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ABSTRACT 
 

 Increased operational costs and reductions in force size are two of the major 

factors driving the need for improved computer simulations within the military 

community.  Human performance models are used in various aspects of simulation, 

including controlling computer generated forces, tactical decision aides, intelligent 

tutoring systems and new system design.  This research makes a comparison between two 

categories of human performance models, multi-agent systems and rule-based 

architectures.  Each type of model has its own strengths and weaknesses, and is therefore 

better suited for certain applications.  Complex military simulations need human 

performance models that take advantage of the strengths of more than one type of model.  

The purpose of this research is to compare the implementation and performance of these 

two models, and to demonstrate the need for hybrid systems that employ the best aspects 

of models for a given situation. 
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I. INTRODUCTION 

 

A. MOTIVATION 

1. Military Simulation Requirements 

Reductions in military operating budgets and improvements in computer 

technology have resulted in the increased use of simulations throughout the military.  

Simulations are being employed in a wide variety of applications including training, 

mission rehearsal, system analysis, system acquisition and tactical decision aiding.  The 

human behavior representation or human performance model is a key component in each 

of these simulations.  In some cases, such as controlling computer generated opposition 

forces, the model is only required to generate behavior that meets the users’ expectations.  

There is no need for an explanation of how or why the behavior was generated.  In other 

cases, such as intelligent tutoring systems (ITS), the model should be able to provide a 

detailed rationale for each of its actions.  This rationale is used to provide feedback to the 

student and may include perceived sensory inputs, task priorities, previous experiences, 

expected consequences of the action, individual personality characteristics or any other 

pertinent information. 

There are two other major trends within the military that are also contributing to 

the need for improved human performance models.  First, information technology and 

information warfare must be considered in simulations.  This implies a need for a model 

that perceives, interprets and responds to information in the same way as a real human, 

because humans are the focus of information utilization.  Second, the use of distributed 

simulations presents a need for models that act as collateral friendly forces when there are 

not enough individuals available to fill all of the positions. 

 

2. Naturalistic Decision Making 

Developing human behavioral models that can meet the needs of the military 

simulation community is a very difficult problem.  The computational models must be 

able to make decisions in complex, dynamic domains and be able to explain their actions, 
1 



like real humans.  As computational models begin to more closely match the actual 

human cognitive processes, the descriptive model on which they are based becomes more 

critical.  Traditionally, computational models have been based on a descriptive model 

called Rational Choice Theory (Zsambok, 1997).  The decision maker generates a list of 

several possible actions, and then chooses the best action from the list.  The transition 

from the descriptive rational choice theory model to a computational model is relatively 

straightforward.  The problem space is decomposed into various states and transition 

links.  A search algorithm is then used to find possible paths from the current state to a 

given goal state. 

While rational choice theory may be applicable in many environments, recent 

studies of experienced decision makers in more complex situations suggest a theory 

called Naturalistic Decision Making (NDM).  Rather than focusing on the possible 

options, the decision maker focuses on thoroughly assessing the situation and then draws 

on his knowledge and experience of the problem environment to make his decision.  

Making the transition from the descriptive NDM theory to a computational model raises 

several questions:  Who is an experienced decision maker?  How do you model the 

progression from being a novice to an experienced decision maker?  How does the model 

account for previous experiences?  Are there situations where rational choice theory 

should still be used?  These questions and many others remain unanswered, and an NDM 

based computational model has not yet been developed.  But, given the direct 

applicability of NDM to military command and control decision environments, there is a 

clear requirement for this type of model. 

 

3. The Need for Hybrid Systems 

Every problem domain has associated with it certain aspects of human cognition 

that are critical to task performance in that environment.  These cognitive aspects may 

include attention, memory, learning, multi-tasking, planning, situation assessment, or the 

underlying descriptive theory of decision making.  As a model designer, the first step is 

to select a cognitive architecture that can accurately represent the cognitive aspects that 

he has determined to be critical for his application.  As environments become more 

2 



complex, more of the cognitive aspects must be accurately represented, so an acceptable 

model must provide cognitive validity over a wider range of capabilities.  Chapter II 

contains detailed reviews of several cognitive architectures.  These reviews show that 

each architecture has its own strengths and weaknesses, but that none of them can 

adequately represent all aspects of human cognition that translates into accurate, 

representative behavior.  A logical near-term approach to this problem might be to 

combine the strengths of two or more architectures to produce a hybrid that better 

represents overall human cognition without sacrificing behavioral fidelity. 

 

B. THESIS QUESTIONS 

This thesis will address the following questions: 

• What portions of human behavior are best represented using rule-based 

computational cognitive architectures? 

• What portions of human behavior are better suited for representation using 

agent-based computational cognitive systems? 

Linking the various types of computational architectures with the aspects of 

human behavior for which the architecture is best suited is the first step in the 

development of more robust computational cognitive models.  These relationships 

between cognitive requirements and architecture types will lay the foundation for the 

development of hybrid systems that can incorporate and integrate the best qualities of 

several architectures. 

 

C. APPROACH 

 The purpose of this thesis is to continue researching the development of hybrid 

computational cognitive architectures by investigating the difference in performance of 

two models designed to operate in the same problem space.  The models are required to 

select between several shifting goals and choose from several possible actions to 

accomplish each goal.  The first model uses an agent-based design.  The second model 
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employs a popular rule-based shell.  The problem space is based on submerged 

submarine navigation and includes operating area boundaries, navigation hazards 

(obstacles) and a contoured ocean floor.  The models are allowed to change the 

submarine’s course, speed and depth to safely execute the given mission.  The models’ 

performance will be compared and evaluated, investigating the differences between the 

models and addressing the strengths and weaknesses of each individual model. 

 

D. THESIS ORGANIZATION 

This thesis is organized as follows:  Chapter II discusses the background of 

Naturalistic Decision Making and describes several cognitive architectures and 

computational methods currently in use.  Chapter III describes the submarine navigation 

domain chosen for this research.  Chapter IV discusses the implementation of the agent-

based model.  Chapter V discusses the implementation of the rule-based model.  Chapter 

VI compares the two models.  Chapter VII provides conclusions and recommendations 

for future work. 

4 



II. BACKGROUND AND RELATED WORK 
 

A. NATURALISTIC DECISION MAKING 

1. Naturalistic Decision Making Characteristics 

When considering descriptive models of human decision making, the one that is 

most widely accepted and commonly used is the rational choice theory.  It states that 

people generate several possible courses of action, make comparisons between them, and 

then select the best alternative (Zsambok, 1997).  Computational models based on 

rational choice theory typically use a search algorithm to generate all possible solutions 

to a given problem.  Each solution is assigned a score that is based on domain specific 

characteristics, such as cost or time to completion.  The best solution is then chosen by 

comparing these scores.  Research of decision making in complex environments shows 

that experienced people do not follow the rational choice theory.  They make decisions 

based on a thorough assessment of the current situation and past experiences they have 

had that are similar.  Gary Klein and Caroline Zsambok explain this behavior using the 

Naturalistic Decision Making (NDM) approach.  NDM focuses on how people use their 

past experience and domain knowledge to quickly make decisions in complex situations. 

Klein and Zsambok use four key aspects to define situations to which the NDM 

approach can be applied.  First, the complex domain is characterized by ill-structured 

problems, a dynamic environment, competing goals, time stress and high stakes.  Second, 

the decision makers are experienced in and very knowledgeable about the problem 

domain.  Third, the actual decision may not be the most important issue.  The situation 

assessment and its relationship to past experiences also provide key information.  Fourth, 

the purpose is to explain how experienced people make decisions, not to provide a 

method that can be used by less experienced people to make these same decisions 

(Zsambok, 1997). 
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2. Applying NDM to Military Environments 

As defined above NDM can be applied to a broad spectrum of military decision 

making environments.  At one end of the complexity spectrum consider a sonar watch 

supervisor onboard a navy vessel.  He is the leader of a small watchteam.  He receives 

inputs from two or three subordinates, makes decisions on the employment of their 

resources, and makes reports only to his direct supervisor.  At the other extreme is the 

joint task force command center watch captain.  His inputs can come from numerous 

sources that range from the 30 to 40 subordinate watchstanders in the command center to 

the many outside agencies working for him throughout the theater of operations.  Each of 

these examples contains the key characteristics of an NDM domain:  ill-structured 

problems, a dynamic environment, competing goals, time stress and high stakes. 

 

3. Levels of Expertise 

If the NDM model is only appropriate for experienced decision makers (Zsambok, 

1997), some method must be used to describe and identify an expert.  Hubert and Stuart 

Dreyfus have developed a five-stage model of skill acquisition to describe the differences 

between individuals with different levels of competence and experience (Dreyfus, 1997).  

They use two environments, car driving and chess playing, to illustrate the progression of 

both motor skills and intellectual skills. 

In the first stage, novice, the instructor reduces the task environment to its 

simplest elements so that the beginner can recognize and understand them without any 

previous experience in the task domain.  A rule set is then provided to determine actions 

based on the state of these simple elements, similar to a computer executing a program.  

For example, a novice driver may learn to shift into second gear when the speedometer 

indicates ten miles per hour.  Novice chess players learn numerical values for each piece 

and a general rule to always exchange if the total value of the pieces captured is greater 

than the total value of the pieces lost. 

After seeing a number of examples and gaining some experience in real situations 

the novice progresses to the second stage, advanced beginner.  By now he has learned to 
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recognize relevant cues on his own and uses them, in conjunction with the novice rule 

set, to make better decisions.  Advanced beginner drivers learn to shift gears based on the 

sound of the engine, rather than relying on the speedometer.  Advanced beginner chess 

players learn to recognize less desirable positions and how to avoid them. 

With more experience the advanced beginner becomes overwhelmed with the 

number of potentially relevant cues he has learned to recognize.  To reach stage three, 

competence, he must devise a plan to determine which cues are important and which can 

be ignored, allowing him to create a hierarchical perspective of the situation.  Competent 

performers develop new rules to decide on a plan or perspective.  But, given the vast 

number of possible situations he may encounter, each differing in subtle ways, it is not 

feasible to develop a rule list of what to do in every case.  Because of this, competent 

performers must choose a plan without being certain that it will be successful.  Task 

performance now becomes nerve-wracking as the competent feels a great sense of 

responsibility for his actions.  For example, a competent driver entering a curve may 

consider speed, surface conditions, space available and time constraints before deciding 

that the car is going too fast.  Now he must choose to either let up on the accelerator or 

apply the brakes, and will be happy to get through the curve without going into a skid.  A 

competent chess player may study the board and decide that her opponent's king is 

weakly defended and vulnerable to an attack.  But, after choosing to attack she ignores 

weaknesses in her own position created by her maneuvers. 

7 

Achieving proficiency, stage four, requires the performer to incorporate his 

experience into his theory of the skill, replacing rules and principles with situational 

discriminations and associated responses.  His behavior shifts from reasoning to intuition.  

