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ABSTRACT 
 
 
 
The space environment has unique hazards that force electronic systems designers 

to use different techniques to build their systems.  Radiation can cause Single Event 

Upsets (SEUs) which can cause state changes in satellite systems.  Mitigation techniques 

have been developed to either prevent or recover from these upsets when they occur. 

At the same time, modifying on-orbit systems is difficult in a hardwired electronic 

system.  Finding an alternative to either working around a mistake or having to keep the 

same generation of technology for years is important to the space community.  Newer 

programmable logic devices such as Field Programmable Gate Arrays (FPGAs) allow for 

emulation of complex logic circuits, such as microprocessors.  FPGAs can be repro-

grammed as necessary, to account for errors in design, or upgrades in software logic 

circuits. 

In an effort to provide one solution for both of these issues, this research was 

undertaken.  The Configurable Fault Tolerant Processor (CFTP) emulates three identical 

processors, using Triple Modular Redundancy (TMR) to mitigate SEUs on a radiation 

tolerant FPGA.  With the reconfigurable capabilities of FPGA technology, as newer 

processors can be emulated, these new configurations can be uploaded to the satellite as 

software code, thereby actually upgrading the processor in flight.  This research used a 

16-bit Reduced Instruction Set Computer (RISC) processor as its cores.  This thesis 

describes how the Harvard architecture of the processor is interfaced with the Von 

Neumann architecture of the memory.  It also develops the process by which errors are 

detected and corrected, as well as recorded.  The end result is a design simulation ready 

for implementation on an FPGA. 
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EXECUTIVE SUMMARY 
 

The harsh environment of space creates unique problems for hardware used in 

space versus equivalent ground based systems.  Space-borne systems face susceptibility 

to errors induced by particles passing through the microchips without sufficient 

protection from radiation.  There are many effects that can cause errors, including total 

dose tolerance, Single Event Latchup (SEL) and Single Event Upset (SEU).  This 

research will focus on mitigating SEUs.  It is assumed that total dose and SEL effects are 

accounted for by other means. 

Before the technology boom of the 1990s, purchasing radiation hardened equip-

ment was not difficult.  But as the market for non-hardened systems became significantly 

larger, and the demand for radiation hardened systems remained the same, companies 

offering the hardened devices either increased the price and time required to deliver, or 

stopped offering devices altogether. 

This change in the market dynamics greatly affected how satellite systems 

function.  With such a long lead time for processors to be ready for flight, older and less 

capable designs were being flown, and costing more than in the past when the satellite 

designers could expect a close to high end processor. 

For example, current satellite processors are typically equivalent to a 386 

generation microprocessor.  The average desktop computer found in most homes today is 

a Pentium III1.  Additionally, the cost for purchasing the radiation hardened 386 is much 

higher than the entire desktop computer. 

New techniques are required to accommodate the continued problems en-

countered by radiation while simultaneously addressing the newer problems related to 

development time.  Many of the current designs for space systems include the use of 

software redundancy, examples of which can be found in Table 1.  In addition, the use of 

reprogrammable devices is now very common for satellite design.  But little research has 

gone into combining all of this new technology, mostly due to the cost of satellites. 

                                                 
1 Pentium is a registered trademark of Intel Corporation. 
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The most promising options for radiation mitigation include more flexible soft-

ware solutions implemented on radiation tolerant, not hardened, microchips.  One such 

option is Triple Modular Redundancy (TMR). 

In TMR, the system is replicated three times, and the outputs of the system are 

voted, with the majority vote becoming the overall system output.  In the specific case of 

the CFTP, three microprocessors are operating in lock-step.  The output of the processors 

is the input to the voting circuitry.  The outputs of the voters is the overall system output. 

At this point the system being designed has a reliable way to circumvent single 

event errors without resorting to radiation hardening techniques.  But the problems of 

rapid development and reconfigurability still must be addressed. 

Reprogrammable devices satisfy both rapid development and reconfigurability.  

The most common device is the Field Programmable Gate Array (FPGA).  An FPGA is a 

set of generic logic devices that can be programmed and reprogrammed a large number of 

times “in the field,” meaning by the end user, not just the manufacturer.  Any circuit can 

be emulated on the FPGA, assuming the FPGA has a sufficient amount of logic blocks to 

mimic the desired device. 

FPGAs are currently used on many space platforms, but not primarily for their on-

orbit reconfigurable qualities.  Most of them are used as Application Specific Integrated 

Circuits (ASICs).  Since ASICs cannot be reconfigured once they are built, correcting 

mistakes can become expensive for designers.  But an FPGA design can be changed at 

any point in time, and the FPGA reprogrammed, up to the launch.  On-orbit 

reconfiguration is a natural progression from current usage.   

Based on previous NPS research, Xilinx Virtex family FPGAs were chosen for 

this research.  Xilinx Virtex FPGAs are total dose tolerant up to 100 kilorads and are also 

latchup immune.  For the radiation environments of this application, 100 kilorads is 

enough tolerance to allow its 1 year minimum flight duration. 

The intent of this research is to develop a single system-on-a-chip design for a 

Configurable Fault Tolerant Processor (CFTP).  It includes the design of the processor, 

the voter, error interrupt designs, memory controller, and error syndrome storage.   



 xvii

The processor used for this research is a KDLX 16-bit Reduced Instruction Set 

Computer (RISC) [2].  The processor was created by previous NPS research.  Each 

processor will run the same set of instructions and the outputs will be voted.  The 

processors and voters are in the component names TMR. 

The processors have a Harvard architecture and memory is Von Neuman in 

design.  A memory controller, called the Reconciler, was designed to control the 

requirements of the processor.  The processors run at a clock rate which is half of the 

remaining devices clock rate.  In each processor clock cycle, both a memory access for 

data and a memory access for the instruction fetch are required.  With only one set of 

busses to memory, the Reconciler must run at twice the speed of the processors. 

When errors occur, the data that describes this error - the Error Syndrome - is 

stored in memory.  The device that handles the collection of this data is the Error 

Syndrome Storage Device (ESSD).  It also interfaces with the Reconciler, as all memory 

reads and writes pass through it. 

A state machine, called Interrup, was built to coordinate error interrupts and the 

clock controls.  Interrup generates a TRAP external to the processors and forces them 

into the Interrupt Service Routine (ISR).  While the Error Syndrome is being stored in 

memory, the clock to the processors is stopped.  With the processors not running, the 

only bus demand will be for the Error Syndrome. 

This research fully realized the processor/voter interface.  It also built the 

Reconciler, which controls memory interface.  The research also created the ESSD to 

record and control storage of Error Syndromes.  Finally, the Finite State Machine 

Interrup was built to control the various states the CFTP can be in. 

Further research is required to determine memory requirements and other off chip 

requirements for the full CFTP design.  The interrupt service routine also needs to be 

written. 
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I. INTRODUCTION 

The space environment is extremely hazardous to electronic systems.  The lack of 

atmosphere, extreme temperature variations and radiation effects are all issues that 

electronic systems designers must contend with when building their systems. 

Another concern that designers face is the fact that once their system is deployed, 

correcting any mistakes or upgrading the system it is very difficult, if not impossible.  

The infamous satellite that was sent to Mars and crashed due to an error in calculating in 

English instead of metric units is a perfect example of a mistake that could not be 

corrected once the satellite was launched.  Additionally, being able to upgrade the system 

hardware on satellites requires a great deal of effort.  The satellite must be captured by 

either the Space Shuttle or another satellite, and then the old systems removed and new 

ones installed.  This is obviously both very expensive and extremely complex. 

The focus of this thesis is on the construction of the Configurable Fault Tolerant 

Processor (CFTP), a design that can withstand the radiation hazards of space and allow 

for processor upgrades in orbit, without requiring a rendezvous or other complex 

evolution to perform the upgrade.  The CFTP uses a Triple Modular Redundant (TMR) 

fault tolerant scheme in order to mitigate Single Event Upsets (SEUs), and is instantiated 

on a Field Programmable Gate Array (FPGA), which is a reconfigurable logic device. 

The effects of radiation are numerous, and well documented in other writings.  

For the purposes of this research, the chosen hardware is assumed to be hard enough for 

the total dose and dose rate effects of the orbits of interest, so the focus is on Single Event 

upsets and their mitigation.  

A. SINGLE EVENT UPSET HISTORY 

Table 1 shows the various effects and the techniques used to protect against them.  

The radiation effects of most concern to space system designers are total dose, Single 

Event Latchup (SEL) and Single Event Upset. 

Total dose effects are the cumulative effects of radiation on an electronic device 

over its lifetime.  As charged particles impact the device, they degrade its performance a 
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tiny amount.  As the particles' effects accumulate, the degradation will eventually render 

the chip non-functional.  There is no way to overcome total dose effects, only delay the 

end of life of the chip.  This is done through various techniques, some of which are 

shown in Table 1. 

 

Radiation Effect Mitigation Techniques 
Total Dose Radiation-Hardening 

          Silicon-On-Sapphire 
          Silicon-On-Insulator 
          Thin-Gate-Oxide 
Shielding 

Single Event Latchup (SEL) Radiation Hardening 
          Guard Rings 

Single Event Upset (SEU) Quadded Logic 
Software Fault Tolerance 
Triple Modular Redundancy (TMR) 

Table 1.   Radiation Effects and Mitigation (From Ref. [1].) 
 

Single Event Latchup is when a charged particle forces a transistor on the chip to 

remain in one state.  If the transistor is left in the latchup state long enough, or with a 

high enough charge, it can burn out.  The mitigation techniques for preventing SELs are 

shown in Table 1.   

The FPGA chosen for implementation of the CFTP design is total dose tolerant to 

100 kilorads, which is sufficient for the one year minimum flight duration.  The FPGA is 

also SEL immune. 

A Single Event Upset is an event which is initiated by a charged particle passing 

through a transistor.  If the charged particle causes a state change to be latched into a 

register or flip flop, a bit flip occurs [1]. 

These bit flips can cause serious harm if not corrected.  Imagine the thruster of a 

satellite being activated by a bit flip.  Various techniques to counter SEUs have been 

developed over the years.  One such method is a TMR scheme. 

Previous NPS research led to the concept this thesis is implementing.  The 

original TMR design had three separate hard-core processors whose output was sent 
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through a hardwired voter [3].  As research progressed, a determination was made that 

using an FPGA for the hardware implementation would allow for all three processors to 

reside on the same chip as the voting logic [1].  This decreased both the size and power 

constraints of the overall system.  It also allows for reconfiguration after hardware build, 

which is a distinct benefit. 

B. MICROPROCESSOR 

This version of the CFTP uses a KDLX 16-bit Reduced Instruction Set Computer 

(RISC) as the microprocessor [2].  The processor is a soft-core version of the hardware 

design [4].  A soft-core design is a firmware program that is intended for implementation 

on a programmable logic device.  The primary advantage of this type of design is that is 

can be either corrected or upgraded simply be rewriting the design code.  In contrast, 

hard-core processors are hardwired transistors and wires which cannot be changed after 

construction. 

C. VOTING LOGIC 

Triple Modular Redundancy is a majority voting scheme.  As seen in Figure 1, 

three devices send their output into the voting logic.  The majority of the device output is 

the voted output. 

 
Figure 1.   Basic TMR Concept (From Ref. [1].) 

 

Figure 2 shows how the TMR concept is applied to a microprocessor.  This 

research is designed as a System on a Chip (SOC) where all of Figure 2, with the 

exception of memory, is instantiated on a single chip. 

 

Input A- 

Input B- 

InputC- 

- Device A 

- Device B 

- Device C 

■ Output A - 

■ Output B - 

■ Output C - 

Voted Output 
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Figure 2.   Microprocessor TMR Concept (From Ref. [1].) 

 

In Figure 2, the three devices from Figure 1 are microprocessors.  These 

microprocessors all run the same program at the same time.  The outputs of the 

processors are the inputs of the voters.  In the case of the CFTP, there are discrete voters 

for each of the processor outputs. 

The voting system used to implement the TMR portion of the design is expanded 

from previous NPS research [1].  The single-bit voter designed by that research has been 

replicated to account for the multi-bit busses used by the KDLX processor. 

