

UML ASSISTED VISUAL DEBUGGING FOR

DISTRIBUTED SYSTEMS

THESIS

Benjamin R. Musial, Flight Lieutenant, RAAF

AFIT/GCS/ENG/03-12

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the United States Air Force, Department of Defense or the United States Government.

AFIT/GCS/ENG/03-12

UML ASSISTED VISUAL DEBUGGING FOR DISTRIBUTED
SYSTEMS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Benjamin R. Musial, B. E. (Hons.)

Flight Lieutenant, RAAF

March 2003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

iv

Acknowledgements
 .

More than anyone else, I would like to thank my wife for keeping me sane and

helping me to see “the light at the end of the tunnel” throughout the AFIT experience.

Her invaluable visits and our vacations from schoolwork kept me motivated and focused

while she organized our wedding. I would also like to thank the rest of my family for

their constant support.

I would like to thank the AFIT faculty for sharing their knowledge and experience

with me. They have made the last 18 months of work worthwhile. Special recognition

goes to Lt Col Timothy Jacobs for his guidance and support in our publications.

I would also like to thank my fellow classmates. Their assistance and

comradeship during the course was invaluable.

 Benjamin R. Musial

Table Of Contents
 Page

v

Acknowledgements………………………………………………………………………………..iv

List of Figures…………………………………………………………………………………... viii

Abstract…………………………………………………………………………………………….x

I. Research Introduction.. 1

Introduction ... 1
 Background ... 2
 Research Focus.. 3
 Objectives.. 4
 Limitations .. 6
 Approach ... 6
 Summary ... 8

II. Literature Review.. 10

 Introduction ... 10
 Data Sampling ... 10
 Monitor Types ... 10
 Distributed Monitoring Systems.. 11
 Data Extraction.. 12
 Java Platform Debug Architecture .. 13
 Debugging Issues .. 15
 Bug Background.. 15
 Debugging ... 17
 Scientific Method .. 18
 Intuition ... 18
 Leap of Faith ... 18
 Diagnostics .. 18
 The Debugging Process... 19
 Debugging Tools ... 21
 Automatic Bug Detection Methods ... 22
 Invariant Based Detection ... 22
 Visualization of Test Results... 23
 Indirect Detection Methods ... 23
 Visualization.. 25
 Program Visualization ... 27
 The Unified Modeling Language (UML).. 28
 Program Visualization Evaluation Techniques ... 29

 Page

vi

 Visualization of Distributed Systems for Debugging .. 30
 Data Collection.. 31
 Analysis... 32
 Display .. 32
 Visualization Methods... 36
 Overview + Detail ... 36
 Focus + Context .. 38
 Graph Layouts ... 41
 User Interfaces... 43
 The Golden Rules for GUI Design [SHN98] .. 43
 Summary ... 44

III. System Design... 45

 Introduction ... 45
 Objectives.. 45
 Visual .. 46
 Design.. 47
 Experimental Techniques .. 48
 Experimental Metrics .. 49
 System Architecture .. 50
 ArgoUML.. 53
 Debug Interface with JPDA... 54
 Summary ... 55

IV. Visual System.. 56

 Design.. 56
 Visual Modifications ... 56
 Graph Layout... 61
 Graph Layout Requirements.. 61
 Graph Layout Algorithm Development... 62
 Graph Layout Example.. 63
 Implementation.. 66
 Summary ... 68

V. Debugger System .. 69

 Design.. 69
 Data Extraction.. 69
 Reverse Engineering.. 70
 Debugger ... 71
 Implementation.. 75

 Page

vii

 Patterns .. 75
 Connections... 75
 Data Extraction and Reverse Engineering... 76
 Summary ... 76

 VI. Results And Analysis .. 77

 Introduction ... 77
 Collection of Results ... 77
 Experimental Setup ... 77
 General Display Testing .. 78
 Large System Testing.. 79
 Distributed System Testing ... 84
 Analysis of Results.. 87
 Summary ... 89

VII. Conclusions and Recommendations.. 90

 Introduction ... 90
 Research Review ... 90
 Background ... 90
 Research Impact .. 91
 Future Developments .. 92
 Summary ... 94

Bibliography... 96

Vita ... 100

Table Of Figures
 Page

viii

Figure 1. JPDA system overview. .. 14

Figure 2. Tarantula source analysis display.. 24

Figure 3. SVSS display highlights functions that call error routines.. 25

Figure 4. Graph view from the Gthreads package. ... 34

Figure 5. Conch Process communication display... 35

Figure 6. Time-process communication graph from ParaGraph... 35

Figure 7. Overview + detail technique with intermediate view (from SeeSoft). .. 37

Figure 8. Flat view of chapter... 39

Figure 9. Furnas fisheye view of text from Figure 8. ... 39

Figure 10. Example of diagram with layered layout. ... 42

Figure 11. High-level system architecture.. 51

Figure 12. Prototype system data flow model. ... 52

Figure 13. Pseudo code for data flow. .. 53

Figure 14. Display figure hierarchy for ArgoUML. ... 54

Figure 15. NovoSoft UML hierarchy. .. 55

Figure 16. Diagram prior to application of visualization techniques.. 59

Figure 17. Class diagram following application of focus + context techniques. .. 59

Figure 18. Part of class diagram. .. 60

Figure 19. Class diagram after focus + context showing relationships. ... 61

Figure 20. Initial class diagram. ... 63

Figure 21. Class diagram with focus + context applied.. 64

Figure 22. Class diagram after phase 1 of layout algorithm. .. 65

Figure 23. Class diagram after phase 2 of layout algorithm. .. 66

 Page

ix

Figure 24. Connector launch options.. 69

Figure 25. Pseudo code for Reverse Engineering algorithm. .. 71

Figure 26. Debugging screen layout... 72

Figure 27. Debuggee process I/O window. .. 73

Figure 28. Breakpoint setting in source code. .. 74

Figure 29. Execution point display.. 74

Figure 30. Debugger controls. .. 75

Figure 31. Command line options for execution. ... 78

Figure 32. Bubble World model without focus + context. ... 81

Figure 33. Bubble World with focus + context applied.. 81

Figure 34. Bubble World with modified layout algorithm. .. 82

Figure 35. Later in execution showing large differences in vertex sizes. ... 84

Figure 36. New graph layout later in execution.. 85

Figure 37. Distributed system without visualization. ... 86

Figure 38. Distributed system with visualization. .. 86

AFIT/GCS/ENG/03-12

x

Abstract

The DOD is developing a Joint Battlespace Infosphere, linking a large number of data

sources and user applications. To assist in this process, debugging and analysis tools are required.

Software debugging is an extremely difficult cognitive process requiring comprehension of the

overall application behavior, along with detailed understanding of specific application

components. This is further complicated with distributed systems by the addition of other

programs, their large size and synchronization issues. Typical debuggers provide inadequate

support for this process, focusing primarily on the details accessible through source code. To

overcome this deficiency, this research links the dynamic program execution state to a Unified

Modeling Language (UML) class diagram that is reverse-engineered from data accessed within

the Java Platform Debug Architecture. This research uses focus + context, graph layout, and color

encoding techniques to enhance the standard UML diagram. These techniques organize and

present objects and events in a manner that facilitates analysis of system behavior. High-level

abstractions commonly used in system design support debugging while maintaining access to

low-level details with an interactive display. The user is also able to monitor the control flow

through highlighting of the relevant object and method in the display.

1

UML ASSISTED VISUAL DEBUGGING FOR DISTRIBUTED
SYSTEMS

1. Research Introduction

1.1 Introduction

The DOD maintains a large number of databases and other information sources that

are both geographically displaced and incompatible in the communication protocols they

employ. The Joint Battlespace Infosphere (JBI) proposes a “combat information

management system that provides individual users with the specific information required

for their functional responsibilities during crisis or conflict [USA00].” The JBI provides a

system to integrate a wide variety of data sources and distribute information that is both

relevant and at the right level of detail to all DOD users. The data will be available from

many servers on a network known as the Global Information Grid. This network is to

connect all services required by the JBI to access the information and deliver it back to

the user. In essence, the JBI will be a large distributed database system.

Consideration of the description of the JBI leads to some idea of the complexity of

this system. The DOD has hundreds of data sources using many different protocols.

Combining the number of types of data sources and protocols with the number of

possible outputs from the system leads to literally millions of possible combinations of

data transformations to deal with. Connecting multiple data sources in a distributed

environment is difficult at the best of times. The complexity of the JBI as described

2

suggests that debugging and analysis tools would be of great assistance during the

integration of data sources and sinks.

1.2 Background

A variety of debugging systems are available to deal with distributed systems,

however few handle the variety of operating systems required within the JBI. Prior work

by AFIT in this field established a Java based system primarily concerned with the

analysis of distributed systems based on inter-agent communication [KIL02]. The

features of Java ensure easy platform independence in distributed monitoring systems.

Debugging distributed systems produces large amounts of data, lending itself to

improvement through visualization. Visualization increases the human-computer data

bandwidth compared to traditional character reading. In addition, it allows for more

efficient pre-cognitive processing of the data requiring less effort from the user. As such,

many effective distributed debugging and analysis tools rely on visualization techniques

[BOW94, JER97].

One of the main views presented in distributed debugging tools is similar to a

sequence diagram [JER97, APP93, AMA99]. Sequence diagrams show control flow in

programs. Recently developed applications using this model allow grouping of sub-

components into higher-level systems in the architecture [JER97].

Virtually all tools in this domain focus on the communication between modules

described by size, delivery time and location (sender and receiver). Telles states that one

of the most important aspects of debugging is the ability to consider the big picture

[TEL01]. The user should base their hypothesis of the bug’s cause and location on the

overall system behavior. For this reason, the inclusion of UML modeling to represent the

3

system is considered valuable. As discussed, the sequence diagram provides assistance in

debugging in many existing tools but is unable to provide an overview of the total

system. Class diagrams are able to describe the system adequately in most cases.

Software engineers frequently use class diagrams during system design and these are the

most commonly used UML diagram [COO99]. This thesis investigation intends to show

that the use of dynamic UML object diagrams would assist the user during the debugging

process.

1.3 Research Focus

This thesis effort focuses on developing more effective methods for applying

visualization to distributed debugging. The researcher implements these methods in a

Java based system to demonstrate the capabilities and assess their effectiveness. Much of

this work centers on methodologies that incorporate existing technologies in new ways,

such as use of UML in debugging. As with other tools, it is necessary to view the system

from various levels of abstraction, allowing the user to scrutinize and correct likely error

causing modules. The use of multiple levels of abstraction allows the user to gain a global

view of the system while having access to detailed information essential to effective

debugging.

The domain of the solution is limited to Java based applications to simplify data

extraction in the debugging process. Java libraries including the Java Platform Debug

Architecture (JPDA) are utilized for the automatic run-time extraction of data. The

Java2D libraries combine with additional code to implement the visualization component

of the system.

4

1.3.1 Objectives

The primary goal of this thesis investigation is to develop methodologies to allow

more effective debugging of distributed systems. This research must meet several

requirements in order to achieve the primary goal. Initially, the debugging process is

analyzed to determine key techniques and requirements. These requirements and

techniques are adapted where necessary to ensure they are relevant to debugging of

distributed systems. The main requirement in the debugging process is to gain an

understanding of system behavior including both static and dynamic information

[TEL01]. Wide varieties of views are required in order to present the user with large

amounts of data as required.

Any system with this goal should automate the method of data extraction, as large

amounts of data are required for this debugging process. Displaying the program

structure aids in the presentation of data. The user should be able to select the monitoring

level desired for a data type. For example, user interest does not require access to all the

information for many classes at any particular time; the display of the system should

reflect this. In addition, the system should display execution path of the program for the

user to see in the abstract views.

It is essential that the person performing the debugging have access to various levels

of abstraction to facilitate program understanding. This user should have views ranging

from source code to architectural views showing where the current code segment fits in

with the rest of the system and the relationships it maintains with those modules

surrounding it.

5

A display of the program structure is an important part of the visualization created

for the debugging process. It is envisaged that the ability to see where debug data is

coming from in a well-known layout representation assists the user in detecting program

errors. It is essential that the layout be in a well-known form to take advantage of

inherent user knowledge of layout, for example showing inheritance relationships

vertically. The program layout information should be rapidly reverse-engineered without

the need for source code as it may not be available or current. Automation simplifies use

of the system for the user.

As network performance can influence the operation of a distributed system, it is

desirable to have important network parameters alongside debug and program structure

information. With this approach, the user can match quickly and easily locations having a

high probability of causing an error with those encountering unusual network conditions.

For example, should a link or server go down and cause errors in the system, the user

should easily be able to determine a probable error location through some visual means.

Automatic detection of possible program flaws would be a highly useful feature in

the system. It is desirable that one of these techniques be included in the debugging

system to simplify detection of bugs in the system under observation.

As with all visualization systems, the system must address several key issues such as

the use of color, patterns and movement. Effective utilization of these visual identifiers

will be required to maximize the benefits of the system. Other visualization techniques

are incorporated to allow a global view with detail for areas of interest. These techniques

enhance visual processing by the user.

6

This system must satisfy a variety of smaller requirements in order to achieve the

primary objective of this research. The most important aspects of debugging for

distributed systems must be determined and incorporated in the system with automatic

Graphical User Interface (GUI) driven access to the data. The system should combine

time-domain information with network parameters, program structure and debug data to

provide the best view of system operation. Automatic detection should highlight those

areas that are most likely the cause of program error and visualization methods should

take advantage of pre-cognitive processing where possible.

1.3.2 Limitations

A wide variety of data sources and applications both in and outside of the DOD are

currently Java based with the trend likely to continue. For ease of implementation, this

research limits its scope to those systems that are Java-based. Without this limitation,

many of the required techniques would not be implemented in the available timeframe

and the research hypothesis could not be adequately supported. The prototype

demonstrates the principles of the system and its capabilities from such a subset. The

majority of these results are of use for any data source or application.

1.3.3 Approach

In order to extract run-time data from the system for debugging, the JPDA library is

used. JPDA allows for distributed debugging to take place on any platform running the

Java Virtual Machine (JVM). The system parses data to the other features in the system

for analysis and display.

7

The GUI is responsible for the display and collection of input from the user. This

comprehensive GUI provides tools to view various levels of abstraction from system

structure to the code level. It allows the user to select any variable for expression

evaluation and trace through code to identify observed errors.

The system obtains the program structure to be represented by reverse engineering of

the JPDA extract data. The object diagrams, which are similar to class diagrams but

display instance information, are displayed dynamically, making them suitable for

distributed debugging. The system displays diagrams following UML conventions, as

UML is the most widely accepted notation for representing software architectures.

