
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

AN XML-BASED KNOWLEDGE MANAGEMENT SYSTEM
OF PORT INFORMATION

FOR U.S. COAST GUARD CUTTERS

by

Jeffrey D. Stewart

March 2003

 Thesis Advisor: Magdi N. Kamel
 Second Reader: Gordon H. Bradley

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: An XML-Based Knowledge Management System of
Port Information for U.S. Coast Guard Cutters
6. AUTHOR(S) Stewart, Jeffrey D.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis describes the development of a prototype application which collects, manages, and distributes knowledge

gained by Coast Guard cutter crews making port calls throughout the world. The system uses XML technologies in

server/client and stand alone environments. With a web browser, the user views and navigates the system's content from a

downloaded file collection or from a centralized data source via a network connection. Users add and modify content with

Hypertext Markup Language (HTML) forms using their existing network connections. Client-side data access and navigation,

as well as data storage, is performed using non-proprietary standards developed by the World Wide Web Consortium (W3C)

and the Internet Engineering Task Force (IETF).

The prototype application’s purpose is to fulfill the strategic goal of achieving superiority of maritime domain

awareness over the areas in which the Coast Guard operates. The need for this application is based upon the lack of specific

information from currently available reference publications, the absence of a system to distribute port call knowledge, and the

data bandwidth limitations of cutters at sea. The need for knowledge retention aboard cutters is elevated by shortened

crewmember assignment lengths due to the stressful and arduous duties of life at sea.

15. NUMBER OF
PAGES

123

14. SUBJECT TERMS Knowledge, Knowledge Management, XML Database, Extensible, XML,
XPATH, XSLT, XML Schema, XQuery, XLink, XPointer, XInclude, CSS, HTML, XHTML, DOM,
JavaScript, ASP, Internet Explorer, MSXML, Coast Guard, USCG, Cutters, Personnel, Navigation,
Ports, Locations, Experiences. 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

AN XML-BASED KNOWLEDGE MANAGEMENT SYSTEM OF PORT
INFORMATION FOR U.S. COAST GUARD CUTTERS

Jeffrey D. Stewart
Lieutenant, U.S. Coast Guard

B.S., U.S. Coast Guard Academy, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: J. D. Stewart

Approved by: M. N. Kamel
 Thesis Advisor

 G. H. Bradley
 Second Reader

 D. C. Boger
 Chairman, Department of Information Sciences

iii

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis describes the development of a prototype application which collects,

manages, and distributes knowledge gained by Coast Guard cutter crews making port

calls throughout the world. The system uses XML technologies in server/client and stand

alone environments. With a web browser, the user views and navigates the system's

content from a downloaded file collection or from a centralized data source via a

network connection. Users add and modify content with Hypertext Markup Language

(HTML) forms using their existing network connections. Client-side data access and

navigation, as well as data storage, is performed using non-proprietary standards

developed by the World Wide Web Consortium (W3C) and the Internet Engineering

Task Force (IETF).

The prototype application’s purpose is to fulfill the strategic goal of achieving

superiority of maritime domain awareness over the areas in which the Coast Guard

operates. The need for this application is based upon the lack of specific information

from currently available reference publications, the absence of a system to distribute port

call knowledge, and the data bandwidth limitations of cutters at sea. The need for

knowledge retention aboard cutters is elevated by shortened crewmember assignment

lengths due to the stressful and arduous duties of life at sea.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH CONDUCTED ..1

1. Research Questions..1
2. Outcome of Application Development ...2

B. THE NEED FOR AN APPLICATION..2
1. Knowledge Management ...2
2. Disconnected Environments..2

C. SCOPE OF RESEARCH ..3
1. Prerequisite and Learned Skills ...3
2. Program Management...3
3. Computing Resources..4

D. THESIS OUTLINE..4

II. APPLICATION ANALYSIS AND DESIGN ..7
A. INTRODUCTION..7
B. VISION ...7
C. DOMAIN MODEL ..8

1. Domain Model Conceptual Classes ..9
2. Domain Model ..10
3. Key Attributes ..12

D. USE-CASE MODEL..12
1. System Boundary ...12
2. Actors and Goals ..13
3. Use Cases...14

a. Users ..14
b. Regional Domain Experts...14
c. System Developers/Analysts..15
d. System Administrators ..15

E. SUPPLEMENTARY SPECIFICATION...16
1. Functionality...16
2. Usability ..16
3. Reliability..17
4. Performance ...17
5. Supportability...17
6. Implementation Constraints ...17
7. Interfaces ..17
8. Domain (Business) Rules ...17
9. Legal Issues...18

F. REQUIREMENTS GLOSSARY..18

 viii

III. INTERNET AND XML TECHNOLOGIES...21
A. INTRODUCTION..21
B. XML (EXTENSIBLE MARKUP LANGUAGE)..21
C. XML SCHEMA..22
D. XPATH (XML PATH LANGUAGE) ..23
E. XSLT(EXTENSIBLE STYLESHEET LANGUAGE

TRANSFORMATION) ...23
F. DOM (DOCUMENT OBJECT MODEL) ...24
G. HTML & XHTML (EXTENSIBLE HYPERTEXT MARKUP

LANGUAGE) ...26
H. SOAP...27
I. CSS (CASCADING STYLE SHEETS)..27
J. MSXML (MICROSOFT XML PARSER)...28
K. INTERNET EXPLORER (IE)..29
L. ACTIVE SERVER PAGES (ASP) ...29
M. JAVASCRIPT (ECMA STANDARD-262)..30

IV. PROOF OF CONCEPT CONSTRUCTION...31
A. OVERVIEW OF DESIGN (LOGICAL PERSPECTIVE)31

1. Purpose of the Proof of Concept...31
2. Types of Data and Its Integrity...31
3. Stored Data and Information..32
4. Relationships Between Data..34

B. DATABASE ARCHITECTURE (PHYSICAL PERSPECTIVE).............35
1. Non-XML Technologies Used ...35
2. XML-Related Technologies Used ...35
3. Proof of Concept File Use and Layout ...36

C. APPLICATION CONSTRUCTION TECHNIQUES38
1. Relative Path Navigation...38
2. Dynamic Information Exchange...40
3. Cascading Style Sheets (CSS) ...42
4. ASP Files That Serve and Process Forms..42
5. Use of the ASP Session Object ..43
6. XML Schema Datatypes..43
7. Recursive Node Search Versus XPath ...44

D. DESIGN PROBLEMS AND TECHNOLOGY LIMITATIONS44
1. Server Security ...44
2. W3C DOM, ECMAScript, and Microsoft44

a. Live DOM ..45
b. Areas Re-Worked ..46

E. SUMMARY ..46

V. PROTOTYPE APPLICATION..47
A. INTRODUCTION..47

1. Prototype As a Second Iteration...47
2. Design Carryovers ...47
3. Design Changes ..47

 ix

B. CREATING DATA VIEWS ...48
1. Data View Development Process ..48
2. Data View File Dependencies..49
3. Relativity in XSLT and HTML Processing50

C. CONTENT NODE SCHEMAS ..51
D. DYNAMIC FORM ELEMENTS ...52

1. Multiplicity of Data Elements ...52
2. Enabling Dynamic Form Elements ..52

E. GENERALIZED ADD AND MODIFY PROCESS....................................53
1. Chosen and Alternative Design Patterns ...53
2. URL Query String Contents ...54
3. Actions of the Transmitter ..55
4. Actions of the HTML Form ..56
5. Actions of the Receiver ..59

F. UNIQUE TRANSMITTER AND RECEIVER PROCESSES...................62
G. XML PROCESSING CONSIDERATIONS..62

1. Client-Side Loading ...62
2. Server-Side Loading ..63

H. LIMITATIONS OF EXISTING SYSTEM ...63
1. Data Normalization..63
2. Referential Integrity ..64
3. Searches (Data Queries) ..64
4. Record Locking ..65
5. System Integration...65

VI. XML DATABASE SELECTION AND FUTURE TECHNOLOGIES67
A. DATABASE SELECTION STRATEGY ..67

1. Selecting the Data Storage Representation......................................67
2. Selecting the XML Storage System Type...69
3. Native XML Products..70

B. ONGOING XML DEVELOPMENTS...71
1. XQuery (An XML Query Language) and XPath (Version 2.0).....71
2. XML:DB Initiative...73
3. XForms..73
4. XML Base ...75
5. XLink (XML Linking Language) ...76
6. XPointer (XML Pointer Language) ...77
7. XInclude (XML Inclusions) ..79

VII. CONCLUSIONS AND RECOMMENDATIONS...81
A. RESEARCH RESULTS ..81

1. Objectives Accomplished...81
2. Performance ...82

B. RECOMMENDATIONS...83
1. Implementation ..83
2. Further Research ...83

C. SOURCE CODE ..84

 x

APPENDIX A ENTITY RELATIONSHIP DIAGRAM..85

APPENDIX B CONTENT FILE TEMPLATES (XML)...87

APPENDEX C SAMPLE APPLICATION VIEWS..97

LIST OF REFERENCES..101

INITIAL DISTRIBUTION LIST ...105

 xi

LIST OF FIGURES

Figure 1. Application Domain Model ...11
Figure 2. System Use Case Diagram...13
Figure 3. Technology Relationships..21
Figure 4. W3C’s DOM Architecture...25
Figure 5. Physical File Structure ...37
Figure 6. Proof of Concept File Relationships ..38
Figure 7. URL Path Navigation Example ...39
Figure 8. Data View Dependencies Example..50
Figure 9. XML Content File To View Transformation...50
Figure 10. Data Entry And Modification Overview..53
Figure 11. HTML Form Generation Actions ..55
Figure 12. HTML Form Actions ...58
Figure 13. Receiver Actions..60
Figure 14. Relationships Between W3C XML Technologies Used..................................72
Figure 15. XML Base Example...75
Figure 16. XLink Example..76
Figure 17. XPointer Example..78
Figure 18. XInclude Example ...80

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Location Data Schema ...33
Table 2. Location Relationship Data..33
Table 3. Location Administrative Data..34
Table 4. List of Files in Proof of Concept System...36
Table 5. Files Modified During Content Processing..61

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I could not have finished this without the support of my wife, Kristin.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. RESEARCH CONDUCTED

The purpose of this thesis was to construct a server based XML knowledge

management system that can be used in a network-less environment with Internet

browser software. The users of this system are United States Coast Guard cutter

personnel. The system captures their corporate knowledge and experiences while visiting

ports of call and navigating their geographical areas of responsibility. While built for a

specific knowledge domain and user group, the methodology of this research can be

extended to any professional community that works in low or no bandwidth environments

where knowledge is critical to the outcome of their performance.

1. Research Questions

The primary research question was: how do we build collaborative extensible

markup language (XML) based knowledge management systems that are transparent,

deployable, and extensible using ubiquitous technologies and accepted standards? The

terms used in the primary question are given context with the following definitions:

• Collaborative – anyone can author and comment on database content.

• Knowledge – the applied information, experiences, and tacit rules.

• Transparent – accessible without middleware (i.e. direct access to data).

• Deployable – the database can be packaged and used from the client
software without a server or Intranet/Internet connection.

• Extensible – existing content can be expanded, and new bodies of
knowledge can be created using the same concept and construct.

• Ubiquitous technologies – Internet Explorer, HTML, JavaScript, and
World Wide Web Consortium (W3C) languages.

• Accepted standards – W3C Recommendations and Internet Engineering
Task Force (IETF) standards.

Several secondary questions are germane to this topic: What are the advantages

and disadvantages of using XML over relational and object-relational database systems?

What are the differences between currently available open-source and commercial XML

database systems? What do emerging XML technologies such as XPointer, XLink, and

2

XQuery hold for the future acceptance of XML database applications? These topics were

considered during the construction of the application and were further analyzed after

completing the development process.

2. Outcome of Application Development

Research into the problem space began during the formulation of the thesis

proposal. At that point, several principles of hypertext linking and XML processing were

investigated for their potential use in a database consisting of a hierarchy of disk

directories and files. The research then proceeded with two distinct iterations. The first

iteration was a proof of concept – it was largely an exercise to prove that the envisioned

system could be constructed and to increase the knowledge and skills of the author. In

the second iteration a prototype application was constructed. The developed application

demonstrates that a deployable XML-based knowledge management system is possible.

Further research is needed to determine requirements and to validate the scalability and

reliability of such a system.

B. THE NEED FOR AN APPLICATION

1. Knowledge Management

Admiral Collins, Commandant of the Coast Guard, outlines three areas of focus in

his direction statement, one of them is readiness. To improve the service’s current and

future readiness, his direction is to, “[d]esign and implement a maritime domain

awareness capability that provides integrated afloat, ashore, and airborne C4ISR that is

focused on meeting both the informational needs of decision makers and the tactical

needs of operational commanders (Commandant’s Direction, 2002).” This thesis is about

building the Coast Guard’s ability to capture, store, and share the knowledge gained by

its men and women serving aboard its cutters. It is focused on retaining the knowledge

lost in the cycling of personnel rotations. The imperative to develop a solution to this

problem is further discussed in Chapter II.

2. Disconnected Environments

People in the telecommunications profession often talk about the difficulty in

getting high data bandwidth “to the last mile.” For ships at sea, the last mile can often be

more than a thousand miles. To connect these resources, radio-based communications

3

networks have been created to link to these resources. However, even the best of long-

range radio networks (i.e., satellites) are slow in comparison to land-based networks.

They are also very expensive to build and use. As such, their use is prioritized to

operationally critical tasks.

The bandwidth limitation for ships at sea is not likely to be completely removed

in the near future. This creates an environment where moored ships have high speed

connectivity from a pier, only to be severely restricted while underway. Given this

situation, there are opportunities to maximize the power of moored connectivity to lessen

the impact of being nearly disconnected away from the pier. The developed application

is one solution. It creates a collaborative environment for moored ships to share their

newly gained experiences so that it may be captured as a ‘snapshot’ and used by other

ships about to get underway.

C. SCOPE OF RESEARCH

1. Prerequisite and Learned Skills

This research covered many fields of computing: data theory and database design,

networking fundamentals, software analysis and design, and client browser and web

server processes. The author has attended courses in all of these areas, including

introductory and advanced XML courses. In addition to putting that knowledge to

practical use, the author invested significant learning time into the Hypertext Markup

Language (HTML), Cascading Style Sheets (CSS), Document Object Model (DOM),

JavaScript (ECMAScript), Visual Basic Script (VBScript) and numerous Extensible

Markup Language (XML) technologies (XML, XPath, XSLT, XML Schema, etc.).

Having solved many issues regarding a specific path of development, the necessary

training time to re-create the skill set is estimated to be three months.

2. Program Management

This research was primarily focused on the technical solution, and less on

satisfying the requirements of the user domain. As a proxy, the author used his own six

years of afloat experience to create a requirements document. Other supporting

documents used in defining the requirements are described in Chapter II. The time spent

solely on this research is estimated to be nine weeks. Of that, approximately one-third of

4

the time was spent formulating a development path (i.e. trail blazing). Applying the same

process into a separate community of knowledge could be repeated in approximately five

weeks.

3. Computing Resources

The development tools and resources used were openly available to all students

attending the Naval Postgraduate School. The primary tools and resources are listed

below:

• Microsoft Visual Studio .Net – used for authoring scripting and CSS files.
The VS.Net IDE provides significant value with its dynamically generated
contextual help references.

• Altova XML Spy (Professional and Personal version 5) – used for
authoring XML, XSLT, and XML Schema documents. This product was
found to be a superior product to all others evaluated.

• Microsoft FrontPage (version 2000) – used for developing HTML
templates. This product was also used for rapid prototyping of HTML
layouts because of its fast rendering WYSIWYG interface.

• Server computer - Windows 2000 Advanced Server (service pack 3),
Internet Information Server (IIS version 5.0), and Microsoft XML Parser
(MSXML version 4.0, service pack 1).

• Client computers - Windows operating system (2000 Professional and XP
Home), Internet Explorer (version 5.5 with MSXML 3.0 and version 6.0
with MSXML 4.0). Since NPS client computers do not have MSXML
version 4.0 installed, client-side user data validation could only be tested
from the author’s personal computer.

D. THESIS OUTLINE

Chapter II is the requirements analysis of the developed application. It discusses

the context of the user domain and provides the needs analysis for the Coast Guard.

Without prescribing the solution, the chapter also describes the design criteria. Chapter

III provides an introduction to the technologies used in researching and developing the

solution. More detailed issues regarding these technologies are described in the later

chapters. Chapter IV is a description of the proof of concept application. It demonstrates

a less than optimal solution, but resolves many of the challenges to the development

process. Chapter V is the second iteration of development and produces a superior

solution compared to the first. It continues the process of identifying and solving

development problems. Chapter VI provides perspective on the XML database products

5

that are currently available and introduces advanced XML technologies that will

influence the future of XML databases. Finally, Chapter VII provides reflection on the

application developed, its potential future, and the need for further research.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. APPLICATION ANALYSIS AND DESIGN

A. INTRODUCTION

The purpose of this chapter is to provide relevant context for the prototype

application. It is a requirements document for a particular instance of a native XML

knowledge management system. This chapter communicates the analysis and design for

a particular problem area; the following chapter describes the actual technologies used in

developing the application (solution).

The requirements are documented using the Unified Process (UP) and the Unified

Modeling Language (UML)[18, 48]. The actual writing of the documentation came after

constructing the proof of concept application. This was intentional. It was necessary

since the course of development took several major deviations along the way. The

analysis and design documentation will support anyone else pursuing further study in this

topic area or for an enterprise implementation of the application. The author chose the

Unified Process to continue honing his skill in this technique and because it is suitable for

an iterative development approach. This chapter focuses on those artifacts of the Unified

Process that would likely be produced during the Inception phase of development.

Chapters IV and V cover the later phases of Elaboration and Construction as specific

iterations.

B. VISION

The short-term rotation of personnel aboard Coast Guard cutters inhibits the

organization to achieve superiority in Maritime Domain Awareness (MDA). When

personnel report to a new assignment (new by geography or type of mission) they begin

learning about their area of responsibility (AOR), available resources, and points of

contact within their work domain. The individual's expertise reaches a peak just before

they are transferred to a new assignment. There is currently no effective means for

capturing the corporate knowledge of Coast Guard employees. This affects unit

performance and readiness, effectiveness with local 'business-partners', and future

planning decisions. A successful solution would be a systematic collection of

experiences, lessons learned, and recommendations from the current experts that would

8

be instantly available for study upon arrival at a new assignment, and be continuously

refined as the region changes and new experiences occur.