D. MEMORY CONTROLLER 

One of the goals of CFTP is to allow for upgrading the processor over time.  In 

order to allow for upgrades, a design constraint was given for the on-chip design.  

Interface to the off-chip memory is to be by a single address and data bus pair.  The 

KDLX processor has a program counter bus, instruction bus, address bus, and data bus; 

in order to consolidate the inputs and outputs, a memory controller was added to allow 

for the instruction and data to share one bus off the chip, and the program counter and 

address to share the other. 

E. PURPOSE 

The main purpose of this research is to implement a TMR design on a radiation 

tolerant FPGA.  The successful implementation would indicate a potential solution to 

CPU A 
Address 

Input Data 

Control 

Coiiiinoii Inputs 
(Data, Interrupt,     > 
Control, etc.) 

CPUB 
Address 

Input Data 

Control —I 

CPUC 
Address 

Input Data 

Control 

Address 
Voter 

Data 
Voter 

Control 
Voter 

Memory 

Error 
Encoder 

Data 
I/O 

To O/P Data 
Interface 

Memory/Error 
Controller 
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launching advanced microprocessors into space.  It would also allow for the upgrading of 

these processors while on orbit. 

F. ORGANIZATION 

Chapter II is a description of the realm of FPGAs, soft-core processors and the 

one chosen for this research.  Chapter III is a description of the voter, its development 

and implementation.  Chapter IV explains how the clock is controlled and errors are 

handled.  Chapter V discusses the integration of the individual components.  Chapter VI 

contains conclusions and follow-on research recommendations. 

G. ADDITIONAL DOCUMENTATION 

Appendix A contains full design schematics and the hardware description 

language for the implementation of the CFTP design.  These schematics and the code are 

not directly referenced throughout the thesis in order to present a smooth flowing format.   

The CFTP design is currently scheduled to be launched on two satellites.  One is 

the Naval Postgraduate School Satellite (NPSAT); the other is a U. S. Naval Academy 

sponsored satellite, MIDSTAR.  In order to have the CFTP onboard these satellites, the 

experiment had to be reviewed by the Space Experiment Review Board (SERB).  The 

preparation for this review process occurred concurrently with the development of the 

design.  Appendix B describes the Department of Defense (DOD) SERB process.  The 

research on this thesis was conducted while submitting the CFTP to the SERB process.   

This greatly facilitated the understanding of the DoD Space Program as a whole, and the 

role of NPS in that program. 
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II. FIELD PROGRAMMABLE GATE ARRAYS 

The flexibility that a Field Programmable Gate Array (FPGA) provides to a 

system designer is tremendous.  The device can be reprogrammed a virtually unlimited 

number of times, and reprogramming can be done simply by the end user, hence the 

"field programmable" portion of the title.  In addition, current generations of FPGAs 

contain large numbers of gates.  The Xilinx Virtex XCV200 contains 236,666 systems 

gates [5], and the Xilinx Virtex II XC2V8000 contains 8 million gates [6].  These large 

gate counts allow for complex architectures to be implemented on the devices.  Many 

FPGAs are large enough that complex microprocessors can be instantiated on the chip.  

These emulated processors are called soft-core processors.  This Chapter will detail how 

FPGAs are used in emulating microprocessors, how the CFTP uses this technology to 

implement the design for spaceflight, and the reasons behind the choice of the processor 

for this research. 

A. FIELD PROGRAMMABLE GATE ARRAY COMPOSITION 

FPGAs evolved from simple programmable logic arrays (PLAs).  A PLA is a 

series of AND-OR gate combinations which can be configured to emulate logic circuits.  

The disadvantage to a PLA was that once it was programmed, it was fixed in that 

configuration.   

As the desire to emulate more complex circuits increased, more complex devices 

were created: the Programmable Logic Device (PLD), and then the Complex 

Programmable Logic Device (CPLD).  In a PLD, the circuits are denser, and they can be 

reprogrammed.  But the devices typically must be removed from the overall design for 

reprogramming.  A CPLD is simply a collection of PLDs, with programmable 

interconnect between each PLD.   

After CPLDs came FPGAs.  In an FPGA the structure is very different from a 

CPLD.  The FPGA is not a collection of PLDs, but a collection of smaller logic blocks.  

Each logic block is interconnected to the other logic blocks on the chip.  A portion of the 

overall design can be implemented in the individual logic blocks, with the interconnect 

system passing signals between the blocks.  
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Figure 3 shows the differences between a CPLD and an FPGA.  Part (a) shows a 

Complex Programmable Logic Device (CPLD).  Part (b) shows an FPGA.  While the 

FPGA has smaller logic blocks than the CPLD, it has a much larger number.  The 

interconnect between these logic blocks allows for the ability to instantiate larger circuits. 

 

 
Figure 3.   PLD and Interconnect Schemes (From Ref. [1].) 

 

While a full description of an FPGA is not the focus of this thesis, a short 

background description of the FPGA architecture is necessary.  For more information on 

FPGA architecture, readers are directed to the RG0References listed in this Chapter. 

In an FPGA there are several different subsystems.  The ones of direct interest for 

this thesis are the Configuration Logic Block (CLB), Input/Output Block (IOB) and the 

programmable interconnect [6]. 

The CLBs are where the design resides.  Whether the design is something as 

simple as a 2-input logic device, or as complex as a microprocessor, the CLBs are 

configured to emulate the design.  Each CLB is capable of being connected to other 

CLBs through the programmable interconnect systems so, if the design in question does 

not fit into a single CLB, the design can be parsed to multiple CLBs for full 

implementation and is transparent to the user. 

Input/Output Blocks are used to interface with off-chip systems.  One of the 

prominent considerations for the CFTP design was the limit of IOBs.  While being able to 

design a system that can fit inside the complement of CLBs, without sufficient access to 

data off the FPGA, a design is worthless. 
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The FPGA chosen for CFTP was a Xilinx XCV800, which contains the 

equivalent of 888,439 gates [6].  One of the reasons this FPGA was chosen was for its 

external interface design.  Xilinx FPGAs are available with two types of pin connections, 

flat-pack and ball grid array (BGA).  A flat-pack resembles a traditional chip design, with 

the individual pins on the edge of the device, and is the type of interface of the XCV800.  

This type of pin connection has been used is space for years and is highly reliable.  

Unfortunately, newer, larger capacity FPGAs use BGAs. 

A ball grid device has balls of solder in a grid pattern on the bottom of the chip.  

Inside these balls are the interface connections for the chip.  The chip is soldered onto the 

printed circuit board by way of these solder balls.  The process for attaching a BGA onto 

a board is complex and would require NPS to contract out for the manufacture of a 

system.  Many of the connections are located on the interior of the array of balls and 

determining if they were all properly affixed is not feasible for space applications [7].  

Finally, BGA technology is not fully spaceflight certified, based on concerns about the 

effects of space on ball grids.  A detailed description of the decision making process for 

this choice of FPGA can be found in Reference [1]. 

B. SOFT-CORE PROCESSORS 

When a microprocessor is instantiated on an FPGA, it is called a soft-core 

processor.  This is as opposed to a hardwired microprocessor such as those found in 

desktop computers.  The soft-cores are simply hardware description language (HDL) 

code which programs the various parts of the FPGA to act as the real processor would. 

There are a variety of soft-core processors available.  Some are free from 

companies, and others can be quite expensive.  The various designs available go from 

simple RISC to x86 style processors.  But most of them are intellectual property or 

proprietary software. 

Essentially, any of these proprietary processors would be a black box, with all 

internal parts unreachable.  One of the design issues for CFTP is the ability to manipulate 

the entire FPGA and design.  For example, if a portion of the FPGA is damaged by 

radiation, full access to all portions of the design allows the possibility to rewrite the code 

to avoid that portion of the chip.  Another reason for being able to access the internal 
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portions of the soft-core is the ability to then place voters at the different stages of the 

pipeline.  The decision for now is to have voters only at the output of the processors, 

based on radiation levels expected in the orbit of concern.  But if these predictions are 

incorrect, voters may be required internal to the processors.  This would not be possible 

with proprietary soft-core processors. 

C. KDLX PROCESSOR 

The KDLX processor is an HDL coded version of the DLX processor originally 

described in Hennessy and Patterson's Computer Architecture: A Quantitative Approach 

[4] and coded by Dr. Kenneth Clark [2].  It is a pipelined 16-bit Reduced Instruction Set 

Computer (RISC).  The focus of this thesis is not on the details of the RISC architecture, 

nor on the design of the DLX computer.  For information on these topics, readers should 

look at the Hennessy and Patterson book referenced above. 

There were several reasons this processor was chosen, the largest being that the 

processor had already been designed and tested.  This processor design was originally 

implemented for an NPS dissertation [2].  This dissertation was on the development of a 

model to predict the SEU tolerance of complex digital systems.  The digital system used 

in the testing was the KDLX processor. 

Another reason was the problems associated with the issues of proprietary 

software enumerated previously.  A third factor for choosing this processor was its size.  

It is small enough that three processors easily fit onto the FPGA, along with all the other 

portions of the design required for the full CFTP. 

Being a simple RISC processor, there is ample software and information 

regarding this processor available that is not proprietary.  The architecture of this type of 

processor is also taught at NPS, and therefore it is a good processor for an experiment 

that will be worked on by several students over the course of the experiment lifetime. 

The design of the DLX processor presented an interesting dilemma.  The DLX 

processor is a Harvard architecture, which means it has separate address and data busses 

for instructions and data.  That design is intended to be implemented with separate 

memories for data and programs.   
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However, one of the initial design decisions made for the CFTP was that there 

would only be one data bus and one address bus between off-chip memory and the 

FPGA.  With twice the busses required for the KDLX processor, some innovative 

thinking was required to surmount this problem.  The solution is described in detail in 

Chapter IV. 

D. CHAPTER SUMMARY 

This Chapter explained the basics behind how FPGAs operate, and how a soft-

core processor is instantiated.  It also described the particular processor chosen for this 

thesis, and the reasons for that decision.  The next Chapter will describe the evolution of 

the voter and its incorporation into the full CFTP design. 
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III. TRIPLE MODULAR REDUNDANT ARCHITECTURE 

The intent of Triple Modular Redundant architecture is to allow the outputs of 

three devices to be compared in a majority voter.  The reason it is called modular is 

because the inputs to the voter are independent of each other.  In the case of the CFTP, 

these inputs come from the three separate processors, which do not directly interact with 

each other.  This Chapter will explore the development of the voter used in the CFTP. 

A. OVERVIEW 

The KDLX processor, shown in Figure 4, has six outputs.  There are three single-

bit outputs, for program counter read, data read, and data write.  There are two 16-bit 

outputs, the program counter and data address.  The data bus is a bi-directional bus.  The 

three copies of the KDLX processor are connected to the inputs of the voters, the busses 

on a bit-by-bit basis.  If any of the 51 bits do not match between the processors, then an 

interrupt will be generated.  The interrupt service will be described in Chapter IV. 

 
Figure 4.   KDLX Processor 

Figure 5, the TMR Assembly (TMRA), shows the three processors on the left, and 

the voters on the right.  Each voter has four outputs: Voted Result, Error, CID_0 and 

CID_1.  CID_0 and CID_1 are a two bit status bus that identifies the processor in error.  

More detail on the CID bits is given in Section B in this Chapter. 

Once the data has been voted on, the voter outputs are consolidated into four 

busses.  All of the same type of output is on a single bus, the error signals on one bus, the 
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voted data on another, etc.  The Voted Result Bus is sent to memory, while the remaining 

three busses are then used by the error handler. 

 
Figure 5.   TMR Assembly (TMRA) 

 
B. VOTER DEVELOPMENT 

A basic single bit voter takes three inputs, A, B, and C, and enters them into the 

logic circuit shown in Figure 6.  The output, Y, is then the “voted output.”  Each input is 

ANDed with each of the other two inputs.  This circuit yields a majority result; if two of 

three inputs are high, the output will be high. In the CFTP design, the voter inputs are 

individual bits of the outputs of the processors. 
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Figure 6.   Basic 1-Bit Voter Circuit 

 

The next item required is an indication that an error has occurred, so correction 

can be accomplished.  Figure 7 shows a single bit voter with data error detection logic 

built in.  The 3-input AND gate and the 3-input NOR gate will produce a high output 

when the three inputs are the same.  When any of these outputs are different, this 

indicates one of the three inputs is different, and the resulting output "ERR" will asserted.  

