
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A CONFIGURABLE FAULT
TOLERANT PROCESSOR (CFTP)

by

Steven A. Johnson

March 2003

 Thesis Advisor: Herschel H. Loomis
 Second Reader: Alan A. Ross

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Implementation of a Configurable Fault Tolerant Processor (CFTP)
6. AUTHOR(S) Johnson, Steven A.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The space environment has unique hazards that force electronic systems designers to use different techniques to build

their systems. Radiation can cause Single Event Upsets (SEUs) which can cause state changes in satellite systems. Mitigation
techniques have been developed to either prevent or recover from these upsets when they occur.

At the same time, modifying on-orbit systems is difficult in a hardwired electronic system. Finding an alternative to
either working around a mistake or having to keep the same generation of technology for years is important to the space
community. Newer programmable logic devices such as Field Programmable Gate Arrays (FPGAs) allow for emulation of
complex logic circuits, such as microprocessors. FPGAs can be repro-grammed as necessary, to account for errors in design,
or upgrades in software logic circuits.

In an effort to provide one solution for both of these issues, this research was undertaken. The Configurable Fault
Tolerant Processor (CFTP) emulates three identical processors, using Triple Modular Redundancy (TMR) to mitigate SEUs on
a radiation tolerant FPGA. With the reconfigurable capabilities of FPGA technology, as newer processors can be emulated,
these new configurations can be uploaded to the satellite as software code, thereby actually upgrading the processor in flight.
This research used a 16-bit Reduced Instruction Set Computer (RISC) processor as its cores. This thesis describes how the
Harvard architecture of the processor is interfaced with the Von Neumann architecture of the memory. It also develops the
process by which errors are detected and corrected, as well as recorded. The end result is a design simulation ready for
implementation on an FPGA.

15. NUMBER OF
PAGES

139

14. SUBJECT TERMS Fault Tolerant Computing, Triple Modular Redundancy (TMR), Field
Programmable Gate Array (FPGA), Single Event Upset (SEU), 16-Bit RISC

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A CONFIGURABLE FAULT TOLERANT
PROCESSOR (CFTP)

Steven A. Johnson

Lieutenant, United States Navy
B.S., United States Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Steven A. Johnson

Approved by: Herschel H. Loomis

Thesis Advisor

Alan A. Ross
Second Reader

John P. Powers
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The space environment has unique hazards that force electronic systems designers

to use different techniques to build their systems. Radiation can cause Single Event

Upsets (SEUs) which can cause state changes in satellite systems. Mitigation techniques

have been developed to either prevent or recover from these upsets when they occur.

At the same time, modifying on-orbit systems is difficult in a hardwired electronic

system. Finding an alternative to either working around a mistake or having to keep the

same generation of technology for years is important to the space community. Newer

programmable logic devices such as Field Programmable Gate Arrays (FPGAs) allow for

emulation of complex logic circuits, such as microprocessors. FPGAs can be repro-

grammed as necessary, to account for errors in design, or upgrades in software logic

circuits.

In an effort to provide one solution for both of these issues, this research was

undertaken. The Configurable Fault Tolerant Processor (CFTP) emulates three identical

processors, using Triple Modular Redundancy (TMR) to mitigate SEUs on a radiation

tolerant FPGA. With the reconfigurable capabilities of FPGA technology, as newer

processors can be emulated, these new configurations can be uploaded to the satellite as

software code, thereby actually upgrading the processor in flight. This research used a

16-bit Reduced Instruction Set Computer (RISC) processor as its cores. This thesis

describes how the Harvard architecture of the processor is interfaced with the Von

Neumann architecture of the memory. It also develops the process by which errors are

detected and corrected, as well as recorded. The end result is a design simulation ready

for implementation on an FPGA.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SINGLE EVENT UPSET HISTORY ..1
B. MICROPROCESSOR...3
C. VOTING LOGIC...3
D. MEMORY CONTROLLER...4
E. PURPOSE...4
F. ORGANIZATION ...5
G. ADDITIONAL DOCUMENTATION..5

II. FIELD PROGRAMMABLE GATE ARRAYS ..7
A. FIELD PROGRAMMABLE GATE ARRAY COMPOSITION7
B. SOFT-CORE PROCESSORS...9
C. KDLX PROCESSOR...10
D. CHAPTER SUMMARY..11

III. TRIPLE MODULAR REDUNDANT ARCHITECTURE13
A. OVERVIEW...13
B. VOTER DEVELOPMENT...14
C. COMBINATION OF VOTERS AND PROCESSOR20
D. CHAPTER SUMMARY..20

IV. CLOCK CONTROL, ERROR HANDLING, AND MEMORY INTERFACE...21
A. OVERVIEW...21
B. STATE MACHINE CONTROLLER ..22
C. CLOCK CONTROL AND MEMORY INTERFACE25
D. ERROR SYNDROME STORAGE DEVICE (ESSD)27
E. CHAPTER SUMMARY..29

V. INTEGRATION...31
A. SUBCOMPONENT TESTING ..31
B. INTEGRATION...32
C. FULL DESIGN TESTING..34
D. INTEGRATION STATISTICS ..35
E. PIPELINE CONCERNS ...36
F. CHAPTER SUMMARY..37

VI. CONCLUSIONS AND FOLLOW-ON RESEARCH...39
A. OVERVIEW...39
B. CONCLUSIONS ..39
C. FOLLOW-ON RESEARCH...39

APPENDIX A: CFTP SCHEMATICS AND CODE...41
A. SCHEMATICS...41
B. VHDL FILES ...51

1. adder.vhd ..51

 viii

2. alu.vhd...52
3. alu_logic.vhd...54
4. AO22.vhd ..54
5. core.vhd...54
6. Dest_Decoder.vhd ..61
7. dlx.vhd...61
8. increment.vhd...63
9. IO_pads.vhd ...63
10. log_barrel.vhd ..64
11. pc_control.vhd..66
12. pipeline ..69
13. regfile...73
14. rwcontrol...79
15. scan_reg ..79
16. twelve_bit_reg_single...80
17. twenty_four_bit_reg_single...83
18. word_mux16 ...84
19. word_mux3 ...85
20. word_mux4.vhd..86
21. word_reg_single.vhd..86
22. word_set.vhd...90
23. zero_test.vhd...91
24. interrup.vhd..92

APPENDIX B: SPACE EXPERIMENT REVIEW BOARD111
A. SERB OVERVIEW ...111

1. Military Relevance ...111
2. Quality of Experiment ...111
3. Service Priority...111

B. SERB DOCUMENTATION ...112
1. Space Test Program Flight Request...112
2. Space Test Program Flight Request Executive Summary112

C. PRESENTATION..112
1. Concept ...112
2. Justification ..113
3. Detailed Overview..114
4. Summary of Data Application ..114
5. Flight Mode Suitability..114

D. EXPERIMENT MANIFESTATION ...115

LIST OF REFERENCES..117

INITIAL DISTRIBUTION LIST ...119

 ix

LIST OF FIGURES

Figure 1. Basic TMR Concept (From Ref. [1].)..3
Figure 2. Microprocessor TMR Concept (From Ref. [1].)..4
Figure 3. PLD and Interconnect Schemes (From Ref. [1].) ..8
Figure 4. KDLX Processor..13
Figure 5. TMR Assembly (TMRA)...14
Figure 6. Basic 1-Bit Voter Circuit ...15
Figure 7. 1-Bit Voter with Data Error Detection (After Ref. [1].)15
Figure 8. 1-Bit Voter with Voter Error Detection (After Ref. [1].)16
Figure 9. 1-Bit Voter Circuit with Data- and Voter-Error Detection and Location

(After Ref. [1].) ..17
Figure 10. 1-Bit Voter with Error Detection and Location ...19
Figure 11. Finite State Machine Controller...23
Figure 12. TRAP Instruction Description (From Ref. [2].)...24
Figure 13. Clock Controller...26
Figure 14. Processor Clock Control ..27
Figure 15. Error Syndrome Storage Device ..28
Figure 16. Integrated CFTP Design ..33
Figure 17. KDLX Pipeline with no Errors ..36
Figure 18. Pipeline with TRAP and ISR Instructions ...37
Figure 19. Full Design Schematic ...42
Figure 20. Reconciler ..43
Figure 21. 24-bit 2-to-1 Multiplexer ...44
Figure 22. Error Syndrome Storage Device ..45
Figure 23. Triple Modular Redundant Assembly..46
Figure 24. 16-Bit Voter ...47
Figure 25. Single Bit Voter ...48
Figure 26. 51-to-1 OR Gate...49
Figure 27. Interrup State Machine...50
Figure 28. SERB Graphical Representation..113

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Radiation Effects and Mitigation (From Ref. [1].) ..2
Table 2. Error Location Table..20
Table 3. Chip Resource Allocation ..35
Table 4. Flight Mode Suitability for the CFTP..114

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank all the professors, technicians, and students of the Naval

Postgraduate School who made this research possible. Many of them may not realize the

magnitude of their efforts, but the author does.

Special thanks are owed to these individuals for their assistance:

To Drs. Loomis and Ross for your infinite knowledge and especially patience

with me throughout the research.

To Dr. Clark for both your processor and assistance in understanding how the

KDLX processor worked.

To David Rigmaiden for entertaining even the most bizarre of questions on how

to operate the Xilinx tools.

To Major Dean Ebert for your collaboration in the SERB process, patience with

my computer illiteracy, and your good humor throughout.

To Lieutenant Paula Travis of the Space Test Program Office, for your invaluable

assistance in getting the CFTP up to speed in the SERB process.

To Damon Van Buren and Tilan Langley of SEAKR Engineering, you were

wonderful resources for FPGA and the space environment.

To Captain Charles Hulme and First Lieutenant Yuan Rong for taking over the

SERB process with aplomb and skill.

To the Bearded Devil, who kept me motiviated the last quarter.

And most especially to my loving wife for her patience and perseverance in the

long hours I was in the lab.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The harsh environment of space creates unique problems for hardware used in

space versus equivalent ground based systems. Space-borne systems face susceptibility

to errors induced by particles passing through the microchips without sufficient

protection from radiation. There are many effects that can cause errors, including total

dose tolerance, Single Event Latchup (SEL) and Single Event Upset (SEU). This

research will focus on mitigating SEUs. It is assumed that total dose and SEL effects are

accounted for by other means.

Before the technology boom of the 1990s, purchasing radiation hardened equip-

ment was not difficult. But as the market for non-hardened systems became significantly

larger, and the demand for radiation hardened systems remained the same, companies

offering the hardened devices either increased the price and time required to deliver, or

stopped offering devices altogether.

This change in the market dynamics greatly affected how satellite systems

function. With such a long lead time for processors to be ready for flight, older and less

capable designs were being flown, and costing more than in the past when the satellite

designers could expect a close to high end processor.

For example, current satellite processors are typically equivalent to a 386

generation microprocessor. The average desktop computer found in most homes today is

a Pentium III1. Additionally, the cost for purchasing the radiation hardened 386 is much

higher than the entire desktop computer.

New techniques are required to accommodate the continued problems en-

countered by radiation while simultaneously addressing the newer problems related to

development time. Many of the current designs for space systems include the use of

software redundancy, examples of which can be found in Table 1. In addition, the use of

reprogrammable devices is now very common for satellite design. But little research has

gone into combining all of this new technology, mostly due to the cost of satellites.

1 Pentium is a registered trademark of Intel Corporation.

 xvi

The most promising options for radiation mitigation include more flexible soft-

ware solutions implemented on radiation tolerant, not hardened, microchips. One such

option is Triple Modular Redundancy (TMR).

In TMR, the system is replicated three times, and the outputs of the system are

voted, with the majority vote becoming the overall system output. In the specific case of

the CFTP, three microprocessors are operating in lock-step. The output of the processors

is the input to the voting circuitry. The outputs of the voters is the overall system output.

At this point the system being designed has a reliable way to circumvent single

event errors without resorting to radiation hardening techniques. But the problems of

rapid development and reconfigurability still must be addressed.

Reprogrammable devices satisfy both rapid development and reconfigurability.

The most common device is the Field Programmable Gate Array (FPGA). An FPGA is a

set of generic logic devices that can be programmed and reprogrammed a large number of

times “in the field,” meaning by the end user, not just the manufacturer. Any circuit can

be emulated on the FPGA, assuming the FPGA has a sufficient amount of logic blocks to

mimic the desired device.

FPGAs are currently used on many space platforms, but not primarily for their on-

orbit reconfigurable qualities. Most of them are used as Application Specific Integrated

Circuits (ASICs). Since ASICs cannot be reconfigured once they are built, correcting

mistakes can become expensive for designers. But an FPGA design can be changed at

any point in time, and the FPGA reprogrammed, up to the launch. On-orbit

reconfiguration is a natural progression from current usage.

Based on previous NPS research, Xilinx Virtex family FPGAs were chosen for

this research. Xilinx Virtex FPGAs are total dose tolerant up to 100 kilorads and are also

latchup immune. For the radiation environments of this application, 100 kilorads is

enough tolerance to allow its 1 year minimum flight duration.

The intent of this research is to develop a single system-on-a-chip design for a

Configurable Fault Tolerant Processor (CFTP). It includes the design of the processor,

the voter, error interrupt designs, memory controller, and error syndrome storage.

 xvii

The processor used for this research is a KDLX 16-bit Reduced Instruction Set

Computer (RISC) [2]. The processor was created by previous NPS research. Each

processor will run the same set of instructions and the outputs will be voted. The

processors and voters are in the component names TMR.

The processors have a Harvard architecture and memory is Von Neuman in

design. A memory controller, called the Reconciler, was designed to control the

requirements of the processor. The processors run at a clock rate which is half of the

remaining devices clock rate. In each processor clock cycle, both a memory access for

data and a memory access for the instruction fetch are required. With only one set of

busses to memory, the Reconciler must run at twice the speed of the processors.

When errors occur, the data that describes this error - the Error Syndrome - is

stored in memory. The device that handles the collection of this data is the Error

Syndrome Storage Device (ESSD). It also interfaces with the Reconciler, as all memory

reads and writes pass through it.

A state machine, called Interrup, was built to coordinate error interrupts and the

clock controls. Interrup generates a TRAP external to the processors and forces them

into the Interrupt Service Routine (ISR). While the Error Syndrome is being stored in

memory, the clock to the processors is stopped. With the processors not running, the

only bus demand will be for the Error Syndrome.

This research fully realized the processor/voter interface. It also built the

Reconciler, which controls memory interface. The research also created the ESSD to

record and control storage of Error Syndromes. Finally, the Finite State Machine

Interrup was built to control the various states the CFTP can be in.

Further research is required to determine memory requirements and other off chip

requirements for the full CFTP design. The interrupt service routine also needs to be

written.

 xviii

 THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The space environment is extremely hazardous to electronic systems. The lack of

atmosphere, extreme temperature variations and radiation effects are all issues that

electronic systems designers must contend with when building their systems.

Another concern that designers face is the fact that once their system is deployed,

correcting any mistakes or upgrading the system it is very difficult, if not impossible.

The infamous satellite that was sent to Mars and crashed due to an error in calculating in

English instead of metric units is a perfect example of a mistake that could not be

corrected once the satellite was launched. Additionally, being able to upgrade the system

hardware on satellites requires a great deal of effort. The satellite must be captured by

either the Space Shuttle or another satellite, and then the old systems removed and new

ones installed. This is obviously both very expensive and extremely complex.

The focus of this thesis is on the construction of the Configurable Fault Tolerant

Processor (CFTP), a design that can withstand the radiation hazards of space and allow

for processor upgrades in orbit, without requiring a rendezvous or other complex

evolution to perform the upgrade. The CFTP uses a Triple Modular Redundant (TMR)

fault tolerant scheme in order to mitigate Single Event Upsets (SEUs), and is instantiated

on a Field Programmable Gate Array (FPGA), which is a reconfigurable logic device.

The effects of radiation are numerous, and well documented in other writings.

For the purposes of this research, the chosen hardware is assumed to be hard enough for

the total dose and dose rate effects of the orbits of interest, so the focus is on Single Event

upsets and their mitigation.

A. SINGLE EVENT UPSET HISTORY

Table 1 shows the various effects and the techniques used to protect against them.

The radiation effects of most concern to space system designers are total dose, Single

Event Latchup (SEL) and Single Event Upset.

Total dose effects are the cumulative effects of radiation on an electronic device

over its lifetime. As charged particles impact the device, they degrade its performance a

2

tiny amount. As the particles' effects accumulate, the degradation will eventually render

the chip non-functional. There is no way to overcome total dose effects, only delay the

end of life of the chip. This is done through various techniques, some of which are

shown in Table 1.

Radiation Effect Mitigation Techniques
Total Dose Radiation-Hardening

 Silicon-On-Sapphire
 Silicon-On-Insulator
 Thin-Gate-Oxide
Shielding

Single Event Latchup (SEL) Radiation Hardening
 Guard Rings

Single Event Upset (SEU) Quadded Logic
Software Fault Tolerance
Triple Modular Redundancy (TMR)

Table 1. Radiation Effects and Mitigation (From Ref. [1].)

Single Event Latchup is when a charged particle forces a transistor on the chip to

remain in one state. If the transistor is left in the latchup state long enough, or with a

high enough charge, it can burn out. The mitigation techniques for preventing SELs are

shown in Table 1.

The FPGA chosen for implementation of the CFTP design is total dose tolerant to

100 kilorads, which is sufficient for the one year minimum flight duration. The FPGA is

also SEL immune.