For personnel assigned to Coast Guard Cutters, the knowledge about ports,

resources, and people is invaluable. The at-sea portion of the Coast Guard's work is at

the core of its service to the Nation. A collaborative knowledge system in this area may

provide significant value added to the organization's performance of its missions.

C. DOMAIN MODEL

The purpose of the Domain Model is, "a representation of real-world conceptual

classes, not of software components.”[18] Research into conceptual classes began with

analysis of similar objects existing within the seagoing communities of the United States

Navy and Coast Guard. Both organizations have used the Logistics Requests (LOGREQ)

system for years. The data fields within a LOGREQ and their explanation come from the

U.S. Navy's Naval Warfare Publication (NWP) 1-03.1 (old 10-1-10). In addition, Navy

ships also report their activities and discoveries through messaging and formatted letters

as required by the Navy Lessons Learned System (NLLS), Naval Operations Instruction

(OPNAVINST) 3500.37(series). Both documents, and the author's experience were used

to evaluate, organize, and subsequently elaborate the detailed attributes of the conceptual

classes.

Numerous information sources already exist for sailors. Commercial for public

(e.g., Lloyds), government for government, and government for public publications

provide generic information about locations, navigation, and ship related resources.

From empirical use, these sources provide good information, but are insufficient to meet

the Coast Guard's internal needs. The prototype system will supplement the areas where

existing knowledge is lacking. However, the published documents provide a baseline for

organizing and classifying the ports of the World. The World Port Index (WPI)[30] (a

National Imagery and Mapping Agency (NIMA) publication), and the Coast Pilot[29] (a

National Oceanic and Atmospheric Agency (NOAA) publication) were used in

organizing the logical layout of the system. NIMA provides a schema for sub-dividing

the world, which the WPI uses as a baseline for further categorizing its information. At

the national level, the Coast Pilot organizes maritime locations within the United States

9

(and its territories and possessions). Both sources of information were used in

developing the organization of the system. Foreign locations are further described in

more detail by the Sailing Guides, which are published by NIMA. In addition, the United

Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) has their

own unique system for organizing world locations [24]. Using pre-existing models as a

development template helps ensure a familiar data set for the user to navigate.

1. Domain Model Conceptual Classes

The following list contains the conceptual classes for the application developed:

• Locations - geographical points or distinct areas (e.g., New York Harbor,
Antarctica).

• Routes – navigational tracklines for navigating to the Locations.

• Piers - permanent man-made structures to moor ships.

• Anchorages - areas within a location to moor an anchor to the water's
bottom.

• Resources - business entities useful in fulfilling a ship's logistical needs
(e.g., grocery, repair, etc.).

• Activities - entities and areas for having fun (for the morale and welfare of
a ship's crew) during a port call to a specific Location. Both Resources
and Activities may be businesses, but they differ in how and whom they
serve (e.g. bowling alley versus a plumbing supply shop).

• People - persons associated with the Location, or to Resources or
Activities within the Location.

• Media - visual and audio files stored and made available for users to view
and download.

• Comments - chunks of additive information associated with the above-
mentioned conceptual classes. Comments are designed to further clarify
or explain existing content, without overwriting the original source of
information.

10

2. Domain Model

Figure 1 is the domain model for the constructed application. Lines connecting

the conceptual classes together indicate their associations. Locations form a relative

hierarchy as parent and child relationships of each other. For a specific Location, there

may exist content related only to that location. For each type of content, there may exist

Comments about a specific content node. People may be connected to the Resources they

work for or Activities they represent.

The multiplicity between classes is also indicated on the lines connecting them

(‘0..1’ meaning optional but not more than 1, and ‘*’ meaning infinite). For example, a

Location may have zero to many sub-Locations, and zero to many content types. Each

content type may have zero to many Comments about a specific content node. A Person

(within the People content type) may be associated with zero or one Activity or one

Resource.

11

Figure 1. Application Domain Model

Route

id
title

Routes

Pier

id
pierName
[berthName]

Piers

Media

id
mediaName

Media

Person

id
personName

People

Activity

id
activityName

Activities

Resource

id
resourceName

Resources

Anchorage

id
anchorName
[berthName]

Anchorages

Comment

id
refId
commentTitle

Comments

Location

id
folderName
locationName

0..1

0..1

0..1

0..1

0..1

*

0..1

0..1

*

*

*

*

*

*

*

*

0..1

0..1

*

0..1

0..1

12

3. Key Attributes

The key attributes for each conceptual class are listed in Figure 1. Each content

type is identified by a unique name and each content node is identified by a unique

identification (id) value. A global index shall contain basic information and the id value

of all Locations. Each Location shall contain basic information about which types of

content have been created for that Location.

While not indicated, each content node shall also contain information about the

individual who authored the content, how to contact that person, when it was authored,

and also retain the average vote score based upon other users opinions on the value of the

content provided (or modified).

Detailed attributes for each content type will be discussed in Chapter V. Use of

key fields and their limitations on the performance of the developed application is also

discussed in Chapter V. Examples (as templates) are contained in Appendix 2.

D. USE-CASE MODEL

1. System Boundary

For the application being developed, concepts within the system boundary

include:

• The server(s), which hold the centralized content of the system, and its
web hosting and XML processing components. The server also contains
the application and its associated content (stored either locally or in a
distributed manner).

• The client computers with which the users interact with the system, and its
agent software (browser) and XML processing components.

• The organization's corporate-wide Intranet.

13

2. Actors and Goals

Those entities that are outside the system boundary but interact with the system

are illustrated in Figure 2 and summarized below.

Figure 2. System Use Case Diagram

• Users - search and view content, add/modify (author) content, add
comments about existing content, provide evaluation of existing content.

• Regional domain experts - moderate content (summarize, revise, correct),
delete inappropriate or value-less content.

• System developers/analysts - maintain existing processing application,
extend/deprecate content, create new tools, and maintain structure of the
content.

• System administrators - maintain access accounts for regional domain
experts and system developers/analysts, maintain server hardware,
maintain operating system, and maintain web server and XML tools.

14

There are no actors external to the system that are systems themselves (excluding

client browsers). The author acknowledges that this exclusion is intentional for the

purpose of simplification.

3. Use Cases

For the actors described above, the following use cases are provided using an

essential style (i.e. user-interface independent) in a casual manner. Elaboration of the

actor’s interaction with the system is described in more detail in chapters IV and V.

a. Users
(1) Search and View Content. Main success scenario: a user

navigates through the hierarchical levels of locations within the system or searches on

location key words to find a location in the database. Once found, the user reads and uses

the available content.

(2) Add/Modify (Author) Content. Main success scenario: having

experienced traveling to a location, the author logs onto the system and adds new

information to system. Alternate scenario: if the already content exists in the system and

no significant modification to the data needs to be made, the author may add a comment

rather than modifying the existing information.

(3) Add Comments About Existing Content. Main success

scenario: a user desiring to amplify or clarify existing content may log onto the system

and then add comments to any content, without modifying existing content.

(4) Provide Evaluation of Existing Content. Main success

scenario: a user may 'vote' on any existing content as to its overall quality and value to

other users. The votes are anonymous. Votes provide a feedback mechanism to the

system users, authors, and regional domain experts, without making formal comments

about the content.

b. Regional Domain Experts
(1) Moderate Content (Summarize, Revise, Correct). Main success

scenario: with the same functionality as modifying content above, the domain expert shall

be able to log onto the system and then cull through existing content and cumulative

comments to 'refresh' the content. The difference between user modifications and domain

expert modifications is the clearing affect on comments. That is, comments remain

15

associated with content that is changed by users, but are deleted when domain experts

'refresh' the content.

(2) Delete Inappropriate, Inaccurate, or Low-Value Content. Main

success scenario: the domain expert can remove content from a particular location (i.e.

delete) when he/she determines it inappropriate, inaccurate, or of low-value.

c. System Developers/Analysts
(1) Maintain Existing Processing Application. Main success

scenario: system developers/analysts shall have sufficient access to maintain and repair

the system so data views and entry remain functional.

(2) Extend/Deprecate Contents. Main success scenario - system

developers/analysts shall have sufficient access to create new content types and deprecate

outdated content type or versions of content structure.

(3) Create New Tools. Main success scenario: system

developers/analysts shall have sufficient access to implement new tools and capabilities

to better meet user needs and harness the progression of the implementing technologies.

(4) Maintain Structure of the Content. Main success scenario:

system developers/analysts shall have sufficient access to manipulate the hierarchy

system and associated indexes to maintain application functionality.

d. System Administrators
(1) Maintain Access Accounts for Regional Domain Experts and

System Developers/Analysts. Main success scenario: the system administrator logs onto

the system and adds/modifies/deletes user accounts. Note that actual implementation of

this is beyond the scope of this thesis and in actuality would involve the use of an actor

that may be from an authentication service.

(2) Maintain Server Hardware. Main success scenario: the system

administrator prepares routine backups of the system's contents, replaces inoperative

hardware, and scales the capacity of the system as it grows in size and usage.

(3) Maintain Operating System. Main success scenario: The

system administrator logs onto the server’s operating system and completes routine

maintenance to the system as dictated by standard practices.

16

(4) Maintain Web Server and XML Tools. Main success scenario:

The system administrator logs onto the server’s operating system and loads updates to

installed XML processing APIs and other internet service software.

E. SUPPLEMENTARY SPECIFICATION

The following briefly states the supplementary specifications for the system being

considered.

1. Functionality

• The systems data must be viewable using a client browser without
the requirement of a network connection. That is, using a de-
compressed file (e.g. from a previously downloaded .zip file or
CD-ROM disk) from the networked application, all navigation and
view portions of the system must work correctly.

• Content node ids shall be a date-time stamp (a integer value) when
the node was created. Subsequent modifications to the node shall
retain the same id until modified by a domain expert (at which time
the node shall receive a new id).

• User logon is intended to capture point-of-contact information, and
not for security information. Therefore, less exacting identification
methods and flexible contact data capturing methods shall be
implemented.

• User accountability shall be traceable by means of Internet
Protocol (IP) address capturing and time stamping. Data gathered
at time of authoring content provide a traceable path back to the
source on a case-by-case basis.

• Content modified by users shall not be deleted, but retained in a
collection of modified content nodes within the same area as the
corresponding location.

• Media files available to be uploaded into the system shall be
limited to those media types that are supported enterprise-wide and
shall also be restricted in size to approximately 1/20,000th of the
systems total available disk storage space (e.g. an 80GB hard drive
equates to a maximum media file size of 4.3MB each).

2. Usability

• User interface design shall be kept consistent throughout the
system. Navigation toolbars shall be positioned similarly on every
view page. Help and example information shall appear in the area
(as a pop-up box) to which the form field refers.

• Hyperlinks and function calls shall behave in similar form of
colors and mouse-over effects.

17

3. Reliability

• The implemented server shall maintain availability at 98% of the
time, with downtimes not to exceed 2 hours on average. The intent
of the system is to function as a repository of knowledge, and thus
has no extraordinary mission-critical reliability requirements.

• Unanticipated downtimes exceeding 30 minutes and other
maintenance outages shall be reported to accessing users by
alternative means.

4. Performance

• The system shall be available from all network connection types
used within the enterprise.

5. Supportability

• The developed system shall not use proprietary XML tag sets or
languages.

• To the maximum extent possible, content viewing shall not use
proprietary APIs. Server-side development and processing tools
shall be best of breed within the XML community for accuracy,
speed, and least life-cycle costs.

• Namespace and design patterns shall adhere to Federal and DOD
policy guidelines when possible (to ensure the maximum
interoperability possible).

6. Implementation Constraints

• Selection of server hardware and software shall be consistent with
the knowledge base existing at the implemented hosting location.

7. Interfaces

• Media files shall be de-referenced with hyperlinks to prevent slow
download times of the media's metadata.

8. Domain (Business) Rules

• Users can add, modify, and delete data only to the online version
of the system. Data downloaded for a connectionless setting will
only have viewing capability.

• A person may or may not be associated to a resource or activity.
Creation of the association will only be available upon creation of
the person within the system. A person may not be associated with
more than one resource or activity.

• Users shall not be able to modify comments from other users.

• Comments shall only be created about existing content - comments
may not be created referring to other comments or votes. This rule

18

applies to the referential integrity rules of the data, and not the
author of the text.

• When performing a vote of quality on existing content, no data will
be stored as to who voted (person, location, number of votes, etc.)

9. Legal Issues

• Sufficient warnings shall be present to communicate the level of
security available to the system for both information entry as well
as sharing to public and federal entities outside of those who have
access to the system.

• Sufficient warnings shall be present to ensure that inappropriate
remarks are not entered into the system, especially those that
violate laws, regulations, or policies.

F. REQUIREMENTS GLOSSARY

[T]he glossary is a list of noteworthy terms and their definitions...The goal
is not to record all possible terms, but those that are unclear, ambiguous,
or which require some kind of noteworthy elaboration, such as format
information or validation rules.[45]

<ContentNodes> - an element within Location.xml files, which contains a
collection of <ContentNode> elements that refer to content types that are available (or
that have been previously created) for a corresponding Location.

AvailableContent file - a collection of content nodes within an XML file with
descriptions on their use in the system. For example, a Routes.xml content file is a
collection of Route content nodes, and a People.xml content file is a collection of Person
content nodes. Content files are 'local' to a specific instance of a Location content node
(i.e. Routes or People belong to only one Location).

Content node - an object of knowledge within the system, which can be validated
against an XML Schema. It is a logical collection of data and information elements. For
example, a particular instance of a route, pier, or person is a content node, and contains
related data and information elements (see also <ContentNodes>).

Dummy node - an XML file that contains one empty element. Dummy nodes are
used in the creation of blank HTML forms.

folderName - the name of the file directory (or folder) of a location. The exact
name is the <LocationName> element's contents with all formatting and white spaces
removed (e.g. the folderName of "St. Charlotte's Bay" would be "StCharlottesBay"). A
numeric value may be added to the folderName in the event that another folderName
already exists.

Hidden data - data transmitted within a HTML form, contained within HTML
<input type="hidden"> elements that are intended to be used by the system and not the
user.

id [also nodeId] - 1. In HTML, it is a unique identifier of an element tag within a
HTML document. It must not start with a letter and may contain only the valid characters
as specified by the W3C's HTML 4.01 Recommendation[20]. 2. In the 'XKMS' system,

19

it refers to the time-stamp identity of a particular content node (the number of
milliseconds since the a computer operating system's time epoch). These time-stamp id's
are used throughout the system in creating HTML id's by pre-pending them with
character sequences. The id's also correlate to a similar meaning as a 'key' field in a
database.

nodeAction - refers to an action to be taken (Add, Modify, Delete, etc.)
nodePath - refers the relative path URL to a particular Location within the

system.
nodeType - refers to that specific class of content node (e.g. Location, Route,

Resource, etc.).
refId (Reference id) - is the 'id' of a related content node. It is used to relate

content nodes to one another (e.g. People to Resources or Activities, and Comments to
any node type). The use of the refId is similar to that of a 'foreign key' in typical database
schemas.

xkms – XML-based Knowledge Management System.
xkmsAuthor - is a server Session variable, which is a text string of XML

representing an Overhead node. This variable is a container that holds the information
input from the logon form.

xkmsReceiver - is an IIS Application Server Page (ASP) that receives SOAP
messages, processes the messages, and replies with a SOAP response message.

xkmsTransmitter - is an IIS Application Server Page (ASP) that receives input
via URL search string and fires a HTML form to the client using XSLT and DOM.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. INTERNET AND XML TECHNOLOGIES

A. INTRODUCTION

The purpose of this chapter is to provide an introduction to the technologies used,

their significance, problems discovered, and compare them to other database

technologies. Figure 3 graphically illustrates the relationships between each technology.

The technologies used in developing the system are grouped into three categories: World

Wide Web Consortium (W3C) technologies, the JavaScript language, and Microsoft

Client/Server software (with W3C Application Programming Interfaces (APIs) and

proprietary extension APIs). While specifically desiring not to develop the application

using proprietary APIs, use of Microsoft technologies were necessary because it matched

the author's existing skill set and the Coast Guard's enterprise-wide software available.

Figure 3. Technology Relationships

B. XML (EXTENSIBLE MARKUP LANGUAGE)

XML became a W3C Recommendation in February 1998[15]. It is a subset of the

Standard Generalized Markup Language (SGML)[14]. XML is about structuring data in

a meaningful way and using user defined tag sets that describe the data within them [21].

It can be used to create data stores and other languages; however, it is not a language

itself. XML is plain text (usually in UNICODE format), which is common to most every

computing system in the world. With text as a common baseline, and standards that are

non-proprietary, XML related technologies are becoming prevalent in many aspects of

computing.

XML + NS

XSLT XML
Schema

S
O
A
P

XPath DOM

[X]HTML C
S
S A

S
P

IE M
S
X
M
L

World Wide Web Consortium (W3C) Microsoft

Java-
Script
(262)

ECMA

22

XML was used to store all of the information within the system. An individual

XML file in the system acts in a similar way a table would in a relational database

system. While the central focus was XML, little of the capabilities contained in the XML

Recommendation were used. XML Schemas were used in lieu of Document Type

Declarations (DTD) due to their ease of construction within the XML Spy IDE. XML

Schemas also have greater robustness in validating complex data structures. Little use

was made of predefined XML entities. The only difficulty encountered in using XML

was in the differences between XML and HTML predefined entities (e.g. is valid

HTML, but not defined in XML).

Though not part of the XML Recommendation, the importance of XML

Namespaces cannot be overlooked when discussing XML[28]. XML Namespaces are

used to associate element and attribute names to a specific URI (e.g. creator or owner);

however, they were not used in the application. This was intentional - it kept the design

more manageable during the numerous changes to content nodes. It also simplified the

processing of DOM XML documents. Any future implementation of this system should

use XML Namespaces.

C. XML SCHEMA

XML Schema became a W3C Recommendation in May 2001[43]. Schemas are

sometimes referred to as 'instance' documents about other XML documents. Schemas

can establish the structure of elements and attributes within XML documents, including

their cardinality. Schemas also define data types that both elements and attributes may

contain. XML documents may contain references to XML Schemas within them, or they

can be programmatically applied within an application (as was the case for the developed

application). XML Schemas may even be contained within the XML document

containing the data it enforces.