 
Figure 7.   1-Bit Voter with Data Error Detection (After Ref. [1].) 

 

If we desire to know whether an error is actually in a processor, or is happening in 

the voter circuit itself, we need to replicate the voter.  Figure 8 shows two voters with a 
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voter error indication.  In the event that an SEU occurs in the voter, it may be helpful to 

realize the error is not a data error but rather a voter error.  The voter error is detected by 

duplicating the voter and using an XOR gate to compare the two voted outputs.   

 
Figure 8.   1-Bit Voter with Voter Error Detection (After Ref. [1].) 

 

If the error occurred in the voter circuit, no corrective action may be required, 

beyond the act of voting the data and recording the error location.  If the error came from 

a processor output, the processor fault which caused the error must be corrected.     

In a data error, determining which processor is in error is required.  Figure 9 

combines the data error and voter error configurations and includes two more outputs, 

which are used to determine which processor was in error in the event it was a data error.  

This full voter was the single-bit design proposed for use in the CFTP in earlier research 

[1]. 
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Figure 9.     1-Bit Voter Circuit with Data- and Voter-Error Detection and Location (After 

Ref. [1].) 
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After some deliberation, it was decided that the need for voter versus data error 

discrimination was not necessary.  It was initially believed that determining a voter error 

would save time in the interrupt service routine.  Since the data was assumed to be 

correct, the interrupt would only require storing the error syndrome.  But if the voter is in 

error, the data still may be corrupted in the process.  A second reason for eliminating 

error discrimination was error collection.  Having a second error signal also requires 

additional requirements for collecting the data on these errors.  Instead of having to store 

51 bits of Error, it would be 51 bits of Data Error and another 51 bits of Voter Error.  

Finally, discriminating a voter error increases the complexity and size of both the voter 

and the logic required to process the error. 

 With all these considerations in mind, Fig. 9 was modified to create Fig. 10, 

which has a single voter, the error indication, and error location.  Table 2 shows how the 

voter indicates which processor is in error. 
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Figure 10.   1-Bit Voter with Error Detection and Location 
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CID_0 CID_1 Error Location

0 0 None 

0 1 Processor 1 

1 0 Processor 2 

1 1 Processor 3 

Table 2.   Error Location Table 
 

C. COMBINATION OF VOTERS AND PROCESSOR 

For the processor chosen for the CFTP, a 16-bit RISC processor, this voter had to 

be replicated 16 times for each of the 16-bit busses.  The voter inputs come from the 

processor busses and outputs are placed onto a 16-bit address or data bus. 

The CFTP processor has three 16-bit busses that require voting, so in essence 48 

voters needed to be created.  In addition to the bus voters, there are three single bit 

outputs that require voting: the strobes for the program counter, data read and data write.    

So a total of 51 voters are required.   

D. CHAPTER SUMMARY 

This Chapter presented the evolution of the voter from a simple single-bit voter to 

the robust voter with error identification and reporting.  It also described the config-

uration of both single-bit and 16-bit voters with respect to the three processors.  The next 

Chapter will explain the clock control system and how errors are handled. 
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IV. CLOCK CONTROL, ERROR HANDLING, AND MEMORY 
INTERFACE 

This Chapter will discuss the clock control method, error handling system and the 

interfacing with off-chip systems for the CFTP.  The design constraints of the CFTP 

required unique solutions.  The clock used for the processors had to be different from the 

remaining systems in the CFTP.  At the same time, the error handling routine had to be 

capable of operating in an environment where some of the components operated at a 

different speed than others.  Finally, interfacing with off-chip systems required a device 

that could coordinate the various bus demands and speeds. 

A. OVERVIEW 

The KDLX is a Harvard architecture design.  This means it has two separate 

memories, one for instructions and one for data.  The interface between the processor and 

these memories is four separate busses: a Program Counter bus (processor output), an 

Instruction bus (processor input), a Data Address bus (processor output) and a Data bus 

(bi-directional).  The interface between the FPGA and the off-chip memory in the CFTP 

is a Von Neumann architecture.  The Von Neumann architecture only has one address 

bus and one data bus, which are shared between the program and the data.  Interface 

circuitry and a clock control state machine were needed to allow the KDLX to time share 

the memory interface. With this constraint to the design, a system was developed to 

coordinate the bus demands for the CFTP.  It will be described in Section C of this 

Chapter. 

The CFTP operates in several conditions.  In a normal condition, the processors 

are executing instructions and the voters are checking the outputs.  When an error occurs, 

the CFTP changes states from normal operation to the Error Syndrome Saving condition.  

Once the error is saved to memory the CFTP shifts to the Error Correction Interrupt 

Service condition.  After the Error Correction is complete, the CFTP reverts to normal 

operation. 
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B. STATE MACHINE CONTROLLER 

A state machine was built to control the states in which the CFTP operates.  

Figure 11 shows this machine, called Interrup.  In normal operation, the processors 

require up to two transfers, each needing both busses.  As stated earlier, there is only 

capacity for one address and one data transfer off-chip.  This is solved by reducing the 

clock rate of the processors to half that of the rest of the design.  Further detail on how 

this was accomplished is discussed in Section C of this Chapter. 

With two clock cycles for bus transfer off-chip to every one of the processor clock 

cycles, the requirement to coordinate the bus demands is met.  As seen in Figure 11, the 

states NormInst and NormData are the two normal condition states.  During NormInst, 

Interrup asserts the output InstrAccess and deactivates the output DataAccess.  During 

NormData, the outputs are reversed.  This is because the KDLX processors will be 

asserting Program Read and Read/Write signals during both states, and only one of these 

transfers can occur at a time.  These outputs are used by a device called the Reconciler, 

which controls memory accesses by all on-chip components. 

In NormData, the state machine also looks for the input E, which is the error 

signal from the voters.  When E is asserted, Interrup shifts from normal operation to the 

Error Syndrome Save condition. 

In the Error Syndrome Save condition, there are two sub-conditions, ErrSynSave 

and ISRErrSynSave.  Both are designed to perform the same tasks, with one exception.  

In the ErrSynSave condition, there is an additional state which generates an instruction 

that will begin the Interrupt Service Routine (ISR).  Further explanation of this will be 

given later in this Section. 

As the voters generate outputs, these outputs are consolidated and sent to a device 

named the Error Syndrome Storage Device (ESSD).  The outputs are collectively called 

the Error Syndrome.  The Error Syndrome is a total of 104 bits: the 51 voted bits, the 51 

error bits, and a consolidated CID_0 bit and CID_1 bit. 
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Figure 11.   Finite State Machine Controller 



24 

The CID bits are each put through a 51-to-1 OR gate which is designed to reduce 

the amount of data that will be saved.  With the assumption that only one error will occur 

at a time, the CID bits do not need to be saved in total.  Further description of the ESSD 

operation will be given in a later Section. 

With the 104 bits of data to be transferred to off-chip memory and a 32-bit data 

bus, four clock cycles are required.  This is the reason for the four ErrSynSave states.  

Each of them asserts a corresponding ErrSyn signal which is used by the ESSD to port 

data to the Reconciler; the ErrSyn signals are also used by the Reconciler to stop the 

processor clock.  The reason for this will be explained in Section C.  Once the Error 

Syndrome Save is complete, the InterrInstr state generates the ISR instruction and asserts 

the signal TRAP.  This signal is used by the Reconciler to port the TRAP instruction, 

seen in Figure 12, instead of the instruction coming from memory, to the processors.  

With the processor clock stopped, this instruction is not lost, simply put on hold until the 

ErrSyn signals are deactivated. 

Instruction:  TRAP (Software Trap) 

Figure 12.   TRAP Instruction Description (From Ref. [2].) 
 

The TRAP instruction will take the Program Counter contents and place it in the 

Interrupt Address Register, and then load the Program Counter Register with the 

immediate value.  The immediate value is the address of the first instruction for the 

Interrupt Service Routine [2]. 

Once the TRAP instruction has been inserted, the CFTP moves to the Error 

Correction condition.  In this condition, the Processors are restarted and the ISR begins. 

The ISR stores each register to memory and then reloads each register from memory.  As 

the registers are stored, the data passes through the voters.  If there are any errors, they 

are corrected.  It is expected that at least one miscompare will occur during this routine, 

the error that caused the routine to occur in the first place.  To ensure that errors which 

are detected once the ISR has begun do not start another ISR, a second set of Error 

Syndrome Save states exist. 

23                            16 15               0

Opcode:0x28       Immed
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Once the error correction is complete, the final instruction of the ISR will initiate 

a return to the normal states of operation.  This is accomplished by the ISRData state 

looking for the input RFE, Return From Exception, which indicates the last instruction of 

the ISR has been loaded from memory into the processors.  This signal combined with E 

not indicating an error will force the state machine back to normal operation. 

C. CLOCK CONTROL AND MEMORY INTERFACE 

The Reconciler generates at a clock rate which is half the rate of the input clock.  

This clock is an output of the Reconciler and an input to the TMR Assembly.  But the 

need to stop the processor clock for an error required an additional control signal for the 

processor clock in the event of an error.   

The reduction in clock speed is accomplished through a clock delay-locked loop, 

CLKDLL.  As shown in Figure 13, the input to CLKDLL is the master clock.  It outputs 

two clock signals, one at half the speed of the original signal and one at the same rate as 

the input signal.  Both signals are kept in phase by a feedback loop [8].   
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Figure 13.   Clock Controller 

 

The higher speed clock is used by the remaining devices in the CFTP, which 

includes the Reconciler, Interrup, and the ESSD.  It is an output of the Reconciler called 

rest_clock. 

In Figure 14, the processor clock signal is the input to a tri-state buffer, which 

takes its enable input from the signal ErrSyn.  ErrSyn is the OR of the signals ErrSyn1 

through ErrSyn4, from Interrup.  If any of them are high, the tri-state buffer will be 

disabled, stopping the processor clock, and set the Reconciler for Error Syndrome 

transfer.  
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Figure 14.   Processor Clock Control 
 

The Reconciler also controls the memory interface.  It receives the inputs from the 

processors for reading and writing data, and reading the instruction, along with all the 

control signals the processors use.  The ESSD also ports the Error Syndrome to the 

Reconciler for storage into memory.  Using the clock control previously described, the 

Reconciler completes all transfers to and from memory. 

D. ERROR SYNDROME STORAGE DEVICE (ESSD) 

The ESSD is designed to capture the state of the processors when an error occurs.  

It stores the output of all the voters, and the error signals of all the voters.  For each bit 

voted on, there is an error bit.  There are 51 bits voted, so there are 51 error bits.  In 

addition, there are two bits to determine in which processor the error occurred.  In total, 

104 bits are required to make up a single error syndrome.   

All of this syndrome data is latched into the ESSD every clock cycle, regardless 

of an error occurring.  It is only stored into memory when an error activates the Error 

Syndrome Save states of the state machine.  The errors are saved to the highest address 

locations in memory, and are stored "backwards" by a down counter.  Figure 15 shows 

the down counter and the ESSD outputs. 
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Figure 15.   Error Syndrome Storage Device 

 

The highest location in memory is loaded into the down counter via the input 

Location.  When the first error syndrome is stored to memory, the first 32-bit word is 

stored in the last memory slot, the second word in the next to last, etc.  As each word is 

stored, the address is decremented via the down counter and is output as Syn_addr.  The 

location in memory that it begins counting down from can be loaded into the down 

counter by loading in the start address into the Location I/O marker and asserting the 

Load I/O Marker. 

Figure 15 also shows the other two outputs of the ESSD.  Syn_data is the 32-bit 

word to be stored, and ErrSyn is the combined signal of each of the four Error Save State 

signals.  The four state signals are ORed together and both output, and used to assert the 

tri-state buffer with the syndrome address.  These three outputs are input into the 

Reconciler. 
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E. CHAPTER SUMMARY 

This Chapter described the error handling and clock control for the CFTP.  The 

next Chapter will discuss the simulation results and the full integration of the subsystems 

of the CFTP. 
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V. INTEGRATION 

The integration of subsystems into a design, whether it is for a car, a house or an 

electronic system, can be difficult.  This integration is further complicated when it is for a 

system that has never been built before.  Such is the case in satellite design.  Most 

satellites are unique in their mission, and therefore the subsystems onboard are unique, 

many having been built specifically for the mission.   