Task performance is easier and less stressful now because he can simply see what needs 

to be accomplished, without having to evaluate several relevant cues.  A proficient driver 

entering a curve knows intuitively when he is going too fast.  She must still decide what 

action to take to slow the car, but valuable time has been saved because she did not have 

to specifically decide, based on several factors, that she was going too fast.  Proficient 

chess players can recognize almost immediately and without conscious effort the 

strategic sense of a given situation, for example that attacking is the goal.  But, they must 

still deliberate about how to best conduct the attack. 



A performer who reaches the highest level, expertise, can not only intuitively see 

what goal needs to be accomplished, but can also intuitively see what actions should be 

taken to attain the goal.  Enough experience in a wide variety of situations allows her to 

form classes of situations that share the same decision, action or tactic.  This 

classification allows the immediate intuitive response that is characteristic of an expert.  

When faced with a novel situation an expert may revert to level of competence or 

proficiency because he has not experienced enough similar situations to establish this 

intuition.  Expert drivers not only know that the car is going too fast, but also take the 

appropriate action on the accelerator and brake pedals with little, if any, conscious effort.  

Expert chess players can recognize up to 50,000 types of board positions and can play at 

a rate of less than ten seconds per move without any serious degradation in performance 

(Dreyfus, 1997). 

 

B. COMPUTATIONAL COGNITIVE ARCHITECTURES 

This section provides overviews of several popular computational cognitive 

architectures by comparing the following key design aspects:  purpose and use, 

theoretical assumptions, architecture and functionality, operation, current implementation 

and support environment.  The material draws heavily on the work of the Panel on 

Modeling Human Behavior and Command Decision Making:  Representations for 

Military Simulations.  The panel was established by the National Research Council in 

1996 to review the state of the art in human behavior representation as applied to military 

simulations, with emphasis on the areas of cognitive, team, and organizational behavior.  

The panel published an interim report (Pew  & Mavor, 1997) and a final report (Pew & 

Mavor, 1998) that are both outstanding references for anyone working in this field.  

Chapter three of the panel’s final report provides more detailed reviews of the 

architectures considered in this thesis and of several additional architectures not 

discussed in this work. 
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1. ACT-R 

Adaptive Control of Thought-Rational (ACT-R) is one of the few architectures 

that was originally designed to be a model of higher-level cognition.  It has been used in 

several domains including mathematical problem solving, maze navigation, and human 

memory and learning.  ACT-R assumes that there are two types of knowledge, 

declarative and procedural, that exist permanently in long-term memory.  Declarative 

knowledge is represented by structures with attributes.  Production rules form the 

procedural knowledge.  Working memory is the portion of declarative knowledge that is 

currently active, so it is limited by existence or access, not by capacity.  When production 

rules are proposed in response to goals they retrieve information from declarative 

memory.  While several production rules may be proposed, only one can take action on a 

given cycle.  The conflict resolution system chooses the rule that will most likely lead to 

the best result.  ACT-R also includes several learning mechanisms that can be turned on 

or off depending on the needs of the model.  Declarative knowledge can be learned from 

the outside world or through problem solving.  Associations between declarative memory 

elements can be tuned through experience.  New production rules can be generated 

through analogy.  Production rule strengths can be modified through experience.  To 

build a model all initial declarative and procedural knowledge must be hand-coded, along 

with numerical values for production strength, production cost, probability of success of a 

given goal, and other parameters.  The output of the model is a trace of productions that 

fired and the details of the declarative knowledge used by each production.  If learning is 

turned on, the output also includes any newly created elements or modified parameters. 

ACT-R has a large user group and an electronic mailing list to announce software 

improvements and related issues.  ACT-R software, documentation, tutorials, and a 

number of implementation tools are available for downloading at the ACT-R homepage 

(http://act.psy.cmu.edu) maintained by Carnegie Mellon University (CMU).  CMU also 

hosts an annual ACT-R workshop to allow researchers to present their work and discuss 

future developments.  ACT-R is written in Lisp.  In an effort to improve compatibility 

and portability an open source Java™ version, known as jACT-R, is under development.  

9 
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Documentation and the beta release software is available at the jACT-R homepage 

(http://jactr.sourceforge.net). 

 

2. Soar 

Soar is a symbolic cognitive architecture that implements goal-oriented behavior 

by searching a problem space, and learns from the results of its problem solving.  Soar, 

like ACT-R, was originally developed as a unified theory of cognition for the purpose of 

modeling human problem solving and learning.  Soar assumes that human behavior can 

be modeled as a cognitive processor that operates in conjunction with a perceptual input 

processor and motor output processor.  Part of the Soar design philosophy is to minimize 

the number of distinct architectural mechanisms of the system.  This results in a single 

mechanism for permanent knowledge known as productions, so there is no distinction 

between procedural and declarative knowledge.  Working memory elements, objects with 

attributes and values, represent all temporary knowledge.  The only learning method is 

chunking. 

 The basic Soar execution cycle consists of proposal, decision and application 

phases and, if necessary, input and output phases that interact with an external 

environment.  The proposal phase interprets working memory element data to determine 

the current situation.  Active working memory elements are used to determine if the 

initial conditions are met for production rules.  The associated operators are proposed for 

all production rules whose initial conditions are met.  The decision phase then weighs the 

preferences associated with each proposed operator to choose a new operator.  Whenever 

the active working memory elements are not sufficient to allow a unique operator choice 

a new subtask is generated.  The goal of the subtask is to resolve the impasse by either 

searching the problem space in an attempt to locate missing information or by making the 

decision based on the incomplete information.  If the missing information is found, 

Soar’s learning mechanism establishes a new association between that working memory 

element and the original task.  Chunking in this manner transfers knowledge from the 

subtask space to the original task space, preventing the need for the execution of the 

subtask again in the future and allowing the model to inductively acquire new knowledge. 
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 Soar models have been used extensively in large-scale military simulations.  

Specifically, in simulated theater of war (STOW-E in 1995 and STOW-97) Soar 

intelligent forces were used to simulate the behavior of pilots on combat and 

reconnaissance missions.  Additional application areas have included natural language 

interpretation, visual search, and storage of key situations and decisions for use in post-

task debriefing.  Current research focuses on integrating Soar's agent architecture with 

complex, modern computer games to develop smart adversaries.  Using a dynamically 

loaded library, the popular game Quake can interact with one or more Soar agents 

(Quakebots).  In this project, the goal has been to determine what types of knowledge are 

necessary to build interesting opponents that make use of the same tactics and have the 

same abilities as their human counterparts. 

 Soar has a very large user group and a thorough support environment that 

includes user and reference manuals, a tutorial of models demonstrating various Soar 

capabilities, and editing and debugging tools.  User interaction with Soar software is 

through a Tcl/Tk-based graphical user interface with panels for creating, monitoring and 

controlling agents.  All documentation and software is available for downloading at the 

Soar homepage (http://bigfoot.eecs.umich.edu/~soar/main.html) maintained by the 

University of Michigan.  The site also provides a list of frequently asked questions and 

points of contact for Soar projects. 

 

3. COGNET 

COGnition as a NEtwork of Tasks (COGNET) was originally designed to build 

user models for intelligent interfaces, focusing on cognitive rather than psychomotor 

tasks.  COGNET assumes that humans perform multiple tasks in parallel, and these tasks 

compete for the human’s attention.  The appearance of parallelism is achieved through 

serial processing with very rapid attention switching; so several tasks may be in various 

stages of completion.  The COGNET architecture consists of a problem context, a 

perception process, tasks, a trigger evaluation process, an attention focus manager, a task 

execution process, and an action effector.  There is no explicit environment 

representation, rather COGNET interfaces with the external world through its shell.  The 
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problem context is a multipanel blackboard system that serves as a means of 

communication between tasks.  The perception process recognizes events in the external 

environment and posts relative information to the appropriate panel of the blackboard.  

Each independent task has a set of trigger conditions.  When its conditions are satisfied 

the task is activated and becomes eligible to execute.  It competes for attention based on 

the priority of the associated goal, which can depend on specific blackboard content.  The 

action taken by a task can send data to or receive data from a blackboard or other device, 

or it can suspend the task until a specified condition exists and turn control over to other 

tasks while it waits.  The attention focus manager monitors task priorities and shifts 

attention by controlling task state.  It uses the task execution process to start, interrupt, 

and resume tasks, always ensuring that only the highest priority task runs at any time.  

The action effector makes changes to the external environment. 

COGNET is a commercial product marketed by CHI Systems, Incorporated.  An 

extensive support environment, GINA, is available that includes editing, debugging and 

testing tools.  COGNET does not have the large user community seen with open source 

systems like ACT-R or Soar.  The Advanced Embedded Training System (AETS), uses a 

COGNET model to implement an intelligent tutoring system for a ship-based combat 

information center, has been very successful in demonstrating COGNET’s performance 

in a military command and control type environment.  Two shortcomings must be 

considered, especially when developing models that require a high degree of cognitive 

fidelity.  First, there is limited psychological validity supporting the “parallelism through 

rapid attention switching” theory.  Second, COGNET does not allow for any learning by 

the model. 

 

4. JESS 

Java™ Expert System Shell (JESS) is a rule engine and scripting environment, 

written entirely in Sun’s Java™ computer language that was developed by Ernest 

Friedman-Hill at Sandia National Laboratories in Livermore, California.  JESS was 

originally designed as a Java™ clone of NASA’s CLIPS expert system shell, but it has 

evolved into a distinct, Java™ influenced environment of its own. 
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Rule-based programming is one of the most commonly used techniques for 

developing expert systems.  In this programming paradigm, rules are used to specify a set 

of actions to be performed for a given situation.  A rule is composed of an if portion and a 

then portion.  The if portion of a rule is a series of patterns which specify the facts (or 

data) which cause the rule to be applicable.  The process of matching facts to patterns is 

called pattern matching.  The expert system tool provides a mechanism, called the 

inference engine, which automatically matches facts against patterns and determines 

which rules are applicable.  The if portion of a rule can actually be thought of as the 

whenever portion of a rule since pattern matching always occurs whenever changes are 

made to facts.  The then portion of a rule is the set of actions to be executed when the rule 

is applicable.  The actions of applicable rules are executed when the inference engine is 

instructed to begin execution.  This process continues until no applicable rules remain.  

Rule-based expert systems are extremely powerful because actions themselves can assert 

new facts.  When this happens additional rules apply and their actions are executed.  

The JESS knowledge base contains both facts and rules.  A fact is a construct 

used to represent a piece of information that is known to be true.  A rule is an if/then 

statement that defines the set of facts that must be true (the if part) before a set of actions 

(the then part) can be executed. 