A Single Event Upset is an event which is initiated by a charged particle passing

through a transistor. If the charged particle causes a state change to be latched into a

register or flip flop, a bit flip occurs [1].

These bit flips can cause serious harm if not corrected. Imagine the thruster of a

satellite being activated by a bit flip. Various techniques to counter SEUs have been

developed over the years. One such method is a TMR scheme.

Previous NPS research led to the concept this thesis is implementing. The

original TMR design had three separate hard-core processors whose output was sent

3

through a hardwired voter [3]. As research progressed, a determination was made that

using an FPGA for the hardware implementation would allow for all three processors to

reside on the same chip as the voting logic [1]. This decreased both the size and power

constraints of the overall system. It also allows for reconfiguration after hardware build,

which is a distinct benefit.

B. MICROPROCESSOR

This version of the CFTP uses a KDLX 16-bit Reduced Instruction Set Computer

(RISC) as the microprocessor [2]. The processor is a soft-core version of the hardware

design [4]. A soft-core design is a firmware program that is intended for implementation

on a programmable logic device. The primary advantage of this type of design is that is

can be either corrected or upgraded simply be rewriting the design code. In contrast,

hard-core processors are hardwired transistors and wires which cannot be changed after

construction.

C. VOTING LOGIC

Triple Modular Redundancy is a majority voting scheme. As seen in Figure 1,

three devices send their output into the voting logic. The majority of the device output is

the voted output.

Figure 1. Basic TMR Concept (From Ref. [1].)

Figure 2 shows how the TMR concept is applied to a microprocessor. This

research is designed as a System on a Chip (SOC) where all of Figure 2, with the

exception of memory, is instantiated on a single chip.

Input A-

Input B-

InputC-

- Device A

- Device B

- Device C

■ Output A -

■ Output B -

■ Output C -

Voted Output

4

Figure 2. Microprocessor TMR Concept (From Ref. [1].)

In Figure 2, the three devices from Figure 1 are microprocessors. These

microprocessors all run the same program at the same time. The outputs of the

processors are the inputs of the voters. In the case of the CFTP, there are discrete voters

for each of the processor outputs.

The voting system used to implement the TMR portion of the design is expanded

from previous NPS research [1]. The single-bit voter designed by that research has been

replicated to account for the multi-bit busses used by the KDLX processor.

D. MEMORY CONTROLLER

One of the goals of CFTP is to allow for upgrading the processor over time. In

order to allow for upgrades, a design constraint was given for the on-chip design.

Interface to the off-chip memory is to be by a single address and data bus pair. The

KDLX processor has a program counter bus, instruction bus, address bus, and data bus;

in order to consolidate the inputs and outputs, a memory controller was added to allow

for the instruction and data to share one bus off the chip, and the program counter and

address to share the other.

E. PURPOSE

The main purpose of this research is to implement a TMR design on a radiation

tolerant FPGA. The successful implementation would indicate a potential solution to

CPU A
Address

Input Data

Control

Coiiiinoii Inputs
(Data, Interrupt, >
Control, etc.)

CPUB
Address

Input Data

Control —I

CPUC
Address

Input Data

Control

Address
Voter

Data
Voter

Control
Voter

Memory

Error
Encoder

Data
I/O

To O/P Data
Interface

Memory/Error
Controller

5

launching advanced microprocessors into space. It would also allow for the upgrading of

these processors while on orbit.

F. ORGANIZATION

Chapter II is a description of the realm of FPGAs, soft-core processors and the

one chosen for this research. Chapter III is a description of the voter, its development

and implementation. Chapter IV explains how the clock is controlled and errors are

handled. Chapter V discusses the integration of the individual components. Chapter VI

contains conclusions and follow-on research recommendations.

G. ADDITIONAL DOCUMENTATION

Appendix A contains full design schematics and the hardware description

language for the implementation of the CFTP design. These schematics and the code are

not directly referenced throughout the thesis in order to present a smooth flowing format.

The CFTP design is currently scheduled to be launched on two satellites. One is

the Naval Postgraduate School Satellite (NPSAT); the other is a U. S. Naval Academy

sponsored satellite, MIDSTAR. In order to have the CFTP onboard these satellites, the

experiment had to be reviewed by the Space Experiment Review Board (SERB). The

preparation for this review process occurred concurrently with the development of the

design. Appendix B describes the Department of Defense (DOD) SERB process. The

research on this thesis was conducted while submitting the CFTP to the SERB process.

This greatly facilitated the understanding of the DoD Space Program as a whole, and the

role of NPS in that program.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. FIELD PROGRAMMABLE GATE ARRAYS

The flexibility that a Field Programmable Gate Array (FPGA) provides to a

system designer is tremendous. The device can be reprogrammed a virtually unlimited

number of times, and reprogramming can be done simply by the end user, hence the

"field programmable" portion of the title. In addition, current generations of FPGAs

contain large numbers of gates. The Xilinx Virtex XCV200 contains 236,666 systems

gates [5], and the Xilinx Virtex II XC2V8000 contains 8 million gates [6]. These large

gate counts allow for complex architectures to be implemented on the devices. Many

FPGAs are large enough that complex microprocessors can be instantiated on the chip.

These emulated processors are called soft-core processors. This Chapter will detail how

FPGAs are used in emulating microprocessors, how the CFTP uses this technology to

implement the design for spaceflight, and the reasons behind the choice of the processor

for this research.

A. FIELD PROGRAMMABLE GATE ARRAY COMPOSITION

FPGAs evolved from simple programmable logic arrays (PLAs). A PLA is a

series of AND-OR gate combinations which can be configured to emulate logic circuits.

The disadvantage to a PLA was that once it was programmed, it was fixed in that

configuration.

As the desire to emulate more complex circuits increased, more complex devices

were created: the Programmable Logic Device (PLD), and then the Complex

Programmable Logic Device (CPLD). In a PLD, the circuits are denser, and they can be

reprogrammed. But the devices typically must be removed from the overall design for

reprogramming. A CPLD is simply a collection of PLDs, with programmable

interconnect between each PLD.

After CPLDs came FPGAs. In an FPGA the structure is very different from a

CPLD. The FPGA is not a collection of PLDs, but a collection of smaller logic blocks.

Each logic block is interconnected to the other logic blocks on the chip. A portion of the

overall design can be implemented in the individual logic blocks, with the interconnect

system passing signals between the blocks.

8

Figure 3 shows the differences between a CPLD and an FPGA. Part (a) shows a

Complex Programmable Logic Device (CPLD). Part (b) shows an FPGA. While the

FPGA has smaller logic blocks than the CPLD, it has a much larger number. The

interconnect between these logic blocks allows for the ability to instantiate larger circuits.

Figure 3. PLD and Interconnect Schemes (From Ref. [1].)

While a full description of an FPGA is not the focus of this thesis, a short

background description of the FPGA architecture is necessary. For more information on

FPGA architecture, readers are directed to the RG0References listed in this Chapter.

In an FPGA there are several different subsystems. The ones of direct interest for

this thesis are the Configuration Logic Block (CLB), Input/Output Block (IOB) and the

programmable interconnect [6].

The CLBs are where the design resides. Whether the design is something as

simple as a 2-input logic device, or as complex as a microprocessor, the CLBs are

configured to emulate the design. Each CLB is capable of being connected to other

CLBs through the programmable interconnect systems so, if the design in question does

not fit into a single CLB, the design can be parsed to multiple CLBs for full

implementation and is transparent to the user.

Input/Output Blocks are used to interface with off-chip systems. One of the

prominent considerations for the CFTP design was the limit of IOBs. While being able to

design a system that can fit inside the complement of CLBs, without sufficient access to

data off the FPGA, a design is worthless.

9

The FPGA chosen for CFTP was a Xilinx XCV800, which contains the

equivalent of 888,439 gates [6]. One of the reasons this FPGA was chosen was for its

external interface design. Xilinx FPGAs are available with two types of pin connections,

flat-pack and ball grid array (BGA). A flat-pack resembles a traditional chip design, with

the individual pins on the edge of the device, and is the type of interface of the XCV800.

This type of pin connection has been used is space for years and is highly reliable.

Unfortunately, newer, larger capacity FPGAs use BGAs.

A ball grid device has balls of solder in a grid pattern on the bottom of the chip.

Inside these balls are the interface connections for the chip. The chip is soldered onto the

printed circuit board by way of these solder balls. The process for attaching a BGA onto

a board is complex and would require NPS to contract out for the manufacture of a

system. Many of the connections are located on the interior of the array of balls and

determining if they were all properly affixed is not feasible for space applications [7].

Finally, BGA technology is not fully spaceflight certified, based on concerns about the

effects of space on ball grids. A detailed description of the decision making process for

this choice of FPGA can be found in Reference [1].

B. SOFT-CORE PROCESSORS

When a microprocessor is instantiated on an FPGA, it is called a soft-core

processor. This is as opposed to a hardwired microprocessor such as those found in

desktop computers. The soft-cores are simply hardware description language (HDL)

code which programs the various parts of the FPGA to act as the real processor would.

There are a variety of soft-core processors available. Some are free from

companies, and others can be quite expensive. The various designs available go from

simple RISC to x86 style processors. But most of them are intellectual property or

proprietary software.

Essentially, any of these proprietary processors would be a black box, with all

internal parts unreachable. One of the design issues for CFTP is the ability to manipulate

the entire FPGA and design. For example, if a portion of the FPGA is damaged by

radiation, full access to all portions of the design allows the possibility to rewrite the code

to avoid that portion of the chip. Another reason for being able to access the internal

10

portions of the soft-core is the ability to then place voters at the different stages of the

pipeline. The decision for now is to have voters only at the output of the processors,

based on radiation levels expected in the orbit of concern. But if these predictions are

incorrect, voters may be required internal to the processors. This would not be possible

with proprietary soft-core processors.

C. KDLX PROCESSOR

The KDLX processor is an HDL coded version of the DLX processor originally

described in Hennessy and Patterson's Computer Architecture: A Quantitative Approach

[4] and coded by Dr. Kenneth Clark [2]. It is a pipelined 16-bit Reduced Instruction Set

Computer (RISC). The focus of this thesis is not on the details of the RISC architecture,

nor on the design of the DLX computer. For information on these topics, readers should

look at the Hennessy and Patterson book referenced above.

There were several reasons this processor was chosen, the largest being that the

processor had already been designed and tested. This processor design was originally

implemented for an NPS dissertation [2]. This dissertation was on the development of a

model to predict the SEU tolerance of complex digital systems. The digital system used

in the testing was the KDLX processor.

Another reason was the problems associated with the issues of proprietary

software enumerated previously. A third factor for choosing this processor was its size.

It is small enough that three processors easily fit onto the FPGA, along with all the other

portions of the design required for the full CFTP.

Being a simple RISC processor, there is ample software and information

regarding this processor available that is not proprietary. The architecture of this type of

processor is also taught at NPS, and therefore it is a good processor for an experiment

that will be worked on by several students over the course of the experiment lifetime.

The design of the DLX processor presented an interesting dilemma. The DLX

processor is a Harvard architecture, which means it has separate address and data busses

for instructions and data. That design is intended to be implemented with separate

memories for data and programs.

11

However, one of the initial design decisions made for the CFTP was that there

would only be one data bus and one address bus between off-chip memory and the

FPGA. With twice the busses required for the KDLX processor, some innovative

thinking was required to surmount this problem. The solution is described in detail in

Chapter IV.

D. CHAPTER SUMMARY

This Chapter explained the basics behind how FPGAs operate, and how a soft-

core processor is instantiated. It also described the particular processor chosen for this

thesis, and the reasons for that decision. The next Chapter will describe the evolution of

the voter and its incorporation into the full CFTP design.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

III. TRIPLE MODULAR REDUNDANT ARCHITECTURE

The intent of Triple Modular Redundant architecture is to allow the outputs of

three devices to be compared in a majority voter. The reason it is called modular is

because the inputs to the voter are independent of each other. In the case of the CFTP,

these inputs come from the three separate processors, which do not directly interact with

each other. This Chapter will explore the development of the voter used in the CFTP.

A. OVERVIEW

The KDLX processor, shown in Figure 4, has six outputs. There are three single-

bit outputs, for program counter read, data read, and data write. There are two 16-bit

outputs, the program counter and data address. The data bus is a bi-directional bus. The

three copies of the KDLX processor are connected to the inputs of the voters, the busses

on a bit-by-bit basis. If any of the 51 bits do not match between the processors, then an

interrupt will be generated. The interrupt service will be described in Chapter IV.

Figure 4. KDLX Processor

Figure 5, the TMR Assembly (TMRA), shows the three processors on the left, and

the voters on the right. Each voter has four outputs: Voted Result, Error, CID_0 and

CID_1. CID_0 and CID_1 are a two bit status bus that identifies the processor in error.

More detail on the CID bits is given in Section B in this Chapter.

Once the data has been voted on, the voter outputs are consolidated into four

busses. All of the same type of output is on a single bus, the error signals on one bus, the

14

voted data on another, etc. The Voted Result Bus is sent to memory, while the remaining

three busses are then used by the error handler.

Figure 5. TMR Assembly (TMRA)

B. VOTER DEVELOPMENT

A basic single bit voter takes three inputs, A, B, and C, and enters them into the

logic circuit shown in Figure 6. The output, Y, is then the “voted output.” Each input is

ANDed with each of the other two inputs. This circuit yields a majority result; if two of

three inputs are high, the output will be high. In the CFTP design, the voter inputs are

individual bits of the outputs of the processors.

15

Figure 6. Basic 1-Bit Voter Circuit

The next item required is an indication that an error has occurred, so correction

can be accomplished. Figure 7 shows a single bit voter with data error detection logic

built in. The 3-input AND gate and the 3-input NOR gate will produce a high output

when the three inputs are the same. When any of these outputs are different, this

indicates one of the three inputs is different, and the resulting output "ERR" will asserted.

Figure 7. 1-Bit Voter with Data Error Detection (After Ref. [1].)

If we desire to know whether an error is actually in a processor, or is happening in

the voter circuit itself, we need to replicate the voter. Figure 8 shows two voters with a

"X

FA^
_^^

1 r\/

^^^B^I^^^^B^I^^^^3 |__Dy'

i-N 1 AND2 1 '
^/

■

1 1 -s 0R3

■

AND2

)
■

J y
1

NOR3 1

16

voter error indication. In the event that an SEU occurs in the voter, it may be helpful to

realize the error is not a data error but rather a voter error. The voter error is detected by

duplicating the voter and using an XOR gate to compare the two voted outputs.

Figure 8. 1-Bit Voter with Voter Error Detection (After Ref. [1].)

If the error occurred in the voter circuit, no corrective action may be required,

beyond the act of voting the data and recording the error location. If the error came from

a processor output, the processor fault which caused the error must be corrected.

In a data error, determining which processor is in error is required. Figure 9

combines the data error and voter error configurations and includes two more outputs,

which are used to determine which processor was in error in the event it was a data error.

This full voter was the single-bit design proposed for use in the CFTP in earlier research

[1].

17

Figure 9. 1-Bit Voter Circuit with Data- and Voter-Error Detection and Location (After

Ref. [1].)

(ffil

Q ^ B

18

After some deliberation, it was decided that the need for voter versus data error

discrimination was not necessary. It was initially believed that determining a voter error

would save time in the interrupt service routine. Since the data was assumed to be

correct, the interrupt would only require storing the error syndrome. But if the voter is in

error, the data still may be corrupted in the process. A second reason for eliminating

error discrimination was error collection. Having a second error signal also requires

additional requirements for collecting the data on these errors. Instead of having to store

51 bits of Error, it would be 51 bits of Data Error and another 51 bits of Voter Error.

Finally, discriminating a voter error increases the complexity and size of both the voter

and the logic required to process the error.

 With all these considerations in mind, Fig. 9 was modified to create Fig. 10,

which has a single voter, the error indication, and error location. Table 2 shows how the

voter indicates which processor is in error.

19

Figure 10. 1-Bit Voter with Error Detection and Location

a Q 1^

20

CID_0 CID_1 Error Location

0 0 None

0 1 Processor 1

1 0 Processor 2

1 1 Processor 3

Table 2. Error Location Table

C. COMBINATION OF VOTERS AND PROCESSOR

For the processor chosen for the CFTP, a 16-bit RISC processor, this voter had to

be replicated 16 times for each of the 16-bit busses. The voter inputs come from the

processor busses and outputs are placed onto a 16-bit address or data bus.

The CFTP processor has three 16-bit busses that require voting, so in essence 48

voters needed to be created. In addition to the bus voters, there are three single bit

outputs that require voting: the strobes for the program counter, data read and data write.

So a total of 51 voters are required.

D. CHAPTER SUMMARY

This Chapter presented the evolution of the voter from a simple single-bit voter to

the robust voter with error identification and reporting. It also described the config-

uration of both single-bit and 16-bit voters with respect to the three processors. The next

Chapter will explain the clock control system and how errors are handled.

21

IV. CLOCK CONTROL, ERROR HANDLING, AND MEMORY
INTERFACE

This Chapter will discuss the clock control method, error handling system and the

interfacing with off-chip systems for the CFTP. The design constraints of the CFTP

required unique solutions. The clock used for the processors had to be different from the

remaining systems in the CFTP. At the same time, the error handling routine had to be

capable of operating in an environment where some of the components operated at a

different speed than others. Finally, interfacing with off-chip systems required a device

that could coordinate the various bus demands and speeds.