The integration of the components for the CFTP was no different in this respect.  

The subsystems for the CFTP were built specifically for this mission, and they each 

needed to be tested separately and then integrated into a complete design.  This Chapter 

describes how these subsystems were integrated. 

A. SUBCOMPONENT TESTING 

Each subcomponent needed to be tested with the synthesis tool used to build 

them.  Testing was accomplished by checking for errors in the schematic design, fol-

lowed by compiling of the design into Hardware Description Language.  Each schematic 

is coded into HDL by the synthesis tool.  As it is compiled, the compiler checks for errors 

in coding caused by improper design.  For example, if the design uses a 32-bit bus, but 

only 16 bits are connected to a higher level design, the schematic check will not detect an 

error, but the compiler will. 

As these pieces were finished, they were tested for proper circuit connectivity, 

and to ensure that the individual subcomponents would not exceed the FPGA capacity.  

Actual gate count capacity was not the largest concern.  What was more constraining was 

the number of input/output (I/O) buffers used in the design.   

As it turns out, the problem with buffer constraints was based on poor under-

standing of the Xilinx design tool.  The actual buffer capacity was not a factor in design 

implementation.  The synthesis tool in the Xilinx implementation software used I/O 

buffers for tri-state buffers at certain points in the design.  This forced the design to 

require a larger number of I/O Blocks (IOBs) than the chip contained.  The solution to the 

problem is explained in Section C of this Chapter. 
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Signals sent from one subcomponent to another required buffering for bi-

directional busses or for sharing busses.  In the case of the single data and address busses 

interfacing with off-chip memory, the two addresses from the KDLX processor had to be 

buffered opposite each other.  For the TMRA, the data bus required several buffers in 

order to ensure that Read data did not interfere with Write data. 

Redesign occurred each time the testing failed and an iterative process finally 

ensured that the individual subcomponents were functional. 

B. INTEGRATION 

Once these individual devices were built, they were combined into one full 

design, Figure 16.  The inputs to the device Reset, Clock, Stall, and Load.  Addr_out (16 

bits) is the only output.  Data_Instr (32 bits) is a bi-directional bus. 
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Figure 16.   Integrated CFTP Design 
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The two tri-state buffers between the Reconciler and the TMRA are to control 

data to and from the processors.  The control signals used for these buffers are the voted 

Read and Write signals from the TMRA. 

The two macros shown below the tri-state buffers are 51-to-1 OR gates.  They are 

intended to consolidate the Computer ID (CID) in order to reduce the number of bits to 

be saved in the error syndrome.   

The same macro used for the CID busses was modified for use on the Error bus.  

The Error bus is consolidated since only one error signal is required to enter the ISR.  The 

output is then used to start the Error Syndrome Save inside the Interrup macro. 

At the bottom of Figure 16 is an 8-input AND gate.  It is designed to detect the 

RFE instruction.  When the opcode for the RFE is input into the processors, this signal 

will assert the RFE pin on the Interrup which shifts the CFTP from ISR operation back to 

normal. 

C. FULL DESIGN TESTING 

Once the individual components were connected together, more synthesis was 

required to ensure that signals from one device did not produce incorrect results in 

another.  Problems occurred numerous times, but were typically easily solvable. 

Most of the faults were caused by incorrect connection of the wiring.  Others were 

caused by improper labeling of either inputs or outputs of subcomponents.  But some 

faults were caused by serious design flaws. 

One such example was in an iteration of the Reconciler.  The initial design did not 

include a mechanism for injecting the TRAP instruction into the instruction stream.  Once 

it was determined that the logical location to inject the TRAP instruction was inside the 

Reconciler, the design was reconfigured to allow for either an instruction to enter the 

stream from memory or to be injected from the FSM. 

The redesigned Reconciler had two 24-bit tri-state buffers which would be 

enabled via the TRAP_Assert signal.  Synthesizing the Reconciler by itself yielded no 

faults.  But when the entire design was synthesized, a fault occurred.  The design now 

required more buffers than the chip had capacity for.  A subsequent redesign was done, 
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whereby the two 24-bit buffers were replaced by a 24-bit 2-to-1 multiplexer.  This 

brought the entire design back under the capacity limits of the FPGA. 

D. INTEGRATION STATISTICS 

Once the full design was synthesized, the design software provided a synthesis 

report, which detailed the uses of chip resources.  A portion of that synthesis report is 

provided in Table 3. 

 

Selected Device: v800hq240-6 

 

Number of Slices: 1678 out of 9408 17% 

Number of Slice Flip Flops: 1699 out of 18816 9% 

Number of 4 input LUTs: 2037 out of 18816 10% 

Number of bonded IOBs: 36 out of 170 21% 

Number of TBUFs: 425 out of 9408 4% 

Number of GCLKs: 2 out of 4 50% 

Table 3.   Chip Resource Allocation 
 

The number of slices is a representation of the gate count.  In essence, only 17% 

of the entire chip gate count is used to implement the entire design.  The other critical 

information from Table 3 is the number of bonded IOBs.  An IOB is an Input/Output 

Block.  This is where the pins on the outside of the chip interface with the design 

implemented on the FPGA.  In the case of the CFTP, only 21% of the IOBs were used. 

Both of these numbers indicate that there is ample room on the chip for a larger 

and more complex design.  Since one of the long-range goals of the CFTP is to be 

reconfigurable, this is a good indication that this size FPGA will be capable of new 

configurations once it is in orbit. 
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E. PIPELINE CONCERNS 

There are four stages to the KDLX pipeline [2].  When the KDLX processors are 

operating in normal mode, during each clock cycle an instruction resides in each stage.  

Figure 17 shows the pipeline timing when there are no errors.  As discussed in Chapter 

IV, the memory is clocked at a rate twice that of the processor.  So for every processor 

clock cycle, P, two memory clock cycles, M, transpire.  At clock cycle P, instruction X 

enters the pipeline.  At clock cycle P+4, instruction X exits the pipeline. 

 
Figure 17.   KDLX Pipeline with no Errors 

 

When an error occurs, the pipeline is halted while the Error Syndrome is stored to 

memory.  Once the pipeline starts back up, a TRAP instruction is generated.  There was a 

concern that the instructions still in the pipeline could force another TRAP. 

Figure 18 shows the KDLX pipeline with an error detected, the TRAP instruction 

inserted, and the first ISR instruction being fetched from memory.  When an error is 

detected in instruction X−3, there are three additional instructions that will be executed 

prior to the TRAP instruction.  If the error is in the program counter of a processor, each 

of these instructions will generate an error.  This will halt the processors and save Error 
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Syndromes for each error.  It will not inject another TRAP instruction, since the state 

machine is controlling the Error Save states. 

 
Figure 18.   Pipeline with TRAP and ISR Instructions 

 
F. CHAPTER SUMMARY 

This Chapter described the major components of the CFTP, and their integration 

into a full design.  The next Chapter will discuss conclusions and follow-up research. 
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VI. CONCLUSIONS AND FOLLOW-ON RESEARCH 

The intent of this thesis was to implement a configurable fault tolerant processor 

on a single chip.  The research showed that it is possible to fit the entire design onto a 

FPGA.  The research also showed that this FPGA has the capacity for a larger design, 

such as a more complex microprocessor than the 16-bit RISC KDLX.  This extra capacity 

allows for flexibility once the CFTP is on orbit. 

A. OVERVIEW 

Prior to the start of this research, the intent was to use a soft-core processor that 

had a Von Neumann architecture.  Since the research used a Harvard architecture, the 

Reconciler was built to coordinate memory accesses.  In order to control the various 

conditions the CFTP would transition through, Normal, Error Save, Error Correct, the 

finite state machine Interrup was built.  And to save the 104-bit Error Syndrome to 

memory on a 32-bit bus, the Error Syndrome Storage Device was designed.  Each of 

these components was new to the design. 

The TMR Assembly was modified from previous research.  The single bit voter 

was adapted to only indicate error, and not differentiate between voter and data error.  

And redesigning the TMRA to accommodate the KDLX processor architecture was also a 

part of this research. 

B. CONCLUSIONS 

The CFTP is a viable design for space based application.  It will detect and correct 

errors in the processor caused by SEUs.  It also allows for on-orbit reconfiguration for 

both errors in design and future upgrade.  The CFTP research helps continue to improve 

the capability of space based systems, bringing newer systems to space at a faster rate 

than currently capable. 

C. FOLLOW-ON RESEARCH 

There are several areas for further research.  Implementation of this design in an 

FPGA is required, along with functional testing of the FPGA.  This will ensure that the 

design created for this research functions properly in a real world environment. 
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Next, testing the design in a controlled radiation environment such as a cyclotron 

or other particle accelerator will be necessary before the device is launched.  This will 

determine if the design is capable of handling the rigors of space instead of expending 

resources to launch a faulty design. 

Investigation of a more complex processor to replace the KDLX processor should 

also be conducted.  If possible, using a processor more closely representing current levels 

in state of the art of processor capability would be extremely beneficial to the space 

community. 

Completing the interface between the CFTP and its off-chip components, such as 

the memory and off-board bus must be accomplished to allow for complete functionality.  

This includes an Error Correction and Detection (EDAC) component in order to prevent 

SEUs in memory from introducing errors into the system. 

Finally, writing the program for the processor to run that best tests for errors has 

yet to be done. 
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APPENDIX A: CFTP SCHEMATICS AND CODE 

Appendix A contains all the schematics and VHDL code files that were specific-

ally built for this thesis.  It does not contain any of the schematics contained in the Xilinx 

libraries, such as Flip-Flop or tri-state buffer schematics.  Details of Xilinx schematics 

can be found in the Xilinx library files. 

The schematic files in Appendix A include the full design schematic, and sche-

matics of the sub-components Reconciler, Error Syndrome Storage Device (ESSD), 

Triple Modular Redundant Assembly (TMRA), the single bit voter, the 16-bit voter, and 

the 51-to-1 OR devices.  The state machine diagram for the Interrup device is at the end 

of the schematic designs.  It also includes the VHDL for all the associated KDLX files, as 

well as the state machine design from which the Interrup VHDL code was derived. 

The VHDL files for the KDLX processor were not created specifically for this 

research [2].  But since KDLX processor is an integral part of this overall design, they are 

included. 