Debuggee programs, that is the program being debugged, may be extremely large,

which implies the structural models will be very large. Focus + context visualization

techniques incorporating selective aggregation and a fisheye lens allow a much larger

portion of the program structure to be displayed on the screen while allowing the user

access to detailed information for an area of interest.

The visual system includes a graph layout algorithm to increase the space efficiency

of the diagram. The layered graph-layout algorithm preserves the hierarchical nature of

UML object diagrams with layering based on inheritance relationships within the

program. The visual transformation system applies the algorithm in two phases to

preserve user context of the system where it already exists.

 The debugger system highlights the execution path of programs on the structural

view. This allows the user to see what the program is doing, rather than having to

comprehend trace data.

8

In addition to the highlighting mentioned, a variety of visualization tools are

included to increase the effectiveness of the system. This research selects color, layouts

and motion based on the foundations of program visualization to achieve maximum effect

[WAR00]. Focus + context is also included to allow a more complete view of the UML

object diagrams presented by the system.

This research implements a prototype debugging system with the described features

to evaluate the effectiveness of these techniques. Testing takes place to measure the

effectiveness of these techniques in various environments.

1.4 Summary

The primary goal of this research is to develop more effective methodologies for

debugging the JBI and other distributed systems. The researcher implements these

techniques to meet the objectives in a Java based system allowing automatic data

extraction during run-time. The data is reverse-engineered to present the user with UML

object diagrams, providing the user with essential structural information on the program

for debugging. The system also presents source code for the debugging process.

The research incorporates focus + context visualization techniques into the object

diagram view. This allows the user to monitor a much larger portion of the program

structure while maintaining access to detailed information for objects of interest.

Selective aggregation is an ideal technique for use with UML object diagrams due to their

hierarchical relationships. Other visualization techniques blend the view with global

information and local detail.

9

The research performs testing with a prototype system to obtain evidence to support

the effectiveness of these techniques. A variety of empirical and quantitative evidence

supports the use of these techniques for debugging of large and distributed systems.

10

2 Literature Review

2.1 Introduction

This chapter discusses background topics relevant to distributed system

visualization. The topics include debugging for single platforms and distributed systems,

the JPDA, automatic bug detection algorithms, software visualization, and visualization

in the context of debugging for distributed systems. A description of each of these topics

follows along with its relationship to the research.

2.2 Data Sampling

This section explores various methods of extracting data from debuggee systems

and factors that influence the appropriateness of these for use in distributed debugging for

this research.

2.2.1 Monitor Types

A monitor is some system that allows the collection of data from a system while it

is in operation [JAI91]. Three main types of monitors exist: hardware, software and

hybrid (some combination of the two). The following describes each of these and their

benefits and disadvantages in real-time monitoring with respect to two criteria. These

criteria include the requirement to access data without significant changes to the system

and the ability to gather information without altering system behavior or impacting

performance [SIM90].

Pure hardware monitors often do not meet the requirements of application

programmers. Their design and installation requires great expertise for the major

modifications required and offers little or no flexibility. The data they measure is often

11

too low level to be of use to application developers or testers, for example they may

monitor a particular memory location rather than a variable. However hardware monitors

have a distinct advantage over software and hybrid monitors. Hardware monitors do not

interfere with the System Under Test (SUT). As such, the required data can be gathered

with no effect to system behavior or performance.

Simmons explains that pure software monitors generally operate as a separate

thread on the SUT recording the data required by the user [SIM90]. The data recorded

can be rapidly modified should the user’s requirements change throughout the course of

the monitoring process, as they often do, particularly when the results are used for

debugging. Significant interference to the results counteracted the flexibility offered by

these systems. The monitor coexists in the execution environment of the SUT, sharing

both the processor and memory with the monitored program. It can be very difficult to

determine this effect, as many modern processors do not have constant execution times

for a given instruction sequence [HEN96].

Hybrid tools combine the benefits of both of these approaches. They allow re-

configuration of the extracted data and can present the data in a meaningful format, as

can standard software monitors [SIM90]. Provided they have a hardware data-gathering

component, they can also provide accurate data with minimal affect on the SUT.

2.2.1.1 Distributed Monitoring Systems

In distributed systems, a user cannot concurrently globally view or control all

processes due to the lack of global time and state. As such, Lamport’s Logical Clock is

often used to provide timing information. This allows the order of operations to be

determined but does not provide the time for an event as would a standard clock

12

[TAN02]. The same monitoring requirements still apply in this environment, i.e. low

intrusion, flexibility and resolution. This can be difficult considering each monitor must

send all data to a single location on the network.

For use in the JBI or any standard distributed system, hardware modification and

the installation of separate data buses are impractical. As such, care must be taken to

minimize the effects of the software monitor on the observed results.

2.2.2 Data Extraction

For an automated debugging tool, the method for data extraction from the

debuggee system is an important factor. Appelbe discusses that many systems currently

available for distributed debugging rely on time-consuming, cumbersome methods such

as tracing which relies on the explicit calls to an output device to capture event data

[APP93]. Topol hypothesizes that one of the main reasons for the limited use of

visualization tools in distributed and parallel systems is the difficulty in gathering

information [TOP94]. It is important for data extraction methods to be flexible, as

developers rarely know what and when to display before debugging begins.

Topol explains that the most common methods for data extraction are recording of

trace events and modification of middleware [TOP94]. Recording of trace events

involves inserting print statements into the source code of the system either manually or

via some automated aid. Obviously this is an intrusive procedure and very inflexible once

program execution has commenced. Trace data produces large amounts of data that the

system can save for later evaluation.

The other method Topol discusses, middleware modification, involves modifying

the software protocol providing communication between the various systems on the

13

network [TOP94]. Topol suggests this as an alternative to the intrusive nature of

recording trace events as discussed above. Developers could add extra data to system

messages allowing the creation of meaningful visualizations with minimal overhead. This

method provides even larger amounts of data, as all events produce data. It is also

possible to record this data for analysis later. However, this middleware modification still

lacks complete flexibility and produces huge amounts of data that may not be required.

2.2.2.1 Java Platform Debug Architecture

The JPDA is a recent addition to the Java Software Development Kit (SDK)

providing the capability for remote debugging of applications in the JVM as described in

[SUN]. Since debugging occurs at the JVM and not at the application itself, debugging

with JPDA can be performed by almost any two systems, a debugger and a debuggee,

with the JVM installed, regardless of the operating systems or configuration. The goals of

JPDA are to:

• Provide standard interfaces to simplify the creation and use of Java

debugging tools, regardless of platform

• Describe the complete architecture for these interfaces allowing remote

debugging

• Have a modular design

JPDA is comprised of two interfaces and a protocol. Figure 1 shows the integration

of these components and is discussed in the following paragraphs:

• Java Virtual Machine Debugger Interface (JVMDI),

• Java Debug Interface (JDI), and

14

• Java Debug Wire Protocol (JDWP).

Figure 1. JPDA system overview.

JDI provides an interface to a remote view of the debugging process occurring in a

JVM that may be located in another system. JDI is the most commonly used layer for

access as it is the highest level and easiest to use.

JVMDI defines the interface for the JVM to allow debugging by debugger

programs running in other JVMs. This is the source of all debugger specific information.

It includes requests for information from the JVM, actions such as setting and removing

breakpoints, and notification when the program counter reaches a breakpoint.

JDWP is the protocol that defines how two-way transfer of information should

occur between the debuggee process and the debugger front-end. It does not provide low-

level detail of the actual communication mechanisms; rather it defines the format of the

data transfer between the debugger and debuggee.

15

The JPDA provides the capability to extract data in a platform-independent way

from distributed systems for debugging. Use of the JPDA Application Programming

Interface (API) means implementation of debugger connections and data extraction are

relatively simple. The JPDA also reduces the effects of some of the problems caused by

other data extraction techniques as described.

2.3 Debugging Issues

Software systems are becoming increasingly large and complicated as technology

progresses and user requirements expand. This makes debugging difficult and is

compounded by the fact that many developers are not familiar with the subject of the

system they are creating. The following reviews some of the issues involved in the

process of debugging and the essential tools for a debugger. Prior to this discussion on

debugging, this paper introduces and defines bugs themselves.

2.3.1 Bug Background

Telles defines a bug as a problem with software that needs to be fixed [TEL01]. A

bug may occur in the requirements, architecture, design, or implementations. Many errors

in the expected operation of code can be worked around, however, the system should

match with the users’ requirements. Telles explains that software defects potentially

become bugs, and on average 25 defects are contained in every 1000 lines of code.

Bugs can be introduced at every stage of the Software Life Cycle, but are generally

a manifestation of the designer’s lack of understanding of the domain. Kan found a

correlation between the number of changes and enhancements made to a system and the

16

number of defects [KAN95]. The study found that around 0.628 defects were introduced

for each change/enhancement.

Telles classifies bugs into one of the following types [TEL01]:

• Requirement Bugs
• Design Bugs
• Implementation bugs
• Process Bugs
• Build Bugs
• Deployment Bugs
• Future Planning Bugs

As the bugs can be introduced at almost any stage, their effects may also vary

greatly. Telles classifies the effects as one of the following [TEL01]:

• Memory or Resource Leaks
• Logic Errors
• Coding Errors
• Memory Overruns
• Loop Errors
• Conditional Errors
• Pointer Errors
• Allocation/De-allocation errors
• Multi-threaded errors
• Timing errors
• Distributed Application errors
• Storage
• Integration
• Conversion
• Hard-Coded Lengths/Sizes
• Versioning Bugs
• Reuse
• Boolean

The consequences of the bug depend on the severity of its effects on the system,

ranging from minor annoyance to show-stoppers. Bugs affect companies through reduced

morale, monetary expense and reputation.

17

2.3.2 Debugging

This section defines debugging and the activities that take place during debugging.

Telles defines debugging as “the process of understanding the behavior of a system to

facilitate the removal of bugs [TEL01]”. Fixing the symptoms alone does not solve the

problem, and in fact may create new ones. Anecdotal evidence suggests that the

probability of introducing a new error while attempting to fix another is between 15 and

50 percent [TEL01]. Fixing the symptom without correcting the cause is a result of a lack

of understanding. Any tool that can increase understanding will go a long way towards

reducing the number of bugs in a system.

There are two factors affecting understanding in the debugging process. First, one

must understand how the system should operate based on the customer requirements. One

must also understand the implementation of the system in order to recognize the

differences in expected and actual behavior.

There is not a straightforward process to determine the location of a bug and

correct it. Many other side issues affect the operation of a system particularly in

distributed systems, where critical timing may exist and many systems are interacting

with each other.

Bugs are reproducible though this may not always appear to be the case. Some

bugs may be much harder to re-produce. It may take a complex series of events with

critical timing to recreate them. Specific data inputs, environmental conditions or

configuration may be only way to trigger others bugs.

Telles discusses several types of debugging methods ranging from the most

methodical to virtual guessing [TEL01]. These are now examined.

18

2.3.2.1 Scientific Method

As with other engineering fields, the scientific method involves forming a

hypothesis, gathering evidence to support or disprove it and continuing until the user can

prove or disprove their hypothesis. This method is particularly useful when the problem

is easily reproducible, for example, a particular input value results in an incorrect result.

2.3.2.2 Intuition

Intuition is a very common approach to debugging meaning the user “knows”

where the problem is. It requires a thorough understanding of the code and where the bug

is likely to be, based on the symptoms being displayed by the system.

2.3.2.3 Leap of Faith

In effect, a leap of faith is simply an educated guess. The developer examines

some of the symptoms and jumps to conclusion without truly examining the behavior of

the system. A leap of faith is more likely to lead one in the wrong direction.

2.3.2.4 Diagnostics

Diagnostic debugging, also known as advance strike debugging, involves

predicting in advance the type and location of likely errors in the system and logging

them for the programmer to correct later on in the analysis process.

 Several approaches to debugging are discussed. When considered in relation to the

goal of this research, i.e. developing a tool to assist in this process, then the tool must be

developed to improve the most common cases first with consideration for as many

methods as possible. The tool is not able to assist with predicting where bugs may occur

19

before creation of the system (i.e. diagnostic debugging); however, it is envisaged that

benefits are made to the other methods discussed.

2.3.2.5 The Debugging Process

Telles discusses guidelines for effective debugging of a system [TEL01]. As

discussed, it may not always be an easy process to locate bugs, but a methodical approach

may be of assistance. Telles guidelines are now reviewed in detail.

• Identify the problem. Find out if the problem can be reproduced and under

what conditions. Try to find see what is happening so further information

can be gathered.

• Determine if the problem is actually a bug. Make sure the bug is indeed a

bug, there are cases where this may not be the case. If the bug is a problem,

then determine why it does not match the specification or user requirements

based on observations of the system, not examination of the code.

• Confirm what the program should be doing. Check the specification or

updated user requirements to ensure that the correct operation of the system

is known.

• Examine the program behavior. The operation of the system must be

established to compare against correct operation of the system. This will

require code analysis and is where tools can be particularly useful in

narrowing down the search region.

• Gather information. Some ideas will be generated on what may be causing

the error. To ensure that nothing is missed, all the relevant information

20

should be gathered. This may include collecting data or bug reports from

users, examining log files generated by the system and personal

observations by the tester. Symptoms must be examined to see if they are

the actual bug or simply a side affect of its presence. Use test cases that

remove redundant information from bug reports and narrow in on the

cause. Similar problems should be examined in bug listings as the newly

detected error may be caused by the same developer, algorithm or even

reuse of code. Recent changes to the system should be carefully considered

should the bug be a new occurrence. Changes should be well documented

to assist in this process. Finally, environmental information and other

external influences should be scrutinized to see if they too have changed.

All these pieces of information will assist in determining the true cause of

the bug in the system.

• With the information collected in these steps and knowledge of the correct

and actual system operation, the developer should be able to come up with

a hypothesis. The hypothesis should fit all the symptoms correctly. Should

it not match all the evidence then further examination of the system may be

required.

• The hypothesis should be evolved until the true cause of the bug is located

and a solution found. Test cases should be executed to ensure correct

program operation.

21

2.3.3 Debugging Tools

A variety of tools assist the debugging process by providing the users with all of

the information they require. Effective tools transform the data to provide more meaning

rather than just providing raw data. Test harnesses assist in limiting the scope of the tests

to a likely region. Various debugging tools are able to narrow down the region of code

under test. Logging and tracing are similar methods providing detailed information of the

path of execution through the program. Telles recommends disabling the verbose output

of these tools as soon as the likely region of the bug is determined [TEL01]. Without

disabling the output, the volume of data provided may actually confuse the issue.

Once the likely region of the bug has been identified, mid-level debugging tools

may be used to examine the problem more closely. This class of tools assumed the user

has knowledge of the symptoms, likely location and a reasonable hypothesis of the cause

of the bug. Examples of mid-level debugging tools include memory leak detection tools

and, cross-indexing and usage tools. Telles discusses how memory leak detection tools

are able to detect code that is likely to be causing a problem [TEL01]. Cross-indexing and

usage tools are able to trace bottom-up through the code to find examples of where a

function or a global variable is accessed. These tools are also able to find dead code

within a program.