XML Schemas were used to define and enforce data typing of all content within

the system. As mentioned previously, the alternative of using DTDs was not chosen.

XML Schema performs many of the same functions as SQL type schemas, but differ by

the unique structure of XML documents.

23

XML Schema validation is part of the MSXML parser. However, XML Schema

validation is only available in version 4.0[26]. This proved to be problematic due to the

school's computers not being loaded with this version. However, client side validation is

possible with small modifications to the JavaScript executed by the client (i.e., the

functionality is currently delimited as comments).

The complexity of XML Schemas is so vast that the W3C Recommendation is

broken into three parts, the first being a primer[43]. One particular difficulty in using

XML Schema is understanding the difference between simple and complex types

(simpleType and complexType). The differences between them affect the manner in

which data types can be validated. This led to design changes in the content schema for

the developed system that are not necessarily obvious without this knowledge.

D. XPATH (XML PATH LANGUAGE)

XPath became a W3C Recommendation in November 1999[42]. "XPath is a

language for addressing parts of an XML document, designed to be used by both XSLT

and XPointer[42].” In other words, it is nearly impossible to perform an XSLT without

using XPath. XPath was used to access data from content files within the developed

system.

XPath is not equivalent to SQL. While XPath is very powerful at reaching into an

XML document and finding nodes or node sets, it is not a complete query language. For

operations like joins, unions, intersections, etc., SQL is far more capable. Thus, the

developed system is inherently weaker than existing relational database systems.

The XPath standard is likely to have an ever-increasing presence. For example,

future DOM standards are being completed to implement XPath functionality in

navigating DOM documents[11]. XPath concepts can potentially be extended to other

areas where objects exist in a hierarchy of similar type objects.

E. XSLT(EXTENSIBLE STYLESHEET LANGUAGE TRANSFORMATION)

In the historical order of W3C Recommendations, the first standard for

transformations was the W3C Recommendation titled "Associating Style Sheets with

XML documents" of June 1999[1]. This recommendation created the <?xml-stylesheet?>

processing instruction which triggers the XML parser to apply a stylesheet operation (or

24

transformation) to an XML document. Next came XPath and XSLT in November

1999[42, 47]. XPath was described in the previous paragraph. XSLT provides a set of

declarative programming language instructions to transform XML documents into other

types of documents (including XML and HTML). More recently, the Extensible

Stylesheet Language (XSL) became a Recommendation in October 2001[16]. The XSL

provides the ability to format the layout and presentation of documents as outputs of a

transformation process (similar to printed document typesetting). Unfortunately, these

Recommendations can be confusing. First, XSL files are built on top of the XSLT

technology. Therefore, XSLT documents (.xslt files) are valid XSL documents (.xsl

files). Second, XSLT documents are commonly referred to as "XSL Transformations"

and XSL documents are commonly referred to as "XSL Formatting Objects (XSL-FO)".

For each document type, there requires at least an XSLT processor and possibly an

addition XSL-FO formatter.

The XSLT processor is the most used tool within the developed system. XSLT

processing is part of the MSXML API. It is used to transform data files into user views,

and to create forms for data entry, modification, and deletion. XSLT can load multiple

documents to create dynamic associations between separate but related data. XSLT can

sort, format, and perform calculations on data during the transformation. Finally, XSLT

can provide outputs usable in other XML operations or as HTML files to be served to a

client. In comparing XSLT to other database systems, the XSLT and its processor

perform some of the functions of the runtime subsystem and the data engine.

While XSLT can do many tasks, it comes by way of a steep and long learning

curve. When coupled with XPath, navigating a document to produce the output you

desire can be a challenging task. The difficulty in learning the XSLT language,

especially regarding the use of variables in recursive tasks, is greater than with relational

database systems. The author learned XSLT mainly in a trial-and-error process.

F. DOM (DOCUMENT OBJECT MODEL)

DOM became a W3C Recommendation in October 1998[9]. "W3C's Document

Object Model (DOM) is a standard Application Programming Interface (API) to the

structure of documents; it aims to make it easy for programmers to access components

25

and to delete, add, or edit their content, attributes and style[12].” The current and future

DOM modules are the Core, XML, HTML, Events, Cascading Style Sheets, Load and

Save, Validation, and XPath. These modules are being developed in a phased approach,

as levels. Each of the DOM Levels may have numerous documents regarding specific

modules. Figure 4 graphically communicates the coordination between the numerous

DOM components. DOM Level 3 is the last of the schedule developments.

Figure 4. W3C’s DOM Architecture

(From: http://www.w3.org/DOM/Activity, 25 Jan 03, W3C (c) 2003)

In the developed system, DOM XML and DOM HTML were used to

programmatically manipulate XML and HTML documents. DOM provides the

functionality that XSLTs cannot, or that are more efficiency performed with DOM. The

DOM application programming interfaces (APIs) are part of the MSXML Component

Object Model (COM) Dynamic Link Library (DLL). Both were accessed through

Microsoft's JScript (JavaScript) language at both the client and server. At the client,

DOM HTML was used in creating dynamic behaviors of views. At the server, DOM

XML was used to manipulate specific content tags.

Irihtril^ Depends 0-n

26

Two important facets of working with DOM are its similarities to other XML

technologies and the manner in which DOM Levels are formalized. First, DOM and

XSLT both represent XML documents in a hierarchical manner, with only minor

differences in their node representations. However, working with XML documents vary

greatly between DOM, an imperative programming API, and XSLT, a declarative

language. The differences between the two models affect the manner of program

execution. The order in which XSLT statements are executed is implied by the data

source (similar to how SQL statements are executed), and not on the sequence of

programming code.

Second, many of the features in the MSXML parser have yet to be formalized by

the W3C. For example, the 'standard' to load and save XML documents has yet to be

set[10]. This lends itself to use of tools that may be deprecated as new standards emerge.

The notion of using a vendor's API before a standard is agreed upon is not new. There

appears to be a cyclical nature of developers to extend the technology with proprietary

features, which are agreed upon in the future as W3C Recommendations.

Additional information on the history of DOM is discussed in Chapter IV.

Chapters IV and V cover many more details on the use of DOM, including problems and

solutions that were found.

G. HTML & XHTML (EXTENSIBLE HYPERTEXT MARKUP LANGUAGE)

The latest version of HTML (version 4.01) became a W3C Recommendation in

December 1999[20] and XHTML became a W3C Recommendation in January 2000[36].

XHTML is a reformulation of HTML in XML. That is, XHTML is valid XML.

However, the W3C Recommendation for XHTML covers many other minor issues to

improve longstanding problems with HTML.

HTML was used as the presentation medium for all interactions with the system.

The HTML documents were the result of applying XSLTs. While the results of the

transformations were valid XML, they were only partially valid XHTML documents.

Though the name attribute is valid HTML, it has been deprecated in XHTML in lieu of

using the id attribute. The author chose to continue using the name attribute due to

inconsistent behavior in how Microsoft JScript treated the id attribute in form elements.

27

H. SOAP

SOAP was used as a communication message format between the client and

server. SOAP version 1.1 only reached the status of a Note within the W3C. SOAP

version 1.2 is currently a Candidate Recommendation (until Jan '03) and will no doubt

become a full Recommendation[31].

The notion of SOAP is simply the use of an electronic envelope which may

contain header information to describe the envelope's content and the body of the

envelope with contains the XML sent from one point to another. The complexity of

SOAP is in its definition of versioning, error reporting, intermediate node processing

protocols, and extensibility. The author attempted to fully comply with the SOAP

Recommendation in developing the system, one exception was omitting XML

Namespaces within the SOAP envelope.

SOAP is an important component to the implementation of web services. SOAP

is a messaging format for use with the Web Services Definition Language (WSDL).

WSDL is a separate standard being developed by the W3C[33]. Interoperability between

systems is potentially possible with the use of SOAP messaging as described in a WSDL

service. The process of sending and receiving SOAP messages is described in Chapter V.

I. CSS (CASCADING STYLE SHEETS)

CSS became a W3C Recommendation in December 1996[8]. Cascading style

sheets is not an XML technology. However, the use of CSS is invaluable to the use of

presenting XML content. CSS is a language to express the formatting and layout of a

HTML document. Coupled with DOM HTML (or dynamic HTML), it provides powerful

features to organize and present content to the user. The development of large-scale web

applications is far simpler with CSS.

28

Every view the system produces uses a single .css file. CSS enabled:

• A consistent format to text and colors across all pages within the system
(i.e., template).

• The ability to typeset blocks of text within the browser's window.

• The ability to dynamically show, insert, and hide data from the user.

• The ability to simulate hyperlinks for script function calls using in-line
text elements.

More specific style and behavioral controls were added to individual HTML tags

on a case-by-case basis.

J. MSXML (MICROSOFT XML PARSER)

Microsoft's XML parser was used as the only XML parsing tool within the

system. MSXML's latest version was released in October 2001 (version 4.0, Service

Pack 1)[26]. The latest version of the MSXML parser provides a robust feature set,

including many features that are still being worked on by the W3C. Most notably are the

means to persist XML documents (i.e. save them to disk) and the ability to validate XML

files against an XML Schema.

One of the problems encountered by the author with the MSXML parser is the

side-by-side installation of newer versions of the API[26]. Newer versions are installed

without replacement of older versions, which can dramatically affect the expected

outcome of the application under development. For instance, MSXML2.DOMDocument

refers to the DOM XML document COM object, and is valid as-is. However, unless the

developer appends the latest version (.4.0) to the object declaration, version 3.0 is used

which does not support the latest processing features (including XML Schema

operations). This "feature" was intended to protect legacy applications from being

affected by changes to the API[26]. One could argue that this strategy is flawed and is

not strategic in nature.

Another problem encountered is the variability of which MSXML parser is

installed on computers. Internet Explorer version 5.5 may have either MSXML Parser

version 3.0 or version 3.0 service pack 2[26]. Windows 2000 may have either MSXML

version 2.0 or one of several service packs of version 3.0. Windows XP and Internet

Explorer ships with version 3.0 service pack 2. Because of the pressure to release

29

updates to the MSXML parser out of sync with newer operating systems and browser

software, versioning will be a critical requirement for any implementation using the

MSXML API. As a case in point, unless the client computer is upgraded to MSXML

version 4.0, XML Schema validation cannot be accomplished.

K. INTERNET EXPLORER (IE)

The author developed the application using Internet Explorer version 5.5 and 6.0

as the target user agent. Each of these versions has a different 'built-in' version of the

MSXML parser, which caused difficulties as described above. "Currently, the default

XML parser for Internet Explorer is MSXML 2.0 or MSXML 3.0, depending on the

version of Internet Explorer. Until Internet Explorer ships with MSXML 4.0 or later as its

default XML parser, the MSXML 4.0 features are available in Internet Explorer only via

scripting when an XML DOM object is instantiated using the appropriate version-specific

ProgID. (http://msdn.microsoft.com)" The previous statement means that access to the

latest version of the MSXML parser is via ActiveX objects. The use of ActiveX objects

has two significant implications. First, ActiveX is proprietary and not supported by other

browser vendors, thus using MSXML locks the developer into using specific vendor

software. Secondly, ActiveX objects have received notoriety in the past as being high-

risk security weak points. Thus, many operating systems' administrators have blocked

the use of ActiveX objects from Internet Explorer. This aspect seriously impinges upon

the potential implementation of this technology in the enterprise.

L. ACTIVE SERVER PAGES (ASP)

Active Server Pages are the server-side files that interface with the Internet

Information Server (IIS) within the Windows operating system. Both ASP and IIS are

Microsoft products. ASP files can be authored using scripting languages to control the

outputs of the server. ASP files were developed to act as the database application engine

(similar to that of the application system in other standalone database applications).

Accessing the MSXML parser at the server was performed via ASP pages (with JScript).

30

The author intentionally designed the system so that it potentially could be re-

programmed in an Apache Tomcat environment using Java Server Pages (JSP). As

future XML technologies emerge, the leader in parsing and processing tools may come

from an open-source Java-based provider. Future research regarding the portability of

this application to such an environment is recommended.

M. JAVASCRIPT (ECMA STANDARD-262)

The European Computing and Manufacturing Association's ECMAScript

language's 3rd edition was standardize in December 1999 (as ECMA Standard-262)[13].

ECMAScript is JavaScript[13] (or JScript as it is referred to in Microsoft development

IDEs[23]).

JavaScript was used as both the client and server side scripting language. The

scripting language performed the functions as discussed in the previous paragraph and as

a function similar to that of Visual Basic for Application (VBA) does for the Access

database application environment. JavaScript's implementation of the try-catch

statements provided a significant advantage over VBScript in trapping and

troubleshooting development errors.

One significant problem discovered in using JavaScript at the server is its inability

to use the variant data type. The variant data type (a weak data type) is an integral part

of the IIS environment. When binary files are uploaded to the server, they are treated as

the variant data type. However, there is no such data type within the JavaScript

language. Therefore, the implementation of the feature to upload files required the use

VBScript in two of the ASP files.

31

IV. PROOF OF CONCEPT CONSTRUCTION

A. OVERVIEW OF DESIGN (LOGICAL PERSPECTIVE)

1. Purpose of the Proof of Concept

The purpose of building a proof of concept system was to demonstrate, in small

scale, that a larger system was possible, to build the skills necessary to accomplish future

work, and to identify problems to resolve before continuing. In essence, the proof of

concept project was an initial iteration of both learning and problem clarification.

At the heart of the proof of concept was building basic functionality of the

database system, the ability to view, add, modify, and delete data. Secondary goals were

to ensure the separation of storage and presentation of data, and to ensure that the data

was deployable to a connectionless setting. This system was built from a very specific

data set.

The proof of concept required four weeks to construct. Most of the development

time was spent learning, troubleshooting, and considering the various possibilities of

design. This chapter explains the design and schema, development methodology, tools

used, specific techniques, and problems identified. Some of the topics discussed in this

chapter were not included in the prototype system due to improvements made to the

design of the system.

2. Types of Data and Its Integrity

Numerous processes manipulate the data and information entered in the proof of

concept system. The most common data type is text characters (including character data

(CDATA)). Everything entered into a HTML form is text. During form validation, it

may be converted into a numeric value or other data types, but once it is transmitted to

the server, it becomes text characters again. Likewise, if the data is validated at the

server, the character sequences will be parsed again into other data types (integers,

floating point, strings, dates, etc.). Finally, in the process of serializing the data into

XML, it is again treated as text characters. Any further validation performed by an XML

Schema is performed within an XML parser.

32

Data validation in the proof of concept system was completed at the browser

before transmitting it to the server using client-side scripting. As a tertiary design

criterion in the proof of concept system, browser level data validation had to be

consistent with the type of validation that could be performed with an XML Schema.

This requirement leads to empty string, numeric range, and regular expression

enforcement. Regular expressions are a significant and powerful feature of JScript. They

provide a very robust tool to enforce data types within a character-based sequence and are

similar to the capabilities of the XML Schema in the MSXML parser used.

Unfortunately, the RegExp object is a Microsoft proprietary extension to JavaScript[26].

Thus, the proof of concept application only functioned correctly in Internet Explorer.

3. Stored Data and Information

The primary record within the proof of concept application is a geographic

location, which is stored within an XML file named Location.xml. The data and

information contained within each Location.xml record is listed in Table 1. With the

exception of the Description field, all other fields are small snippets of data. The

Description field is unique in that it is an unbound character data source where the user is

able to enter their own perspective and thoughts of how to describe the location (hence,

an information field). The use of these types of entries is prevalent throughout the

system.

The ContentNodes element within a Location.xml file is a container that holds

references to information nodes related to that location. A specific ContentNode points to

a specific content file of a specific type (e.g. routes, piers, anchorages, etc.), this is similar

to the manner in which a key field would ‘point’ to a related record in an E-R type

database.

33

Table 1. Location Data Schema

Field Node type Contents
Location Element CDATA
tagName attribute Text, [child of Location]
type attribute Text, [child of Location]
timeZone attribute Text, [child of Location]
obsDaylightSavings attribute Text, [child of Location]
Description Element CDATA
Coordinates Element None
datum attribute Text, [child of Coordinates]
Latitude Element Text, [child of Coordinates]
Longitude Element Text, [child of Coordinates]
UNCTADLocode Element Text
CoastPilot attribute Text, [child of CoastPilot]
SailingGuide attribute Text, [child of SailingGuide]
ContentNodes Element None
ContentNode Element CDATA, [child of ContentNode]
type attribute Text, [child of ContentNode]
href attribute Text, [child of ContentNode]

Tables 2 and 3 describe the relational and administrative data needed to maintain

the proof of concept system. The design of the relationships is described later in this

chapter. The administrative data keeps information on who authored the content, when it

was authored, and the evaluation of users providing feedback on the quality of the

content. The data contained in Table 2 was dropped in the prototype design due to its

redundancy. An improved XSLT was created to eliminate the need for that duplicity.

Table 2. Location Relationship Data

Field Node type Contents
LocationLinks Element None
LocationLink Element CDATA, [child to LocationLinkS]
type attribute Text, [child of LocationLink]
tagName attribute Text, [child of LocationLink]

34

Table 3. Location Administrative Data

Field Node type Contents
Overhead Element None
timestamp attribute xs:DateTime, [child of Overhead]
Author Element None, [child of Overhead]
Name Element Text, [child of Author]
email attribute Text, [attribute of Name]
PhoneNumber Element Text, [child of Author]
type attribute Text, [attribute of PhoneNumber]
QualityRating Element None, [child of Overhead]
avgValue attribute Number, [child of QualityRating]
votes attribute Number, [child of QualityRating]
Association Element CDATA, [child of Overhead]
type attribute Text, [child of Association]
href attribute Text, [child of Association]

4. Relationships Between Data

The collection of locations is stored in a hierarchy of system folders (or

directories) on the web server. Sub-locations correspond directly with their actual

geographical relationship to a parent location. For example, the State of California is part

of the west coast of the United States, which is a part of North America.

The referential relationships between locations are summarized as follows:

• A parent location has information about its children

• A child location has information about its parent (but not its siblings)

• The ‘index’ globally has information about every location.

The above criteria were chosen to keep the design of the system simple. The

ability to have knowledge about siblings, decedents, and ancestors was solved and further

described in the prototype, Chapter V.