The JESS inference engine is based on a very efficient pattern matching method 

called the Rete algorithm.  A simple inference engine implementation would keep a list 

of rules and continuously cycle through the list.  For each rule it would compare the 

entire fact list to the if part, and execute the actions of the then part for those rules that are 

satisfied.  This is inefficient because most of the tests made on each cycle will have the 

same results as on the previous iteration.  However, since the knowledge base is stable, 

most of the tests will be repeated.  The Rete algorithm reduces this inefficiency by 

remembering past comparison results across iterations of the rule loop.  Only new facts 

are compared to the if part of rules.  Additionally, by checking to see if the new facts 

create any groups of facts that are required to satisfy a rule, the new facts are only 

compared with the if parts of rules to which they are most likely to be relevant (Forgy, 

1982). 
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Because JESS is a model development “shell” and production system only, it is 

not based on a specific cognitive architecture, and is most often used for purely 

declarative knowledge in expert systems.  If the application has a requirement for a 

cognitive basis, the user is responsible for incorporating any behavioral or psychological 

validity. 

JESS has a large user group and continues to grow in popularity.  Sandia National 

Laboratories maintains a very informative website (http://herzberg.ca.sandia.gov/jess/) 

containing documentation, trial software available for downloading, lists of frequently 

asked questions, and points of contact. 

 

5. OMAR 

The Operator Model ARchitecture (OMAR) models human operators of complex 

systems for the purpose of procedural evaluation and system design analysis.  In 

particular, OMAR was developed to model situated-cognition, where a human 

dynamically shifts between goals based on events occurring in the environment.  OMAR 

is based on the following assumptions.  Human behavior is goal directed and multiple 

tasks may be performed concurrently.  But, because these concurrent tasks compete for 

limited sensory, cognitive and motor resources, parallel behavior is limited to the case in 

which some of the concurrent tasks are over learned to the point of automaticity.  OMAR 

also assumes that operators work in teams and has provisions for modeling several 

communicating operators. 

OMAR can be described as a set of interacting layers.  The base is the core 

simulation layer which is a discrete-event simulator using time-sorted queues of future 

events.  The perceptor/effector layer allows interaction with the environment.  Default 

models of sensory and motor skills have been provided, but much more detailed models 

can be used when required.  The cognitive layer consists of agent entities, each capable of 

executing their own goals, plans and tasks.  Goals are decomposed into trees of subgoals.  

A plan is a set of leaves of a goal tree, and a task is the instantiation of a plan.  Task 

priorities are computed on the basis of existing conditions.  The task with the highest 

priority level executes until it is completed or is preempted by another task of higher 
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priority.  Execution is generally serial, with the exception of some highly automated tasks 

that can run in parallel with others. 

OMAR is a commercial product developed by BBN Systems and Technologies.  

A powerful toolkit provides a concept editor, a procedure browser and output analysis 

tools.  While OMAR offers great flexibility and detail in behavior, it is very complex and 

model development is likely to be labor intensive.  Although OMAR has not been used 

extensively in military simulations, its use in the future could increase with the continued 

development of the Distributed Cognition (D-COG) project by the Air Force Research 

Laboratories (Eggleston & Young, 2000).  D-COG is based on a descriptive framework 

called cognitive system engineering that tries to preserve the ecology of a task by not 

reducing it to a single well-formed process.  Using OMAR as the foundation, D-COG 

focuses on recognition and shaping, rather than procedures and processing.  D-COG is 

still in the initial development phase and not nearly as mature as the others architectures 

discussed here, but it is an interesting new approach to the human performance modeling 

problem. 

 

6. Micro Saint 

Micro Saint is a discrete-event network simulation language used for the analysis 

of complex human-machine systems.  Micro Saint is not a model of human behavior, but 

it is a simulation system with tools that can be used to create human behavior models to 

meet user needs.  The outputs of these models are estimates of task completion times, 

task accuracies, and human operator workload.  At the heart of the Micro Saint system is 

the network of tasks.  The nodes of the network are the tasks.  Micro Saint tasks are 

categorized as follows:  visual, numerical, cognitive, fine and gross motor, and 

communications.  For each task the user must provide a set of characteristics that 

includes probability distributions for accuracy and completion time, conditions that must 

be met to begin the task, changes in the system when the task begins and ends, and what 

action to take upon completion.  The arcs of the network are task sequence relationships.  

The accuracy and completion times of each task are modeled stochastically using 
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parameters selected by the user.  The workload associated with each individual task is 

aggregated to compute a composite workload measure. 

Micro Saint is a commercial product marketed by Micro Analysis and Design, 

Incorporated (MA&D).  Support software includes editors for constructing task networks, 

task descriptions and task completion decision logic.  Because Micro Saint is a model 

development tool, the user is responsible for building a model that meets the behavioral 

and psychological validity requirements of the intended application.  Micro Saint has 

been used extensively in constructive simulations in the analysis and design phase of 

military systems and for generating human performance tables that could be used in 

virtual simulations.  MA&D recently started a new project that plans to incorporate 

Klein’s NDM theory into the existing Micro Saint task network (Archer, Warwick and 

Oster, 2000). 

 

7. Neural Networks 

The general cognitive systems called neural networks, connectionist networks or 

parallel distributed processing systems are quite different from the other architectures 

considered in this section because they are more of a computational approach than a 

cognitive or behavioral architecture.  Neural networks have been used to model a broad 

range of cognitive processes including pattern recognition, self-organization of stimuli, 

dynamic system control and solving prediction problems.  Neural networks are motivated 

by principles of neuroscience and are based on the following two assumptions.  Human 

behavior can be represented by self-organizing networks of primitive neural units and all 

complex human behaviors of interest can be learned by neural networks through 

appropriate training. 

A neural network consists of several layers of abstract neural units, or nodes, that 

begin with an input layer that receives external stimuli and ends with an output layer that 

provides the system response.  Each of the layers between the input and output layers 

contains a large number of nonlinear nodes to perform essential calculations.  

Connections can be made between nodes within a layer or between nodes in separate 

layers.  When a stimulus is received, activation originates from the input layer, cycles 
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through the intermediate layers until they reach equilibrium, and produces activations at 

the output layer.  Each connection has an associated connection weight.  These 

connection weights are trained with extensive data sets that contain desired results for a 

wide range of input conditions.  Learning algorithms are used to adjust the weights to 

maximize performance.  The system is then tested on a data set not used in the training to 

evaluate its performance.  The training process iterates until a satisfactory level of 

performance is attained.  Neural networks use a distributed representation of information 

and knowledge.  The activity pattern across the network nodes at any particular time 

represents the state of the dynamic system at that time.  The state evolves until it reaches 

equilibrium.  This final state represents all information retrieved from memory for the 

given input stimulus and the output layer activation represents the short-term memory.  

Long-term memory is represented by the connection weights between the nodes. 

Neural networks have several strengths that are typically not associated with more 

traditional rule-based systems.  Supervised learning is used to train connection weights, 

rather than having to modify or create production rules.  Networks have been designed 

with real-time weight adjustments, allowing the system to respond to a non-stationary 

environment.  The network’s extensive distribution of information and parallelism 

provide robustness to noisy or totally new input stimuli.  They also provide a high level 

of fault tolerance because an error at a single node or connection will probably only cause 

a slight degradation in overall performance (Haykin, 1994). 

Most neural network applications have been focused on a small portion of the 

cognitive system, usually related to sensory and motor processes.  Extending a neural 

network to model performance of a task with high-level reasoning involving structured 

domain information presents difficulties with encoding the large knowledge base and 

with the extensive training required to tune the connection weights. 

 

8. Agent-Based Systems 

Like neural networks, agent-based systems must be considered as more of a 

computational approach than a cognitive architecture.  A software agent, as defined by 

Ferber has four important capabilities.  First, through actions or communication, an agent 
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must be capable of interacting with and modifying the environment in which it is 

operating.  Second, an agent is autonomous, so it is not directly controlled by the user but 

acts in accordance with a set of individual tendencies.  These tendencies allow the agent 

to accept or reject goals or rules depending on the current situation.  Third, agents have a 

limited perception of their situation, rather than having global knowledge of the entire 

environment.  Finally, agents may have the ability to reproduce themselves.  A genetic 

algorithm is one common method that allows reproduction of more successful agents 

while discouraging the reproduction of poor performers (Ferber, 1999). 

Using this agent definition, Ferber describes a multi-agent system (MAS) having 

the following components.  First, the MAS is in an environment that will be perceived by 

agents.  From the agent’s point of view, the environment is everything except the agent 

itself.  Second, the MAS contains passive objects that can be created, perceived, modified 

and destroyed by the agents.  Third, the MAS contains agents that interact with and 

operate in the environment.  Fourth, a set of relationships is defined for agents and 

objects to allow communication between them.  Fifth, the agents have an associated set of 

operations that it can perform to interact with other agents, objects or the environment.  

Finally, the MAS is governed by a set of universal laws that determine how objects and 

agents respond within the environment (Ferber, 1999). 

 Agent-based systems have typically been used to model the behavior and 

interactions of a population or organization.  These models have been used to investigate 

emergent agent or object relationships and group dynamics, such as differentiation or 

aggregation.  As a computational method, agent-based systems offer great flexibility that 

could be applied to many areas of military simulation.  But, because they are only a 

computational method, the model designer must supply any cognitive validity. 

 

C. TOWARD HYBRID SYSTEMS 

 As military simulation environments continue to increase in size and complexity, 

the human performance component of the model is required to more thoroughly represent 

all aspects of human cognition.  But, as discussed above, each of these architectures has 

different strengths and weaknesses with respect to its ability to accurately represent 
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various cognitive functions.  Given these limitations, it is unlikely that any single 

architecture could adequately meet all of the cognitive requirements of a simulation 

environment that approaches real-life complexity.  Collectively, however, they provide 

the building blocks necessary to develop improved models.  A long-term solution to these 

shortcomings focuses on improving and expanding the capabilities of existing 

approaches, as well as searching for new approaches that can become the basis for 

entirely new architectures.  A near-term solution that attempts to take full advantage of 

established implementations is to combine the strengths of two or more architectures to 

produce a hybrid system with a wider range of cognitive capabilities.  Hybrid 

Architectures as Models of Human Learning is an ongoing research program at the Office 

of Naval Research that has supported the investigation of several initial hybrid systems.  

In order to support continued development of hybrid systems, the individual architectures 

that are currently available must be extensively employed and evaluated to more 

thoroughly establish their relative strengths and weaknesses. 
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III. DOMAIN SELECTION AND DESCRIPTION 

 

A. NDM APPROACH APPLIED TO SUBMARINE OPERATIONS 

1. Complex Domain 

Recall that the NDM domain is characterized by ill-structured problems, a 

dynamic environment, competing goals, time stress and high stakes.  Each of these 

characteristics plays a part in the decisions made by the Officer of the Deck (OOD) 

onboard a submarine as he maneuvers the vessel to carry out the assigned mission. 

Nearly every aspect of the submerged operating environment is continuously 

changing.  The sonar system’s ability to detect other vessels is a function of several 

variables including background noise from other vessels or marine animals, weather 

conditions on the surface, water temperature and salinity, water depth, bottom contour, 

and the relative position of the contact with respect to the submarine.  Mission tasking 

messages may direct a change in the operating area boundaries or even change the 

mission.  As the submarine maneuvers new navigation hazards may be detected.  Some of 

these hazards, such as oil platforms or navigation buoys, will be fixed in one location.  If 

another vessel is detected the OOD must first determine its range, course and speed, and 

then continue to monitor it to maintain a safe distance.  The course, speed and depth of 

the submarine are also changing as directed by the OOD. 

