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Abstract

Current flight reference systems are vulnerable to GPS jamming and also lack

the accuracy required to test new systems. Pseudolites can augment flight reference

systems by improving accuracy, especially in the presence of GPS jamming. This

thesis evaluates a pseudolite-based flight reference system which applies and adapts

carrier-phase differential GPS techniques. The algorithm developed in this thesis

utilizes an extended Kalman filter along with carrier-phase ambiguity resolution

techniques.

A simulation of the pseudolite-based positioning system realistically models

measurement noise, multipath, pseudolite position errors, and tropospheric delay.

A comparative evaluation of the algorithms performance for single and widelane

frequency measurements is conducted in addition to a sensitivity analysis for each

measurement error source, in order to determine design tradeoffs. Other analyses

included the use of optimal smoothing, non-linear filtering techniques, and code

averaging. Specific emphasis is given to two alternate methods, both developed in

this research, for handling the residual tropospheric error after applying a standard

tropospheric model.

Results indicate that the algorithm is capable of accurately resolving the pseu-

dolite carrier-phase ambiguities, and providing a highly accurate (centimeter-level)

navigation solution. The filter enhancements, particularly the optimal smoother and

tropospheric error reduction methods, improved filter performance significantly.

xi



DEVELOPMENT AND SIMULATION OF A

PSEUDOLITE-BASED FLIGHT REFERENCE SYSTEM

I. Introduction

1.1 Background

Applications for the Global Positioning System (GPS) have increased tremen-

dously since its inception, including the development of many differential GPS (DGPS)

techniques. Differential GPS performs relative positioning between two or more re-

ceivers by calculating and removing sources of errors that are common between re-

ceivers. The integration of a GPS receiver and an Inertial Navigation System (INS)

is another application that has produced accurate and robust navigation systems.

One of the most advanced navigation systems is the modern flight reference

system operated by the 746th Test Squadron, Holloman AFB, NM, which is used

to test and evaluate new flight navigation systems. To be useful, a flight reference

system should have an order of magnitude greater accuracy than the system under

test, because the output from the reference system is regarded as the truth. Any

degradation in reference system performance will invalidate the evaluation of the

system under test. The flight reference system has evolved through the years from

radar tracking, ground-based camera and aircraft transponders, to the current sys-

tem of DGPS integrated with an inertial unit, barometric altimeter, and a ground

transponder/interrogator system [14]. The current reference system used by the

746th Test Squadron’s Central Inertial Guidance Test Facility (CIGTF) is called the

CIGTF High Accuracy Post-processing Reference System (CHAPS) [17].
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The type of differential GPS that CHAPS uses is called carrier-phase DGPS,

which relies on measuring the carrier component of GPS signals. The carrier-phase

signal provides a relative measurement because the total number of carrier phase

cycles are not known. Phase ambiguities exist, which are the unknown number of

carrier-cycles present at the start of the signal integration [28]. The carrier signal

can be broken up into two segments that are separated by the point in time that

signal integration starts. The first segment consists of the unknown integer number

of cycles up to the point of signal integration. The second segment consists of the

measured carrier-phase, which is not constrained to be an integer. The highest level

of accuracy is attained when the unknown number of cycles before signal integration

is determined.

Carrier-phase DGPS can be categorized into two classes based on how the

estimation of the unknown integer cycles is performed. Floating-point carrier-phase

techniques estimate the integer number of cycles as floating-point numbers, without

forming integer ambiguity values. Fixed-integer carrier-phase techniques select a

set of integer ambiguities through a process called ambiguity resolution [15]. If the

correct ambiguities are selected, a fixed-integer solution achieves greater accuracy

than floating-point solution. Fixed-integer solutions are vulnerable to selecting the

incorrect integers, which result in degraded performance.

CHAPS currently faces two challenges: accuracy during periods of GPS jam-

ming and accuracy when a GPS signal is available. Operation in the presence of

GPS signal interference impedes CHAPS from using its most accurate sensor. When

jamming denies CHAPS from using GPS measurements, it must rely on its other sen-

sors, primarily the INS. INS accuracy degrades over time, causing the performance

of CHAPS to suffer. Although post-processing techniques are applied to reduce the

impact of INS errors, CHAPS cannot maintain centimeter level accuracy during pe-

riods of GPS jamming. The second challenge facing CHAPS is accuracy when GPS
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is available. As new systems become more accurate, CHAPS must also improve its

accuracy to be a useful reference.

One technology that potentially solves the challenges of reference system accu-

racy is the use of pseudolites (or pseudo-satellites) [25]. Pseudolites are ground-based

transmitters that send GPS-like signals which can be received with GPS receivers

that are adapted for pseudolite signals. DGPS techniques, such as carrier-phase am-

biguity resolution, can be adapted and applied for pseudolite navigation. Pseudolites

have the flexibility of operating at various frequencies, which allow them to avoid

GPS jamming signals.

The aiding with pseudolites will increase the accuracy of CHAPS or other

flight reference systems when GPS jamming signals are present, and also during

periods of normal GPS operation. Pseudolites potentially can provide CHAPS with

a navigation source that maintains centimeter-level positioning accuracies during

periods of GPS jamming. The increase in accuracy during normal (non-jamming)

GPS operation is the result of CHAPS having access to two highly accurate sensors,

as compared to just one when pseudolites are not used. A system that uses two

sensors with roughly the same accuracy can expect to see a 1/
√

2 factor improvement

in accuracy over just using one sensor. That is nearly a 30 percent improvement,

assuming that both sensors are independent. The errors between GPS and pseudolite

signals are not completely independent, but a practical system would still show

improvement over DGPS-only navigation.

1.2 Problem Definition

The primary goal of this thesis is the development and testing of an algo-

rithm that resolves the carrier-phase ambiguities of ground-based GPS transmitters

called pseudolites. Figure 1.1 depicts the process of resolving the ambiguities first to

floating-point numbers in a Kalman filter, resolving the phase ambiguities to integer

numbers, and then passing the carrier-phase measurements with resolved ambigui-
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ties to aid the flight reference system. This research includes the simulation of the

pseudolite environment, along with the creation of realistic errors in the pseudolite

code and phase measurements. The secondary goals include analysis of the effect of

each error source, and the application of new methodologies for dealing with pseu-

dolite error sources. The objective of this work is to develop an algorithm that can

improve both the accuracy and robustness to jamming of a flight reference system

augmented with pseudolites.

Pseudolite
Measurements
(code and 
carrier-phase)

CHAPS Filter

INS
Transponders
Barometric Altimeter
GPS (Carrier-phase DGPS)

Extended
Kalman
Filter

Ambiguity
Resolution

Floating point 
ambiguities and
covariances

Flight “ truth”

Pseudolite carrier-
phase with resolved
ambiguities

Figure 1.1 Pseudolite Aided Flight Reference System

1.3 Related Research

Raquet et al. [25] conducted an early test of a pseudolite-only flight reference

system. This work was accomplished at Holloman AFB under the partnership of the

746th Test Squadron, NovAtel Communications, Stanford Telecom, and the Univer-

sity of Calgary. This proof of concept involved an ”inverted” mode of operation in

which the position of the pseudolite is solved in relation to an array of stationary

receivers that are placed at known locations.
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NovAtel Communications and Stanford Telecom continued work with pseudo-

lite navigation by conducting a follow-on test to duplicate some of the results from

the Holloman proof-of-concept test. They prototyped a GPS/pseudolite system that

allowed coverage during times of reduced GPS availability [12].

Although pseudolite signals are very similar to GPS signals, many assumptions

that are made for GPS navigation cannot be applied to pseudolite operations. Sec-

tion 2.6.1 details the differences between GPS and pseudolite systems. Dai et al. [8]

addressed some of the challenges that pseudolites present by developing unique mod-

elling strategies to deal with pseudolite error sources. They also analyzed the impact

of pseudolite-user geometry on differential pseudolite navigation.

1.4 Scope

The development of an extended Kalman filter to produce the floating point es-

timates of carrier-phase ambiguities and the ambiguity resolution techniques are the

focus of this research. A simulation is used to evaluate the algorithm’s integer ambi-

guity resolution performance. The scope of this thesis included the simulation and

development of the pseudolite network, along with the generation of error-corrupted

ranges between the pseudolites and the receivers.

All software development was developed in the Matlab 6.5 environment. An

evaluation of single versus widelane frequency measurements is conducted. This the-

sis includes the sensitivity analysis of each pseudolite signal error source, including

the impact on the ambiguity resolution process. It also explores new methodologies

applied to reduce the effect of errors and improve the accuracy of estimated ambi-

guities. Two of these methodologies were developed as part of this research. This

thesis does not address the design and implementation of pseudolite transmitters

and receivers.
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1.5 Assumptions

The following assumptions are made in this thesis:

a) Real-time ambiguity resolution is not required because the focus is the

augmentation of a post-processed flight reference system.

b) The extended Kalman filter is not dependent upon a specific pseudolite

system implementation. The pseudolite can utilize transmitters and receivers that

operate at the GPS L1 and L2 frequency or in another band such as the S-band. GPS

jamming is mitigated for L-band transmitters and receivers by the use of frequency

translators.

c) All calculations use the Earth-Centered Earth-Fixed (ECEF) frame and

World Geodetic Systems 1984 (WGS-84) coordinates.

d) No jamming analysis is required, because the pseudolites in a fielded system

would operate at another frequency.

e) The sources of error present in the code and phase pseudolite measurements

are assumed to be of similar characteristics to those available with high-quality GPS

receivers.

f) Carrier-phase cycle slip detection is already accomplished.

1.6 Thesis Overview

Chapter 2 presents the background theory for this research through an in-

depth review of Kalman filter methods, GPS fundamentals, carrier-phase ambiguity

resolution, and pseudolite navigation. The section on Kalman filtering includes

the derivation of an extended Kalman filter, optimal smoothing techniques, and

conditional moment estimators. Chapter 3 details the error truth model, pseudolite

filter models, and the carrier-phase ambiguity resolution techniques used in this

thesis. Chapter 4 describes the single run and Monte Carlo analysis of the effects of

each source of measurement error, along with the ability of filter enhancements to
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improve the accuracy of the position and ambiguity solutions. Chapter 5 summarizes

the results and provides recommendations for future research on a pseudolite-based

reference system.
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II. Background

2.1 Overview

This chapter begins by providing a basic overview of Kalman filter theory,

including the extension to extended Kalman filter applications. The next section

is on GPS operation and DGPS techniques. From there a section on pseudolites

describes the challenges and issues of pseudolite navigation. The last section provides

the theory behind the carrier-phase ambiguity resolution techniques used in this

research.

2.2 Kalman Filters

Deterministic analysis has been successfully applied to many systems, but is

not totally sufficient when applied to particular problems of interest. The linear

Kalman filter is an optimal recursive data processing algorithm [19] that is a common

tool technique that can be applied when deterministic analysis is not sufficient. The

optimality is based on the assumptions that form the basis for Kalman filter, namely,

an adequate model of the real-world application in the form of a linear dynamics

model driven by white Gaussian noise of known statistics, from which are taken

linear measurements, corrupted by white Gaussian noises of known statistics [19].

The Kalman filter can produce very sub-optimal results if either the dynamics or

measurement model is an inadequate model of the real world [34]. The Kalman filter

is also optimal because it incorporates all available measurements, regardless of their

accuracy, to compute the estimates of the variables of interest based on the system

dynamics and measurement models, the statistical description of the system noises,

measurement errors, and the model uncertainties [15, 36, 19].

When discrete-time measurements are available, a Kalman filter includes both

a time propagation cycle and an measurement update cycle. The propagation cycle
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computes an estimate of the system state based on its previous system state and

its (imperfect) dynamics model. The update cycle then uses the noise-corrupted

measurements to refine the system state estimates. A complete derivation can be

found in [19].

2.2.1 State and Measurement Model Equations. The following development

is similar to those in references [15, 19]. The the system dynamics are assumed to

be modeled as a linear system with a state equation of the form

.
x(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.1)

where

x(t) = the n-dimensional system state vector

F(t) = the n-by-n state dynamics matrix

B(t) = the n-by-r control input matrix

u(t) = the r-dimensional control input

G(t) = the n-by-s noise input matrix

w(t) = the s-dimensional dynamics driving noise vector

Upper case bold letters indicate matrices, lower case bold letters indicate vectors, and

normal or italics represent scalar variables. Random vectors are denoted by boldface

sans serif type. For the purposes of this research there are no control inputs, so the

B and u terms will be dropped from any subsequent equations.

At discrete times the solution to equation (2.1) can be written as:

x(ti+1) = Φ(ti+1, ti)x(ti) +

[∫ ti+1

ti

Φ(ti+1, τ)G(τ)dβ(τ)

]
(2.2)
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where β is a vector valued Brownian motion process of diffusion Q(t) [19], and

Φ(ti+1, ti) is the state transition matrix from ti to ti+1 and is given by

Φ(ti+1, ti) = Φ(∆t) = eF∆t where ∆t ≡ ti+1 − ti (2.3)

which assumes a time-invariant F matrix. The equivalent discrete-time model is

expressed by the stochastic difference equation as

x(ti+1) = Φ(ti+1, ti)x(ti) + wd(ti) (2.4)

where

wd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)β(τ) (2.5)

The discrete-time white Gaussian dynamics driving noise has the statistics:

E{wd(ti)} = 0 (2.6)

E{wd(ti)w
T
d (ti)} = Qd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)dτ (2.7)

E{wd(ti)w
T
d (tj)} = 0, ti 6= tj (2.8)

Typical problems of interest are defined by a continuous-time dynamics process with

discrete-time measurements produced by sensors. Assume the measurement model

can be given as a linear, discrete-time system of the form

z(ti) = H(ti)x(ti) + v(ti) (2.9)
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The statistics of the measurement corruption noise are described by

E{v(ti)} = 0 (2.10)

E{v(ti)v
T (tj)} =





R(ti) for ti = tj

0 for ti 6= tj
(2.11)

The dynamics driving noise wd(ti) and the measurement corruption noise v(ti) are

assumed to be independent, so

E{wd(ti)v
T (tj)} = 0 for all ti and tj (2.12)

2.2.2 Kalman Filter Equations. The Kalman filter propagates forward

in time from t+i−1 to t−i , starting from the last update cycle state and covariance

estimates. The superscripts ”+” and ”−” denote the time after a measurement

update and before a measurement update respectively. Propagating the filter from

ti to ti+1 is equivalent to propagating from ti−1 to ti. The initial conditions x̂(t0)

and P(t0) are used in the first propagation cycle. The propagation cycle is given by

x̂(t−i ) = Φ(ti, ti−1)x̂(t+i−1) (2.13)

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti,ti−1) + Gd(ti−1)Qd(ti−1)G

T
d (ti−1) (2.14)

When measurements are available, the Kalman filter is updated by:

A(ti) = H(ti)P(t−i )HT (ti) + R(ti) (2.15)

K(ti) = P(t−i )HT (ti)A(ti)
−1 (2.16)

r(ti) = zi −H(ti)x̂(t−i ) (2.17)

x̂(t+i ) = x̂(t−i ) + K(ti)r(ti) (2.18)

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (2.19)
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A properly designed filter has a zero-mean residual vector r(ti) with the filter-

computed covariance A(ti) [15]. The outputs of the Kalman filter update cycle

are x̂(t+i ) and P(t+i ), which are then used in the next propagation cycle.

2.3 Extended Kalman Filters

The linear Kalman filter cannot be used when either the state dynamics or

measurement model contains nonlinearities. Methods that choose to ignore old data

due to cumulative errors, or that decrease the filter’s confidence in the adequacy of

the filter model have been used to address the problem of nonlinearities. A better

way to deal with nonlinearities is through a linearization of the measurement or

dynamics model, thus enabling linearized estimation techniques.

A linearized Kalman filter consists of a first order Taylor series approximation

to the nonlinear models, linearizing about a nominal trajectory that is normally pre-

computed. The extended Kalman filter (EKF) differs from the linearized Kalman

filter in that it relinearizes about each state estimate as it progresses, enabling it to

handle larger degrees of nonlinearities more adequately. A complete derivation of

extended Kalman filters can be found in reference [20].

2.3.1 State and Measurement Model Equations. Following the Kalman

filter development in references [15, 20], a nonlinear system dynamics model takes

the form

ẋ(t) = f [x(t), t] + G(t)w(t) (2.20)

The state dynamics vector is now defined to be a possibly nonlinear function of the

n-dimensional state vector x(t), and of the continuous time, t, itself. The definitions

of the n-dimensional state dynamics vector x(t) and the n-by-s noise distribution

matrix G(t) are unchanged from those seen in association with Equation 2.1. The

dynamics driving noise vector w(t) is also unchanged and assumed to be white
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Gaussian noise process with mean and covariances defined by:

E{w(t)} = 0 (2.21)

E{w(t)wT (t + τ)} = Q(t)δ(τ) (2.22)

where τ has units of time.

The nonlinear discrete-time measurement equation takes the form

z(ti) = h[x(ti), ti] + v(ti) (2.23)

The m-dimensional measurement vector z(ti) is a linear or nonlinear function of the

state vector and time (h[x(ti), ti]), corrupted by the linearly additive m-dimensional

discrete-time noise input vector v(ti). The discrete-time noise vector is unchanged

from that of the linear Kalman filter.

2.3.2 State and Measurement Model Linearization. If either the system or

measurement model equations 2.20 and 2.23 are nonlinear, they must be linearized

in order to produce an optimal state estimate, to first order. Reference [20] uses

a perturbation technique of the state about a nominal or reference trajectory. The

dynamics model for this research is linear, but the linearization of both the dynamics

model and measurement model is presented for completeness.

The nominal state trajectory can be generated from the initial condition xn(t0) =

xn0 and the differential equation

ẋn(t) = f [xn(t), t] (2.24)
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which differs from the nonlinear state equation by being deterministic. The nominal

measurements can be defined in a similar fashion by

zn(ti) = h[xn(ti), ti] (2.25)

which is also deterministic. The perturbation state derivative δẋ(t), is formed by the

subtraction of the nominal trajectory (2.24) from the system model (2.20) to give

δẋ(t) ≡ [ẋ(t)− ẋn(t)] = f [x(t), t]− f [xn(t), t] + G(t)w(t) (2.26)

A Taylor series expansion of f [x(t), t] about xn(t) yields

f [x(t), t] = f [xn, t] +
∂f [x(t), t]

∂x

∣∣∣∣
x=xn(t)

[x(t)− xn(t)] + h.o.t. (2.27)

where ”h.o.t.” represents the higher order terms in powers of [x(t) − xn(t)] greater

than one [20]. When Equation 2.27 is substituted into Equation 2.26, the f [xn(t), t]

term is cancelled to produce the perturbation equation. The first order approxima-

tion ignores the higher order terms which yields

δ̇x(t) = F[t;xn(t)]δx(t) + G(t)w(t) (2.28)

This linearized dynamics equation can be implemented in a linearized Kalman fil-

ter with the n-by-n partial derivative matrix F[t;xn(t)] evaluated along a nominal

trajectory and defined as

F[t;xn(t)] =
∂f [x, t]

∂x

∣∣∣∣
x=xn(t)

(2.29)

This approximation is valid as long as the higher order terms of the Taylor series

expansion are negligible.
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The development of the measurement perturbation equation is formed in a

similar way. The measurement perturbation δz(t) is formed by the subtraction of

the nominal measurement Equation 2.25 from the measurement model Equation 2.23

to give

δz(ti) ≡ [z(ti)− zn(ti)] = h[x(ti), ti]− h[xn(ti), ti] + v(ti) (2.30)

A Taylor series expansion of h[x(ti), ti] about xn(t) yields

h[x(ti), ti] = h[xn(ti), ti] +
∂h[x, ti]

∂x

∣∣∣∣
x=xn(ti)

[x(ti)− xn(ti)] + h.o.t. (2.31)

When Equation 2.31 is substituted into Equation 2.30, the h[xn(ti), ti] term is can-

celled to produce the perturbation equation. The first order approximation ignores

the higher order terms which yields

δz(ti) ≡ H[ti;xn(ti)]δx(ti) + v(ti) (2.32)

This linearized measurement equation can be implemented in the linearized Kalman

filter with the m-by-n partial derivative matrix H[ti;xn(ti)] evaluated along a nom-

inal trajectory and defined as:

H[ti;xn(ti)] =
∂h[x, ti]

∂x

∣∣∣∣
x=xn(ti)

(2.33)

This approximation is valid as long as the higher order terms of the Taylor series

expansion in Equation 2.31 are negligible. The state and measurement perturbation

equations are error state representations which must be added to the nominal state

values to produce the total state estimate.