Debuggers allow the developer to stop the system in its execution at any point and

examine the values of variables and in some cases step backwards through the code.

These capabilities are highly desirable for any debugging tool.

22

2.3.4 Automatic Bug Detection Methods

The methods discussed have dealt with the broader subject of obtaining data to

build for the user to develop an understanding of the system. Although these concepts are

of great importance in distributed debugging, when combined with other tools, they can

be far more effective.

Understanding of program operation significantly improves the probability of

finding a bug and a good understanding reduces the time involved in this process.

However, this method still requires the user alone to determine where the bug might be

located based on their knowledge of the system and the programs’ expected flow. For

large systems, this process can be daunting. Three methods to combat this situation are

discussed.

2.3.4.1 Invariant Based Detection

Hangal describes DIDUCE, an invariant based bug detection system allowing

automatic detection of errors and their causes in Java based systems [HAN02]. The

system formulates hypotheses of invariants in program behavior. The invariants are

initially created at a very strict level and relaxed as program flow proceeds and new

acceptable behaviors are detected. Should a significant error pass through the system, the

invariant would have to be relaxed drastically to accommodate it. In this way, bugs can

be rapidly detected.

DIDUCE has been successfully used on several Java programs of significant size

and complexity. It has been able to detect algorithm and input errors in addition to

finding problems in the interface between program modules [HAN02]. The system has

also been able to highlight rare cases often forgotten or inappropriately dealt with. This

23

type of detection method is best used when the debuggee system requires little human

interaction.

2.3.4.2 Visualization of Test Results

Another approach, developed by Jones, relies heavily on existing test cases and

results to locate errors [JON02]. Such a system analyzes the execution of the program

and determines the probability of a bug occurring for each line of code. This is easy to

compute, knowing the lines of code each test case executes and whether or not the test

case is successful. In this manner, the flawed region can be easily located, particularly if

it lies within a conditional branch.

Tarantula, the system Jones discussed, displays the results of this analysis using

visualization as in Figure 2. Colors highlight regions of the program that are likely to

contain flaws [JON02]. The user can select these regions to analyze the program at the

code level. Typically, this system requires the execution and analysis of thousands of test

cases for meaningful results. As a result, it is less automated than the approach discussed

previously.

2.3.4.3 Indirect Detection Methods

Other methods focus on detection of bugs through visualization of program

execution parameters. Although they do not usually directly locate an erroneous line of

code, they can go a long way towards locating the bug. One example of this is the

Software Visualization Supporting Space (SVSS) as described by Amari [AMA99]. The

trace-data comparison view in this system visualizes module interaction against time

24

(since commencement of program). Absence of interaction between models and incorrect

interactions can reveal flaws in the program.

One of the main benefits of this approach is that is generally far easier to

implement, as less analysis is performed by the software. It is then able to take advantage

of pre-cognitive processing by the viewer. However to make judgments requires

knowledge of how the execution should look when performing correctly.

Figure 2. Tarantula source analysis display.

SVSS also contains a view to display specified data in the program. By displaying

data of interest, the user can closely monitor likely fault regions in the program. For

example, the program may display results of all those modules that read or alter the value

25

of a variable and the order of these operations. This is particularly useful in situations

where the program handles exceptions or invokes warning messages, as the state and

location of the error causing code can be seen without any further effort. Figure 3 shows

a screenshot of SVSS where functions highlighted in black directly call error routines in

the system.

Figure 3. SVSS display highlights functions that call error routines.

2.4 Visualization

In recent times visualization with the aid of computers has greatly added to a

human’s ability for problem solving. In short, visualization greatly increases the

bandwidth humans can accept data with and rapidly process, finding visual oddities with

the image.

The term visualization has evolved along with the capabilities of our technology.

An accepted definition for the term is a graphical representation of data or concepts as an

external construct supporting decision-making [WAR00].

Visualization helps us to work more efficiently in several ways. One of these is its

effect on our usable memory. Miller describes how human working memory is only

:aport_*EroE

26

capable of handling five to nine chunks of information at a time [MIL56]. Ware defines a

chunk in the field of cognitive psychology as an important unit of stored information,

often the aggregate of other pieces of information [WAR00]. A chunk can be almost

anything, an object, an attribute or an image. Most importantly, visualization allows the

user to leave the image of the chunk on the display rather than storing it in their working

memory. In addition, a user can detect interesting data without cognitive effort by

observing changes in patterns and other visual attributes.

Ware explains that due to pre-attentive processing, certain parts of an image can

tend to jump out at us [WAR00]. This processing is similar to a filter. Pre-attentive

processing determines the visual objects to pass up for attentive processing. This is

probably the most important capability to possess for data visualization - the ability to

filter millions of data points without attentively processing each of them. Various visual

attributes take advantage of pre-attentive processing; these include:

• Color,

• Shading,

• Patterns

• Movement, and

• Brightness

Ware discusses the details of the relative affect of each of these attributes and those that

are most effective [WAR00].

The importance of memory and the power of pre-attentive processing from data

visualization have been discussed. How the visualization is used can also affect its worth.

Cultural differences may alter the perception of a symbol to different people. In

visualization design, one must be careful to avoid unknowingly triggering an optical

27

illusion. Ware discusses several types of optical illusions and how to overcome

them [WAR00]. Card mentions the problems associated with the comparison of visual

objects [CAR99]. These problems may prevent the user from gaining even a qualitative

insight from a picture. Position and shape are the two main factors to consider to avoid

illusions.

2.4.1 Program Visualization

Having considered the benefits of data visualization and methods to optimize it,

this research evaluates visualization techniques for program execution. Visualization

techniques are also discussed for distributed systems, debugging and distributed

debugging.

Stasko advises that an effective software visualization environment builds on the

text based techniques generally used, with displays that make better use of the human-

computer interface [STA98]. To be more valuable than these text-based methods, the

visualizations must filter information for relevance (by user manipulation) and the user

must easily understand them.

 The user rarely knows of erroneous behavior from the observed system in

advance. As such, the system must be flexible to capture this dynamic data. Run-time

data must be displayed dynamically making it more difficult to present than static data.

With this in mind, Stasko developed the following principles for dynamic software

display [STA98].

Animation – Animation has the ability to display temporal relationships.

Animation can be constructed by modifying size, shape, position or the appearance of an

object.

28

Metaphors – metaphors are symbols that represent objects in a way which reduces

the cognitive load on the user. The system should minimize extra learning required to

recognize these symbols.

Interconnection – Interconnection is used to represent relationships between

components and their patterns of behavior.

Interaction – Visualizations are rarely effective without the user controlling what

to display, how, and when. The controls should be as simple as possible.

Elaborate systems such as Stasko’s Tango perform algorithm animation. In Tango,

the user specifies the animation to construct from generic transformations [STA90]. This

research aims to minimize the complexity of animation by limiting the number of

behaviors that are animated and selecting simple animation types.

A variety of common techniques has been developed for program visualization.

Stasko reviews a variety of methods, each having its own strengths [STA98]. An

important issue with program visualization is the tradeoff between performance of the

visualization and its ease of use.

2.4.1.1 The Unified Modeling Language (UML)

UML provides diagrams to model static software structure and different aspects of

dynamic system behavior [OMG00]. The software industry is widely aware of UML’s

symbols and associated semantics. To accept any visualization solution for software

systems, the software community requires the use of UML symbology and semantics.

UML has a variety of diagrams relevant to software engineering including class, use case,

sequence, state and deployment diagrams.

29

The class diagram is the most widely used of all UML diagrams [COO99]. A class

diagram includes rectangular nodes depicting classes with annotated lines between these

nodes to indicate the relationships between classes. Rectangular nodes depicting classes

are annotated with textual labels to identify the class and its associated state variables and

behaviors. Software systems often consist of hundreds or thousands of unique classes.

Analysis and comprehension of such a software system requires both a high-level

overview of the system structure (consisting of numerous classes and the relationships

among them) and a detailed examination of the characteristics of individual classes or

small subsets of classes. Software visualization techniques should provide access to both

high level and detailed views.

2.4.1.2 Program Visualization Evaluation Techniques

Visualization of program structure, control flow and data has long been a part of

software development. Examples include flow charts, class diagrams, state-charts, pretty

printing of code, and algorithm animation. To evaluate program visualization techniques,

Roman and Cox propose a taxonomy consisting of five criteria – scope, abstraction,

specification method, interface and presentation [ROM93]. Price et al identify additional

criteria to include fidelity and invasiveness [PRI97].

More powerful visualization techniques present a broad scope, covering many

aspects of a program such as code, data state, control state, and behavior. In presenting

this scope, these techniques should provide many views with multiple levels of

abstraction from high-level design to code. Access to multiple levels of abstraction gives

the user the ability to see overview for context while having access to lower level

information necessary for detailed problem solving. The visualization system needs

30

specification methods that require minimal effort from the user while providing sufficient

flexibility for the viewer to customize the content they explore. The interface for

interacting with the visual presentation should be intuitive and easy to understand and

use. In general, direct manipulation interfaces tend to be more intuitive than interaction

through controls. Presentation semantics must be sufficiently abstract and powerful to

reduce the cognitive load on the viewer. It is especially important to capture the complex

relationships between various program aspects. Specification and presentation of program

information must minimize invasiveness to the program while maintaining fidelity. The

visualization should not alter the behavior of the program or use misleading semantics

that lead to incorrect interpretation.

Debuggers such as those in Borland JBuilder illustrate the low end of program

visualization techniques [BOR]. These debuggers provide little abstraction and

minimalist interface capabilities, that is, debugging takes place with a GUI but the data

itself has not undergone any transformation. In general, users are able to interact with

textual representations of code and data state using simple text, menu, or button

commands. Users have very limited capability to specify the desired information and

visual presentation. Presentation semantics are no more than those provided by the

underlying code.

2.4.2 Visualization of Distributed Systems for Debugging

Researchers must consider a variety of complications when designing a system for

the visualization of distributed or concurrent programs. These systems are by their nature,

larger and vastly more complex producing large amounts of data in comparison to a

standard sequential program. Stasko surmises that knowledge of the nature of the

31

interaction between components and the timing of their interactions becomes the broad

goal of distributed visualization systems [STA98].

Wong discusses a generic visualization framework for debugging object-based

distributed programs [WON01]. This proposed system relies on detecting errors in a

distributed program based on an agent’s location within the system. It assumes the agents

are all operating correctly as standalone systems.

Three processes must take place for effective program visualization, particularly in

distributed systems. These processes are data collection, analysis and display. The

following sections analyze each of these processes in further detail.

2.4.2.1 Data Collection

Data collection in distributed systems results in a further complication. Unlike

sequential systems, multiple breakpoints must be set on different systems in multiple

locations. The system must also deal with communications in transit at the time and a

variety of other shared resources.

Stasko discusses the types of interesting events that may be suitable for collection

via instrumentation of the program and the levels the collection can take place [STA98].

For distributed and concurrent systems, interesting events at the operating system level

may include message sends and receives, process creation, scheduling, page faults,

context switching, memory access, and system calls. At the run-time level, the state of

queues, lock actions, critical points and procedure calls and returns may be of use.

Finally, at the application level, data from any data type within the program may be of

interest and it should all be obtainable. Data at the application level is of a higher-level

and more abstract. Data from all of these layers is of interest when debugging a system.

32

Monitoring of distributed systems generates large amounts of data at a rapid rate.

As such, the collection should be as restrictive as possible, yet provide all that is required.

The use of this data in real-time monitoring introduces further complications. The data

and events happen so rapidly that a human is unable to monitor them effectively. One

possible solution for this problem is the recording of events. Recording creates large data

files that allow the user to replay the data and trace the error. A second option actually

stops or slows down the execution of the program, as is often the case with debugging.

2.4.2.2 Analysis

Analysis involves the processing of collected data into a different format or into a

more abstract representation that is more suitable for display. Analysis components may

calculate statistics for performance analysis of the system to provide an overview of

operation. Stasko describes that for any real-time system, CPU time constraints limit the

amount of analysis [STA98]. With improved data analysis, the resolution of the displayed

information increases and most likely becomes more effective. However, the delay

between updates to the display will increase with this extra processing. This is yet

another tradeoff to consider in visualization system design.

Analysis in distributed systems often involves detection of non-determinism

between processes. Such analysis is NP-hard or worse and may be more easily detected

from the display of event-trace graphs [STA98].

2.4.2.3 Display

The goals for displaying distributed programs are the same as those for single-

platform systems. That is, the display should highlight data using appearance, shape,

33

position and movement to aid the user. Stasko also states that extra difficulty arises from

the scale of these systems and event ordering issues [STA98].

The most important events to convey are the interactions between processes. The

display must show this accurately and preferably with some aggregation of events to

remove complexity from the display so as not to confuse the user [JER97]. Displays are

most effective when they match with the mental image the user already has of the system

and are generally more abstract as they occur at a higher level.

In addition to displaying the behavior of the system, it is important to display the

abstract view with the source code. It is also preferable to link the code with the matching

region in the abstract view through highlighting, allowing the user to quickly locate and

correct an error. [JER97]

Researchers use several types of displays to represent distributed system behavior.

These displays are reviewed here.

2.4.2.3.1 Graphs

Graphs are often used in system displays where the vertices represent some

module in the system and the arcs represent communication or a temporal order

[KRA97]. Figure 4 shows a graph view from the Gthreads package. This view shows the

creation of a new thread at the fork and traces the execution from function to function

[KRA97]. Animation can effectively show the causality of events in the system and those

modules that are involved. This is particularly useful for debugging and can be useful for

detecting unexpected behavior sequences or modules within the program.

34

2.4.2.3.2 Circular display

Bowman describes how Conch arranges processes around the outside of a circular

display [BOW94]. Messages, shown as small colored discs, move from the originating

process to the receiving process. Undelivered messages remain in the middle of the

circle, allowing the user to identify them easily as shown in Figure 5.

Figure 4. Graph view from the Gthreads package.

2.4.2.3.3 Time-process graph

Many visual debugging systems provide a time-process display. The display shows

the time domain on one axis with individual processes drawn on the other axis as shown

51 Functlom

-

HWKB.*

35

in Figure 6 [KRA97]. Time-process graphs show the synchronized interaction amongst

processes as intersections between these lines. Jerding discusses the benefits of collapsing

hierarchical processes to reduce clutter from the view or allowing examination in more

detail if required [JER97].