The competing goals that the OOD must prioritize include elements of both safety 

and mission tasking.  His highest goals are to avoid running aground and to avoid 

colliding with another vessel or stationary navigation hazard.  His next highest goal is to 

remain within the assigned operating area boundaries.  Finally, when these safety goals 

are met, he carries out the assigned mission. 

Time stress and high stakes are also very real in the decisions that the OOD is 

making.  In a head-on situation a new contact may close from its initial detection range to 

the point of collision in a matter of minutes.  If an enemy warship is detected the OOD 

must immediately decide how to maneuver the submarine to avoid being counterdetected 

and, if necessary, how to employ the weapon systems.  High stakes apply not only in the 
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wartime situation just described, but also in collision and grounding situations where the 

potential for loss of lives or severe damage to a multi-million dollar warship is very much 

a reality. 

 

2. Experienced and Knowledgeable Decision Makers 

The U.S. Navy’s submarine OOD training and qualification process takes newly 

commissioned officers and produces experienced, knowledgeable decision makers and 

submarine drivers.  The process begins with six months of very technical classroom 

instruction covering the details of the submarine’s nuclear propulsion plant.  This is 

followed by six months of propulsion plant operational training as the Engineering 

Officer of the Watch (EOOW), supervising a twelve-man propulsion plant watch team.  

The propulsion plant could also be characterized as a complex NDM domain, and this 

experience as an EOOW exposes the young officer to a multitude of decision making and 

watch team coordination scenarios.  The next phase is three months of classroom training 

on basic submarine design and operation, building a foundation for the knowledge 

required of an OOD.  Topics include technical and design aspects of ship control, 

navigation, sonar and weapon systems, as well as the operational guidance for each 

system.  When the officer reports to a submarine he completes EOOW qualifications 

first, usually three to four months after reporting.  In this role he continues to gain 

experience making decisions in a complex domain and coordinating the efforts of a watch 

team.  Once he has qualified EOOW, his OOD qualification process begins its final 

phase.  A typical day at sea includes a six-hour EOOW watch period, followed by a six-

hour OOD training watch under the supervision of senior, experienced officers.  The 

training watches are critical in that they provide him with exposure to many of the 

scenarios he will encounter as an OOD, as well the opportunity to discuss the scenarios 

with more experienced officers.  The training watch routine will continue for four to six 

months.  The final step of the OOD qualification includes written and oral examinations 

to confirm that the officer has a complete technical understanding of various submarine 

systems, and the ability to make the correct operational decisions in a variety of scenarios 
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presented to him.  Once he is a qualified OOD, he will stand a six hour watch each day at 

sea, continuing to build his level of knowledge and experience. 

 

3. Situation Assessment 

Doctrinal guidance for submarines contains specific procedures that should be 

followed for various operational and emergency scenarios.  These procedures provide the 

OOD with a list of actions that will either improve the tactical situation, or in the case of 

an emergency, place the submarine in a safe condition.  Given that these procedures exist, 

the real problem that the OOD must solve is deciding which of the action lists is 

applicable for the current situation. 

 

B. SUBMARINE OPERATING ENVIRONMENT 

1. Operating Area and Tasking 

For this research the submarine has been assigned a large rectangular operating 

area.  The operating area contains several stationary obstacles and a contoured bottom.  

The submarine’s tasking is to safely transit from a randomly generated start point to a 

randomly generated destination point. 

 

2. Sensor Capabilities and Maneuvering Options 

Three submarine systems provide the OOD decision models (OODDM) with 

information about the environment.  The sonar system provides information about all 

obstacles that are within sensing range.  The fathometer provides the depth of the 

shallowest point on the bottom in the immediate vicinity.  The navigation system 

provides the values of current maneuvering parameters (position, course, speed and 

depth) and the distance to operating area boundaries.  Based on this information the 

OODDM maneuvers the submarine by making changes to its course, speed or depth. 

23 



C. OOD DECISION MODEL DESIGN CONSIDERATIONS 

To ensure that any differences observed in the performance of the two OODDMs 

were only due to differences in the actual decision making process, all other domain 

parameters were held constant.  Both OODDMs operate in the same operating area with 

the same bottom contour.  All sonar, fathometer and navigation system information 

received, and the maneuvering options available to each OODDM are identical.  Table 1 

below provides a list of the domain parameters that were held constant and their values. 

 

D. IDENTICAL DOMAIN FRAMEWORK 

1. Operating Area and Horizontal Coordinate System 

A 1000 x 600 pixel grid is used as the basis for the xy-coordinate system.  Using a 

20 pixels = 1 nautical mile (nm) scale, this results in a 50 nm x 30 nm operating area.  

The origin (x = 0, y = 0) of the xy-coordinate system is located in the upper left corner. 

 

2. Bottom Contour and Fathometer Capability 

The bottom contour for the operating area was created from a Digital Terrain 

Elevation Data (DTED) file from the National Imagery and Mapping Agency (NIMA).  

The DTED file selected was of a mountainous area with several peaks and valleys, with 

elevations ranging from a minimum of 29 feet to a maximum of 1217 feet.  To use this 

land elevation data as an ocean floor, the ocean surface was set at an elevation of 1400 

feet.  This resulted in water depths ranging from 183 feet to 1371 feet.  The fathometer 

provides the OODDM with the depth of the shallowest point in a 2 nm x 2 nm square 

footprint centered on the submarine’s current position. 

 

3. Obstacles and Sonar Capabilities 

There are 25 stationary obstacles randomly located throughout the operating area.  

The minimum distance between obstacles is 3 nm.  The sonar system provides the 

OODDM with the position of each obstacle that is within maximum sensing range (5 nm) 
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of the submarine’s current position.  The sonar system also designates the obstacles as 

either critical (0-2.5 nm) or distant (2.5-5 nm) to assist the OODDM in prioritizing them. 

 

4. Starting Position and Destination Point 

The submarine’s starting position and destination point are based on randomly 

generated xy-coordinates.  These two locations are not allowed to be within critical 

contact range (2.5 nm) of any obstacles.  To allow the submarine to start in a stable 

condition it is assigned an initial speed of 10 knots and an initial operating depth of one-

third of the bottom depth at the starting position.  Its initial course is randomly selected 

from the eight possibilities (N, NW, W, SW, S, SE, E, NE). 

 

5. Course, Speed and Depth Change Options 

After evaluating the situation, the OODDM can order small or large changes to 

each of the operating parameters or leave them unchanged.  Course changes can be to the 

left or to the right in a small (45º) or large (90º) increments.  Speed can be increased or 

decreased by 5 or 10 knots, with minimum and maximum values set at 5 and 25 knots.  

Depth can be increased or decreased by 25 or 50 feet, with a minimum operating depth of 

50 feet and a maximum operating depth of 800 feet. 

 

6. Mission Tasking and Operating Goals 

The submarine’s assigned task is to safely transit from the starting position to the 

destination point.  Operating goals are as follows:  first – avoid grounding, second – 

avoid collision, third – remain within the operating area, fourth – transit to the 

destination.  Secondary considerations are to conduct the transit as quickly as possible, 

and to operate as deep as possible. 
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Operating Area Parameters  

        Distance conversion scale 20 pixels = 1 nautical mile (nm) 

        Area size 50 nm x 30 nm 

        Bottom contour The same DTED database was used  

        Minimum bottom depth 183 feet 

        Maximum bottom depth 1371 feet 

        Number of stationary obstacles 25 

        Minimum distance between obstacles 3 nm 

Sonar System Parameters  

        Maximum sensing range 5 nm 

        Critical contact range 2.5 nm 

Fathometer System Parameters  

        Footprint size 2 nm x 2 nm centered on current position 

        Red sounding depth 200 feet 

        Yellow sounding depth 400 feet 

Navigation System Parameters  

        Warning distance to boundary area 5 nm 

        Critical distance to area boundary 2.5 nm 

Maneuvering Parameters  

        Course options E, NE, N, NW, W, SW, S, SE 

        Course change options No change, 45º left or right, 90º left or right

        Speed change options No change, +/- 5 knots, +/- 10 knots 

        Minimum speed 5 knots 

        Maximum speed 25 knots 

        Depth change options No change, +/- 25 feet, +/- 50 feet 

        Minimum operating depth 50 feet 

        Maximum operating depth 800 feet 

 
Table 1. Constant Domain Parameters 
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IV. AGENT-BASED OOD DECISION MODEL 
IMPLEMENTATION 

 

A. DESCRIPTION AND DESIGN 

In Chapter III it was pointed out that doctrinal operating guidance provides a list 

of actions to be taken for various tactical and emergency scenarios.  The problem that the 

submarine OOD must solve then is not deciding what maneuvering commands he should 

order.  Instead, the problem is to determine, based on his current situation, which list of 

actions is applicable.  Using this as its foundation, each cycle of the agent-based 

OODDM consists of three steps.  First, current information is received from the sensor 

systems.  Second, operating goals are considered to determine which of the doctrinal 

scenarios best fits the current situation.  Third, predetermined actions are taken for that 

scenario. 

 

B. MANEUVERING ACTION SETS 

Maneuvering action sets are used to represent all possible combinations of course, 

speed and depth changes available to the OODDM.  Each of the maneuvering parameters 

can be left unchanged, or adjusted in a small or large increment.  This results in a total of 

27 different maneuvering action sets. 

 

1. Critical Action Sets 

Critical action sets are available to the OODDM when the current situation is 

determined to be in extremis with regard to any of the operating goals.  The process for 

making this determination is fully described later in this chapter.  To allow the OODDM 

every possible option when maneuvering to improve this situation, all 27 maneuvering 

action sets are included as critical action sets.  Table 2 lists the critical action sets. 
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ACTION SET COURSE CHANGE SPEED CHANGE DEPTH CHANGE 

0 None None None 

1 None None 25 ft 

2 None None 50 ft 

3 None 5 kts None 

4 None 5 kts 25 ft 

5 None 5 kts 50 ft 

6 None 10 kts None 

7 None 10 kts 25 ft 

8 None 10 kts 50 ft 

9 45º None None 

10 45º None 25 ft 

11 45º None 50 ft 

12 45º 5 kts None 

13 45º 5 kts 25 ft 

14 45º 5 kts 50 ft 

15 45º 10 kts None 

16 45º 10 kts 25 ft 

17 45º 10 kts 50 ft 

18 90º None None 

19 90º None 25 ft 

20 90º None 50 ft 

21 90º 5 kts None 

22 90º 5 kts 25 ft 

23 90º 5 kts 50 ft 

24 90º 10 kts None 

25 90º 10 kts 25 ft 

26 90º 10 kts 50 ft 
 

Table 2. Critical Action Sets 
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2. Moderate Action Sets 

Moderate action sets are available to the OODDM when the current situation is 

determined to be less than critical.  Again, the process for making this determination is 

fully described later in this chapter.  In these situations the OODDM is not allowed to 

make large changes to maneuvering parameters.  Table 3 lists the moderate action sets. 