The equations developed in this section define the linearized Kalman filter.

Real-world measurements z(ti) are differenced with zn(ti) computed via Equation

2.25, and then fed into a linear Kalman filter based on Equations 2.28 and 2.32, to

generate estimates of δx(t). These can be added to xn(t), generated as solutions to
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Equation 2.24, to estimate the total states. It is important to point out that the

EKF relinearizes the model about the new estimate (x̂(t+i )) and the corresponding

trajectory. The relinearization process helps to validate the assumption that the

deviations from the nominal trajectory are sufficiently small.

2.3.3 Extended Kalman Filter Equations. The extended Kalman filter

propagates forward in time ti−1 to ti by integrating from the last update cycle, state

and covariance estimates. The initial conditions x̂(t0) and P(t0) are used in the first

propagation cycle. The EKF propagation equations are defined by:

˙̂x = f [x̂(t|ti−1), t] (2.34)

Ṗ(t|ti−1) = F[t; x̂(t|ti−1)]P(t|ti−1)+P(t|ti−1)F
T [t; x̂(t|ti−1)]+G(t)Q(t)GT (t) (2.35)

with t|ti−1 denoting the value of a given variable at time t, conditioned on all the

measurements up to and including time ti−1. The term F[t; x̂(t|ti−1)] is the n-by-n

partial derivative matrix:

F[t; x̂(t|ti−1)] =
∂f [x,u(t), t]

∂x

∣∣∣∣
x=x̂(t|ti−1)

(2.36)

The differential equation initial conditions are given by

x̂(ti−1|ti−1) ≡ x̂(t+i−1) (2.37)

P(ti−1|ti−1) ≡ P(t+i−1) (2.38)

After integrating equations (2.34) and (2.35) to the next sample time, the state and

covariance estimates are defined as:

x̂(t−i ) ≡ x̂(ti|ti−1) (2.39)

P(t−i ) ≡ P(ti|ti−1) (2.40)
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The EKF incorporates the measurements in the following update equations:

K(ti) = P(t−i )HT [ti; x̂(t−i )]{H[ti; x̂(t−i )]P(t−i )HT [ti; x̂(t−i )] + R(ti)}−1 (2.41)

x̂(t+
i
) = x̂(t−

i
) + K(ti){zi − h[x̂(t−i ), ti]} (2.42)

P(t+
i
) = P(t−

i
)−K(ti)H[ti; x̂(t−i )]P(t−

i
) (2.43)

2.4 Optimal Smoothers

The traditional Kalman filters runs forward in time—that is, it incorporates

all information available up to and including the current time. An estimator that

uses future data to improve the state and covariance estimate at the current time is

called an optimal smoother. The three class of smoothers include the fixed-interval,

fixed-point and fixed-lag smoothers [20]. The fixed-interval smoother is the type that

was used in this research.

A fixed-interval smoother can be conceptualized by the combination of two

filters. The first is a traditional forward-running Kalman filter, and the second is a

backward-running Kalman filter that is of inverse covariance formulation [20]. The

smoothed estimate is formed by combining the forward and backward state estimates,

using a weighting based on their respective covariance matrices. An equivalent ap-

proach to the forward-backward configuration was developed by Meditch [20]. The

filter requires that the state and covariance matrices be stored both before and after

measurement updates. The state transition matrices are also required. Once the

forward filter is run through all data until the final time, the smoothed state esti-

mate at the last time increment is set equal to the state estimate from the forward

running filter after the last measurement update, which is denoted by

x̂(tf |tf ) = x̂(t+f ) (2.44)
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Then, starting with the second-to-last time increment, and running backward in

time, the smoothed estimate is defined as

x̂(ti|tf ) = x̂(t+i ) + A(ti)[x̂(ti+1|tf )− x̂(t−i+1)] (2.45)

where the matrix A(ti) is defined as the smoothing estimator gain matrix [20], given

by

A(ti) = P(t+i )ΦT (ti+1, ti)P
−1(t−i+1) (2.46)

In a similar manner, the covariance at the final time increment is defined as

P(tf |tf ) = P(t+f ) (2.47)

and the covariance at every other time increment is calculated by

P(ti|tf ) = P(t+i ) + A(ti)[P(ti+1|tf )−P(t+f )]AT(ti) (2.48)

Smoothers outperform standard Kalman filters particularly when the dynamics model

includes relatively large dynamic driving noises. The more uncertainty in the model,

the greater the benefit from incorporating future information. At the last time epoch,

the smoothed estimate is equal to the forward filter state estimate. A more rigorous

derivation of smoothers can be found in reference [20].

2.5 Global Positioning System

The Global Positioning System uses a constellation of medium earth orbit

satellites to provide a continuous ranging source. The user can calculate position,

velocity, and time from the received signal. Differential GPS (DGPS) is a term

that includes many different methods and techniques that result in a greater accu-

racy than stand alone GPS. A detailed overview of GPS concepts can be found in

references [21, 26].
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2.5.1 GPS Signal. The GPS signal contains both a code and carrier-phase

component. The GPS code that is available to civilian users is the Coarse/Acquisition

(C/A) code while the military also has the precision (P) code (which is called P(Y)

after encryption). The carrier-phase frequencies are currently set at 1575.42 MHz

and 1227.6 MHz, which are called the L1 and L2 frequencies respectively [21]. The

P(Y) is transmitted on both L1 and L2 while the C/A code is only available on the

L1 frequency. The 1023 bit sequence C/A code repeats every millisecond and the

P(Y) repeats every 7 days per satellite. The chipping rates for the C/A and P codes

are 1.023 MHz and 10.23 MHz respectively. The code component of the GPS signal

contain a pseudorandom noise (PRN) code that is unique to each satellite.

Civilian receivers can only track the C/A code on the L1 frequency. Military

receivers that track both the P(Y) codes on the L1 and L2 frequencies are called

dual-frequency receivers. Some civilian receivers use semi-codeless techniques that

can be used to get range information from the P(Y) code without actually decrypting

it [15, 34]. These high-precision civilian receivers are used in CHAPS to get the L2

carrier-phase information without really tracking the P(Y) code.

2.5.2 GPS Measurements. Typically, there are three measurements from

a GPS receiver—code, doppler, and carrier-phase. The code measurement is often

called a ”pseudorange” because it is the actual range corrupted by measurement

errors (primarily the clock error). The Doppler measurement describes the frequency

shift in the signal due to vehicle (and clock) dynamics, and the carrier-phase can

be thought of as an integrated Doppler. The term ”raw” is included to distinguish

these measurements from the navigation processor outputs such as position, velocity,

and acceleration. DGPS techniques will be distinguished based on the use of code,

carrier-phase, or both.

2.5.3 Code Measurements. The code pseudorange is true range between

the satellite and user plus the impact of a number of error sources. The pseudo-
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range is calculated as the time difference between the transmission and reception

time multiplied by speed of light (to give the range in meters). The pseudorange

measurement can be expressed as:

ρ = r + c(δtu − δtsv) + T + I + mρ + vρ (2.49)

where

ρ = GPS pseudorange measurement (meters)

r = true range from the user to satellite (meters)

c = speed of light (meters / second)

δtu = receiver (user) clock error (seconds)

δtsv = transmitter (satellite vehicle) clock error (seconds)

T = errors due to tropospheric delay (meters)

I = errors due to ionospheric delay (meters)

mρ = errors due to pseudorange multipath (meters)

vρ = errors in pseudorange due to receiver noise (meters)

2.5.4 Carrier-Phase Measurements. The carrier-phase of the received sig-

nal can also be used for positioning, especially when high precision is required. The

carrier-phase measurement can be expressed in cycles as:

φ = λ−1(r + c(δtu − δtsv) + T − I + mφ + vφ) + N (2.50)
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where

φ= carrier-phase measurement (cycles)

λ= carrier-phase wavelength (meters / cycle)

N= carrier-phase integer ambiguity (cycles)

T= errors due to tropospheric delay (meters)

I= errors due to ionospheric delay (meters)

mφ= errors due to carrier-phase measurement multipath (meters)

vφ= errors in carrier-phase measurement due to receiver noise (meters)

The rest of the terms were previously defined in Equation (2.49) except that the

measurement noise and multipath are different and significantly less for the carrier-

phase than for the code. Some sources of error do not affect the code and carrier-

phase measurement in the same manner. The sign on the ionospheric delay term

is opposite from the code measurement equation, because the ionosphere advances

a carrier-phase measurement, but delays a code measurement. This phenomenon is

called code-carrier divergence. Tropospheric delay affects both the code and carrier-

phase by the same magnitude.

The carrier-phase integer ambiguity term is an error source that is present in

carrier-phase measurements, but not in code measurements. The ambiguity term

represents the unknown number of carrier-cycles present at the start of the signal

integration [28]. The carrier signal can be broken up into two segments that are

separated by the point in time that signal integration starts. The first segment

consists of the unknown integer number of cycles up to the point of signal integration.

The second segment consists of the measured carrier-phase which is not constrained

to be an integer. A high level of accuracy is attained when the unknown number of

cycles before signal integration is determined.
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2.5.5 Single Differencing. Differential GPS uses linear combinations of

observations (code or carrier measurements) between receivers, satellites, or times

to reduce the effect of some errors [22]. A single difference can be between two

satellites (∇) or between two receivers (4). Figure 2.1 depicts the concept of a

single difference between two receivers.

A B

k

Figure 2.1 Single Difference GPS Between Receivers A and B and Satellite k

The single-differenced carrier-phase measurement between two receivers corre-

sponding to the above figure is defined as

∆φk
AB ≡ φk

A − φk
B (2.51)

where φk
A is the phase measurement between receiver A and satellite k, and φk

B is

the phase measurement between receiver B and satellite k.

This type of difference eliminates the satellite clock error and reduces the

atmospheric errors. Combining the carrier-phase measurement Equation 2.50 with
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the single difference Equation 2.51 yields

∆φk
AB = λ−1[rk

A + c(δtkuA
− δtksvA

) + T k
A − Ik

A + mk
φA + vk

φA] + Nk
A

− λ−1[rk
B + c(δtkuB

− δtksvB
) + T k

B − Ik
B + mk

φB + vk
φB] + Nk

B (2.52)

Combining like terms yields

∆φk
AB = λ−1[(rk

A − rk
B) + c(δtkuA

− δtkuB
)− c(δtksvA

− δtksvB
) + (T k

A − T k
B)

− (Ik
A − Ik

B) + (mk
φA −mk

φB) + (vk
φA − vk

φB)] + (Nk
A −Nk

B) (2.53)

After the satellite clock term is eliminated (because the measurements are syn-

chronous and the satellite clock error is the same for both), differences are represented

as (∆), and the above equation can be written as

∆φk
AB = λ−1(∆rk

AB + c∆δtkuAB
+ ∆T k

AB − Ik
AB + ∆mk

φAB + vk
φAB) + ∆Nk

AB (2.54)

The integer value ∆Nk
AB is the difference in the carrier-phase ambiguity between the

two receivers’ measurements.

2.5.6 Double Differencing. A double difference is the combination of a

single difference between satellites (transmitters) and a single difference between

receivers. Because a single difference between receivers cancels the satellite clock

error and a single difference between satellites cancels the receiver clock error, the

double difference cancels both clock error terms. Figure 2.2 displays the concept of

a double difference.
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A B

j k

Figure 2.2 Double Difference Between Satellites j and k with Receivers A and B

The phase measurement will be used in the following example. The double

differenced carrier-phase measurement is defined as

∆∇φk
ABj = ∆φk

AB −∆φj
AB (2.55)

After the single differenced phase Equation 2.54 is substituted in the above equation,

it yields

∆∇φk
ABj = λ−1(∆rk

AB + c∆δtkuAB
+ ∆T k

AB −∆Ik
AB + ∆mk

AB + ∆vk
AB + ∆Nk

AB

− [
λ−1(∆rj

AB + c∆δtjuAB
+ ∆T j

AB −∆Ij
AB + ∆mj

φAB + ∆vj
φAB + ∆N j

AB

]

(2.56)

When the user clock error term is cancelled and the double difference operator (∆∇)

is used to express the double difference error terms, the equation can be written as

∆∇φkj
AB = λ−1(∆∇rkj

AB+∆∇T kj
AB−∆∇Ikj

AB+∆∇mkj
φAB+∆∇vkj

φAB)+∆∇Nkj
AB (2.57)
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Differencing reduces the effects of frequency correlated errors (such as the atmo-

spheric errors) at the expense of increasing the effects of uncorrelated frequency

errors (such as measurement noise and multipath). The single difference increases

the magnitude of the noise and multipath by a factor of (
√

2) and the double differ-

ence increases the magnitude by a factor of 2. Although the integer ambiguity term

(∆∇Nkj
AB) is different from the ambiguity term from the observation equation, it has

maintained its integer nature.

The double differenced code measurement can be adapted from Equation 2.57

by dropping the ambiguity terms and expressing the range in terms of meters, yield-

ing

∆∇ρkj
AB = ∆∇rkj

AB + ∆∇T kj
AB −∆∇Ikj

AB + ∆∇mkj
ρAB + ∆∇vkj

ρAB (2.58)

It is important to note that double-difference code measurements are not typ-

ically used. Rather, single difference measurements are used and the receiver clock

error is estimated directly.

2.5.7 Widelane Measurements. When two GPS frequencies are available,

linear combinations can be formed to create new virtual frequencies. The widelane

measurement is commonly used in DGPS applications and can be written as [28]

φWL = φL1 − φL2 (2.59)

The widelane measurement has a wavelength of approximately 86.19 cm, while the

wavelengths of signals at the L1 and L2 frequency are 19.03 cm and 24.42 cm,

respectively. Although the integer ambiguity value for a widelane measurement is

different from either of the values for the L1 or L2 frequency, it is still an integer.

Table 2.1 shows a comparison between error sources for a widelane versus single

frequency in terms of cycles, where c represents the speed of light and f1 and f2 are
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Table 2.1 Comparison between L1 and widelane (WL) phase errors (cycles)
Error L1 error (cycles) WL error (cycles) WL/L1 ratio

SV Position 1
λ1
∇∆δpsv

1
λWL

∇∆δpSV

λ1

λWL
≈ 0.221

Troposphere 1
λ1
∇∆T 1

λWL
∇∆T λ1

λWL
≈ 0.221

Ionosphere 1
λ1f2

1
∇∆I − (f1−f2)

cf1f2
∇∆I (f1−f2)

f2
≈ 0.283

L1 Multipath 1
λ1
∇∆mφ

1
λ1
∇∆mφ 1

L1 Noise 1
λ1
∇∆vφ

1
λ1
∇∆vφ 1

L2 Multipath 1
λ2
∇∆mφ

1
λ2
∇∆mφ 1

L2 Noise 1
λ2
∇∆vφ

1
λ2
∇∆vφ 1

the frequencies of L1 and L2 respectively [28]. The widelane significantly reduces

the impact of the correlated error sources (i.e., the satellite and receiver position

errors and the atmospheric errors). Measurement noise and multipath are frequency

uncorrelated and thus not reduced by a widelane implementation.

Although the widelane measurement reduces some of the error sources when

expressed in cycles, it actually increases some of the error sources when expressed

in meters. To convert the widelane to L1 ratio, a conversion of λWL

λ1
≈ 4.529 is

multiplied by the ratio give in the table. This means that, when the multipath

and measurement noise are not affected in terms of cycles, the effect is amplified by

a factor of approximately 4.529 when expressed in meters. The satellite position,

receiver position, and tropospheric errors are reduced when expressed in cycles, but

are unaffected when expressed in terms of meters of error. The ionospheric error

is slightly increased in terms of meters for a widelane measurement, but this error

source will be ignored for pseudolite applications.

The longer wavelength of a widelane measurement reduces the number of can-

didate ambiguity sets that are generated within the ambiguity resolution search space

(see Section 2.5.8). This makes ambiguity resolution easier and more reliable, but

with a decreased accuracy when compared to a single frequency, because the errors

in the widelane phase measurements are actually larger than the single frequency
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case. A more detailed discussion on linear combinations of measurements can be

found in references [22, 28].

2.5.8 Carrier-Phase Ambiguity Resolution. Carrier-phase ambiguity reso-

lution is the process of selecting the correct integer value for the phase ambiguity. It

is not always possible to perform ambiguity resolution, and sometimes the wrong in-

teger is chosen, producing erroneous results. Ambiguity resolution generally consists

of two primary operations [27]. The first is to create the ambiguity search space by

the generation of candidate ambiguity sets. The second operation is the selection of

the correct ambiguity set. The next two sections cover the algorithms used in this

research.

2.5.8.1 Ambiguity Set Generation. Ambiguity set generation can be

characterized by being either a position-domain, measurement-domain, or ambiguity-

centered approach. This section provides an overview of the Least squares AMbiguity

Decorrelation Adjustment (LAMBDA) developed by Teunissen [31] and the Fast

Ambiguity Search Filter developed by Chen and Lapachelle [4]

LAMBDA is not a set generation technique, but rather a search space trans-

formation technique. The ambiguity estimates of the floating-point solution contain

a high degree of correlation, which makes ambiguity resolution difficult. LAMBDA

reduces the correlation of the ambiguity estimates to enable a fast and efficient

search [31]. Teunissen referred to the ambiguity transformation process as a ”Z-

transformation”, not to be confused with the Z transformation of discrete time signal

processing. The LAMBDA method preserves the volume of the search space while

also maintaining the integer nature of the ambiguities. The Z-Transform is defined

as:

z = ZTx ẑ = ZT x̂ Qẑ = ZTQx̂Z (2.60)
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where

x, z = untransformed and transformed ambiguities, respectively

x̂, ẑ = untransformed and transformed ambiguity estimates, respectively

Z = Z-Transformation matrix

Qx̂, Q̂z = untransformed and transformed covariance matrix, respectively

The transformation technique can be constructed for the simple two-dimensional

case, starting with the untransformed covariance ambiguity covariance matrix given

by

Qx̂ =


 σ2

1 σ12

σ21 σ2
2


 (2.61)

In this case, the Z-Transformation matrices can be defined as

ZT
1 =


 1 int(−σ12σ

−2
2 )

0 1


 (2.62)

or alternatively

ZT
2 =


 1 0

int(−σ21σ
−2
1 ) 1


 (2.63)

where either the upper (ZT
1 ) or lower (ZT

2 ) diagonal form can be used. The rounding

of the off-diagonal terms (denoted by ”int” ) to integers is necessary to maintain the

integer nature of the ambiguities.

