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Abstract 

A quantitative measure for the donor strength or "nakedness" of fluoride ion donors is 

presented. It is based on the free energy change associated with the transfer of a fluoride ion from 

the donor to a given acceptor molecule. Born- Haber cycle calculations were used to calculate both 

the free energy and enthalpy change for this process. The enthalpy change is given by the sum of 

the fluoride ion affinity of the acceptor (as defined in strict thermodynamic convention) and the 

lattice energy difference (AUPOT) between the fluoride ion donor and the salt formed with the 

acceptor. Because for a given acceptor, the fluoride affinity has a constant value, the relative 

enthalpy (and also the corresponding free energy) changes are governed exclusively by the lattice 

energy differences. In this study, BF3, PF5, AsFs, and SbFj were used as the acceptors, and the 

following seven fluoride ion donors were evaluated: CsF, N(CH3)4F (TMAF), N-methyl- 

urotropinium fluoride (MUF), hexamethylguanidinium fluoride (HMGF), hexamethylpiperidinium 

fluoride (HMPF), N,N,N-trimethyl-l-adamantylammonium fluoride (TMAAF), and hexakis- 

(dimethylamino)phosphazenium fluoride (HDMAPF). Smooth relationships between the enthalpy 

changes and the molar volumes of the donor cations were found which asymptotically approach 

constant values for infinitely large cations. Whereas CsF is a relatively poor F" donor [(UPOT (CsF) 

- UpoTiCsSWe)) = 213 kJ mol'^], when compared to N(CH3)4F [(UPOT (TMAF) - UPOT 
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(TMASbFe)) = 69 kJ moF'], a four times larger cation (phosphazenium salt) and an infinitely large 

cation are required to decrease AUPOT to 17 and zero kJ mol'', respectively. These results clearly 

demonstrate that very little is gained by increasing the cation size past a certain level and that 

secondary factors, such as chemical and physical properties, become oveniding considerations. 

* Author to whom correspondence should be addressed. E-mail address: 

karl.christe@edwards.af.mil 

■•■Loker Hydrocarbon Research Institute and Air Force Research Laboratory 

* University of Warwick 

Introduction 

Although a truly naked fluoride ion cannot exist in either the solid state or in solution, the 

term "naked fluoride" is frequently applied to fluoride ion sources that exhibit significant solubility 

in organic solvents.^'^ Because soluble fluoride ions have given rise to a renaissance in high 

coordination number chemistry"*'^ and play an important role in many fields, such as halogen 

exchange^ and fluorocarbon polymerization reactions,^ claims for the best or "most naked" fluoride 

ion source are commonly made. To judge the validity of such claims, a quantitative measure for the 

"nakedness" is required. Schwesinger* and more recently, Mews and coworkers^ have proposed to 

use the anion-cation distance or the closest anion-cation contacts in fluoride crystal structures as a 

measure for the "nakedness." While this approach is reasonable for monoatomic ions, a better 

method is needed for measuring the "nakedness" of fluoride ions that involve complex cations. In 

this paper, a quantitative measure based on thermodynamics is proposed and was tested for seven 

common fluoride ion donors. 



General Description of the Method 

The donor ability or "nakedness" of a fluoride ion source can be defined as the ease with 

which it can transfer a fluoride ion to a given acceptor, A. Because the free energy change, zfG, 

is a quantitative measure for the tendency of a reaction to occur,^ the calculation of AG for 

process (1) 
AG 

CFCs)   +  A(g)    ->    C^AF(s) (1) 

provides a quantitative measure for the fluoride donor ability of C"^F" and hence the "nakedness" 

ofFinCV. 

The corresponding enthalpy change, AH, of reaction (1) can be determined from the 

following Born- Haber cycle: 

CV(s)  +  A(g) 

UporiCF) 
+1/2 RT 

C"(g) + F(g) + A(g) 

^H    ^ r-^AFr.o 

FIA(A,g) 

- [UpoACAF) 
+ 2RT] 

-> CXg) + AF(g) 

The temperature corrections for the lattice energy, UPOT, shown in the above cycle are for 

polyatomic cations. For a monoatomic cation, such as Cs"^, they become - RT and Vi RT for 

UporiCF) and UpoiiCAF), respectively, but their sum remains unchanged. The reaction 

enthalpies for (1) are then given for both polyatomic and monatomic cations by equation (2). 