35

B. DATABASE ARCHITECTURE (PHYSICAL PERSPECTIVE)

1. Non-XML Technologies Used

In development of the proof of concept system, the following non-XML

technologies were used:

• Application Server Pages (ASP) – the script environment contained within
Microsoft’s Internet Information Services (IIS) web server. Through ASP
you can access the following Internet Server Application Programming
Interface (ISAPI) objects: Application, Request, Response, Server,
Session, ObjectContext, and ASPError.

• ECMAScript (JScript/JavaScript) – originally created by Netscape, this
scripting language is used within ASP and client web pages.

• Document Object Model (DOM) –DOM originated itself as a standardized
version of the commercial ‘dynamic’ HTML APIs (DHTML or
dHTML)[23]. DOM Level 1 is generically geared for both XML and
HTML. As an appendix, the DOM Level 1 recommendation provides a
sample ECMAScript API. And while that API is not part of the
ECMAScript standard, it has been implemented as an object within
Microsoft’s JScript environment.

• Cascading Style Sheets (CSS) – “is a simple mechanism for adding style
(e.g. fonts, colors, spacing) to Web documents[8].” CSS provides
standardized and centralized formatting for the viewable portion of the
system. A CSS is simply a reference (embedded or as an external file) to a
statement of formatting. The use of CSS within the system is discussed in
more detail later in this chapter.

• FileSystemObject (FSO) – “allows you to use the familiar object.method
syntax with a rich set of properties, methods, and events to process folders
and files[26].” While the MSXML API provides for the creation and
saving of XML files, it neither provides a means to delete nor a means to
create or change folders. The FileSystemObject is provided within the
ASP environment for such activities. The limitations of the activities that
can be performed are tightly coupled with the Windows NT File System
(NTFS) permissions for the appropriate folder. This topic is discussed in
more detail later in this chapter.

2. XML-Related Technologies Used

In development of the proof of concept system, the following XML technologies

were used:

• Extensible Markup Language (XML) – described in Chapter III.

• Microsoft’s DOM XML – as both an implementation and extension to the
current recommendations from the W3C, the MSXML DOM allows XML

36

Schema, XSLT, and XPath operations, in addition to simple operations not
formalized by the W3C like loading and saving XML documents (i.e.
persistence). Access to the MSXML API is through an ActiveX object.
ActiveX objects are from the same family as COM and Object Linking
and Embedding (OLE) objects, and thus are proprietary implementations.

• Extensible Stylesheet Transformations (XSLT) – described in Chapter III.
XSLT is used extensively in viewing XML documents. It is also used for
‘preparing’ data produced by one means for consumption by another.

3. Proof of Concept File Use and Layout

Table 4 lists the types of files developed for the proof of concept and their

intended use. Note that there are actually two different types of Location.xml files. The

first type is contained the /World folder. This file contains data on every location within

the system. This ‘index’ Location.xml file has its own viewing transformation named

LocationMapper.xslt. All other Location.xml files use the LocationView.xsl XSLT for

creating a view of the information. The design of separate add, modify, and delete files

for each type of content is a common characteristic in web application design.

Unfortunately, that methodology required significant amounts of programming code

when using the DOM XML API. Out of necessity for efficiency, a new method was used

in the prototype application which is explained in Chapter V.

Table 4. List of Files in Proof of Concept System

Location.xml – contains the system’s index of locations
LocationMapper.xslt – used for viewing the index

Location.xml – the standard location data file
LocationView.xsl – used for viewing a location’s information

LocationAdd.asp – used for adding new locations to the system
LocationModify.asp – used for modifying existing locations
LocationModify.xsl – used to insert data into a HTML form
LocationDelete.asp – used to delete existing locations

Logon.asp – used to log a user into the system
Error.asp – used to report a processing error to the user

generic.css – used as a style reference for the above non-XML files

37

Figure 5 is the screen capture of the file system used in the proof of concept

system. Notice that all Locations are descendants of the World at some level. The World

is the base folder and contains the deployable portion of the system (that is, the content

that could be displayed without an Internet server). One folder above the World directory

is the xkms folder which contains the system files used to execute the non-deployable

portion of the application (create, modify, delete, etc.).

Figure 5. Physical File Structure

The relationship between files in the system is described in Figure 6. The

connection between the World folder and all of its children is relative. That is, viewing

the content within the system is independent of the actual location of the file, as long as a

correct relative path Uniform Resource Locator (URL) is provided to the

LocationView.xsl file.

38

Figure 6. Proof of Concept File Relationships

C. APPLICATION CONSTRUCTION TECHNIQUES

1. Relative Path Navigation

Navigating a web site via hyperlinks can be performed by two path-naming

conventions: absolute and relative. Absolute paths contain a full URL to a file. For

example, an absolute path to a file would read as file:///c:/myDrive/myFolder/myFile.htm,

and an absolute path to a web page would look like http://www.mySite.com

/myFolder/myFile.htm. Both of these patterns follow the IETF protocols of protocol //

hostname [:port] [/ path]* [23]. A hyperlink may omit the portion of the URL where

the browser (or agent software) is currently focused. From the previous example, if the

browser is currently at file:///c:/ myDrive /index.htm and wants to view the contents of

Location.xml

Location.xmlLocationMapper.xslt

LocationView.xsl

Display
output

Display
output

LocationAdd.asp

LocationModify.asp

LocationDelete.asp

/xkms /World /*/*/*

Logon.asp

Error.asp

39

myFile.htm, the relative URL path is myFolder/myFile.htm. Figure 7 illustrates the files

used in this and the following examples.

File (file:///)
C:/myDrive
 index.htm
 myFolder (folder)
 myFile.htm

Internet (http://)
www.mySite.com
 index.htm
 myFolder (folder)
 myFile.htm

Figure 7. URL Path Navigation Example

One of the benefits of relative URL navigation (or hyperlinking) is that the same

navigation can be performed using various types of protocols (e.g. http, ftp, file). From

the examples above, the relative URL path myFolder/myFile.htm can be used for

browsing files on a disk drive or from an Internet server. Even though Microsoft-based

operating systems represent folders with backslashes (\), Internet Explorer automatically

converts a HTTP path's forward slashes (/) to the proper format. This functionality is

critical to the system’s design. It allows the downloaded data to be viewed and navigated

in a connectionless setting in the same manner as the Internet server environment.

An important related topic to relative URL navigation is the ability to navigate

upward in a file structure as well as downward. Downward navigation was illustrated

previously. Upward navigation is possible through the use of a special character

sequence '..' (two periods). The '..' references the parent of the current directory (or

folder). Continuing with the previous examples, if the current focus is myFile.htm a

relative path hyperlink back to index.htm would look like ../../index.htm. The reference

would read as, "go to parent folder of myFile.htm (myFolder), go to parent folder of

myFolder (www.mySite.com or myDrive), and get index.htm." In addition to the '..'

character sequence, there is also the '.' character sequence, which references the current

directory. As a relative path, myFolder/myFile.htm and ./myFolder/myFile.htm perform

exactly the same. Except in certain Unix-based environments, the current directory

reference is unnecessary.

40

The system uses relative URL paths for navigation. All content is based from the

xkms folder. All viewing related XSLT files reside in the xkms/World folder. The

viewing XSLT files and their respective content files have a one-to-many relationship

(1:N). Therefore, similar content files, regardless of their depth within the system, all

need to reference the same viewing XSLT. The relative path URL is computed at

creation of the content file, and then inserted as a processing instruction into the XML

file, similar to the following: <?xml-stylesheet type="text/xsl" href="../../../../Location

View.xsl"?>.

2. Dynamic Information Exchange
A critical component of any web-based application is its ability to exchange data

dynamically. The alternative is a static set of view-only web pages. The history of

dynamic web content began with the Common Gateway Interface (CGI). CGI was

developed at the National Center for Supercomputing in 1983 for the HTTP Daemon

server[18]. CGI acts as a common layer between web servers and other applications

(including compiled and script languages)[7]. Microsoft's version of CGI is the Internet

Server Application Programming Interface (ISAPI)[26]. While both of these interfaces

provide robust features, their typical use is to translate HTML form and URL data into

useful data for applications.

As an example, a full path URL might look like the following:

http://www.myServer.com:80/folder/file.asp?name1=value1&name2=value2#location.

The protocol is http, the host name is www.myServer.com, the HTTP port number is 80,

the path information is folder/file.asp, the query string is name1=value1&name2=value2,

and the hash value is location[23]. Everything appearing after the port number is handled

by the interface (e.g., CGI, ISAPI, etc.).

Web-based information passing is most commonly performed using the Hypertext

Transfer Protocol (HTTP) Get or Post commands to a target file such as an Active Server

Page (ASP) or Java Server Page (JSP). With a Get command the information is passed in

the URL as a query string. The query string is parsed into name-value pairs for use by

dynamic content applications. With the Post command, the information is embedded into

the HTTP body, but still in a name-value pair format. The question mark character (?) is

the signal that a query string follows[6]. Depending on which interface is used, white

41

spaces and illegal characters are escaped in the query string. For example, the addition

character (+) or a hexadecimal ASCII reference (%20) is used to represent a space

character, depending on which interface is being used.

Hash values (or bookmarks), or what appears following the ampersand (#)

character, in the URL string are generally used to navigate to a specific location within a

web page. Browsers will navigate to the HTML element tag that matches the tag's id

attribute (e.g.). This is a useful feature for locating a specific

location within a long document.

In the designed system, CGI-style data passing is a critical feature. For example,

if a user desires to add a sub-location to the location they're currently viewing, there

needs to be some mechanism to communicate where to add the new Location.xml file

(similar to variable passing). That communication is performed using the URL query

string. From the existing web page, a JavaScript procedure reads the current browser's

location (using the JavaScript Location()) object and searches the current URL string for

everything that follows the World/ sub-string. The backslashes are then translated to an

alternative character and appended to the hyperlinks using dynamic HTML (or DOM

HTML) methods. For example, if the browser is currently focused on the file

intranet.server.mil/xkms/World/NorthAmerica/WestCoast/

California/SanFrancisco/Location.xml and the user wants to add a sub-location, then the

resulting HTML hyperlink would present itself as ../../../../../../LocationAdd.asp?

Location=World+NorthAmerica+WestCoast+California+SanFrancisco+. The above

example URL uses a combination of relative path addressing (taken from the xml-

stylesheet processing instruction) and a query string. The subtleties of the above are

significant. First, the initial web page can be located anywhere on the server, and

performance of the system is unaffected. Secondly, the initial web page doesn't store

information about where it is in the system. The query string provides the target location

to store the new information.

42

3. Cascading Style Sheets (CSS)

CSS provides the developer an ability to 'cascade' sets of rules to achieve a

particular style to the presentation of a document. A CSS rule instance is described by a

selector, which is followed by a set of style properties. For example, body { font-family:

Verdana; font-size: 10pt } is a CSS rule[25]. The selector in this case is the HTML tag

<body>. Three other common selectors are the HTML attribute class, the HTML

attribute id, and the hyperlink behaviors (link, visited, and hover). The formatting

capability of a particular style is very robust, similar to the typesetting capabilities of

many word processors (e.g. Microsoft Word).

CSS rules may be embedded into a HTML document or referenced to a separate

text file with the HTML <link> element. Within a HTML document, the influence of a

particular CSS rule depends on the tag's selector and its hierarchical relationship of other

HTML tags. For instance, a paragraph tag <p> within the HTML <body> tag will inherit

the body tag's style, unless specifically set by another rule. Thus, immense complexity

can be achieved with references to styles, the inheritance levels of styles, and the

dynamic effects that can be controlled with the DOM interface.

4. ASP Files That Serve and Process Forms

How does the same ASP file create a form, and then have the Post function return

to the same file for processing? This is achieved by using the HTML form element

<input type="hidden" name="return" value="anything">. Upon each call to the same

.asp file, a script if-else statement tests whether the Post-ed name=value pair

return="anything" exists. If there is no Post-ed data, then a null value will be returned.

This will be the trigger to create a form for the client to complete. Upon returning to the

same page with the form’s data in the HTTP request’s body, there will exist a name-value

pair corresponding to return="anything", which indicates there is a completed form to

process. At the end of the processing section of the .asp file, the processing script will

need to redirect the client to another page using the Response.Redirect() method of the

ISAPI. The alternative to this design is to create a static HTML file for form data

collection, which Posts data to an .asp file as the receiver of the data. The need for this

43

type of HTML programming was eliminated in the prototype system through the use of

SOAP messaging to the server.

5. Use of the ASP Session Object

The ASP Session object enables the client to maintain presence on the server

while visiting different pages within the same site. In the proof of concept system two

Session variables are created. They are named xkmsFolder and xkmsAuthor. These

variables are actually instantiated objects, which are linked to the HTTP port number

generated by the client browser (or agent). Once the client fills in the logon form, their

data is stored as an XML string in the xkmsAuthor session variable. If the session

variable is either empty or does not exist, then the client will be redirected to the

Logon.asp file before any data manipulations are performed. The xkmsFolder Server

session variable was not used in the prototype application.

6. XML Schema Datatypes

In general, data typing is specific to a particular development environment. The

XML Schema recommendation contains a few unique formats for primitive data types,

which is not directly compatible with many existing environments. As a baseline

requirement, data stored within the system shall be in a XML Schema data type.

Representing dates and times is particularly challenging. XML Schema dateTime type

represents a date and time combination in a format compliant with the United Nations'

(UN) International Standards Organization (ISO), Standard 8601[22]. In order to time

stamp record creation within the system, a small algorithm was created to convert the

data contained within an ECMAScript Date() object into the format required by the

XML Schema Recommendation. While this provides uniformity, including during XSLT

operations, any further usage in another application would require the text representation

of the XML Schema dateTime to be serialized again. In essence, the XML Schema

provides an independent party standardization of many data types in use across many

development platforms.

44

7. Recursive Node Search Versus XPath

While proprietary technologies were required for successful completion of this

system, a conscious effort was made to minimize their use, especially extensions to

existing standards. As an example, the selectSingleNode method of the MSXML DOM

implementation is an extension to the DOM Recommendation, and not supported in non-

Microsoft environments. The selectSingleNode method returns a DOM node given an

XPath expression. In order to perform the same operation with the existing DOM

Recommendation, a recursive node search is required. While the search may increase

development costs, it was done to separate the use of proprietary and non-proprietary

DOM extensions.

D. DESIGN PROBLEMS AND TECHNOLOGY LIMITATIONS

In development of the proof of concept, many discoveries were made. The

following sections discuss the lessons learned and limiting factors influencing the next

phase of development.

1. Server Security

Powerful web server security is a difficult task. The task of defining and

implementing varying user level access privileges was not developed for this system; it is

left as a future research topic. As a consequence, the anonymous Internet user at the

server has nearly full access to add, modify, and delete data files. This situation is not

uncommon. A similar scenario is created when constructing a three-tier architecture

using a database with an ODBC connection to the web server. Mitigating these risks

remain somewhat of a low priority if the system is implemented within a controlled

environment, such as a corporate Intranet. However, exposure to the Internet or intra-

agency personnel staff will require this topic to be revisited.

2. W3C DOM, ECMAScript, and Microsoft

The history of DOM, its current status, and the future of its implementation into

various platforms (JavaScript, Java, .Net, etc.) are complicated and confusing. The initial

DOM Level 0 was meant as standardization between Internet Explorer's and Netscape

Navigator's dynamic HTML competition. DOM Level 1 superceded Level 0 as the

standard[12]. Yet more confusing, DOM Level 1 is actually made up of two

45

components, a core which applies to both XML and HTML, and a specific HTML

section. DOM Level 2 has also been made into a Recommendation, and DOM Levels 3,

4, and 5 are still being developed[12].

Microsoft's Internet Explorer supports DOM Level 1. The DOM API is

accessible via JScript or VBScript. However, this DOM is not the same as MSXML

DOM. While both of these APIs support DOM, they are not compatible. For example,

document.documentElement accesses the root node in a HTML document (HTML

DOM), and [objectName].documentElement accesses the root node of an XML document

(MSXML DOM), but neither object may be set to the other.

The lack of compatibility between Microsoft's DOM HTML and MSXML DOM

is by design. The capabilities of the MSXML DOM are much more robust, and perform

many of the operations that the W3C has yet to come to agreement upon. I argue that the

differences and incompatibilities will be ironed out within the next few years as

competition forces improvements all around.

a. Live DOM

A document represented as a DOM document is live. That is, any changes

made to a node or node-set will have an immediate effect on the existing DOM

document. This creates an additional factor to consider and learn from when using the

DOM API. It is possible to unknowingly remove nodes from one document and place

them into another document. For example, the following statement:

newXMLdoc.documentElement.appendChild(oldXMLdoc.documentElement.childNodes(2

)); does not copy one node of a DOM document to the other, it removes the node and

places it into the other. The desired statement would need to be as follows:

newXMLdoc.documenteElement.appendChild(oldXMLdoc.documentElement.childNodes(

2).cloneNode(true));. This 'feature' of the DOM API was the source of hours of

frustration in developing the proof of concept system.

46

b. Areas Re-Worked

In addition to the topics identified for future thesis work, the proof of

concept effort revealed numerous problems that required correction in the second

iteration. The following is an abbreviated list of those topics:

• Shortening or resetting the server 'Timeout' behavior when data
modifications are performed.

• Re-naming element attributes of 'type' and 'tagName' due to their non-
descriptive nature

• Organizing a complete data checking and error reporting strategy

• Removing as many external references within a document in favor of
more capable XSLT files that pull data from other XML files using the
document() method.

E. SUMMARY

As stated in the beginning of this chapter, the purpose of building a proof of

concept system was to demonstrate, in small scale, that a larger system was possible, to

build the skills necessary to accomplish future work, and identify problems to resolve

before continuing. That effort was largely successful. The topics discussed in this

chapter are revisited in the prototype system as a second iteration towards improvement

of design and construction.

47

V. PROTOTYPE APPLICATION

A. INTRODUCTION

1. Prototype As a Second Iteration

The work accomplished in developing the prototype application can be viewed as

a second iteration. Like the proof of concept application developed and described in

Chapter IV, many problems were discovered and solved in building the second

application. The important problems are discussed in this chapter.

The construction of the prototype application required approximately 8 weeks.