 

ACTION SET COURSE CHANGE SPEED CHANGE DEPTH CHANGE 

0 None None None 

1 None None 25 ft 

2 None 5 kts None 

3 None 5 kts 25 ft 

4 45º None None 

5 45º None 25 ft 

6 45º 5 kts None 

7 45º 5 kts 25 ft 
   

Table 3. Moderate Action Sets 

 

3. Active Action Sets 

Active action sets are used to represent the lists of predetermined actions from 

doctrinal guidance.  Recall that there are four operating goals – avoid grounding, avoid 

collision, remain within in the operating area, and transit to the destination point.  The 

first three goals are each assigned two active action sets, one to address critical situations 

and one to address moderate situations.  The transit goal is only assigned a moderate 

active action set.  The programmer initially selects the seven active action sets.  The 

OODDM also provides recommendations on the selection of future active action sets 

based on evaluations of the performance of each maneuvering action set.  This learning 

process is fully described later in this chapter.  Table 4 lists the initial active action sets. 
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GOAL 
SCENARIO 

ACTIVE 
ACTION SET 

COURSE 
CHANGE 

SPEED 
CHANGE 

DEPTH 
CHANGE 

Grounding 
(critical) 

Critical    
Action Set 26 

90º 10 kts 50 ft 

Grounding 
(moderate) 

Moderate 
Action Set 3 

None 5 kts 25 ft 

Collision 
(critical) 

Critical    
Action Set 24 

90º 10 kts None 

Collision 
(moderate) 

Moderate 
Action Set 6 

45º 5 kts None 

Area     
(critical) 

Critical    
Action Set 24 

90º 10 kts None 

Area 
(moderate) 

Moderate 
Action Set 6 

45º 5 kts None 

Transit 
(moderate only) 

Moderate 
Action Set 7 

45º 5 kts 25 ft 

   
Table 4. Initial Active Action Sets 

 

C. DECISION PROCESS 

Appendix A contains pseudocode of the decision process. 

 

1. Setting Operating Goal Weights 

The OODDM sets the “weight” of each operating goal as either critical or 

moderate based on current sensor system information.  The following criteria are used for 

each operating goal: 

a. Avoid Grounding Goal 

The avoid grounding goal weight is set to critical when the difference in 

depth between the submarine’s keel and the ocean bottom is less than an established 

minimum value.  This minimum distance, called a red sounding, has been set at 200 feet.  

Similarly, the avoid grounding goal weight is set to moderate when the distance beneath 

the keel is not critical, but is less than the yellow sounding value, which has been set at 

30 



400 feet.  The depth difference is calculated by subtracting the submarine’s current 

operating depth from the fathometer system input, which reports the shallowest point in a 

2 nm x 2 nm square footprint centered on the submarine’s position. 

b. Avoid Collision Goal 

The avoid collision goal weight is set to critical when any obstacle is 

within critical contact range (2.5 nm).  It is set to moderate when any obstacle is within 

maximum sensing range (5 nm), but is outside of critical contact range.  The range to 

contacts is provided by the sonar system and is calculated using the xy-coordinates of the 

obstacle’s position and the submarine’s position. 

c. Remain Within Operating Area Goal 

The remain within operating area goal weight is set to critical when the 

submarine closes to less than a preset critical distance (2.5 nm) from any area boundary.  

It is set to moderate when the submarine is less than a preset warning distance (5 nm), but 

greater than the critical distance from any area boundary. 

d. Transit to Destination Goal 

The transit to destination goal weight is always set to moderate. 

 

2. Active Action Set Selection and Conflict Resolution 

The OODDM uses the operating goal weights to determine which of the seven 

active action set scenarios is appropriate for the current situation.  The OODDM 

considers critical operating goals first.  If only one of the operating goal weights is 

critical, the active action set corresponding to that scenario is selected.  If more than one 

operating goal weight is critical, the OODDM uses operating goal priorities to resolve the 

conflict.  If there are no critical operating goals, the OODDM considers moderate 

operating goals.  The transit to destination goal weight is always moderate, so there will 

always be at least one moderate operating goal. 
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3. Maneuvering Commands 

Selecting the active action set only determines the magnitude of course, speed and 

depth changes.  The OODDM must also determine the direction of each maneuvering 

parameter change for each operating goal. 

a. Avoid Grounding Goal 

Course is changed to the right to reverse directions and drive back toward 

safe water.  Speed is reduced to minimize closure to shallow point.  Operating depth is 

reduced to maximize depth beneath the keel. 

b. Avoid Collision Goal 

If the obstacle is directly ahead or to the left of the submarine’s current 

heading, then course is changed to the right.  If the obstacle is to the right of the 

submarine’s current heading, then course is changed to the left.  Speed is reduced to 

minimize closure to the obstacle.  No depth change is required. 

c. Remain Within Operating Area Goal 

If the operating area boundary is directly ahead or to the left of the 

submarine’s current heading, then course is changed to the right.  If the operating area 

boundary is to the right of the submarine’s current heading, then course is changed to the 

left.  Speed is reduced to minimize closure to the boundary.  No depth change is required. 

d. Transit to Destination Goal 

If the destination point is to the left of the submarine’s current heading, 

then course is changed to the left.  If the destination point is to the right of the 

submarine’s current heading, then course is changed to the right.  Speed is increased to 

minimize the time required to reach the destination point.  Operating depth is increased to 

meet the secondary consideration of operating as deep as possible. 
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D. LEARNING PROCESS 

The OODDM gathers information during each decision cycle that allows it to 

compute performance evaluations for each of the 27 critical action sets and eight 

moderate action sets at the end of the mission.  These evaluations can be used to assign 

better performing active action sets to the seven possible goal scenarios. 

 

1. Action Set Performance Evaluation 

During each decision cycle the OODDM applies a scoring function to each of the 

action sets that are available for the current goal scenario.  The score value gives an 

indication of how the tactical situation would have changed if the maneuvers of that 

action set had been taken.  At the end of the mission the scores for each action set are 

totaled, allowing the user to compare the performance of each action set with the current 

active action sets.  To evaluate each action set, first the maneuvers are simulated, and 

then the scoring function is applied to determine how much the tactical scenario has 

improved or worsened.  The scoring function for each operating goal is described below. 

a. Avoid Grounding Goal 

Water depth beneath the keel is metric for this scoring function, with 

better performance shown by larger values.  The score value is calculated by subtracting 

the submarine’s operating depth from the fathometer input, both based on the new 

simulated position of the submarine. 

b. Avoid Collision Goal 

Distance to the nearest obstacle is the metric for this scoring function, with 

better performance shown by larger values.  The score value is equal to the distance to 

the nearest obstacle, based on the submarine’s position after the simulated maneuver.  

c. Remain Within Operating Area Goal 

Distance to the nearest operating area boundary is the metric for this 

scoring function, with better performance shown by larger values.  The score value is 
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equal to the distance to the nearest boundary, based on the submarine’s position after the 

simulated maneuver. 

d. Transit to Destination Goal 

Distance to the destination point is the metric for this scoring function, 

with better performance shown by smaller values.  The score value is equal to the 

distance to the destination point, based on the submarine’s position after the simulated 

maneuver. 

 

2. Assigning New Active Action Sets 

At the end of the mission the performance scores are written to an output file.  

This output shows how each of the 27 action sets would have performed for each of the 

four operating goals.  The user can then review the action set performance for each 

operating goal scenario and manually assign new active action sets as desired.  Assigning 

new active action sets could easily be programmed to occur automatically at the end of 

each mission.  To meet the model comparison needs of this research, complete control of 

active action sets by the user was desired, so automatic assignment was not implemented. 
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V. RULE-BASED OOD DECISION MODEL IMPLEMENTATION 

 

A. DESCRIPTION AND DESIGN 

The Java™ Expert System Shell (JESS) was selected as the foundation for the 

rule-based OODDM implementation.  Several factors contributed to JESS’s selection for 

this research.  Most importantly, since JESS is written entirely in Java™ it can easily be 

integrated into, or used in conjunction with, a myriad of existing systems.  Also, as 

discussed in Chapter II, the JESS inference engine uses the Rete algorithm and is 

extremely efficient.  User support is readily available as well.  Downloadable trial 

software and documentation, answers to frequently asked questions, and points of contact 

are available at the JESS website (http://herzberg.ca.sandia.gov/jess/). 

Similar to the agent-based OODDM, each cycle of the JESS OODDM consists of 

three steps.  First, current sensor information is provided by asserting the information as 

facts that are added to the knowledge base.  Second, the inference engine determines 

which of the rules are appropriate for the situation.  The rules represent the four operating 

goals (avoid grounding, avoid collision, remain within the operating area, and transit to 

destination).  Third, maneuvering commands are executed as the rules fire. 

 

B. KNOWLEDGE BASE FACTS 

1. Fact Templates 

A fact template defines the format of the information contained in a fact.  The 

template names the fact and creates a “slot” for each desired fact characteristic.  JESS 

code for a typical fact template and an associated fact is shown below. 

(deftemplate automobile (slot make) (slot model) (slot year) (slot color)  ) 

(automobile (make Ford) (model Mustang) (year 1997) (color red)  )  

Several fact templates have been defined to allow the operating parameters and 

sensor system information associated with the OODDM to be asserted in the knowledge 

base.  Figure 1 below shows the OODDM fact templates in JESS format. 
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a. Status Fact Template 

This fact is used to store the submarine’s position and operating parameter 

information.  It has slots for x and y coordinates, course, speed and depth. 

b. Destination Fact Template 

This fact is used to store the position of the destination point and its 

distance and direction from the submarine’s current position.  It has slots for x and y 

coordinates, distance and direction. 

c. Obstacle Fact Template 

This fact is used to store information provided by the sonar system for all 

obstacles within sensing range.  It has slots for x and y coordinates, distance and 

direction. 

d. Shoal Fact Template 

This fact is used to store fathometer system information.  It has slots for 

minimum depth and sounding values.  Minimum depth is the shallowest point in a 2 nm x 

2 nm footprint centered on the submarine’s position.  Sounding values can be red, yellow 

or safe. 

e. OutArea Fact Template 

This fact is used to store information when the submarine approaches an 

operating area boundary.  It has slots to indicate the boundary of concern (top, bottom, 

left or right) and the distance to that boundary. 

 

(deftemplate status (slot x)(slot y)(slot course)(slot speed)(slot depth) ) 
(deftemplate destination (slot x)(slot y)(slot distance)(slot direction) ) 
(deftemplate obstacle (slot x)(slot y)(slot distance)(slot direction) ) 

  (deftemplate shoal (slot minDepth)(slot sounding) ) 
  (deftemplate outArea (slot side)(slot distance) ) 

Figure 1. JESS Fact Templates 
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2. Asserting Facts 

As the first step in each decision cycle, facts are asserted to store current 

operating parameters and sensor system information in the knowledge base.  Navigation 

system information is used to assert three types of facts – status, destination and outArea.  