Rizos and Han [29] developed an efficient method for high-order Z-transformations.

The first step is to perform an upper triangular factorization of the ambiguity co-
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variance matrix by:

Qx̂ = U1DU1U
T
1 (2.64)

where U1 is an upper triangular matrix and DU1 is a diagonal matrix.

In the next step an intermediate transformation matrix is computed by first

rounding the elements of U1 to integer values and then taking the inverse.

ZU1 = ([U1]int)
−1 (2.65)

An intermediate covariance matrix (QẐU1
) uses the intermediate transformation ma-

trix (ZU1) by

QẐU1
= ZU1Qx̂Z

T
U1

(2.66)

This process is repeated again, except with a lower triangular factorization given by

QẐL1
= L1DL1L

T
1 (2.67)

where L1 is a lower triangular matrix and DL1 is a diagonal matrix.

Again the matrix is first rounded and then the inverse is taken.

ZL1 = ([L1]int)
−1 (2.68)

The intermediate covariance is calculated by:

QẐL1
= ZL1QẐU1

ZT
L1

(2.69)

The process is repeated until Equations 2.65 and 2.68 result in identity matrices.

The Z-transformation is then given by

Z = ZLk−1
ZUk−1

...ZL2ZU2ZL1ZU1 (2.70)
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Because the LAMBDA method does not actually generate an ambiguity search space,

other ambiguity resolution techniques are used on the transformed estimates and

resulting covariances. The Fast Ambiguity Search Filter (FASF) is the method used

in this thesis.

The FASF method was developed by Chen and Lachapelle [4] as an efficient

approach for ambiguity resolution. FASF operates recursively and takes advantage

of the related nature of ambiguity ranges. Along with the ambiguity state and

covariance, FASF requires the constant k to be given to define the search space for

the ambiguity ∇∆Nint by

x̂n − kσn ≤ ∇∆Nint ≤ x̂n + kσn (2.71)

with x̂n and σn representing the floating-point estimate and standard deviation of

the nth ambiguity. Conditional ambiguity estimates and their associated covariances

are determined with the condition that the first ambiguity is correct. The process

is recursive with each new ambiguity calculated in the same manner [4]. The new

conditional state estimate and covariance are defined by:

x̃ = x̂− pn(xn −∇∆Nint)/σ
2
n (2.72)

Px̃ = Px̂ − (pnp
T
n )/σ2

n (2.73)

where

x̂ = unconditioned estimated parameter vector

Px̂ = unconditioned estimated parameter covariance matrix

x̃ = estimated parameter vector conditioned on x̂n = ∇∆Nint

Px̃ = covariance matrix conditioned on x̂n = ∇∆Nint

pn = nth column of the covariance matrix Px̂

σ2
n = scalar variance of the nth parameter (taken from the diagonal of Px̂)
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FASF can be performed in either the normal or Z-transformed domain. If

FASF is performed in the Z-transform domain (as done in this thesis research), it

must be transformed back into the original ambiguity domain.

2.5.8.2 Ambiguity Set Determination. Ambiguity set determination

is the second operation in the ambiguity resolution process. A common technique

used in set discrimination is the use of a ratio test using a sum of squared residuals.

The correct set of ambiguities typically has the smallest residuals. By comparing the

sum of squared residuals the correct set generally stands out. This techniques can

be further broken down into two methods based on how the residuals are formed.

The first method is to define a residual as the difference between the floating-

point ambiguity state estimate and each candidate set [24]. When this approach is

used, the weighted sum of squared residuals is expressed by:

Ωi = (x̂float − x̄i)
TP−1

x̂float
(x̂float − x̄i) (2.74)

where x̄i is the ith candidate integer ambiguity vector and Ωi is the sum of squared

residuals for the ith candidate ambiguity vector. This is the method used in this

research.

The second method involves defining residuals based on the difference between

the measurement and measurement prediction such as

ri = zi − h[x(ti); ti] (2.75)

This requires that a filter operates on each candidate ambiguity set to determine the

best fit for discrimination. The sum of squared residuals for this convention is given

as

Ωi = rTA−1r (2.76)
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where r is a residual based on equation (2.75), and A is defined to be the measure-

ment covariance [24].

The ratio test can be applied to either residual convention by comparing the

magnitude of the best (smallest) and second best (second smallest) sum of squared

residual terms by

ratio =
Ωi(2

ndbest)

Ωi(best)
(2.77)

The ambiguity set corresponding to the one selected as best is determined to be the

correct one if the ratio is consistently large (typically, greater than 2).

2.6 Pseudolites

The term pseudolite is short for ”pseudo-satellite”, refering to ground-based

GPS-like transmitters. Pseudolites have the flexibility to vary the location, power,

and frequency of the transmitter. Pseudolites also are able to provide signals for

navigation purposes in adverse environments such as open-pit mining, where GPS

signals are often block by the steep sides of the pit. Many of the assumptions that

are made with GPS navigation cannot be applied to pseudolites, as will be seen.

This section begins with a discussion of differences between GPS and pseudolite

navigation, then presents typical pseudolite applications, and ends with descriptions

of the problems and sources of error in pseudolite measurements.

2.6.1 GPS-Pseudolite Differences. Many of the assumptions that are used

in GPS processing cannot be made for pseudolite navigation. These include:

• The expected ranges for pseudolites are much more dynamic than for GPS

operation and will affect receiver power levels

• When a static reference receiver is used, there is not any relative motion be-

tween the reference receiver and each pseudolite like there is between a ref-

erence receiver and the orbiting GPS satellites. This results in measurement
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biases due to pseudolite location errors that do not average out over time.

Also the multipath error between pseudolites and the reference receiver will

have stronger time correlations than the multipath experienced at the mobile

receiver, when in motion.

• Pseudolites do not have to operate at the GPS L1 and L2 frequencies. They

also do not have to use the same code sequence or chipping rates that GPS

satellites use.

• Due to the short ranges between pseudolite transmitters and receivers the

measurement model is more nonlinear than for GPS operation.

• Pseudolites do not have an orbital or ephemeris error, but rather a position

error that is dependent on the type of surveying accuracy used to estimate the

phase center of the pseudolite antenna.

• A pseudolite signal will not travel through the ionosphere, so any error terms

associated with ionospheric delay can be ignored.

• Depending on the relation of the mobile receiver to the reference receiver,

single and double differencing will not reduce tropospheric error as much as

with GPS. This is similar to extremely long baselines in GPS processing.

2.6.2 Pseudolite Applications. The four categories of pseudolite applica-

tions include direct positioning, digital data transmission, carrier-phase ambiguity

resolution, and as a differential reference station [7]. Direct positioning using a

network of pseudolites is the application addressed in this research.

Pseudolite direct positioning can be accomplished with both the code and

carrier-phase measurements in a similar manner as for conventional GPS positioning.

The majority of work with pseudolites has been concerned with the augmentation of

GPS or GPS/INS. Pseudolites can improve the overall geometry of the augmented

system, providing greater positioning accuracy, reliability, availability, continuity,

and integrity monitoring [23]. They can also be used as a sole source signal of
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navigation. Additionally, GPS signals are typically weak or not present indoors, and

pseudolites can be used to provide an indoor navigation source.

Digital data transmission is also possible for pseudolite transmitters. One of

the advantages of using a pseudolite for data transmission to a GPS receiver is that

only minor changes are needed in the receiver [7]. GPS reference data has frequently

been proposed for transmission via pseudolites [10, 30].

Pseudolites can assist and speed up the carrier-phase ambiguity resolution in

a GPS system augmented by pseudolites. This is accomplished through the large

changes in geometries of the pseudolite signal [23]. An example of this is the Kine-

matic GPS Landing Systm (KGLS) at Stanford [7].

When a pseudolite rebroadcasts a coherent replica of received GPS signals, it

is known as a differential reference station [7]. The difference between the direct and

reflected signal can be used for navigation purposes.

2.6.3 Signal Interference and Near-Far Problem. One of the largest issues

facing practical pseudolite applications is the signal interference and the associated

near-far problem. While the distance from a given receiver to any GPS satellite is

relatively constant, the ranges between a pseudolite and its receiver vary greatly.

The large dynamic difference in ranges result in large differences in received power

levels. This can cause the automatic gain control in a receiver to adjust to the highest

powered signal, which effectively jams all other pseudolites.

Pseudolites have both a ”near” and a ”far” radius that define its usable area.

A pseudolite will jam all other pseudolites within its near radius. The far radius is

the distance within which a receiver must stay to maintain lock on that pseudolite.

The near and far radii are a function of transmission power, so increasing or decreas-

ing power will increase or decrease the near and far radii by the same ratio. The

relationship between the near and far radius is given as a ratio that is generally ac-

cepted to be 1/10 for practical systems [7], although this can vary depending on the
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cross-correlation of the codes. An example of the near-far radii is shown in Figure

2.3.

Figure 2.3 Near-Far Problem

The various techniques that have been proposed to reduce the near-far prob-

lem can be grouped into three categories—Time Division Multiple Access (TDMA),

Frequency Division Multiple Access (FDMA), and Code Division Multiple Access

(CDMA).

TDMA can be accomplished through the pulsing of the pseudolites. If pulsed

pseudolites are operated at greater than 20-25 percent of a duty cycle, then the GPS

signal will be jammed [5]. It has been proposed to operate two pseudolites each puls-

ing at 10-12.5 percent of the duty cycle to facilitate an integrated GPS/Pseudolite

navigation system [5]. This arrangement still only allows the use of two pseudolites

if the GPS signal is also desired. If the GPS signal is not of interest, 10 pseudolites

could be used (given a 10 percent duty cycle each).

The second technique for interference reduction, FDMA, can be implemented

by modifying GPS signals with small frequency offsets. Elrod et. al [11] suggested

offsetting the frequency to the first null of the GPS satellite signal in order to reduce

cross-correlation with the GPS signal. It resembles a large doppler offset that most

receivers can handle.
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CDMA has been demonstrated through concatenations of C/A codes. Ndili [23]

showed through simulation that a code length of 4092 (4 times that of C/A code)

would provide a 6 dB enhancement, and thus double the far radius while maintaining

the same near radius. By combining 20 C/A codes for a length of 20460 in addition

to operating at a P-code chipping rate would add a 23 dB enhancement. The longer

the code length and higher the chipping rate, the larger the near-far ratio.

2.6.4 Sources of Error. Pseudolite error can be broken up into measure-

ment and measurement model errors. Both of these will affect the accuracy of a

pseudolite system because the residual term is formed by subtracting the measure-

ment prediction from the measurement as shown by the following equation:

ri = zi − h[x(ti); ti] (2.78)

The next two subsections describe the errors present in pseudolite measurements and

measurement models.

2.6.4.1 Pseudolite Measurement Errors. Pseudolite signal errors are

reduced less by double differencing than for the analogous GPS equations due to a

different geometric configuration [6]. The errors that remain in a pseudolite carrier-

phase measurement after a double difference operation are the measurement noise,

multipath, and residual tropospheric error (i.e., the error after a tropospheric model

has been applied).

The measurement noise associated with pseudolites is determined by the qual-

ity of the receiver (just like for a GPS measurement). Along with proper modelling

in the navigation filter, improving the receiver design is one of the few ways to reduce

the effect of measurement noise.

Multipath can be considered a dominant error source in pseudolite applica-

tions [35]. Even after multipath mitigating techniques (such as antenna placement
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and chokering antennas) are used in a pseudolite system, the multipath error is gen-

erally larger for a pseudolite signal than for a satellite signal [8]. This is due to the

relative geometries in the transmitter-receiver setup in a pseudolite network.

Because, unlike satellites, the transmitters do not move relative to the refer-

ence receiver, time-invariant or standing multipath is a concern for pseudolite appli-

cations. This contributes to a multipath error that is more difficult to handle than

the multipath error associated with satellite signals. The navigation filter assumes

that all errors sources are white (uncorrelated in time) and the more time-invariant

the multipath becomes, the further this assumption is broken. Careful calibration

is required to estimate and remove this constant error from the corresponding mea-

surements. The use of carrier-phase measurements and antenna design have been

shown to help reduce multipath [35]. Multipath affects code measurements to a

higher degree than carrier-phase measurements for both a pseudolite or satellite

source. Antenna gain shaping helps to reduce multipath by adjusting the gain in the

direction of large reflectors [18, 35].

The residual tropospheric error that exists after a tropospheric model is applied

cannot be ignored in precise pseudolite applications. The amount that single and

double differencing reduce the effect of tropospheric delay in GPS operation is a

function of the baseline difference in the mobile and reference receiver positions.

Pseudolite applications are equivalent to a very large baseline for which differencing

may reduce, but not significantly remove, tropospheric delay.

2.6.4.2 Pseudolite Measurement Model Errors. Pseudolite measure-

ment model errors include the effect of position errors in the location of the pseudo-

lites and reference receiver in addition to the error due to linear approximations in

the measurement model.

The source of errors from the imprecise locations of the pseudolite transmitters

and reference receivers are analogous to the ephemeris or orbital errors in GPS
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satellite locations. Like tropospheric errors, these position errors are not reduced for

pseudolites as much as GPS for single and double differencing.

For outdoor pseudolite applications, static surveying techniques that use carrier-

phase DGPS can be used to solve for the positions of the pseudolites to within

centimeters. Because GPS is generally not available indoors, this cannot be used

to estimate the locations of pseudolite transmitters indoors precisely. Changdon

et.al. [2] presented a method to calculate the pseudolite positions using only the

user’s position information and the pseudolite signals. This is advantageous because

the location found was the phase center of the antenna and not just the physical

center.

One of the biggest differences between GPS and pseudolite navigation is the

typical ranges between transmitters and receivers. GPS signals travel on the order

of 20,000 kilometers or more, while pseudolite signal ranges could be measured in

meters (depending on signal power). As the ranges in pseudolite navigation become

shorter, the signal waveform becomes more spherical than planar. Figure 2.4 depicts

this relationship with a planar signal from a GPS satellite and a spherical signal

from a pseudolite. In reality a GPS signal is spherical, but the radius is so large that

it is essentially planar for a GPS user.

Figure 2.4 Spherical and Planar Wavefronts
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The measurement model equation for the extended Kalman filter (EKF) is

nonlinear for both GPS and pseudolite navigation. An EKF does a linearization

of the nonlinear measurement equation by using a first order Taylor series approx-

imation. As the waveforms become more spherical, the measurement nonlinearity

becomes more severe and the first order approximation becomes more inadequate.

For GPS signals, the approximation error is small enough to be ignored, but pseu-

dolite navigation is different and requires care in handling the large measurement

nonlinearities.

The nonlinearity error can also be explained by graphically. Figure 2.5 shows

a spherical waveform at the receiver location. The uncertainty orthogonal to the

line-of-sight from transmitter to receiver will only increase the range. This results

in the range to be under-estimated. As the waveforms become more spherical, this

error becomes more substantial.

Figure 2.5 Nonlinear Elongation of Range
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This problem is not unique to GPS or pseudolite operation. Widnall [?] referred

to this problem as a nonlinear elongation of measured range. He suggested apply-

ing nonlinear filtering techniques to enlarge the region of convergence of a Kalman

filter. He stated that, if the nonlinearity is comparable to the measurement error,

divergence can occur.

2.7 Summary

This chapter has provided a basic overview of Kalman filter theory including

the extended Kalman filters. GPS techniques including carrier-phase differential

algorithms were presented. The section on pseudolites described the challenges and

issues of pseudolite navigation.
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III. Methodology and Algorithm Development

3.1 Overview

This chapter begins with the laying out the simulation design and setup. It

then gives a description of the truth model and continues with the generation of the

measurement and measurement model errors. Next, the floating-point DGPS filter is

described, along with the features of this filter. This chapter ends with a description

of the specific carrier-phase ambiguity techniques used in this research.

3.2 Overall Simulation Design

This research involved development of a Kalman filter-based processing algo-

rithm for calculating position and ambiguities for the pseudolite system, as well as

simulating a truth model. The truth model was not a traditional truth model, in

the traditional Kalman filter performance evaluation sense, in which a low order

filter is compared to a higher order truth model. Rather, the truth model represents

the true positions of the transmitters and receivers along with the true ambiguities,

and simulated errors in the simulated measurements. The purpose of the filter algo-

rithm was to estimate the position of the mobile receiver and the ambiguities in the

carrier-phase measurements.

3.3 Truth Model

The first step in the generation of the truth model consisted of selecting the

coordinates of the stationary pseudolites and reference receiver. The projected coor-

dinates of the Inverted GPS Range (IGR) were used for this research [16]. The IGR

is a GPS modernization field test program which is currently unfunded at the time

of this writing. The coordinates reflect realistic pseudolite locations near Holloman

AFB, NM. Table 3.1 lists the positions of the pseudolites (numbered 1-10) and ref-

3-1



erence receiver while their positions are shown in Figure 3.1 relative to the reference

receiver.

Table 3.1 Pseudolite and Reference Receiver Truth Locations

PRN # Latitude (deg) Longtitude (deg) Ellipsoid height (m)

1 33.50321 -106.56055 1433

2 33.54685 -106.43650 1630

3 33.67726 -106.67454 1447

4 33.39548 -106.67449 1541

5 33.66746 -106.43772 1602

6 33.78633 -106.48492 1562

7 33.82624 -106.66540 1574

8 33.64742 -106.56846 1426

9 33.72906 -106.41564 1656

10 33.72990 -106.63744 1442

Ref Rcvr 33.65695 -106.53696 1424
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Figure 3.1 Pseudolite and Reference Receiver Relative Positions
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The second step in the truth model generation was the selection of a realistic

flight trajectory. The flight trajectory used for this research came from actual flight

test data collected from a C-21 operated by the 746th Test Squadron at Holloman

AFB. The simulation is constructed so only the positions, i.e. no velocities or acceler-

ations, of the mobile receiver are required to run additional flight scenarios. CHAPS

is normally flown on a C-21 from Holloman AFB, NM, so the flight trajectory used

in this research is realistic of a typical reference system flight. The three-dimensional

view of the trajectory with projections unto each axis is plotted in Figure 3.2.
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Figure 3.2 3-Dimensional View of Trajectory With Projections

Although the flight trajectory and the coordinates of the pseudolites and refer-

ence receiver are located near Holloman AFB, New Mexico, they are not co-located.

The coordinates of the pseudolites and reference receiver were adjusted to within

range of the mobile receiver flight trajectory. This was accomplished by first con-

verting them from the LLH frame to an ECEF frame, shifting them in a local level
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frame, and finally converting back to ECEF. This arrangement was necessary to

maintain the exact relative arrangement of the pseudolite network.