As mentioned in Chapter IV, one of the secondary learning objectives was to attempt to

abstract the processes within the application so that the overall system may be extended

to other communities of knowledge. In large part, the prototype application proves that

possibility and is discussed later in this chapter.

2. Design Carryovers

The physical perspective (or file layout) of the proof of concept application

constructed was essentially re-used in the prototype application "as-is". The hierarchical

file structure with one main index Location.xml file was restructured for increased

functionality without changing its role or basic purpose. JavaScript and Cascading Style

Sheets from the proof of concept application were enhanced to provide improved

interfaces and controls.

3. Design Changes

Many modifications were made to the schema of specific Location.xml files. The

changes were necessary for improving element names and attributes, to reduce

duplication of data, and to remove items having little value to the system. For example,

the attribute tagName was changed to folderName to better match its actual use in the

system, and all LocationLink elements that described parent and children locations were

removed with the use of a more capable XSLT. The name of a specific location was

moved into its own tag set (i.e. LocationName) due to the limitations of simpleType

structures within XML Schemas - complexType structures in XML Schemas may not

have minimum and maximum character lengths. Lastly, each location was given a

48

unique identification (id) value, which eliminated the need to perform recursive searches

of the main location index and enables the ability to quickly derive the parent, children,

and siblings of a location in the viewing XSLT.

The most significant change between the proof of concept and prototype

applications is the manner in which HTML forms are created and their data is processed.

The proof of concept required separate (yet duplicate in many ways) forms for adding

and modifying data. In the prototype application, both actions are rendered using the

same XSLT. Another weakness of the proof of concept is that each individual element in

the content file was created with specific (and unique) DOM statements at the server.

This is a huge programming inefficiency and was replaced with an iterative loop and

XSLT at the client. That pattern is further discussed later in this chapter.

B. CREATING DATA VIEWS

1. Data View Development Process

Data views are created using XSLT. For each type of content there exists one

related XSLT, which creates a HTML view page of the data. Creating a data view by

writing an XSLT from scratch is very difficult unless you have expert knowledge about

how HTML is rendered in a user agent. To lessen the difficulty, the following process

was used. Though the process requires more physical labor, it simplifies the complexity

of the task greatly:

Step 1: Create a physical sketch of the data to be presented, including data
contained in external content files.

Step 2: Create a HTML page of the data view with sample data filled-in and
with the desired formatting and positioning.

Step 3: Standardize formatting by creating a Cascading Style Sheet (.css) file
and any dynamic behaviors by creating a script file (.js).

Step 4: Manually transform the HTML document into a valid XML document
(also creating a valid XHTML document).

Step 5: Manipulate the XML document into an XSLT file, replacing sample
data with the content from content files.

Step 6: Abstract the XSLT file so that the transformation will be valid from
any relative location within the file hierarchy. This step requires
knowledge of where an XML file is parsed, where the XSLT is
processed, and where the HTML is rendered. How this is
accomplished is described later in this chapter.

49

The task of creating a valid XML document from HTML in step 4 above is not

automatic. WYSIWYG HTML editors such as Microsoft's FrontPage or Macromedia's

Dreamweaver produce valid HTML, which doesn't necessarily translate into valid

XHTML. The author used HTML-Kit by Chamio.com to assist in producing XHTML

from HTML documents. That software uses the W3C's HTML-Tidy plug-in in the

process of producing XHTML. As a converted document, the author found that further

modifications were necessary to produce a valid XML document from HTML. For

example, the attribute selected in the HTML <option> element is legitimate by itself;

however, it was necessary to set the attribute to a value to make it valid XML (i.e.

selected="true").

2. Data View File Dependencies

The robustness of XSLT allows for the conglomeration of numerous stylesheets

and data files. For each data view developed, there is a minimum of three data sources

being queried in preparing the HTML page for the user agent. While the initial trigger

for the XSLT is a single XML file, other data sources are drawn into the processing via

the <xsl:document> instruction.

Figure 8 illustrates a simple example of the dependencies between data sources.

When viewing information about people, the user may navigate to other content

associated with that particular location. The data necessary to provide the hyperlinks for

the navigation is contained within the Location.xml file. Also, each person may be

associated with a resource, and the association between a particular resource and people

is via the reference identification (refId) attribute within a person content node. The

XSLT processor dynamically associates people with a resource as the HTML page is

being rendered.

50

Figure 8. Data View Dependencies Example

The main location index and each location file are also dynamically associated.

For each view of a particular location, the main location index is searched for the parent,

siblings, and children of that location. These relatives are included in the HTML page

rendered as part of the navigation feature of the system.

3. Relativity in XSLT and HTML Processing

Figure 9 demonstrates a simplified view of how the focus of relative URLs

changes during the processing and subsequent rendering of HTML in a user agent. Keep

in mind that both the XSLT processing and HTML rendering are accomplished client-

side and not at the server.

Figure 9. XML Content File To View Transformation

Level 1

Level 2

Level 3

1. Hyperlink (focus = anywhere)
 ...

2. XML Parsing (focus = Level 3)
 <?xsl-stylesheet href="../../file.xsl"?>

3. XML Transformation (focus = Level 1)
 <xsl:document {URLs to Levels 1 & 3} />

4. HTML Rendering (focus = Level 3)
 <link href="../../file.css" .../>

5. HTML Rendering (focus = Level 3)
 <script src="../../file.js" ...></script>

Resources.xml

People.xml

Location.xml People View
Navigation

Person
Resource

Person
Resource

Person
Resource

51

When a hyperlink redirects the user agent to an XML file, the server delivers the

XML file unparsed. In the case of the developed system, the MSXML parser receives the

XML file, parses the document, and discovers the XSLT processing instruction. Internet

Explorer then requests the corresponding .xsl file from the server. Upon getting the

XSLT file, focus shifts from the folder that contained the XML file, to the folder that

contains the XSLT file. In order to get sibling files of the XML file (e.g. Resources.xml

and Location.xml from the previous example), there needs to be information to "path"

back to the original file. That information is derived from the main location index XML

file with the knowledge of the corresponding location's id value (this is why there is a

parentId attribute in all content files). The path to the main location index XML file is

static and thus always known by the XSLT file.

The system is also designed so that the same Cascading Style Sheet (CSS) and

JavaScript (JS) file is used by all content views. Even though the location of the CSS and

JS files are statically relative to the XSLT file, the reference to these files is not used until

processing is shifted from MSXML parser to Internet Explorer (a second shift of folder

focus). In order to "path" to the .css and .js files, the XSLT engine must derive the

relative URL path. The derivation is done using a sub-string of the XSL processing

instruction <?xsl-stylesheet?> contained within the XML file that called the XSLT.

C. CONTENT NODE SCHEMAS

XML Schemas were developed for content nodes vice content files. Content files

are simply a collection (or container) of content nodes. Individuals author content nodes,

so the logical connection to error checking at the time of creation is tied to content nodes

rather than their files. Thus, a content node can be validated against an XML Schema at

time of entry before it is sent to the system for processing. Likewise, a content node can

be validated upon receipt at the system before it is saved. The latter validation also

allows the system to operate independently from the source of the data, thus allowing for

third-party and web service interaction with the system as a potential for future

enhancement.

52

D. DYNAMIC FORM ELEMENTS

1. Multiplicity of Data Elements

Relational databases suffer from having to reference associated data with a

cardinality of many (N) to a related table. However, XML data files may have a

multiplicity of elements greater than one embedded within them and still be able to

validate the data with the use of an XML Schema. In our natural lives, the occurrence of

the above example is frequent. In the developed system there are two notable examples.

First, routes (or tracklines) that ships navigate are comprised of coordinate waypoints of

latitudes and longitudes. Second, people often have multiple means of being phoned (e.g.

business, fax, home, cellular phone, etc.). These examples require the design of a data

entry system that is flexible to meet both needs, without any 'unnatural' restrictions.

Creating dynamic form elements was an essential part of the development of the system.

2. Enabling Dynamic Form Elements

Dynamic form elements require two important features: a blank template of form

elements (a group) to be dynamically created or deleted, and a mechanism to maintain

reference to each group of elements. In order to maintain a template, two requirements

are necessary. First, using the CSS feature of style="DISPLAY: none" attributes within

HTML elements hide data from the user’s view, but are still available for DOM HTML

(or dynamic HTML) to manipulate them via user actions. Second, form elements outside

of a <form> tag set are not part of the forms collection of DOM HTML. This means that

a form processed or posted to another page does not contain information from elements

outside of the referenced form.

The mechanism to keep reference to groups of form elements is through the use of

id attributes within <div> tag sets. <div> tag sets organize form elements into groups

which can be dynamically controlled within a form. The id attribute in the developed

system consists of a time-stamp value pre-pended with a text character (due to HTML

requirements). Actions associated with a group of elements (add/insert/delete) simply

point to the parent element's id (within the <div> tag) as a reference to perform the action

upon.

53

E. GENERALIZED ADD AND MODIFY PROCESS

1. Chosen and Alternative Design Patterns

Figure 10 illustrates a simplified view of how the developed system's data entry

and modification work. A transmitter receives directions via a URL query string, which

contains the desired action of the user. The transmitter creates a dynamic HTML form

page in which the user inputs information. The HTML form data is then sent via an

HTTP message using the SOAP format to the receiver. The receiver processes the data

and replies with an appropriate message. Data validation is performed at both the HTML

form page and the receiver.

Figure 10. Data Entry And Modification Overview

The above design was chosen over the proof of concept system developed and

one other design considered. Among the criteria of selection, three features were central

to the application developed. First, data validation at the client using XML Schema is

preferred over the use of validation via a scripting language. It is difficult to capture and

implement the robustness of XML Schema data validation in JavaScript. Even more

difficult is managing the changes between XML Schema and its associated JavaScript

validation. The trade off in using XML Schema at the client is the terse and sometimes

difficult to understand error reporting.

The second criterion was the manner in which HTML form data is posted to a

server. Data from a form is collected and sent to a server as a series of name-value pairs.

In doing so, there is a loss of identity in what type of form element contained the data,

HTML

1. Transmitter

2. Form

3. Receiver

SOAP

Hyperlink

4. Hyperlink

54

and its use within the form. For the designed application, hidden input tag elements

provide the ability to communicate 'overhead' information about the content of the form.

Keeping associated data separate allows for a more efficient means to create content

nodes from DOM HTML to DOM XML via iterative loop vice element-by-element.

Once the form data is in a DOM XML object, the creation of a content node is

accomplished by a simple XSLT.

Finally, the use of SOAP creates the potential for the system to be expanded as a

receiver of information from many sources, independent of how the information is

generated. In the current system, the HTML form page is not tightly coupled with the

receiver of the information.

2. URL Query String Contents

In the prototype application, URL query strings are used to communicate the

intent of the user to the system. Dynamic information exchanges via a URL query

strings was explained in Chapter IV. When communicating to the xkmsTransmitter.asp

file the following four query string arguments shall appear, otherwise an error is reported:

• nodeType=[Location | Route | Pier | Resource | etc.]

• nodeAction=[Add | Modify | Delete | Vote]

• nodeId={id value}

• refId={refId value}

• folderPath={folder path with '/' characters escaped}

One disadvantage of URL query strings is that HTTP Get operations (which use

query strings) pose an unnecessary computer security risk. The author consciously

choose to develop the application as described above in order to provide the ability to test

and debug the system. Further implementations may need to re-address this issue.

55

3. Actions of the Transmitter

Figure 11 illustrates the general purpose of the xkmsTransmitter.asp file. The

purpose of this file is to generate for the user agent the HTML form page for adding or

modifying data to the developed system. The process begins with the receipt and

processing of the URL query string as outlined in the previous paragraphs. The data from

the query string is encoded into hidden <input> tags, which are later appended to the

generated form. The author chose to keep the processing instructions with the input data

to enable the potential receiver to act as an independent web service.

Figure 11. HTML Form Generation Actions

URL query string
Create <input type="hidden".../>
form fields from query string (DOM XML)

Load content file and get content node
(or create dummy node) (DOM XML)

Load form-generating XSLT (DOM XML)

Transform content node into
HTML page with input form (XSLT)

Attach hidden form fields to form
(DOM XML)

Send form to client (HTTP)

Transmitter (ASP) Content File
Form

Generator

56

The mechanism to generate the HTML form is an XSLT. The XSLT acts upon a

DOM XML document which is either a content node in the case of a modification of

existing data, or a "dummy node" (i.e. an empty element) if the operation is to add data to

the system. This design takes advantage of the fact that XSLT processors do not generate

an exception if the data is not found within the target XML file.

The output of the XSLT is a complete HTML page. As mentioned above, the

hidden input fields are appended to the <form> element and then served to the client.

From a design perspective, the transmitter performs a one-way function: get instructions

and produce a HTML form page. The only exception is minimal error handling to detect

processing instructions in the URL query string that are incomplete, and to redirect the

user if they are not logged into the system. If the user is not logged in, which is

represented by a server session variable similar to the proof of concept system, then the

form generated is a logon form. In this case, the user processing instructions are saved as

described above. When the receiver of the from processes the logon data, it will

automatically redirect the process back to the transmitter with the instructions originally

sent by the user.

4. Actions of the HTML Form

Figure 18 illustrates the actions of the generated HTML form pages. The general

purpose of the form is to collect data, transform the data into a content node, validate the

content node, and then send the content node to the system for processing. This process

begins when the user clicks on the submit button on the form. The submit button fires a

JavaScript function vice the browser's default behavior of performing a HTTP Post to a

server.

The first step in creating a content node is to gather the contents of the form

elements. The collection of form data elements is represented by a linear array of items

(which follows the top-to-bottom and left-to-right page flow). That collection is iterated

through using DOM HTML and the output is a linear list of elements in two DOM XML

documents (one for user entered data and one for system data). The root element of the

first DOM XML document takes the name of the HTML form and its child elements take

the name of the form data elements. There is nearly exact duplicity between form

57

<input> element names and the corresponding XML they represent. The DOM XML

document is then transformed into a content node using an XSLT. During the

transformation, default values are entered for id, refId, and date-time stamp attributes,

which are later given permanent values by the receiver. The second DOM XML

document is a collection of hidden form elements. Again, these hidden form elements

represent the processing instructions to the xkmsReceiver.asp file.

The linear nature of a HTML form weakens the ability to create nested data sets

in XML. Several content nodes have three nested levels of data (e.g. a latitude is nested

within a waypoint, which is nested within a collection of waypoints, which is contained in

a content node). The XSLT that transforms the linear XML representation of form data

into a content node uses triggers to set up the inner nested XML tags. This may create

potential problems. For instance, a phone's location form element triggers the

transformation of a phone element. If no number is present directly following the

location, nothing is lost. However, if a user enters a number with no corresponding

location, then the entered location will be lost in the processing. While the XML Schema

can detect such anomalies, further research is necessary for finding a suitable remedy.

58

Figure 12. HTML Form Actions

Once the content node is created, its corresponding XML Schema is loaded. The

name of the file to be loaded is again derived by the name attribute of the HTML form

used. The schema is then compared to the content node, and any validation errors are

reported to the user. This process has a distinct advantage over the typical server-side

error detection of data in that the form's data is processed without transferring the user to

another HTML page. The user benefits because they have the ability to correct the data

without re-entering it. In fact, the browser will return the data to its original state during

HTML Form

Create XML from form data
(DOM HTML to DOM XML)

Load form to content node XSLT
(DOM XML)

Load content node XML Schema
(DOM XML)

Transform form XML to
content node (XSLT)

Validate content node against
schema (MSXML)

Load content node to SOAP XSLT
(DOM XML)

Transform content node to
SOAP message (XSLT)

Send SOAP message (HTTP)
Read SOAP response (DOM XML)

Redirect browser window

Form Data
to XML XSLT

Content Node
XML Schema

SOAP
Wrapper

XSLT Receiver

Append hidden data form
data to SOAP header

59

a modification if the 'reset' button is clicked, vice clearing the data completely from the

input fields (as observed using Microsoft's Internet Explorer).

If the content node is valid, a second XSLT file is loaded to act as a wrapper

function in creating a SOAP message. The target of the XSLT is the content node, which

simply places the content node inside the body of the SOAP message. The DOM XML

document that contains the hidden form data is placed into a header block of the message.

The SOAP message is then sent to the xkmsReceiver.asp file in a HTTP Post

transmission.

Two outcomes are possible from the SOAP message that is returned by the

receiver. If a data error occurs (as indicated by a SOAP Fault message), the user is

notified and the focus of the browser remains on the form. If another type of error

occurs, then the browser is redirected to a separate error.asp page to provide the

necessary feedback to the user. Finally, a successful entry into the system will result in

the user agent's window being redirected to viewing the new data (using DOM HTML).

5. Actions of the Receiver

Figure 13 illustrates the general actions of the xkmsRecever.asp file. The actions

of the receiver are the most complicated aspect of the system. The receiver's role is to

receive, validate, process, and store new and modified information in the system (a

controller pattern). The receiver's inputs and outputs are SOAP messages. Error

reporting is also handled via SOAP messages.

The receiver's processing begins by extracting the first and only header in the

received SOAP message. Within the header are the processing instructions that were

described in paragraph E.2. of this chapter. The instructions become page-level variables

within the ASP. As the processing continues, separate functions are called to handle

unique types of content (logon data, location, votes, and all others).

60

Figure 13. Receiver Actions

SOAP Message
(XML HTTP POST)

Receiver

Extract header info and
content node (DOM XML)

Load content node XML Schema
(DOM XML)

Validate content node
(DOM XML)

Load/create content file/folder
(DOM XML)

Create content node id and
append refId (DOM XML)

Create time stamp and append
overhead info (DOM XML)

Load/create modified data file
(DOM XML)

Append and save old content
node (DOM XML)

Extract old content node
(DOM XML)

Save/store new content node
(DOM XML)

Create SOAP response
(DOM XML)

Send SOAP message (DOM XML)

Content node
XML Schema

Content
File

Modified
Data Store

61

The next phase in the processing is dependent upon the actions to be taken on the

data. For additions and modifications, the incoming content node (which is the SOAP

message body) is validated against its corresponding XML Schema. If an existing

content file exists, then it is loaded into memory, otherwise it is created. Valid content

nodes are then modified to contain an accurate identification (id), reference identification

(refId), Internet Protocol source address (ipAddr), and time-stamp (modifiedDateTime)

attributes.