AH = UpoAC^F) - UpoiiC*AF) - 3/2 RT + FIA (A, g) (2) 

Equation (2) shows that for a given acceptor molecule the relative fluoride ion donor strength 

depends solely on the difference between the two lattice energies. Although the absolute A// 

values depend on the fluoride ion affinity, FIA, values,^° the relative Mi values should be 



similar for different acceptors. Tiiis was verified by calculating A/J for four different Lewis 

acids; i.e., BF3, PF5, AsFj, and SbFs. In this study, the following seven fluoride ion donors were 

evaluated: CsF (I), N(CH3)4F (TMAF) (11),^ N-methylurotropinium fluoride (MUF) (III),'' 

hexamethylguanidinium fluoride (HMGF) (IV),'^ hexamethylpiperidinium fluoride (HMPF) (V),'^ 

N,N,N-trimethyl-l-adamantylammonium fluoride (TMAAF) (VI),"* and hexakis(dimethyl- 

amino)phosphazenium fluoride (HDMAPF) (VII).' 
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Estimation of Lattice Energies 

The lattice energies'^ of the fluoride salts are estimated using equation (3), 

f//>or=2I(a\^''' + p) (3) 

where I is the ionic strength of the lattice (= 1, in the case of the C"^AF and C'*'F' salts 

considered in this paper) and a = 117.3 kJ mol'' nm and p = 51.9 kJ mol"'. For this, an estimate 

of the volume of the cations V{C*) is required for combination with the anion volumes' : F(F") = 



0.025 ± 0.010 nm^ VCSbFe") = 0.181 ± 0.112 nm^ ^BF^ = 0.073 ± 0.009 nm^ , VCPFO = 

0.109 ± 0.008 nm^ and, the similar sized KAsFe') = 0.110 ± 0.007 in order to estimate V in 

equation (1), taking y(CAF or CF) = ^(C^) + Y{kY or F). The following data were used to 

estimate the volumes of each cation and the lattice energies of the corresponding fluoride salts. 

TMAF - N{CHi)4F{H)\ The X-ray powder data^ for tetramethylammonium fluoride, 

(CH3)4N*F, (hexagonal, bimolecular cell with yceii(Me4NF) = 0.2919 nm^) give'^ values of 

0.1460 nm^ and 0.121 nm^ for the molecular (formula unit) volumes of Me4NF and Me4N"', 

respectively. Using equation (3), one obtains^^ t/po7<Me4N"'F) = 549 kJ mol"\ 

MUF - N-methylurotropinium fluoride, (CH2)6N4CH3''F' (III): The crystal structure 

data^^ for the iodide salt, 1 - methyl - 1,3,5,7 -tetrazatricyclo[3.3.1.1]decan - 1-ium iodide, 

give y(C6Hi5N4l) = 0.2527 nm^ Subtraction of 7(1') = 0.072 + 0.016 nm^ from this value gives 

y(C6Hi5N4"') = 0.1807 ± 0.016 nml Addition of y(F) = 0.025 ± 0.010 nm^ then leads to 

F(C6Hi5N4F) = 0.2057 ± 0.0189 nm^ and t/TO7<C6Hi5N4F) = [/(MU^F) = 501 ± 11 kJ mor\ 

HMGF - hexamethylguanidinium fluoride, (Me2N)3C*F-, CuHseNe^F' (IV): The crystal 

structure of the hexahydrate of the hexafluorosilicate salt, [(Me2N)3C^]2SiF6^' •6H2O, has been 

reported. ^^ Subtraction of V = 0.0245 nm^ for hydrated water^^ and ^(SiFe^") = 0.112 ± 0.028 

nm^ yields y((Me2N)30 = V2{ V([(Me2N)3Cl2SiF6'"-6H20) - 6y(H20) - y(SiF6'-)] = 0.2021 

nm\ Addition of y(F) leads to y((Me2N)3CF) = 0.2271 nm^ and to f/TO7<(Me2N)3CF) = 

t/(HMG''F) = 488 kJ mor\ 

HMPF - 1,1,3,3,5,5-hexamethylpiperidinium fluoride, CiiH24N^F' (V): The crystal 

structure of the fluoride salt has been directly established^^ and leads to y(Ci4H24NF) = 0.2874 

nm' and C/P0KC14H24NF) = ^(HMP+F) = 459 kJ mol''. 



