonlinear complex 
systems with coupling, feedback, external forcing, and noise. The experiments are carried out with arrays 
of electrodes where: (i) The sites have measurable rates of reaction and are individually addressable; (ii) 
each site has rich dynamics depending on reactor parameters; (iii) the strength and length scales of 
coupling among the elements are controllable. 

We have provided a proof of the main predictions of theory on the emergence of synchronization 
of coupled smooth oscillators; we demonstrate a phase transition and the dependence of order on coupling 
strengtfi predicted by the theory. Furthermore, we have shown a strong enhancement of fluctuations near 
the critical point and have shown that the principal predictions hold also for relaxation and even weakly 
chaotic oscillators that often occur in physical systems. For very weak coupling of chaotic systems there 
are no qualitative effects on the local chaotic dynamics. We have shown that these small effects can 
nevertheless produce significant changes in the collective, or overall, behavior of the system and that the 
collective behavior can be quite different from the local behavior. 

We also carried out experiments on the application of global coupling, periodic forcing, and 
feedback to arrays of chaotic electrochemical oscillators. By controlling the extemal variations or system 
feedback to influence spatiotemporal pattems and system behavior, desired states (synchronized behavior, 
cluster formation, etc.) can be obtained. The constructive effects of added noise on synchronization have 
been studied in both small sets and in larger populations of coupled chaotic oscillators. 