In completing a transaction, up to three XML files may be involved: the target

data store, the modified data store, and the index that refers to the previous two files. The

modified data store is a collection of content nodes (by content type) that have either

been modified or deleted. Table 5 details the files that may be manipulated during the

processing of data.

 Main Index

Location.xml

Location.xml

(General)

Content.xml

modified_

Content.xml

Add Location X X

Modify Location X1 X X

Delete Location X X X

Add Content X2 X

Modify Content X X X2

Delete Content X X

Vote X

Logon

 1 - If the title or folder name for the location changes
2 - For the first addition of an content node

Table 5. Files Modified During Content Processing

There are two important facets regarding the above table. First, the main index

Location.xml file and the sub-Location.xml files both act as indexes in the system. The

main index location indexes all other locations and all the other locations index the

content that pertain to that area. Second, nothing in the system gets permanently deleted.

This is a design feature intended to act as an archive and audit trail to the modifications

made to the system. The logon data is appended to any content node that is either

62

modified or deleted. Any implementation of this system should consider the need for

being able to "undo" data modifications and the long term storage of archived

information.

The remainder of the processing is a matter of adding or replacing content nodes

to the content or modified content stores and adjusting the indexes to data as necessary.

If the transaction completes successfully, the response to the client is a SOAP message

which contains a URL to the new or modified data, or to the parent location when a

deletion occurs.

F. UNIQUE TRANSMITTER AND RECEIVER PROCESSES

Some of the processes described in the previous section have unique sub-

processes to handle special types of content. For example, the location content node and

file requires handling of both XML files and file system folders. Managing file folders

and their attributes provided unique challenges, including creation, modifying, and

naming conflict resolution. Managing the indexes also required special programming

instruction.

A separate sub-process also handled voting on the quality of the existing content.

This action bypassed the normal logon procedures and did not require any interaction

with location or modified content files. At the receiver, voting also required a unique

process since the data already existed and remained in the same content node.

Lastly, the creation of a confirmation HTML page for deleting a content node of

any content type was abstracted to one XSLT at the transmitter. While this required

special coding, the receiver did not. Processing the deletions of a content node was

handled by the unique behavior of DOM XML explained in Chapter IV. That is,

appending a content node without cloning it acts as an extraction. As a side effect, the

deletion process is very similar to the modification of data.

G. XML PROCESSING CONSIDERATIONS

1. Client-Side Loading

In the context of browsing data, the developed system can be viewed as a simple

file server where all of the processing is performed at the client. Specifically, all XML

parsing and transformations, formatting via CSS, and dynamic behaviors via JavaScript

63

and DOM HTML are performed using the client's CPU and resources. While this design

places some burden on systems administers to ensure the proper software is installed on

the client, it lightens the load of the server so that it may handle a greater volume of data

requests. More importantly, it fulfills the requirement for the system to be deployable in

a connectionless non-server environment.

2. Server-Side Loading

In addition to the file serving as described in the previous paragraph, nearly all

other server-side processing occurs from two ASP pages (xkmsTransmitter.asp and

xkmsReceiver.asp). Having only two processing pages greatly simplifies the design of

the system, but may have an impact on server loading. Server-side issues have not been

researched and should be considered before full implementation.

H. LIMITATIONS OF EXISTING SYSTEM

1. Data Normalization

Unlike relational databases with its normalization forms, there currently does not

exist a proven methodology for constructing an XML database. Some aspects of XML

data storage cannot use the rules of relational databases. “One difference between native

XML databases and relational databases is that XML supports multi-valued properties

while (most) relational databases do not.[3]” For example, an XML data file may have

an array-like list of data elements, which can be validated against a schema. Duplicated

fields within a table do not conform to the first normal form of relational databases.

Those said, the other principles of normalization are still relevant and were considered in

designing the data schemas.

As a result of numerous design changes, the duplication of system data was kept

to a minimum. The main index location file is an XML repository of location ids, and

the location type, folder name, and title name for the location. The duplicity was chosen

to improve the speed of the application.

64

2. Referential Integrity

"Referential integrity refers to the validity of pointers to related data and is a

necessary part of maintaining a consistent database state.[3]" In the developed system

there exists five instances of 'pointers' that relate the data, one of which is potentially

harmful.

• The main index location XML file contains the id values of each location
within the system.

• Each location file contains a list of content files that exist for that location.

• Each comment node contains the id value for its content.

• Each person node may contain an id value for its associated resource or
activity.

• Each content file contains the id value of the parent location node.

The last pointer creates a bi-directional reference situation. Locations store

information about its content files, and content files store information about its location.

The need for the latter reference in the content file has to due with the need for creating a

navigation window within each content file view. During the XSLT processing of a

content file view, the location's id value is used to create a URL path back to the folder

(using the main index location) to include the related data from the location and other

sibling content files. The need for this pointer would be moot if each location's name

were guaranteed to be unique (which is a key by definition).

3. Searches (Data Queries)

Due to time limitations, no capable search function was developed for the system.

Some query-like functions were built into some of the view XSLTs, which are shown as

hyperlinks to related data held in other areas of the system. Research into the utility

XPath and XSLT as query tools could be conducted on the developed system. The

system would also be a potential source for research in XQuery as APIs become

available.

The lack of specific search tools is not in itself a roadblock towards implementing

a system such as this. Because the file contents are in plain text and they are stored

within the visibility of the server and its hyperlinks, it is inherently in open view of both

operating systems file search utilities and Internet web crawler software. And, with the

65

advancement of web searching software, there may exist legitimate reasons for relying on

such tools for searching the system.

4. Record Locking

The developed system has the potential for very high concurrency (i.e. the number

of simultaneous users). However, it has no record locking mechanism. The system

behaves in a way that only the last modification is retained, all others are collected in a

modification collection file. This is not a desirable feature and should be included in any

further research on this subject.

5. System Integration

The developed system does not include the capability to interface with any of the

common industry database connection protocols (ODBC, OLE DB, JDBC, etc.). This

condition is further worsened by the inability to use SQL commands and the lack of

query tools. These limitations are relevant as concerns for interoperability only if there

are other systems that have or foresee a need to interoperate with the developed system.

Web services provide one potential solution to the interoperability problem.

Since the data is stored and represented in a non-proprietary format, web services could

be built to provide data from the system using WSDL and SOAP messaging. The tools

required for accessing the data are not bound by the other proprietary technologies used

in creating the existing system. SOAP messaging has already been implemented as a

mechanism to logon, add, modify, and delete data, and could easily be extended to

provide specific content from the system.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

VI. XML DATABASE SELECTION AND FUTURE
TECHNOLOGIES

Having chosen a particular development path for the proof of concept application,

it is prudent to consider the alternatives that were either decided against or overlooked.

This chapter is divided into two sections. The first section is a description of the

selection path considering the alternative choices. Its intent is to put into perspective the

growing availability of database tools and technologies. Having selected a particular

path, the second section is devoted to analyzing the future of XML data and presentation

related technologies that could influence the application developed.

A. DATABASE SELECTION STRATEGY

It can be argued that the selected storage strategy lacks the robustness of existing

storage technologies, which weakens the performance and reliability of the overall

system. A contrary view can be argued with Clayton Christensen’s definition of a

disruptive technology and how it adds value.

[A disruptive technology is a technology or innovation] that results in
worse product performance, at least in the near-term...[and] brings to the
market a very different value proposition than had been available
previously...Products that are based on disruptive technologies are
typically cheaper, simpler, smaller, and, frequently, more convenient to
use. [However, they] underperform established products in mainstream
markets[5].

The developed application is just such a product. Its intent is to serve a group that

has been underserved with insufficient means to share, store, and use knowledge. And

though its solution currently lacks the utility of other related techniques, the development

of supporting technologies offer great potential in performance rewards in the near future.

1. Selecting the Data Storage Representation

The alternatives to selecting an XML storage system are relational and objected

oriented databases. Relational database systems are ubiquitous, and SQL is a very

capable querying mechanism for accessing data. However, operating a relational

database generally requires lock-in to a particular vendor due to proprietary extensions to

the query language. Object oriented databases suffer from the same issue but to a larger

68

extent (primarily due to the failure to adopt querying standards such as SQL-3).

Portability of systems to environments without network connections would require

product licenses for each user of the database and additional training for using the

application interface. Though Microsoft Access is installed at every client within the

Coast Guard, its inability to handle large data sets and high levels of concurrency makes

it unsuitable as a corporate wide server-side database system.

Not selecting a well-established data system presents many challenges in selecting

an alternative. Relational databases can store data using compression techniques, have

highly optimized indexing systems, include security features, implement a variety of

concurrency controls, and are often packaged with an integrated application development

environment. Developing these mechanisms from ‘scratch’ is possible, but

comparatively expensive (cost and time) to existing off-the-self software.

The selection of the storage system also has to take into account the natural

environment of the data. The popularity of using XML to communicate e-commerce

transactions is growing rapidly. Documents that exist naturally as XML require a

mapping mechanism to transform the contents of the XML into a table for relational

databases or an object for an object-oriented database. The binding process creates

overhead for the data system, which if not recorded precisely can lead to a loss of

structure in the original XML content. This behavior is called round trip engineering, an

issue of ensuring the storage and subsequent retrieval of XML results in equivalent

documents[3].

For data that currently exists, nearly all of the commercial database applications

have been enabled to export and import XML data. The general format of the exported

data is an XML document with a flattened structure similar to a HTML table layout with

additional meta tags to clearly specify the source. From this perspective, XML can be

viewed a common denominator of interoperable data sharing rather than a necessary data

storage system. For existing data, XML can be an enabler rather than a barrier (assuming

a common data typing schema is used, such as XML Schema).

Lastly, selection of the database storage system must be a strategic decision. If

there are long-standing processes that provide and consume data using one particular

69

technology, it is a logical to continue using that type of technology. If the process is new

(like in this case) there must be a forward-looking view of how the process will relate to

the strategic vision of data storage and interoperability. Additionally, there are inherent

risks with using an immature technology, which has the potential to be obsolesced or not

adopted in the near term future.

2. Selecting the XML Storage System Type

There are benefits to storing data as XML. XML tag sets are self-describing and

human readable[3]. Unicode is the text standard for XML, and thus standard across

nearly every computing system. Data from structured XML documents can be retrieved

faster than from relational database systems. Normalized data broken into separate but

related tables require computationally expensive join functions to extract the data,

whereas related data can be structured and stored with the same XML document[3].

XML can be semantically organized into tree or graph structures. XML is particularly

suited for document-centric or semi-structured data.

Before selecting a XML database system, the data structure and data types need to

be analyzed. Data stored in relational database systems are generally viewed as tables of

data fields. This type of structure lends itself to data-centric documents where each field

can be validated against a particular data construct. The contrary is document-centric

content. This type of content can be thought of as containing human readable text.

People’s opinions, directions, and thoughts are often communicated using free flowing

document-centric text. In practice, most data will be of some varying degree between

data and document centric.

When selecting an XML database system there are three different alternatives: a

hierarchical file structure (like the developed system), blobs within a relational database,

or as native XML overlaid in a relational or object oriented database subsystem. A blob

is an XML document stored as a large text field[3]. Upon entry, an XML database that

stores blobs may create indexes to reference the XML content.

Before native XML databases become mainstream, there are serious challenges

that need to be solved. First, XML document tag sets can cause documents to be very

verbose. As an example, the main location index in the developed application can be

70

reduced to a sixth of its original size with compression. Second, current multi-document

searching techniques can be very slow. The current situation prevents any such solution

to be used in a highly competitive commercial sector. Third, a standardized XML query

language has yet to be agreed upon. While it is likely that the W3C’s efforts will prevail,

it will take some time for a common set of tools to become ubiquitous.

3. Native XML Products

As of this writing, there are approximately thirty-five native XML database

products[2]. One-quarter of them are open source projects, and their underlying data

systems are a mix of proprietary implementations, relational, object oriented, and several

miscellaneous types[2]. The common features of these systems include an API to

perform data manipulations, a means to navigate the data, and possibly a query syntax

using one of the developing standards (e.g. XQuery, XML-QL, or XML:DB).

Of particular interest is the research conducted by Nambiar, et al[27] on the

performance of native XML database systems. Their research tested four different native

XML databases, each having a different means for indexing, data representation (e.g.

DOM model, document fragments, etc.), and data storage (e.g. file system, relational, and

object oriented). Their data demonstrated that storing XML content as .xml files

provided faster response times for search and navigation queries than documents broken

apart and stored into optimized patterns[27]. As for selection of one type of native XML

database application, it may be still too early to form judgment on the best design due to

the rate at which standards and processors are being developed.

For the developed application the selection not to use a native XML database

application was made primarily on avoiding the requirement of using a commercial, and

potentially proprietary, product. An additional side effect of using a native XML

database is the loss of control. XML documents entered into a system are ‘digested’ and

stored as system dependent files. For the developed application, it was required that the

original content remained visible to the browser software throughout its lifecycle.

71

B. ONGOING XML DEVELOPMENTS

In this section, the progressing futures of XML technologies are discussed. Each

of them could have a positive impact on the system developed. All of these technologies

add to the ever-expanding XML universe, both in size and complexity. Figure 14

illustrates some of the technical connections between these technologies. While the

connections are incomplete, its intent is to show two features. First, XML Schema and

XPath in their current and proposed states are at the heart of more complex languages

that extend their capabilities. The observation of a 'web' of technologies is appropriate.

Secondly, the stack relationship of the bottom three technologies builds outward as a

notion between 'knowing where you are' and 'knowing exactly where you're going'.

Examples are provided to demonstrate how these relationships exist.

1. XQuery (An XML Query Language) and XPath (Version 2.0)

XQuery and XPath 2.0 both became W3C Working Drafts on November 15,

2002[41, 46]. XQuery is an effort to standardize a methodology of querying XML data.

The effort to create XQuery began in 1998. It is built as an extension of XPath version

2.0. Approximately 80% of the foundation for XQuery is XPath[17]. While XQuery has

a large role in the development of XPath 2.0, improvements to the original

Recommendation have come from standards that followed the original specification (e.g.

XML Schema and XML Information Set) and to parallel ongoing improvements in other

standards (e.g. XSLT 2.0).

Out of necessity to provide a highly reliable and repeatable querying language,

XPath uses XML Schema data types and validation. Errors can be raised if incorrect data

types are discovered during processing, and documents can be validated as part of a new

command set[46]. Unlike XSLT version 1.0 variables, XQuery variables have enhanced

capabilities within XPath 2.0, especially in newly defined programming statements for

sequence, conditional, iterative, and quantified statements.

72

Figure 14. Relationships Between W3C XML Technologies Used

As mentioned, XQuery extends XPath's power by providing additional query-

specific language commands, the capability to create user-defined functions, and ensuring

the typing of data returned[17]. The definitive goals and requirements for the new

XQuery language are published as documents that parallel the development of the

language itself[46]. In addition, use cases and a data model description accompany the

specification.

The initial submission for the XQuery language was based on an XML query

language called Quilt, which in turn was derived from the Object Query Language

(OQL) approach and the Structured Query Language (SQL) (Chamberlin, pg 598).

Added to the development were the important facets of XPath and XML Schema. At the

core of XQuery is the for-let-where-result (FLWR, pronounce 'flower') functionality, and

XML
Schema

XQuery

XPath
2.0

XSLT
2.0

XForms

XPointer

XLink

XBase

XInclude

73

the union, intersect, and except statements[4]. With these and the other XPath tools, the

XQuery language is a very capable. The acceptance of the XQuery language will be

determined by the performance of processors that are developed.

The progress of XQuery towards becoming a Recommendation has significance.

First, it represents an alternative to entity-relational and object-oriented database systems.

Relational databases with SQL capabilities are entrenched in nearly every business. In

contrast, object oriented databases have proven their superiority in some performance

areas, but its weakness of standardization and interoperability has lead to a lack of

acceptance. A W3C Recommendation of XQuery has the potential for commercial

systems to be highly interoperable. Second, XQuery represents the notion that the W3C

intends to be an XML standards body, not just a web standards body. It can be argued

that XQuery has more to due with creating a non-proprietary and interoperable data

language, and less to due with creating a web-based technology.

2. XML:DB Initiative

The XML:DB Initiative is a non-profit collaborative community with the goal of

developing a standard for accessing data in an XML database. The XML:DB community

is represented by twenty-three companies (mostly from the technology sector). In their

view, "XML databases, have much greater applicability than just the World Wide Web

and it is for this reason that [they] felt it was the appropriate time to form a new

organization chartered with the development of XML database specific

specifications[44].” Initial work by the XML:DB has been incorporated into Sun's

Xindice XML database and Software AG's Tamino database system[44]. Currently there

is insufficient data available to compare or contrast the performance differences between

the XML:DB initiative and XQuery.

3. XForms

XForms became a W3C Candidate Recommendation on November 12, 2002[35].

XForms is an XML application that represents the next generation of
forms for the Web. By splitting traditional XHTML forms into three
parts—XForms model, instance data, and user interface—it separates
presentation from content, allows reuse, gives strong typing—reducing the
number of round-trips to the server, as well as offering device
independence and a reduced need for scripting[35].

74

HTML forms have been in use for ten years, twice as long as XML. Their

original utility is not complementary to XML information sets. As discussed in Chapter

V, HTML form-data to XML transformations are inherently lossy due to the linear nature

of form fields. XForms is a robust solution to HTML form's weaknesses.

At its inception, XForms was designed to be a replacement of HTML forms. It

will become a modular component of XHTML 2.0 (a complete re-write of HTML)[35].

The modularity of XForms will provide its potential reuse by other computing

communities beyond XHTML. XForms offer the following benefits:

• Strong typing - using XML Schema standards for data typing, validation
of form fields can be accomplished at the client, prior to data being sent to
a web server.

• Flexibility - with separation of components and high level description of
behaviors, XForms could be adaptable to many different browser
environments (computer screen, PDA, television, etc.)

• Less scripting - the previous two features lessen the need for specialized
scripting code for the HTML output (i.e. less JavaScript and VBScript).

The authoring of an XForms document is through a process of describing the data

constructs (including data types), the presentation (e.g. XHTML), and binding the

components together in a model[35].

The efficiency of the developed application could greatly increase with the use of

XForms. The rendering of the form within the browser, decoupling the data fields from

the form, and validating the data at the client are currently done with a combination of

JavaScript and XSLT. An XForms processor (embedded within an XHTML browser)

would automate most of work and enable a generic environment to create forms.