3.4 Measurement and Measurement Model Error Generation

Section 2.5.6 developed the double-differenced code and carrier-phase measure-

ment equations for GPS applications. Those equations require adaptation for use

with pseudolite measurements. The ionospheric error terms can be removed because

pseudolite signals will not travel through the ionosphere. The resulting equations

for pseudolite applications are

∆∇ρkj
AB = ∆∇rkj

AB + ∆∇T kj
AB + ∆∇mkj

ρAB + ∆∇vkj
ρAB (3.1)

for the code and

∆∇φkj
AB = λ−1(∆∇rkj

AB + ∆∇T kj
AB + ∆∇mkj

φAB + ∆∇vkj
φAB) + ∆∇Nkj

AB (3.2)

for the carrier-phase. GPS navigation is affected by errors in the predicted motion of

the satellites, commonly referred to as ephemeris or orbital errors. This error is not

present in the signal itself, but occurs when the receiver uses the imprecise satellite

locations for range calculations. Pseudolites have a corresponding error that is due

to the imprecise estimates of the reference receiver and pseudolite locations. These

pseudolite and reference receiver position errors, along with the measurement noise,

multipath, and tropospheric delay errors terms were simulated in this research.

The following sections describe the process of generating the measurement and

measurement model errors used in this research. First the pseudolite position errors

are described, followed by the descriptions of measurement noise, multipath, and

tropospheric delay. Measurement noise, multipath, and tropospheric delay error

were added to the true ranges. The pseudolite and reference receiver position errors

were added to the true positions, and those positions were used in the filter. The
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figures in each section show plots for code and carrier-phase errors for ten pseudolites

for every epoch in the simulation. These plots show the relative magnitudes and time

correlations for each error source. After the errors were added to the true ranges,

but before a data file was created with the code and carrier-phase measurements, a

maximum range limitation was implemented. The maximum range feature simulated

a pseudolite that was out of signal range from the mobile receiver. Pseudolite prn 4

was 31,698 meters from the reference receiver, so the maximum range was typically

set higher than that at 32,000 meters. This resulted in 7-10 satellites visible for the

mobile receiver.

3.4.1 Pseudolite and Reference Receiver Position Errors. The imprecise

estimated positions of the pseudolites and reference receiver affect the code and

carrier-phase measurement by the same magnitude. The location errors of the pseu-

dolites and reference receiver were modeled as biases with a zero-mean Gaussian

distribution. Errors were created in an East-North-Up reference frame with inde-

pendent horizontal and vertical components which were added to the true positions.

The horizontal standard deviation was set to 1 cm and the vertical was set to 2 cm

to represent the expected accuracies of precision surveying.

The errors due to inaccurate positions of the pseudolites and reference receiver

were not added to the true range, but instead used by the filer in the measurement

prediction calculation. Figure 3.3 shows the equivalent effect of the position errors

on the ranges to the mobile and reference receiver. The ranges calculated at the

mobile receiver include only the effect of position errors at the pseudolites while the

ranges calculated at the reference receiver include both the position errors of the

pseudolites and the errors of the reference receiver itself.

The ten lines shown on Figure 3.3, one for each visible pseudolite, denote the

range error. The lines for the reference receiver range errors are constants because

the positions errors are constant during a simulation run.
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Figure 3.3 Position Error Effect on Ranges

3.4.2 Measurement Noise. The measurement noise was modeled as zero-

mean white Gaussian noise. Measurement noise is considerably smaller for carrier-

phase measurements than for code measurements, and it was modeled with a 55 cm

standard deviation for the code versus a 3.5 mm standard deviation for the carrier-

phase [28]. The measurement noise was modeled as uncorrelated between the mobile

and reference receiver.

3.4.3 Multipath. The multipath that exists in a pseudolite system is caused

by the environment at the location of the transmitters and receivers [8, 12]. The

reference receiver can experience more time-invariant multipath than the mobile

receiver because there isn’t any relative movement between the reference receiver

and the pseudolites . These pseudolite phenomena can be reduced with a Multipath-

Limiting-Antenna on both the transmitters and receivers [8]. For the purposes of this

research, the multipath for the received signal at the reference receiver was modeled

with longer time correlations than the multipath for the mobile receiver.
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The multipath was generated as a first order Gauss Markov process driven

with the parameters σ and τ , which are themselves modeled as first order gauss

Markov processes (shown below as FOGM(σ, τ). A minimum threshold was set for

the σ and τ values. The code multipath was generated as 1.5 times the summation

of source 1 and source 2, to accurately model multipath error. These equations can

be summarized by

multipath = FOGM(σ, τ) (3.3)

σ=σ0 + FOGM(σσ, τσ) (3.4)

τ=τ0 + FOGM(ττ , ττ ) (3.5)

σ ≥ σmin (3.6)

τ ≥ τmin (3.7)

The values used for the mobile receiver multipath are listed in Table 3.2 are taken

from.

Table 3.2 Multipath Parameter Values

Mob Code Mob Code Mobile Ref Code Ref Code Reference

Parameter (Source 1) (Source 2) Phase (Source 1) (Source 2) Phase

σ0 (cm) 10.0 20.0 0.19 10.0 20.0 0.19

τ0 (sec) 500 25 1000 500 25 1000

σσ (cm) 4.0 0.1 0.038 4.0 0.1 0.038

τσ (sec) 2000 2000 1500 2000 2000 1500

στ (sec) 200 2 400 200 2 400

ττ (sec) 2000 2000 2000 2000 2000 2000

σmin (cm) 5.0 1.0 0.019 5.0 1.0 0.019

τmin (sec) 100 1 0.019 100 1 0.019
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The parameters for the reference receiver multipath were the same for the

mobile receiver except that the time constants were tripled to simulate stronger

time correlations. Figure 3.4 depicts a typical run for mobile receiver multipath

error, while Figure 3.5 depicts the reference receiver multipath. Both plots show the

code multipath on the top subplot and the carrier-phase multipath on the bottom

subplot.
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Figure 3.4 Typical Mobile Receiver Multipath Error for All Ten Pseudolites

−60

−40

−20

0

20

40

C
od

e 
er

ro
r 

in
 c

m

399849 399988 400126 400265 400403 400542 400680

−0.4

−0.2

0

0.2

P
ha

se
 e

rr
or

 in
 c

m

08:04 08:06 08:09 08:11 08:13 08:16 08:18

GPS Week Seconds\Local Time

Figure 3.5 Typical Reference Receiver Multipath Error for All Ten Pseudolites

By comparing Figures 3.5 and 3.4 it is clear that the multipath simulated at

the reference receiver had strong time correlations between epochs. Recall that this

3-8



was the purpose of tripling the time constants for the reference receiver tropospheric

truth model.

3.4.4 Tropospheric Delay. The truth model for generating the tropospheric

delay was taken from reference [3, 33] which was a function of temperature, atmo-

spheric pressure, relative humidity, elevation angle, and range. The atmospheric

parameters are the ones taken at the reference receiver. The tropospheric delay

calculation for the mobile receiver is defined as

τAPL,u(Ru, ∆hu) =
∆τv,dry + ∆τv,wet

sin(elu)
=

(∆τv,dry + ∆τv,wet)

∆hu

Ru

=
77.6Ps × (42700− hs)× 10−6

5Ts∆hu

[(
1− ∆hAPL

42700− hs

)5

−
(

1− ∆hAPL + ∆hu

42700− hs

)5
]

Ru

+
Ns × (13000− hs)× 10−6

5∆hu

[(
1− ∆hAPL

13000− hs

)5

−
(

1− ∆hAPL + ∆hu

13000− hs

)5
]

Ru

(3.8)

where the variables are defined as

τAPL,u = tropospheric delay for mobile receiver (meters)

Ru = slant range between the pseudolite and user (meters)

∆hu = the height of the user above the pseudolite (meters)

∆τv,dry = differential vertical dry delay (meters)

∆τv,wet = differential vertical wet delay (meters)

elu = elevation angle in radians

∆hAPL = difference in height between pseudolites and reference receiver

hs = height of reference receiver

Ps = surface pressure (millibars)

Ts = surface temperature (Kelvins)

Ns = surface refractivity
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Equation 3.8 is adapted for reference receiver tropospheric delay calculation

and given by

τAPL,R(RR, ∆hR) =
77.6Ps × (42700− hs)× 10−6

5Ts∆hAPL

[
1−

(
1− ∆hAPL

42700− hs

)5
]

RR

+
Ns × (13000− hs)× 10−6

5∆hAPL

[
1−

(
1− ∆hAPL

13000− hs

)5
]

RR (3.9)

Both Equations 3.8 and 3.9 are valid for positive and negative elevation angles but

indeterminate for zero elevation angles [3, 33]. The reference did develop equations

for zero elevation angles, but they were not implemented in this research, because

the placement of the reference receivers and mobile receiver trajectory did not result

in zero elevation angles.

3.5 Floating-Point Differential Pseudolite Kalman Filter

The floating-point differential pseudolite Kalman filter used in this research

is a post-processed algorithm. It is a modified version of the filter developed in

reference [27], which is adapted for pseudolite navigation. The double-difference

operation is applied to both the code and carrier-phase measurements, allowing

the removal of the states modelling clock error. This section presents the baseline

filter development, and the modifications are presented in the next section. The

baseline filter calculates position, velocity, acceleration, and carrier-phase ambiguity

estimates for the mobile receiver. The objective of the filter is to produce carrier-

phase ambiguity estimates and associated covariances that will be processed through

ambiguity resolution techniques to produce the fixed-integer results.

Before the filter is run on the data, a pre-processing step is conducted to

determine the number of visible pseudolites, a vector of visible pseudolite prns, the

base pseudolite for double-difference operation, and the non-base pseudolite prns for

each epoch data.
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3.5.1 Differential Pseudolite Model Equations. A First Order Gauss Markov

Acceleration (FOGMA) model was used to define the three positions, three velocities,

and three accelerations states of the floating-point differential pseudolite Kalman fil-

ter. The remaining states consisted of (n− 1) carrier-phase ambiguity states, where

n is the number of pseudolites in view at that epoch.

The positions, given in the ECEF coordinate frame, are modeled as the time

derivatives of the velocities, and the velocities are modeled as the time derivatives

of the accelerations by:

ẋ1 = x4 ẋ4 = x7

ẋ2 = x5 ẋ5 = x8 (3.10)

ẋ3 = x6 ẋ6 = x9

The position and velocity states are completely determined by other states, and

they do no include any direct driving noise. The acceleration states are modeled as

first-order Gauss-Markov processes by

ẋ7 = (−1/Ta)x7 + wa1(t)

ẋ8 = (−1/Ta)x8 + wa2(t) (3.11)

ẋ9 = (−1/Ta)x9 + wa3(t)

with associated dynamic driving noise processes given by

E {wa1(t)wa1(t + τ)} = E {wa2(t)wa2(t + τ)} = E {wa3(t)wa3(t + τ)}

=
2σ2

a

Ta

δ(τ) = qaδ(τ) (3.12)

The correlation time, Ta, and variance (or mean square value), σ2
a, for the accel-

erations are determined based on the anticipated acceleration maneuvers and time
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correlations. The value Ta was set to 3 seconds to account for relatively short accel-

eration maneuvers in a C-12, and σa was set to 15 m/s2 to handle the ”worst case”

acceleration. With these values qa is calculated to be 150 m2/sec5.

The floating-point filter can accept either a single or widelane frequency. In

either case, the double difference is performed with the ambiguity terms still main-

taining an integer nature. The ambiguities were modeled as random walks rather

than constant biases to ensure that, if the filter converged to an incorrect value,

it could correct itself (i.e., the gain of the . The cycle ambiguities were modeled

in an additional (n − 1) states after the initial 9 states for position, velocity, and

acceleration. The double-differenced carrier-phase ambiguities are defined by:

ẋ10 = w∇∆N1−2

ẋ11 = w∇∆N1−3

...

ẋ(8+n) = w∇∆N1−n (3.13)

where PRN 1 is given as the base and n represents the total number of pseudolites

visible.

The process noise is given as

E{w∇∆Nbi(t)w∇∆Nbi(t + τ)} = qNδ(τ)

qN = 1.1× 10−5(cycles2/ sec)

The value of qN will yield an increase of approximately 0.2 cycles in the ambiguity

standard deviation over a 1 hour period [27]. This will allow the filter to correct

itself if it converged to the incorrect value.
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The state vector for the floating-point Kalman filter is defined as

x =
[
X Y Z Ẋ Ẏ Ż Ẍ Ẏ Z̈ ∇∆N1−2 . . . ∇∆N1−n

]T

(3.14)

where

x1 = X = ECEF X position (m)

x2 = Y = ECEF Y position (m)

x3 = Z = ECEF Z position (m)

x4 = Ẋ = ECEF X velocity (m/s)

x5 = Ẏ = ECEF Y velocity (m/s)

x6 = Ż = ECEF Z velocity (m/s)

x7 = Ẍ = ECEF X acceleration (m/s2)

x8 = Ẏ = ECEF Y acceleration (m/s2)

x9 = Z̈ = ECEF Z acceleration (m/s2)

x10 = ∇∆N1−2 = double-differenced phase ambiguity (cycles)

x11 = ∇∆N1−3 = double-differenced phase ambiguity (cycles)

...

x9+(n−1) = ∇∆N1−n = double-differenced phase ambiguity (cycles)

The differential equation is similar to Equation 2.1 and is represented by

ẋ(t) = F(t)x(t) + G(t)w(t) (3.15)
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which expands to:




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

...

ẋn




=




0 0 0 1 0 0 0 0 0 0 0 · · · 0

0 0 0 0 1 0 0 0 0 0 0 · · · 0

0 0 0 0 0 1 0 0 0 0 0 · · · 0

0 0 0 0 0 0 1 0 0 0 0 · · · 0

0 0 0 0 0 0 0 1 0 0 0 · · · 0

0 0 0 0 0 0 0 0 1 0 0 · · · 0

0 0 0 0 0 0 −1/Ta 0 0 0 0 · · · 0

0 0 0 0 0 0 0 −1/Ta 0 0 0 · · · 0

0 0 0 0 0 0 0 0 −1/Ta 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 0







x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

...

xn




+




0

0

0

0

0

0

wa1

wa2

wa3

w∇∆Nbi

w∇∆Nbi

...

w∇∆Nbi




(3.16)

In Equation 3.16, the variable Ta represents the FOGMA acceleration time constant.

The G(t) matrix is defined to be an identity matrix for this research. The dynamics

driving noise Q is defined by:

E{w(t)wT (t + τ)} = Q(t)δ(τ) (3.17)
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The matrix Q is represented by:

Q =




0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 qa 0 0 0 0 · · · 0

0 0 0 0 0 0 0 qa 0 0 0 · · · 0

0 0 0 0 0 0 0 0 qa 0 0 · · · 0

0 0 0 0 0 0 0 0 0 qN 0 · · · 0

0 0 0 0 0 0 0 0 0 0 qN · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 qN




(3.18)

The acceleration mean squared value, time constant, and acceleration noise, and the

phase ambiguity noise values, which were previously justified, are summarized in

Table 3.3.

Table 3.3 Floating-Point Filter Dynamics Driving Noise Values

Term Definition Value

σ2
a Mean squared value (12.25 m/sec2)2

Ta Acceleration time constant 3 seconds

qa Acceleration noise 100 m2/sec5

qN Phase ambiguity noise 1.1× 10−4 cycles2/sec

The initial conditions for the position states were set to the true value at the

first epoch with an additive zero-mean error term that had a Gaussian distribution

and a standard deviation of 5 meters. The velocity and acceleration initializations
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were set to zero with the covariance initialization matrix defined by:

P(t0) =




σ2
x 0 0 0 0 0 0 0 0 0 0 . . . 0

0 σ2
y 0 0 0 0 0 0 0 0 0 . . . 0

0 0 σ2
z 0 0 0 0 0 0 0 0 . . . 0

0 0 0 σ2
ẋ 0 0 0 0 0 0 0 . . . 0

0 0 0 0 σ2
ẏ 0 0 0 0 0 0 . . . 0

0 0 0 0 0 σ2
ż 0 0 0 0 0 . . . 0

0 0 0 0 0 0 σ2
ẍ 0 0 0 0 . . . 0

0 0 0 0 0 0 0 σ2
ÿ 0 0 0 . . . 0

0 0 0 0 0 0 0 0 σ2
z̈ 0 0 . . . 0

0 0 0 0 0 0 0 0 0 σ2
∇∆Nbi 0 . . . 0

0 0 0 0 0 0 0 0 0 0 σ2
∇∆Nbi . . . 0

...
...

...
...

...
...

...
...

...
...

...
. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 σ2
∇∆Nbi




(3.19)

The initial covariance values used in this research are given in Table 3.4 where the

number of visible pseudolites in the first epoch is given as n.

Table 3.4 Floating-Point Filter Initial Covariance Values

Term Definition Value

σ2
x,y,z Position state variance (100 m)2

σ2
ẋ,ẏ,ż Velocity State variance (400 m/s)2

σ2
ẍ,ÿ,z̈ Acceleration state variance (20 m/s2)2

σ2
∇∆Nbi Phase ambiguity variance (50

λ
cycles)2

3.5.2 Differential Pseudolite Measurement Model. The floating-point dif-

ferential pseudolite Kalman filter uses a nonlinear measurement model which consists

of double-differenced code and phase measurements resulting in a 2(n− 1) measure-
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ment vector (where n is the number of pseudolites in view) defined by

z(ti) = [∇∆ρ1−2 · · ·∇∆ρ1−n∇∆φ1−2 · · · ∇∆φ1−n]T (3.20)

From Chapter 2, Equation 2.23 described the nonlinear measurement model for an

extended Kalman filter which is in the form:

z(ti) = h[x(ti), ti] + v(ti) (3.21)

It must be linearized before it is used in the gain and covariance calculations of the

extended Kalman filter. Recall from Chapter 2 that thee partial derivative matrix

H was defined as

H[ti; x̂(t−i )] ≡ ∂h[x, ti]

∂x

∣∣∣∣
x=x̂(t−i )

(3.22)

which is an m × s matrix, where m is the number of measurements and s is the

number of states. Each row corresponds to a single measurement and is defined as

∂h[x, ti]

∂x

∣∣∣∣
x=x̂(t−

i
)

=


 ∂h[x, ti]

∂x1

∣∣∣∣
x=x̂(t−

i
)

∂h[x, ti]

∂x2

∣∣∣∣
x=x̂(t−

i
)

· · · ∂h[x, ti]

∂xs

∣∣∣∣
x=x̂(t−

i
)


 (3.23)

Recall from Equation 2.57 that the double-differenced carrier-phase measurement is

given by

∆∇φkj
AB = λ−1(∆∇rkj

AB + ∆∇T kj
AB + ∆∇mkj

AB + ∆∇vkj
AB) + ∆∇Nkj

AB (3.24)

The λ term in Equation 3.24 is the carrier wavelength and will depend on whether

a single or widelane frequency is used.

When the double-differenced range term is expanded and the measurement

errors are combined the carrier-phase equation is expressed as

∆∇φjk
AB =

1

λ

[
rj
B − rj

A − (rk
B − rk

A)
]
+ ∆∇N jk

AB + v∆∇φ (3.25)
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In the preceding equation, the term v∆∇φ is modeled as a white noise, and it repre-

sents the combination of the doubled-differenced measurement noise, multipath, and

tropospheric delay. It is important to note that the tropospheric delay terms are the

residual error after a tropospheric model has been applied. When the range terms

in Equation 3.25 are further expanded and expressed in terms of state variables, the

equation becomes

∆∇Φjk
AB =

1

λ

[
(xj − x1)

2 + (yj − x2)
2 + (zj − x3)

2
]1/2

− [
(xk − x1)

2 + (yk − x2)
2 + (zk − x3)

2
]1/2

(3.26)

+
1

λ

{
rk
A − rj

A

}
+ ∆∇N jk

AB + v∆∇Φ

where xj,k, yj,k, zj,k represent the estimate of the pseudolites indexed by j and k.