A. OVERVIEW

The KDLX is a Harvard architecture design. This means it has two separate

memories, one for instructions and one for data. The interface between the processor and

these memories is four separate busses: a Program Counter bus (processor output), an

Instruction bus (processor input), a Data Address bus (processor output) and a Data bus

(bi-directional). The interface between the FPGA and the off-chip memory in the CFTP

is a Von Neumann architecture. The Von Neumann architecture only has one address

bus and one data bus, which are shared between the program and the data. Interface

circuitry and a clock control state machine were needed to allow the KDLX to time share

the memory interface. With this constraint to the design, a system was developed to

coordinate the bus demands for the CFTP. It will be described in Section C of this

Chapter.

The CFTP operates in several conditions. In a normal condition, the processors

are executing instructions and the voters are checking the outputs. When an error occurs,

the CFTP changes states from normal operation to the Error Syndrome Saving condition.

Once the error is saved to memory the CFTP shifts to the Error Correction Interrupt

Service condition. After the Error Correction is complete, the CFTP reverts to normal

operation.

22

B. STATE MACHINE CONTROLLER

A state machine was built to control the states in which the CFTP operates.

Figure 11 shows this machine, called Interrup. In normal operation, the processors

require up to two transfers, each needing both busses. As stated earlier, there is only

capacity for one address and one data transfer off-chip. This is solved by reducing the

clock rate of the processors to half that of the rest of the design. Further detail on how

this was accomplished is discussed in Section C of this Chapter.

With two clock cycles for bus transfer off-chip to every one of the processor clock

cycles, the requirement to coordinate the bus demands is met. As seen in Figure 11, the

states NormInst and NormData are the two normal condition states. During NormInst,

Interrup asserts the output InstrAccess and deactivates the output DataAccess. During

NormData, the outputs are reversed. This is because the KDLX processors will be

asserting Program Read and Read/Write signals during both states, and only one of these

transfers can occur at a time. These outputs are used by a device called the Reconciler,

which controls memory accesses by all on-chip components.

In NormData, the state machine also looks for the input E, which is the error

signal from the voters. When E is asserted, Interrup shifts from normal operation to the

Error Syndrome Save condition.

In the Error Syndrome Save condition, there are two sub-conditions, ErrSynSave

and ISRErrSynSave. Both are designed to perform the same tasks, with one exception.

In the ErrSynSave condition, there is an additional state which generates an instruction

that will begin the Interrupt Service Routine (ISR). Further explanation of this will be

given later in this Section.

As the voters generate outputs, these outputs are consolidated and sent to a device

named the Error Syndrome Storage Device (ESSD). The outputs are collectively called

the Error Syndrome. The Error Syndrome is a total of 104 bits: the 51 voted bits, the 51

error bits, and a consolidated CID_0 bit and CID_1 bit.

23

Figure 11. Finite State Machine Controller

24

The CID bits are each put through a 51-to-1 OR gate which is designed to reduce

the amount of data that will be saved. With the assumption that only one error will occur

at a time, the CID bits do not need to be saved in total. Further description of the ESSD

operation will be given in a later Section.

With the 104 bits of data to be transferred to off-chip memory and a 32-bit data

bus, four clock cycles are required. This is the reason for the four ErrSynSave states.

Each of them asserts a corresponding ErrSyn signal which is used by the ESSD to port

data to the Reconciler; the ErrSyn signals are also used by the Reconciler to stop the

processor clock. The reason for this will be explained in Section C. Once the Error

Syndrome Save is complete, the InterrInstr state generates the ISR instruction and asserts

the signal TRAP. This signal is used by the Reconciler to port the TRAP instruction,

seen in Figure 12, instead of the instruction coming from memory, to the processors.

With the processor clock stopped, this instruction is not lost, simply put on hold until the

ErrSyn signals are deactivated.

Instruction: TRAP (Software Trap)

Figure 12. TRAP Instruction Description (From Ref. [2].)

The TRAP instruction will take the Program Counter contents and place it in the

Interrupt Address Register, and then load the Program Counter Register with the

immediate value. The immediate value is the address of the first instruction for the

Interrupt Service Routine [2].

Once the TRAP instruction has been inserted, the CFTP moves to the Error

Correction condition. In this condition, the Processors are restarted and the ISR begins.

The ISR stores each register to memory and then reloads each register from memory. As

the registers are stored, the data passes through the voters. If there are any errors, they

are corrected. It is expected that at least one miscompare will occur during this routine,

the error that caused the routine to occur in the first place. To ensure that errors which

are detected once the ISR has begun do not start another ISR, a second set of Error

Syndrome Save states exist.

23 16 15 0

Opcode:0x28 Immed

25

Once the error correction is complete, the final instruction of the ISR will initiate

a return to the normal states of operation. This is accomplished by the ISRData state

looking for the input RFE, Return From Exception, which indicates the last instruction of

the ISR has been loaded from memory into the processors. This signal combined with E

not indicating an error will force the state machine back to normal operation.

C. CLOCK CONTROL AND MEMORY INTERFACE

The Reconciler generates at a clock rate which is half the rate of the input clock.

This clock is an output of the Reconciler and an input to the TMR Assembly. But the

need to stop the processor clock for an error required an additional control signal for the

processor clock in the event of an error.

The reduction in clock speed is accomplished through a clock delay-locked loop,

CLKDLL. As shown in Figure 13, the input to CLKDLL is the master clock. It outputs

two clock signals, one at half the speed of the original signal and one at the same rate as

the input signal. Both signals are kept in phase by a feedback loop [8].

26

Figure 13. Clock Controller

The higher speed clock is used by the remaining devices in the CFTP, which

includes the Reconciler, Interrup, and the ESSD. It is an output of the Reconciler called

rest_clock.

In Figure 14, the processor clock signal is the input to a tri-state buffer, which

takes its enable input from the signal ErrSyn. ErrSyn is the OR of the signals ErrSyn1

through ErrSyn4, from Interrup. If any of them are high, the tri-state buffer will be

disabled, stopping the processor clock, and set the Reconciler for Error Syndrome

transfer.

27

Figure 14. Processor Clock Control

The Reconciler also controls the memory interface. It receives the inputs from the

processors for reading and writing data, and reading the instruction, along with all the

control signals the processors use. The ESSD also ports the Error Syndrome to the

Reconciler for storage into memory. Using the clock control previously described, the

Reconciler completes all transfers to and from memory.

D. ERROR SYNDROME STORAGE DEVICE (ESSD)

The ESSD is designed to capture the state of the processors when an error occurs.

It stores the output of all the voters, and the error signals of all the voters. For each bit

voted on, there is an error bit. There are 51 bits voted, so there are 51 error bits. In

addition, there are two bits to determine in which processor the error occurred. In total,

104 bits are required to make up a single error syndrome.

All of this syndrome data is latched into the ESSD every clock cycle, regardless

of an error occurring. It is only stored into memory when an error activates the Error

Syndrome Save states of the state machine. The errors are saved to the highest address

locations in memory, and are stored "backwards" by a down counter. Figure 15 shows

the down counter and the ESSD outputs.

BUFT16

raSb-

^^

rtfl_iPtfT211Si

rTfl_«g|230t

1TIUPlJiO>>—

TJW_Msgt>-

ETTSIU

aiai^O^

-pfK^dodi^

28

Figure 15. Error Syndrome Storage Device

The highest location in memory is loaded into the down counter via the input

Location. When the first error syndrome is stored to memory, the first 32-bit word is

stored in the last memory slot, the second word in the next to last, etc. As each word is

stored, the address is decremented via the down counter and is output as Syn_addr. The

location in memory that it begins counting down from can be loaded into the down

counter by loading in the start address into the Location I/O marker and asserting the

Load I/O Marker.

Figure 15 also shows the other two outputs of the ESSD. Syn_data is the 32-bit

word to be stored, and ErrSyn is the combined signal of each of the four Error Save State

signals. The four state signals are ORed together and both output, and used to assert the

tri-state buffer with the syndrome address. These three outputs are input into the

Reconciler.

Syn Ilal»[3l"5&

EffSyiil

EnSpiZ

EnS>«3

E'tSy'

CC16CLED

-LEr«yT|>

, BUFT16

-=4 I I SYH Aadr|153i>

29

E. CHAPTER SUMMARY

This Chapter described the error handling and clock control for the CFTP. The

next Chapter will discuss the simulation results and the full integration of the subsystems

of the CFTP.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

V. INTEGRATION

The integration of subsystems into a design, whether it is for a car, a house or an

electronic system, can be difficult. This integration is further complicated when it is for a

system that has never been built before. Such is the case in satellite design. Most

satellites are unique in their mission, and therefore the subsystems onboard are unique,

many having been built specifically for the mission.

The integration of the components for the CFTP was no different in this respect.

The subsystems for the CFTP were built specifically for this mission, and they each

needed to be tested separately and then integrated into a complete design. This Chapter

describes how these subsystems were integrated.

A. SUBCOMPONENT TESTING

Each subcomponent needed to be tested with the synthesis tool used to build

them. Testing was accomplished by checking for errors in the schematic design, fol-

lowed by compiling of the design into Hardware Description Language. Each schematic

is coded into HDL by the synthesis tool. As it is compiled, the compiler checks for errors

in coding caused by improper design. For example, if the design uses a 32-bit bus, but

only 16 bits are connected to a higher level design, the schematic check will not detect an

error, but the compiler will.

As these pieces were finished, they were tested for proper circuit connectivity,

and to ensure that the individual subcomponents would not exceed the FPGA capacity.

Actual gate count capacity was not the largest concern. What was more constraining was

the number of input/output (I/O) buffers used in the design.

As it turns out, the problem with buffer constraints was based on poor under-

standing of the Xilinx design tool. The actual buffer capacity was not a factor in design

implementation. The synthesis tool in the Xilinx implementation software used I/O

buffers for tri-state buffers at certain points in the design. This forced the design to

require a larger number of I/O Blocks (IOBs) than the chip contained. The solution to the

problem is explained in Section C of this Chapter.

32

Signals sent from one subcomponent to another required buffering for bi-

directional busses or for sharing busses. In the case of the single data and address busses

interfacing with off-chip memory, the two addresses from the KDLX processor had to be

buffered opposite each other. For the TMRA, the data bus required several buffers in

order to ensure that Read data did not interfere with Write data.

Redesign occurred each time the testing failed and an iterative process finally

ensured that the individual subcomponents were functional.

B. INTEGRATION

Once these individual devices were built, they were combined into one full

design, Figure 16. The inputs to the device Reset, Clock, Stall, and Load. Addr_out (16

bits) is the only output. Data_Instr (32 bits) is a bi-directional bus.

33

Figure 16. Integrated CFTP Design

Q. M ^ ^

« .

i 1 6 ; = -

n

JL lUUUUl

^ £ !

TT
lorelA

V"

, 9i-±dna

nUi,'

n
ti\\^\t\(\

s
? 1 3 3 ji f a ;

g g

^

AAAAAAAA

34

The two tri-state buffers between the Reconciler and the TMRA are to control

data to and from the processors. The control signals used for these buffers are the voted

Read and Write signals from the TMRA.

The two macros shown below the tri-state buffers are 51-to-1 OR gates. They are

intended to consolidate the Computer ID (CID) in order to reduce the number of bits to

be saved in the error syndrome.

The same macro used for the CID busses was modified for use on the Error bus.

The Error bus is consolidated since only one error signal is required to enter the ISR. The

output is then used to start the Error Syndrome Save inside the Interrup macro.

At the bottom of Figure 16 is an 8-input AND gate. It is designed to detect the

RFE instruction. When the opcode for the RFE is input into the processors, this signal

will assert the RFE pin on the Interrup which shifts the CFTP from ISR operation back to

normal.

C. FULL DESIGN TESTING

Once the individual components were connected together, more synthesis was

required to ensure that signals from one device did not produce incorrect results in

another. Problems occurred numerous times, but were typically easily solvable.

Most of the faults were caused by incorrect connection of the wiring. Others were

caused by improper labeling of either inputs or outputs of subcomponents. But some

faults were caused by serious design flaws.

One such example was in an iteration of the Reconciler. The initial design did not

include a mechanism for injecting the TRAP instruction into the instruction stream. Once

it was determined that the logical location to inject the TRAP instruction was inside the

Reconciler, the design was reconfigured to allow for either an instruction to enter the

stream from memory or to be injected from the FSM.

The redesigned Reconciler had two 24-bit tri-state buffers which would be

enabled via the TRAP_Assert signal. Synthesizing the Reconciler by itself yielded no

faults. But when the entire design was synthesized, a fault occurred. The design now

required more buffers than the chip had capacity for. A subsequent redesign was done,

35

whereby the two 24-bit buffers were replaced by a 24-bit 2-to-1 multiplexer. This

brought the entire design back under the capacity limits of the FPGA.

D. INTEGRATION STATISTICS

Once the full design was synthesized, the design software provided a synthesis

report, which detailed the uses of chip resources. A portion of that synthesis report is

provided in Table 3.

Selected Device: v800hq240-6

Number of Slices: 1678 out of 9408 17%

Number of Slice Flip Flops: 1699 out of 18816 9%

Number of 4 input LUTs: 2037 out of 18816 10%

Number of bonded IOBs: 36 out of 170 21%

Number of TBUFs: 425 out of 9408 4%

Number of GCLKs: 2 out of 4 50%

Table 3. Chip Resource Allocation

The number of slices is a representation of the gate count. In essence, only 17%

of the entire chip gate count is used to implement the entire design. The other critical

information from Table 3 is the number of bonded IOBs. An IOB is an Input/Output

Block. This is where the pins on the outside of the chip interface with the design

implemented on the FPGA. In the case of the CFTP, only 21% of the IOBs were used.

Both of these numbers indicate that there is ample room on the chip for a larger

and more complex design. Since one of the long-range goals of the CFTP is to be

reconfigurable, this is a good indication that this size FPGA will be capable of new

configurations once it is in orbit.

36

E. PIPELINE CONCERNS

There are four stages to the KDLX pipeline [2]. When the KDLX processors are

operating in normal mode, during each clock cycle an instruction resides in each stage.

Figure 17 shows the pipeline timing when there are no errors. As discussed in Chapter

IV, the memory is clocked at a rate twice that of the processor. So for every processor

clock cycle, P, two memory clock cycles, M, transpire. At clock cycle P, instruction X

enters the pipeline. At clock cycle P+4, instruction X exits the pipeline.

Figure 17. KDLX Pipeline with no Errors

When an error occurs, the pipeline is halted while the Error Syndrome is stored to

memory. Once the pipeline starts back up, a TRAP instruction is generated. There was a

concern that the instructions still in the pipeline could force another TRAP.

Figure 18 shows the KDLX pipeline with an error detected, the TRAP instruction

inserted, and the first ISR instruction being fetched from memory. When an error is

detected in instruction X−3, there are three additional instructions that will be executed

prior to the TRAP instruction. If the error is in the program counter of a processor, each

of these instructions will generate an error. This will halt the processors and save Error

37

Syndromes for each error. It will not inject another TRAP instruction, since the state

machine is controlling the Error Save states.

Figure 18. Pipeline with TRAP and ISR Instructions

F. CHAPTER SUMMARY

This Chapter described the major components of the CFTP, and their integration

into a full design. The next Chapter will discuss conclusions and follow-up research.

38

THIS PAGE INTENTIONALLY LEFT BLANK

39

VI. CONCLUSIONS AND FOLLOW-ON RESEARCH

The intent of this thesis was to implement a configurable fault tolerant processor

on a single chip. The research showed that it is possible to fit the entire design onto a

FPGA. The research also showed that this FPGA has the capacity for a larger design,

such as a more complex microprocessor than the 16-bit RISC KDLX. This extra capacity

allows for flexibility once the CFTP is on orbit.

A. OVERVIEW

Prior to the start of this research, the intent was to use a soft-core processor that

had a Von Neumann architecture. Since the research used a Harvard architecture, the

Reconciler was built to coordinate memory accesses. In order to control the various

conditions the CFTP would transition through, Normal, Error Save, Error Correct, the

finite state machine Interrup was built. And to save the 104-bit Error Syndrome to

memory on a 32-bit bus, the Error Syndrome Storage Device was designed. Each of

these components was new to the design.

The TMR Assembly was modified from previous research. The single bit voter

was adapted to only indicate error, and not differentiate between voter and data error.

And redesigning the TMRA to accommodate the KDLX processor architecture was also a

part of this research.

B. CONCLUSIONS

The CFTP is a viable design for space based application. It will detect and correct

errors in the processor caused by SEUs. It also allows for on-orbit reconfiguration for

both errors in design and future upgrade. The CFTP research helps continue to improve

the capability of space based systems, bringing newer systems to space at a faster rate

than currently capable.

C. FOLLOW-ON RESEARCH

There are several areas for further research. Implementation of this design in an

FPGA is required, along with functional testing of the FPGA. This will ensure that the

design created for this research functions properly in a real world environment.

40

Next, testing the design in a controlled radiation environment such as a cyclotron

or other particle accelerator will be necessary before the device is launched. This will

determine if the design is capable of handling the rigors of space instead of expending

resources to launch a faulty design.

Investigation of a more complex processor to replace the KDLX processor should

also be conducted. If possible, using a processor more closely representing current levels

in state of the art of processor capability would be extremely beneficial to the space

community.

Completing the interface between the CFTP and its off-chip components, such as

the memory and off-board bus must be accomplished to allow for complete functionality.

This includes an Error Correction and Detection (EDAC) component in order to prevent

SEUs in memory from introducing errors into the system.