Figure 5. Conch Process communication display

Figure 6. Time-process communication graph from ParaGraph.

niiE
HiiUtfUiUlBMa

36

2.4.3 Visualization Methods

As discussed previously, there is a massive amount of information available with

large and distributed systems. Visualization methods exist that can make these large

amounts of data far easier to deal with for the user. This section focuses on those

techniques showing a complete view of the data while providing detail for an area of

interest. There are two main methods that do this with the display. Focus + context shows

detail within the existing display, and overview + detail maintains separate areas for

displaying the different levels of detail.

2.4.3.1 Overview + Detail

Overview + detail presents global location with detail shown for an area of

interest. Card describes the advantages of this technique. The overview reduces search

within the data display and improves the ability to detect patterns [CAR99]. The display

of the overview also allows the user to decide more easily their next move. The display of

the detail on the other hand allows rapid access to meaningful data. This combination of

the two views allows the user to track a region of interest in the global display while

having detailed information to use.

This method is generally implemented with some highlighting of the global view

to indicate the current region of detailed display. The detailed information is then

presented elsewhere. The user then easily tracks updates to the position in the global

context. Figure 7 shows an example of this technique applied to code, the highlighting is

shown on each higher-level view [CAR99]. Shneiderman advises that this zoomed detail

view should have an effective zoom factor of between 3 and 30. A visualization should

present intermediate views if the view factor is greater than 30 [SHN98].

37

Card states that the detailed view can be presented either in a different location on

the screen (space multiplexing) or at a different time (time multiplexing) [CAR99]. There

are obviously tradeoffs associated with each approach and the ratios involved in the

multiplexing between the two views.

The detailed view may be a scaled view of the overview or it may use a different

representation to present more information with extra clarity. For example, a user will not

easily recognize a photograph of a hospital on a map, particularly if they are not familiar

with the pictured hospital. They will recognize a symbol of a hospital such as a red cross

far more easily.

User control of the views becomes an important issue in the design of overview +

detail visualizations. Zoom-and-replace is a technique used with overview + detail where

a mouse-click by the user on a location in the global display results in the display of the

selected location in detail.

Figure 7. Overview + detail technique with intermediate view (from SeeSoft).

38

With use of a model, the user develops some contextual awareness. During the

transition to an alternate display, it is highly desirable to maintain this context. Along

these lines, Wickens develops the concept of visual momentum to create a set of user-

interface design principles [WIC92]. One of these principles suggests that to preserve

context, smooth transitions should be used so that the relative position of each element

may be tracked.

2.4.3.2 Focus + Context

Card also reviews the focus + context technique. The concept behind it is based on

three premises [CAR99]. The first is that the user requires both the overall picture and a

detail view. The second premise states that there may be different requirements for the

information in the detail view than in the overall display. The last premise proposes that

the visualization combines this information into a single dynamic view. Figure 8 shows a

standard flat view of text from a chapter in a book displaying sequential headings. Figure

9 shows a fisheye view of the text demonstrating Focus + Context, which shows some

localized headings with context provided by major headings for the entire chapter.

Bertin explains that it is beneficial to combine the two views because when

information is separated into two regions, visual search and working memory limitations

result in reduced performance [BER77]. A second reason to combine the two views is

identified by Furnas during research into fisheye views [FUR81]. It showed that the

user’s attention drops off away from the areas of detail. Various methods take advantage

of this observation, relating the level of detail to the apparent interest in the region by the

user. This improves the space-time efficiency of the user, a limited resource. This

efficiency is increased as more information that is useful is displayed per unit area and

39

the average time to find an item of interest is reduced as it is more likely to be already

displayed on the screen. Card further explains how focus + context uses these principles

to reduce the cost of accessing information which in turn results in increased

cognition [CAR99].

Figure 8. Flat view of chapter.

Figure 9. Furnas fisheye view of text from Figure 8.

40

Systems can implement focus + context with a variety of methods that provide

selective reduction of the presented information. These methods include filtering out

extraneous information, selective aggregation of related information, micro-macro

readings, highlighting, and distortion [CAR99].

Of particular interest for graph structures is the concept of selective aggregation.

This method hides aggregate elements within another component. To achieve a focus +

context view, hierarchical structures collapse away from the user’s focus. When the user

brings content into focus, the hierarchy expands revealing the aggregate relationships

within. UML has aggregation and inheritance relationships that are ideal for this

technique.

Other transforms may be required to blend the aggregate view with the global

view. Several fisheye lenses are available for this purpose as discussed by Leung

[LEU94]. In order to preserve the appearance of links and location context in UML, a

lens that minimizes distortion is best for this application. As such, a step-wise function

similar to that used in the Furnas Fisheye [FUR81] is more suitable than nonlinear or

polar transforms.

Köth and Minas apply focus + context techniques to UML models in DIAGEN

[KOT01]. DIAGEN is designed to provide adjustable detail levels for editing large

diagrams. When used for UML diagrams, DIAGEN uses selective aggregation to hide the

contents of packages and other components to reduce the amount of detailed information

displayed. While package aggregation can improve navigation and access to system level

structures, it does not address the structures within packages that can still be considerably

large and difficult to navigate.

41

2.5 Graph Layouts

Just as the above-mentioned visualization techniques can assist the user in

comprehension of an image, graph layout algorithms may have a drastic effect on the

clarity and space efficiency of a graph. Graphs are often used to model structures such as

software, where the nodes or vertices are entities within a software model and edges in

the graph represent relationships [BAT99].

The aesthetics of a graph describe its graphical properties. Commonly adopted

aesthetics include crossings, area, total or uniform edge length, total or uniform bends,

angular resolution, aspect ratio and symmetry [BAT99].

Constraints describe how to lay out sub-graphs within the main graph. For

example, a diagram representing a sequential model may show a number of nodes in a

left-right sequence. Constraints control the layout in order to meet the expectations of

users (conventions) or standards of a particular system. Examples of constraints include

center, external, cluster, left-right sequence and shape [BAT99].

For any graph, there is no absolute best solution because aesthetics often conflict.

Even if the chosen aesthetics do not conflict, it is often impossible or certainly

computationally expensive to optimize them all. As such, precedence in aesthetics is

often a necessary compromise for any graph layout algorithm [BAT99].

The algorithm to layout a UML class diagram should preserve the hierarchical

nature of the diagram. A variety of tools for displaying class diagrams present

generalization hierarchies down the vertical axis [RAT], [AUB]. Several layout

techniques are analyzed with the aim of implementing this hierarchical transformation.

The best algorithm for this purpose is a layered drawing of the digraph [BAT99]. A

42

layered approach allows for a hierarchical presentation with vertices arranged in

horizontal layers as shown in the example in Figure 10. One can apply this approach to

any directed graph. By considering the UML diagram to be undirected for the purpose of

layout, one can reduce complexity in the algorithm. The layered method consists of the

following steps:

1. Layer Assignment: Assign vertices to horizontal layers, this determines their y-
coordinate.

2. Crossing reduction: Order the vertices within each layer to minimize edge
crossings.

3. Horizontal coordinate assignment: determine the x-coordinate for each vertex.

Figure 10. Example of diagram with layered layout.

The first step, layer assignment, requires a process to determine the layer for each

vertex. For UML, a layer difference exists across each generalization relationship, with

the top most vertex being the most generalized class. In the simple case where each

vertex is the same size, the y-coordinate of each layer is determined by adding a suitable

43

gap to the last layer. The standard layered approach requires that the digraph be compact

in both dimensions and that the gaps between vertices are fixed.

For the second step, Di Battista describes the insertion of dummy nodes to ensure

that a relation does not directly cross more than one layer. This ensures minimization of

edge crossing [BAT99]. When the vertices are of variable size, the insertion of dummy

nodes will not prevent edge crossings in the graph.

The third step requires the positioning of each vertex on a layer. The choice of

algorithm for this step is dependent on user requirements.

2.6 User Interfaces

User interactivity and control is an important subject to consider in software

design. The user interface has a large affect on whether a program has continued use,

even if the functionality itself is acceptable. As such, the system implemented in this

research should strive to meet the goals required for an effective interface. With this in

mind, Shneiderman discusses some goals for effective GUI design [SHN98].

2.6.1 The Golden Rules for GUI Design [SHN98]

• Strive for consistency – use consistent sequences of actions as well as
identical terminology for prompts.

• Enable frequent users to use shortcuts – Hotkeys reduce the time taken to

initiate an action for frequent users.

• Offer informative feedback – System responses to user requests should be
rapid and helpful to the user.

• Design dialogs to yield closure – Group sequences of actions with an

informative and meaningful end to that group.

• Offer error prevention and simple error handling – design the system so the
user cannot make a simple error and offer simple instructions to recover.

44

• Permit easy reversal of actions – this allows the user to try something without

the fear of errors destroying their work.

• Support the internal locus of control – make the user the initiator of any

system response so they feel they are in control.

• Reduce short-term memory load – keep displays simple with online help to
information.

2.7 Summary

This chapter discusses some important background information relevant to

visualization and debugging for distributed systems. Data extraction techniques,

including hardware, software and hybrid monitors are covered. The chapter discusses a

variety of debugging issues including automatic bug detection systems.

Visualization techniques greatly assist other chosen methods in meeting research

goals. Several techniques are discussed for program execution visualization, including

monitoring of distributed systems. This chapter introduces visualization techniques for

debugging of standalone and distributed systems. In addition, it examines methods for

display of global context in conjunction with detail information. These techniques are

essential for dealing with large program structures. Finally, the research presents some

guidelines for GUI design to ensure effective computer-human interaction.

45

3 System Design

3.1 Introduction

Software engineers typically use UML to communicate software analysis and

design models, but once these models are implemented, the UML is seldom referenced.

Only recently have researchers begun exploring languages such as UML for execution

analysis. Examples include Mehner’s extensions to UML to incorporate execution

semantics of concurrent programs [MEH00]. The disconnect between design and

implementation is made worse by the lack of automated support for testing and

debugging with UML. Debugging any system requires structural knowledge of the

software and detailed information about components (down to the source code level).

Traditional debugging involves the user creating a mental image of the structure and

execution path based on source code. As Miller discusses, the 7 ± 2 rule makes it very

difficult for humans to construct large mental models [MIL56]. To alleviate this problem,

this research proposes to create a visual execution model of the software for the user.

3.2 Objectives

The overarching goal of this research is to develop techniques to simplify

distributed debugging. As discussed in Chapter 2, the use of visualization techniques can

assist with the presentation of large amounts of information. Visual techniques may allow

access to more relevant data in less time with less cognitive processing and can make the

transfer between human and computer more effective. The goal is to provide a visual

presentation that facilitates system evaluation using high-level design representations

rather than stepping through lines of code. The hypothesis developed from this goal is

46

that providing the user with a visually enhanced debugging system is more effective than

a standard debugger for large and distributed systems. In order to assess the success of

the hypothesis, a prototype system is created and tests run. The following sections present

the visual and system objectives.

3.2.1 Visual

As discussed above, the intention of the visualizations is to enhance the debugging

experience for the user. For effective debugging, it is essential for users to have access to

various levels of abstraction. The system should present both high-level views and

detailed information to allow precise debugging.

Paige identifies nine factors to consider when designing and evaluating modeling

languages—simplicity, uniqueness, consistency, seamlessness, reversibility, scalability,

supportability, reliability, and space economy [PAI00]. One could argue the degree to

which UML satisfies many of these factors. However, this research only considers space

economy. Space economy requires that “models should take up as little space on the

printed page as possible [PAI00].” UML does not effectively address space economy,

leaving lots of unused space within and between components.

UML’s inefficient use of space results in models that cover many pages for large

systems. Navigating through many pages significantly increases the time to access

components of interest. In addition, by spreading the model over multiple pages, it is not

possible to simultaneously view high-level system structure and individual component

details. One goal of this work is to maintain the symbology and semantics of UML while

improving its space efficiency to accommodate rapid access to both high level and

detailed system information.

47

The research summarizes the visual requirements of the system as follows:

● The user should have views ranging from source code to high-level architectural
views,

● The model should be represented in a familiar manner,

● The system should preserve user context,

● The display should be dynamic to match the changing run-time nature of
software, and

● The system should provide improved space efficiency to reduce search while
presenting the user with detail for a region of interest.

3.2.2 Design

This research achieves the above visual objectives in a prototype system to

facilitate evaluation of their effectiveness. This section addresses the functional,

performance and user requirements for this system to be effective. The system must be

user-friendly and functional. Software engineering principles, including the use of design

patterns, are considered to make the tool more easily adapted to meet future

requirements. As many of the actions and their associated algorithms are computationally

intensive, there is also consideration of efficient data storage and processing. The

prototype system should have:

● The ability to monitor or spawn processes for debugging in a distributed
environment,

● The capability to automatically reverse engineer systems,

● The ability to display multiple systems over socket connections for debugging,

● Unchanged system behavior of monitored programs,

● Minimal effect on system performance,

● Standard debugging controls,

● Well designed GUI with consideration of Shneiderman’s rules [SHN98],

48

● Low CPU load and memory usage for the monitoring system, and

● A design adhering to the principles of software engineering wherever possible to
ensure it adapts for future requirements.

3.3 Experimental Techniques

To test the hypothesis that a visual debugger with the capabilities described is

more effective than a standard debugger for large and distributed systems requires testing

in the intended environment. As such, a prototype system is implemented to allow this

comparison to take place. In developing a prototype system, greater testing and

refinement of the methods can take place leading to a more thorough evaluation of the

hypothesis.

Most objective methods require months of test design, special facilities, and user

trials on many subjects to provide quantitative results [USA]. Examples of these

objective methods include the performance measurement technique and retrospective

testing. Alternatively, users or expert analysts may compare the system with a previous

system in a more subjective manner. In this research, the visual distributed debugger

prototype is compared against debuggers currently available in an Integrated

Development Environment (IDE). A mixture of quantitative estimates (wherever

possible) and empirical results is used to support the hypothesis of this research. The

research evaluates the system against the program visualization criteria established in

Chapter 2.

The design and implementation of the prototype is conducted in a modular manner.

Testing of the system takes place in the same way. Initial analysis takes place on the

effectiveness of the focus + context techniques. The modified UML displays are

compared to those in the original ArgoUML. The overall goal of this part of the research

49

is to maintain the symbology and semantics of UML while improving its space efficiency

to accommodate rapid access to both high level and detailed system information. The

research analyzes the effectiveness of the techniques with respect to this goal.

The researcher extracts quantitative results based on the number of classes

displayable in a set screen area. Empirical discussion is also be generated to support the

hypothesis that these visualization techniques better display distributed systems than

standard displays.

Evaluation of the effectiveness of the overall debugging system is empirically

based. A review of the debugging experience takes place for two different systems. This

allows testing of the debugger for two test loads: distributed systems and large systems.