Implementation of a validated XForms processor, and subsequent development of

a stable integrated development environment (IDE) will be difficult. The XForms

specification includes over seventy new methods in its application programming interface

(API), use of all existing XML Schema types and four extended ones, and use of XPath.

While approximately two-dozen open source projects and small companies have

developed incomplete solutions, no major vendor in the technology sector has

implemented an XForms processor[35].

75

4. XML Base

XML Base became a W3C Recommendation on June 27, 2001[37]. The purpose

of XML Base is to describe a standard XML attribute to achieve functionality similar to

that of HTML’s BASE element. The xml:base attribute sets a Uniform Resource

Indicator (URI) location for all other URIs to be referenced. The base URI is completely

independent of the URI of the source document.

Figure 15 demonstrates the use of the XML Base attribute. Note that XML Base

uses the XML namespace. The use of the XML namespace functionally alters the

baseline of the XML language. The processing of the xml:base attribute cannot be

assumed, as this change to the language occurred after the latest edition of XML.

The following XML document containing an XML Base:

<?xml version="1.0" encoding="UTF-8"?>
<html>
 <head/>
 <body xml:base="http://cgweb.uscg.mil/xkms">
 <a
 href="World/Location.xml"
 alt="Go to Location Index"
 target="_blank">
 Link to Main Index
 </body>
</html>

Would resolve the hyperlink "Link to Main Page" to the following URI:

http: //cgweb.uscg.mil/xkms/World/Location.xml

Figure 15. XML Base Example

The use of XML Base would provide no added benefit to the proof of concept

application. However, XML Base is important for two reasons. First, XML Base is an

important building block for the W3C recommendations that follow the XML Base

recommendation, specifically XLink, XPointer, XPath version 2.0, and XQuery. These

recommendations either utilize or extend the utility of the xml:base attribute. Second, if

the design requirements for the developed application change to restrict the deployment

to specific locations (i.e. specific URL or file drive and path location), the difficulty of

deriving file locations would be greatly reduced.

76

5. XLink (XML Linking Language)

XLink became a W3C Recommendation on June 27, 2001[39]. XLink is mature

version of HTML’s hyperlink <a> element (i.e. anchor tag) or element (i.e. image

tag). HTML links can only provide a one-way path, they can only point to one item, and

they can only be described by one attribute. The background of XLink comes from

hypermedia, where the connections between content can be expressed in a multitude of

ways.

Figure 16 demonstrates the use of a simple type XLink. The processing of this

example produces the exact same results as Figure 15. This XLink extends the previous

example by associating the role of the link with a URI namespace and controlling the

timing of the link with an actuate attribute. More advanced XLinks describe targets that

exist within the same document or externally via URI, user readable labels for complex

links, and the arc descriptions between the targets. Of approximately one-dozen

implementations of XLink, Mozilla and the W3C's Amaya browsers are the two most

notable tools (Mozilla only supports simple links).

The following XML document containing an XLink:

<?xml version="1.0" encoding="UTF-8"?>
<html>
 <head/>
 <body xml:base="http://cgweb.uscg.mil/xkms">
 <MainIndex xmlns:xlink="http://www.w3c.org/1999/xlink"
 xlink:type="simple"
 xlink:href="World/Location.xml"
 xlink:role="http://cgweb.uscg.mil/xkms/Location"
 xlink:title="Go to Location Index"
 xlink:show="new"
 xlink:actuate="onRequest">
 Link to Main Index</MainIndex>
 </body>
</html>

Would resolve the hyperlink "Link to Main Page" to the following URI:

http: //cgweb.uscg.mil/xkms/World/Location.xml

Figure 16. XLink Example

The links formed by XLink can point to content internally within a document or

externally to another resource. Links can describe both the source and the destination to

permit circular operations. Bidirectional links are described as arcs, similar to

77

mathematical graph theory. Links can also be abstracted and stored in files to permit

pointing to resources indirectly. Similar to DOM HTML events, XLink elements can

describe the manner of how they behave and what actions from the user invoke the

link[39]. Finally, links can also be described to provide greater meaning about their role

and usage in the source document.

XLink is an appropriate technology where the contents of XML document and file

collections are related. Therefore, any application where the use of foreign keys is used

to describe the association between data sets is a potential use for XLink. In the

developed application, the relationships between parent, sibling, and child locations, the

relationships between a location and the various forms of content about that location, and

the relationships between content types (e.g. resources to people and comments) can be

described with XLink. However, use of XLink may not be suitable when the link

references change frequently. Management of highly dynamic links may be better suited

to runtime references created through XPath processing.

6. XPointer (XML Pointer Language)

XPointer became a W3C Proposed Recommendation on November 16, 2002[45].

The purpose of XPointer is to address internal fragments of an XML document from a

URI. XPointer is akin to HTML URL references that include a pound symbol and

identification attribute pair (e.g. http://www.page.com#paragraph1). However, XPointer

includes and extends the power of XPath, which creates a power mechanism to ‘query’

an XML document externally without having to process it with an XSLT.

XPointer has been under development since mid-1997, a lengthy period compared

to other technologies developed by the W3C. Having started out as part of the XLink

development project, it has since grown and then been broken apart into four separate

parts (the overall framework plus three unique functions: element() scheme, xmlns()

scheme, and xpointer() scheme[45]). Although not fully recommended, its influence is

already woven into other XML technologies, including XLink, XInclude, and DOM

XML (Level 2). Another important facet of XPointer is its connection to HTTP, a

standard created by the Internet Engineering Task Force (IETF). The implementation of

XPointer directly influences the URI addressing schema developed by the IETF. A

78

related standard is being developed within the IETF to complement the usage of XPointer

commands appended to URIs[40].

From the perspective of the proof of concept application, there is great potential

for XPointer. The ability to selectively query an XML document and have the results

processed by a XSLT would greatly improve the user’s experience with the data.

Currently, XSLT processing cannot receive user inputs. Work-around solutions include

programmatically performing the XSLT operations iteratively at the client, or writing

‘search’ parameters to an XML document that is consumed by the XSLT (using the

document function).

Figure 17 is an example of using XPointer within an XML document that has an

xml:base attribute and XLink. XPointer adds to the power of XLink with the ability to

navigate and select the data from the target document with the power of XPath

functionality. As of this writing, their does not exists a usable XPointer browser.

The following XML document containing an XPointer:

<?xml version="1.0" encoding="UTF-8"?>
<html>
 <head/>
 <body xml:base="http://cgweb.uscg.mil/xkms">
 <MainIndex xmlns:xlink="http://www.w3c.org/1999/xlink"
 ...
 xlink:role="http://cgweb.uscg.mil/xkms/Location#xpointer(//Location[@id='8675309'])"
 ...
 Link to Main Index</MainIndex>
 </body>
</html>

Would resolve the hyperlink "Link to Main Page" to the following URI:

http: //cgweb.uscg.mil/xkms/World/Location.xml#xpointer(id='8675309')

However, only the Location element with the matching id value would be return
(which may be further transformed into HTML with a stylesheet reference).

Figure 17. XPointer Example

79

7. XInclude (XML Inclusions)

XInclude is a W3C Candidate recommendation as of September 17, 2002[38].

XML Inclusions is a complementary technology to the external entities defined in the

original XML Recommendation[37]. However, XInclude is arguably more robust. An

XML Inclusion is a call from a valid XML document for an inline replacement of an

external resource. The external resources may be parsed XML information sets or other

text-based media types. A URI identifies the source (or call to) the included resource.

The URI may be extended with XPointer concepts to return a subset of an external XML

document. If the included resource cannot be found or a parsing error occurs, an optional

fallback option provides for alternative results.

The idea of inclusions is nothing new. Most programming languages have them,

and other XML languages use them (e.g. XML, XSL/T, XSD). The power of XInclude

comes from its ability to directly reference a resource, recover from some types of errors,

and use the power of other XML languages (XPointer/XPath).

The utility of XLink described previously and XInclude have similar, but not

overlapping use. XLink elements can be used to imbed content within the output to a

browser (e.g. graphical images); however, there is no XML related processing that takes

place. XInclude references can be parsed and included in an XML document for further

processing.

The potential benefits of a XInclude processor in the proof of concept application

could be significant. For example, the current situation requires the XSLT processor to

test for the presence and load documents repetitively (e.g. testing for the presence of a

People.xml file before searching for associations with a Resources.xml file contents for

each resource content node). With XInclude, that type of processing could be

accomplished more efficiently and prior to the transformation into a HTML document.

Figure 18 demonstrates a XInclude example. The XInclude processor is triggered

by the use of the include element from the XInclude namespace. The URI of the target

document includes an XPointer expression that calls upon the XPath processor, which

subsequently returns only those personnel associated with the particular resource. If an

80

error occurs in parsing the document returned by the include statement, the result is an

empty Person element.

The following XML document containing an XPointer:

<?xml version="1.0" encoding="UTF-8"?>
<Resources>
 <Resource id="123">
 <Title>USCG Station Monterey</Title>
 <Personnel>
 <xi:include
 xmlns:xi="http://www.w3.org/2001/XInclude"
 href="Poeple.xml#xpointer(/People/Person[@refId='../@id'])"
 parse="xml">
 <xi:fallback>
 <Person/>
 </xi:fallback>
 </xi:include>
 </Personnel>
 </Resource>
</Resources>

Would return the Resources document with all of the Person elements from the
People.xml file with a refId matching the same id value.

Figure 18. XInclude Example

81

VII. CONCLUSIONS AND RECOMMENDATIONS

A. RESEARCH RESULTS

1. Objectives Accomplished

The prototype application is a collaborative XML-based knowledge management

system that is transparent, deployable, and extensible using ubiquitous technologies and

accepted standards. The primary research question has been answered with an operable

system. In comparison to the available relational and object-relational database systems

the developed application appears inferior in performance and capability. However, it

satisfies very specific requirements for a set of users which cannot be achieved

effectively with existing tools, including native XML database systems. The utility and

power of advancing technologies within this field of study may eventually provide

solutions to the current weaknesses.

Most of the effort in developing the application (50-60%) was spent in exploring

potential designs, learning about the technologies used, and creating solutions to

challenges faced. Having developed a unique process, the effort required to reproduce

the work would require an estimated one-tenth of the original. The output of the research

resulted in the following system files:

• 12 XML files - templates(10) for each content node (including votes and
overhead), a blank SOAP message envelope, and an XML file describing
the possible content types.

• 12 XML Schema files for each possible content type and one generic
schema for the deletion process.

• 12 HTML form data to content node XSLTs.

• 12 XSLTs to create HTML forms from a content node.

• 9 XSLTs to create views of the data.

• 5 ASP pages (transmitter, receiver, media file upload selector, media file
processor, and an error reporter).

• 2 JavaScript files (one for use by the HTML forms and one for the data
views).

• 1 Cascading Style Sheet (used by every form and data view).

82

In addition to the system files, approximately 5,300 content files were created.

The main location index file was initially created by hand coding the organization of the

world into recognizable sub areas as described in Chapter II. Sample data for Monterey,

California was also hand typed. A semi-automated process was developed for creating

sample location data using a publicly available World Port Index (WPI) database. The

WPI was contained in an Access database. A Visual Basic for Applications (VBA) script

was created to read a query record set, transform the data into an XML location content

node, and transmit the data using SOAP to the application's receiver. The receiver acted

as a web service by processing the data into the system without having any knowledge

about the creator of the data (location, language, operating system, etc.).

2. Performance

Only one measure of performance was recorded for the developed application, the

time required to download and render the main index view. The main index .xml file is

the largest data file in the system. With 5,225 locations, the file size is 486KBytes. This

number of location represents a worst-case scenario (as there are only 4,679 locations in

the WPI). Times recorded to download and process this file were:

• 100Mbps Ethernet (non-working hours) - < 3 seconds

• 100Mbps Ethernet (normal working hours) - 5-6 seconds

• 33.6Kbps modem - 39 seconds

• 28.8Kbps modem - 50 seconds

The above performance data reflects a non-optimized solution. No effort in the

design process was made to reduce the size of the main index file or improve its

processing efficiency. Significant gains could be achieved if the design were changed.

For example, reducing the length of the element and attribute names can reduce the file

size by 35%.

Further development efforts on this topic should include a clearly defined set of

tests and performance targets. Of particular importance will be the ability to search for

specific text, range of dated material, and content by particular data category (e.g., ports

visited by icebreakers). As a qualitative test, the main index page was 'enhanced' with a

search function (which searched the rendered HTML and not the XML data). That

83

technique proved disastrous, as it required over 30 seconds to complete the search (using

5,225 locations). An XPointer alternative should reduce the processing time to less than

a few seconds.

The view and navigate portions of the application use non-proprietary

technologies and are also free of proprietary extensions. An observation was made to test

this by viewing the data with the Mozilla browser (an open source browser). While the

XSLT transformations and JavaScript worked correctly, the Cascading Style Sheet

behaviors did not. Mozilla’s current inability to correctly display CSS content is well

documented.

B. RECOMMENDATIONS

1. Implementation

The current application is a prototype, not a production ready system. Numerous

programming anomalies exist. However, the difference between its current status and a

corporate-wide solution is one or two development iterations. Having proved the concept

can work and identifying the remaining challenges, the work required to redesign the

requirements with user feedback, develop the application, and test the solution would

require approximately four months. That work should be done in-house by the Coast

Guard’s own operations systems command. Failure to pursue the development of the

application will result in the status quo of continuous re-creation and loss of knowledge.

The application was developed for a specific domain with one instance of

knowledge (i.e., ship drivers and operational decision makers). It can be argued that the

bandwidth available to ships at sea will not appreciably change in the near term future.

With that assumption, the features of the developed application can be extended to other

communities of knowledge in similar circumstances.

2. Further Research

Many areas for further research regarding the application were identified in the

previous chapters. Those topics need to be addressed before the application can be

implemented. However, the current application can also be used as a baseline for

implementing a similar product in either a Java Server Page or ASP.Net environment.

The Java route would increase the options available to implementing the server-side

84

portion of the system and the availability of newer and more capable XML processors

(since most open source processors are written in Java). The transformation of the

existing ASP pages (written in JavaScript) into an Apache Tomcat environment would no

doubt increase the reliability of the system. The same improvements in performance may

be possible in an ASP.Net solution, where server-side code is compiled and more

thoroughly debugged than the run-time interpreted ASPs.

Exploration and testing of native XML databases is another area requiring further

research. As this field matures, more robust alternatives will become available and begin

to challenge the need for relational or object oriented databases. A solution may exist to

fulfill the same requirements from an off the shelf product (open source or commercial).

Investment in a new technology will require comparative performance testing, security

verifications, and thorough risk assessments.

Finally, as the reliance on XML increases the importance of using namespaces,

standard tag sets, reusable schemas, and non-proprietary technologies increases. Any

potential implementations require research into the existing standards and organization

efforts. Interoperability of XML data sources can only be possible if international,

Federal, State, and local agencies develop solutions within a common definition of data

types, information ontologies, and process descriptions.

C. SOURCE CODE

The source code for the application currently resides on the ‘seabeeone’ server

(‘ebiz’ domain) at the Naval Postgraduate School, under the supervision of Professor

Kamel. The author also maintains a copy of the same files and can be contacted at the

following email address: jstewart@c2cen.uscg.mil, or via the U.S. Coast Guard locator

service by calling (202) 267-0581 (or by email: locator@comdt.uscg.mil).

The appendices following this chapter provide three different views of the system.

Appendix A contains an entity-relationship diagram of the data stored within the system

(using Microsoft Access). The diagram does not include the parent-child relationship

between locations. Appendix B contains the layout of the XML content files and their

nodes. Appendix C contains sample views of data entered into the prototype application.