Finally, writing the program for the processor to run that best tests for errors has

yet to be done.

41

APPENDIX A: CFTP SCHEMATICS AND CODE

Appendix A contains all the schematics and VHDL code files that were specific-

ally built for this thesis. It does not contain any of the schematics contained in the Xilinx

libraries, such as Flip-Flop or tri-state buffer schematics. Details of Xilinx schematics

can be found in the Xilinx library files.

The schematic files in Appendix A include the full design schematic, and sche-

matics of the sub-components Reconciler, Error Syndrome Storage Device (ESSD),

Triple Modular Redundant Assembly (TMRA), the single bit voter, the 16-bit voter, and

the 51-to-1 OR devices. The state machine diagram for the Interrup device is at the end

of the schematic designs. It also includes the VHDL for all the associated KDLX files, as

well as the state machine design from which the Interrup VHDL code was derived.

The VHDL files for the KDLX processor were not created specifically for this

research [2]. But since KDLX processor is an integral part of this overall design, they are

included.

A. SCHEMATICS

42

Figure 19. Full Design Schematic

JL

a. t
i

I SI

. ! i . I .

1

TTWZ

lUUUUl

v Ipftl* -rr

9Hdna r

. 9Lidna

-1^^

■ ■ ■ ■

I.I M.
• ^ il' I ... i

III

^»[»ni
C V ff C fi
3 « X X S

' g B -

i I I

kA^Amkm
s s ^

AAAAAAAA

I I

43

Figure 20. Reconciler

0,
Oi

a

ul ■.
Si ■

V

t\ 1^

-^^1.

A
A'

' 111111

11

^
^

44

Figure 21. 24-bit 2-to-1 Multiplexer

—(IflgUP^

1 f f f ! !

Wi\sr\ if)- imiQ 5Q iA
J

1 i

I III BE) BEI 851 S5t SSI iEI t I IS) ! I ■ ESI

c'/ \ «'

I
f ■ 5 Si M U

_A _A _A _i _a ^_i

«l g f

a A A A A a a A _A A_

~v V V V V V V V V V V v~

jH J t*J . I ," J \—,

&Gk ftGl s E a asi

[gCT3B>-

^a^a
F

E:'
1/ \ -.r

!^

n
SI

SEi SSi BSI 'SI <EI (IB lEB

! - F !

A a_

45

Figure 22. Error Syndrome Storage Device

46

Figure 23. Triple Modular Redundant Assembly

liT

f s 1

i

fir

1

--naiitrras

—fffh^Tgft

gtuna ,

9iidns .
—^KTS-
9iidns .

I urvJii^

47

Figure 24. 16-Bit Voter

Ibstta^

l»{iBV

-_—) la'iiiL gn>

I Jitit aai

-CETnsB5>

-natJTC)

f'5 t-l-: f-^

I I

i ^ i S S !i S ^ i

6.
- 6

i i

£, s

1 ! i > i i I i i

i. 6

1 i i

e e

> : j

^1 g S g ^ I S § I li^ §

rgFiTy> A- -A_

48

Figure 25. Single Bit Voter

Q

D

A'A'

e e Q

Q

49

Figure 26. 51-to-1 OR Gate

I 5

AAAAAAAAAAAAAAAA/

s s
ll I

O 11

^AAAAAAAAAAAAAAAAA

■looiwie aa3l

50

Figure 27. Interrup State Machine

51

B. VHDL FILES

1. adder.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
USE IEEE.std_logic_unsigned.all;

-- ***** adder model *****
-- external ports
ENTITY adder IS PORT (
 A : IN std_logic_vector(15 downto 0);
 B: IN std_logic_vector(15 downto 0);
 alu_op1 : IN std_logic;
 alu_op3 : IN std_logic;
 alu_op4 : IN std_logic;
 Out_word : OUT std_logic_vector(15 downto 0)
);
END adder;

-- internal structure
ARCHITECTURE rtl OF adder IS

-- COMPONENTS

COMPONENT AO22
PORT (
 A : IN std_logic;
 B : IN std_logic;
 C : IN std_logic;
 D : IN std_logic;
 zOut : OUT std_logic
);
END COMPONENT;

SIGNAL Vdd : std_logic;
SIGNAL subtract : std_logic;
-- INSTANCES
BEGIN
Vdd <= '1';
AO22_1 : AO22 PORT MAP(
 A => Vdd,
 B => alu_op1,
 C => alu_op4,
 D => alu_op3,
 zOut => subtract
);

process (A, B, subtract)
begin
 if (subtract = '1') then
 out_word <= A-B;
 else out_word <= A+B;
 end if;
end process;
END rtl;

52

2. alu.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** alu model *****
-- external ports
ENTITY alu IS PORT (
 A : IN std_logic_vector (15 downto 0);
 alu_op : IN std_logic_vector (4 downto 0);
 alu_out : OUT std_logic_vector (15 downto 0);
 B : IN std_logic_vector (15 downto 0)
);
END alu;

-- internal structure
ARCHITECTURE structural OF alu IS

-- COMPONENTS

COMPONENT adder
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector (15 downto 0);
 alu_op1 : IN std_logic;
 alu_op3 : IN std_logic;
 alu_op4 : IN std_logic;
 Out_word : OUT std_logic_vector (15 downto 0)
);
END COMPONENT;

COMPONENT alu_logic
PORT (
 A : IN std_logic_vector (15 downto 0);
 B : IN std_logic_vector (15 downto 0);
 Func : IN std_logic_vector (1 downto 0);
 logic_out : OUT std_logic_vector (15 downto 0)
);
END COMPONENT;

COMPONENT log_barrel
PORT (
 ar_or_log : IN std_logic;
 In_Word : IN std_logic_vector (15 downto 0);
 l_or_r : IN std_logic;
 Out_word : OUT std_logic_vector (15 downto 0);
 Shift : IN std_logic_vector (3 downto 0)
);
END COMPONENT;

COMPONENT word_mux4
PORT (
 A : IN std_logic_vector (15 downto 0);
 B : IN std_logic_vector (15 downto 0);
 C : IN std_logic_vector (15 downto 0);
 D : IN std_logic_vector (15 downto 0);
 Sel : IN std_logic_vector (1 downto 0);

53

 Out_word : OUT std_logic_vector (15 downto 0)
);
END COMPONENT;

COMPONENT word_set
PORT (
 In_word : IN std_logic_vector (15 downto 0);
 set_op : IN std_logic_vector (2 downto 0);
 set_out : OUT std_logic
);
END COMPONENT;

-- SIGNALS

SIGNAL set_out : std_logic_vector (15 downto 0);
SIGNAL log_barrel_out : std_logic_vector (15 downto 0);
SIGNAL logic_out : std_logic_vector (15 downto 0);
SIGNAL Adder_Out : std_logic_vector (15 downto 0);

-- INSTANCES
BEGIN
set_out(15 downto 1) <= "000000000000000";
halfword_adder_1 : adder PORT MAP(
 A => A,
 alu_op1 => alu_op(1),
 alu_op3 => alu_op(3),
 alu_op4 => alu_op(4),
 B => B,
 Out_word => Adder_Out
);
halfword_alu_logic_1 : alu_logic PORT MAP(
 A => A,
 B => B,
 Func => alu_op(1 downto 0),
 logic_out => logic_out
);
halfword_log_barrel_1 : log_barrel PORT MAP(
 ar_or_log => alu_op(0),
 In_word => A,
 l_or_r => alu_op(1),
 Out_word => log_barrel_out,
 Shift => B(3 downto 0)
);
halfword_mux4_1 : word_mux4 PORT MAP(
 A => Adder_Out,
 B => logic_out,
 C => log_barrel_out,
 D => set_out,
 Out_word => alu_out,
 Sel => alu_op(4 downto 3)
);
halfword_set_1 : word_set PORT MAP(
 In_word => Adder_Out,
 set_op => alu_op(2 downto 0),
 set_out => set_out(0)
);
END structural;

54

3. alu_logic.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** alu_logic model *****
-- external ports
ENTITY alu_logic IS PORT (
 A: IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 Func: IN std_logic_vector(1 downto 0);
 logic_out : OUT std_logic_vector(15 downto 0)
);
END alu_logic;

-- internal structure
ARCHITECTURE rtl OF alu_logic IS

BEGIN

process (A,B, func)
begin
 case func is
 when "00" => logic_out <= A;
 when "01" => logic_out <= (A and B);
 when "10" => logic_out <= (A or B);
 when others => logic_out <= (A xor B);
 end case;
end process;

END rtl;

4. AO22.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

entity AO22 is port (
 A, B, C, D: IN std_logic;
 zOut : OUT std_logic);
end AO22;

architecture behavioral of AO22 is
begin
 zOut <= (A and B) or (C and D);
end behavioral;

5. core.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
-- ***** core model *****

55

-- external ports
ENTITY core IS PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Input_Data : IN std_logic_vector(15 downto 0);
 Output_Data : Out std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);
END core;

-- internal structure
ARCHITECTURE structural OF core IS

-- COMPONENTS

COMPONENT alu
PORT (
 A : IN std_logic_vector(15 downto 0);
 alu_op : IN std_logic_vector(4 downto 0);
 alu_out : OUT std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0)
);
END COMPONENT;

COMPONENT word_mux3
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END COMPONENT;

COMPONENT word_mux4
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 D : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END COMPONENT;

COMPONENT regfile
PORT (
 A : OUT std_logic_vector(15 downto 0);
 B : OUT std_logic_vector(15 downto 0);
 clock : IN std_logic;

56

 Data_In : IN std_logic_vector(15 downto 0);
 Dest : IN std_logic_vector(3 downto 0);
 stalln: IN std_logic;
 resetn : IN std_logic;
 RSone : IN std_logic_vector(3 downto 0);
 RStwo : IN std_logic_vector(3 downto 0);
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic;
 wb_enable : IN std_logic
);
END COMPONENT;

COMPONENT word_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Data_out : OUT std_logic_vector(15 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT pc_control
PORT (
 ALU_Out : IN std_logic_vector(15 downto 0);
 Clock : IN std_logic;
 D2_Inc_PC : OUT std_logic_vector(15 downto 0);
 D_Link_PC : OUT std_logic_vector(15 downto 0);
 IAR_Enable : IN std_logic;
 PC : OUT std_logic_vector(15 downto 0);
 PC_Sel : IN std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Data_Out : OUT std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic
);
END COMPONENT;

COMPONENT pipeline
PORT (
alu_op : OUT std_logic_vector(4 downto 0);
 A_Mux : OUT std_logic_vector(1 downto 0);
 B_Mux : OUT std_logic_vector(1 downto 0);
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(23 downto 0);
 Dest : OUT std_logic_vector(3 downto 0);
 Immed : OUT std_logic_vector(15 downto 0);
 PC_Sel : OUT std_logic_vector(1 downto 0);
 rd_enable : OUT std_logic;
 Reg_In_Sel : OUT std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 RSone : OUT std_logic_vector(3 downto 0);
 RStwo : OUT std_logic_vector(3 downto 0);
 Scan_Data_In : IN std_logic;

57

 Scan_Enable : IN std_logic;
 Stalln : IN std_logic;
 wb_enable : OUT std_logic;
 scan_out : OUT std_logic;
 IAR_Enable : OUT std_logic;
 wr_enable : OUT std_logic;
 zero_flag : IN std_logic
);
END COMPONENT;

COMPONENT rw_control
PORT (
Clock : IN std_logic;
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 rd_enable : IN std_logic;
 resetn : IN std_logic;
 stalln : IN std_logic;
 Wr : OUT std_logic;
 wr_enable : IN std_logic
);
END COMPONENT;

COMPONENT zero_test
PORT (
 In_word : IN std_logic_vector(15 downto 0);
 zero_flag : OUT std_logic
);
END COMPONENT;

-- SIGNALS

SIGNAL wr_enable : std_logic;
SIGNAL zero_flag : std_logic;
SIGNAL IAR_Enable : std_logic;
SIGNAL wb_enable : std_logic;
SIGNAL pipeline_scan_out : std_logic;
SIGNAL Dest : std_logic_vector(3 downto 0);
SIGNAL A : std_logic_vector(15 downto 0);
SIGNAL D2_Inc_PC : std_logic_vector(15 downto 0);
SIGNAL Immed : std_logic_vector(15 downto 0);
SIGNAL D_ALU_Out : std_logic_vector(15 downto 0);
SIGNAL D_Link_PC : std_logic_vector(15 downto 0);
SIGNAL Reg_In_Sel : std_logic_vector(1 downto 0);
SIGNAL ALU_A : std_logic_vector(15 downto 0);
SIGNAL ALU_Out : std_logic_vector(15 downto 0);
SIGNAL ALU_B : std_logic_vector(15 downto 0);
SIGNAL Gnd : std_logic;
SIGNAL B : std_logic_vector(15 downto 0);
SIGNAL LD_Memory_In : std_logic_vector(15 downto 0);
SIGNAL output_en_n : std_logic;
SIGNAL rd_enable : std_logic;
SIGNAL pc_control_scan_out : std_logic;
SIGNAL Buf_Stalln : std_logic;
SIGNAL Buf_resetn : std_logic;
SIGNAL Clock : std_logic;

58

SIGNAL Buf_Addr_Int : std_logic_vector(15 downto 0);
SIGNAL Shift_En : std_logic;
SIGNAL alu_op : std_logic_vector(4 downto 0);
SIGNAL Buf_Scan_Data_Out : std_logic;
SIGNAL A_Mux : std_logic_vector(1 downto 0);
SIGNAL B_Mux : std_logic_vector(1 downto 0);
SIGNAL RSone : std_logic_vector(3 downto 0);
SIGNAL RStwo : std_logic_vector(3 downto 0);
SIGNAL PC_Sel : std_logic_vector(1 downto 0);
SIGNAL Data_Out : std_logic_vector(15 downto 0);
SIGNAL Regfile_In : std_logic_vector(15 downto 0);
SIGNAL zero_byte : std_logic_vector(7 downto 0);
SIGNAL Data_In : std_logic_vector(15 downto 0);
SIGNAL sign_ext_immed : std_logic_vector(15 downto 0);
SIGNAL scan_data_in : std_logic;
-- INSTANCES
BEGIN
clock <= clock_in;
shift_en <= '0';
scan_data_in <= '0';
Addr_Int <= Buf_Addr_Int;
zero_byte <= "00000000";
sign_ext_immed(15 downto 8) <= Immed(7) & Immed(7) & Immed(7) &

Immed(7) & Immed(7) & Immed(7) & Immed(7) & Immed(7);
sign_ext_immed (7 downto 0) <= Immed(7 downto 0);
Wr <= output_en_n;
Output_Data <= Data_Out;

Word_Reg_1 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => B,
 Data_out => Data_Out,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => pc_control_scan_out,
 Scan_Enable => Shift_En
);

Word_Reg_2 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Input_Data,
 Data_out => LD_Memory_In,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Data_Out(15),
 Scan_Enable => Shift_En
);

alu_1 : alu PORT MAP(
 A => ALU_A,
 alu_op => alu_op,
 alu_out => ALU_Out,
 B => ALU_B
);

59

word_mux3_1 : word_mux3 PORT MAP(
 A => D_ALU_Out,
 B => LD_Memory_In,
 C => D_Link_PC,
 Out_word => Regfile_In,
 Sel => Reg_In_Sel
);
word_mux3_2 : word_mux3 PORT MAP(
 A => B,
 B(7 downto 0) => Immed(7 downto 0),
 B(15 downto 8) => zero_byte,
 C => sign_ext_immed,
 Out_word => ALU_B,
 Sel => B_Mux
);

word_mux4_1 : word_mux4 PORT MAP(
 A => A,
 B => D2_Inc_PC,
 C(7 downto 0) => zero_byte,
 C(15 downto 8) => Immed(7 downto 0),
 D => Immed(15 downto 0),
 Out_word => ALU_A,
 Sel => A_Mux
);

regfile_1 : regfile PORT MAP(
 A => A,
 B => B,
 clock => Clock,
 Data_In => regfile_in,
 Dest => Dest,
 stalln => stalln,
 resetn => resetn,
 RSone => RSone,
 RStwo => RStwo,
 scan_data_in => pipeline_scan_out,
 scan_enable => Shift_En,
 wb_enable => wb_enable
);

word_reg_single_3 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_Addr_Int,
 Data_out => D_ALU_Out,
 Enable => Stalln,
 Resetn => resetn,
 Scan_Data_In => Buf_Addr_Int(15),
 Scan_Enable => Shift_En
);

word_reg_single_4 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => ALU_Out,
 Data_out => Buf_Addr_Int,
 Enable => Stalln,
 Resetn => resetn,