3.4 Experimental Metrics

As with most human-computer interactive activities, it is difficult to quantify the

effectiveness of this system under test, in this case, the visual debugger. This section

discusses the quantitative and empirical techniques used to gather as much objective

evidence as possible and subjective evidence where it is not.

As a result of the type of testing chosen to be conducted, there are only four

metrics: the number of viewable classes displayed in a unit area, the empirical evidence

gathered in support of the hypothesis as discussed and two types of resource usage data.

The empirical evidence includes discussion on the effectiveness of debugging with these

techniques including the effects on access time, cognition and the size of portion of the

model able to be displayed on a screen. The resource information will include the Central

Processing Unit (CPU) utilization as a percent of that available and memory usage by the

debugger system.

50

3.5 System Architecture

This section analyzes the resultant system architecture of the developed prototype.

To simplify the development process, modifications are made to existing code where

possible. The prototype uses an estimated 500,000 lines of code to reduce the

development workload. This re-used code is based on the ArgoUML project. Figure 11

shows a high-level architectural view of the overall system.

This research adds a series of visual modifications, primarily focus + context

techniques, to the ArgoUML framework. Chapter 4 discusses these modifications in more

detail. The visual modification process retrieves input data from a NovoSoft UML

Model, an open-source library for storing UML. Figure 11 also shows the integration of

the debuggee JVMs and the connections to them into the rest of the system. JPDA

demonstration software forms the basis for the debuggee connection system. Two types

of connections to the JVM are available: shared memory and sockets.

The overall system architecture is primarily event based. Observer threads for each

virtual machine connection detect modifications to the UML models. These observers

then trigger visual modifications and update the screen as required.

As discussed above, the high-level data flow is primarily event based. This section

provides a more detailed view of the high-level data flow. Figure 12 shows a high-level

data flow model for the entire system. The observer searches for new classes and class

information in the debuggee JVM. The UML model is constructed and updated through a

reverse-engineering process as information becomes available from the connected JVMs.

The UML model is stored in a NovoSoft UML library. The ExecutionManager classes

control the connections and pass the data to observer threads. These threads add to the

51

UML model and call visual modification processes when required. The display of the

model updates when the threads call the visual modification processes. The user is able to

see the resultant view of the software along with source code and debuggee process input

and output. The user may also update the display by retrieving further information from

the NovoSoft model.

Figure 11. High-level system architecture.

52

Figure 12. Prototype system data flow model.

Figure 13 presents a pseudo code description of the processing involved for each

debuggee process. Chapter 5 gives a more detailed explanation of the executed processes

and their order.

53

Figure 13. Pseudo code for data flow.

3.5.1 ArgoUML

ArgoUML is derived from the Graph Editing Framework (GEF) that provides

basic capabilities to display a variety of simple shapes and connect them with links

[GEF]. ArgoUML was developed by a separate research project [ARG] and it provides

additional functionality to form a CASE tool. During the implementation of the prototype

for this research, much of the superfluous ArgoUML functionality has been removed to

improve system performance. In particular, separate critiquing and To-Do threads have

been removed as they are no longer relevant for this new functionality. The most

important parts of ArgoUML for this research are the components responsible for

drawing class diagrams. This section explores these components further.

Figure 14 shows the inheritance hierarchy in the figure elements contained in both

GEF and ArgoUML. The basic class used to represent a graphical component is Fig.

Other classes extend Fig to provide the functionality required for each UML component.

In most cases, the functionality can be determined based on the name of the class. Of note

Connect to JVM
Do

Do reverse engineering for model
If model is changed
 Update model
 Update Object diagram on screen
 For each segment
 Set focal points

View transform – Focus + Context
Apply Graph layout

While JVM is running

54

is the FigEdgePoly; this class extends a FigEdge which represents a start and end point

for a line. The FigEdgePoly class provides a mechanism to draw the line between these

points as a series of connected lines to avoid crossings.

Figure 14. Display figure hierarchy for ArgoUML.

The inheritance hierarchy shown in Figure 15 describes the relationships between

classes used to represent UML components. These classes are all contained in the

NovoSoft UML library used by ArgoUML.

3.5.2 Debug Interface with JPDA

As discussed, the debugger component in the system is based on JPDA

demonstration code. This component establishes a connection to the debuggee JVM

which is stored in an execution manager. The JPDA defines an API for accessing data

from the JVM. The execution manager maintains methods to extract data from the JVM

by using the JPDA API. The user should have a simple means of extracting data from the

debuggee program but the execution manager is still too low level for this. To improve

data access, the system includes a CommandInterpreter class. The user or a user

55

program can retrieve data from the JVM with simple commands, for example “classes”

which returns a list of the classes currently loaded in the JVM. The

CommandInterpreter operates as an adapter pattern.

Figure 15. NovoSoft UML hierarchy.

3.6 Summary

This chapter presents the design of the system developed for this thesis research

based on the objectives for the visual display and the design objectives for the prototype

debugger that is required for testing. This chapter discusses the experimental techniques,

which are based on a three part empirical evaluation of the prototype. The debugging

experience is discussed for large and distributed systems. Metrics, providing quantitative

analysis where possible, are introduced. In addition, this chapter explores the overall

architecture of the prototype system including the programs’ basis, ArgoUML, and the

JPDA.

56

4 Visual System

4.1 Design

The visualizations derived to facilitate debugging form the basis of this research.

Several processes and algorithms are required to meet the visual objectives defined in

section 3.2.1. These algorithms allow:

● Specification of a user’s Degree of Interest (DOI) in each node in the UML graph,
based on user activity within the system and important regions in the graph,

● Information hiding based on the DOI resulting in a variety of Levels of Detail
(LODs), and

● Improved space efficiency of the displayed model via the use of graph layout
algorithms.

4.1.1 Visual Modifications

Even with the use of a visual language such as UML, the size of many software

systems still leads to visual models that are extremely large and complicated. For just a

moderately sized system, a typical UML object diagram covers many pages and is too

large for efficient navigation of the overall system structure and lower level details.

Common solutions to this problem are multi-page printouts, overview windows for

navigating the entire diagram, and hypertext links between related sub-models. Multi-

page printouts can effectively show overall system structure and individual component

details. However, multi-page printouts suffer from many drawbacks such as increased

visual scanning, difficult production and management, and lack of support for interaction

and dynamic editing. Overview windows and hypertext may provide access to overall

system structures and individual component details, but this does not occur in a single

57

view, thus requiring more effort and reducing the effectiveness of the visual

representation.

This research proposes another approach to this problem that applies focus +

context techniques to an interactive UML diagram-editing tool. Focusing on the UML

object diagram, it defines multiple levels of detail for representations of classes and

relationships. The system presents an appropriate level of detail representation for each

component using a degree of interest function based on frequency of access and distance.

Finally, the prototype uses smooth animation to relocate software components within the

diagram to emphasize hierarchical relationships while maximizing space economy.

Selective filtering and modified graphical elements are used to create multiple

level-of-detail (LOD) representations for UML classes. At the highest level of detail,

each class consists of a rectangle divided into three segments that include textual labels

for the class name, attributes, and methods. The technique selectively filters the textual

labels at lower levels of detail according to the perceived relevance of the information.

The levels of detail supported by this solution are summarized below.

● LOD 0 contains the highest amount of detail. For a UML class representation,
this includes a full size graphical representation that includes textual labels for all
attributes and methods along with type information.

● LOD 1 hides attribute and return types while minimizing margin size.

● LOD 2 only displays the name of the class at a reduced font size.

Class 0

Attribute: int

Operation (): void

Class 1

Attribute

Operation ():

 Class 2

58

● LOD 3 removes all textual information and only indicates the presence of a

component.

● LOD 4 contains no textual information and indicates the presence of a component
at a reduced size.

● LOD 5 completely hides the component from the user.

The technique displays a class at a particular level of detail using a degree of

interest (DOI) function based on the frequency of access to a particular class and its

distance from the current class in focus (Equation 1).

)_()(log 2 distdoiemax_visiblfreqDOI −+∝ (1)

where

freq is the number of times the node in question has been accessed by the user;
dist is the graphical distance from the node to the focal point; and
max_visible_doi is the maximum DOI at which a node is visible.

Each time the user accesses a node, the system recalculates the degree of interest

and the display updates to reflect the appropriate level of detail for each node. Should a

displayed node be further from the focal point than a hidden node, all hidden nodes in

between have their LOD increased to 4 to prevent dissection of the graph.

To demonstrate this mapping of LOD representations to the DOI function,

consider the sample class diagram in Figure 16. If the user selects “Class 0” as the node

of focus, the representations of all remaining classes are modified as shown in Figure 17.

“Class 0” is selected as the node of focus so it is displayed with no change at LOD 0.

The degree of interest for “Class 1” is one lower than that for “Class 0” so “Class 1” is

59

displayed at LOD 1. As each subsequent class in this diagram is one additional graphical

link away from the node of focus, “Class 0”, each subsequent class is represented at the

next lower level of detail. Beyond “Class 4” no classes in this path would be shown.

Figure 16. Diagram prior to application of visualization techniques.

Figure 17. Class diagram following application of focus + context techniques.

Generalization and aggregation are key concepts in object-oriented software

systems. These relationships are hierarchical, with a generalization relationship linking a

more general class to one or more classes that inherit attributes of the general class.

Similarly, aggregation links a container class to one or more classes representing parts

that are combined within the container class. As hierarchical relationships, both

generalization and aggregation are good candidates for selective aggregation techniques

that hide lower levels of the hierarchy. For instance, there may be little value in showing

that a car consists of wheels, an engine and chassis, when the user is only interested in

seeing that there is a car. UML also includes association relationships that indicate a

non-hierarchical relationship between two classes.

Selective aggregation is applied based on UML’s association, aggregation, and

inheritance relationships, for those classes that are graphically distant from the class in

rh--li 1 Cla;;l Cla552 n—o Cla554

ineiuftlr inT Hieiulflr inl HieiuHlr inT ineiulWr inT ■neiuHlr inT

Hieiu OperaflonO "ci'l Hieiu OperaflonO "ci'l HieiuOpsmionQ i.oid Hieuj QperaflonQ uoid ■nsiuOpsmionQ i.oid

60

focus. The display shows the appropriate UML symbology for inheritance or aggregation

to indicate that it is hiding classes. For an association relationship, a partial link is

displayed indicating hidden classes. When the system brings content into focus, the

hidden hierarchy expands revealing the aggregate relationships within.

Figure 18 and Figure 19 show the results of the selective aggregation techniques

for a simple class diagram. Figure 18 depicts a class diagram before selective aggregation

is applied. The link with a triangle at the end depicts an inheritance relationship and the

link with a diamond depicts an aggregation relationship. The display shows the triangle

and the diamond positioned at the end of the link associated with the parent class. Figure

19 presents the class diagram after applying the selective aggregation techniques. The

display continues to show the triangle, diamond, and a small line to indicate that the

hidden classes connect via some relationship to the class. Any classes of a lower DOI and

further from the focal point are also hidden from view. The research assumes that if the

aggregate class is of little interest and is thereby hidden, then so will those objects that it

is associated with.

Figure 18. Part of class diagram.

61

 Figure 19. Class diagram after focus + context showing relationships.

4.1.2 Graph Layout

This section first examines the requirements of the graph layout algorithm for this

research. Prior research is used as the basis to examine the choice of algorithm and the

modifications to it explained. Finally, this section presents an example of applying the

algorithm to a graph.

4.1.2.1 Graph Layout Requirements

To maximize the space efficiency of the focus + context techniques for UML, the

algorithm modifies the positions of elements in the model. In evaluating how best to

accomplish this, a variety of UML graph layout algorithms are examined [AUB, RAT]. A

recurring theme in these algorithms is the presentation of hierarchical inheritance

relationships down the vertical axis. As this is a commonly used approach and is

understood and expected by users, the layout algorithms enforce this presentation

approach.

As one applies the layout algorithm to object diagrams following a focus +

context transformation, massive differences in node sizes are highly likely. In order to

maximize space efficiency, the algorithm considers the size of the nodes. In addition, the

algorithm should preserve user context of the system (if any exists) by minimizing the

relative reassignment of node positions.

62

4.1.2.2 Graph Layout Algorithm Development

The main algorithm requirement is to present the graph hierarchically. In

particular, the algorithm positions generalization relationships vertically on the display.

Layered layout algorithms meet this requirement [BAT99]. These algorithms allow the

hierarchical presentation of diagrams with vertices arranged in horizontal layers. The

standard method consists of the following steps:

1. Assign a layer to each node

2. Reduce the number of edge crossings

3. Assign horizontal coordinates to each node

Layer assignment requires a process to determine which layer each vertex belongs

to. For this research, a layer difference is considered to exist across each generalization

relationship, with the top most vertex being the most generalized class. Should a cycle

exist in the graph, vertices may be placed on more than one layer. In this case, the

algorithm places a node that is a direct descendant of an inheritance relationship at a

lower level. All other nodes in the cycle remain at the original level determined through

the association relationships. In the simple case where each vertex is the same size, the y-

coordinate of each layer is determined by adding a suitable gap to the last layer.

This research does not apply the crossing reduction process because the vertex

sizes vary so greatly. With variable vertex sizes, the edge crossing minimization

generally achieved from this step will not succeed. The standard algorithm relies on

constant row sizes to reduce crossings.

The last step deals with the positioning of each vertex on a layer. The priority for

our algorithm is to preserve context rather than minimize edge crossings, so the algorithm

63

allocates the position of each vertex on each row based on its position prior to ordering.

The user will see objects in the same relative position as before the modification.

Application of the layout algorithm requires the movement of nodes and links in

the object diagram. If done instantaneously, this movement may cause the user to lose

their context. To avoid this, the system uses smooth animation when moving graphical

elements between their original and revised positions. The technique also moves

elements in the graph in two stages to preserve context further. The first stage positions

elements in the appropriate level of the inheritance hierarchy. The second stage positions

leaf nodes to optimize space efficiency. The system applies the graph layout algorithm

after all degree of interest and selective aggregation functions.

4.1.2.3 Graph Layout Example

An explanation and example of the results of applying the visualization features

and layout algorithms follows. Figure 20 shows the initial class diagram for this example.

Figure 20. Initial class diagram.

64

The user enables the focus + context techniques through a context sensitive menu.

Figure 21 presents the results of setting the upper left node of Figure 20 as the focal

point. Selective aggregation applies to both the aggregation and inheritance relationships

from the far right node.

Figure 21. Class diagram with focus + context applied.

Prior to applying the layout algorithm, the hierarchical level of each visible node is

determined. A difference of one level exists across an inheritance relationship. Each node

connected via an association or aggregation relationship has an identical level. The

algorithm places all nodes having the same level on the same row. Figure 21 identifies

the level (and row number) of the nodes on each side of the inheritance relationship.