Recall the 1
λ

{
rk
B − rj

B

}
term represents the mobile receiver and is expanded, but the

1
λ

{
rk
A − rj

A

}
term represents the reference receiver so it is not a function of state

variables, and thus not expanded.

The partial derivatives for each row of the double-differenced carrier-phase

measurements are given as

∂h[x, ti]

∂x1

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
xj−x1

[(xj−x1)2+(yj−x2)2+(zj−x3)2]1/2

}

− 1
λ

{
xk−x1

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
1/2

}
(3.27)

= 1
λ

{
ej
1 − ek

1

}

∂h[x, ti]

∂x2

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
yj−x2

[(xj−x1)2+(yj−x2)2+(zj−x3)2]1/2

}

− 1
λ

{
yk−x3

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
1/2

}
(3.28)

= 1
λ

{
ej
2 − ek

2

}
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∂h[x, ti]

∂x3

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
zj−x3

[(xj−x1)2+(yj−x2)2+(zj−x3)2]1/2

}

− 1
λ

{
zk−x3

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
1/2

}
(3.29)

= 1
λ

{
ej
3 − ek

3

}

∂h[x, ti]

∂xbi

∣∣∣∣
x=x̂(t−i )

= 1 (3.30)

where

ej
mob = [ej

1 ej
2 ej

3] (3.31)

is the unit line-of-sight vectors pointing from the mobile receiver to pseudolite j.

When these individual partial derivatives are combined they represent one row

of the H matrix as

Hjk =

[
1

λ
(ej

mob − ek
mob) 0 0 0 0 0 0 · · · 1 · · · 0

]
(3.32)

where 1
λ
(ej

mob − ek
mob) represents the scaled difference vector between two unit line-

of-site vectors from the mobile receiver to pseudolite ”j” and the mobile receiver to

pseudolite ”k”. The ”1” is placed in the column for the appropriate ambiguity state.

The corresponding rows for the double differenced code measurements are the

same values after the 1
λ

term is removed and the ”1” for the ambiguity state values

is dropped:

Hjk =
[
(ej

mob − ek
mob) 0 0 0 0 0 0 · · · 0] (3.33)
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The entire measurement matrix H is an 9+(n-1) by 2(n-1) matrix defined by

H =




(e1 − e2) 0 0 0 0 0 0 0 0 · · · 0

(e1 − e3) 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

(e1 − en) 0 0 0 0 0 0 0 0 · · · 0

1
λ
(e1 − e2) 0 0 0 0 0 0 1 0 · · · 0

1
λ
(e1 − e3) 0 0 0 0 0 0 0 1 · · · 0

...
...

...
...

...
...

...
...

...
. . . 0

1
λ
(e1 − en) 0 0 0 0 0 0 0 0 · · · 1




(3.34)

where b is the base pseudolite for n pseudolites where i = 1 · · ·n , with i 6= base

pseudolite.

The measurement covariance matrix R is defined by

E{v(ti)v
T (ti)} =





R(ti) for ti 6= tj

0 for ti 6= tj
(3.35)

is required by the filter. This matrix can be broken up into 4 different types of

covariance terms.

• Case 1: Variance of code measurement errors

• Case 2: Variance of phase measurement errors

• Case 3: Covariance of two different code measurement errors

• Case 4: Covariance of two different phase measurement errors

The full R matrix can be partitioned into four sections represented by


Rcode 0

0 Rphase



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where the code variance and covariances denoted by cases 1 and 3, respectively,

are placed in the upper left corner. The phase variances and covariances denoted

by cases 2 and 4 are located in the lower right corner. The upper right and lower

left corners represent the cross-covariance of a code and phase measurement. These

values were assumed to be sufficiently small to ignore them.

The variances for the code measurement are a combination of residual tro-

pospheric error and the non-tropospheric components (transmitter location error,

multipath, and measurement noise). For this research, the non-tropospheric er-

ror was assumed to be uncorrelated between measurements, which means that the

double-differenced standard deviation is a factor of two greater than the observation

standard deviation. The double-differenced standard deviations for the tropospheric

and non-tropospheric errors were 3.2 meters and 0.07 meters, respectively, which

resulted in a total standard deviation of 3.2008 meters. It is important to note that

the tropospheric contribution to the total standard deviation is sufficiently small

to ignore, but is included for completeness. The covariances of two different code

measurements were set as one half of the code variances, because half of the mea-

surements are in common due to double differencing. The following matrix defines

the code segment of the R matrix.

Rcode =




r∇∆ρij ,∇∆ρij r∇∆ρij ,∇∆ρik · · · r∇∆ρij ,∇∆ρik

r∇∆ρij ,∇∆ρik r∇∆ρij ,∇∆ρij
. . .

...
...

. . . . . . r∇∆ρij ,∇∆ρik

r∇∆ρij ,∇∆ρik · · · r∇∆ρij ,∇∆ρik r∇∆ρij ,∇∆ρij




(3.36)

The phase variances and covariances were developed in a similar manner to the

code values. The double-differenced tropospheric and non-tropospheric standard de-

viations are 0.0812 cycles and 0.0464 cycles, respectively, with the resulting total

standard deviation of 0.0935 cycles. The phase variance was calculated to be 0.0087

square cycles and the covariances 0.00435 square cycles. The following matrix dis-
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plays the phase component of the full R matrix.

Rphase =




r∇∆φij ,∇∆φij r∇∆φij ,∇∆φik · · · r∇∆φij ,∇∆φik

r∇∆φij ,∇∆φik r∇∆φij ,∇∆φij
. . .

...
...

. . . . . . r∇∆φij ,∇∆φik

r∇∆φij ,∇∆φik · · · r∇∆φij ,∇∆φik r∇∆φij ,∇∆φij




(3.37)

The values for the the R matrix are shown in Table 3.5.

Table 3.5 Measurement Covariance Values

Term Definition Value

r∇∆ρij ,∇∆ρij Double-differenced code variance error 10.24 m2

r∇∆ρij ,∇∆ρik Double-differenced code covariance error 5.12 m2

r∇∆φij ,∇∆φij Double-differenced carrier-phase variance error .0087 cycles2

r∇∆φij ,∇∆φik Double-differenced carrier-phase covariance error .00435 cycles2

3.5.3 Discrete-Time Models. The linear stochastic differential equations

must be converted to be implemented on a digital computer. This requires the

formulation of the linear stochastic difference equations to describe the equivalent

discrete-time system model [19], which is in the form

x(tk+1) = Φ(tk+1, tk)x(tk) + wd (3.38)

where

E{wd} = 0

E{wd(tk)w
T
d (tk)} = Qd (3.39)

E{wd(tj)w
T
d (tk)} = 0, tj 6= tk
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Equations 3.38 through 3.40 were derived in Chapter 2. The discrete-time state

transition matrix Φ(tk+1, tk) is defined as:

Φ(tk+1, tk) = Φ(∆t) = eF∆t (3.40)

where ∆t ≡ tk+1 − tk which results in the matrix

Φ(tk+1, tk) =




1 0 0 ∆t 0 0 A 0 0 0 0 · · · 0

0 1 0 0 ∆t 0 0 A 0 0 0 · · · 0

0 0 1 0 0 ∆t 0 0 A 0 0 · · · 0

0 0 0 1 0 0 B 0 0 0 0 · · · 0

0 0 0 0 1 0 0 B 0 0 0 · · · 0

0 0 0 0 0 1 0 0 B 0 0 · · · 0

0 0 0 0 0 0 C 0 0 0 0 · · · 0

0 0 0 0 0 0 0 C 0 0 0 · · · 0

0 0 0 0 0 0 0 0 C 0 0 · · · 0

0 0 0 0 0 0 0 0 0 1 0 · · · 0

0 0 0 0 0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 1




(3.41)

where

A = T 2
a (e−∆t/Ta − 1) + Ta∆t

B = Ta(1− e−∆t/Ta)

C = (e−∆t/Ta)
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The discrete dynamics driving noise is given by

Qd(tk) =

∫ tk+1

tk

Φ(tk+1,τ)G(τ)Q(τ)GT (τ)ΦT (tk+1,τ )dτ (3.42)

which expands to

Qd=




D 0 0 E 0 0 G 0 0 0 0 · · · 0

0 D 0 0 E 0 0 G 0 0 0 · · · 0

0 0 D 0 0 E 0 0 G 0 0 · · · 0

E 0 0 K 0 0 L 0 0 0 0 · · · 0

0 E 0 0 K 0 0 L 0 0 0 · · · 0

0 0 E 0 0 K 0 0 L 0 0 · · · 0

G 0 0 L 0 0 M 0 0 0 0 · · · 0

0 G 0 0 L 0 0 M 0 0 0 · · · 0

0 0 G 0 0 L 0 0 M 0 0 · · · 0

0 0 0 0 0 0 0 0 0 N 0 · · · 0

0 0 0 0 0 0 0 0 0 0 N · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 N




(3.43)
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where these values were taken from reference [27] and defined as

D =
1

2
T 5

a qa(1− e−2∆t/Ta) + T 4
a qa∆t(1− 2−∆t/Ta)− T 3

a qa(∆t)2 +
1

3
T 2

a qa(∆t)3

E = T 4
a qa(

1

2
e−2∆t/Ta − e−∆t/Ta +

1

2
) + T 3

a qa∆t(e−∆t/Ta − 1) +
1

2
T 2

a qa(∆t)2

G =
1

2
T 3

a qa(1− e−2∆t/Ta)− T 2
a qa∆te−∆t/Ta

K =
1

2
T 3

a qa(−e−2∆t/Ta + 4e−∆t/Ta + 2
∆t

Ta

− 3)

L = −1

2
T 2

a qa(−e−2∆t/Ta + 2e−∆t/Ta − 1)

M = −1

2
Taqa(−e−2∆t/Ta − 1)

N = qN∆t

3.6 Floating-Point Filter Features

The floating-point filter included a pre-filtering step, real-data considerations,

a tropospheric model, and adaptations to improve upon the performance of the

baseline filter. These adaptations consisted of optimal smoothing techniques, second

order filtering, weighted measurement covariance matrix, and estimating errors in

the tropospheric model.

3.6.1 Pre-filter. A pre-filter function was implemented to determine the

number of available PRNs, vector of available PRNs, and base PRN for double

difference operations. The base PRN was initially chosen from a vector of prns that

were in view at the first epoch. The PRN that stayed in view the longest was chosen.

If that PRN did not stay in view the entire data set, the process was repeated in a

similiar manner. The process then defined a vector of PRNs that were in view at the

second-to-last epoch the initial base PRN went out of view. The PRN that stayed in

view the longest was chosen as the base, and if it did not stay in view until the end

of the data set, the process repeated itself. The pre-filter function then generates a
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pseudolite visibility plot denoting the base PRN with a thick line. Figure 3.6 shows

a typical pseudolite visibility plot.
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Figure 3.6 Pseudolite Visibility Plot

3.6.2 Real Data Considerations. Although only simulated data was used in

this research, every attempt was made to make it as realistic as possible. The filter

was designed to handle these real data considerations. The algorithm developed in

this thesis included the ability to handle pseudolites going out of view, pseudolites

coming into view, and a change in the base double difference PRN.

In a real-world system, pseudolites will go out of view. When this happened,

the filter eliminated the appropriate state estimate and the rows and columns asso-

ciated with this pseudolite prn in the covariance matrix. For example, if pseudolites

1 through 5 were visible with prn 1 as the double difference base, sample ambiguity

state values could be

x10 = ∇∆N12 = -2837.24

x11 = ∇∆N13 = 10314.35

x12 = ∇∆N14 = -563.10

x13 = ∇∆N15 = 124.73
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These four ambiguity states would be in states 10 through 13, because the first

9 states represent the 3 position, 3 velocity, and 3 acceleration states. If pseudolite

4 went out of view, the new ambiguity vector would be

x10 = ∇∆N12 = -2837.24

x11 = ∇∆N13 = 10314.35

x12 = ∇∆N15 = 124.73

The covariance matrix P also requires adjusting. In this example, it would

have initially been a 13 by 13 matrix. By way of example, consider a case in which

the 4-by-4 partition of the ambiguity variances and covariances is

P =




0.0063449 0.0037111 0.004901 0.00066232

0.0037111 0.059193 0.0038798 0.0012557

0.004901 0.0038798 0.0064154 0.001028

0.00066232 0.0012557 0.001028 0.0032174




In order to remove the∇∆N14 state the second to last row and second to last column

are eliminated. As a result, the covariance becomes

P =




0.0063449 0.0037111 0.00066232

0.0037111 0.059193 0.0012557

0.00066232 0.0012557 0.0032174




In a real-world system, pseudolites will also come into view. When a pseudolite comes

into view, both the length of the state vector and the dimensions of the covariance

will have to increase by one. The first step is to estimate the new ambiguity term in

a similar fashion to the way the ambiguity states were initialized at the first epoch;

see Section 3.4.1. The covariance matrix variance term is set to the same ambiguity

variance term used in the first epoch,
(

50
λ
cycles

)2
, while the off-diagonal terms for

the row and column are set to zero. Taking the previous example with pseudolite 4
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coming back into view, including the estimate of -564.1 for ∇∆N14 determined by

the code, would be

x10 = ∇∆N12 = -2837.24

x11 = ∇∆N13 = 10314.35

x12 = ∇∆N14 = -564.1

x13 = ∇∆N15 = 124.73

with the covariance given by

P =




0.0063449 0.0037111 0 0.00066232

0.0037111 0.059193 0 0.0012557

0 0 3350 0

0.00066232 0.0012557 0 0.0032174




The value of 3350 for the new ambiguity state variance assume a widelane wave-

length.

The base pseudolite PRN used for double difference operations cannot be as-

sumed constant over the entire data set. This thesis included a function that trans-

lated the ambiguities from that last epoch to the current. A transformation matrix

was formed, based on the available prns and base prn at both the last epoch and

current epoch. The double differenced ambiguities are combinations of single dif-

ferenced ambiguities which makes this transformation possible. No information is

lost in the translation: the new state and covariance are just different measurement

combinations. This function must be performed before the ambiguity states and

covariance matrices are adjusted for lost or gained pseudolites.

The relation is given as:

xnew = Txold (3.44)

Pnew = TPoldT
T (3.45)
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Consider using the previous example, when all five pseudolites were in view and the

current base PRN was going out of view, the translation matrix T to switch the

double difference base PRN from 1 to 3 would be

T =




1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 0 0 −1 0 1




(3.46)

Note that the top left corner is a 9 by 9 identity matrix, which preserves the position,

velocity, and acceleration estimates. The bottom righthand corner values (which are

bolded) represent the portion of T that rearranges the ambiguity estimates. The

same transformation matrix, T, is applied to the covariance according to Equation

3.45. When T is multiplied by xold it forms

∇∆N31
new = −∇∆N13

old

∇∆N32
new = −∇∆N13

old +∇∆N12
old

∇∆N34
new = −∇∆N13

old +∇∆N14
old

∇∆N35
new = −∇∆N13

old +∇∆N15
old
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3.6.3 Tropospheric Model. The tropospheric model used in the filter was

the same as that used to generate the tropospheric delay in the truth simulation.

There are two differences between the truth and filter model for the tropospheric

delay calculation.

The first source of residual tropospheric error was due to the atmospheric values

used in each model. The truth model used true values for atmospheric pressure, tem-

perature, and relative humidity. Errors were added to the true atmospheric values,

which were then used in the filter model. These errors were modeled as zero-mean

Gaussian random biases with adjustable standard deviations. The standard devia-

tions were set as 4 percent for relative humidity, 1 degree Kelvin for temperature,

and 3 millibars for the pressure.

The second error source was from the difference in using the estimated versus

the true positions of the receivers and transmitters. The truth model used the true

positions while the filter model used the estimated positions. This difference resulted

in very small, essentially insignificant, errors for both the slant ranges and elevation

angles. This difference was very small in magnitude because the position errors were

only a few centimeters while the ranges were measured in kilometers.

3.6.4 Optimal Smoothing. The optimal smoothing algorithm presented in

Section 2.4 was implemented to improve the accuracy of the state estimates while

decreasing the size of the covariance values. The algorithm required modifications

when pseudolites were allowed to come in and out of view and the base PRN for

double difference operations changed between epochs. The equations give in Chapter

2 are restated here as
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x̂(tf |tf ) = x̂(t+f )

x̂(ti|tf ) = x̂(t+i ) + A(ti)[x̂(ti+1|tf )− x̂(t−i+1)]

A(ti) = P(t+i )ΦT (ti+1, ti)P
−1(t−i+1)

P(tf |tf ) = P(t+f )

P(ti|tf ) = P(t+i ) + A(ti)[P(ti+1|tf )−P(t−i+1)]A
T(ti)

which are run backward from the final time tf after a first forward pass is made

through the data with the extended Kalman filter.

These fixed-interval smoother equations obtained by Meditch [19] will fail when

the number of states from one epoch to another is not consistent, or the quantities

that the states represent change between epochs. When pseudolites go out or come

back into view, the number of ambiguity states changes from one epoch to another.

When the double difference base PRN changes, the quantities that the ambiguity

states represent also change. To account for these occurrences, the same functions

that were used in the forward filter to handle this in the forward filter are adapted

for the optimal smoothing algorithm.

When the smoothed estimate, x̂(ti|tf ), is generated backward in time, it is

formed from x̂(ti+1|tf ) and x̂(t−i+1), which both correspond to the next epoch. If

pseudolite 4 was in view at ti+1 but not at ti both x̂(ti+1|tf ) and x̂(t−i+1) will have to

be modified just like they lost a pseudolite due to visibility. They are modified by

removing the state estimate for pseudolite 4, along with the corresponding rows and

columns from the covariance matrix.

Conversely, if pseudolite 4 was in view at ti but not at ti+1 the states x̂(ti+1|tf )
and x̂(t−i+1) will have to add the state estimate for this PRN, in addition to their

covariances P(ti+1|tf ) and P(t−i+1), using the procedure shown in Section 3.6.2.
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When the base PRN is changed, the states and covariances must also change

in a similar manner. The states x̂(ti+1|tf ) and x̂(t−i+1) must be altered to reflect

the correct double difference base PRN. The covariances are also required to change

accordingly.