60

 Scan_Data_In => B(15),
 Scan_Enable => Shift_En
);
pc_control_1 : pc_control PORT MAP(
 ALU_Out => ALU_Out,
 Clock => Clock,
 D2_Inc_PC => D2_Inc_PC,
 D_Link_PC => D_Link_PC,
 IAR_Enable => IAR_Enable,
 PC => PC,
 PC_Sel => PC_Sel,
 Resetn => resetn,
 Scan_Data_In => D_ALU_Out(15),
 Scan_Data_Out => pc_control_scan_out,
 Scan_Enable => Shift_En,
 Stalln => Stalln
);
pipeline_1 : pipeline PORT MAP(
 alu_op => alu_op,
 A_Mux => A_Mux,
 B_Mux => B_Mux,
 Clock => Clock,
 Data_In => Instr,
 Dest => Dest,
 Immed => Immed,
 PC_Sel => PC_Sel,
 rd_enable => rd_enable,
 Reg_In_Sel => Reg_In_Sel,
 Resetn => resetn,
 RSone => RSone,
 RStwo => RStwo,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Shift_En,
 Stalln => Stalln,
 wb_enable => wb_enable,
 scan_out => pipeline_scan_out,
 IAR_Enable => IAR_Enable,
 wr_enable => wr_enable,
 zero_flag => zero_flag
);
rw_control_1 : rw_control PORT MAP(
 Clock => Clock,
 Prog_Rd => Prog_Rd,
 Rd => Rd,
 rd_enable => rd_enable,
 resetn => resetn,
 stalln => Stalln,
 Wr => output_en_n,
 wr_enable => wr_enable
);
zero_test_1 : zero_test PORT MAP(
 In_word => A,
 zero_flag => zero_flag
);
END structural;

61

6. Dest_Decoder.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** Dest_Decoder model *****
-- external ports
ENTITY Dest_Decoder IS PORT (
 Dest : IN std_logic_vector(3 downto 0);
 Enable : OUT std_logic_vector(15 downto 1);
 wb_enable : IN std_logic
);
END Dest_Decoder;

-- internal structure
ARCHITECTURE rtl OF Dest_Decoder IS

-- SIGNALS

SIGNAL buf_enable : std_logic_vector(15 downto 1);

-- INSTANCES
BEGIN
with dest select
buf_enable <= "000000000000001" when "0001",
 "000000000000010" when "0010",
 "000000000000100" when "0011",
 "000000000001000" when "0100",
 "000000000010000" when "0101",
 "000000000100000" when "0110",
 "000000001000000" when "0111",
 "000000010000000" when "1000",
 "000000100000000" when "1001",
 "000001000000000" when "1010",
 "000010000000000" when "1011",
 "000100000000000" when "1100",
 "001000000000000" when "1101",
 "010000000000000" when "1110",
 "100000000000000" when others;

Enable <= buf_enable when (wb_enable = '1') else

"000000000000000";
END rtl;

7. dlx.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
-- ***** dlx model *****
-- external ports
ENTITY dlx IS PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Data : INOUT std_logic_vector(15 downto 0);

62

 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);

END dlx;

-- internal structure
ARCHITECTURE structural OF dlx IS

-- COMPONENTS

COMPONENT core
PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Input_Data : IN std_logic_vector(15 downto 0);
 Output_Data : Out std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);

END COMPONENT;

COMPONENT IO_Pads
PORT (
 Pads : INOUT std_logic_vector (15 downto 0);
 In_Data : Out std_logic_vector (15 downto 0);
 Out_Data : In std_logic_vector (15 downto 0);
 Output_En_n : IN std_logic
);
END COMPONENT;

-- SIGNALS
signal Input_data : std_logic_vector(15 downto 0);
signal Output_data : std_logic_vector(15 downto 0);
signal wr_int : std_logic;

-- INSTANCES
BEGIN
wr <= wr_int;
core1 : core PORT MAP(

63

 Addr_Int => Addr_Int,
 Clock_in => Clock_In,
 Input_Data => Input_data,
 Output_Data => Output_data,
 Instr => Instr,
 PC => PC,
 Prog_Rd => Prog_Rd,
 Rd => Rd,
 Resetn => Resetn,
 Stalln => stalln,
 Wr => Wr_int
);

IO_Pads_1 : IO_Pads PORT MAP(
 Pads => Data,
 In_Data => Input_Data,
 Out_Data => Output_Data,
 Output_En_n => wr_int
);

END structural;

8. increment.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
USE IEEE.std_logic_unsigned.all;

-- ***** increment model *****
-- external ports
ENTITY increment IS PORT (
 CI : IN std_logic;
 In_word : IN std_logic_vector (15 downto 0);
 Out_word : OUT std_logic_vector (15 downto 0)
);
END increment;

-- rtl
ARCHITECTURE rtl OF increment IS

BEGIN
process (In_word, CI)
begin
 Out_word <= In_word + CI;
end process;
END rtl;

9. IO_pads.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

---- *** IO_Pads Model ***

64

---- external ports

Entity IO_Pads is PORT (
 Pads : INOUT std_logic_vector (15 downto 0);
 In_Data : Out std_logic_vector (15 downto 0);
 Out_Data : In std_logic_vector (15 downto 0);
 Output_En_n : IN std_logic
);
END IO_Pads;

Architecture Behavior of IO_Pads is
Begin
 In_Data <= Pads;
 Pads <= Out_Data when Output_En_n = '0' else (Pads'range =>

'Z');
end Behavior;

10. log_barrel.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** log_barrel model *****
-- external ports
ENTITY log_barrel IS PORT (
 ar_or_log : IN std_logic;
 In_word : IN std_logic_vector(15 downto 0);
 l_or_r : IN std_logic;
 Out_word : Out std_logic_vector(15 downto 0);
 Shift: IN std_logic_vector(3 downto 0)

);
END log_barrel;

-- internal structure
ARCHITECTURE rtl OF log_barrel IS

signal sel1, sel2, sel3, sel4 : std_logic_vector (1 downto 0);
signal buf0b, buf0c, buf0d : std_logic_vector (15 downto 0);
signal buf1a, buf1b, buf1c, buf1d : std_logic_vector (15 downto

0);
signal buf2a, buf2b, buf2c, buf2d : std_logic_vector (15 downto

0);
signal buf3a, buf3b, buf3c, buf3d : std_logic_vector (15 downto

0);

component word_mux4
port (a : in std_logic_vector (15 downto 0);
 b : in std_logic_vector (15 downto 0);
 c : in std_logic_vector (15 downto 0);
 d : in std_logic_vector (15 downto 0);
 sel : in std_logic_vector (1 downto 0);
 out_word : out std_logic_vector (15 downto 0)
);
end component;

65

begin
sel1(1) <= l_or_r and shift(0);
sel1(0) <= ar_or_log and shift(0);

sel2(1) <= l_or_r and shift(1);
sel2(0) <= ar_or_log and shift(1);

sel3(1) <= l_or_r and shift(2);
sel3(0) <= ar_or_log and shift(2);

sel4(1) <= l_or_r and shift(3);
sel4(0) <= ar_or_log and shift(3);

buf0b <= in_word(14 downto 0) & "0";
buf0c <= "0" & in_word(15 downto 1);
buf0d <= in_word(15) & in_word(15 downto 1);

buf1b <= buf1a(13 downto 0) & "00";
buf1c <= "00" & buf1a(15 downto 2);
buf1d <= buf1a(15) & buf1a(15) & buf1a(15 downto 2);

buf2b <= buf2a(11 downto 0) & "0000";
buf2c <= "0000" & buf2a(15 downto 4);
buf2d <= buf2a(15) & buf2a(15) & buf2a(15) & buf2a(15) & buf2a(15

downto 4);

buf3b <= buf3a(7 downto 0) & "00000000";
buf3c <= "00000000" & buf3a(15 downto 8);
buf3d <= buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15) &

buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15 downto 8);

mux1: word_mux4
port map (
 a => in_word,
 b => buf0b,
 c => buf0c,
 d => buf0d,
 sel => sel1,
 out_word => buf1a
);

mux2: word_mux4
port map (
 a => buf1a,
 b => buf1b,
 c => buf1c,
 d => buf1d,
 sel => sel2,
 out_word => buf2a
);

mux3: word_mux4
port map (
 a => buf2a,

66

 b => buf2b,
 c => buf2c,
 d => buf2d,
 sel => sel3,
 out_word => buf3a
);

mux4: word_mux4
port map (
 a => buf3a,
 b => buf3b,
 c => buf3c,
 d => buf3d,
 sel => sel4,
 out_word => out_word);

end rtl;

11. pc_control.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** pc_control model *****
-- external ports
ENTITY pc_control IS PORT (
 ALU_Out : IN std_logic_vector(15 downto 0);
 Clock : IN std_logic;
 D2_Inc_PC : OUT std_logic_vector(15 downto 0);
 D_Link_PC : OUT std_logic_vector(15 downto 0);
 IAR_Enable : IN std_logic;
 In_PC : OUT std_logic_vector(15 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 PC_Sel : IN std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Data_Out : OUT std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic
);
END pc_control;

-- internal structure
ARCHITECTURE structural OF pc_control IS

-- COMPONENTS

COMPONENT word_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Data_out : OUT std_logic_vector(15 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;

67

 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT word_mux3
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END COMPONENT;

COMPONENT increment
PORT (
 CI : IN std_logic;
 In_word : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0)
);
END COMPONENT;

-- SIGNALS

SIGNAL IAR : std_logic_vector(15 downto 0);
SIGNAL PC_Incr : std_logic_vector(15 downto 0);
SIGNAL Buf_In_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_Scan_Data_Out : std_logic;
SIGNAL Buf_D1_Inc_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_D2_Inc_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_D_Link_PC : std_logic_vector(15 downto 0);
SIGNAL Link_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_Link_PC : std_logic_vector(15 downto 0);

-- INSTANCES
BEGIN
In_PC <= Buf_In_PC;
PC <= Buf_PC;
D2_Inc_PC <= Buf_D2_Inc_PC;
D_Link_PC <= Buf_D_Link_PC;
Scan_Data_Out <= IAR(15);

halfword_reg_single_1 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_In_PC,
 Data_out => Buf_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);
halfword_mux3_1 : word_mux3 PORT MAP(
 A => PC_Incr,
 B => ALU_Out,
 C => IAR,

68

 Out_word => Buf_In_PC,
 Sel => PC_Sel
);
halfword_increment_1 : increment PORT MAP(
 CI => '1',
 In_word => Buf_PC,
 Out_word => PC_Incr
);

halfword_reg_single_2 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => PC_Incr,
 Data_out => Buf_D1_Inc_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_reg_single_3 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_D1_Inc_PC,
 Data_out => Buf_D2_Inc_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_D1_Inc_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_increment_2 : increment PORT MAP(
 CI => '1',
 In_word(0) => '1',
 In_word(15 downto 1) => Buf_D2_Inc_PC(15 downto 1),
 Out_word(15 downto 0) => Link_PC(15 downto 0)
);
halfword_reg_single_4 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In(0) => Buf_D2_Inc_PC(0),
 Data_In(15 downto 1) => Link_PC(15 downto 1),
 Data_out => Buf_Link_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_D2_Inc_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_reg_single_5 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_Link_PC,
 Data_Out => Buf_D_Link_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_Link_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_reg_single_6 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_D_Link_PC,
 Data_out => IAR,
 Enable => IAR_Enable,

69

 Resetn => Resetn,
 Scan_Data_In => Buf_D_Link_PC(15),
 Scan_Enable => Scan_Enable
);
END structural;

12. pipeline
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** pipeline model *****
-- external ports
ENTITY pipeline IS PORT (
 alu_op : OUT std_logic_vector(4 downto 0);
 A_Mux : OUT std_logic_vector(1 downto 0);
 B_Mux : OUT std_logic_vector(1 downto 0);

 Clock : IN std_logic;
 Data_In : IN std_logic_vector(23 downto 0);
 Dest : OUT std_logic_vector(3 downto 0);
 Immed : OUT std_logic_vector(15 downto 0);
 PC_Sel : OUT std_logic_vector(1 downto 0);
 rd_enable : OUT std_logic;
 Reg_In_Sel : OUT std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 RSone : OUT std_logic_vector(3 downto 0);
 RStwo : OUT std_logic_vector(3 downto 0);
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic;
 wb_enable : OUT std_logic;
 scan_out : OUT std_logic;
 IAR_Enable : OUT std_logic;
 wr_enable : OUT std_logic;
 zero_flag : IN std_logic
);
END pipeline;

-- internal structure
ARCHITECTURE rtl OF pipeline IS

-- COMPONENTS

COMPONENT twelve_bit_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(11 downto 0);
 Data_out : OUT std_logic_vector(11 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

70

COMPONENT twenty_four_bit_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(23 downto 0);
 Data_out : OUT std_logic_vector(23 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

-- SIGNALS
SIGNAL Dec_Instr : std_logic_vector (23 downto 0);
SIGNAL Ex_Instr : std_logic_vector (23 downto 0);
SIGNAL Mem_Instr : std_logic_vector (11 downto 0);
SIGNAL WB_Instr : std_logic_vector (11 downto 0);

-- INSTANCES
BEGIN

----- ****** decode pipeline stage *********

twenty_bit_reg_single_1 : twenty_four_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Data_In,
 Data_out => Dec_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);

process (Dec_Instr)
begin
RSone <= Dec_Instr(15 downto 12);

---- assign RS2 (check for SW instruction)
if (Dec_Instr(23 downto 16) = X"45") then
 RStwo <= Dec_Instr(11 downto 8) ;
else RStwo <= Dec_Instr(7 downto 4);
end if;
end process;
------ ****** execute pipeline stage **********

twenty_four_bit_reg_single_2 : twenty_four_bit_reg_single PORT

MAP(
 Clock => Clock,
 Data_In => Dec_Instr,
 Data_out => Ex_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Dec_Instr(23),
 Scan_Enable => Scan_Enable

71

);

Immed <= Ex_Instr(15 downto 0); ---- assign immediate value
alu_op <= Ex_Instr(20 downto 16); ---- assign alu opcodes
b_mux <= Ex_Instr(22 downto 21); --- assign b_mux

PC_Sel <= "01" when Ex_Instr(23 downto 16) = X"C8" else -----

when OP_J
 "01" when Ex_Instr(23 downto 16) = X"E8" else ---

-- when OP_JAL
 "0" & zero_flag when Ex_Instr(23 downto 16) =

X"C1" else ---when OP_BEQZ
 "0" & not(zero_flag) when Ex_Instr(23 downto 16)

= X"C0" else ---when OP_BEQZ
 "10" when Ex_Instr(23 downto 16) = X"F8" else --

-OP_RFE
 "01" when Ex_Instr(23 downto 16) = X"28" else -

--- OP_TRAP
 "01" when Ex_Instr(23 downto 16) = X"48" else -

--- OP_JR
 "01" when Ex_Instr(23 downto 16) = X"68" else

----OP_JALR
 "00";

process (Ex_Instr)
begin

case Ex_Instr(23 downto 16) is
 when X"C8" => ----- when OP_J
 A_Mux <= "11";
 when X"E8" => ----- when OP_JAL
 A_Mux <= "11";
 when X"C1" => ----- when OP_BEQZ
 A_Mux <= "01";
 when X"C0" => ----- when OP_BNEZ
 A_Mux <= "01";
 when X"08" => ----- when OP_LHI
 A_Mux <= "10";
 when X"F8" => ----- when OP_RFE
 A_Mux <= "00";
 when X"28" => ----- when OP_TRAP
 A_Mux <= "11";
 when X"48" => ----- when OP_JR
 A_Mux <= "00";
 when X"68" => ----- when OP_JALR
 A_Mux <= "00";
 when others => ----- OTHERS
 A_Mux <= "00";
end case;
end process;

------ ***** memory stage of pipeline ******* -----------

twelve_bit_reg_single_1 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In(11 downto 4) => Ex_Instr(23 downto 16),

72

 Data_In(3 downto 0) => Ex_Instr(11 downto 8),
 Data_out => Mem_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Ex_Instr(23),
 Scan_Enable => Scan_Enable
);

process (Mem_Instr)
begin
case Mem_Instr(11 downto 4) is
 when X"45" =>
 rd_enable <= '0'; ----- OP_SW (write)
 wr_enable <= '1';
 when X"44" => ------ OP_LW (read)
 rd_enable <= '1';
 wr_enable <= '0';
 when others =>
 rd_enable <= '0';
 wr_enable <= '0';
end case;
end process;

------ ******** write back stage ********
twelve_bit_reg_single_2 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Mem_Instr,
 Data_out => WB_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Mem_Instr(11),
 Scan_Enable => Scan_Enable
);

scan_out <= WB_Instr(11);
process (WB_Instr)
begin

---- check for Jump and Link Instructions to set Reg_In_Sel(0) =

0
 if (WB_Instr(11 downto 4) = X"E8" or WB_Instr(11 downto 4) =

X"68") then
 Reg_In_Sel(1) <= '1';
 Dest <= "1111";
 else Reg_In_Sel(1) <= '0';
 Dest <= WB_Instr(3 downto 0);
 end if;

---- check for TRAP to set IAR_Enable = 1
 if (WB_Instr(11 downto 4) = X"28") then
 IAR_Enable <= '1';
 else IAR_Enable <= '0';
 end if;

---- check for LW to set Reg_In_Sel(1) = 1
 if (WB_Instr(11 downto 4) = X"44") then
 Reg_In_Sel(0) <= '1';

73

 else Reg_In_Sel(0) <= '0';
 end if;

------ set write_back enable
 case WB_Instr(11 downto 4) is
 when X"C8" => ----- when OP_J
 WB_Enable <= '0';
 when X"C1" => ----- when OP_BEQZ
 WB_Enable <= '0';
 when X"C0" => ----- when OP_BNEZ
 WB_Enable <= '0';
 when X"45" => ----- when OP_SW
 WB_Enable <= '0';
 when X"F8" => ----- when OP_RFE
 WB_Enable <= '0';
 when X"28" => ----- when OP_TRAP
 WB_Enable <= '0';
 when X"48" => ----- when OP_JR
 WB_Enable <= '0';
 when X"00" => ----- when OP_NOP
 WB_Enable <= '0';
 when others =>
 WB_Enable <= '1';
 end case;
end process;
END rtl;