Sonar system information is used to assert obstacle facts for all obstacles that are within 

maximum sensing range.  Fathometer system information is used to assert shoal facts. 

 

C. KNOWLEDGE BASE RULES 

JESS rules are used to specify a set of actions to be performed for a given 

situation.  A rule is composed of an if portion and a then portion.  The if portion of a rule 

is a series of facts that must be satisfied to cause the rule to be applicable.  The then 

portion of a rule is the set of actions to be executed when the rule is applicable.   

JESS code for a simple rule is shown below.  The rule name is “do-change-baby.”  

If the fact “baby-is-wet” is true, then the action “change-baby” will be taken. 

(defrule do-change-baby 

      (baby-is-wet) 

   => 

    (change-baby)) 

For the OODDM, rules are used to represent each of the four operating goals.  

The facts satisfied in the if portion determine which of the seven operating goal scenarios 

exists.  The actions taken in the then portion assign the corresponding course, speed and 

depth changes.  For consistency with the agent-based OODDM, the parameter values 

listed in Table 1 were again used to determine the level of urgency of the situation.  Table 

5 shows the course, speed and depth changes for each operating goal scenario.  Note that 

the values are the same as those used for the agent-based OODDM’s initial active action 

sets (Table 4). 

 

37 



GOAL 
SCENARIO 

COURSE 
CHANGE 

SPEED 
CHANGE 

DEPTH 
CHANGE 

Grounding 
(critical) 

90º -10 kts -50 ft 

Grounding 
(moderate) 

None -5 kts -25 ft 

Collision 
(critical) 

90º -10 kts None 

Collision 
(moderate) 

45º -5 kts None 

Area     
(critical) 

90º -10 kts None 

Area 
(moderate) 

45º -5 kts None 

Transit 
(moderate only) 

45º +5 kts +25 ft 

   
Table 5. Maneuvering Parameter Changes For Operating Goal Scenarios 

 

1. Avoid Grounding Goal Rules 

The shoal fact contains a sounding slot that has been assigned a value of RED 

(fathometer system reports less than 200 feet) or YELLOW (fathometer system reports 

less than 400 feet).  The rule representing the grounding critical scenario simply checks 

to see if a shoal fact with a sounding value of RED exists, and assigns the associated 

maneuvering parameter changes if satisfied.  Similarly, the rule representing the 

grounding moderate scenario checks for a shoal fact with a sounding value of YELLOW. 

 

2. Avoid Collision Goal Rules 
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The obstacle fact contains distance and direction slots.  Two rules are required to 

represent the collision critical scenario to allow the OODDM to select either a right or 

left turn.  The first rule checks for the existence of an obstacle fact with a distance less 

than critical contact range (2.5 nm) and a direction to the left of or equal to the 

submarine’s current course.  If these conditions are satisfied the actions are taken for a 



turn to the right.  The second rule checks for the existence of an obstacle fact with a 

distance less than critical contact range (2.5 nm) and a direction to the right of the 

submarine’s current course.  If these conditions are satisfied the actions are taken for a 

turn to the left.  Two similar rules represent the collision moderate scenario to address 

obstacles that are within maximum sensing range (5 nm), but outside of critical contact 

range. 

 

3. Remain Within Operating Area Goal Rules 

The outArea fact contains a side slot that indicates the boundary area of concern 

(top, bottom, left or right) and a distance slot.  Two rules are again required to represent 

the area critical scenario to allow the OODDM to select either a right or left turn.  The 

first rule checks for the existence of an outArea fact with a distance less than critical 

boundary range (2.5 nm).  Based on the value of the side slot, the rule checks to see if the 

boundary is to the left of or equal to the submarine’s current course.  If these conditions 

are satisfied the actions are taken for a turn to the right.  The second critical scenario rule 

checks for the existence of an outArea fact with a distance less than critical boundary 

range (2.5 nm) and the boundary positioned to the right of the submarine’s current 

course.  If these conditions are satisfied the actions are taken for a turn to the left.  Two 

similar rules represent the area moderate scenario to address boundaries that are within 

warning range (5 nm), but outside of critical boundary range. 

 

4. Transit to Destination Goal Rules 

Two rules are again required to represent the transit scenario to allow the 

OODDM to select either a right or left turn.  Based on the value of the direction slot, the 

first rule checks to see if the destination is to the left of the submarine’s current course 

and, if this condition is satisfied the actions are taken for a turn to the right.  A similar 

rule addresses transit situations requiring a turn to the left.  To meet secondary 

considerations of minimizing transit time and operating as deep as possible, these rules 

also assign speed and depth increases, as indicated in Table 5. 
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D. OPERATING GOALS AND CONFLICT RESOLUTION 

Recall that the operating goal priorities are, from highest to lowest, to avoid 

grounding, to avoid collision, to remain in the operating area, and to transit to the 

destination.  A two-part process that uses scenario tracking facts and rule salience was 

implemented to ensure that these priorities are met. 

 

1. Scenario Tracking Facts 

In addition to assigning course, speed and depth changes, the then portion of each 

goal scenario rule also asserts a scenario tracking fact to indicate that conditions are 

satisfied for that scenario.  This allows each goal scenario rule to verify that conditions 

are not met for a higher operating priority.  Consider the following example.  An obstacle 

is within critical contact range and, at the same time, the submarine is within critical 

boundary distance of an area boundary.  To meet operating goal priorities actions should 

be taken to avoid collision.  Because the conditions are met for the collision critical 

scenario an “avoiding-close-obstacle” scenario tracking fact is asserted.  Conditions for 

the area critical rule will not be satisfied because it checks that scenario tracking facts do 

not exist for higher priority operating goals. 

 

2. Scenario Rule Salience 

The scenario tracking fact policy will not work if the conditions for a low priority 

scenario rule are satisfied before the higher priority rule has asserted the tracking fact.  To 

control the order in which they are processed, each scenario rule is assigned a salience 

value.  Rules are processed in order from highest to lowest salience value.  This 

combination of scenario rule salience and scenario tracking facts ensures that operating 

goal priorities are met. 
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E. EXPLAINING OODDM ACTIONS 

1. The JESS Watch Function 

The designers of JESS developed the “watch” function as a debugging tool to 

assist the user in troubleshooting rules that are not operating as expected.  The watch 

function allows the user to monitor the execution of the Rete inference engine by 

providing information concerning the status of facts and rules.  For facts, it reports every 

time a fact is asserted or retracted.  A fact is retracted when it is no longer true.  For rules, 

the watch function reports every time a rule is activated or deactivated, and lists the facts 

that caused the event to occur.  A rule is activated when all conditions of the rule’s if 

portion are satisfied.  If the operating environment changes in such a way that a required 

fact is retracted the if portion is no longer satisfied, and the rule will be deactivated.  The 

watch function also reports every time a rule fires (carries out the actions of the then 

portion) and lists the facts that were used to satisfy the rule’s conditions. 

 

2. OODDM Application of the Watch Function 

While the watch function is certainly a useful debugging tool, it can be used to 

perform an even more important function for the OODDM.  By allowing the watch 

function to operate continuously it provides the user with information that shows why the 

OODDM made each decision.  This information can be separated into three distinct parts.  

First, the assertion and retraction of facts represents the OODDM’s perception of the 

operating environment, as reported by the sensor systems.  Second, the activation and 

deactivation of rules represent the maneuvering options being considered, but not yet 

chosen.  Finally, the rules fired represent the OODDM’s final decisions.  The output of 

the watch function can either be displayed in a text window, so that it can be reviewed in 

real time as the OODDM is running, or it can be stored as a data file and reviewed after 

the OODDM completes the entire mission.  Figure 2 shows a DOS window containing 

the reports of the watch function while the OODDM is operating. 
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Figure 2. JESS Watch Function Reports 
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VI. OOD DECISION MODEL COMPARISON 

 

A. COMPARISON PLAN 

First, the graphical interface used to display the operating area and control the 

operation of the OODDMs is fully described.  The following comparison areas are then 

addressed: implementation considerations, performance and observed behavior, cognitive 

function representation, and cognitive validity. 

 

B. GRAPHICAL INTERFACE 

1. Display Window  

A 1000 x 600 pixel window is used to display the submarine’s movement through 

its operating area.  The horizontal xy-coordinate grid uses the upper left (northwest) 

corner as its origin (0,0) point.  The window’s borders represent the submarine operating 

area boundaries.  Obstacles in the area are shown as black stars, and the destination point 

as a blue star.  The submarine is shown as a square that varies in color depending on 

sounding conditions.  For red (< 200 feet beneath the keel) or yellow (< 400 feet beneath 

the keel) sounding conditions, the submarine is colored red or yellow, respectively.  If the 

sounding condition is safe (> 400 feet beneath the keel) the submarine is colored green. 

 

2. Operating Data Dialog Box 

The display window only provides a top-down view of the submarine’s horizontal 

movement in the operating area.  An operating data dialog box is used to provide the user 

with depth information.  Clicking the mouse on any of the obstacles or the destination 

point activates a dialog box that displays the bottom depth and xy-coordinates of that 

location.  Clicking the mouse on the submarine will display its position, operating depth 

and the bottom depth.  Figure 3 shows the display window with an activated operating 

data dialog box for the submarine. 
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Figure 3. Operating Area Display Window 

 

3. Control Buttons 

Five buttons are used to control the environment and OODDM.  The START 

button fills the empty operating area.  It creates the area’s bottom contour by loading the 

elevation data from the DTED file.  It also randomly positions the obstacles, randomly 

generates the destination point, and establishes the submarine’s starting conditions.  The 

STEP button causes one decision cycle to be performed.  The RUN button allows the 

OODDM to run until the submarine arrives at the destination point or the PAUSE button 

is pressed.  The PAUSE button stops execution until the STEP or RUN button is pressed 

to resume execution.  The OUTPUT button writes the submarine’s path history to an 

output file.  The path history consists of the submarine’s position, course, speed and 

depth at each decision cycle of the mission.  For the agent-based OODDM, the OUTPUT 

button also writes the action set evaluation scores to an output file. 
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4. DOS Display Window 

A DOS window is used to display textual information during execution.  For the 

rule-based OODDM, the DOS window is used to display the output of the watch function 

as it reports assertion and retraction events for facts, and activation, deactivation and 

firing events for rules during each decision cycle.  For the agent-based OODDM, the 

DOS window is used to display the action set evaluation scores when the OUTPUT 

button is pressed at the end of the mission. 

C. IMPLEMENTATION CONSIDERATIONS 

Given that both OODDMs were written in Java™, several well-known Java™ 

features were apparent throughout this research.  These included its compatibility and 

portability, extensive user group and documentation available for assistance, ease of file 

management, and graphical display development framework.  Implementation 

considerations for each OODDM are discussed in the following sections. 