85

APPENDIX A ENTITY RELATIONSHIP DIAGRAM

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

APPENDIX B CONTENT FILE TEMPLATES (XML)

Location.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- A location is the primary node type within the system,
it contains generalized information about a location or area-->
<Location id="" folderName="" locationType="">

 <!-- The name of the location -->
 <LocationName></LocationName>

 <!-- A brief description about the location-->
 <Description></Description>

 <!-- Data about the time at the particular location -->
 <Time timeZone="" obsDaylightSavings=""/>

 <!-- A container for a specific waypoint -->
 <Coordinates datum="">

 <!-- Latitudes shall conform to the following regular expression:
 \d{1,2}-\d{2}(\.\d{1,4})?[NS] -->
 <Latitude/>

 <!-- Longitudes shall conform to the following regular expression:
 \d{1,3}-\d{2}(\.\d{1,4})?[EW] -->
 <Longitude/>
 </Coordinates>

 <!-- The UN Locode abbreviation for the location -->
 <UNCTADLocode/>

 <!-- The applicable Coast Pilot volume for this location -->
 <CoastPilot number=""/>

 <!-- The applicable Sailing Guide for this location -->
 <SailingGuide number=""/>

 <!-- A collection of content nodes available for this location -->
 <ContentNodes>

 <!-- A specific instance of a content node type available for this location -->
 <ContentNode contentType=""/>
 </ContentNodes>

 <!-- Overhead data included here -->
</Location>

88

Route.xml:
<?xml version="1.0" encoding="UTF-8"?>
<Routes locationId="">
 <!-- A route has one set of comments and many waypoints -->

 <!-- A container for a specific instance of a route -->
 <Route id="" dateTimePerformed="" vesselClass="">

 <!-- The title of the route -->
 <RouteTitle></RouteTitle>

 <!-- A container for a collection of comments -->
 <Comments>

 <!--A brief description of the route, including total length and
 number of legs, starting location and destination, etc. Also,
 important notes about the approach, entrance, and channel -->
 <Description></Description>

 <!-- Information on availability, condition, and usefulness of ATON
 present -->
 <AidsToNavigation></AidsToNavigation>

 <!-- Information on specific channels, radio stations, and comms
 procedures -->
 <Communications></Communications>

 <!-- Information on availability or use of a pilots or tugs -->
 <PilotsAndTugs></PilotsAndTugs>

 <!-- Information about the volume, types, density, and behavior
 of other vessel traffic -->
 <OtherVesselActivity></OtherVesselActivity>

 <!-- Information on unusual weather conditions en route -->
 <Weather></Weather>

 <!-- Information on unusual tides or currents observed -->
 <TidesAndCurrents></TidesAndCurrents>

 <!-- Information on hazards to navigation or obstructions present -->
 <Obstructions></Obstructions>
 </Comments>

 <!-- A container for a collection of waypoints-->
 <Waypoints datum="">

 <!-- A container for a specific waypoint -->
 <Waypoint>

 <!-- Latitudes conform to the following regular expression:
 \d{1,2}-\d{2}(\.\d{1,4})?[NS] -->
 <Latitude/>

89

 <!-- Longitudes conform to the following regular expression:
 \d{1,3}-\d{2}(\.\d{1,4})?[EW] -->
 <Longitude/>
 </Waypoint>
 </Waypoints>

 <!-- Overhead data included here -->
 </Route>
</Routes>

Piers.xml
<?xml version="1.0" encoding="UTF-8"?>
<Piers locationId="">
 <!-- A pier is a shoreside physical struture to moor a vessel -->

 <!-- A container for a specific instance of a pier, the title is
 contained within the primary element -->
 <Pier id="" dateTimeArrived="" dateTimeDeparted="" vesselClass="">

 <!-- Name of the pier -->
 <PierName></PierName>

 <!-- Specific data about the actual berth, and a distinct pier name -->
 <Berth lengthOfBerth="" heightOfBerth="" depthOfWater=""
unitsOfMeasure="">

 <!-- Name of the berth -->
 <BerthName></BerthName>
 </Berth>
 <!-- A container for a specific waypoint -->
 <Coordinates datum="">

 <!-- Latitudes shall conform to the following regular expression:
 \d{1,2}-\d{2}(\.\d{1,4})?[NS] -->
 <Latitude/>

 <!-- Longitudes shall conform to the following regular expression:
 \d{1,3}-\d{2}(\.\d{1,4})?[EW] -->
 <Longitude/>
 </Coordinates>

 <!-- A container for a collection of comments -->
 <Comments>
 <!-- A description of how the pier was layed out -->
 <PierLayout></PierLayout>

 <!-- Information regarding the condition of the pier, including
 construction, cleanliness, etc. -->
 <PierCondition></PierCondition>

90

 <!-- A brief summary about the hours of operation of the pier and
 its services -->
 <HoursOfOperation></HoursOfOperation>

 <!-- Information about the quanity and condition of mooring points -->
 <BollardsAndCleats></BollardsAndCleats>

 <!-- Information regarding the availability and quality of a brow or
 gangway -->
 <BrowAvailability></BrowAvailability>

 <!-- Information moorage fees (enter office and specific person
 information in appropriate content nodes) -->
 <MoorageFees></MoorageFees>

 <!-- Information regarding the amount and quality, or lack thereof,
 of security (people, fences, gates, etc.) -->
 <Security></Security>

 <!-- Information about the types, volume, and impact of other
 vessel activity -->
 <OtherVesselActivity></OtherVesselActivity>

 <!-- Information about the volume and types of people, and
 their behavior -->
 <PedestrianActivity></PedestrianActivity>

 <!-- Information regard weather conditions observed while moored -->
 <Weather></Weather>

 <!-- Information regarding tides and currents observed specifically
 at the berth -->
 <TidesAndCurrents></TidesAndCurrents>

 <!-- Information on holidays observed and their impacts on the
 port call -->
 <HolidaysObserved></HolidaysObserved>
 </Comments>

 <!-- Overhead data included here -->
 </Pier>
</Piers>

91

Anchorages.xml
<?xml version="1.0" encoding="UTF-8"?>
<Anchorages locationId="">
 <!-- An anchorage is a location used to moor a vessel to the bottom with
 an anchorage or other device -->

 <!-- A container for a specific instance of an anchorage, the title is contained
 within the primary element -->
 <Anchorage id="" dateTimeArrived="" dateTimeDeparted="" vesselClass="">

 <!-- The name of the anchorage -->
 <AnchorageName></AnchorageName>

 <!-- Specific data about the actual berth, and a name if distinct from the
 general anchorage name -->
 <BerthName depthOfWater="" unitsOfMeasure="">

 <!-- The name of the berth -->
 <BerthName></BerthName>
 </BerthName>

 <!-- A container for a specific waypoint -->
 <Coordinates datum="">

 <!-- Latitudes shall conform to the following regular expression:
 \d{1,2}-\d{2}(\.\d{1,4})?[NS] -->

 <Latitude/>
 <!-- Longitudes shall conform to the following regular expression:
 \d{1,3}-\d{2}(\.\d{1,4})?[EW] -->
 <Longitude/>
 </Coordinates>

 <!-- A container for a collection of comments -->
 <Comments>

 <!-- Information regarding the availability and use of a mooring ball,
 including its condition -->
 <MooringBallAvailability></MooringBallAvailability>

 <!-- Information regarding the holding power of the bottom (separate
 from the vessel's achor used)-->
 <BottomHoldingPower></BottomHoldingPower>

 <!-- Information on availability or use of a water taxi -->
 <WaterTaxi></WaterTaxi>

 <!-- Information about the types, volume, and impact of other
 vessel activity -->
 <OtherVesselActivity></OtherVesselActivity>

 <!-- Information regard weather conditions observed while moored -->
 <Weather></Weather>

92

 <!-- Information regarding tides and currents observed specifically
 while anchored -->
 <TidesAndCurrents></TidesAndCurrents>
 </Comments>

 <!-- Overhead data included here -->
 </Anchorage>
</Anchorages>

Resources.xml
<?xml version="1.0" encoding="UTF-8"?>
<Resources locationId="">
 <!-- A resource is a entity that provides a service to the vessel
 (e.g. fuel, stores, electricity, repairs, etc.) -->

 <!-- A container for a specific instance of an resource, the name
 of the resource is contained within the primary element -->
 <Resource id="" typeOfResource="">

 <!-- The name of the resource -->
 <ResourceName></ResourceName>

 <!-- Information regarding hours of operation, rates, payment
 capabilities, quality of service, etc. about the resource -->
 <Description></Description>

 <!-- The postal address of the resource -->
 <PostalAddress></PostalAddress>

 <!-- A phone number to reach the resource -
 MORE THAN ONE Phone ELEMENT MAY EXIST -->
 <Phone location="" number=""/>

 <!-- A website address to the resource -->
 <Website href=""/>

 <!-- Overhead data included here -->
 </Resource>
</Resources>

93

Activities.xml
<?xml version="1.0" encoding="UTF-8"?>
<Activities locationId="">
 <!-- An activity is a service available for the morale, welfare, and
 recreation (MWR) of the crew -->

 <!-- A container for a specific instance of an activity, the name of
 the activity is contained within the primary element -->
 <Activity id="" typeOfActivity="">

 <!-- The name of the activity -->
 <ActivityName></ActivityName>

 <!-- Information regarding hours of operation, rates, payment
 capabilities, quality of service, etc. about the activity -->
 <Description></Description>

 <!-- The postal address of the activity -->
 <PostalAddress></PostalAddress>

 <!-- A phone number to reach the activity -
 MORE THAN ONE Phone ELEMENT MAY EXIST -->
 <Phone location="" number=""/>

 <!-- A website address to the activity -->
 <Website href=""/>

 <!-- Overhead data included here -->
 </Activity>
</Activities>

People.xml
<?xml version="1.0" encoding="UTF-8"?>
<People locationId="">
 <!-- A person is an individual that may be associated with
 a resource or an activity -->

 <!-- A container for a specific instance of a person, 'refId' is used
 to associate a person to an organization (resource or activity) -->
 <Person id="" refId="">

 <!-- The name of the person -->
 <Name></Name>

 <!-- The title of the person -->
 <Title></Title>

 <!-- Information regarding this person, their duties, and any other
 relevant information -->
 <ContactNote></ContactNote>

 <!-- The postal address of the person, not necessary if same as

94

 organization's -->
 <PostalAddress></PostalAddress>

 <!-- A phone number to reach the author -
 MORE THAN ONE Phone ELEMENT MAY EXIST -->
 <Phone location="" number=""/>

 <!-- An email address for the author -
 MORE THAN ONE Email ELEMENT MAY EXIST -->
 <Email href=""/>

 <!-- Overhead data included here -->
 </Person>
</People>

Media.xml
<?xml version="1.0" encoding="UTF-8"?>
<Media locationId="">
 <!-- A media file is a non-text graphic, audio, video, slide-show, etc. -->

 <!-- A container for a specific instance of a media file. Note that the
 name of the stored media file will be in the 'media' folder and have
 the title of the MediaFile's id value -->
 <MediaFile id="" fileType="">

 <!-- Descriptive title for the media and its content (i.e. what is it) -->
 <MediaTitle></MediaTitle>

 <!-- Elaborated comments on the content of the file -->
 <Description></Description>

 <!-- Source of the file -->
 <Source recordingDateTime="">

 <!-- The author of the file (i.e. who did the recording) -->
 <Name></Name>

 <!-- The location of creation (i.e. where was it recorded) -->
 <Location></Location>
 </Source>

 <!-- Overhead data included here -->
 </MediaFile>
</Media>

95

Comments.xml
<?xml version="1.0" encoding="UTF-8"?>
<Comments locationId="">
 <!-- A comment is an annotation to any other existing content -->

 <!-- The comment has its own ID and a reference to the content ID -->
 <Comment id="" refId="">

 <!-- The title of the comment -->
 <CommentTitle></CommentTitle>

 <!-- Contains feedback, clarification, addition to existing content -->
 <CommentText></CommentText>

 <!-- Overhead data included here -->
 </Comment>
</Comments>

Overhead.xml
<?xml version="1.0" encoding="UTF-8"?>
<Overhead modifiedDateTime="">
 <!-- Overhead contains information about the author and
 feedback about the quality or the content -->

 <!-- Author conatins point of contact information -->
 <Author ipAddr="">

 <!-- The name of the author -->
 <Name></Name>

 <!-- The name of the organization or unit where the author works -->
 <Organization></Organization>

 <!-- A phone number to reach the author -
 MORE THAN ONE Phone ELEMENT MAY EXIST -->
 <Phone location="" number=""/>

 <!-- An email address for the author -
 MORE THAN ONE Email ELEMENT MAY EXIST -->
 <Email href=""/>
 </Author>

 <!-- A quality score that other users provide about the content
 the author created -->
 <QualityRating avgValue="0.0" votes="0"/>
</Overhead>

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

APPENDEX C SAMPLE APPLICATION VIEWS

The main Location.xml data view (XML to HTML via XSLT):

The Location.xml file for Montery, California:

98

Expanded activities view including navigation menu:

A route view with author details shown:

99

User logon form (prior to adding, modifying, or deleting content):

Pier entry form:

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

LIST OF REFERENCES

1. Associating Style Sheets with XML Documents. World Wide Web Consortium
(W3C), 29 June 1999 <http://www.w3.org/TR/xml-stylesheet/>

2. Bourret, R.P. XML Database Products. 14 February 2003
<http://www.rpbourret.com/xml/XMLDatabaseProds.htm>

3. Bourret, Ronald. XML and Databases. 5 February 2003
<http://www.rpbourret.com/xml/XMLAndDatabases.htm>

4. Chamberlin, D. "XQuery: An XML Query Lanuage." IBM Systems Journal.
Volume 41, Number 4, (2002): Pages 597-615.

5. Christensen, Clayton M. The Innovator's Dilemma: When New Technologies Cause
Great Firms to Fail. Boston: Harvard Business School Press, June 1997.

6. Comer, Douglas E. Computer Networks and Internets, with Internet Applications.
New Jersey: Prentice Hall, 2001.

7. Common Gateway Interface (CGI). National Center of Supercomputing Applications
(NCSA). 4 November 2002 <http://hoohoo.ncsa.uiuc.edu/cgi/intro.html>

8. CSS Home Page. Wide Web Consortium (W3C), 13 November 2003
<http://www.w3.org/Style/CSS/>

9. Document Object Model (DOM) Level 1 Specification. World Wide Web Consortium
(W3C), 1 October 1998 <http://www.w3.org/TR/REC-DOM-Level-1/>

10. Document Object Model (DOM) Level 3 Load and Save Specification - W3C Working
Draft. World Wide Web Consortium (W3C), 25 July 2002
<http://www.w3.org/TR/2002/WD-DOM-Level-3-LS-20020725/>

11. Document Object Model (DOM) Level 3 XPath Specification - W3C Working Draft.
World Wide Web Consortium (W3C), 28 March 2002
<http://www.w3.org/TR/2002/WD-DOM-Level-3-XPath-20020328/>

12. Document Object Model Activity Statement. World Wide Web Consortium (W3C), 2
February 2003 <http://www.w3.org/DOM/Activity>

13. ECMA-262. European Computing and Manufacturing Association. 13 February
2003 <http://www.ecma-international.org/publications/standards/ECMA-262.HTM>

14. Extensible Markup Language (XML) 1.0 (Second Edition). World Wide Web
Consortium (W3C), 6 October 2000 <http://www.w3.org/TR/REC-xml>

15. Extensible Markup Language (XML). World Wide Web Consortium (W3C), 24
February 2003, <http://www.w3.org/XML/>

16. Extensible Stylesheet Language (XSL). World Wide Web Consortium (W3C), 15
October 2001 <http://www.w3.org/TR/xsl/>

17. Fernandez, Mary, Paul Cotton. XPath-XQuery Review. World Wide Web
Consortium (W3C). 28 January 2003 <http://www.w3.org/2002/Talks/www2002-
xpath-xquery/>

18. Fowler, Martin, Kedall Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language (2nd Edition). Addison-Wesley Publishing Company, 1999.

19. Henry, K. History of CGI. 5 November 2002 <http://206.208.128.3/khenry/
tcom621/historyA.htm>

20. HTML 4.01 Specification. World Wide Web Consortium (W3C), 24 February 2003
<http://www.w3.org/TR/html4/>

102

21. Hunter, David, Kurt Cagle, Chris Dix, Roger Kovack, Jonathan Pinnock, Jeff Rafter.
Beginning XML 2nd Edition. Birmingham: Wrox, 2001.

22. ISO 8601 – Numeric Representations for Dates and Times. International
Organization for Standardization, 12 November 2003
<http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html?printable=true>

23. Jaworski, James. Mastering JavaScript and JScript. Alameda: Sybex, 1999.
24. Locode Main. United Nations Centre for Trade Facilitation and Electronic Business

(UN/FACT), 24 February 2003
<http://www.unece.org/cefact/locode/service/main.htm>

25. Meyer, Eric C. Cascading Style Sheets 2.0. New York: Osborne/McGraw-Hill,
2001.

26. Microsoft Developer Network (MSDN). 1 September 02
<http://msdn.microsoft.com>

27. Nambiar, U. et al. "Current Approaches to XML Managment." IEEE Internet
Computing. July/August (2002): Pages 43-51

28. Namespaces in XML. World Wide Web Consortium (W3C), 14 January 1999
<http://www.w3.org/TR/REC-xml-names/>

29. National Ocean Service – Publications & Products. National Oceanic and
Atmospheric Administration, 24 February 2003
<http://www.nos.noaa.gov/Products/products.html>

30. NIMA Publications – World Port Index. National Imagery and Mapping Agency, 24
February 2003 <http://pollux.nss.nima.mil/pubs/pubs_j_wpi_sections.html>

31. SOAP Version 1.2 Part 0, 1, and 2 - W3C Candidate Recommendation. World Wide
Web Consortium (W3C), 19 December 2002 <http://www.w3.org/TR/soap12-part0/>

32. W3C Technical Reports and Publications. World Wide Web Consortium (W3C), 24
February 2003 <http://www.w3.org/TR/>

33. Web Services Description Language (WSDL), Version 1.2 - W3C Working Draft.
World Wide Web Consortium (W3C), 24 January 2003
<http://www.w3.org/TR/wsdl12/>

34. XForms - The Next Generation of Web Forms. World Wide Web Consortium (W3C).
12 January 2003 <http://www.w3.org/MarkUp/Forms/>

35. XForms 1.0 - W3C Candidate Recommendation. World Wide Web Consortium
(W3C), 12 November 2002 <http://www.w3.org/TR/xforms/>

36. XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition) - A
Reformulation of HTML 4 in XML 1.0. World Wide Web Consortium (W3C), 1
August 2002 <http://www.w3.org/TR/xhtml1/>

37. XML Base. World Wide Web Consortium (W3C), 27 June 2001
<http://www.w3.org/TR/xmlbase/>

38. XML Inclusions (XInclude) - W3C Candidate Recommendation. World Wide Web
Consortium (W3C), 17 September 2002 <http://www.w3.org/TR/xinclude/>

39. XML Linking Language (XLink). World Wide Web Consortium (W3C), 27 June
2001 <http://www.w3.org/TR/xlink/>

40. XML Media Types – Request for Comments #3023. Internet Engineering Task Force.
19 February 2003 <http://www.ietf.org/rfc/rfc3023.txt?number=3023>

41. XML Path Language (XPath) 2.0 - W3C Working Draft. World Wide Web
Consortium (W3C), 15 November 2002 <http://www.w3.org/TR/xpath20/>

103

42. XML Path Language (XPath). World Wide Web Consortium (W3C), 16 November
1999 <http://www.w3.org/TR/xpath>

43. XML Schema Part 0, 1, and 2. World Wide Web Consortium (W3C), 2 May 2001
<http://www.w3.org/TR/xmlschema-0/>

44. XML:DB Initiative: Enterprise Technologies for XML Databases. The XML:DB
Initiative, 8 February 2003 <http://www.xmldb.org/>

45. XPointer Framework - W3C Proposed Recommendation. World Wide Web
Consortium (W3C), 13 November 2002 <http://www.w3.org/TR/xptr-framework/>

46. XQuery 1.0: An XML Query Language - W3C Working Draft. World Wide Web
Consortium (W3C), 15 November 2002 <http://www.w3.org/TR/xquery/>

47. XSL Transformations (XSLT). World Wide Web Consortium (W3C), 16 November
1999 <http://www.w3.org/TR/xslt>

48. Larman, Craig. Applying UML and Patterns - An Introduction to Object-Oriented
Analysis and Design and the Unified Process (2nd Edition). Upper Saddle River:
Prentice Hall, 2001.

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Prof. Magdi N. Kamel

Naval Postgraduate School
Monterey, California

4. Prof. Gordon H. Bradley

Naval Postgraduate School
Monterey, California

5. CDR John Knox

U.S. Coast Guard Headquarters (G-SRF)
Washington, D.C.

6. Prof. Dan C. Boger

Naval Postgraduate School
Monterey, California