13. regfile
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-----******* regfile model ***********

---- external ports
ENTITY regfile IS PORT (
 A : OUT std_logic_vector(15 downto 0);
 B : OUT std_logic_vector(15 downto 0);
 clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Dest : IN std_logic_vector(3 downto 0);
 stalln : IN std_logic;
 RSone : IN std_logic_vector(3 downto 0);
 RStwo : IN std_logic_vector(3 downto 0);
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic;
 Resetn : IN std_logic;
 wb_enable : IN std_logic
);
END regfile;

---- internal structure
ARCHITECTURE structural OF regfile is

---- COMPONENTS

74

COMPONENT Dest_Decoder
PORT (
 Dest : IN std_logic_vector(3 downto 0);
 Enable : OUT std_logic_vector(15 downto 1);
 wb_enable : IN std_logic
);
END COMPONENT;

COMPONENT word_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector (15 downto 0);
 Data_out : OUT std_logic_vector (15 downto 0);
 enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT word_mux16
PORT (
 In_Word0 : IN std_logic_vector(15 downto 0);
 In_Word1 : IN std_logic_vector(15 downto 0);
 In_Word2 : IN std_logic_vector(15 downto 0);
 In_Word3 : IN std_logic_vector(15 downto 0);
 In_Word4 : IN std_logic_vector(15 downto 0);
 In_Word5 : IN std_logic_vector(15 downto 0);
 In_Word6 : IN std_logic_vector(15 downto 0);
 In_Word7 : IN std_logic_vector(15 downto 0);
 In_Word8 : IN std_logic_vector(15 downto 0);
 In_Word9 : IN std_logic_vector(15 downto 0);
 In_Word10 : IN std_logic_vector(15 downto 0);
 In_Word11 : IN std_logic_vector(15 downto 0);
 In_Word12 : IN std_logic_vector(15 downto 0);
 In_Word13 : IN std_logic_vector(15 downto 0);
 In_Word14 : IN std_logic_vector(15 downto 0);
 In_Word15 : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(3 downto 0)
);
END component;

----- signals
signal Enable : std_logic_vector(15 downto 1);
signal Reg1_Data : std_logic_vector(15 downto 0);
signal Reg2_Data : std_logic_vector(15 downto 0);
signal Reg3_Data : std_logic_vector(15 downto 0);
signal Reg4_Data : std_logic_vector(15 downto 0);
signal Reg5_Data : std_logic_vector(15 downto 0);
signal Reg6_Data : std_logic_vector(15 downto 0);
signal Reg7_Data : std_logic_vector(15 downto 0);
signal Reg8_Data : std_logic_vector(15 downto 0);
signal Reg9_Data : std_logic_vector(15 downto 0);
signal Reg10_Data : std_logic_vector(15 downto 0);

75

signal Reg11_Data : std_logic_vector(15 downto 0);
signal Reg12_Data : std_logic_vector(15 downto 0);
signal Reg13_Data : std_logic_vector(15 downto 0);
signal Reg14_Data : std_logic_vector(15 downto 0);
signal Reg15_Data : std_logic_vector(15 downto 0);
signal RegA_Data : std_logic_vector(15 downto 0);
signal MuxA_Data : std_logic_vector(15 downto 0);
signal MuxB_Data : std_logic_vector(15 downto 0);
signal zero_word : std_logic_vector(15 downto 0);

begin

zero_word <= "0000000000000000";

---- port maps

Dest_Decoder1 : Dest_Decoder PORT MAP (
 Dest=> Dest,
 Enable => Enable,
 wb_enable => wb_enable
);

word_reg1 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,

 Data_out => Reg1_Data,
 Enable => Enable(1),
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);

word_reg2 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg2_Data,
 Enable => Enable(2),
 Resetn => Resetn,
 Scan_Data_In => Reg1_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg3 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg3_Data,
 Enable => Enable(3),
 Resetn => Resetn,
 Scan_Data_In => Reg2_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg4 : word_reg_single PORT MAP (

76

 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg4_Data,
 Enable => Enable(4),
 Resetn => Resetn,
 Scan_Data_In => Reg3_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg5 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg5_Data,
 Enable => Enable(5),
 Resetn => Resetn,
 Scan_Data_In => Reg4_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg6 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg6_Data,
 Enable => Enable(6),
 Resetn => Resetn,
 Scan_Data_In => Reg5_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg7 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg7_Data,
 Enable => Enable(7),
 Resetn => Resetn,
 Scan_Data_In => Reg6_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg8 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg8_Data,
 Enable => Enable(8),
 Resetn => Resetn,
 Scan_Data_In => Reg7_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg9 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg9_Data,
 Enable => Enable(9),
 Resetn => Resetn,
 Scan_Data_In => Reg8_Data(15),
 Scan_Enable => Scan_Enable

77

);

word_reg10 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg10_Data,
 Enable => Enable(10),
 Resetn => Resetn,
 Scan_Data_In => Reg9_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg11 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg11_Data,
 Enable => Enable(11),
 Resetn => Resetn,
 Scan_Data_In => Reg10_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg12 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg12_Data,
 Enable => Enable(12),
 Resetn => Resetn,
 Scan_Data_In => Reg11_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg13 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg13_Data,
 Enable => Enable(13),
 Resetn => Resetn,
 Scan_Data_In => Reg12_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg14 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg14_Data,
 Enable => Enable(14),
 Resetn => Resetn,
 Scan_Data_In => Reg13_Data(15),
 Scan_Enable => Scan_Enable
);

word_reg15 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg15_Data,
 Enable => Enable(15),

78

 Resetn => Resetn,
 Scan_Data_In => Reg14_Data(15),
 Scan_Enable => Scan_Enable
);

word_regA : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => MuxA_Data,
 Data_out => RegA_Data,
 Enable => stalln,
 Resetn => Resetn,
 Scan_Data_In => Reg15_Data(15),
 Scan_Enable => Scan_Enable
);

A <= RegA_Data;

word_regB : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => MuxB_Data,
 Data_out => B,
 Enable => stalln,
 Resetn => Resetn,
 Scan_Data_In => RegA_Data(15),
 Scan_Enable => Scan_Enable
);

MuxA : word_mux16 PORT MAP (
 In_Word0 => zero_word,
 In_Word1 => Reg1_Data,
 In_Word2 => Reg2_Data,
 In_Word3 => Reg3_Data,
 In_Word4 => Reg4_Data,
 In_Word5 => Reg5_Data,
 In_Word6 => Reg6_Data,
 In_Word7 => Reg7_Data,
 In_Word8 => Reg8_Data,
 In_Word9 => Reg9_Data,
 In_Word10 => Reg10_Data,
 In_Word11 => Reg11_Data,
 In_Word12 => Reg12_Data,
 In_Word13 => Reg13_Data,
 In_Word14 => Reg14_Data,
 In_Word15 => Reg15_Data,
 Out_word => MuxA_Data,
 Sel => RSone
);

MuxB : word_mux16 PORT MAP (
 In_Word0 => zero_word,
 In_Word1 => Reg1_Data,
 In_Word2 => Reg2_Data,
 In_Word3 => Reg3_Data,
 In_Word4 => Reg4_Data,
 In_Word5 => Reg5_Data,
 In_Word6 => Reg6_Data,
 In_Word7 => Reg7_Data,

79

 In_Word8 => Reg8_Data,
 In_Word9 => Reg9_Data,
 In_Word10 => Reg10_Data,
 In_Word11 => Reg11_Data,
 In_Word12 => Reg12_Data,
 In_Word13 => Reg13_Data,
 In_Word14 => Reg14_Data,
 In_Word15 => Reg15_Data,
 Out_word => MuxB_Data,
 Sel => RStwo
);

END structural;

14. rwcontrol
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** rw_control model *****
-- external ports
ENTITY rw_control IS PORT (
 Clock : IN std_logic;
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 rd_enable : IN std_logic;
 resetn : IN std_logic;
 stalln : IN std_logic;
 Wr : OUT std_logic;
 wr_enable : IN std_logic
);
END rw_control;

-- internal structure
ARCHITECTURE rtl OF rw_control IS

-- SIGNALS

SIGNAL clockn : std_logic; --- inverted clock

BEGIN
clockn <= not(Clock);
Wr <= not (clockn and wr_enable);
Rd <= not (clockn and rd_enable);
Prog_Rd <= not (clockn and resetn and stalln);
end rtl;

15. scan_reg
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** scan_reg model *****
-- external ports

80

ENTITY scan_reg IS PORT (
 clk : IN std_logic;
 data_in : IN std_logic;
 data_out : OUT std_logic;
 enable : IN std_logic;
 resetn : IN std_logic;
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic
);
END scan_reg;

-- internal structure
ARCHITECTURE rtl OF scan_reg IS

-- INSTANCES
BEGIN

process (clk, resetn)
begin
if (resetn = '0') then
 data_out <= '0';
elsif (clk = '1' and clk'event) then
 if (scan_enable = '1') then
 data_out <= scan_data_in;
 elsif (enable = '1') then
 data_out <= data_in;
 end if;
 end if;
end process;

END rtl;

16. twelve_bit_reg_single
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** twelve_bit_reg_single model *****
-- external ports
ENTITY twelve_bit_reg_single IS PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(11 downto 0);
 Data_out : OUT std_logic_vector(11 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END twelve_bit_reg_single;

-- internal structure
ARCHITECTURE structural OF twelve_bit_reg_single IS

-- COMPONENTS

81

COMPONENT scan_reg
PORT (
 clk : IN std_logic;
 data_in : IN std_logic;
 data_out : OUT std_logic;
 enable : IN std_logic;
 resetn : IN std_logic;
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic
);
END COMPONENT;

-- SIGNALS

signal buf_data_out : std_logic_vector (10 downto 0);

-- INSTANCES
BEGIN
Data_out(0) <= buf_data_out(0);
Data_out(1) <= buf_data_out(1);
Data_out(2) <= buf_data_out(2);
Data_out(3) <= buf_data_out(3);
Data_out(4) <= buf_data_out(4);
Data_out(5) <= buf_data_out(5);
Data_out(6) <= buf_data_out(6);
Data_out(7) <= buf_data_out(7);
Data_out(8) <= buf_data_out(8);
Data_out(9) <= buf_data_out(9);
Data_out(10) <= buf_data_out(10);

scan_reg_1 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(1),
 data_out => buf_data_out(1),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(0),
 scan_enable => Scan_Enable
);
scan_reg_2 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(2),
 data_out => buf_data_out(2),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(1),
 scan_enable => Scan_Enable
);
scan_reg_3 : scan_reg PORT MAP(
 clk => Clock,

82

 data_in => Data_In(3),
 data_out => buf_data_out(3),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(2),
 scan_enable => Scan_Enable
);
scan_reg_4 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(4),
 data_out => buf_data_out(4),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(3),
 scan_enable => Scan_Enable
);
scan_reg_5 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(0),
 data_out => buf_data_out(0),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Scan_Data_In,
 scan_enable => Scan_Enable
);
scan_reg_6 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(5),
 data_out => buf_data_out(5),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(4),
 scan_enable => Scan_Enable
);
scan_reg_7 : scan_reg PORT MAP(
 clk => Clock,

 data_in => Data_In(6),
 data_out => buf_data_out(6),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(5),
 scan_enable => Scan_Enable
);
scan_reg_8 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(7),
 data_out => buf_data_out(7),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(6),
 scan_enable => Scan_Enable
);
scan_reg_9 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(8),
 data_out => buf_data_out(8),

83

 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(7),
 scan_enable => Scan_Enable
);
scan_reg_10 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(9),
 data_out => buf_data_out(9),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(8),
 scan_enable => Scan_Enable
);
scan_reg_11 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(10),
 data_out => buf_data_out(10),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(9),
 scan_enable => Scan_Enable

);
scan_reg_12 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(11),
 data_out => Data_out(11),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(10),
 scan_enable => Scan_Enable
);
END structural;

17. twenty_four_bit_reg_single
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** twenty_four_bit_reg_single model *****
-- external ports
ENTITY twenty_four_bit_reg_single IS PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector (23 downto 0);
 Data_out : OUT std_logic_vector (23 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END twenty_four_bit_reg_single;

-- internal structure
ARCHITECTURE structural OF twenty_four_bit_reg_single IS

84

-- COMPONENTS

Component twelve_bit_reg_single
 PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(11 downto 0);
 Data_out : OUT std_logic_vector(11 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END Component;

-- SIGNALS
SIGNAL Buf_Data_out11 : std_logic;

-- INSTANCES
BEGIN
Data_out(11) <= Buf_Data_out11;

twelve_bit_reg_single1 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Data_In(11 downto 0),
 Data_Out(10 downto 0) => Data_Out(10 downto 0),
 Data_Out(11) => Buf_Data_out11,
 Enable => Enable,
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);

twelve_bit_reg_single2 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Data_In(23 downto 12),
 Data_Out => Data_Out(23 downto 12),
 Enable => Enable,
 Resetn => Resetn,
 Scan_Data_In => Buf_Data_out11,
 Scan_Enable => Scan_Enable
);
END structural;

18. word_mux16
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_mux16 model *****
-- external ports
ENTITY word_mux16 IS PORT (
 In_Word0 : IN std_logic_vector(15 downto 0);
 In_Word1 : IN std_logic_vector(15 downto 0);

85

 In_Word2 : IN std_logic_vector(15 downto 0);
 In_Word3 : IN std_logic_vector(15 downto 0);
 In_Word4 : IN std_logic_vector(15 downto 0);
 In_Word5 : IN std_logic_vector(15 downto 0);
 In_Word6 : IN std_logic_vector(15 downto 0);
 In_Word7 : IN std_logic_vector(15 downto 0);
 In_Word8 : IN std_logic_vector(15 downto 0);
 In_Word9 : IN std_logic_vector(15 downto 0);
 In_Word10 : IN std_logic_vector(15 downto 0);
 In_Word11 : IN std_logic_vector(15 downto 0);
 In_Word12 : IN std_logic_vector(15 downto 0);
 In_Word13 : IN std_logic_vector(15 downto 0);
 In_Word14 : IN std_logic_vector(15 downto 0);
 In_Word15 : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(3 downto 0)
);
END word_mux16;

-- internal structure
ARCHITECTURE rtl OF word_mux16 IS
BEGIN

with sel select
 Out_word <= In_Word0 when "0000",
 In_Word1 when "0001",
 In_Word2 when

"0010",
 In_Word3 when "0011",
 In_Word4 when "0100",
 In_Word5 when "0101",
 In_Word6 when "0110",
 In_Word7 when "0111",
 In_Word8 when "1000",
 In_Word9 when "1001",

 In_Word10 when "1010",
 In_Word11 when "1011",
 In_Word12 when "1100",
 In_Word13 when "1101",
 In_Word14 when "1110",
 In_Word15 when others;

END rtl;

19. word_mux3
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_mux3 model *****
-- external ports
ENTITY word_mux3 IS PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);

86

 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END word_mux3;

-- internal structure
ARCHITECTURE rtl OF word_mux3 IS
BEGIN
process (A, B, C, Sel)
begin
case sel is
 when "00" => Out_word <= A;
 when "01" => Out_word <= B;
 when others => Out_word <= C;
end case;
end process;
END rtl;

20. word_mux4.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_mux4 model *****
-- external ports
ENTITY word_mux4 IS PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 D : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END word_mux4;

-- internal structure
ARCHITECTURE rtl OF word_mux4 IS
BEGIN
process (A, B, C, D, Sel)
begin
case sel is
 when "00" => Out_word <= A;
 when "01" => Out_word <= B;
 when "10" => Out_word <= C;
 when others => Out_word <= D;
end case;
end process;
END rtl;

21. word_reg_single.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_reg_single model *****

87

-- external ports
ENTITY word_reg_single IS PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector (15 downto 0);
 Data_out : OUT std_logic_vector (15 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END word_reg_single;

-- internal structure
ARCHITECTURE structural OF word_reg_single IS

-- COMPONENTS

COMPONENT scan_reg
PORT (
 clk : IN std_logic;
 data_in : IN std_logic;
 data_out : OUT std_logic;
 enable : IN std_logic;
 resetn : IN std_logic;
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic
);
END COMPONENT;

-- SIGNALS

SIGNAL Buf_Data_out : std_logic_vector(14 downto 0);

-- INSTANCES
BEGIN

Data_out(0) <= Buf_Data_out(0);
Data_out(1) <= Buf_Data_out(1);
Data_out(2) <= Buf_Data_out(2);
Data_out(3) <= Buf_Data_out(3);
Data_out(4) <= Buf_Data_out(4);
Data_out(5) <= Buf_Data_out(5);
Data_out(6) <= Buf_Data_out(6);
Data_out(7) <= Buf_Data_out(7);
Data_out(8) <= Buf_Data_out(8);
Data_out(9) <= Buf_Data_out(9);
Data_out(10) <= Buf_Data_out(10);
Data_out(11) <= Buf_Data_out(11);
Data_out(12) <= Buf_Data_out(12);
Data_out(13) <= Buf_Data_out(13);
Data_out(14) <= Buf_Data_out(14);