 

1. Agent-Based OODDM 

In order to implement the learning process of the agent-based OODDM, critical 

action sets (Table 2) and moderate action sets (Table 3) were required to specify every 

possible combination of maneuvering parameter changes for a given operating goal 

scenario.  Then the OODDM simply steps through each action set, calculates a 

performance score for the current operating goal, and adds the score to the action set’s 

running total for the entire mission.  At the end of the mission the performance score total 

for each action set can be evaluated to determine which action sets would have been most 

effective for each operating goal.  A second benefit of the action set system is that it lays 

the groundwork for the next level of agent-based OODDM improvement - the genetic 

algorithm - which is discussed more fully in the future work section of Chapter VII. 
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2. Rule-Based OODDM 

There are two key features of JESS that make it an ideal choice for use in the 

development of a submarine OODDM.  First, the knowledge base of facts and rules 

parallels directly with sensing system inputs (asserted as facts) and doctrinal guidance 

(implemented as rules), making rule writing fairly straight forward.  Second, JESS’s 

watch function provided an easily interpreted realtime output showing why the OODDM 

was making each decision by showing what conditions were satisfied and which rules 

were fired. 

The major disadvantage of using a production engine like JESS is that each and 

every rule must be written by the programmer.  This means that either the programmer 

must have a very good understanding of the OODDM environment and decision process, 

or someone else must provide very detailed guidance to him.  In either case, the OODDM 

will only be as good as the rules that are written for it.  As the complexity of the 

environment increases the task of writing a complete, correct rule set becomes even more 

difficult. 

A second JESS-specific problem is that not all CLIPS functions have been 

implemented in the current version of JESS.  This limitation forces the programmer to 

write some portions of the code in CLIPS (Lisp based) files that are read by JESS. 

  

D. PERFORMANCE AND OBSERVED BEHAVIOR 

Given the environmental and sensing system parameters that were held constant 

(Table 1) and the predetermined maneuvering commands for the seven operating goal 

scenarios (Tables 4 and 5), the performance of the two OODDMs was expected to be 

nearly identical.  The only noticeable differences in behavior occurred in situations where 

the OODDMs were presented with several obstacles in the same range (critical or 

moderate).  These differences were caused by differences in the implementation of 

obstacle conflict resolution methods.  The agent-based OODDM resolves this conflict 

based on distance, taking action to avoid the nearest obstacle.  The rule-based OODDM 
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takes action based on the order in which the facts were asserted, regardless of the distance 

to each obstacle. 

 

E. COGNITIVE FUNCTION REPRESENTATION 

Recall from the cognitive architecture reviews in Chapter II that agent-based 

systems and JESS are not based on specific unified theories of cognition.  Instead, they 

are better described as frameworks, or shells, for designing models of human decision 

making or human behavior.  Because of this the programmer must implement any 

representations of human cognitive functions.  The following cognitive functions are 

represented in the OODDMs:  sensing and perception, long and short-term memory, 

multi-tasking ability, decision making, learning (agent-based OODDM only), and the 

ability to explain actions (rule-based OODDM only).  The following sections describe 

how each of these functions is represented in each OODDM. 

 

1. Sensing and Perception 

Due to the nature of submerged operations, the sensing and perception function of 

both OODDMs is strictly limited to the data received from the sensing systems (sonar, 

fathometer and navigation).  The constant domain parameters of Table 1 were used to 

ensure that both OODDMs “see” the environment the same way. 

 

2. Long and Short-Term Memory 

For the agent-based OODDM, long-term memory is represented by the active 

action sets that contain the maneuvering commands for each of the seven operating goal 

scenarios.  Operating goal priorities (avoid grounding, avoid collision, remain in area and 

transit) are included in long-term memory as methods written to ensure the priorities are 

met in the proper order.  Its short-term memory is represented by the vectors that contain 

obstacles and area boundaries within ranges of concern.  Short-term memory also 

includes current operating parameters (position, course, speed, operating depth and 
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bottom depth) that are stored as submarine object variables.  All short-term memory data 

is refreshed on every decision cycle. 

For the rule-based OODDM, long-term memory is represented by the knowledge 

base rules used by the Rete inference engine.  The rules employ scenario tracking facts 

and salience to “remember” operating goal priorities.  Its short-term memory is 

represented by the assertion and retraction of facts containing information about 

obstacles, area boundaries, bottom depth and the submarine’s current status.  The 

information contained in each type of fact was shown in Figure 1.  New facts are asserted 

on each decision cycle. 

 

3. Multi-Tasking Ability and Decision Making 

For the agent-based OODDM, multi-tasking between the four operating goals is 

accomplished through a two-step process.  First, each operating goal is assigned a goal 

weight (critical, moderate or nominal) based on sensing system information stored in 

short-term memory.  Second, methods are called to perform conflict resolution and meet 

operating goal priorities when two or more operating goals have been assigned the same 

goal weight. 

For the rule-based OODDM, the asserted facts may initially satisfy the if portion 

of several operating goal rules.  The Rete inference engine resolves this through a 

combination of scenario tracking facts and rule salience to ensure that the rule associated 

with the highest priority operating goal is fired. 

 

4. Learning (Agent-Based OODDM Only) 

The agent-based OODDM’s learning process uses operating goal scoring 

functions to evaluate the performance of all 27 critical action sets and eight moderate 

action sets on each decision cycle.  The performance scores are summed over the entire 

mission and can be used to determine which of the active action sets would have been 

most effective.  In the current implementation the user manually enters the updates to the 

active action sets.  This process could easily be modified to allow the OODDM to 
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automatically update the active action sets.  The learning process was fully described in 

Chapter IV. 

 

5. Ability to Explain Actions (Rule-Based OODDM Only) 

The rule-based OODDM activates the JESS watch function to monitor and 

display the assertion and retraction of facts, and the activation, deactivation and firing of 

rules.  The user can interpret this information to determine what conditions existed at 

each decision cycle and explain why the OODDM made the corresponding decision.  

This ability was described in more detail in Chapter V. 

 

F. COGNITIVE VALIDITY 

The validity of a computational cognitive model is evaluated based on the 

model’s design goals.  Some models are designed with the goal of implementing the 

human cognitive functions in a way that accurately represents the psychological elements 

of an accepted mental model or unified theory of cognition.  On the other hand, many 

models are designed with the goal of producing realistic human behavior with no 

requirement for a cognitive theory foundation.  The OODDMs of this research fall into 

the second category and the following question is considered to evaluate their cognitive 

validity.  Does the OODDM produce behavior that is representative of the actions that 

would have been taken by an experienced submarine OOD in the same situation?  Based 

on an informal analysis of each OODDM conducting several transit missions both models 

exhibited behavior that was expected and believable. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

 

A. COMPARISON CONCLUSIONS 

The purpose of this thesis was to continue researching the development of hybrid 

computational cognitive architectures by comparing the implementation and performance 

of two models designed to operate in the same problem environment.  From the model 

comparisons made in Chapter VI, the following conclusions should be noted: 

 

1. Environment Complexity Can Overwhelm 

The relatively simple level of complexity of the OODDM’s submerged operating 

environment allowed both models to employ the same basic algorithm: 

• Receive new data from sensing systems 

• Determine which operating goal scenario exists 

• Make maneuvering parameter changes for that scenario 

• Move submarine to new position 

• Repeat 

Even though the implementations were completely different – Java™ methods for 

the agent-based OODDM and JESS rules for the rule-based OODDM – both models 

operated by matching the current situation with one of the operating goal scenarios.  If 

the complexity of the environment is increased, the number of operating goal scenarios 

required to describe possible situations would also increase.  More operating goal 

scenarios will make the matching process more difficult, requiring the creation of more 

elaborate methods or rules.  The number of methods or rules required, and the complexity 

of those methods or rules, can become very difficult to manage for even moderately 

complex operating environments. 
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2. Learning is Powerful 

The learning process of the agent-based OODDM is a very powerful capability.  

As it is currently implemented, at the completion of each mission the OODDM provides 

a performance evaluation score for each of the available action sets for each operating 

goal scenario.  These scores can be used determine the most effective action sets, and 

new active action sets can be assigned by the user if desired.  Evaluation of action set 

performance becomes even more valuable as the complexity of the environment 

increases.  The user must assign the actions to be taken for more detailed operating goal 

scenarios, and it is unlikely that the most effective actions will be selected without some 

type of performance feedback. 

If the simulation requires an OODDM that “learns as it goes,” the performance 

scores could be used to automatically assign the most effective action sets as the active 

action sets at specified intervals throughout the mission. 

 

3. Explanations Must be Useful 

Like the agent-based OODDM’s learning process, the rule-based OODDM’s 

ability to explain its actions is also a powerful capability.  But, unfortunately, its 

usefulness diminishes as the complexity of the operating environment increases.  From 

the description of JESS’s watch function in Chapter V, recall that it reports all activations 

and firings of rules, and the facts associated with each event.  A typical watch function 

report window was shown in Figure 2.  For the OODDM’s submerged operating 

environment, with its limited number of facts and rules, the user could interpret the watch 

function output fairly easily.  As the number of facts and rules increases, it becomes 

much less likely that the user will be able to interpret the report directly because he 

cannot be expected to remember the structure of each fact or rule.  This problem can be 

partially alleviated by using very descriptive fact and rule names, but a complete 

understanding of the report will require referencing the rules themselves. 

 

52 



B. RECOMMENDATIONS FOR FUTURE WORK 

This research could be expanded in several directions to continue supporting the 

requirements for improved human performance models.  Some possibilities for future 

work include: 

 

1. More Complex Environment or Goals 

A more realistic and challenging operating environment could include obstacles 

that were not stationary, submerged obstacles, or operating area boundaries that changed 

with time.  Operating goal complexity could be increased by shifting the destination point 

during the transit or by assigning more difficult mission tasking, such as following one of 

the moving obstacles. 

2. Improved Agent-Based OODDM 

To take full advantage of an agent-based model’s ability to adapt and improve its 

performance a genetic algorithm could be implemented.  The genetic algorithm considers 

various combinations of sensing system inputs and action set outputs, developing 

OODDMs that take action based on the most effective input/output combinations.  A 

thorough discussion of genetic algorithm implementation can be found in Ferber’s Multi-

Agent Systems. 

 

3. Improved Rule-Based OODDM 

As the environment becomes more complex, and the number of facts and rules 

increases, the rule-based OODDM’s performance could be improved by employing the 

backward chaining function of JESS’s Rete inference engine.  When backward chaining 

is activated, the rule compiler notes which conditions of the if portion of a rule are not 

satisfied.  The compiler then generates new rules that show a “need” for the missing 

conditions, and checks to see if facts exist to satisfy the new rules.  Backward chaining is 

also commonly referred to as goal seeking. 
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APPENDIX A. AGENT-BASED OODDM PSEUDOCODE 

 

1. SENSING SYSTEM INPUTS 

The OODDM makes decisions based on inputs from the three sensing systems.  