3.6.5 Nonlinear Filtering. A number of methods or techniques have been

proposed to deal with measurement nonlinearities that were introduced in Section

2.6.3. One was is to simply increase the measurement variances, as done by refer-

ences [9, 32]. A second method is to implement a full second order filter based on a

second order Taylor series approximation to the nonlinear model. A third method

has proposed to just include the bias correction terms only [1, 20]. This has been

shown to produce very similar performance to the full second order filter without

the computational burden of the second moment calculations [20]. The first order

extended Kalman filter update equations can be modified to include second order

terms for nonlinear filtering, yielding

A(ti) = H(ti)P(t−i )HT (ti) + B̂m(t−i ) + R(ti) (3.47)

K(ti) = P(t−i )HT (ti)A(ti)
−1 (3.48)

x̂(t+i ) = x̂(t−i ) + K(ti)
{
z(ti)− h

[
x̂(t−i ), ti

]− b̂m(t−i )
}

(3.49)

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (3.50)

where

H[ti; x̂(t−i )] ≡ ∂h[x, ti]

∂x

∣∣∣∣
x=x̂(t−i )

(3.51)

and the measurement bias correction term is defined by

b̂mk(t
−
i ) ≡ 1

2
tr

{
∂2hk[x̂(t−i ), ti]

∂x2
P(t−i )

}
(3.52)

with k = 1, 2, · · · ,m and m represents the number of measurements.
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The differences between the three modified nonlinear filters are in the deriva-

tion for B̂m(t−i ) where:

Bias Correction Term Only B̂m(t−i ) ≡ 0

Modified Truncated Second Order B̂mkl(t
−
i ) ≡ −b̂mk(t

−
i )b̂T

ml(t
−
i )

Modified Gaussian Second Order B̂mkl(t
−
i ) ≡ 1

2
tr

{
∂2hk[x̂(t−i ),ti]

∂x2 P(t−i )
∂2hl[x̂(t−i ),ti]

∂x2 P(t−i )
}

The non-zero second partial derivatives are given as

∂2hk[x, ti]

∂2x1

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
((xj−x1)2+(yj−x2)2+(zj−x3)2)2−(xj−x1)2

[(xj−x1)2+(yj−x2)2+(zj−x3)2]3/2

}

− 1
λ

{
((xk−x1)2+(yk−x2)2+(zk−x3)2)2−(xk−x1)2

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
3/2

}
(3.53)

∂2hk[x, ti]

∂2x2

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
((xj−x1)2+(yj−x2)2+(zj−x3)2)2−(yj−x2)2

[(xj−x1)2+(yj−x2)2+(zj−x3)2]3/2

}

− 1
λ

{
((xk−x1)2+(yk−x2)2+(zk−x3)2)2−(yk−x3)2

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
3/2

}
(3.54)

∂2hk[x, ti]

∂2x3

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
(((xj−x1)2+(yj−x2)2+(zj−x3)2)2−(zj−x3)2

[(xj−x1)2+(yj−x2)2+(zj−x3)2]3/2

}

− 1
λ

{
((xk−x1)2+(yk−x2)2+(zk−x3)2)2−(zk−x3)2

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
3/2

}
(3.55)

∂2hk[x, ti]

∂x1∂x2

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
−(xj−x1)(xj−x2)

[(xj−x1)2+(yj−x2)2+(zj−x3)2]3/2

}

− 1
λ

{
−(xj−x1)(xk−x2)

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
3/2

}
(3.56)

∂2hk[x, ti]

∂x1∂x3

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
−(xj−x1)(zj−x3)

[(xj−x1)2+(yj−x2)2+(zj−x3)2]3/2

}

− 1
λ

{
−(xk−x1)(zk−x3)

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
3/2

}
(3.57)

∂2hk[x, ti]

∂x2∂x3

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
−(yj−x2)(zj−x3)

[(xj−x1)2+(yj−x2)2+(zj−x3)2]3/2

}

− 1
λ

{
−(yk−x2)(zk−x3)

[(xk−x1)2+(yk−x2)2+(zk−x3)2]
3/2

}
(3.58)

3-33



3.6.6 Weighted Measurement Covariance Matrix. This section describes a

novel method to weight the measurement covariance matrix R selectively, based on

the predicted tropospheric delay for each measurement generated by the tropospheric

model. This allows the filter to weight measurements, relative to their corresponding

predicted tropospheric delay.

Tropospheric delay is a function of the atmospheric parameters, slant range,

and elevation angle. The atmospheric parameters are constant for all measurements

in a given simulation run. The longer the slant range and the lower the elevation

angle, the larger the tropospheric delay. If two measurements have the same atmo-

spheric values, and one measurement has a larger predicted delay, it is due to either

a longer slant range and/or a lower elevation angle. For example, if the tropospheric

filter computes a tropospheric delay of 8 m for prn 1, and 2 m for PRN 2, the residual

tropospheric error after a model can be expected to be 4 times larger for PRN 1 than

for PRN 2. It would follow that, as the predicted delay increases, the corresponding

value in the R matrix should also increase. The standard deviations of the mea-

surements (i.e., the square roots of the variance terms along the diagonal of the R

matrix) for the phase is the Root Sum Square (RSS) of the standard deviations for

the tropospheric delay error and the non-tropospheric errors. If these standard de-

viations are 0.09 m and 0.07 m respectively, the RSS is 0.114 m or 0.5991 L1 cycles.

The variance is 0.59912 = .359 and the covariance is half the variance as described

in Section 3.4.2, which results in the baseline R matrix for the phase partition as

Rφ =




.359 .1795 .1795 .1795 .1795

.1795 .359 .1795 .1795 .1795

.1795 .1795 .359 .1795 .1795

.1795 .1795 .1795 .359 .1795

.1795 .1795 .1795 .1795 .359




(3.59)

3-34



This is the approach used in the baseline filter for the measurement covariance ma-

trix computation. When the weighted measurement covariance method is used, the

standard deviation for the tropospheric component is not assumed to be 0.09 m for

every measurement. Instead, the standard deviations for the tropospheric compo-

nents were determined by

σtropo = |.03× tropodelay| =




.161

.080

.053

.213

.004




(3.60)

where the absolute value of the scaled (0.03) tropospheric delay in meters to result

in a vector of standard deviations. When these values were used in place of a vector

of 0.09 m values the R matrix which is calculated as .05 ∗ (σtropo ∗ σT
tropo), is given as

Rφ =




.848 .257 .213 .542 .170

.257 .312 .129 .328 .103

.213 .129 .214 .272 .085

.542 .328 .272 1.384 .217

.170 .103 .085 .217 .136




(3.61)

The scale factor 0.03 was chosen because it typically was equally likely to produce

values above 0.09 as it was to produce values below 0.09 for this trajectory.

3.6.7 Tropospheric Model Error States. The errors in the tropospheric

model include measurement errors in the sensors, atmospheric errors due to ground

effects, and the use of estimated positions of the transmitters and receivers.
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The first error source is the set of errors due to imprecise instruments for

measuring atmospheric pressure, temperature, and relative humidity. These errors

will affect all measurements by roughly the same percentage.

The second error is due to ground effects from foliage and buildings. The height

of a typical test mission could be 2500 meters above the earth’s surface, so ground

effects that only affect the first 25 meters only represent 1 percent of the total signal

range.

The third error is due to using estimated positions of the transmitters and

receivers. Because these errors are in the centimeter range, their effect is almost

insignificant to the total error of the tropospheric model.

Figure 3.6.7 shows the true tropospheric delay in the top subplot and the

residual tropospheric error after the model was applied in the bottom subplot. This

was for a typical simulation run.
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Figure 3.7 True Tropospheric Delay and Residual Tropospheric Error
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Although the plots in Figure 3.7 appear to be the same plot, they are not. Note

the scaling of the top subplot is in meters and the bottom subplot is in centimeters.

The errors are highly correlated to the true tropospheric delay. When the errors

are expressed as a percentage of the true delay, they are nearly constant and are

shown in Figure 3.8 for both the mobile receiver in the top subplot and the reference

receiver in the bottom subplot.
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Figure 3.8 Residual Tropospheric Error Expressed as a Percent of Tropospheric

Delay

If the residual tropospheric errors after a model is applied are nearly constant,

they can be modeled and removed. The error percentages for both the mobile and

reference receiver were modeled as First Order Gauss Markov (FOGM) process. Two

states were added to the baseline filter, one each for the mobile and reference receiver

tropospheric error percentages. These two states were added after the acceleration
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states and before the ambiguity states and are defined as

ẋ10 = (−1/Tt)x10 + wt1(t)

ẋ11 = (−1/Tt)x11 + wt2(t) (3.62)

with associated dynamic driving noise processes given by

E {wt1(t)wt1(t + τ)} = E {wt2(t)wt2(t + τ)} =
2σ2

t

Tt

δ(τ) = qtδ(τ) (3.63)

The correlation time, Tt, and variance, σ2
t , are determined based on the anticipated

error percentages and time correlations. The value Tt was set to 75 hours (270000

seconds) to account for typical changes in atmospheric effects, and σt was set to 0.03

m to handle the ”worst case” error percentage. With these values qt is calculated to

be 1.25× 10−7m2/sec.

3.7 Carrier-phase Ambiguity Resolution

The structure of the carrier-phase ambiguity resolution techniques are shown

in Figure 3.9. First the Z-Transformation is applied to the floating-point ambiguity

estimates and covariances. Next, FASF generates the candidate ambiguity sets. If

more than one set is generated, a ratio test determines the best ambiguity set, based

on the sum of square residuals. The inverse Z-Transformation is applied to bring the

selected set of ambiguities back from the LAMBDA domain. LAMBDA, FASF, and

the ratio test were described in Chapter 2.
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Figure 3.9 Ambiguity Resolution Algorithm Description

3.8 Chapter Summary

This chapter described the truth model and the error generation for both

the measurements and measurement model. The floating-point filter was developed

along with some modifications. Lastly, the structure of the carrier-phase ambiguity

resolution process was described.
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IV. Results

4.1 Overview

This chapter presents simulation results and analysis of the algorithm devel-

oped in this research. The first section provides the simulation parameters, scenario

descriptions, and test case definitions that are used throughout this chapter. The

next section analyzes a single filter run to demonstrate the performance. In addition

to single-run analysis, Monte Carlo simulations were conducted in which an error

sensitivity analysis and a comparison of various filter enhancements was performed.

Sections are also included for optimal smoothing, and alternate aircraft trajectories.

Recall that the primary purpose of this research is to define design tradeoffs via sim-

ulations, and not necessarily to give an absolute measure of the filter’s performance.

4.2 Simulation Parameters, Scenario Descriptions and Test Case Definitions

This section describes the simulated trajectory, the atmospheric parameters

used in the truth model, along with the scenario descriptions and case definitions.

The statistics and criteria used to evaluate the filter performance are also described.

As stated in Section 3.2.2, the trajectory was from actual C-12 flight data. The

832 second (14 minute) section that was used in this research will be referred to as

the main flight trajectory. This trajectory resulted in mobile-receiver-to-transmitter

ranges of 3 to 32 kilometers. Other flight trajectories were also investigated and they

will be described in Section 4.6. For the main flight trajectory, the maximum range

from the mobile receiver to any pseudolite was 48 kilometers, while the maximum

range from the reference receiver to any pseudolite was 32 kilometers. To simulate

pseudolites coming into and going out of view, the maximum range allowed between

any pseudolite and the mobile receiver was set at 32 kilometers (just longer than

the maximum range to the reference receiver). Any measurement over this limit was
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considered out of pseudolite transmission range. This constraint caused the number

of visible pseudolites at the mobile receiver to vary between 7 and 10 throughout the

simulation, which was shown in Figure 3.6 from Section 3.6.1.

The atmospheric parameters used for the tropospheric truth model are sum-

marized Table 4.1. Atmospheric pressure is the force per unit area exerted against

a surface; by the weight of the air above that surface which is sometimes known as

barometric pressure [13]. The average atmospheric pressure at sea level is 1013.25

millibars or 29.92 inches of mercury. This was the value used for the truth model

for every simulation. Recall that the filter model uses error-corrupted atmospheric

values to calculate tropospheric delay. The value of the temperature was chosen as

52 degrees Fahrenheit because that was approximately the average yearly tempera-

ture for Holloman AFB, NM. Relative humidity was chosen as 35 percent, because

it is a reasonable value for the desert climate at Holloman.

Table 4.1 Atmospheric Parameters Used in Truth Model

Atmospheric pressure 1013.25 mbar (29.92 in)

Temperature 284.26 K (52 F)

Relative humidity 35 percent

Every simulation is classified by a scenario description and test case definition.

Each scenario represents a different objective which is shown in Table 4.2. The first

two scenarios in the table evaluated the filter’s performance with the baseline filter

for both the single and widelane observable. The next three scenarios examined the

filter’s sensitivity to each error source, with the remaining scenarios corresponding

to each of the filter enhancements described in Chapter 3.
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Table 4.2 List of Scenario Descriptions

Scenario Identifier Scenario Description

Base Baseline Filter with Single (L1) Frequency

Base WL Baseline Filter with Widelane Frequency

PLE Impact of Pseudolite Location Error

Meas. Noise Impact of Measurement Noise

Multipath Impact of Multipath Error

Tropo. Delay Impact of Tropospheric Delay

PR ave. L1 and L2 Code Averaging

Bias Corr. Bias Correction Terms

Smoother Optimal Smoothing

Weighted R Weighted Measurement Covariance (R) Matrix

Tropo. State Tropospheric Model Error States

All Enh. All Enhancements except Tropo. State

The measurement errors that were described in Chapter 3 represent the nomi-

nal error case. In order to test realistic magnitudes of measurement errors fully, the

best and worst case scenarios were implemented. They represent one half and twice

the nominal case for each of the measurement error sources.

The Monte Carlo simulation included evaluation criteria for both the floating-

point results and the ability to resolve the ambiguities. The floating-point criteria

included the Root Mean Square (RMS) of the three-dimensional position error, the

RMS of the ambiguity error, and the RMS of the standard deviations for the ambi-

guity state estimates (square root of the state covariance matrix entries).

The RMS position error calculation was a three dimensional Distance RMS

(DRMS) which can also be referred to as a Mean Radial Spherical Error (MRSE)
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defined as

3D RMS =

√√√√
m∑

i=1

(x2
i + y2

i + z2
i )

m
(4.1)

where xi, yi, and zi represent the position error, in each axis, and m is the number

of measurement epochs. These are temporally arranged, versus ensemble-averaged

statistics. The RMS statistic for the ambiguity error was defined as

∇∆Nerr RMS =

√√√√√√√√

m∑
i=1




n(ti)P
j=1

x2
j (ti)

n(ti)




m
(4.2)

where xj(ti) is the ambiguity error which was summed for each each ambiguity per

epoch (n) and for each epoch (m). The RMS value for the ambiguity standard

deviations were calculated in a similar where

σ∇∆N RMS =

√√√√√√√√

m∑
i=1




n(ti)P
j=1

σ2
j (ti)

n(ti)




m
(4.3)

with σj(ti) representing the standard deviation (square root of the ambiguity state

covariance) of a given ambiguity. For the Monte Carlo simulation, these values were

evaluated for epochs 400 through 832 (final 7 minutes) to allow the filter to converge

before calculating statistics on the performance.

The RMS statistic was chosen to represent floating-point filter performance be-

cause it required only one value, versus two if mean and standard deviation statistics

were used. The primary objective was the fixed-integer carrier-phase performance.

In addition to the floating-point filter criteria, the percentages of correct fixes

for both simple rounding and the ambiguity resolution techniques described in Chap-

ter 3 are used. Because ambiguity resolution cannot always resolve the ambiguities,
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the percentage of incorrect and unresolved epochs are also given, as shown in Table

4.3.

Round %corr Percentage of correct fixes using simple rounding

Amb. Res. %corr Percentage of correct epochs with LAMBDA and FASF

Amb. Res. %incorr Percentage of incorrect epochs with LAMBDA and FASF

Amb. Res. %unres Percentage of unresolved epochs with LAMBDA and FASF

Table 4.3 Ambiguity Resolution Evaluation Criteria

The floating-point ambiguity state estimates and their associated covariances

were saved for 10 equally spaced epochs in the second half of the simulated test

run. The first evaluation criterion was to apply simple rounding of the ambiguities,

and then to calculate the percent of the epochs that were correct (i.e., where all

of the floating-point ambiguities were within one-half of a cycle of the true integer

ambiguity). The rounded solution was considered correct only if all ambiguities

for that epoch were correct. The LAMBDA/FASF ambiguity resolution techniques

described in Section 2.5.8 were also applied to the same floating-point state estimates

and the percentage of correct fixes, percentage of incorrect fixes, and percentage of

epochs where the ambiguities were unresolved, were all computed.

4.3 Single Run Performance

This section evaluates a typical run of the baseline filter for the single (L1)

observable. The position error, velocity, acceleration, measurement residuals, and

ambiguity errors are investigated. While this section examines the filter for a single

run, the following section provides Monte Carlo simulation analysis in order to pro-

vide a complete picture of filter performance. Recall from Section 3.3 that the truth

model only determined the true position of the receivers along with measurement

errors. Therefore, error plots are not presented for the velocity and accelerations.
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Although the primary goal of the filter is to achieve a high level of accuracy for

the ambiguity estimates, the error in estimated receiver position can indicate how

well the filter is performing. The X, Y, and Z position errors are shown in Figure

4.1, along with the filter-computed standard deviations (square root of the position

variances). Note that the position errors are typically less than the one standard

deviation (particularly after the initial transients) which may indicate that the filter

is tuned somewhat conservatively.
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Figure 4.1 Position Errors and Filter-Computed Standard Deviations (Dashed

lines)

Notice that the time label given in minutes are rounded to the nearest minute.

This label was added to give the reader a sense of the relative time frame of the test

run.

A 3-dimensional position error plot more clearly shows the centimeter level

accuracy attained by the filter in Figure 4.2. Note that this still represents floating-

point ambiguities because ambiguity resolution has not taken place. Recall that a
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widelane frequency aids the ambiguity resolution process at the expense of degraded

performance in the position solution. If a widelane frequency were used, the perfor-

mance in the position domain would not achieve this same level. More discussion on

the difference in accuracies between the widelane and single frequency is included in

Section 4.5.1.
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Figure 4.2 3-Dimensional Position Error

The filter also computes the velocities and accelerations in the ECEF frame.

When the truth model was generated, only the position of the mobile receiver was

simulated. It is still beneficial to plot the velocities and accelerations (Figures 4.3

and 4.4) in order to show when the mobile receiver experienced large accelerations

(large for a C-12). Notice that the velocity and especially the acceleration plots

indicate large accelerations, both in the middle and at the end of the test run.
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Figure 4.3 Filter-Estimated Velocity
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Figure 4.4 Filter-Estimated Acceleration
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Residuals are an indicator of filter performance and should be both white

(uncorrelated in time) and have a zero-mean distribution. Recall from Section 2.2

that the residuals are defined as the measurement minus the measurement prediction.

The residuals for the ∇∆ρ1−2 and ∇∆φ1−2 measurements (for comparison purposes)

are shown in Figure 4.5. Note the scale of the error for both is given in meters,

with the code plot having a larger error range. The code residual appeared to be

white for the majority of the plot, with a slight time correlation at the end of the

simulation run. The phase residual typically displayed a much smaller magnitude

than the code residual, but showed more time correlation. The residuals are a

product of measurement errors and dynamics. The phase residuals have much smaller

measurement errors, which reduces the size of phase residuals. The dynamics of

the receiver affect the code and phase in exactly the same manner. The phase

residual plot more clearly shows the effect of vehicle dynamics, because unlike the

code measurements, it is not obscured by the measurement errors. These residual

errors are due to the inability of the full-state filter to predict future error dynamics

precisely during state propagation.
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Figure 4.5 Code and Phase Ambiguity Residuals

The ambiguity error for each of the 9 ambiguities, along with their filter-

computed 1-σs (square root of their variances), are shown in Figure 4.6. Pseudolites

can display much higher levels of relative motion with their receivers than GPS

satellite transmitters can. This will result in the filter converging to an ambiguity

estimate more quickly. This filter showed convergence with the first 5-7 minutes.
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Figure 4.6 Ambiguity Error and Ambiguity 1-σ Plots

4.4 Comparison of Code Versus Relative Motion for Ambiguity Convergence

The two factors that affect the ability of the filter to converge to the correct

ambiguity values are the influence of the code measurements and the relative motion

between transmitters and receivers. This section analyzes how each of these factors

affect filter convergence.