88

scan_reg_1 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(1),
 data_out => Buf_Data_out(1),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(0),
 scan_enable => Scan_Enable
);
scan_reg_2 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(2),
 data_out => Buf_Data_out(2),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(1),
 scan_enable => Scan_Enable
);
scan_reg_3 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(3),
 data_out => Buf_Data_out(3),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(2),
 scan_enable => Scan_Enable
);
scan_reg_4 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(4),
 data_out => Buf_Data_out(4),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(3),
 scan_enable => Scan_Enable
);
scan_reg_6 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(5),
 data_out => Buf_Data_out(5),

 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(4),
 scan_enable => Scan_Enable
);
scan_reg_7 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(6),
 data_out => Buf_Data_out(6),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(5),
 scan_enable => Scan_Enable
);
scan_reg_8 : scan_reg PORT MAP(
 clk => Clock,

89

 data_in => Data_In(7),
 data_out => Buf_Data_out(7),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(6),
 scan_enable => Scan_Enable
);
scan_reg_9 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(8),
 data_out => Buf_Data_out(8),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(7),
 scan_enable => Scan_Enable
);
scan_reg_10 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(9),
 data_out => Buf_Data_out(9),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(8),
 scan_enable => Scan_Enable
);
scan_reg_11 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(10),
 data_out => Buf_Data_out(10),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(9),
 scan_enable => Scan_Enable
);
scan_reg_12 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(11),
 data_out => Buf_Data_out(11),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(10),
 scan_enable => Scan_Enable
);
scan_reg_13 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(12),
 data_out => Buf_Data_out(12),
 enable => Enable,

 resetn => Resetn,
 scan_data_in => Buf_Data_out(11),
 scan_enable => Scan_Enable
);
scan_reg_14 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(13),
 data_out => Buf_Data_out(13),

90

 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(12),
 scan_enable => Scan_Enable
);
scan_reg_15 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(14),
 data_out => Buf_Data_out(14),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(13),
 scan_enable => Scan_Enable
);
scan_reg_16 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(15),
 data_out => Data_out(15),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(14),
 scan_enable => Scan_Enable
);
scan_reg_5 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(0),
 data_out => Buf_Data_out(0),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Scan_Data_In,
 scan_enable => Scan_Enable
);
END structural;

22. word_set.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_set model *****
-- external ports
ENTITY word_set IS PORT (
 In_word : IN std_logic_vector (15 downto 0);
 set_op : IN std_logic_vector (2 downto 0);
 set_out : OUT std_logic
);
END word_set;

-- internal structure
ARCHITECTURE rtl OF word_set IS

component zero_test
PORT (
 In_word : in std_logic_vector(15 downto 0);
 zero_flag : OUT std_logic
);

91

END component;
signal zero_flag : std_logic;

begin
process (In_word, set_op, zero_flag)
begin
case set_op is
 when "000" => set_out <= zero_flag;
 when "001" => set_out <= (not(In_word(15)) or zero_flag);
 when "010" => set_out <= not(In_word(15)) and not(zero_flag);
 when "011" => set_out <= (In_word(15) or zero_flag);

 when "100" => set_out <= In_word(15);
 when others => set_out <= not(zero_flag);
end case;
end process;
zero_test1 : zero_test port map (
 In_word => In_word,
 zero_flag => zero_flag
);

END rtl;

23. zero_test.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** zero_test model *****
-- external ports
ENTITY zero_test IS PORT (
 In_word : in std_logic_vector(15 downto 0);
 zero_flag : OUT std_logic
);
END zero_test;

-- internal structure
ARCHITECTURE rtl OF zero_test IS
begin

process (In_word)
begin
 if (In_word = "0000000000000000") then
 zero_flag <= '1';
 else zero_flag <= '0';
 end if;
end process;

END rtl;

92

24. interrup.vhd
-- C:\XILINX\FULL_THING\INTERRUP.vhd
-- VHDL code created by Xilinx's StateCAD 5.1i
-- Thu Feb 27 09:36:14 2003

-- This VHDL code (for use with Xilinx XST) was generated using:
-- enumerated state assignment with structured code format.
-- Minimization is enabled, implied else is enabled,
-- and outputs are speed optimized.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY SHELL_INTERRUP IS
 PORT (CLK,E,RESET,RFE: IN std_logic;

 DataAccess,ErrSyn1,ErrSyn2,ErrSyn3,ErrSyn4,Instr0,Instr1,Instr2,I
nstr3,

 Instr4,Instr5,Instr6,Instr7,Instr8,Instr9,Instr10,Instr11,Instr12
,Instr13,

 Instr14,Instr15,Instr16,Instr17,Instr18,Instr19,Instr20,Instr21,I
nstr22,

 Instr23,InstrAccess,TRAP : OUT std_logic);
END;

ARCHITECTURE BEHAVIOR OF SHELL_INTERRUP IS
 TYPE type_sreg IS

(ErrSyndSave1,ErrSyndSave2,ErrSyndSave3,ErrSyndSave4,

 InterrInstr,ISRData,ISRErrSyndSave1,ISRErrSyndSave2,ISRErrSyndSav
e3,

 ISRErrSyndSave4,ISRInst,NormData,NormInst);
 SIGNAL sreg, next_sreg : type_sreg;
 SIGNAL

next_BP_DataAccess,next_BP_ErrSyn1,next_BP_ErrSyn2,next_BP_ErrSyn3,

 next_BP_ErrSyn4,next_BP_Instr0,next_BP_Instr1,next_BP_Instr2,next
_BP_Instr3,

 next_BP_Instr4,next_BP_Instr5,next_BP_Instr6,next_BP_Instr7,next_
BP_Instr8,

 next_BP_Instr9,next_BP_Instr10,next_BP_Instr11,next_BP_Instr12,

 next_BP_Instr13,next_BP_Instr14,next_BP_Instr15,next_BP_Instr16,

 next_BP_Instr17,next_BP_Instr18,next_BP_Instr19,next_BP_Instr20,

 next_BP_Instr21,next_BP_Instr22,next_BP_Instr23,next_BP_InstrAcce
ss,

 next_BP_TRAP : std_logic;
 SIGNAL BP_Instr : std_logic_vector (23 DOWNTO 0);
 SIGNAL Instr : std_logic_vector (23 DOWNTO 0);

93

 SIGNAL
BP_DataAccess,BP_ErrSyn1,BP_ErrSyn2,BP_ErrSyn3,BP_ErrSyn4,BP_Instr0,

 BP_Instr1,BP_Instr2,BP_Instr3,BP_Instr4,BP_Instr5,BP_Instr6,BP_In
str7,

 BP_Instr8,BP_Instr9,BP_Instr10,BP_Instr11,BP_Instr12,BP_Instr13,B
P_Instr14,

 BP_Instr15,BP_Instr16,BP_Instr17,BP_Instr18,BP_Instr19,BP_Instr20
,BP_Instr21,

 BP_Instr22,BP_Instr23,BP_InstrAccess,BP_TRAP:
std_logic;

BEGIN
 PROCESS (CLK, RESET, next_sreg, next_BP_DataAccess,

next_BP_ErrSyn1,
 next_BP_ErrSyn2, next_BP_ErrSyn3, next_BP_ErrSyn4,

next_BP_InstrAccess,
 next_BP_TRAP, next_BP_Instr23, next_BP_Instr22,

next_BP_Instr21,
 next_BP_Instr20, next_BP_Instr19, next_BP_Instr18,

next_BP_Instr17,
 next_BP_Instr16, next_BP_Instr15, next_BP_Instr14,

next_BP_Instr13,
 next_BP_Instr12, next_BP_Instr11, next_BP_Instr10,

next_BP_Instr9,
 next_BP_Instr8, next_BP_Instr7, next_BP_Instr6,

next_BP_Instr5,
 next_BP_Instr4, next_BP_Instr3, next_BP_Instr2,

next_BP_Instr1,
 next_BP_Instr0)
 BEGIN
 IF (RESET='1') THEN
 sreg <= NormInst;
 BP_DataAccess <= '0';
 BP_ErrSyn1 <= '0';
 BP_ErrSyn2 <= '0';
 BP_ErrSyn3 <= '0';
 BP_ErrSyn4 <= '0';
 BP_TRAP <= '0';
 BP_Instr23 <= '0';
 BP_Instr22 <= '0';
 BP_Instr21 <= '0';
 BP_Instr20 <= '0';
 BP_Instr19 <= '0';
 BP_Instr18 <= '0';
 BP_Instr17 <= '0';
 BP_Instr16 <= '0';
 BP_Instr15 <= '0';
 BP_Instr14 <= '0';
 BP_Instr13 <= '0';
 BP_Instr12 <= '0';
 BP_Instr11 <= '0';
 BP_Instr10 <= '0';
 BP_Instr9 <= '0';
 BP_Instr8 <= '0';
 BP_Instr7 <= '0';

94

 BP_Instr6 <= '0';
 BP_Instr5 <= '0';
 BP_Instr4 <= '0';
 BP_Instr3 <= '0';
 BP_Instr2 <= '0';
 BP_Instr1 <= '0';
 BP_Instr0 <= '0';
 BP_InstrAccess <= '1';
 ELSIF CLK='1' AND CLK'event THEN
 sreg <= next_sreg;
 BP_DataAccess <= next_BP_DataAccess;
 BP_ErrSyn1 <= next_BP_ErrSyn1;
 BP_ErrSyn2 <= next_BP_ErrSyn2;
 BP_ErrSyn3 <= next_BP_ErrSyn3;
 BP_ErrSyn4 <= next_BP_ErrSyn4;
 BP_InstrAccess <= next_BP_InstrAccess;
 BP_TRAP <= next_BP_TRAP;
 BP_Instr23 <= next_BP_Instr23;
 BP_Instr22 <= next_BP_Instr22;
 BP_Instr21 <= next_BP_Instr21;
 BP_Instr20 <= next_BP_Instr20;
 BP_Instr19 <= next_BP_Instr19;
 BP_Instr18 <= next_BP_Instr18;
 BP_Instr17 <= next_BP_Instr17;
 BP_Instr16 <= next_BP_Instr16;
 BP_Instr15 <= next_BP_Instr15;
 BP_Instr14 <= next_BP_Instr14;
 BP_Instr13 <= next_BP_Instr13;
 BP_Instr12 <= next_BP_Instr12;
 BP_Instr11 <= next_BP_Instr11;
 BP_Instr10 <= next_BP_Instr10;
 BP_Instr9 <= next_BP_Instr9;
 BP_Instr8 <= next_BP_Instr8;
 BP_Instr7 <= next_BP_Instr7;
 BP_Instr6 <= next_BP_Instr6;
 BP_Instr5 <= next_BP_Instr5;
 BP_Instr4 <= next_BP_Instr4;
 BP_Instr3 <= next_BP_Instr3;
 BP_Instr2 <= next_BP_Instr2;
 BP_Instr1 <= next_BP_Instr1;
 BP_Instr0 <= next_BP_Instr0;
 END IF;
 END PROCESS;

 PROCESS

(sreg,BP_DataAccess,BP_ErrSyn1,BP_ErrSyn2,BP_ErrSyn3,BP_ErrSyn4,

 BP_Instr0,BP_Instr1,BP_Instr2,BP_Instr3,BP_Instr4,BP_Instr5,BP_In
str6,

 BP_Instr7,BP_Instr8,BP_Instr9,BP_Instr10,BP_Instr11,BP_Instr12,BP
_Instr13,

 BP_Instr14,BP_Instr15,BP_Instr16,BP_Instr17,BP_Instr18,BP_Instr19
,BP_Instr20,

95

 BP_Instr21,BP_Instr22,BP_Instr23,BP_InstrAccess,BP_TRAP,E,RFE,BP_
Instr)

 BEGIN
 next_BP_DataAccess <= BP_DataAccess;next_BP_ErrSyn1

<= BP_ErrSyn1;
 next_BP_ErrSyn2 <= BP_ErrSyn2;next_BP_ErrSyn3

<= BP_ErrSyn3;next_BP_ErrSyn4
 <= BP_ErrSyn4;next_BP_Instr0 <=

BP_Instr0;next_BP_Instr1 <= BP_Instr1;
 next_BP_Instr2 <= BP_Instr2;next_BP_Instr3 <=

BP_Instr3;next_BP_Instr4 <=
 BP_Instr4;next_BP_Instr5 <=

BP_Instr5;next_BP_Instr6 <= BP_Instr6;
 next_BP_Instr7 <= BP_Instr7;next_BP_Instr8 <=

BP_Instr8;next_BP_Instr9 <=
 BP_Instr9;next_BP_Instr10 <=

BP_Instr10;next_BP_Instr11 <= BP_Instr11;
 next_BP_Instr12 <= BP_Instr12;next_BP_Instr13

<= BP_Instr13;next_BP_Instr14
 <= BP_Instr14;next_BP_Instr15 <=

BP_Instr15;next_BP_Instr16 <= BP_Instr16;
 next_BP_Instr17 <= BP_Instr17;next_BP_Instr18

<= BP_Instr18;next_BP_Instr19
 <= BP_Instr19;next_BP_Instr20 <=

BP_Instr20;next_BP_Instr21 <= BP_Instr21;
 next_BP_Instr22 <= BP_Instr22;next_BP_Instr23

<= BP_Instr23;
 next_BP_InstrAccess <=

BP_InstrAccess;next_BP_TRAP <= BP_TRAP;

 BP_Instr <= ((std_logic_vector'(BP_Instr23,

BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18, BP_Instr17,

BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12, BP_Instr11,

BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6, BP_Instr5,

BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));

 next_sreg<=ErrSyndSave1;

 CASE sreg IS
 WHEN ErrSyndSave1 =>
 next_sreg<=ErrSyndSave2;
 next_BP_ErrSyn1<='0';
 next_BP_ErrSyn2<='1';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';

96

 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 WHEN ErrSyndSave2 =>
 next_sreg<=ErrSyndSave3;
 next_BP_ErrSyn2<='0';
 next_BP_ErrSyn3<='1';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';
 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

97

 IF ((BP_ErrSyn1='1')) THEN
next_BP_ErrSyn1<='1';

 ELSE next_BP_ErrSyn1<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 WHEN ErrSyndSave3 =>
 next_sreg<=ErrSyndSave4;
 next_BP_ErrSyn3<='0';
 next_BP_ErrSyn4<='1';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';
 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 WHEN ErrSyndSave4 =>
 next_sreg<=InterrInstr;
 next_BP_ErrSyn4<='0';
 next_BP_InstrAccess<='1';
 next_BP_TRAP<='1';

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';

98

 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 BP_Instr <=

(std_logic_vector'("001010000000000000000000"));
 WHEN InterrInstr =>
 next_sreg<=ISRData;
 next_BP_DataAccess<='1';
 next_BP_InstrAccess<='0';
 next_BP_TRAP<='0';

 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 BP_Instr <=

(std_logic_vector'("111111111111111111111111"));
 WHEN ISRData =>
 IF (E='1') THEN
 next_sreg<=ISRErrSyndSave1;
 next_BP_ErrSyn1<='1';
 next_BP_DataAccess<='0';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';

99

 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';
 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19,

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13,

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7,

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 END IF;
 IF (RFE='1' AND E='0') THEN
 next_sreg<=NormInst;
 next_BP_InstrAccess<='1';
 next_BP_DataAccess<='0';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19,

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13,

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7,

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

100

 IF ((BP_ErrSyn3='1')) THEN
next_BP_ErrSyn3<='1';

 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 END IF;
 IF (RFE='0' AND E='0') THEN
 next_sreg<=ISRInst;
 next_BP_ErrSyn4<='0';
 next_BP_InstrAccess<='1';
 next_BP_DataAccess<='0';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19,

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13,

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7,

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 END IF;
 WHEN ISRErrSyndSave1 =>
 next_sreg<=ISRErrSyndSave2;
 next_BP_ErrSyn1<='0';
 next_BP_ErrSyn2<='1';

101

 IF ((BP_TRAP='1')) THEN
next_BP_TRAP<='1';

 ELSE next_BP_TRAP<='0';
 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';
 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 WHEN ISRErrSyndSave2 =>
 next_sreg<=ISRErrSyndSave3;
 next_BP_ErrSyn2<='0';
 next_BP_ErrSyn3<='1';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';
 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,

102

 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 WHEN ISRErrSyndSave3 =>
 next_sreg<=ISRErrSyndSave4;
 next_BP_ErrSyn3<='0';
 next_BP_ErrSyn4<='1';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 IF ((BP_InstrAccess='1')) THEN

next_BP_InstrAccess<='1';
 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,

 BP_Instr20, BP_Instr19, BP_Instr18,
BP_Instr17, BP_Instr16, BP_Instr15,

 BP_Instr14, BP_Instr13, BP_Instr12,
BP_Instr11, BP_Instr10, BP_Instr9,

 BP_Instr8, BP_Instr7, BP_Instr6,
BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,

 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 IF ((BP_DataAccess='1')) THEN

next_BP_DataAccess<='1';
 ELSE next_BP_DataAccess<='0';
 END IF;

 WHEN ISRErrSyndSave4 =>

103

 next_sreg<=ISRInst;
 next_BP_ErrSyn4<='0';
 next_BP_InstrAccess<='1';
 next_BP_DataAccess<='0';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 WHEN ISRInst =>
 next_sreg<=ISRData;
 next_BP_DataAccess<='1';
 next_BP_InstrAccess<='0';
 next_BP_TRAP<='0';

 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';

104

 ELSE next_BP_ErrSyn1<='0';
 END IF;

 BP_Instr <=

(std_logic_vector'("111111111111111111111111"));
 WHEN NormData =>
 IF (E='0') THEN
 next_sreg<=NormInst;
 next_BP_InstrAccess<='1';
 next_BP_DataAccess<='0';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19,