A. SCHEMATICS 
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Figure 19.   Full Design Schematic 
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Figure 20.   Reconciler 
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Figure 21.   24-bit 2-to-1 Multiplexer 
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Figure 22.   Error Syndrome Storage Device 



46 

 
Figure 23.   Triple Modular Redundant Assembly 
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Figure 24.   16-Bit Voter 
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Figure 25.   Single Bit Voter 

Q 

D 

A'A' 

e  e   Q 

Q 



49 

 

 
Figure 26.   51-to-1 OR Gate 
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Figure 27.   Interrup State Machine 
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B. VHDL FILES 

1. adder.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
USE IEEE.std_logic_arith.all; 
USE IEEE.std_logic_unsigned.all; 
 
-- ***** adder model ***** 
-- external ports 
ENTITY adder IS PORT ( 
 A : IN std_logic_vector(15 downto 0); 
            B:   IN std_logic_vector(15 downto 0); 
 alu_op1 : IN std_logic; 
 alu_op3 : IN std_logic; 
 alu_op4 : IN std_logic; 
 Out_word : OUT std_logic_vector(15 downto 0) 
); 
END adder; 
 
-- internal structure 
ARCHITECTURE rtl OF adder IS 
 
-- COMPONENTS 
 
COMPONENT AO22 
PORT ( 
 A : IN std_logic; 
 B : IN std_logic; 
 C : IN std_logic; 
 D : IN std_logic; 
 zOut : OUT std_logic  
); 
END COMPONENT; 
 
SIGNAL Vdd : std_logic; 
SIGNAL subtract : std_logic; 
-- INSTANCES 
BEGIN  
Vdd <= '1'; 
AO22_1 : AO22   PORT MAP( 
 A => Vdd, 
 B => alu_op1, 
 C => alu_op4, 
 D => alu_op3, 
 zOut => subtract 
); 
 
process (A, B, subtract) 
begin 
  if (subtract = '1') then  
   out_word <= A-B; 
  else out_word <= A+B; 
  end if; 
end process; 
END rtl; 
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2. alu.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** alu model ***** 
-- external ports 
ENTITY alu IS PORT ( 
 A : IN std_logic_vector (15 downto 0); 
  alu_op : IN std_logic_vector (4 downto 0); 
 alu_out : OUT std_logic_vector (15 downto 0); 
 B : IN std_logic_vector (15 downto 0) 
); 
END alu; 
 
-- internal structure 
ARCHITECTURE structural OF alu IS 
 
-- COMPONENTS 
 
COMPONENT adder 
PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector (15 downto 0); 
 alu_op1 : IN std_logic; 
 alu_op3 : IN std_logic; 
 alu_op4 : IN std_logic; 
 Out_word : OUT std_logic_vector (15 downto 0)  
); 
END COMPONENT; 
 
COMPONENT alu_logic 
PORT ( 
 A : IN std_logic_vector (15 downto 0); 
 B : IN std_logic_vector (15 downto 0); 
 Func : IN std_logic_vector (1 downto 0); 
 logic_out : OUT std_logic_vector (15 downto 0) 
); 
END COMPONENT; 
 
COMPONENT log_barrel 
PORT ( 
 ar_or_log : IN std_logic; 
 In_Word : IN std_logic_vector (15 downto 0); 
 l_or_r : IN std_logic; 
 Out_word : OUT std_logic_vector (15 downto 0); 
 Shift : IN std_logic_vector (3 downto 0) 
); 
END COMPONENT; 
 
COMPONENT word_mux4 
PORT ( 
 A : IN std_logic_vector (15 downto 0); 
 B : IN std_logic_vector (15 downto 0); 
 C : IN std_logic_vector (15 downto 0); 
 D : IN std_logic_vector (15 downto 0); 
  Sel : IN std_logic_vector (1 downto 0); 
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 Out_word : OUT std_logic_vector (15 downto 0) 
); 
END COMPONENT; 
 
COMPONENT word_set 
PORT ( 
 In_word : IN std_logic_vector (15 downto 0); 
 set_op : IN std_logic_vector (2 downto 0); 
 set_out : OUT std_logic  
); 
END COMPONENT; 
 
-- SIGNALS 
 
SIGNAL set_out : std_logic_vector (15 downto 0); 
SIGNAL log_barrel_out : std_logic_vector (15 downto 0); 
SIGNAL logic_out : std_logic_vector (15 downto 0); 
SIGNAL Adder_Out : std_logic_vector (15 downto 0); 
 
-- INSTANCES 
BEGIN 
set_out(15 downto 1) <= "000000000000000"; 
halfword_adder_1 : adder   PORT MAP( 
 A => A, 
 alu_op1 => alu_op(1), 
 alu_op3 => alu_op(3), 
 alu_op4 => alu_op(4), 
 B => B, 
 Out_word  => Adder_Out 
); 
halfword_alu_logic_1 : alu_logic   PORT MAP( 
 A => A, 
 B => B, 
 Func => alu_op(1 downto 0), 
 logic_out => logic_out 
); 
halfword_log_barrel_1 : log_barrel   PORT MAP( 
 ar_or_log => alu_op(0), 
 In_word => A, 
 l_or_r => alu_op(1), 
        Out_word => log_barrel_out, 
 Shift => B(3 downto 0) 
); 
halfword_mux4_1 : word_mux4   PORT MAP( 
 A => Adder_Out, 
 B => logic_out, 
 C => log_barrel_out, 
 D => set_out, 
 Out_word => alu_out, 
 Sel => alu_op(4 downto 3) 
); 
halfword_set_1 : word_set   PORT MAP( 
 In_word => Adder_Out, 
 set_op => alu_op(2 downto 0), 
 set_out => set_out(0) 
); 
END structural; 
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3. alu_logic.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** alu_logic model ***** 
-- external ports 
ENTITY alu_logic IS PORT ( 
 A: IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0); 
 Func: IN std_logic_vector(1 downto 0); 
 logic_out : OUT std_logic_vector(15 downto 0) 
); 
END alu_logic; 
 
-- internal structure 
ARCHITECTURE rtl OF alu_logic IS 
 
BEGIN 
 
process (A,B, func) 
begin 
  case func is 
   when "00" => logic_out <= A; 
   when "01" => logic_out <= (A and B); 
   when "10" => logic_out <= (A or B); 
   when others => logic_out <= (A xor B); 
   end case; 
end process; 
 
 
END rtl; 
 
 
4. AO22.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
 
entity AO22 is port ( 
  A, B, C, D: IN std_logic; 
  zOut : OUT std_logic); 
end AO22; 
 
architecture behavioral of AO22 is 
begin 
  zOut <= (A and B) or (C and D); 
end behavioral; 
 
 
5. core.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
USE IEEE.std_logic_arith.all; 
-- ***** core model ***** 
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-- external ports 
ENTITY core IS PORT ( 
 Addr_Int : OUT std_logic_vector(15 downto 0); 
 Clock_in : IN std_logic; 
 Input_Data : IN std_logic_vector(15 downto 0); 
  Output_Data : Out std_logic_vector(15 downto 0); 
 Instr : IN std_logic_vector(23 downto 0); 
 PC : OUT std_logic_vector(15 downto 0); 
 Prog_Rd : OUT std_logic; 
 Rd : OUT std_logic; 
 Resetn : IN std_logic; 
 Stalln : IN std_logic; 
 Wr : OUT std_logic  
); 
END core; 
 
-- internal structure 
ARCHITECTURE structural OF core IS 
 
-- COMPONENTS 
 
COMPONENT alu 
PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 alu_op : IN std_logic_vector(4 downto 0); 
 alu_out : OUT std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0) 
); 
END COMPONENT; 
 
 
COMPONENT word_mux3 
PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0); 
 C : IN std_logic_vector(15 downto 0); 
 Out_word : OUT std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(1 downto 0) 
); 
END COMPONENT; 
 
COMPONENT word_mux4 
PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0); 
 C : IN std_logic_vector(15 downto 0); 
 D : IN std_logic_vector(15 downto 0); 
 Out_word : OUT std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(1 downto 0) 
); 
END COMPONENT; 
 
COMPONENT regfile 
PORT ( 
 A : OUT std_logic_vector(15 downto 0); 
 B : OUT std_logic_vector(15 downto 0); 
 clock : IN std_logic; 
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 Data_In : IN std_logic_vector(15 downto 0); 
 Dest : IN std_logic_vector(3 downto 0); 
        stalln: IN std_logic; 
 resetn : IN std_logic; 
 RSone : IN std_logic_vector(3 downto 0); 
 RStwo : IN std_logic_vector(3 downto 0); 
 scan_data_in : IN std_logic; 
 scan_enable : IN std_logic; 
 wb_enable : IN std_logic  
); 
END COMPONENT; 
 
COMPONENT word_reg_single 
PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(15 downto 0); 
 Data_out : OUT std_logic_vector(15 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END COMPONENT; 
 
COMPONENT pc_control 
PORT ( 
 ALU_Out : IN std_logic_vector(15 downto 0); 
 Clock : IN std_logic; 
 D2_Inc_PC : OUT std_logic_vector(15 downto 0); 
        D_Link_PC : OUT std_logic_vector(15 downto 0); 
 IAR_Enable : IN std_logic; 
 PC : OUT std_logic_vector(15 downto 0); 
 PC_Sel : IN std_logic_vector(1 downto 0); 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Data_Out : OUT std_logic; 
 Scan_Enable : IN std_logic; 
 Stalln : IN std_logic  
); 
END COMPONENT; 
 
COMPONENT pipeline 
PORT ( 
alu_op : OUT std_logic_vector(4 downto 0); 
        A_Mux : OUT std_logic_vector(1 downto 0); 
        B_Mux : OUT std_logic_vector(1 downto 0); 
        Clock : IN std_logic; 
        Data_In : IN std_logic_vector(23 downto 0); 
        Dest : OUT std_logic_vector(3 downto 0); 
        Immed : OUT std_logic_vector(15 downto 0); 
        PC_Sel : OUT std_logic_vector(1 downto 0); 
        rd_enable : OUT std_logic; 
        Reg_In_Sel : OUT std_logic_vector(1 downto 0); 
        Resetn : IN std_logic; 
        RSone : OUT std_logic_vector(3 downto 0); 
        RStwo : OUT std_logic_vector(3 downto 0); 
        Scan_Data_In : IN std_logic; 
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        Scan_Enable : IN std_logic; 
        Stalln : IN std_logic; 
        wb_enable : OUT std_logic; 
        scan_out : OUT std_logic; 
        IAR_Enable : OUT std_logic; 
        wr_enable : OUT std_logic; 
        zero_flag : IN std_logic 
); 
END COMPONENT; 
 
COMPONENT rw_control 
PORT ( 
Clock : IN std_logic; 
        Prog_Rd : OUT std_logic; 
        Rd : OUT std_logic; 
        rd_enable : IN std_logic; 
        resetn : IN std_logic; 
        stalln : IN std_logic; 
        Wr : OUT std_logic; 
        wr_enable : IN std_logic 
); 
END COMPONENT; 
 
 
COMPONENT zero_test 
PORT ( 
 In_word : IN std_logic_vector(15 downto 0); 
 zero_flag : OUT std_logic  
); 
END COMPONENT; 
 
-- SIGNALS 
 
SIGNAL wr_enable : std_logic; 
SIGNAL zero_flag : std_logic; 
SIGNAL IAR_Enable : std_logic; 
SIGNAL wb_enable : std_logic; 
SIGNAL pipeline_scan_out : std_logic; 
SIGNAL Dest : std_logic_vector(3 downto 0); 
SIGNAL A : std_logic_vector(15 downto 0); 
SIGNAL D2_Inc_PC : std_logic_vector(15 downto 0); 
SIGNAL Immed : std_logic_vector(15 downto 0); 
SIGNAL D_ALU_Out : std_logic_vector(15 downto 0); 
SIGNAL D_Link_PC : std_logic_vector(15 downto 0); 
SIGNAL Reg_In_Sel : std_logic_vector(1 downto 0); 
SIGNAL ALU_A : std_logic_vector(15 downto 0); 
SIGNAL ALU_Out : std_logic_vector(15 downto 0); 
SIGNAL ALU_B : std_logic_vector(15 downto 0); 
SIGNAL Gnd : std_logic; 
SIGNAL B : std_logic_vector(15 downto 0); 
SIGNAL LD_Memory_In : std_logic_vector(15 downto 0); 
SIGNAL output_en_n : std_logic; 
SIGNAL rd_enable : std_logic; 
SIGNAL pc_control_scan_out : std_logic; 
SIGNAL Buf_Stalln : std_logic; 
SIGNAL Buf_resetn : std_logic; 
SIGNAL Clock : std_logic; 
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SIGNAL Buf_Addr_Int : std_logic_vector(15 downto 0); 
SIGNAL Shift_En : std_logic;  
SIGNAL alu_op : std_logic_vector(4 downto 0); 
SIGNAL Buf_Scan_Data_Out : std_logic;   
SIGNAL A_Mux : std_logic_vector(1 downto 0); 
SIGNAL B_Mux : std_logic_vector(1 downto 0); 
SIGNAL RSone : std_logic_vector(3 downto 0); 
SIGNAL RStwo : std_logic_vector(3 downto 0); 
SIGNAL PC_Sel : std_logic_vector(1 downto 0); 
SIGNAL Data_Out : std_logic_vector(15 downto 0); 
SIGNAL Regfile_In : std_logic_vector(15 downto 0); 
SIGNAL zero_byte : std_logic_vector(7 downto 0); 
SIGNAL Data_In : std_logic_vector(15 downto 0); 
SIGNAL sign_ext_immed : std_logic_vector(15 downto 0); 
SIGNAL scan_data_in : std_logic; 
-- INSTANCES 
BEGIN 
clock <= clock_in; 
shift_en <= '0'; 
scan_data_in <= '0'; 
Addr_Int <= Buf_Addr_Int; 
zero_byte <= "00000000"; 
sign_ext_immed(15 downto 8) <= Immed(7) & Immed(7) & Immed(7) & 