TMAAF - A^,A^,A^ -trimethyl-1-adamantylammonium fluoride, Ci3H24N^F' (VI): No 

crystal structure data were given for any salt of this cation.^'* In order to ascertain the likely 

cation volume and hence estimate a molecular (formula unit) volume for the fluoride salt 

C13H24NF (VI), the following strategy was used. A search was made of Landolt-Bornstem to 

find compounds containing ions whose elemental composition and overall structural features 

were close to those of the N,N,N-trimethyl-l-adamantylammonium cation. The closest one 

found was the 3-N-dimethylaminomethyl-2(10)pinene cation (VF) whose molecular formula is 

identical (C13H24N*) and for which the crystal structure of its bromine salt has been 

established.^' 

Me 

vr 

Whilst not identical in strucmral detail to (VI), it does contain a bridged CH2 and the nitrogen 

moiety outside the pinene ring. The reported structure results in \/(Ci3H24NBr) = 0.3634 nm . 

Subtraction of ViBf) = 0.056 ± 0.014 nm' gives V(Ci3H24N") = 0.3074 ± 0.014 nm' which we 

equate to the volume of the target cation (VI). Adding ¥(?") = 0.025 ± 0.010 nm', y(C,3Ha4NF) 

becomes 0.3324 nm' and t/po7<Ci3H24NF) = C/(TMAA"F) = 442 kJ mol'^ 

HDMAPF - hexakis(dimethyl-amino)phosphazenium fluoride, CnHseNjPi'F (VH): 

The known crystal structure' gives y(Ci2H36N7P2'') = 0.4755 nm' and t/po7<Ci2H36N7P2F) = 

I/(HDMAP*F) =399kJmor'. 

Estimation of Reaction Enthalpies and Free Energies from the Born-Haber Cycles 



The reaction enthalpies for reaction (1) were estimated for the above seven fluoride ion 

donors and four Lewis acids using equation (2). Substitution of the FIA values in (2) by the 

Christe/Dixon pF, Lewis acidity, values, which are defined by (4) 

pF (A, g ) = [- FIA (A, g) / kcal mol"'] /10 (4) 

and their conversion to S.L units (5) 

FIA (A, g) / kJ mor' = - 41.84 pF (5) 

result in (6). 

^H = UpoTiC^F) - UpoiiC^AF) - 3/2 RT-41M pF (6) 

Using the published, MP2 based, pF values,^^'^^ the reaction enthalpies for (1) were 

calculated, and the results are summarized in Table 1. Conversion of enthalpy, AH. to free 

energy, AG, values is achieved by estimation of the corresponding entropy terms T/iS using 

equations (7) and (8), 

AS = AfSf (C-'AV, s) - Af^iA, g) - zl/(C^F, s) (7) 

AS = SWC-'AF, s) - S"298(A, g) - 5^29s(C^F, s) (8) 

if the standard entropies of formation of the reactants and products are available or if the 

standard entropies were known or could be estimated. Neither standard entropies nor standard 

entropies of formation are available for the salts we have considered, although S"298iA, g) values 

are. For ionic solids, however, the recently reported^^ relationship (9) between standard entropy 

and volume can be used to obtain estimates for 5 29s(C'^AF") and S 29s(C F), 

^298 = kV (9) 

where k equals 1360 JK"^mor'nm"^ This leads to equation (10): 

J5 = k[y(C-'AF,s)-F(CV,s)]-5^29s(A,g) = kAV-S%(A,g) (10) 



where AV, which represents the difference between the CAF and CT molecular volumes. 