The influence of the relative motion was investigated by artificially increasing

the covariance of the code measurement to the point that the code measurements

carry very little weight in the filter. Recall from Section 3.5.2 that the covariance

of the double difference code measurement was (5m)2. For this test, that value was

set to (1, 000, 000m)2. This essentially removes the effect of code measurements and

forces the filter to rely on relative motion only. The results of this test show that,

for this simple case, the filter converged more quickly without code than it did with

code measurements, as shown in Figure 4.7. From this plot is appears that relative

motion is the primary factor in ambiguity convergence.
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Ideally, bringing in code measurements, or additional measurements, should

not degrade filter performance. Recall that the measurement error sources, especially

the multipath, are not zero-mean or uncorrelated in time. The degradation is not a

simple mistuning of the code measurement covariance, but rather, a mis-modelling

of the error source because the filter is expecting a white, zero-mean measurement

error.
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Figure 4.7 RMS Ambiguity Error and Ambiguity 1-σ Plots for Rcode = 1012m2

Notice that the covariances are identical in the bottom subplot. This shows

that the code measurement variances are not a strong influence on ambiguity covari-

ances.

The influence of code measurements was investigated by changing to a station-

ary trajectory (i.e., no motion in the mobile receiver). This change caused substantial

errors in the ambiguity estimates, increasing the ambiguity estimation errors by ap-

proximately a factor of 10. The errors in the filter-corrupted ambiguity estimates
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for each of the ten pseudolites are shown in Figure 4.8. This further supports the

claim that relative motion is the primary factor in ambiguity convergence.
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Figure 4.8 Filter Ambiguity Estimate Error and Ambiguity 1-σ Plots for Trajec-

tory without Motion

The analysis suggests a reliance on the relative motion between the transmit-

ters and receivers for accurate ambiguity estimation. These results suggest that a

pseudolite-based flight reference system does not need to depend much upon code

measurements.

4.5 Monte Carlo Performance

This section first presents the Monte Carlo simulation analysis of the baseline

filter for both a single and widelane frequency, then an analysis of the sensitivity of

the filter to each error source, and finally a comparison of each filter enhancement

described in Chapter 3. The Monte Carlo simulation conducted in this research

involved 34 separate tests of 100 runs each.
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The baseline filter and filter enhancement scenarios each had three cases: Best,

Nominal, and Worst. For these scenarios, all four error sources were set together as

the best, nominal, or worst case, in contrast to the sensitivity error analysis where

only one source at a time was adjusted to the best or worst case, while the remaining

error sources were set to the nominal values. This allowed the relative impact of each

error source to be evaluated.

4.5.1 Baseline Filter. The first two scenarios involve the baseline filter for

both the widelane and single frequency filters. Each filter was evaluated against the

best, nominal, and worst error cases, which are presented in Table 4.3.

Table 4.4 Widelane versus Single Frequency in Baseline Filter

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

1 WL Best .063 .031 .046 100 100 0 0

2 Single Best .033 .051 .083 99.4 99.3 .6 .1

3 WL Nom. .123 .065 .046 100 100 0 0

4 Single Nom. .054 .101 .083 99.4 96.3 .5 3.2

5 WL Worst .241 .126 .046 99.2 94.8 .3 4.9

6 Single Worst .099 .225 .083 75.2 59.2 .4 40.4

The use of a widelane frequency improved ambiguity resolution ability, but at

the expense of a larger position error. This is reasonable because, as shown in Section

2.5.7, widelaning increases the effect of error sources that are not frequency correlated

(multipath and measurement noise), but does not change the effect of error sources

that are frequency correlated (pseudolite position errors and tropospheric delay).

The position errors and tropospheric delay are reduced when expressed in cycles,

which reduces the ambiguity search space. This is clearly shown by comparing the

4-14



single frequency to widelane results for each error case. The widelane tests resulted

in larger position domain errors, but smaller ambiguity errors. The remaining Monte

Carlo simulation use single frequency (L1) phase measurements in order to show the

contribution of each error source better, and the performance improvement of each

filter enhancement.

The floating-point filter was tuned for the nominal error case for both the single

and widelane observables. The agreement between the RMS ambiguity error (.101

from test 4) and RMS standard deviation (.083 from test 4) indicate how well the

filter is tuned. The results also show that the filter is too conservative for the best

case, and is overestimating its performance for the worst case error.

Tests 1, 2, 5, and 6 represent a mistuned filter and therefore can be used to

determine how robust the filter is to mistuning. These tests indicate that the filter

is fairly robust to mistuning. The percentage of correct fixes do decrease going from

the nominal error case to the worst case, but the percent of incorrect fixes does not

significantly change. In fact, it actually decreased for the single frequency case. The

biggest change is the percentage of unresolved cases, which could be used to indicate

a mistuning.

To investigate the capabilities of this algorithm fully, the filter was re-tuned

for both the best and worst case single frequency filter. The re-tuning of the filter

involved increasing the measurement covariance values by a factor of 2.5 for the

worst case and decreasing the values by a factor of 2.5 for the best case. The results

are shown in Table 4.5, along with Tests 2 and 6 for comparison. The ambiguity

resolution process uses a value of ”k” to determine how many standard deviations

define the search area. The value of k for the worst case was set to 5 instead of

10 for this test only. This was due to a large number of unresolved fixes. The

best case re-tuned filter (Test 7) had slightly larger errors in position and floating-

point ambiguities, but an improved ability to resolve ambiguities. The worst case

re-tuned filter (Test 8) also showed an slightly better performance in the ability to
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resolve ambiguities in addition to slightly improving the floating-point position and

ambiguity estimates. To summarize, the filter will perform best when it is properly

tuned, but this filter can tolerate mistuning to provide adequate results.

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

2 Single Best .033 .051 .083 99.4 99.3 .6 .1

7 Retuned Best .036 .062 .054 100 100 0 0

6 Single Worst .099 .225 .083 75.2 59.2 .4 40.4

8 Retuned Worst .097 .222 .167 79.2 63.8 1 35.2

Table 4.5 Baseline Single Frequency Retuned

The baseline filter test showed a widelane frequency outperforms the single

frequency in the ability to resolve ambiguities, but a single frequency is better in

the position domain. The filter will perform best when it is properly tuned, but this

filter can tolerate mistuning to provide adequate results. If the filter is producing a

large number of unresolved epochs, that might indicate the measurement errors are

larger than anticipated, which results in the filter overestimating its performance. If

the filter is mistuned, it is better to underestimate than to overestimate its ability.

4.5.2 Error Sensitivity Analysis. This section examines the error sensitiv-

ity of each error source. The sensitivity analysis was conducted by comparing the

nominal case to the best and worst case of selected error sources. The error source

of interest is set to either the best or worst case error, while the remaining errors are

set at the nominal values. The results are compared to the nominal error case (Test

4). The results for the best case are shown in Table 4.6.
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Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

4 Single Nom. .054 .101 .083 99.4 96.3 .5 3.2

9 PLE Best .041 .075 .083 99.4 99 .6 .4

10 Meas. Noise Best .051 .100 .083 99.4 97.4 .5 2.1

11 Multipath Best .053 .103 .083 99.5 97.1 0 2.9

12 Tropo. Delay Best .051 .105 .083 100 98 0 2

Table 4.6 Best Case Error Sensitivity

The errors sources that clearly stand out as the most sensitive are the pseu-

dolite position errors (Test 9) along with the tropospheric delay (Test 12). This

is reasonable because these errors are larger in magnitude than the multipath and

measurement noise, in addition to being more time correlated. When the pseudolite

positions (Test 9) were reduced, the percentage of correct fixes was 99, which was

2.7 percent higher than the base case. The pseudolite position errors also showed

the only significant improvement in the RMS position and RMS ambiguity errors.

The best case tropospheric delay (Test 12) also showed an improvement in ambi-

guity resolution. The best case for tropospheric delay also resulted in 100 percent

correct for the ambiguity rounding, which means that every floating-point ambigu-

ity estimate was within half a cycle of the correct ambiguity. Both the multipath

and tropospheric delay scenario achieved zero percent incorrect while increasing the

percent correct over the baseline filter.

A sensitivity analysis also examined the effect of changing one error source at

a time to the worst case expected error. The worst case error sensitivity results are

shown in Table 4.6. Each test (13-16) should show a degraded performance from the

base (Test 4), with the magnitude of degradation indicating the relative sensitivity.
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Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

4 Single Nom. .054 .101 .083 99.4 96.3 .5 3.2

13 PLE Worst .083 .186 .083 89.6 74.9 .4 24.7

14 Meas. Noise Worst .061 .119 .083 99.4 94 .4 5.6

15 Multipath Worst .055 .115 .083 99.4 95.3 .6 4.1

16 Tropo. Delay Worst .066 .138 .083 95.3 91.9 0 8.1

Table 4.7 Worst Case Error Sensitivity

The pseudolite position error (Test 13) and the tropospheric delay (Test 16)

again showed the most significant sensitivity. Only the pseudolite position error

displayed a much larger change in the RMS position and floating-point ambiguity

errors in comparison to the other scenarios.

The pseudolite position errors and the tropospheric delay were shown from

Chapter 3 to have larger magnitudes and stronger time correlations than the mea-

surement noise and multipath. As a result, the filter is more sensitive to these errors

when examining the best and worst cases separately for each error source. Only the

position errors impacted RMS position and RMS ambiguity errors significantly.

4.5.3 Filter Enhancements. The five filter enhancements that were de-

veloped in this research included code averaging, bias correction terms, optimal

smoothing, measurement covariance weighting, and tropospheric model error states.

This section evaluates the filter enhancements against the best, nominal, and worst

case errors with a single (L1) frequency. Tests 2, 4, and 6 are used as the baseline

filter for comparison. Note that the filter tuning is the same for best, nominal, and

worst case errors (i.e. the re-tuned filter was not used).
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The tropospheric model error states will be analyzed for a single run before

describing the Monte Carlo results. Recall from Chapter 3 that there were two

implementations developed—two separate states for the mobile and reference receiver

error percentages, and a single state for the combination error percentage. When

the only measurement error was the tropospheric delay, both filters performed well,

which can be seen in Figure 4.9.
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Figure 4.9 Mobile and Reference Rcvr. Estimated Tropospheric Model Error Per-

centages for Tropospheric Delay Only

Notice that the state estimates are plotted as points, but appear as a thicker

line than the plot of the correct value. The next two figures were plotted in the same

manner.

When the other measurement errors are added, the filter is still able to estimate

the mobile percentage successfully, but not the reference percentage, as shown in

Figure 4.10.
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Figure 4.10 Mobile and Reference Rcvr. Tropospheric Model Error Percentages

with all Measurement Errors

At first it was thought that the reference error percentage was un-observable,

due to lack of relative motion between the reference receiver and pseudolites. How-

ever, if this were true, the filter would not have been able to estimate the percentage

when only the tropospheric delay was present. Instead, the lack of relative motion

for the reference receiver means that the pseudolite position errors cause biases in the

measurements. This obscures the filter from correctly discerning the tropospheric

model scale factor error, which looks like pseudolite location biases. This motivated

the single tropospheric state as previously discussed in Chapter 3. When this im-

plementation was used, the filter-estimated percentages typically fell between the

correct mobile and reference receiver percentages, as shown in Figure 4.11. The

single tropospheric state implementation was used for the Monte Carlo simulations.
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Figure 4.11 Combined Tropospheric Model Error Percentage with all Measure-

ment Errors

The correct mobile percentage was -1 percent and the correct reference per-

centage was -1.5 percent. This plot shows the filter converging to a value close to

the correct mobile percentage.

Table 4.8 shows the results for the best error case. Both of the enhancements

that targeted the tropospheric delay improved the ambiguity resolution process. The

filter’s performance was very high for the best case and there was relatively little

room for improvement. Note that the optimal smoother actually resulted in slightly

worse results than the baseline filter. After the filter has converged, typically there

is little, if any, benefit from smoothing due to small dynamics driving noises. The

results in the table indicate the same 10 points in time at which the smoother did

not outperform the filter. If another 10 points in time are selected, the smoother

could have outperformed the filter. Basically, after a filter has converged and has a

really good dynamics model, a smoother cannot be expected to outperform a filter in
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a consistent, significant manner. Only the tropospheric model error states increased

the accuracy of the filter in the position domain.

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

2 Single Best .033 .051 .083 99.4 99.3 .6 .1

17 PR Ave. Best .033 .049 .083 99.4 98.3 .7 1

18 Bias Corr. Best .037 .052 .083 99.4 99.3 .6 .1

19 Smoother Best .041 .049 .083 99.4 98.4 .8 .8

20 Weighted R Best .033 .050 .069 100 100 0 0

21 Tropo. State Best .026 .051 .089 100 99.8 0 .2

Table 4.8 Best Case Filter Enhancement

Table 4.9 shows the results for the nominal error case. The code averaging,

weighted measurement covariance, and the tropospheric model error states could

have resolved 100 percent of the ambiguities correctly with simple rounding. The

smoother offered the most improvement for when comparing the percentage of cor-

rect ambiguities fixes, but also slightly increased the percentage of incorrect fixes.

Recall that the smoother actually decreased the performance for the best case. The

code averaging, weighted measurement covariance, and the tropospheric model error

states offered a more modest increase of correct ambiguities, but with zero percent

of incorrect fixes. Again, the bias correction terms did not improve the filter’s per-

formance.
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Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS res. res. res.

%corr %corr %incorr %unres

4 Single Nom. .054 .101 .083 99.4 96.3 .5 3.2

22 PR Ave. Nom. .056 .111 .083 100 96.6 0 3.4

23 Bias Corr. Nom. .057 .110 .083 99.3 96.3 .5 3.2

24 Smoother Nom. .057 .107 .083 99.4 99.4 .6 0

25 Weighted R Nom. .053 .105 .069 100 97.9 0 2.1

26 Tropo. State Nom. .041 .106 .089 100 97.3 0 2.7

Table 4.9 Nominal Case Filter Enhancement

Table 4.10 shows the filter enhancements results for the worst case errors.

The optimal smoother (Test 29) and the weighted measurement covariance matrix

(Test 30) resulted in the highest percentage of correct fixes, but it also increased

the percent of incorrect fixes. The increase in percentage of correct fixes was 27.9

for optimal smoothing and 14.7 for the weighted measurement covariance matrix.

Again, code averaging (Test 27) and the bias correction terms (Test 28) showed

little improvement over the baseline filter. The tropospheric model error state was

the only case to show improvement in the position accuracy. It also had the best

performance for simple rounding, although the ambiguity resolution improvement

was slight.
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Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

6 Single Worst .099 .225 .083 75.2 59.2 .4 40.4

27 PR Ave. Worst .101 .227 .083 76.7 59.8 .2 40

28 Bias Corr. Worst .101 .226 .083 75.7 59.2 .5 40.3

29 Smoother Worst .095 .221 .083 78.9 86.9 2.9 10.2

30 Weighted R Worst .098 .220 .069 79.1 73.9 3.3 22.8

31 Tropo. State Worst .078 .217 .089 82.2 61.7 .3 38

Table 4.10 Worst Case Filter Enhancement

When compiling the results for all three error cases, the optimal smoothing

and the weighted measurement covariance matrix made the largest difference in the

ability to resolve ambiguities. Although they increased the percent incorrect in the

worst error case, that could be improved by proper tuning or by adjusting the ra-

tio test criteria in the ambiguity set selection process. Even though code averaging

only slightly increased the performance, it is still worth implementing in an oper-

ational system in which two signals are available. It requires little computational

time and provides a modest increase in the accuracy of the code measurements. The

tropospheric model error state method developed in this research did improve ambi-

guity resolution, but not to the degree that smoothing or the weighted measurement

covariance matrix was able to accomplish. As stated previously, the tropospheric

model error state method was the only enhancement to reduce errors in the position

domain significantly, and it had the highest percentage of correct ambiguities using

simple rounding. This suggests that this enhancement could possibly outperform

the other enhancements with better tuning parameters in the ambiguity resolution

process. The long measurement ranges for this trajectory did not contain harsh mea-

surement model nonlinearities. This would explain why the bias correction terms
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did not significantly aid the ambiguity resolution process. The next section contains

alternate trajectories that contain higher measurement model nonlinearities, with a

comparison of nonlinear filtering techniques to address them.

The previous tests show the benefit of each filter enhancement, but do not

show the level of performance when all the enhancements are used together. Ta-

ble 4.11 shows the resulting level of improvement when all the enhancements are

used, except for the tropospheric model error states. The weighted measurement

covariance matrix method cannot be applied at the same time the filter is using the

tropospheric model error states, and the weighted measurement covariance matrix

was chosen because it aided the ambiguity resolution process to a larger degree. The

table used the worst error case because it provided the case with the largest room

for enhancement.

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

6 Single Worst .099 .225 .083 75.2 59.2 .4 40.4

32 All Enh. Worst .093 .216 .069 80.8 76.3 2.4 21.3

Table 4.11 All Enhancement Test for Worst Case

It is surprising to note that the baseline filter with only a smoother performed

better than Test 32, where other enhancements were also used. Further tests were

conducted to explain this phenomenon by adjusting the scaling factor in the weighted

measurement covariance (see Equation 3.60). When the scaling factor, which was

previously .03, was increased to .05, the filter (with both the smoother and weighted

measurement covariance matrix) correctly resolved 84.5 percent of the ambiguities

(with an incorrect percentage of 2.6 percent). When the scaling factor increased, the

RMS ambiguity covariance also increased from .069 cycles to .079 cycles, which was

much closer to the baseline filter RMS ambiguities covariance of .083 cycles. This
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shows that the weighted measurement covariance matrix is sensitive to the scaling

factor.

This test alone would suggest that the scaling factor should be increased for all

the tests using the weighted measurement covariance. Recall that the worst error case

effectively has filter mistuning, and the lower ambiguity covariance from the weighted

measurement covariance matrix enhancement would represent a higher degree of

mistuning than the baseline filter. This mistuning explains why the smoother had

better performance without a weighted measurement covariance for the worst error

case. In order to prove this, two additional tests were conducted with exactly the

same parameters as Test 25, except with different scaling factors in the weighted

measurement covariance formulation. The results are listed in Table 4.12 for scaling

factors of .05 and .06, along with the original scaling factor of .03 (Test 25). It is clear

that increasing the scaling factor for the nominal error case degrades performance.

These results support the claim that the lack of performance in the worst error case

was due, in large part, to filter mistuning. It is important to note that the weighted

measurement covariance greatly increased accuracy of ambiguity resolution in all

three error cases.

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

25 Weighted .03 Nom. .053 .105 .069 100 97.9 0 2.1

33 Weighted .05 Nom. .057 .108 .079 99.4 87.7 .5 11.8

34 Weighted .06 Nom. .059 .110 .084 99.2 86.0 .6 13.4

Table 4.12 Weighted Measurement Covariance Matrix Scaling Factor Comparison

The value of τ for the tropospheric model error states was set to 75 hours for

the previous cases, which was discussed in Chapter 3. This tuning parameter was
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also set to 5 minutes and 1 sec to evaluate its impact, with results shown in Table

4.13.