Immed(7) & Immed(7) & Immed(7) & Immed(7) & Immed(7); 
sign_ext_immed (7 downto 0) <= Immed(7 downto 0); 
Wr <= output_en_n; 
Output_Data <= Data_Out; 
 
Word_Reg_1 : word_reg_single PORT MAP( 
  Clock => Clock, 
 Data_In => B, 
 Data_out => Data_Out, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => pc_control_scan_out, 
 Scan_Enable => Shift_En 
); 
 
Word_Reg_2 : word_reg_single PORT MAP( 
  Clock => Clock, 
 Data_In => Input_Data, 
 Data_out => LD_Memory_In, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Data_Out(15), 
 Scan_Enable => Shift_En 
); 
 
       
 
alu_1 : alu   PORT MAP( 
 A => ALU_A, 
 alu_op => alu_op, 
 alu_out => ALU_Out, 
 B => ALU_B 
); 
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word_mux3_1 : word_mux3   PORT MAP( 
 A => D_ALU_Out, 
 B => LD_Memory_In, 
 C => D_Link_PC, 
 Out_word => Regfile_In, 
 Sel => Reg_In_Sel 
); 
word_mux3_2 : word_mux3   PORT MAP( 
 A => B, 
 B(7 downto 0) => Immed(7 downto 0), 
 B(15 downto 8) => zero_byte, 
 C => sign_ext_immed, 
 Out_word => ALU_B, 
 Sel => B_Mux 
); 
 
word_mux4_1 : word_mux4   PORT MAP( 
 A => A, 
 B => D2_Inc_PC, 
 C(7 downto 0) => zero_byte, 
 C(15 downto 8) => Immed(7 downto 0), 
 D => Immed(15 downto 0), 
 Out_word => ALU_A, 
 Sel => A_Mux 
); 
 
regfile_1 : regfile   PORT MAP( 
 A => A, 
 B => B, 
 clock => Clock, 
 Data_In => regfile_in, 
 Dest => Dest, 
        stalln => stalln, 
 resetn => resetn, 
 RSone => RSone, 
 RStwo => RStwo, 
 scan_data_in => pipeline_scan_out, 
 scan_enable => Shift_En, 
 wb_enable => wb_enable 
); 
 
word_reg_single_3 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Buf_Addr_Int, 
 Data_out => D_ALU_Out, 
 Enable => Stalln, 
 Resetn => resetn, 
 Scan_Data_In => Buf_Addr_Int(15), 
 Scan_Enable => Shift_En 
); 
 
word_reg_single_4 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => ALU_Out, 
 Data_out => Buf_Addr_Int, 
 Enable => Stalln, 
 Resetn => resetn, 
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 Scan_Data_In => B(15), 
 Scan_Enable => Shift_En 
); 
pc_control_1 : pc_control   PORT MAP( 
 ALU_Out => ALU_Out, 
 Clock => Clock, 
 D2_Inc_PC => D2_Inc_PC, 
 D_Link_PC => D_Link_PC, 
 IAR_Enable => IAR_Enable, 
 PC => PC, 
 PC_Sel => PC_Sel, 
 Resetn => resetn, 
 Scan_Data_In => D_ALU_Out(15), 
 Scan_Data_Out => pc_control_scan_out, 
 Scan_Enable => Shift_En, 
 Stalln => Stalln 
); 
pipeline_1 : pipeline   PORT MAP( 
 alu_op => alu_op, 
 A_Mux => A_Mux, 
 B_Mux => B_Mux, 
 Clock => Clock, 
 Data_In => Instr, 
 Dest => Dest, 
 Immed => Immed, 
 PC_Sel => PC_Sel, 
 rd_enable => rd_enable, 
 Reg_In_Sel => Reg_In_Sel, 
 Resetn => resetn, 
 RSone => RSone, 
 RStwo => RStwo, 
 Scan_Data_In => Scan_Data_In, 
 Scan_Enable => Shift_En, 
 Stalln => Stalln, 
 wb_enable => wb_enable, 
 scan_out => pipeline_scan_out, 
 IAR_Enable => IAR_Enable, 
 wr_enable => wr_enable, 
 zero_flag => zero_flag 
); 
rw_control_1 : rw_control   PORT MAP( 
 Clock => Clock, 
 Prog_Rd => Prog_Rd, 
 Rd => Rd, 
 rd_enable => rd_enable, 
 resetn => resetn, 
 stalln => Stalln, 
 Wr => output_en_n, 
 wr_enable => wr_enable 
); 
zero_test_1 : zero_test   PORT MAP( 
 In_word => A, 
 zero_flag => zero_flag 
); 
END structural; 
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6. Dest_Decoder.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** Dest_Decoder model ***** 
-- external ports 
ENTITY Dest_Decoder IS PORT ( 
 Dest : IN std_logic_vector(3 downto 0); 
 Enable : OUT std_logic_vector(15 downto 1); 
 wb_enable : IN std_logic  
); 
END Dest_Decoder; 
 
-- internal structure 
ARCHITECTURE rtl OF Dest_Decoder IS 
 
 
-- SIGNALS 
 
SIGNAL buf_enable : std_logic_vector(15 downto 1); 
 
-- INSTANCES 
BEGIN 
with dest select 
buf_enable <=  "000000000000001" when  "0001",  
                       "000000000000010" when  "0010", 
                       "000000000000100" when  "0011", 
                       "000000000001000" when  "0100", 
                       "000000000010000" when  "0101", 
                       "000000000100000" when  "0110", 
                       "000000001000000" when  "0111", 
                       "000000010000000" when  "1000", 
                       "000000100000000" when  "1001", 
                       "000001000000000" when  "1010", 
                       "000010000000000" when  "1011", 
                       "000100000000000" when  "1100", 
                       "001000000000000" when  "1101", 
                       "010000000000000" when  "1110", 
                       "100000000000000" when others; 
 
Enable <= buf_enable when (wb_enable = '1') else 

"000000000000000"; 
END rtl; 
 
 
7. dlx.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
USE IEEE.std_logic_arith.all; 
-- ***** dlx model ***** 
-- external ports 
ENTITY dlx IS PORT ( 
 Addr_Int : OUT std_logic_vector(15 downto 0); 
 Clock_in : IN std_logic; 
 Data : INOUT std_logic_vector(15 downto 0); 
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 Instr : IN std_logic_vector(23 downto 0); 
 PC : OUT std_logic_vector(15 downto 0); 
 Prog_Rd : OUT std_logic; 
 Rd : OUT std_logic; 
 Resetn : IN std_logic; 
 Stalln : IN std_logic; 
 Wr : OUT std_logic  
); 
 
END dlx; 
 
 
-- internal structure 
ARCHITECTURE structural OF dlx IS 
 
 
-- COMPONENTS 
 
 
COMPONENT core 
PORT ( 
 Addr_Int : OUT std_logic_vector(15 downto 0); 
 Clock_in : IN std_logic; 
 Input_Data : IN std_logic_vector(15 downto 0); 
      Output_Data : Out std_logic_vector(15 downto 0); 
 Instr : IN std_logic_vector(23 downto 0); 
 PC : OUT std_logic_vector(15 downto 0); 
 Prog_Rd : OUT std_logic; 
 Rd : OUT std_logic; 
 Resetn : IN std_logic; 
 Stalln : IN std_logic; 
 Wr : OUT std_logic 
); 
 
END COMPONENT; 
 
COMPONENT IO_Pads 
PORT ( 
 Pads : INOUT std_logic_vector (15 downto 0);   
 In_Data : Out std_logic_vector (15 downto 0); 
    Out_Data : In std_logic_vector (15 downto 0); 
    Output_En_n : IN std_logic 
); 
END COMPONENT; 
 
 
 
 
-- SIGNALS 
signal Input_data : std_logic_vector(15 downto 0); 
signal Output_data : std_logic_vector(15 downto 0); 
signal wr_int : std_logic; 
 
-- INSTANCES 
BEGIN 
wr <= wr_int; 
core1 : core PORT MAP( 
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  Addr_Int => Addr_Int,  
 Clock_in => Clock_In, 
 Input_Data => Input_data, 
      Output_Data => Output_data, 
 Instr => Instr, 
 PC => PC,  
 Prog_Rd => Prog_Rd, 
 Rd => Rd, 
 Resetn => Resetn, 
 Stalln => stalln, 
 Wr => Wr_int 
); 
 
IO_Pads_1 : IO_Pads PORT MAP( 
    Pads => Data,  
    In_Data => Input_Data, 
    Out_Data => Output_Data, 
    Output_En_n => wr_int 
); 
 
 
END structural; 
 
 
8. increment.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
USE IEEE.std_logic_arith.all; 
USE IEEE.std_logic_unsigned.all; 
 
-- ***** increment model ***** 
-- external ports 
ENTITY increment IS PORT ( 
 CI : IN std_logic; 
 In_word : IN std_logic_vector (15 downto 0); 
 Out_word : OUT std_logic_vector (15 downto 0) 
); 
END increment; 
 
-- rtl 
ARCHITECTURE rtl OF increment IS 
 
BEGIN 
process (In_word, CI) 
begin 
  Out_word <= In_word + CI; 
end process; 
END rtl; 
 
 
9. IO_pads.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
---- *** IO_Pads Model ***  
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---- external ports    
 
Entity IO_Pads is PORT ( 
 Pads : INOUT std_logic_vector (15 downto 0);   
 In_Data : Out std_logic_vector (15 downto 0); 
    Out_Data : In std_logic_vector (15 downto 0); 
    Output_En_n : IN std_logic 
); 
END IO_Pads; 
 
Architecture Behavior of IO_Pads is  
Begin   
  In_Data <= Pads; 
  Pads <= Out_Data when Output_En_n = '0' else (Pads'range => 

'Z'); 
end Behavior; 
 
 
10. log_barrel.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** log_barrel model ***** 
-- external ports 
ENTITY log_barrel IS PORT ( 
 ar_or_log : IN std_logic; 
 In_word : IN std_logic_vector(15 downto 0); 
 l_or_r : IN std_logic; 
 Out_word : Out  std_logic_vector(15 downto 0); 
 Shift: IN std_logic_vector(3 downto 0) 
 
); 
END log_barrel; 
 
-- internal structure 
ARCHITECTURE rtl OF log_barrel IS 
 
signal sel1, sel2, sel3, sel4 : std_logic_vector ( 1 downto 0); 
signal buf0b, buf0c, buf0d : std_logic_vector (15 downto 0); 
signal buf1a, buf1b, buf1c, buf1d : std_logic_vector (15 downto 

0); 
signal buf2a, buf2b, buf2c, buf2d : std_logic_vector (15 downto 

0); 
signal buf3a, buf3b, buf3c, buf3d : std_logic_vector (15 downto 

0); 
 
component word_mux4 
port (a : in std_logic_vector (15 downto 0); 
         b : in std_logic_vector (15 downto 0); 
         c : in std_logic_vector (15 downto 0); 
         d : in std_logic_vector (15 downto 0); 
        sel :  in std_logic_vector (1 downto 0); 
        out_word : out std_logic_vector (15 downto 0) 
); 
end component; 
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begin 
sel1(1) <= l_or_r and shift(0); 
sel1(0) <= ar_or_log and shift(0); 
 
sel2(1) <= l_or_r and shift(1); 
sel2(0) <= ar_or_log and shift(1); 
 
sel3(1) <= l_or_r and shift(2); 
sel3(0) <= ar_or_log and shift(2); 
 
sel4(1) <= l_or_r and shift(3); 
sel4(0) <= ar_or_log and shift(3); 
 
 
buf0b <= in_word(14 downto 0) & "0"; 
buf0c <= "0" & in_word(15 downto 1); 
buf0d <= in_word(15) & in_word(15 downto 1); 
 
buf1b <= buf1a(13 downto 0) & "00"; 
buf1c <= "00" & buf1a(15 downto 2); 
buf1d <= buf1a(15) & buf1a(15) & buf1a(15 downto 2); 
 
buf2b <= buf2a(11 downto 0) & "0000"; 
buf2c <= "0000" & buf2a(15 downto 4); 
buf2d <= buf2a(15) & buf2a(15) & buf2a(15) & buf2a(15) & buf2a(15 

downto 4); 
 
buf3b <= buf3a(7 downto 0) & "00000000"; 
buf3c <= "00000000" & buf3a(15 downto 8); 
buf3d <= buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15) & 

buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15 downto 8); 
 