The first stage of the layout algorithm examines each row (starting from the top

row) and searches for generalization links from each of the nodes in that row. Figure 21

contains one node with a generalization link. The x position of a node with generalization

links is equal to the average of the x positions of the generalized classes in the row above

it. In the most common case where a node has a single parent, the algorithm places it

directly below. Should this position not be free, the algorithm places it as close as

possible to the desired position on the same row.

Level 0

Level 1

65

The algorithm places all remaining nodes on a row without a laid-out position in

order based on their x position in the row prior to the layout process. The y position for

each row is determined by adding a gap to the lowest point in the above row. This stage

of the algorithm has the effect of shrinking the overall display area yet it maintains the

general layout of the original diagram. Figure 22 shows the results of this process.

Figure 22. Class diagram after phase 1 of layout algorithm.

The second stage of the layout algorithm searches each row for nodes with leaf

nodes on the same row. If these leaf nodes have a relatively low LOD (and vertical

height), they are shifted to the right side of the associated node. The algorithm arranges

leaf nodes radially with the radius proportional to the number of leaf nodes. If possible,

the position of other nodes on that row is left unchanged. Should there be insufficient

room, then all nodes to the right of the leaf nodes are shifted right to establish a suitable

gap.

The bottom left node of Figure 22 has four associated leaf nodes on its row. The

second stage of the algorithm arranges these leaf nodes in a radial fashion by as shown by

Figure 23. This part of the algorithm allows a greater number of nodes to be displayed

Leaf Nodes

66

than otherwise possible while still preserving user context. This algorithm is particularly

effective when placing leaf nodes with a low LOD around a node with a high LOD.

Figure 23. Class diagram after phase 2 of layout algorithm.

The process repeats for each segment of the graph when there are multiple

unconnected segments in the model. The algorithm places each segment at the top of the

screen and to the right side of the previous graph segment.

4.2 Implementation

This section further explains the design choices involved in integrating the

software visualization features into the prototype system. To determine the most effective

design for integrating the visualizations into ArgoUML, the processes that must occur are

considered. This research develops a fisheye lens that displays less detail for components

with a smaller degree of interest and applies selective aggregation techniques to hide

components that are beyond a specified degree of interest. Finally, a graph layout

algorithm arranges components to emphasize hierarchical relationships while maximizing

space efficiency.

67

The modifications introduced are largely to do with presentation of the graph

nodes and links, i.e. should they be painted and if so, is their presentation varied in some

manner? As such, large parts of the changes occur in the objects that represent the

graphical elements for classes and the various UML link types. The classes representing

the display of these objects include FigClass, FigEdgeModelElement, FigAssociation,

FigGeneralization. No changes are necessary to the NovoSoft UML library that stores

the model information.

 The ClassDiagramGraphModel class maintains a list of the figure elements to

display for an object diagram, making it a suitable location for the modification methods.

The ClassDiagramGraphModel class controls most of the fish-eye view change. It

calculates the hierarchical level of each FigClass (the class that represents the image of a

class), the DOI and LOD for each, and finally calls a “change” method to effect the visual

modifications. The ClassDiagramGraphModel class also determines how each link

should be drawn, that is either fully displayed, only the arrow, a partial line, or not at all.

If a FigClass has hierarchical or aggregate relationships, the class also determines

whether the branches for these relationships should collapse.

Debugger events and mouse events in the FigClass class trigger the alteration

process. These two events largely control the visualization process. As such, this module

of the overall system is event driven. The “change” method within this class paints the

object based on its LOD value.

68

4.3 Summary

The hypothesis for this research states that visualizations can be of assistance to

users in distributed and large system debugging. Based on this hypothesis, the

visualizations are of great importance. This chapter defines the algorithms and processes

developed to produce these visualizations. It employs selective filtering to produce

altered class representations based on user activity and a nodes’ distance from the focal

point. The visual system applied selective aggregation to inheritance and aggregation

relationships to reduce clutter by objects considered less important to the user. The

research develops a layered graph layout algorithm to preserve user context and UML

semantics while increasing space efficiency. This chapter also discusses the

implementation of the visual system in ArgoUML.

69

5 Debugger System

5.1 Design

The debugger system comprises several main features to extract and transform the

data, and provide the standard debugging features required by users. The following

sections discuss these topics with additional information provided on implementation.

5.1.1 Data Extraction

Chapter 2 discusses the need to minimize the effects caused from observing a

system. Failure to do this may cause the monitor to obtain inaccurate results. JPDA

allows system data extraction directly from the observed JVM requiring no modifications

to the original code. Thus, some reduction in processing speed is expected to occur,

however synchronization points and all data values remain unchanged from an

unmonitored system. The system gives the user the option to connect via one of two

methods as shown in Figure 24: launch a new JVM with specified arguments or attach to

an existing JVM and communicate via a socket. A GUI demonstration application for

JPDA is available with the latest versions of the JDK. This application has been modified

to interface with the modified ArgoUML system for this research.

Figure 24. Connector launch options.

^ Select Connector Type H 1 x/
O LauncEiES target using Siat Java VM command line and aft a i

O Wtachea by Eocket to other YMs

I'MSE to Pt|

» OK Canc«l

1

70

5.1.2 Reverse Engineering

Once connected via the JPDA, raw data is available from each monitored JVM.

The basic premise behind this research, however, states that the user can debug more

effectively with the data presented in a visual format. The most effective representation

for this data is a UML object diagram, as this is a commonly used and accepted standard.

To produce this UML model, the system applies a reverse-engineering process. The

following discusses some of the issues involved in this process.

 Once the user creates a connection within ArgoUML to the debuggee process, the

JVM sends a signal notifying the debugger application that it is now running. The

program counter at this point is at the start of the program and it has not executed any

commands. As such, when the debugger accesses the JVM data, nothing is present. The

only effective way to obtain data appears to be a delay of several seconds before data

extraction. To circumvent this problem, a separate observer thread is created within

ArgoUML. The observer queries the JVM at set intervals while execution of the

debuggee process is not suspended. This solution also improves system performance. If

the debuggee process executes unhindered, then the JVMs will provide a large amount of

data to the debugger and the display will not be able to update in time.

 Once the observer detects new classes in the JVM, the reverse-engineering

process examines them for operations and fields where a field contains the name and type

of an attribute. The observer constructs a NovoSoft UML model from each of the added

classes. The observer also adds association, aggregation and inheritance relationships to

the model as it detects these relationships. Figure 25 describes the algorithm for the

reverse engineering process.

71

Figure 25. Pseudo code for Reverse Engineering algorithm.

5.1.3 Debugger

Figure 26 shows a screenshot of the program while connected to a simple test

program. The top-right window presents the object diagram view in standard UML

format. The top-left view presents a hierarchical list of each node and link in the diagram.

The user can select elements in this list for rapid access to nodes with a low DOI.

The debugger sub-system is largely based upon example code provided by Sun

with version 1.3 (and later) of the JDK. Research into the operation of this code found

that it is also largely event driven. The requirements of this component are that it

communicates with the GUI to request or display information provided by the debuggee

JVM. This usage scenario suggests that an event driven interface might also be effective

between the GUI and the debuggee process.

For each class found
 If class not in model
 Get fields
 Get Methods
 For each field
 Add attribute
 Create an object of type (attribute)
 Build aggregation to the object
 For each method
 Add method information to the class
 If the method parameter type is contained in the model
 Build an association from the class to the parameter type
For each class in the model
 If there is a generalization relationship to an existing type in the model
 Add the generalization

72

Figure 26. Debugging screen layout.

An observer thread handles communication between the debuggee process and the

GUI. This thread periodically accesses the JVM to determine if there any changes to the

observed system. If there are changes, an event triggers the reverse engineering process

and updates the model on the screen.

A variety of commands may be issued via a text input facility as shown by the

“Command” prompt in Figure 27. A list of listeners captures output from the debuggee

processes and displays this output as shown in the bottom window of Figure 27. The user

^AiqoUML-Untitled

Rle Ecfit ^ew Cre^e Eh^vai

73

can enter command line input to the debuggee processes in the bottom input section of

the lower window in Figure 27.

Figure 27. Debuggee process I/O window.

 To be effective as a visual debugging system, access to the source code should be

provided (although it is not required to provide a run-time model of the debuggee

process). The ability to set and cancel breakpoints via direct manipulation of the source

code is also highly desirable. The system allows breakpoints to be set and removed by a

double-click of the mouse on the appropriate line. The observer queries the execution

manager to determine if the breakpoint is valid. Figure 28 shows highlighting of valid

breakpoints in red. The research chose red due to its cultural association with stopping

(for example traffic lights). The source code for a class with a “main” method is

automatically loaded when the process begins.

When the debugger is operating, the focus of each segment of the graph

(corresponding to a software model reverse-engineered from a JVM) is initially set to the

class containing the “main” method. Each segment of the graph corresponds to a single

debuggee process. Research considers this appropriate because it is the commencement

point for execution in each system and is often integral to the architecture of a system.

74

Figure 28. Breakpoint setting in source code.

To monitor and debug a system, it is also highly desirable to highlight the current

execution point, as this requires less cognitive effort than manual tracking. This allows

the user to follow execution at a higher level of abstraction rather than follow the

execution through each line of code. The ability to follow program execution provides the

user with an understanding of the order of executed components and some insight into

system behavior. The debugger highlights the current method of execution for each

debuggee process in the object diagram as shown in Figure 29.

Figure 29. Execution point display.

This visual debugging system allows the user to control the execution of the

debuggee process as do most other debuggers. That is, controls exist to provide for

75

unrestricted execution (the green play button), stepping through the code line-by-line

(step), or temporary cessation of execution (a red circle) as shown in Figure 30. If

connections to multiple JVMs exist, the user must select a component from the segment

of interest prior to selecting the control. The listener then determines which component to

select and carries out the appropriate action in the selected JVM.

Figure 30. Debugger controls.

5.2 Implementation

The design and architecture presented described how the debugger works to a great

extend. The following provides additional guidance on the implementation of this

component.

5.2.1.1 Patterns

To allow a flexible and easily maintainable interface between the debugger

component and ArgoUML, patterns are used. An adapter pattern in the

CommandInterpreter class allows the observer to issue simple commands without an

underlying knowledge of the operation of the system. The ExecutionManager class

maintains knowledge of the JVM parameters.

5.2.1.2 Connections

The debugger can only establish shared memory connections with JVMs on the

same physical machine. A debugger can connect with a socket to a JVM almost

anywhere. There is extra overhead associated with a socket connection. As such, users

76

should use a shared memory connection when they launch an application on a local

machine. Due to security restrictions with Java, it is not possible to launch an application

on a separate machine (via a socket).

5.2.1.3 Data Extraction and Reverse Engineering

The raw data from the JVM includes JDK base classes and the full names of all

data types, for example “java.lang.String”. The full name of such classes and the display

of all loaded classes in the reverse-engineered class diagram add unnecessary clutter to

the diagram. The reverse engineering process truncates known data types to remove this

clutter, for example, “String”. It also filters JDK base classes from the class diagram.

5.3 Summary

In order to evaluate the effectiveness of the techniques described in Chapter 4, the

researcher modifies ArgoUML to include these transformations and additional debugging

capabilities. The research interfaces ArgoUML to the debuggee JVM via JPDA and other

debug code. The class diagram of the model for the display is reverse-engineered from

data accessed in the debuggee JVM. This section also discusses debugger functionality

including breakpoint setting, debugger controls and implementation details.

77

6 Results And Analysis

6.1 Introduction

Previous chapters have discussed prior work in this field and the formation of the

prototype system. This chapter presents the results of the experimental techniques

discussed in Chapter 3 and analyzes the system’s effectiveness based on these results.

6.2 Collection of Results

As the debugger system testing relies on analysis of other programs, the selection

of these programs is highly critical in obtaining meaningful results. Ideally, the research

would test the modified ArgoUML with several large modules connected and operating

as a single distributed system. Due to the difficulties in setting up such a test, this

research took a different approach. The research conducts testing in three phases to

evaluate the system against each type of objective: the generic visual display ability, and

debugging of a moderately large system and a distributed system with several

components. The following sections discuss the testing performed for each of these areas

and present the results. No other applications run concurrently with the debugger or

debuggee programs to affect system performance.

6.3 Experimental Setup

Three experiments are conducted, each with the same hardware and operating

system configuration. Each PC in use for the testing contains a Pentium 4 2GHz

processor and 1 GB RAM running the Windows 2000 operating system. The AFIT

computer network connects these PCs with 100Mb/sec Ethernet Network Interface Cards.

78

In all cases, the debugger and each debuggee process run on their own PCs. The tests use

Java Runtime Environment v1.3.1 on each PC.

Several command line parameters are required when initiating a process to provide

access to debugger programs through the JPDA. The user can initiate debuggee programs

in either a suspended or an unsuspended state. Suspension of the program causes

execution in the JVM to stop prior to executing any instructions. In an unsuspended state,

the program will execute as normal, however the user can monitor or debug the program

when it stops at the point where some user input is required. Debugging in an

unsuspended state does not work well with GUI input. The GUI threads are unable to

execute as normal while in this state and cannot receive mouse input. All tests use

sockets to establish a connection. Figure 31 shows a typical set of command line

parameters to enable debugging.

Figure 31. Command line options for execution.

These command-line options allow for JPDA socket access on port 14422. The “test”

class executes in the JVM.

6.3.1 General Display Testing

If one assumes simple classes such as those in Figure 16, then roughly 24 classes

fit on a single screen. By applying the degree of interest and graph layout algorithms,

one can fit approximately 75 classes on a single screen. Thus, the system provides three

times the space efficiency without even resorting to selective aggregation or radial

java -Xdebug -Xnoagent -Xrunjdwp: transport = dt_socket, server=y,

suspend=y, address=14422 test

79

arrangement of leaf nodes. The degree to which selective aggregation increases space

efficiency is dependent on the level of fan out in the system relationships.

Access to high level and detailed system information is more difficult to evaluate.

With original representations, the user will need to scroll through multiple pages if there

are more than 24 classes. In order to deal with large systems, the user would have to

commit much of the overall system information to long-term memory. By applying the

focus + context techniques, 75 classes can be readily viewed simultaneously with the

structure of hundreds of classes potentially available using selective aggregation. This

enables the user to offload cognitive processing to the external visual presentation.

Using original ArgoUML representations, details are readily available for up to 24

classes at a time. However, the user can still only focus on one area of the screen at a

time. With the focus + context view, only a few components are in focus at any given

time. The user needs to select another component to bring it into focus. Once they bring

the appropriate component into focus, the time to access detailed information is similar to

that of the original UML. If the system displays all components that the user is likely to

access on the same page, it is likely to be faster to switch focus using the original UML.

However, for the common case where components spread over multiple pages in the

original UML, the focus + context techniques are likely to improve access time since

more components are accessible from the same screen.