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13,

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7,

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 END IF;
 IF (E='1') THEN
 next_sreg<=ErrSyndSave1;
 next_BP_DataAccess<='0';
 next_BP_ErrSyn1<='1';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

105

 IF ((BP_InstrAccess='1')) THEN
next_BP_InstrAccess<='1';

 ELSE next_BP_InstrAccess<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19,

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13,

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7,

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';
 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 END IF;
 WHEN NormInst =>
 next_sreg<=NormData;
 next_BP_DataAccess<='1';
 next_BP_InstrAccess<='0';

 IF ((BP_TRAP='1')) THEN

next_BP_TRAP<='1';
 ELSE next_BP_TRAP<='0';
 END IF;

 BP_Instr <= ((

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18,

BP_Instr17, BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12,

BP_Instr11, BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6,

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 IF ((BP_ErrSyn4='1')) THEN

next_BP_ErrSyn4<='1';
 ELSE next_BP_ErrSyn4<='0';
 END IF;

 IF ((BP_ErrSyn3='1')) THEN

next_BP_ErrSyn3<='1';
 ELSE next_BP_ErrSyn3<='0';

106

 END IF;

 IF ((BP_ErrSyn2='1')) THEN

next_BP_ErrSyn2<='1';
 ELSE next_BP_ErrSyn2<='0';
 END IF;

 IF ((BP_ErrSyn1='1')) THEN

next_BP_ErrSyn1<='1';
 ELSE next_BP_ErrSyn1<='0';
 END IF;

 WHEN OTHERS =>
 END CASE;

 next_BP_Instr23 <= BP_Instr(23);
 next_BP_Instr22 <= BP_Instr(22);
 next_BP_Instr21 <= BP_Instr(21);
 next_BP_Instr20 <= BP_Instr(20);
 next_BP_Instr19 <= BP_Instr(19);
 next_BP_Instr18 <= BP_Instr(18);
 next_BP_Instr17 <= BP_Instr(17);
 next_BP_Instr16 <= BP_Instr(16);
 next_BP_Instr15 <= BP_Instr(15);
 next_BP_Instr14 <= BP_Instr(14);
 next_BP_Instr13 <= BP_Instr(13);
 next_BP_Instr12 <= BP_Instr(12);
 next_BP_Instr11 <= BP_Instr(11);
 next_BP_Instr10 <= BP_Instr(10);
 next_BP_Instr9 <= BP_Instr(9);
 next_BP_Instr8 <= BP_Instr(8);
 next_BP_Instr7 <= BP_Instr(7);
 next_BP_Instr6 <= BP_Instr(6);
 next_BP_Instr5 <= BP_Instr(5);
 next_BP_Instr4 <= BP_Instr(4);
 next_BP_Instr3 <= BP_Instr(3);
 next_BP_Instr2 <= BP_Instr(2);
 next_BP_Instr1 <= BP_Instr(1);
 next_BP_Instr0 <= BP_Instr(0);
 END PROCESS;

 PROCESS (BP_DataAccess)
 BEGIN
 IF ((BP_DataAccess='1')) THEN DataAccess<='1';
 ELSE DataAccess<='0';
 END IF;
 END PROCESS;

 PROCESS (BP_ErrSyn1)
 BEGIN
 IF ((BP_ErrSyn1='1')) THEN ErrSyn1<='1';
 ELSE ErrSyn1<='0';
 END IF;
 END PROCESS;

 PROCESS (BP_ErrSyn2)
 BEGIN

107

 IF ((BP_ErrSyn2='1')) THEN ErrSyn2<='1';
 ELSE ErrSyn2<='0';
 END IF;
 END PROCESS;

 PROCESS (BP_ErrSyn3)
 BEGIN
 IF ((BP_ErrSyn3='1')) THEN ErrSyn3<='1';
 ELSE ErrSyn3<='0';
 END IF;
 END PROCESS;

 PROCESS (BP_ErrSyn4)
 BEGIN
 IF ((BP_ErrSyn4='1')) THEN ErrSyn4<='1';
 ELSE ErrSyn4<='0';
 END IF;
 END PROCESS;

 PROCESS (BP_InstrAccess)
 BEGIN
 IF ((BP_InstrAccess='1')) THEN InstrAccess<='1';
 ELSE InstrAccess<='0';
 END IF;
 END PROCESS;

 PROCESS (BP_TRAP)
 BEGIN
 IF ((BP_TRAP='1')) THEN TRAP<='1';
 ELSE TRAP<='0';
 END IF;
 END PROCESS;

 PROCESS

(BP_Instr0,BP_Instr1,BP_Instr2,BP_Instr3,BP_Instr4,BP_Instr5,

 BP_Instr6,BP_Instr7,BP_Instr8,BP_Instr9,BP_Instr10,BP_Instr11,BP_
Instr12,

 BP_Instr13,BP_Instr14,BP_Instr15,BP_Instr16,BP_Instr17,BP_Instr18
,BP_Instr19,

 BP_Instr20,BP_Instr21,BP_Instr22,BP_Instr23,Instr)
 BEGIN
 Instr <= ((std_logic_vector'(BP_Instr23, BP_Instr22,

BP_Instr21,
 BP_Instr20, BP_Instr19, BP_Instr18, BP_Instr17,

BP_Instr16, BP_Instr15,
 BP_Instr14, BP_Instr13, BP_Instr12, BP_Instr11,

BP_Instr10, BP_Instr9,
 BP_Instr8, BP_Instr7, BP_Instr6, BP_Instr5,

BP_Instr4, BP_Instr3, BP_Instr2,
 BP_Instr1, BP_Instr0)));
 Instr0 <= Instr(0);
 Instr1 <= Instr(1);
 Instr2 <= Instr(2);
 Instr3 <= Instr(3);
 Instr4 <= Instr(4);

108

 Instr5 <= Instr(5);
 Instr6 <= Instr(6);
 Instr7 <= Instr(7);
 Instr8 <= Instr(8);
 Instr9 <= Instr(9);
 Instr10 <= Instr(10);
 Instr11 <= Instr(11);
 Instr12 <= Instr(12);
 Instr13 <= Instr(13);
 Instr14 <= Instr(14);
 Instr15 <= Instr(15);
 Instr16 <= Instr(16);
 Instr17 <= Instr(17);
 Instr18 <= Instr(18);
 Instr19 <= Instr(19);
 Instr20 <= Instr(20);
 Instr21 <= Instr(21);
 Instr22 <= Instr(22);
 Instr23 <= Instr(23);
 END PROCESS;
END BEHAVIOR;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY INTERRUP IS
 PORT (Instr : OUT std_logic_vector (23 DOWNTO 0);
 CLK,E,RESET,RFE: IN std_logic;

 DataAccess,ErrSyn1,ErrSyn2,ErrSyn3,ErrSyn4,InstrAccess,TRAP : OUT
std_logic

);
END;

ARCHITECTURE BEHAVIOR OF INTERRUP IS
 COMPONENT SHELL_INTERRUP
 PORT (CLK,E,RESET,RFE: IN std_logic;

 DataAccess,ErrSyn1,ErrSyn2,ErrSyn3,ErrSyn4,Instr0,Instr1,Instr2,I
nstr3,

 Instr4,Instr5,Instr6,Instr7,Instr8,Instr9,Instr10,Instr11,Instr12
,Instr13,

 Instr14,Instr15,Instr16,Instr17,Instr18,Instr19,Instr20,Instr21,I
nstr22,

 Instr23,InstrAccess,TRAP : OUT
std_logic);

 END COMPONENT;
BEGIN
 SHELL1_INTERRUP : SHELL_INTERRUP PORT MAP

(CLK=>CLK,E=>E,RESET=>RESET,RFE=>

 RFE,DataAccess=>DataAccess,ErrSyn1=>ErrSyn1,ErrSyn2=>ErrSyn2,ErrS
yn3=>ErrSyn3

109

 ,ErrSyn4=>ErrSyn4,Instr0=>Instr(0),Instr1=>Instr(1),Instr2=>Instr
(2),Instr3=>

 Instr(3),Instr4=>Instr(4),Instr5=>Instr(5),Instr6=>Instr(6),Instr
7=>Instr(7),

 Instr8=>Instr(8),Instr9=>Instr(9),Instr10=>Instr(10),Instr11=>Ins
tr(11),

 Instr12=>Instr(12),Instr13=>Instr(13),Instr14=>Instr(14),Instr15=
>Instr(15),

 Instr16=>Instr(16),Instr17=>Instr(17),Instr18=>Instr(18),Instr19=
>Instr(19),

 Instr20=>Instr(20),Instr21=>Instr(21),Instr22=>Instr(22),Instr23=
>Instr(23),

 InstrAccess=>InstrAccess,TRAP=>TRAP);
END BEHAVIOR;

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

APPENDIX B: SPACE EXPERIMENT REVIEW BOARD

The original intent for the CFTP was to be a part of the Naval Postgraduate

School Satellite NPSAT-1. After talking with the Space Test Program Office, it was

decided that the CFTP should request additional flights in order to increase the test data

available for the design. This required an extensive amount of time and research into the

process whereby space experiments are approved by the Department of Defense for space

flights. This Appendix will go into detail on this process, called the Space Experiment

Review Board (SERB).

A. SERB OVERVIEW

The SERB process has two stages. A Service Board, presided over in the case of

CFTP by the Navy, and a Department Board. Both boards have the same criteria: mili-

tary relevance, quality of experiment and service priority.

1. Military Relevance

Military relevance is 60% of the overall grade for an experiment. It is intended to

ensure that the experiment does pertain directly to the military. While science experi-

ments are allowed, the goal is to apply the experiment results to the war fighter in par-

ticular [9].

2. Quality of Experiment

The quality of the experiment is 20% of the overall grade, and it is intended to en-

sure that, all other factors being equal, experiments that are only in a conceptual phase do

not get too heavy a precedence over experiments that are largely completed.

3. Service Priority

Service Priority takes into account the previous two criteria and is a numerical

ranking of the experiment against the entire group of experiments being presented that

year. In the example of the CFTP, it was ranked 13 of 24 experiments at the Navy SERB

in 2002.

Service Priority serves two different purposes at a Service Board. If the experi-

ment has been presented in the past, it is an indication to the current board members of

112

the experiment's status the previous year. It is also used to prioritize experiments at the

Department Board for the Service experiments. Again using the CFTP as an example, its

ranking of 13 of 24 placed it in the middle of the Navy's experiments. This gave the De-

partment Board members an indication of the Navy's priority for the experiment.

B. SERB DOCUMENTATION

The documentation required for the SERB process is not extensive, but it is quite

critical to the process. There are two documents which the SERB requires, the Space

Test Program Flight Request (DD Form 1721) and the Space Test Program Flight

Request Executive Summary (DD Form 1721/1) [9].

1. Space Test Program Flight Request

DD Form 1721 contains all the information on the experiment. It includes the

objective of the experiment, experiment dimensions and mass, launch platform pref-

erences, orbital parameters, and communication requirements.

2. Space Test Program Flight Request Executive Summary

The Executive Summary contains the more important information from the DD

1721. It includes the points of contact for the experiment, the dimensions, funding data,

orbital parameters, and launch platform data.

C. PRESENTATION

Each experiment team is given ten minutes to brief the experiment. A Power

Point Presentation template of five slides is provided to the team. This template has the

minimum information required for presentation. It includes the concept, justification, a

detailed overview, summary of data application and flight mode suitability [9].

1. Concept

The concept is intended to provide the intent of the experiment. It should include

a description of the experiment, including performance parameters, and a graphical rep-

resentation of the experiment. Figure 28 shows the graphical representation used by the

CFTP at the Department Board in 2002.

113

Figure 28. SERB Graphical Representation

2. Justification

Justification is perhaps the most critical portion of the presentation. With this

portion of the presentation, the presenter is using various documents and requirements of

the Department of Defense to justify the experiment. The documents include the US

Space Command Long Range Plan, Defense Technology Area Plan, and the Air Force

Space Command Strategic Master Plan.

In these documents are specific requirements for war fighting support capability

that can be accomplished with space assets. Using this information, the experiment pre-

senter can show that the experiment is capable of satisfying DoD requirements.

ROM
mliijurdlipn IRLOSI

PROM EEPROM

1
mi 01
leiiupl
T—i-H

Clock
ContiDl

FPGA 1
1 r . n3 1

• ^^P

MP ^ K a> H
i

EDAC

II
MP- '^ 1 i ^^1 ^^1

^ip- TMR
PRLOS

1
lalus & ^p

■ ■^
_

[Inter^cefeiivitching logic

Bus Transceivers J|

H
4«

ttf
t^-^HI

12 cm

114

3. Detailed Overview

The detailed overview lists the flight data parameters of the experiment. This

includes the types of orbit desired, such as geosynchronous or low earth orbit. The

weight and size of the experiment are also listed here. The priority ranking given during

the last SERB cycle and the services requested from the Space Test Program Office are

next. Finally comes the funding required versus actual funding broken down year-by-

year through the life of the experiment.

4. Summary of Data Application

The summary of data application is an explanation of what the data the experi-

ment gathers will be used for. It must include the category of research in which the

experiment is. In the case of the CFTP, it is applied research.

5. Flight Mode Suitability

The final slide lists the different types of platforms the experiment can ride on.

These include the Space Shuttle, deployed from the Shuttle, deployed from the Shuttle

with propulsion, the International Space Station, Piggyback on a Free-Flyer, or Dedicated

Free-Flyer. A Free-Flyer is a satellite such as a GPS or communications satellite. A

Piggyback flight is one where the experiment is not the primary payload of the satellite.

The experiment team must list each of these flight modes and their ability to meet

the experiment objectives. In the case of the CFTP the Shuttle was unsatisfactory, since

it is such a short duration flight. Table 4 shows the full Flight Mode Suitability table for

the CFTP from the 2002 SERB.

Table 4. Flight Mode Suitability for the CFTP

FliohtMocie % Exoenment ODiectives Satisfieci
Shuttle 0%
Shutde DeplcryaDle 35%
Shutde DeployaDle with Prapulsion 40%
International Space Station 40%
"Piggyhack" Free-flyer on ELV 100%
Deciicateci Free-flyer on ELV 100%

115

D. EXPERIMENT MANIFESTATION

Once the DoD SERB is complete, the Space Test Program Office (STP) reviews

the list of experiments and determines flight manifestation. This is done in the manner

that is most efficient to the DoD, not by a direct ranking priority.

For example, STP may have a satellite with space available for a small experi-

ment. If the highest ranked experiment from the SERB is too large to get on this par-

ticular satellite, the second ranked experiment (or even further down the list) may

actually be manifested first.

This was the case for the CFTP. Two satellites had space available for a small

experiment. Since the CFTP is small, light weight, and low in power, it is much easier to

find flights for than larger experiments.

The CFTP requested four flights during the 2002 DoD SERB: three at different

inclinations in Low Earth Orbit (LEO) and one in a highly elliptical orbit such as a

Geosynchronous Transfer Orbit (GTO).

The purpose of the four orbits is to test the fault tolerance capability in both

benign and high radiation environments. In LEO, it expected that only a few SEUs will

occur in a week. With these orbits, testing basic functionality will be possible without

concern for frequent SEU interrupts. If the design is faulty, infrequent SEUs will allow

for testing reconfiguration until a more robust design can be implemented.

The GTO will test for severe radiation tolerance. In a GTO, the CFTP will pass

through the Van Allen radiation belts. In this environment, SEU frequency is expected to

be significantly higher. If the CFTP can function properly in this high radiation environ-

ment, it is expected that it can function in any radiation environment.

116

THIS PAGE INTENTIONALLY LEFT BLANK

117

LIST OF REFERENCES

1. Lashomb, Peter A., "Triple Modular Redundant (TMR) Microprocessor System
for Field Programmable Gate Array (FPGA) Implementation", Master's Thesis,
Naval Postgraduate School, Monterey, California, March 2002.

2. Clark, Kenneth A., The Effect of Single Event Transients on Complex Digital
Systems, Doctoral Dissertation, Naval Postgraduate School, Monterey, California,
June 2002.

3. Payne, John C., Fault Tolerant Computing Testbed: A Tool for the Analysis of
Hardware and Software Fault Handling Techniques", Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1998.

4. Hennessy, John L. and Patterson, David A., Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, 1990.

5. Xilinx Programmable Logic Data Book, Xilinx Inc., San Jose, California, 1999.

6. "Virtex-II Platform FPGAs: Introduction and Overview"
http://direct.xilinx.com/bvdocs/publications/ds031.pdf, February 2003.

7. Email from Timothy Martin of Aero Corp to Nathan Beltz of NPS, September,
2002.

8. Xilinx ISE 5 Libraries Guide, Xilinx Inc., San Jose, California, 2002.

9. "Space Test Program Office Homepage"
http://spacescience.nrl.navy.mil/stp/index.html, March 2003.

118

THIS PAGE INTENTIONALLY LEFT BLANK

119

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Herschel H. Loomis
Naval Postgraduate School
Monterey, California

4. Professor Alan A. Ross
Naval Postgraduate School
Monterey, California

5. Doctor Kenneth A. Clark

Naval Research Laboratory
Washington, DC

6. LCDR Joe Reason, USN

National Reconnaissance Office
Chantilly, Virginia

7. Capt. Brian Bailey, USAF
National Reconnaissance Office
Chantilly, Virginia

8. LT Paula Travis, USN
Space Test Program Office, Det 12

 Albuquerque, New Mexico