 
 
mux1:  word_mux4 
port map ( 
    a => in_word, 
    b => buf0b, 
    c => buf0c, 
    d => buf0d, 
    sel => sel1, 
    out_word => buf1a 
    ); 
 
mux2:  word_mux4 
port map ( 
    a => buf1a, 
    b => buf1b, 
    c => buf1c, 
    d => buf1d, 
    sel => sel2, 
    out_word => buf2a 
    ); 
 
mux3:  word_mux4 
port map ( 
    a => buf2a, 
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    b => buf2b, 
    c => buf2c, 
    d => buf2d, 
    sel => sel3, 
    out_word => buf3a 
    ); 
 
mux4:  word_mux4 
port map ( 
    a => buf3a, 
    b => buf3b, 
    c => buf3c, 
    d => buf3d, 
    sel => sel4, 
    out_word => out_word); 
 
end rtl; 
 
 
11. pc_control.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
 
-- ***** pc_control model ***** 
-- external ports 
ENTITY pc_control IS PORT ( 
 ALU_Out : IN std_logic_vector(15 downto 0); 
 Clock : IN std_logic; 
 D2_Inc_PC : OUT std_logic_vector(15 downto 0); 
 D_Link_PC : OUT std_logic_vector(15 downto 0); 
 IAR_Enable : IN std_logic; 
 In_PC : OUT std_logic_vector(15 downto 0); 
 PC : OUT std_logic_vector(15 downto 0); 
 PC_Sel : IN std_logic_vector(1 downto 0); 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Data_Out : OUT std_logic; 
 Scan_Enable : IN std_logic; 
 Stalln : IN std_logic  
); 
END pc_control; 
 
-- internal structure 
ARCHITECTURE structural OF pc_control IS 
 
-- COMPONENTS 
 
COMPONENT word_reg_single 
PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(15 downto 0); 
 Data_out : OUT std_logic_vector(15 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
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 Scan_Enable : IN std_logic  
); 
END COMPONENT; 
 
COMPONENT word_mux3 
PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0); 
 C : IN std_logic_vector(15 downto 0); 
 Out_word : OUT std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(1 downto 0) 
); 
END COMPONENT; 
 
COMPONENT increment 
PORT ( 
 CI : IN std_logic; 
 In_word : IN std_logic_vector(15 downto 0); 
 Out_word : OUT std_logic_vector(15 downto 0) 
); 
END COMPONENT; 
 
-- SIGNALS 
 
SIGNAL IAR : std_logic_vector(15 downto 0); 
SIGNAL PC_Incr : std_logic_vector(15 downto 0); 
SIGNAL Buf_In_PC : std_logic_vector(15 downto 0);  
SIGNAL Buf_PC : std_logic_vector(15 downto 0);  
SIGNAL Buf_Scan_Data_Out : std_logic;  
SIGNAL Buf_D1_Inc_PC  : std_logic_vector(15 downto 0); 
SIGNAL Buf_D2_Inc_PC : std_logic_vector(15 downto 0); 
SIGNAL Buf_D_Link_PC : std_logic_vector(15 downto 0); 
SIGNAL Link_PC : std_logic_vector(15 downto 0); 
SIGNAL Buf_Link_PC : std_logic_vector(15 downto 0); 
 
 
-- INSTANCES 
BEGIN  
In_PC <= Buf_In_PC; 
PC <= Buf_PC; 
D2_Inc_PC <= Buf_D2_Inc_PC;  
D_Link_PC <= Buf_D_Link_PC; 
Scan_Data_Out <= IAR(15); 
 
halfword_reg_single_1 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Buf_In_PC, 
 Data_out => Buf_PC, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Scan_Data_In, 
 Scan_Enable => Scan_Enable 
); 
halfword_mux3_1 : word_mux3   PORT MAP( 
 A => PC_Incr, 
 B => ALU_Out, 
 C => IAR, 
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 Out_word => Buf_In_PC, 
 Sel => PC_Sel 
); 
halfword_increment_1 : increment   PORT MAP( 
 CI => '1', 
 In_word => Buf_PC, 
 Out_word => PC_Incr 
); 
 
halfword_reg_single_2 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => PC_Incr, 
 Data_out => Buf_D1_Inc_PC, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Buf_PC(15), 
 Scan_Enable => Scan_Enable 
); 
halfword_reg_single_3 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Buf_D1_Inc_PC, 
 Data_out => Buf_D2_Inc_PC, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Buf_D1_Inc_PC(15), 
 Scan_Enable => Scan_Enable 
); 
halfword_increment_2 : increment   PORT MAP( 
 CI => '1', 
 In_word(0) => '1', 
 In_word(15 downto 1) => Buf_D2_Inc_PC(15 downto 1), 
 Out_word(15 downto 0) => Link_PC(15 downto 0) 
); 
halfword_reg_single_4 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In(0) => Buf_D2_Inc_PC(0), 
 Data_In(15 downto 1)  => Link_PC(15 downto 1), 
 Data_out => Buf_Link_PC, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Buf_D2_Inc_PC(15), 
 Scan_Enable => Scan_Enable 
); 
halfword_reg_single_5 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Buf_Link_PC, 
  Data_Out => Buf_D_Link_PC, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Buf_Link_PC(15), 
 Scan_Enable => Scan_Enable 
); 
halfword_reg_single_6 : word_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Buf_D_Link_PC, 
 Data_out => IAR, 
 Enable => IAR_Enable, 
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 Resetn => Resetn, 
 Scan_Data_In => Buf_D_Link_PC(15), 
 Scan_Enable => Scan_Enable 
); 
END structural; 
 
 
12. pipeline 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** pipeline model ***** 
-- external ports 
ENTITY pipeline IS PORT ( 
 alu_op : OUT std_logic_vector(4 downto 0); 
 A_Mux : OUT std_logic_vector(1 downto 0); 
 B_Mux : OUT std_logic_vector(1 downto 0); 

 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(23 downto 0); 
 Dest : OUT std_logic_vector(3 downto 0); 
 Immed : OUT std_logic_vector(15 downto 0); 
 PC_Sel : OUT std_logic_vector(1 downto 0); 
 rd_enable : OUT std_logic; 
 Reg_In_Sel : OUT std_logic_vector(1 downto 0); 
 Resetn : IN std_logic; 
 RSone : OUT std_logic_vector(3 downto 0); 
 RStwo : OUT std_logic_vector(3 downto 0); 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic; 
 Stalln : IN std_logic; 
 wb_enable : OUT std_logic; 
 scan_out : OUT std_logic; 
 IAR_Enable : OUT std_logic; 
 wr_enable : OUT std_logic; 
 zero_flag : IN std_logic  
); 
END pipeline; 
 
-- internal structure 
ARCHITECTURE rtl OF pipeline IS 
 
-- COMPONENTS 
 
COMPONENT twelve_bit_reg_single 
PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(11 downto 0); 
 Data_out : OUT std_logic_vector(11 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END COMPONENT; 
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COMPONENT twenty_four_bit_reg_single 
PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(23 downto 0); 
 Data_out : OUT std_logic_vector(23 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END COMPONENT; 
 
 
-- SIGNALS 
SIGNAL Dec_Instr : std_logic_vector (23 downto 0); 
SIGNAL Ex_Instr : std_logic_vector (23 downto 0); 
SIGNAL Mem_Instr : std_logic_vector (11 downto 0); 
SIGNAL WB_Instr :   std_logic_vector (11 downto 0); 
 
 
 
-- INSTANCES    
BEGIN       
 
----- ****** decode pipeline stage ********* 
 
twenty_bit_reg_single_1 : twenty_four_bit_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Data_In, 
  Data_out => Dec_Instr, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Scan_Data_In, 
 Scan_Enable => Scan_Enable 
);   
 
process (Dec_Instr) 
begin 
RSone <= Dec_Instr(15 downto 12);    
 
---- assign RS2 (check for SW instruction) 
if (Dec_Instr(23 downto 16) = X"45") then 
  RStwo <= Dec_Instr(11 downto 8) ; 
else RStwo <=  Dec_Instr(7 downto 4); 
end if; 
end process; 
------ ****** execute  pipeline stage ********** 
  
twenty_four_bit_reg_single_2 : twenty_four_bit_reg_single   PORT 

MAP( 
 Clock => Clock, 
 Data_In => Dec_Instr, 
 Data_out => Ex_Instr, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Dec_Instr(23), 
 Scan_Enable => Scan_Enable 
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); 
 
Immed <= Ex_Instr(15 downto 0);   ---- assign immediate value 
alu_op <= Ex_Instr(20 downto 16);  ---- assign alu opcodes 
b_mux <= Ex_Instr(22 downto 21);    --- assign b_mux 
 
 
PC_Sel <= "01" when Ex_Instr(23 downto 16) = X"C8" else  ----- 

when OP_J 
                "01" when Ex_Instr(23 downto 16) = X"E8" else ---

-- when OP_JAL 
                "0" & zero_flag when Ex_Instr(23 downto 16) = 

X"C1" else ---when OP_BEQZ 
                "0" & not(zero_flag) when Ex_Instr(23 downto 16) 

= X"C0" else ---when OP_BEQZ 
                 "10" when Ex_Instr(23 downto 16) = X"F8" else --

-OP_RFE 
                  "01" when Ex_Instr(23 downto 16) = X"28" else -

--- OP_TRAP 
                  "01" when Ex_Instr(23 downto 16) = X"48" else -

--- OP_JR 
                   "01" when Ex_Instr(23 downto 16) = X"68" else 

----OP_JALR 
                    "00"; 
 
process (Ex_Instr) 
begin 
 
case Ex_Instr(23 downto 16) is 
  when X"C8" =>           ----- when OP_J 
     A_Mux  <= "11"; 
   when X"E8" =>           ----- when OP_JAL 
     A_Mux  <= "11"; 
  when X"C1" =>           ----- when OP_BEQZ 
     A_Mux  <= "01"; 
  when X"C0" =>           ----- when OP_BNEZ 
     A_Mux  <= "01"; 
  when X"08" =>           ----- when OP_LHI 
     A_Mux  <= "10"; 
  when X"F8" =>           ----- when OP_RFE 
     A_Mux  <= "00"; 
  when X"28" =>           ----- when OP_TRAP 
     A_Mux  <= "11"; 
  when X"48" =>           ----- when OP_JR 
     A_Mux  <= "00"; 
  when X"68" =>           ----- when OP_JALR 
     A_Mux  <= "00"; 
  when  others =>           ----- OTHERS 
     A_Mux  <= "00"; 
end case; 
end process; 
 
------ ***** memory stage of pipeline ******* ----------- 
 
twelve_bit_reg_single_1 : twelve_bit_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In(11 downto 4) => Ex_Instr(23 downto 16), 
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 Data_In(3 downto 0) => Ex_Instr(11 downto 8),     
 Data_out => Mem_Instr, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Ex_Instr(23), 
 Scan_Enable => Scan_Enable 
); 
 
process (Mem_Instr) 
begin 
case Mem_Instr(11 downto 4) is 
  when X"45" => 
     rd_enable <= '0';     ----- OP_SW (write) 
     wr_enable <= '1'; 
   when X"44" =>           ------ OP_LW (read) 
     rd_enable <= '1'; 
     wr_enable <= '0'; 
   when others => 
     rd_enable <= '0'; 
     wr_enable <= '0';    
end case; 
end process; 
 
------ ******** write back stage ********   
twelve_bit_reg_single_2 : twelve_bit_reg_single   PORT MAP( 
 Clock => Clock, 
 Data_In => Mem_Instr, 
 Data_out => WB_Instr, 
 Enable => Stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Mem_Instr(11), 
 Scan_Enable => Scan_Enable 
); 
 
scan_out <= WB_Instr(11);  
process (WB_Instr) 
begin 
 
---- check for Jump and Link Instructions to set Reg_In_Sel(0) = 

0 
  if (WB_Instr(11 downto 4) = X"E8" or WB_Instr(11 downto 4) = 

X"68") then   
     Reg_In_Sel(1) <= '1'; 
     Dest <= "1111"; 
  else Reg_In_Sel(1) <= '0'; 
     Dest <= WB_Instr(3 downto 0); 
  end if; 
 