The fathometer system provides the minimum bottom depth in a footprint (2 nm x 2 nm) 

centered on the submarine’s position.  The navigation system provides the submarine’s 

position (xy-coordinates), course, speed and operating depth.  The sonar system provides 

the locations (xy-coordinates) and distances to all obstacles within maximum sensing 

range.  In the following sections, sensing system inputs and constant domain parameters 

(Table 1) will be capitalized and pseudocode will be italicized. 

 

2. SETTING OPERATING GOAL WEIGHTS 

The first step is to establish goal weights for each of the four operating goals. 

 

If (MIN DEPTH – OP DEPTH) < RED SOUNDING 

set Grounding Weight to CRITICAL 

If RED SOUNDING < (MIN DEPTH – OP DEPTH) < YELLOW SOUNDING 

set Grounding Weight to MODERATE 

If (MIN DEPTH – OP DEPTH) > YELLOW SOUNDING 

set Grounding Weight to NOMINAL 

 

If any OBSTACLE DISTANCE < CRITICAL CONTACT RANGE 

set Collision Weight to CRITICAL 

If no OBSTACLE DISTANCE < CRITICAL CONTACT RANGE, but some OBSTACLE

 DISTANCE < MAX SENSING RANGE set Collision Weight to MODERATE 

If no OBSTACLE DISTANCE < MAX SENSING RANGE 
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 set Collision Weight to NOMINAL 

If CURRENT POSITION < CRITICAL DISTANCE from any area boundary 

set Area Weight to CRITICAL 

If CRITICAL DISTANCE < CURRENT POSITION < WARNING DISTANCE from any 

area boundary set Area Weight to MODERATE 

If CURRENT POSITION > WARNING DISTANCE from any area boundary  

set Area Weight to NOMINAL 

 

Always set Transit Weight to MODERATE 

 

3. ACTION SET SELECTION AND CONFLICT RESOLUTION 

These operating goal weights are used to select the appropriate active action set 

from the seven available (Table 4).  Recall that the operating goals are, in order of 

priority, to avoid grounding, avoid collision, remain within operating area boundaries, 

and transit to the destination. 

Consider all CRITICAL goal weights: 

If only one goal weight is CRITICAL, then it is selected as the active goal 

If more than one goal weight is CRITICAL, the highest priority operating goal is 

selected as the active goal 

 

If no goal weights are CRITICAL, consider all MODERATE goal weights: 

If only one goal weight is MODERATE, then it is selected as the active goal 

If more than one goal weight is MODERATE, the highest priority operating goal 

is selected as the active goal 
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Note that since the transit goal weight is always set to MODERATE, there will 

always be at least one MODERATE goal weight. 

4. MANEUVERING COMMANDS AND MOVEMENT 

The active action set selected only specifies the magnitude of change for each of 

the maneuvering parameters (course, speed and depth).  Other factors must be considered 

to determine the direction of change. 

If the active goal is to avoid grounding: 

 Turn to the right to reverse course 

Slow in speed 

Reduce operating depth (drive toward the surface) 

 

If the active goal is to avoid collision: 

 Turn to the right if obstacle is to the left of current COURSE 

 Turn to the left if obstacle is to the right of current COURSE 

Slow in speed to minimize closure 

Maintain operating depth 

 

If the active goal is to remain within the operating area boundaries: 

 Turn to the right if boundary is to the left of current COURSE 

 Turn to the left if boundary is to the right of current COURSE 

Slow in speed to minimize closure 

Maintain operating depth 

 

If the active goal is to transit to the destination: 

 Turn to the right if the destination point is to the right of current COURSE 
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 Turn to the left if the destination point is to the left of current COURSE 

Increase speed to minimize time to reach destination 

Increase operating depth to meet secondary goal of operating as deep as possible 

 

Now that both the magnitude and direction of maneuvering parameter changes 

have been determined, the submarine’s new position can be calculated.  The submarine is 

moved to that position, the sensing systems collect and provide new information to the 

OODDM, and the process repeats itself.  

58 



LIST OF REFERENCES 
 

 
Archer, S., Warwick, W. & Oster, A., “Current Efforts to Model Human Decision 
Making in a Military Environment,” Proceedings of the Advanced Simulation 
Technologies Conference (ASTC), 2000. 
 
Dreyfus H., Intuitive, Deliberative, and Calculative Models of Expert Performance in 
Zsambock, C. & Klein, G., Naturalistic Decision Making, Lawrence Erlbaum, 1997. 
 
Eggleston, B. & Young, M., “Distributed Cognition (D-COG): A Cognitive Systems 
Engineering Based Approach to Human Work Modeling,” Proceedings of the XIVth 
Triennial Congress of the International Ergonomics Association and 44th Annual Meeting 
of the Human Factors and Ergonomics Society (IEA/HFES), 2000. 
 
Ferber, J., Multi-Agent Systems, Addison Wesley Longman, 1999. 
 
Forgy, C., “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match 
Problem,” Artificial Intelligence, 19 (1), 1982. 
 
Haykin, S., Neural Networks: A Comprehensive Foundation, MacMillan, 1994. 
 
Pew, R. & Mavor A., Representing Human Behavior in Military Situations: Interim 
Report, National Academy Press, 1997. 
 
Pew, R. & Mavor A., Modeling Human and Organizational Behavior, National Academy 
Press, 1998. 
 
Zsambock, C., Naturalistic Decision Making: Where Are We Now? in Zsambock, C. & 
Klein, G., Naturalistic Decision Making, Lawrence Erlbaum, 1997. 

 

59 



 
 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

60 



BIBLIOGRAPHY 
 

 
Deitel, H. & Deitel, P., Java™ How To Program, Prentice Hall, 1999. 
 
Friedman-Hill, E., Jess, The Expert System Shell for the Java Platform, Sandia National 
Laboratories, 2001. 

61 



 
 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

62 



INITIAL DISTRIBUTION LIST 
 

 
1. Defense Technical Information Center 

Ft. Belvoir, Virginia 
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California 
 

3. Dr. Michael Zyda 
Naval Postgraduate School 
Monterey, California 
 

4. Dr. Rudolph Darken 
Naval Postgraduate School 
Monterey, California 
 

5. Mr. Barry Peterson 
Naval Postgraduate School 
Monterey, California 
 

6. LCDR Craig Oeltjen 
Glenwood, Minnesota 

 

63 


	I.INTRODUCTION
	A.MOTIVATION
	Military Simulation Requirements
	Naturalistic Decision Making
	The Need for Hybrid Systems

	B.THESIS QUESTIONS
	C.APPROACH
	D.THESIS ORGANIZATION

	II.BACKGROUND AND RELATED WORK
	A.NATURALISTIC DECISION MAKING
	Naturalistic Decision Making Characteristics
	Applying NDM to Military Environments
	3.Levels of Expertise

	B.COMPUTATIONAL COGNITIVE ARCHITECTURES
	ACT-R
	Soar
	COGNET
	JESS
	OMAR
	Micro Saint
	7.Neural Networks
	8.Agent-Based Systems

	C.TOWARD HYBRID SYSTEMS

	III.DOMAIN SELECTION AND DESCRIPTION
	NDM APPROACH APPLIED TO SUBMARINE OPERATIONS
	Complex Domain
	Experienced and Knowledgeable Decision Makers
	Situation Assessment

	SUBMARINE OPERATING ENVIRONMENT
	Operating Area and Tasking
	Sensor Capabilities and Maneuvering Options

	C.OOD DECISION MODEL DESIGN CONSIDERATIONS
	D.IDENTICAL DOMAIN FRAMEWORK
	Operating Area and Horizontal Coordinate System
	Bottom Contour and Fathometer Capability
	Obstacles and Sonar Capabilities
	Starting Position and Destination Point
	Course, Speed and Depth Change Options
	Mission Tasking and Operating Goals


	IV.AGENT-BASED OOD DECISION MODEL IMPLEMENTATION
	DESCRIPTION AND DESIGN
	MANEUVERING ACTION SETS
	1.Critical Action Sets
	2.Moderate Action Sets
	3.Active Action Sets

	DECISION PROCESS
	1.Setting Operating Goal Weights
	a.Avoid Grounding Goal
	b.Avoid Collision Goal
	c.Remain Within Operating Area Goal
	Transit to Destination Goal

	2.Active Action Set Selection and Conflict Resolution
	3.Maneuvering Commands
	a.Avoid Grounding Goal
	b.Avoid Collision Goal
	c.Remain Within Operating Area Goal
	d.Transit to Destination Goal


	LEARNING PROCESS
	Action Set Performance Evaluation
	a.Avoid Grounding Goal
	b.Avoid Collision Goal
	c.Remain Within Operating Area Goal
	d.Transit to Destination Goal

	2.Assigning New Active Action Sets


	V.RULE-BASED OOD DECISION MODEL IMPLEMENTATION
	DESCRIPTION AND DESIGN
	KNOWLEDGE BASE FACTS
	Fact Templates
	Status Fact Template
	Destination Fact Template
	Obstacle Fact Template
	Shoal Fact Template
	OutArea Fact Template

	Asserting Facts

	KNOWLEDGE BASE RULES
	1.Avoid Grounding Goal Rules
	2.Avoid Collision Goal Rules
	3.Remain Within Operating Area Goal Rules
	4.Transit to Destination Goal Rules

	OPERATING GOALS AND CONFLICT RESOLUTION
	Scenario Tracking Facts
	Scenario Rule Salience

	EXPLAINING OODDM ACTIONS
	The JESS Watch Function
	OODDM Application of the Watch Function


	VI.OOD DECISION MODEL COMPARISON
	COMPARISON PLAN
	GRAPHICAL INTERFACE
	1.Display Window
	2.Operating Data Dialog Box
	3.Control Buttons
	4.DOS Display Window

	C.IMPLEMENTATION CONSIDERATIONS
	1.Agent-Based OODDM
	2.Rule-Based OODDM

	D.PERFORMANCE AND OBSERVED BEHAVIOR
	E.COGNITIVE FUNCTION REPRESENTATION
	1.Sensing and Perception
	2.Long and Short-Term Memory
	3.Multi-Tasking Ability and Decision Making
	4.Learning (Agent-Based OODDM Only)
	5.Ability to Explain Actions (Rule-Based OODDM Only)

	F.COGNITIVE VALIDITY

	VII.CONCLUSIONS AND RECOMMENDATIONS
	A.COMPARISON CONCLUSIONS
	1.Environment Complexity Can Overwhelm
	2.Learning is Powerful
	3.Explanations Must be Useful

	B.RECOMMENDATIONS FOR FUTURE WORK
	1.More Complex Environment or Goals
	2.Improved Agent-Based OODDM
	3.Improved Rule-Based OODDM


	APPENDIX A.AGENT-BASED OODDM PSEUDOCODE
	1.SENSING SYSTEM INPUTS
	2.SETTING OPERATING GOAL WEIGHTS
	3.ACTION SET SELECTION AND CONFLICT RESOLUTION
	4.MANEUVERING COMMANDS AND MOVEMENT

	LIST OF REFERENCES
	BIBLIOGRAPHY
	INITIAL DISTRIBUTION LIST