6.3.2 Large System Testing

For this part of the testing, the debugger system analyzes Bubble World [VAN02],

an AFIT research system. Bubble World is a visual information retrieval system designed

80

to test novel information retrieval techniques. Bubble World consists of 84 classes and

approximately 34,000 lines of code.

Reverse engineering provides the user with an object diagram instantaneously

eliminating the need to form a mental model by browsing through much of the code to

identify the classes, methods, attributes and relationships. By debugging with the

modified UML, one can readily observe the flow of control between instances of classes

along with the static structures indicating how the various classes are related. If one can

fit 50 lines of code on a page, 34,000 lines of code would require 680 pages. Based on the

theoretical calculations for UML described in section 6.3.1, 84 classes would require

between three and four pages to display with typical UML presentation styles. With the

modified UML presentation, nearly 90 percent of the classes should fit on a single page.

In actuality, due to many attributes and methods in the classes in this system, less than

two classes fit on a page with standard UML presentation techniques as shown in Figure

32. The modified UML presentation displays nine classes on a single page as shown in

Figure 33. This number exceeds theoretical expectations slightly, however, there is room

for improvement. There is a significant amount of white space in the diagram reducing

the space efficiency of the system.

The graph layout algorithm described is most effective at improving space

efficiency where the node sizes are similar. This, however, is rarely the case for class

diagrams. Further arrangement of leaf nodes for the largest node reduces the total surface

area used by the diagram. The revised algorithm places these leaf nodes vertically down

the screen while their total height is less than that for the very large node. Figure 34

shows the results of the modification to the algorithm. All nine classes are still visible,

81

yet the modification reduces the total area required for the display. Altering the

arrangement in this way reduces user context, as these leaf nodes are no longer in the

same relative position.

Figure 32. Bubble World model without focus + context.

Figure 33. Bubble World with focus + context applied.

m_Ern: la^ jnu
m Vl^kuHolff lit

MaBkZJVilig J

m T^xlEdrbr. |a ■arjwikg JM«

m_Biwrlii«iC|£ ft^nxvili^ J M«

m SblbDcE:|ab
" '™^"""9

t¥^nt« La^qlD lapiliQ: life rBc«

Ciev«DqB>i:|a

> f »■• g J-rogg It B ■!& i

VI lig J To^g It H1 !»•
: l^k^K xvili^ J Tog g I? D

^i^n f vrlig J Togg It H i

>k: laBKJVilig JTogg b

I I^L^n X vilh^ J Tog g I?

t _^t^^l^Vc•n3E^Ila*^lf rB nSn: | ^i^n <vi lig J Tog g ■■

t _F q IISv^ I* 9* B Bib k: I^L^n jvilh^ JTog g I? HiIE>i

t_Bnp^S^rlkg9 B qlbk: la^KXVIli^ JTogg I? HiD

. IR SHqDVKt nlE

rikg
i-laaa C &aa

frWtbtfM lUHkitJ AamvB&PtfP* IRM4M

H t^t» 111 iifcAva ^1 nn*. jart m ml li

VII !**■«■ Cdv

■H-pwIH CW

.l*-iM(.Cd4i

hjvd 1"^ —1* '"^

82

Figure 34. Bubble World with modified layout algorithm.

The debugger establishes a connection to Bubble World via socket. A processing

cycle consists of data extraction, reverse engineering, model creation, display and

application of the graph layout. The first processing cycle takes 15.4 seconds. Each later

cycle takes 0.15 seconds. During the first processing cycle, CPU utilization remains close

to 100 percent for the entire 15 seconds. After the initial processing, CPU utilization

reaches approximately 20 percent each time the debuggee process is re-examined

(approximately 4.5 seconds). The first processing cycle takes longer and has greater CPU

utilization as it extracts a considerable amount of data when compared to later processing

t_BJ[Jaa:Eiilig J3lv 11 a

TiJI^HBUDrlaQiiKiltg J

'itlaQiiKiltg.

MaoiiKHtg J U

H-|a UHltgJnvtirtm

ilaBtl3|riilDi3>iltg litrB> Fianvl3^ilD rsnltg

DMo^ rrvdjHQ QtgSDItg

H^L |HQ3>nC(ibr

BlIDiF lapvJ Uv M B^r laoiiKiltg J

?» Dvii' iHajtuUg J Mv M

Vk'uUrii'laQj—ilig Jllv 11

''JaBi^mlig J llv M

cit.iaBiiV\ig J nvn rein

i_Qi3vl>gPaiv LiHQiiKiltg J

-jligj

laoiiKiJtg J Lav I

pjSKjiavLjaBiKntg Jiav i

i_Oiv 1^^ hllarainHtg JTW^tv

■&VV-- at IB- coai wtSTvopaivsi/i'

pVWV UtlB- SDJtglJIIIIV

no iv^ilDt JaQiimlig JB dlit

i_Pi:wBilLit laoii-JligJTcggeBiICi

_f UBilbt'laajfilig JTcgg es ilDt

rjHSiKiltg JTizgg^B ilDt

laoifKiUg JTcgg e BilDt

ii_jt»rl'^ Oi BilDi iHBiKiJig JTcgg^ B lEit

laBifumg JTngge B ilDt

suflltgJBiSit

iXit jaoiiKiltti JJcgg e

i_Fil^ligvfii1[ii.|aBifi>Htg JTcgg^ B ilDt

i_BiLpievTltgv B ilbt iHoiimltg JTcgg e B III

i_snK I iHoiimltg JS\tK I

LQliHlii PvneiQlEtgltv IRBQIIHIII

iix^K.laQiDJIIabaie

'Q^mr ItUt lB> E^ llnvili|lltlK-i

lE^^acnE. ir^^iQlEigJtv H'^If-onK

Vitiaintviv las Qig .^Itg

awjgniiOiaiiiHimriaB.BiQ C Bit

83

cycles. The initial graph layout will also take considerably longer than others will, as

objects are not displayed near their final positions, requiring extensive animation. Bubble

World consumes 16,000KB of memory while the debugger application requires

64,912KB.

The debug controls allow the user to step through the program while tracing the

execution on the UML class diagram. The increase in the LOD for objects as they

execute is valuable for allowing tracking through this relatively large diagram.

As discussed, only nine instances of classes are initially visible. Most of these

instances do not have their method and attribute information available. As the program

executes further and loads these classes into memory, the reverse-engineering process

updates the model and display with the information for these classes. The user may watch

the new instances spawn. The layout algorithm is re-applied when new classes are added

to the diagram. In general, the addition of new classes results in a smoothly animated

sequence. Minor adjustments to the layout are all that is required to insert the new class.

Figure 35 shows a view of the debugger later in the execution of the program. Eight

classes are now visible in the diagram.

The space efficiency of the diagram is re-examined after applying the modified

layout algorithm. Thirteen instances are now visible as shown in Figure 36 providing a

150% improvement in space efficiency. Although no formal evidence is available, usage

suggests that the loss of context for the modification is minimal.

Debugging with breakpoints is effective as the program stops directly at the user’s

point of interest. Debugging a suspended program by stepping through each line of code

without the aid of breakpoints is a slow process due to the large number of instructions to

84

be stepped through. One can increase the speed of stepping by stepping up through the

execution tree (by entering a command in the command window). Stepping up completes

execution of the current method and resumes debugging one process higher in the stack.

Figure 35. Later in execution showing large differences in vertex sizes.

6.3.3 Distributed System Testing

Kil developed visual techniques for analyzing the execution and performance of

distributed agent systems [KIL02]. In order to evaluate a prototype system implementing

these techniques, a small agent-based command and control system was developed. Each

agent is constructed of four classes and approximately 1,000 lines of code. The test

spawns five different types of agents and attaches them to the debugger.

The debugger system is attached in turn to each agent process. First processing

times ranged from 0.6 seconds for the first attached process to 4 seconds for the fifth

process. CPU utilization remained at approximately 100 percent for all first processing

85

cycles. However, once the system had stabilized, CPU utilization remained below

approximately 25 percent. Memory requirements increase from 15.6MB when

monitoring one agent to 57Mb when the debugger is monitoring all five agents.

Figure 36. New graph layout later in execution.

Without the visualization techniques developed in this research, the debugger can

only display parts of two agents on a single screen as shown in Figure 37. With these

visualization techniques, the display is able to fit information about each of the five

processes in a single screen as shown in Figure 38. The number of displayed instances

increases from seven to 20. The ability to see all processes in one screen is considered a

big advantage over traditional debugging systems. If an agent is not of interest, the user

cannot control the display to reduce the space consumed by that system. It would be

beneficial to have the option to display a system name rather than its contents. For

u ^u u ^

'X*Ht>r™i H^jMi^ JH r j^ ■

l«t l*>hi1tMU4

i_l^ li^ UBJilr* Ji

...VVpiaBjMiaJIPIrr

86

example, assume the command and control system is operating with five processes and

four are of the same type “Infantry” but the suspected error is in the “Logistics” system.

The user may prefer to reduce the number of instances displayed from 20 to eight. They

still have detailed access to the “Logistics” agent and can see the processes interacting

with it at a higher level of abstraction.

Figure 37. Distributed system without visualization.

Figure 38. Distributed system with visualization.

If inter-process communication triggers a method invocation in another system, as

is often the case, then the display indirectly shows this communication. Monitoring of

JT

Hf^'im^ !■ If ^l"*!*—FP-

-■^—''—■'■—'—■ i"--'^' =rr

87

inter-process communication is difficult to control due to the program execution speeds

available, that is either full speed execution or manual stepping. If the debugger could

step automatically, at user-defined speeds then inter-process communication would be far

easier to monitor.

6.4 Analysis of Results

It is a trivial process to show the improvement in space efficiency provided by the

techniques in this research. The theoretical results demonstrate at least a 300% (75/24)

improvement in the number of instances, the large system achieved a 650% (13/2)

improvement and the distributed system achieved a 286% (20/7) improvement. This

clearly demonstrates that the focus + context techniques provide significant improvement

in space efficiency over standard UML layouts for a class or instance diagram. As

expected, the results from actual systems at least match the theoretical results due to the

large size of “real” classes. The distributed system did not exceed the theoretical

prediction due to the low number of classes and the small length of chains within the

graph. As such, there was only a small reduction in the average size of each displayed

node.

A revised layout algorithm is introduced which offers space efficiency

improvements of 163% (13/8) for the large system. There is a reduction in preservation

of user context as the leaf nodes placed vertically next to the large nodes are no longer in

the same relative position. However, usage suggests the reduction in context is less

significant than the improvement in space efficiency

One can analyze the results further using the program visualization criteria

described in section 2.4.1.2 – scope, abstraction, specification method, interface,

88

presentation, fidelity and invasiveness. The current implementation limits the scope of

the visualization techniques to that provided with the UML class diagram along with

source code. The system does not yet allow presentation of watch values on the class

diagram display. The use can identify program structure while monitoring the flow of

control as the program executes. Similarly, abstraction is primarily achieved through the

visual representations supported by UML. One can view the application at different

levels of detail that include overall system structure, classes and relationships, methods

and attributes, and source code. The JVM provides specification methods that require

little or no input from the user. In a distributed environment, the user will have to specify

the Internet address of the application and source code. No changes are required to any of

the application code, thus the only way these techniques might alter the behavior of the

application is through the consumption of resources on the computer, CPU and memory,

required for the second JVM. The user can reduce the effects of this problem by running

the debugger program on a separate platform to the debuggee application.

The UML implementation in ArgoUML defines the user interface and presentation

semantics. The system modifies the presentation to make it more efficient using focus +

context while the semantics are preserved.

The resource requirements of the debugger system are initially quite high.

However, once initial processing is complete the requirements reduce significantly

allowing for consecutive debugging of large and distributed programs on networked PCs.

The system appears to be able to debug larger systems based on the resource

requirements for the tested systems.

89

6.5 Summary

This chapter reviews the experimental procedures used for obtaining results to

support the research hypothesis. It discusses the environment and basic setup for three

experiment types to analyze the three main components of the prototype: visual

modifications, large system analysis and distributed system analysis.

The results are analyzed using resource requirements and visual effectiveness. The

system provides an improvement of 650% for large systems and 286% for distributed

systems exceeding the theoretical prediction of a 300% improvement. A modified layout

algorithm is devised to achieve improved space efficiency and a small reduction in user

context. In addition, the system is analyzed based on program visualization evaluation

techniques developed by Roman and Cox and Price et al. This evaluation suggests the

techniques used are promising with one of the main benefits being the ability to view the

system at multiple levels of detail.

The system aids debugging for the user by increasing space efficiency. This

increase provides a greater understanding of the relationship between “interesting”

classes in the diagram and the remainder of the system. This improvement also applies to

distributed systems. The user is able to see interactions between the various components

in the system with reduced scrolling.

90

7 Conclusions and Recommendations

7.1 Introduction

This chapter reviews the problem definition for this research. It revisits the

requirements along with the methodology used to test the developed hypothesis. Finally,

the researcher suggests future developments for this topic.

7.2 Research Review

This section reviews the need for this research, methodology and its success at

meeting the research goals.

7.2.1 Background

The JBI is a large distributed environment linking many types of applications and

databases to users over a variety of protocols. Debugging the JBI or any distributed

system requires both knowledge of the overall system structure and detailed knowledge

of relevant aspects of the debuggee system to determine the exact cause of any problems.

For large systems, this becomes difficult. For distributed systems such as the JBI, the

complexity of the problem increases even further.

 A variety of debugging systems are available to deal with distributed systems,

however, few are capable of dealing with all of the required operating systems with a

low-intrusion data extraction process. Existing systems often force users to debug a

program by examining lines of code.

This research hypothesizes that appropriate visualization methodologies reduce the

complexity involved in the debugging process by offloading the user’s mental model of

the program structure and interaction to the display. Specifically, this research provides

91

UML instances diagrams presenting the detected system. This research considers UML

instances diagrams to be appropriate for this purpose as software engineers commonly

use similar class diagrams for system design. Thus, they do not require additional

knowledge and the framework is considered suitable by those in the field. The class

diagram is reverse-engineered from data extracted with JPDA from each JVM. Extraction

of the model using the JPDA ensures that there is no effect on the debuggee program at

compile-time and minimal effect at run-time. The user can reduce the effect on debuggee

system performance by running the debugger on a different machine than the debuggee

programs.

Even with moderately sized systems, the UML instances diagram may take up

many pages. This research introduces a focus + context system that aims to provide detail

for those objects which are considered interesting to the user while maintaining access to

the overall context in which the detail exists. This allows the overall system structure to

be displayed in a much smaller area while still preserving UML notation. The

visualization system uses selective filtering and selective aggregation for inheritance and

aggregation relationships. The system’s space efficiency improves with a modified

layered graph layout algorithm.