Due to the additivity^^ of ion volumes, it can also be expressed as: 

AV = V(AF) - V(F) (11) 

The function [k AV - S°298(A,g)] on the right hand side of equation (10) and equal to the 

entropy change for process (1) can thus be seen to be independent of the actual choice made for 

the cation C, and hence the quantitative measure of the "nakedness" of the fluoride ion sources 

is vested in the enthalpy (rather than the free energy) change for reaction (1). Thus, while z(G(kJ 

mol'^) at 298 K for reaction (1) is given by equation (12), 

AG = AH- TAS 

= UpoTiC-'F) - UpoiiCAF) - 3/2RT + FIA (A, g) 

-    0.298 {k [y(C'"AF, s)] - ^(C-'F, s)] - S°298{A, g)} 

=     UpoiiCF) - UPOT(C*AF) - 3/2RT + FIA (A, g) 

-0.298{k[AV]-5WA,g)} (12) 

separation of terms which are independent on the choice of cation on the right hand side leads 

to: 

[AG - FIA (A, g) + 3/2i?r+ 0.298 {k [AV] - 5^29s(A, g)}] 

= UPOT{C'-F)-UpoTiC-"AF) (13) 

The values of JG, obtained in this manner are given in Table 1 and Figure 1. The function: [AG 

- FIA (A, g) + 3/2RT + 0.298 {k [AV] - ^298(A, g)}] would serve as a suitable quantitative 

measure of our "nakedness" criteria. However it can be simplified. Since the two terms [AG + 

0.298 (k [AV] - S^29s{A, g)}] within the above function correspond to [AG   + TAS] which 



equals AH, the parameter [AH - FIA (A, g) + ZIIRT] (Table 1) can be taken as our quantitative 

measure for the "nakedness." 

These results show that, independent of the choice of the acceptor molecules, the relative 

fluoride ion donor strength decreases in the following order of cations, 

HDMAP > TMAA > HMP > HMG > MU > TMA > Cs 

and is given by the lattice energy difference between CF and CAF. This difference is in turn 

proportional to the difference of the inverse cube roots of the molecular (formula unit) volumes 

of the two salts, so that our "nakedness" parameter (14), 

[AH - FIA (A, g) + 3I2RT] I kJ moU' = UPOT{CV) - UpoiiC-kV) 

= 2a[ V(CF-)-'^^- ViCAF)-"^]    . (14) 

where a = 117.3 kJ mol"^ nm, is governed by the size (volume/nm^) of the cations and becomes 

zero for infinitely large cations (i.e., as ViC) -> large, then y(C^AF) -^ y(C^F), UpofiCAF) 

-^ UpoiiCF), and so AH -^ FIA (A, g) - 3/2RT). 

Using our density-based equation,^^ the difference in lattice energies [UpoTiC^F) - 

UpoiiC^AF)] can also be equated to (15), 

[AH - FIA (A, g) + 3/2RT]/ kJ mol"^ = UPOT{C^F) - UPOT{C^AF) 

= y {[p(C^F)M(CF)f' - [p(C^AF)/M(C^AF)]''' } (15) 

where y = 1981.2 mol"^ cm, and p(C*F) and p(C"'AF) are the densities (in g cm"^), and M(C^F) 

and M(C'^AF")] are the chemical formula masses of the respective salts, C^F'and C^AF. 

The absolute values of the free energy (and enthalpy) change show, as expected, a strong 

dependence on the fluoride ion affinities of the given acceptor molecules (see Figure 1) and, for 

infinitely large cations, asymptotically approach these fluoride ion affinity values (adjusted by 

the RT terms). When the enthalpy values are corrected for the fluoride affinity and RT values of 

the corresponding acceptors, the individual curves for [AH - F/A(A,g) + 3/2 RT]) versus V{C^) 



collapse into a single line that asymptotically approaches zero for infinitely large cations (see 

Figure 2). Because the sign of the lattice energy difference is opposite to that of the fluoride 

affinity, the salts with the largest cations exhibit the largest (negative) free energy and 

corresponding enthalpy changes which approach the FIA values, and are the best F" donors. 

Therefore, the cation size is a suitable measure for the fluoride ion donor strength of a salt. 