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

26 Tropo 75 h Nom. .041 .106 .089 100 97.3 0 2.7

33 Tropo 5 m Nom. .045 .108 .094 100 95.7 0 4.3

34 Tropo 1 s Nom. .048 .109 .088 99.4 96.1 .6 3.3

Table 4.13 Tropospheric Model Error States Time Constant Comparison

When the time constant decreased, the values in the tropospheric model error

state (x10) appeared to be more uncorrelated in time. As the time constant decreases,

the filter is effectively allowing the state estimate, which is absorbing some of the

multipath and pseudolite location errors, to vary more with time. This is important

because the errors themselves vary with time.

4.6 Alternate Trajectories with Nonlinear Filter Comparisons

This section compares three different trajectories and analyzes the impact of

measurement model nonlinearities for each one. The evaluation for each trajectory

involves investigation of nonlinear filtering techniques to include 1) EKF with bias

correction terms, 2) a modified truncated second order filter, and 3) a modified

Gaussian second order filter [20].

4.6.1 Landing Scenario. The previous simulations used a flight trajectory

that stayed approximately 3 kilometers above the pseudolite network. The slant

ranges for this trajectory were 3 to 32 kilometers. At these ranges, the bias correction

terms did not show significant improvement over the EKF in terms of ambiguity
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estimation and ambiguity resolution performance. This section investigates a landing

scenario and the impact of measurement model nonlinearities.

The trajectory is actually the takeoff of a C-12, which was reversed to emulate

a landing scenario. Figure 4.12 shows the 3-D trajectory (with projections onto each

axis), while Figure 4.13 shows the same pseudolite and reference receiver locations

with the ground projection of this new trajectory. The maximum range for the

pseudolite signals was again set to 32 kilometers. This trajectory resulted in 9-10

pseudolites in view. It is important to note that, in this trajectory, the shortest

range to the mobile receiver was 2.5 kilometers.
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Figure 4.12 Landing Scenario Trajectory Plot
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Figure 4.13 Landing Scenario Pseudolite and Reference Receiver Locations with

Trajectory Ground Projection

The results shown in Table 4.13 show that only a slight advantage is gained

with bias correction terms or second order filtering, with the majority of the benefit

coming from the bias correction terms. Note that the bias correction terms alone

did better than either second order filter.

Table 4.14 Widelane versus Single Frequency in Baseline Filter

Test Scenario Error 3-D ∇∆Nerr σ∇∆N Round Amb. Amb. Amb.

# Case RMS RMS RMS Res. Res. Res.

%corr %corr %incorr %unres

35 EKF Nom. .298 .129 .084 98.9 99.7 0 .3

36 Bias Nom. .430 .129 .084 99 99.8 0 .2

37 Trun. Nom. .438 .130 .083 98.9 99.8 0 .2

38 Gaus. Nom. .443 .130 .084 98.7 99.8 0 .2
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This landing trajectory also did not fully challenge the baseline EKF, because

the shortest ranges were still in excess of 2.5 kilometers. These tests are still of

general value, however, because they demonstrate that the algorithm performs well

with a different trajectory.

4.6.2 Alternate Landing Scenario. Further test were conducted to attempt

to challenge the filter with severe measurement model nonlinearities. The simulated

flight trajectory was shifted in all three directions to bring the end of the flight within

100 meters of PRN 8 for the last 226 seconds of the 832 second mission (with the

last 192 seconds at exactly 73 meters due to a stationary trajectory). This alternate

landing scenario is shown in Figure 4.14.
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Figure 4.14 Alternate Landing Scenario Pseudolite and Reference Receiver Loca-

tions with Trajectory Ground Projection

The results of one simulation run for this trajectory are shown in Figures 4.15

and 4.16 for the EKF and EKF with bias correction terms. The EKF-only case

showed a slight increase in ambiguity error for the end of the run. The addition of

the bias correction terms did not significantly improve the performance of the filter.
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The modified Gaussian second order filter was very similar to the EKF with bias

correction terms.
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Figure 4.15 Single Simulation Run for Alternate Landing Trajectory with an EKF
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Figure 4.16 Single Simulation Run for Alternate Landing Trajectory with an EKF

with Bias Correction Terms

4-31



Note that one of the ambiguities in Figure 4.16 is worse than it was in Figure

4.15. This suggests that the addition of the bias correction terms actually degraded

the performance at the start of the run.

4.6.3 Take Off Scenario. The alternate landing trajectory was inverted

to simulated an aircraft taking off and experiencing the harsh nonlinearities right

from the start of the simulation. This forces the filter to deal with the nonlinearities

before the filter has converged. The EKF in this scenario did require more time to

converge and in that time it experienced the large ambiguity errors shown in Figure

4.17.
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Figure 4.17 Single Simulation Run for Takeoff Trajectory with an EKF (Initialized

73 meters away from a Pseudolite)

When the bias correction terms were added, the filter diverged very quickly

(within 15 seconds). The bias correction factors are a function of the covariance

matrix. In the baseline filter, the position covariance values used a standard deviation

of 100 meters. The filter diverged because the position standard deviation was
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greater than the actual distance between the transmitter and receiver, which caused

problems with the line of sight vectors.

Two fixes for this problem were attempted. The first was to delay the use of the

bias correction terms until after 20 seconds had elapsed, to allow the covariance values

to decrease. This was successful, and it produced results nearly identical to the EKF

case without bias correction terms. Lowering the covariance to a standard deviation

of 4 meters was the second attempted solution. This also solved the divergence

problem.

For the application to require any second order nonlinear filtering (full-state

or just bias correction terms), the position error must be significant in relation to

the range between the transmitter and receiver. Second-order filtering must be

applied with care, because it is sensitive to the covariance initialization. When the

bias correction terms are used with large covariance values, divergence can occur.

The modified truncated and modified Gaussian second-order filters did not provide

sufficient improvement over the EKF with bias correction terms to warrant any

further investigation for reference system applications. Any further examination of

second-order filter techniques for pseudolites could be of value for indoor pseudolite

applications, where the nonlinearities are significant enough to warrant such high-

order nonlinear filtering.

4.7 Optimal Smoothing

Optimal smoothers not only increase the performance of the floating-point fil-

ter and the ability to resolve ambiguities, but they also increase the true window

over which ambiguity techniques can be applied in a post-processing application.

Typically, the EKF took up to 7 minutes (half of the simulation) to converge on

the floating-point solution. That is why ambiguity resolution techniques were only

applied in the second half of the test run. Optimal smoothing enables ambiguity
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resolution at the start of the mission if real-time processing is not of critical impor-

tance.

The section on optimal smoothers in Chapter 3 detailed exactly how the

smoothing algorithm was modified for base prn changes, pseudolites coming into

view, and pseudolites going out of view. In order to test the smoother for a double

difference base PRN change, the base was manually changed from 3 to 8 and the

visibility plot is shown in Figure 4.18.
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Figure 4.18 Visibility Plot for 20 Kilometer Maximum Range

The smoother allows a converged solution right at the start of the test mission

and can be seen in Figure 4.19. This figure shows the RMS ambiguity error in the

top subplot and the RMS standard deviations of the ambiguities in the bottom plot.

The forward filter is depicted with a solid line, while the smoothed estimates are

shown with a dotted line.
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Plots

These plots demonstrate the the smoother could handle the pseudolites coming

into and going out of view along with the changing base prn for double differenc-

ing. The spikes in the plots are a result of a pseudolite coming into view. Recall

that the variance assigned to a pseudolite that just came into view is rather large

in comparison to the remaining variances, which affects the RMS of the standard

deviations.

4.8 Summary

This chapter first described the simulation parameters, scenario descriptions,

and test case definitions. This background was required to set the stage for the

single run and Monte Carlo results. In the single run analyses, the filter was eval-

uated based on the position and ambiguity estimation errors in addition to using

the flight vehicle velocities and accelerations to explain some of the results from
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the residuals. The Monte Carlo simulations evaluated a single frequency filter ver-

sus one using a widelane observable. The Monte Carlo simulations also included

a sensitivity analysis of each error source and a comparative analysis of five filter

enhancements. Alternate flight trajectories were investigated with nonlinear filtering

techniques. Lastly, the optimal smoother was shown to increase the epochs available

for ambiguity resolution.
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V. Conclusions and Recommendations

5.1 Overview

This research presented the theory, models, and simulation results for a pseudolite-

based flight reference system. Previous research has indicated that pseudolites can

be used successfully for positioning and ambiguity resolution. This research concen-

trated on the application and adaption of GPS carrier-phase differential techniques to

pseudolite measurements for a flight reference system application. The adaptations

were required due to the differences in pseudolite versus GPS navigation.

The baseline algorithm consisted of an extend Kalman filter that used a dou-

ble differenced code and carrier-phase measurement. Widelane or single frequency

measurements could be used in this filter, in addition to a number of possible fil-

ter enhancements. These filter enhancements included code averaging (when two

codes are available), bias correction terms (emulating second order filtering), opti-

mal smoothing, and two methods for reducing the residual tropospheric delay that

exists after a tropospheric model has been applied. The first method implemented a

weighted measurement covariance matrix based on the tropospheric-model-predicted

delays. The second method for reducing residual tropospheric error was explicitly

modelling it in the filter.

5.2 Conclusions

A single run of the filter was evaluated to show typical performance of the

floating-point filter. The performance was investigated through analysis of the po-

sition and ambiguity accuracies, in addition to the velocities, accelerations, and

residuals. Although the primary objective was to evaluate ambiguity resolution per-

formance, position accuracy was also important. The accuracy of the algorithm in

the position domain is also relevant if a pseudolite-only system is desired (i.e., one
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based solely on pseudolite signals). In general, the floating-point filter was typically

accurate to within 10-15 centimeters for the position and two-tenths of a cycle for the

ambiguities (for single frequency measurements). For widelane measurements, the

ambiguity accuracy was within a tenth of a cycle, with a position accuracy within

20-25 centimeters. The performance was investigated by single run analysis and

supported by Monte Carlo simulations. For tested trajectories, the filter required

5-7 minutes to converge. Converged estimates were available at the start of the run

when an optimal smoother was applied.

The influence of the code measurements and the relative motion between trans-

mitters and receivers are the two factors that allow the filter to converge on the

ambiguities. When the code was essentially removed, by increasing the measure-

ment covariance values to an extremely high value, the filter was forced to rely on

the relative motion only. This actually increased the speed of convergence with no

degradation of accuracy. This suggested that relative motion was the primary driver

for ambiguities’ convergence. This was confirmed when the filter processed measure-

ments from a stationary trajectory, which decreased the accuracy of the ambiguity

estimates by an order of magnitude. This suggests that a pseudolite-based flight

reference system does not require code measurements, although code measurements

will add robustness to the system.

Monte Carlo simulations were also conducted to evaluate filter performance

further. This analysis included an evaluation of widelane versus single frequency,

a sensitivity analysis of each error source, and a comparative analysis of five filter

enhancements. The widelane measurement reduced the magnitudes of the ambi-

guity errors, at the expense of increasing the errors in the position domain. As a

result, ambiguity resolution was more easily conducted with a widelane frequency

than with a single frequency implementation. The filter, using widelane frequency

measurements, was able to resolve 100 percent of the ambiguities correctly, while the

filter using single frequency measurements was able to resolve 96.3 percent correctly
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and .5 percent incorrectly. The difference was more dramatic for larger measure-

ment error cases. Given correctly resolved ambiguities, a single frequency solution

has smaller measurement errors than a widelane frequency solution. The filter per-

formed well enough to assert that a single frequency may be all that is required in a

fielded system.

The expected level of measurement errors was increased and decreased by a

factor in order to characterized filter performance to different levels of measurement

error. First, the filter was not altered and evaluated for each of the different levels

of measurement errors. This represented a filter mistuning (i.e., either the filter

was over- or under-estimating its performance), which allowed the robustness of the

filter to be tested. The second type of test involved re-tuning the filter in order to

evaluate its performance with the correct level of measurement error. The re-tuned

filter improved the filter performance from 99.3 percent resolved correctly to 100

percent for the best case, and 59.2 percent resolved correctly to 63.8 percent for the

worst case.

The sensitivity analysis for each error source suggested that the pseudolite po-

sition errors and the residual tropospheric error were the dominant error sources.

Great care should be taken when surveying the antenna positions of the pseudolites

and reference receiver. The filter sensitivity to the un-modelled tropospheric delay

error motivated two of the filter enhancements developed as part of this research—the

weighted measurement covariance matrix and tropospheric model error states. The

weighted measurement covariance matrix method utilized the tropospheric model

output in selecting measurement uncertainty values based on the predicted tropo-

spheric delay. This relative weighting of measurement uncertainty was based on the

range and elevation angle (i.e., the longer the range and/or lower the elevation angle,

the larger the predicted tropospheric delay and thus uncertainty magnitude).

The second enhancement explicitly estimated the tropospheric model error as

an additional state in the filter. The error, when expressed as a percentage, was the
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modelled as a first order Gauss markov process. Initially, the error percentage of

the mobile receiver and reference receiver were modelled separately. The filter could

successfully estimate the percentage of tropospheric model error in the absence of

measurement noise, multipath, and pseudolite location errors. When these error

sources were included in the measurement-corrupted ranges, the filter correctly esti-

mated the mobile error percentage, but not the reference error percentage. The lack

of motion between the reference receiver and the pseudolites caused the pseudolite

location errors to be bias-like. The filter was apparently unable to distinguish the

tropospheric model error from the biased multipath and pseudolite location error

present at the reference receiver. This problem suggested the use of a single tropo-

spheric state that included the error percentage of both receivers. This implementa-

tion successfully improved ambiguity resolution, and was the only enhancement that

reduced errors in the position domain.

The other filter enhancements included code averaging, second order filter-

ing, and optimal smoothing. Neither the code averaging nor the bias correction

terms significantly enhanced the ambiguity resolution process. The bias correction

terms from a second order filter were implemented to improve the linearization ap-

proximation for the extended Kalman filter. The effect of the measurement model

nonlinearities are attributed to two factors. The first is the degree of uncertainty

of the receiver, specifically in a direction orthogonal to the line of sight between a

transmitter and receiver. The second factor associated with nonlinearities is short

transmission ranges which result in more spherical wavefronts of the received signals.

Multiple trajectories for a practical flight reference system were tested to investigate

the impact of measurement model nonlinearities and the benefit of the addition of

bias correction terms or second order filters. It was concluded the level of uncer-

tainty in the receiver position is so small, when compared to the line-of-sight ranges,

that bias correction terms and second order filters are not helpful for the tested tra-

jectories. If the uncertainty is significant when compared to the ranges (like would
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be the case for indoor pseudolite applications), further exploration of second order

nonlinear filtering techniques is warranted.

The optimal smoothing algorithm developed by Meditch [20] is not tolerant

to the state and covariance matrices changing dimensions between measurement

updates. The number of ambiguity states varies between epochs based on the number

of visible pseudolites. This is caused by pseudolites coming into view and going out of

view. The existing smoothing algorithm cannot handle the state dimension changes.

The smoother calculates a state vector and covariance matrix at the current time

ti, based on the filter state and covariance at the current time ti, and both the

filter and smoother outputs at the future time ti+1. As part of this research, the

smoothing algorithm was modified to allow the number of ambiguity states to change

between epochs. The smoothing algorithm could not tolerate a state to represent one

quantity at one epoch and a different quantity at the next. For GPS and pseudolite

applications this will occur when a base double difference PRN goes out of view. The

smoothing algorithm was also modified to allow a change in the base double difference

PRN. A translation matrix was formed based on the base PRNs at two adjoining

epochs and the vector of visible pseudolites. The translation matrix was applied to

both the state vector and covariance matrix to allow the smoothing algorithm to

form the smoothed state and covariance estimate properly.

The position and ambiguity solutions from the floating-point filter suggest that

the pseudolite ambiguities can be resolved with a pseudolite-only system, and that

further integration with an INS or other measurement sources is not required to

obtain high-accuracy position. This research concluded that carrier-phase measure-

ments with resolved ambiguities can be produced from pseudolite signals to incor-

porate and improve accuracy, especially during periods of GPS jamming, to flight

reference systems.
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5.3 Contributions

This thesis has provided contributions in various areas of research. The fol-

lowing list details these contributions.

• The largest contribution of this thesis is the development and testing of the

navigation filter for a pseudolite-based flight reference system. Although very

similar to a GPS navigation algorithm, this design concentrated on the differ-

ences between GPS and pseudolite systems.

• The Meditch optimal smoothing algorithm was modified to handle a state and

covariance matrix with changing dimensions. It was also adapted for changes

in the quantities that are represented in the matrices. These adaptations can

be easily extended to GPS navigation applications.

• The weighted measurement covariance matrix was developed as part of this

research. This method takes advantage of tropospheric model predictions to

weight the expected variance of the measurements. This significantly improved

the ambiguity resolution of the filter.

• The tropospheric model error states were also developed as an alternative

method for reducing tropospheric delay error. This included an additional

state that also aided ambiguity resolution. This enhancement also improved

the accuracy of the filter in the position domain.

• This research included the analysis of the bias correction terms and two second

order filters to reduce the effect of measurement model nonlinearities. The

analysis indicated periods when divergence can occur with bias correction terms

and ways to eliminate the divergence.

5.4 Recommendations

The filter in this research performed well in its ability to resolve pseudolite

carrier-phase ambiguities, and further research and evaluation for this concept is
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warranted. The following recommendations are included to provided to guide the

next logical steps for a pseudolite-based flight reference system.

• Apply the filter to real pseudolite flight test data. It will be necessary to find

a suitable reference system for comparison. Pseudolite data is available from

the original Holloman test along with tape measure results [25]. However,

the geographic size of this test was fairly small, and it will therefore not fully

challenge the filter with significant tropospheric error.

• Incorporate an inertial system to compare the performance of a Pseudolite/Inertial

Navigation System (PL/INS) to a pseudolite-only system. The coupling of an

inertial system with pseudolite measurements should only improve the perfor-

mance of the floating-point filter, and would be helpful if there are pseudolite

measurement dropouts. The Kalman filter used in this research would have

to be converted to an error-state Kalman filter that estimates the error in the

inertial system.

This recommendation is relatively easy to implement if real flight test data is

available for both GPS and an INS. The fixed-integer solution from the GPS

receiver could be used as the true trajectory in order to simulate pseudolite

measurements that are corrupted with simulated measurement errors. The

filter would use the real INS data and the simulated pseudolite measurements.

• Implement a Multiple Model Adaptive Estimation (MMAE) algorithm for the

set determination function of the ambiguity resolution process. This would

replace the ratio test of the residuals with parallel Kalman filter conditioned

on each possible set of ambiguities [15].

• MMAE techniques can also be applied to reducing the residual tropospheric

error. This could be implemented instead of the weighted measurement covari-

ance or the tropospheric model error states.
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• Model each visible pseudolite with a separate state for the tropospheric model

error state method. If the time constant is lowered, the filter may be able to

reduce the pseudolite position error and multipath.

• Develop a practical method that selects the best period of time to perform the

ambiguity search process. This decision should be based on pseudolite visibil-

ity, magnitude of acceleration of test vehicle, and size of ambiguity covariance

values. This research applied ambiguity resolution techniques to epochs scat-

tered throughout the entire data set, with the exception of the first few minutes

to allow the filter to converge. Selecting the best time conditioned on a high

number of visible pseudolites, small accelerations of the test vehicle, and low

ambiguity covariance values should provide a better methodology for a prac-

tical system. If not all the pseudolites were visible during this period, the

filter can use the fixed ambiguity solutions with reduced covariances to reflect

that these are the correct ambiguities and iteratively solve for the remaining

ambiguities.
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