7.2.2 Research Impact

The effectiveness of the developed methodology is tested by implementing the

features in a modified version of ArgoUML. The presentation of UML class and instance

diagrams with the focus + context system provides a vast improvement in the number of

classes that can be displayed in specified area (up to 650%) while preserving the

requirements of UML notation. The improvement in space efficiency allows the user to

92

debug large systems more easily based on their improved knowledge of system structure

while maintaining their access to detail information.

The research applies the debugger to a moderately sized research system. Standard

debug functionality such as breakpoint setting and various forms of stepping are

available. The debugger prototype enables display of system structure along with control

flow. The focus + context system displays much more of the system representation on the

screen than is otherwise possible.

The debugger is also applied to a small-scale distributed research system. The user

can monitor all parts of the system and control each independently with the debugger

controls. The display simultaneously shows the control flow of each process providing a

basic framework for distributed debugging.

Although this research did not use the prototype to detect errors in either system,

evidence suggests that the devised methodology is an improvement over traditional

debugging systems. Further tools are required to enhance the prototype for synchronized

debugging of distributed systems.

The visual and debugger objectives systems are considered throughout the design

and implementation processes. All defined objectives have been met.

7.3 Future Developments

Throughout the development process, a number of refinements to the methodology

have been identified which would further enhance distributed debugging. This section

discusses some of these refinements.

93

Evidence suggests the focus + context system is effective at providing detail when

it is most likely to be required. The transformations in this process can be improved, in

particular:

• Varied LODs based on user testing of the relative importance of each type
of information displayed in UML class diagrams;

• Display of watch data with the model;

• More effective representations for large numbers of instances of a class;

• Decaying effect of user activity with time; and

• Selective aggregation applied to packages using clustered graphing
techniques [EAD00]. This would allow the system to hide the contents of
entire systems if the details are unimportant.

Use of the system suggests that additional debugging controls would be of benefit.

These include intelligent stepping as is available with Borland JBuilder and a more easily

accessible watch specification and monitoring system [BOR]. The intelligent stepping

system jumps over methods in Sun and Java libraries to the code the user is most likely

trying to reach. In addition, the ability to control the speed of execution would be

advantageous. The user could specify the execution rate with controls similar to a video

recorder allowing them to quickly step through less interesting stages of execution and

slow the execution for those that are important. This would be particularly useful if a

suitable location for a breakpoint cannot be determined due to inadequate knowledge of

system execution flow.

With distributed debugging, it is important to have knowledge of network

performance. This would allow the user to determine quickly if communication links or

machines are not operating correctly. Ideally, the display would combine the class

diagram with a deployment diagram.

94

Finally, support for multiple threads within a virtual machine is highly desirable.

This capability is not currently present but is essential as many programs, in particular

GUI based systems, operate with several threads of control. The ability for the user to

monitor all of them is required for effective debugging of any such program.

7.4 Summary

Distributed and large software systems, including the JBI, are difficult to debug.

This research attempts to make this process easier and less time consuming for the user

by introducing a variety of visualization techniques into the debugging process. The

debugger monitors the debuggee program through the JPDA framework and reverse

engineering provides the user with a UML class diagram. The user is able to use standard

debugging controls with the debuggee program. The debugger highlights the current

method and class of execution on the class diagram allowing the user to track control

flow. With large systems, the UML class diagram may itself be too large to use

efficiently.

Focus + context techniques enable views of large quantities of information, in this

case UML class diagrams. This research applies a fisheye lens with filtering and

selective aggregation, to class diagrams. The debugger maintains the symbology and

semantics of UML while increasing space efficiency. These visualization techniques

improve access to the information, thereby enabling the user to take in more information

in the same amount of time. To improve user understanding of the underlying software

system, access is provided to both high-level structural information and detail.

Furthermore, a graph layout algorithm is provided that organizes software components to

emphasize hierarchical relationships while improving space efficiency.

95

These visualization techniques combine to provide a more effective means of

visually debugging large and distributed systems. The user maintains access to detailed

information and overview of the system while tracking execution. This aids the user in

understanding program operation and allows more effective debugging with the standard

debugger controls.

96

Bibliography

[AMA99] Amari, H. and M. Okada, “A Three-Dimensional Visualization Tool for Software
Fault Analysis of a Distributed System”, Proceedings of the IEEE Conference,
Man, Systems and Cybernetics, 4:194-199 (October 1999).

[APP93] Appelbe, W., J. Stasko, and E. Kraemer, Applying Program Visualization
Techniques to Aid Parallel and Distributed Program Development, Technical
report GIT-GVU-91-08, Georgia Institute of Technology, 1993.

[ARG] ArgoUML User Manual,
http://argouml.tigris.org/documentation/defaulthtml/manual/, 20 June 2002.

[AUB] Auburn University, Graphical Representations of Algorithms, Structures, and
Processes (JGRASP), http://www.eng.auburn.edu/grasp/ 18 September 2002.

[BAT99] Battista, G., P. Eades, R. Tamassia, and I. Tollis, Graph Drawing- Algorithms for
the Visualization of Graphs. Upper Saddle River: Prentice Hall, 1999.

[BER77] Bertin, J. Graphics and Graphic Information-Processing, translated by Berg, W.
and Paul, S. New York: Walter de Gruyter Inc, 1981.

[BOR] Borland JBuilder v 7.0 Personal edition. Borland Software Corporation, 18
September 2002.

[BOW94] Bowman, D., A. Ferrari, B. Schmidt, M. Schmidt, B. Topol, and V. Sunderam,
The Conch network concurrent programming system, Technical report, Emory
University, Atlanta, GA, January 1994.

[CAR99] Card, S., Mackinlay, J. and B. Schneiderman, Readings in Information
Visualization – Using Vision to Think, San Francisco: Morgan Kauffman
Publishers, 1999.

[COO99] Cook, S., and S. Brodsky, OMG Analysis & Design PTF UML 2.0 REQUEST
FOR INFORMATION Response from IBM, Online Document,
http://cgi.omg.org/docs/ad/99-12-08.pdf 1999.

[EAD00] Eades, P. and M.L. Huang. “Navigating Clustered Graphs Using Force Directed
Methods,” Journal of Graph Algorithms and Applications, 4:157-181 (no 3,
2000)

[FUR81] Furnas, G.W. “The Fisheye View: A New Look at Structured Files”, in Readings
in Information Visualization – Using Vision to Think, S. Card et al, editors, San
Francisco, Morgan Kauffman Publishers, 1981.

[GEF] GEF Documentation, http://gef.tigris.org/project_docs.html, 20 June 2002.

97

[HAN02] Hangal, S. and M. Lam, “Tracking Down Software Bugs Using Automatic
Anomaly Detection”, Proceedings of the 24th International Conference on
Software Engineering ACM, pp291 – 301, May 2002.

[HEN96] Hennessy, J. and D. Patterson, Computer Architecture – A Quantitative
Approach, 2nd ed., San Francisco CA: Morgan Kauffmann Publishers, 1996.

[JAI91] Jain, R., The Art of Computer Systems Performance Analysis, New York: John
Wiley & Sons Inc., 1991.

[JER97] Jerding, D., J. Stasko, and T. Ball, “Visualizing Interactions in Program
Executions”, International Conference on Software Engineering, 1997

[JON02] Jones, J., M. Harrold, and J. Stasko, “Visualization of Test Information to Assist
Fault Localization” Proceedings of the 24th International Conference on
Software Engineering, 467 –477, ACM Press, May 2002.

[JPD] Java Platform Debugger Architecture Overview, Sun
http://java.sun.com/products/jpda/doc, 28 April 2002.

[KAN95] Kan, S., Metrics and Models in Software Quality Engineering, Reading Ma:
Addison-Wesley Publishing, 1995.

[KIL02] Kil, C.K., Visual Execution Analysis for Multiagent Systems. MS Thesis,
AFIT/GCS/ENG/02-12. School of, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, Month 2002 (AD-).

[KOT01] Köth, O and M. Minas, “Abstraction in graph-transformation based diagram
editors” Second International Workshop on Graph Transformation and Visual
Modeling Techniques. Vol 50, Elsevier Science Publishers, 2001.

[KRA97] Kraemer, E., “Visualizing Concurrent Programs”, in Software Visualization:
Programming as a Multimedia Experience, John Stasko et al, editors, The MIT
Press, Cambridge MA, 1997.

[LEU94] Leung, Y.K., M.D. Apperley, “A review and taxonomy of distortion-oriented
presentation techniques”, ACM Transactions on Computer-Human Interaction,
1(2):126-160, 1994.

[MEH00] Mehner, K. and A. Wagner, “Visualizing the Synchronization of Java-Threads
with UML”, In Proceedings of the IEEE International Symposium on Visual
Languages, 2000.

[MIL56] Miller, G., “The Magical Number Seven, plus or minus two: Some limits on our
capability for processing information”, Psychological Science, 63, 1956.

[OMG00] Object Management Group (OMG), Inc, Unified Modeling Language (UML)
Specification Version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm

98

[PAI00] Paige, R., J. Ostroff, and P. Brooke, “Principles for Modeling Language Design”,
Information and Software Technology, 42: 665-675, July 2000, UK.

[PRI97] Price, B., R. Baecker, , and I. Small, “An Introduction to Software
Visualization”, in Software Visualization: Programming as a Multimedia
Experience, John Stasko et al, editors, The MIT Press, Cambridge MA, 1997.

[RAT] RATIONAL ROSE, Rational Software Corporation,
http://www.rational.com/products/rose/index.jsp 18 September 2002.

[ROM] Roman, G.C., and K.C. Cox, “A Taxonomy of Program Visualization Systems”,
IEEE Computer, December, 1993.

[SHN98] Shneiderman, Ben. Designing the User Interface. Strategies for Effective
Human-Computer Interaction. Third Edition, Reading MA: Addison-Wesley,
1998.

[SIM90] Simmons, M. and R. Koskela, Performance Instrumentation and Visualization,
ACM Press - Frontier Series, Addison-Wesley Publishing, p46, 1990.

[STA90] Stasko, J., Tango “A Framework and System for Algorithm Animation”, IEEE
Computer, Vol. 23, No. 9 1990.

[STA98] Stasko, J. et al, Software Visualization-Programming as a Multimedia
Experience, Cambridge MA: The MIT Press, 1998.

[SUN] The Java Platform Debug Architecture FAQ, Sun,
www.java.sun.com/products/jpda/faq.html, 14 October 2002.

[TAN02] Tanenbaum, A. and M. Van Steen, Distributed Systems Principles and
Paradigms, Upper Saddle River NJ: Prentice Hall, 2002.

[TEL01] Telles, M. and Y. Hsieh, The Science of Debugging, Scottsdale AZ: The Coriolis
Group, 2001.

[TOP94] Topol, B., J. Stasko, and V. Sunderam, Integrating Visualization Support Into
Distributed Computing Systems, Georgia Institute of Technology, GIT-GVU-94-
38, October 1994.

[USA99] United States Air Force Scientific Advisory Board. Report on Building the Joint
Battlespace Infosphere, Volume 1, December 17 2000.

[USA] “Usability Evaluation”,
www.pages.drexel.edu/~zwz22/UsabilityHome.html, 04 December 2002

[VAN02] Van Berendonck, C.L., Bubble World - A Novel Visual Information Retrieval
Technique. MS Thesis, AFIT/GCS/ENG/02M-09. School of Engineering and
Management, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, March 2002 (AD-).

99

[WAR00] Ware, C. Information Visualization – Perception for Design, San Diego CA:
Morgan Kauffman Publishers, 2000.

[WIC92] Wickens, C.D. Engineering Psychology and Human Performance, 2nd ed., New
York: Harper Collins, 1992.

[WON01] Wong, A., T. Dillon, I. May and W. Lin. “A Generic Visualization Framework
to Help Debug Mobile-Object-Based Distributed Programs Running on Large
Networks,” Sixth International Workshop on Object-Oriented Real-Time
Dependable Systems (IEEE), 240 (January 2001).

100

Vita

Flight Lieutenant Benjamin R. Musial joined the Royal Australian Air Force in

June 1996 as an undergraduate engineering student. He attended the University of

Queensland at St. Lucia in Brisbane and graduated with Honors in a Bachelor of

Engineering degree in Computer Systems in 1998. After completing studies with the

University of Queensland, he was posted to RAAF Edinburgh, SA. In January 1998, he

received his commission and attended the Royal Australian Air Force Officer Training

School (OTS) at Point Cook near Melbourne.

Following graduation from OTS, Flight Lieutenant Musial attended several basic

Avionics Engineering courses. Following these courses, he was employed as a design

engineer in the Maritime Patrol Logistics Management Squadron at RAAF Base

Edinburgh near Adelaide.

In August 2001, Flight Lieutenant Musial entered the Air Force Institute of

Technology as a graduate student in the computer science and engineering department.

He graduated the institute with a Master of Science degree in Computer Engineering.

101

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

10-03-2003
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)
Mar 2002 – Mar 2003

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 UML Assisted Visual Debugging for Distributed Systems

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
If funded, enter ENR #2001001
5e. TASK NUMBER

6. AUTHOR(S)

Musial, Benjamin R., Flight Lieutenant, RAAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 640
 Wright Patterson AFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/03M-12

10. SPONSOR/MONITOR’S ACRONYM(S)

AFOSR/Software and Systems

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFOSR / Software and Systems
 Attn: Robert L. Herklotz, Ph.D.
 801 N. Randolph St., Rm 732 Comm: (703) 696-6565
 Arlington VA 22203-1977 e-mail: Robert.herklotz@afosr.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The DOD is developing a Joint Battlespace Infosphere, linking a large number of data sources and user applications. To
assist in this process, debugging and analysis tools are required. Software debugging is an extremely difficult cognitive
process requiring comprehension of the overall application behavior, along with detailed understanding of specific
application components. This is further complicated with distributed systems by the addition of other programs, their
large size and synchronization issues. Typical debuggers provide inadequate support for this process, focusing primarily
on the details accessible through source code. To overcome this deficiency, this research links the dynamic program
execution state to a Unified Modeling Language (UML) class diagram that is reverse-engineered from data accessed
within the Java Platform Debug Architecture. This research uses focus + context, graph layout, and color encoding
techniques to enhance the standard UML diagram. These techniques organize and present objects and events in a manner
that facilitates analysis of system behavior. High-level abstractions commonly used in system design support debugging
while maintaining access to low-level details with an interactive display. The user is also able to monitor the control flow
through highlighting of the relevant object and method in the display.
15. SUBJECT TERMS
Software Engineering, Debugging (Computers), Distributed Data Processing, Visual Aids,

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Lt Col Timothy M. Jacobs

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

U

18. NUMBER
 OF
 PAGES

112
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 x4279; e-mail: Timothy.Jacobs@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