Figures 1 and 2 furthermore show that for the hexakis(dimethyl-amino)phosphazenium cation the 

free energy change already approximates its maximum value (or that the enthalpy change, AH, 

is close to the corresponding FIA value) and that a further increase in cation size will only 

minimally increase the fluoride ion donor strength. Therefore, further synthetic efforts in this 

direction are hardly warranted, and the potential usefulness of different fluoride ion donor 

sources will be largely determined by their chemical and physical properties. For example, the 

tetramethylammonium cation, in spite of its relatively small size, has proven to be extremely 

useful because of its excellent chemical inertness and oxidation resistance.^''* A drawback of this 

cation, however, is its high symmetry which results in a tendency to undergo disorder that can 

interfere with crystal structure determinations. 

Conclusion 

The above analysis shows that for a given acceptor molecule the temperature corrected 

enthalpy change of reaction (1), or the differences in either the lattice energies, [UpoiiC^V) - 

C/po7<C'"AF)], or the inverse cube roots of the volumes, [V{C¥y^'^ - V{CAF)'^'\ or the cube 

roots of the (p/M) terms, {[p{CF)M{C¥)]"^ - [p(C*AF)/M(C^AF)]^'^ all can serve as a 

reliable measure for the fluoride ion donor strength and hence the "nakedness" of a fluoride ion 

source. Because for a given acceptor, the enthalpy change depends solely on the molar volume 

of the cation of the fluoride ion source, the donor strength can easily be predicted. 
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(18) Ribar, B.; Meszaros, C; Vladmiov, S.; Zivanov-Stakic, D.; Golic, L. Acta. Cryst. 1991, C47, 

1987. 

(19) Jenkins, H. D. B.; Glasser, L. Inorg. Chem. 2002, 41, 4378. 

(20) Landolt-Bornstein, New Series, Ed: Hellwege, K-H.; Madelung, O. Group III, Crystal and 

Solid State Phys., Vol 10, Structure Data of Organic Crystals, Berlin: Springer-Verlag, 1985. 

(21) (a) Kutschabsky, L. Z Chem. 1969, 9, 31; (b) Kutschabsky, L. Z.; Reck, G. S. Prakt. Chem. 

1971,312, 896. 

(22) Christe, K. O.; Dixon, D. A.;   McLemore, D.; Wilson, W. W.;   Sheehy, J. A.; Boatz,   J. A. 

J.Fluorine Chem. 2000,101, 151. 

13 



(23) Recently, the value of the fluoride ion affinity, FIA, of SbF5,g has also been estimated from 

lattice energies ^\ The value, - 506 ± 63 kJ mol "', corresponding to a pF value of 12.09 ± 1.5 

agrees well with the pF' value of 12.03 given in reference 22. 

(24) Jenkins, H. D. B.; Roobottom, H. K.; Glasser, L. Inorg. C/tem.,2003, 42, 2886. 

(25) Jenkins, H. D. B.; Glasser, L., submitted for publication. 

(26) Jenkins, H. D.B.; Tudela, D.; Glasser, L. Inorg.Chem., 2002, 41, 2364. 

(27) It should be noted that for salts with very large cations and small anions, the latter can fit into 

the holes in the cation-cation packing. Therefore in these cases, the additivity rule might no 

longer be valid. These considerations, however, in no way affect the conclusions in this paper. 
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Figure Captions 

Figure 1. Plots of the free energy changes of reaction (1) against the molar volumes of cations I- 

VII and one hypothetical point with a molar volume of 1.3 nm^ using SbFj (blue), AsFs (red), PF5 

(green), and BF3 (black) as the acceptor molecules. For infinitely large molar volumes of the 

cation, the curves asymptotically approach the fluoride ion affinity values (+ RT terms) of the 

acceptors. 

Figure 2. Plots of the "nakedness" parameters, {AH - FIA + 3/2RT}, of the cations I-VII against 

their molar volumes and one hypothetical point with a molar volume of 1.3 nm . It can be seen that 

after correction of AH for 2/3RT and the F affinities of the corresponding F acceptors, the four 

curves of Figure 1 collapse into a single line, that asymptotically approaches zero for infinitely 

large molar volumes of the cation. 
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