---- check for TRAP to set IAR_Enable = 1 
  if (WB_Instr(11 downto 4) = X"28") then 
    IAR_Enable <= '1'; 
  else   IAR_Enable <= '0'; 
  end if; 
 
---- check for LW to set Reg_In_Sel(1) = 1 
  if (WB_Instr(11 downto 4) = X"44" ) then   
     Reg_In_Sel(0) <= '1'; 
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  else Reg_In_Sel(0) <= '0'; 
  end if; 
 
------ set write_back enable 
  case WB_Instr(11 downto 4) is 
     when  X"C8" =>           ----- when OP_J 
     WB_Enable <= '0'; 
  when X"C1" =>           ----- when OP_BEQZ 
     WB_Enable <= '0'; 
  when X"C0" =>           ----- when OP_BNEZ 
     WB_Enable <= '0'; 
  when X"45" =>           ----- when OP_SW 
     WB_Enable <= '0'; 
  when X"F8" =>           ----- when OP_RFE 
     WB_Enable <= '0'; 
  when X"28" =>           ----- when OP_TRAP 
     WB_Enable <= '0'; 
  when X"48" =>           ----- when OP_JR 
     WB_Enable <= '0'; 
  when X"00" =>           ----- when OP_NOP 
     WB_Enable <= '0'; 
  when others => 
     WB_Enable <= '1'; 
  end case; 
end process; 
END rtl; 
 
 
13. regfile 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-----******* regfile model *********** 
 
---- external ports 
ENTITY regfile IS PORT ( 
  A : OUT std_logic_vector(15 downto 0); 
  B : OUT std_logic_vector(15 downto 0); 
  clock : IN std_logic; 
  Data_In : IN std_logic_vector(15 downto 0); 
  Dest : IN std_logic_vector(3 downto 0); 
  stalln : IN std_logic; 
  RSone : IN std_logic_vector(3 downto 0); 
  RStwo : IN std_logic_vector(3 downto 0); 
  scan_data_in : IN std_logic; 
  scan_enable : IN std_logic; 
  Resetn : IN std_logic; 
  wb_enable : IN std_logic 
); 
END regfile; 
 
---- internal structure 
ARCHITECTURE structural OF regfile is 
 
---- COMPONENTS 
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COMPONENT Dest_Decoder 
PORT ( 
 Dest : IN std_logic_vector(3 downto 0); 
 Enable : OUT std_logic_vector(15 downto 1); 
 wb_enable : IN std_logic  
); 
END COMPONENT; 
 
COMPONENT word_reg_single 
PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector (15 downto 0); 
 Data_out : OUT std_logic_vector (15 downto 0); 
 enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END COMPONENT; 
 
COMPONENT word_mux16  
PORT ( 
 In_Word0 : IN std_logic_vector(15 downto 0); 
 In_Word1 : IN std_logic_vector(15 downto 0); 
 In_Word2 : IN std_logic_vector(15 downto 0); 
 In_Word3 : IN std_logic_vector(15 downto 0); 
 In_Word4 : IN std_logic_vector(15 downto 0); 
 In_Word5 : IN std_logic_vector(15 downto 0); 
 In_Word6 : IN std_logic_vector(15 downto 0); 
 In_Word7 : IN std_logic_vector(15 downto 0); 
 In_Word8 : IN std_logic_vector(15 downto 0); 
 In_Word9 : IN std_logic_vector(15 downto 0); 
 In_Word10 : IN std_logic_vector(15 downto 0); 
 In_Word11 : IN std_logic_vector(15 downto 0); 
 In_Word12 : IN std_logic_vector(15 downto 0); 
 In_Word13 : IN std_logic_vector(15 downto 0); 
 In_Word14 : IN std_logic_vector(15 downto 0); 
 In_Word15 : IN std_logic_vector(15 downto 0); 
 Out_word : Out std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(3 downto 0) 
); 
END component; 
 
 
 
----- signals 
signal Enable : std_logic_vector(15 downto 1); 
signal Reg1_Data : std_logic_vector(15 downto 0); 
signal Reg2_Data : std_logic_vector(15 downto 0); 
signal Reg3_Data : std_logic_vector(15 downto 0); 
signal Reg4_Data : std_logic_vector(15 downto 0); 
signal Reg5_Data : std_logic_vector(15 downto 0); 
signal Reg6_Data : std_logic_vector(15 downto 0); 
signal Reg7_Data : std_logic_vector(15 downto 0); 
signal Reg8_Data : std_logic_vector(15 downto 0); 
signal Reg9_Data : std_logic_vector(15 downto 0); 
signal Reg10_Data : std_logic_vector(15 downto 0); 
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signal Reg11_Data : std_logic_vector(15 downto 0); 
signal Reg12_Data : std_logic_vector(15 downto 0); 
signal Reg13_Data : std_logic_vector(15 downto 0); 
signal Reg14_Data : std_logic_vector(15 downto 0); 
signal Reg15_Data : std_logic_vector(15 downto 0); 
signal RegA_Data : std_logic_vector(15 downto 0); 
signal MuxA_Data : std_logic_vector(15 downto 0); 
signal MuxB_Data : std_logic_vector(15 downto 0); 
signal zero_word :  std_logic_vector(15 downto 0); 
 

 
 
begin 
 
zero_word <= "0000000000000000"; 
 
---- port maps 
 
Dest_Decoder1 :  Dest_Decoder PORT MAP ( 
 Dest=> Dest, 
 Enable => Enable, 
 wb_enable => wb_enable 
); 
 
 
word_reg1 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  

 
 Data_out => Reg1_Data, 
 Enable => Enable(1), 
 Resetn => Resetn, 
 Scan_Data_In => Scan_Data_In, 
 Scan_Enable => Scan_Enable 
); 
 
word_reg2 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg2_Data, 
 Enable => Enable(2), 
 Resetn => Resetn, 
 Scan_Data_In => Reg1_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg3 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg3_Data, 
 Enable => Enable(3), 
 Resetn => Resetn, 
 Scan_Data_In => Reg2_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg4 : word_reg_single PORT MAP ( 
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 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg4_Data, 
 Enable => Enable(4), 
 Resetn => Resetn, 
 Scan_Data_In => Reg3_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg5 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg5_Data, 
 Enable => Enable(5), 
 Resetn => Resetn, 
 Scan_Data_In => Reg4_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg6 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg6_Data, 
 Enable => Enable(6), 
 Resetn => Resetn, 
 Scan_Data_In => Reg5_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg7 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg7_Data, 
 Enable => Enable(7), 
 Resetn => Resetn, 
 Scan_Data_In => Reg6_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg8 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg8_Data, 
 Enable => Enable(8), 
 Resetn => Resetn, 
 Scan_Data_In => Reg7_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg9 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg9_Data, 
 Enable => Enable(9), 
 Resetn => Resetn, 
 Scan_Data_In => Reg8_Data(15), 
 Scan_Enable => Scan_Enable 
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); 
   
word_reg10 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg10_Data, 
 Enable => Enable(10), 
 Resetn => Resetn, 
 Scan_Data_In => Reg9_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg11 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg11_Data, 
 Enable => Enable(11), 
 Resetn => Resetn, 
 Scan_Data_In => Reg10_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg12 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg12_Data, 
 Enable => Enable(12), 
 Resetn => Resetn, 
 Scan_Data_In => Reg11_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg13 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg13_Data, 
 Enable => Enable(13), 
 Resetn => Resetn, 
 Scan_Data_In => Reg12_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg14 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg14_Data, 
 Enable => Enable(14), 
 Resetn => Resetn, 
 Scan_Data_In => Reg13_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_reg15 : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => Data_In,  
 Data_out => Reg15_Data, 
 Enable => Enable(15), 
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 Resetn => Resetn, 
 Scan_Data_In => Reg14_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
word_regA : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => MuxA_Data,  
 Data_out => RegA_Data, 
 Enable => stalln, 
 Resetn => Resetn, 
 Scan_Data_In => Reg15_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
A <= RegA_Data; 
 
word_regB : word_reg_single PORT MAP ( 
 Clock => clock, 
 Data_In => MuxB_Data,  
 Data_out => B, 
 Enable =>  stalln, 
 Resetn => Resetn, 
 Scan_Data_In => RegA_Data(15), 
 Scan_Enable => Scan_Enable 
); 
 
MuxA : word_mux16 PORT MAP ( 
  In_Word0    => zero_word, 
 In_Word1    =>  Reg1_Data, 
 In_Word2    =>  Reg2_Data, 
 In_Word3    =>  Reg3_Data, 
 In_Word4    =>  Reg4_Data, 
 In_Word5    =>  Reg5_Data, 
 In_Word6    =>  Reg6_Data, 
 In_Word7    =>  Reg7_Data, 
 In_Word8    =>  Reg8_Data, 
 In_Word9    =>  Reg9_Data, 
 In_Word10  =>  Reg10_Data, 
 In_Word11  =>  Reg11_Data, 
 In_Word12  =>  Reg12_Data, 
 In_Word13  =>  Reg13_Data, 
 In_Word14  =>  Reg14_Data, 
 In_Word15  =>  Reg15_Data, 
 Out_word    =>  MuxA_Data, 
 Sel => RSone 
); 
 
MuxB : word_mux16 PORT MAP ( 
  In_Word0    =>  zero_word, 
 In_Word1    =>  Reg1_Data, 
 In_Word2    =>  Reg2_Data, 
 In_Word3    =>  Reg3_Data, 
 In_Word4    =>  Reg4_Data, 
 In_Word5    =>  Reg5_Data, 
 In_Word6    =>  Reg6_Data, 
 In_Word7    =>  Reg7_Data, 
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 In_Word8    =>  Reg8_Data, 
 In_Word9    =>  Reg9_Data, 
 In_Word10  =>  Reg10_Data, 
 In_Word11  =>  Reg11_Data, 
 In_Word12  =>  Reg12_Data, 
 In_Word13  =>  Reg13_Data, 
 In_Word14  =>  Reg14_Data, 
 In_Word15  =>  Reg15_Data, 
 Out_word    =>  MuxB_Data, 
 Sel => RStwo 
); 
 
END structural; 
 
 
14. rwcontrol 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** rw_control model ***** 
-- external ports 
ENTITY rw_control IS PORT ( 
 Clock : IN std_logic; 
 Prog_Rd : OUT std_logic; 
 Rd : OUT std_logic; 
 rd_enable : IN std_logic; 
 resetn : IN std_logic; 
 stalln : IN std_logic; 
 Wr : OUT std_logic; 
 wr_enable : IN std_logic  
); 
END rw_control; 
 
-- internal structure 
ARCHITECTURE rtl OF rw_control IS 
 
 
 
-- SIGNALS 
 
SIGNAL clockn : std_logic; --- inverted clock   
 
BEGIN    
clockn <= not(Clock); 
Wr <=  not (clockn and wr_enable); 
Rd <=  not (clockn and rd_enable); 
Prog_Rd <= not (clockn and resetn and stalln); 
end rtl; 
 
15. scan_reg 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** scan_reg model ***** 
-- external ports 



80 

ENTITY scan_reg IS PORT ( 
 clk : IN std_logic; 
 data_in : IN std_logic; 
 data_out : OUT std_logic; 
 enable : IN std_logic; 
 resetn : IN std_logic; 
 scan_data_in : IN std_logic; 
 scan_enable : IN std_logic  
); 
END scan_reg; 
 
-- internal structure 
ARCHITECTURE rtl OF scan_reg IS 
 
 
-- INSTANCES 
BEGIN 
 
process (clk, resetn) 
begin 
if (resetn = '0') then 
  data_out <= '0'; 
elsif (clk = '1' and clk'event) then 
  if (scan_enable = '1') then 
    data_out <= scan_data_in; 
  elsif (enable = '1') then  
     data_out <= data_in; 
  end if; 
 end if; 
end process; 
 
END rtl; 
 
 
16. twelve_bit_reg_single 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** twelve_bit_reg_single model ***** 
-- external ports 
ENTITY twelve_bit_reg_single IS PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(11 downto 0); 
 Data_out : OUT std_logic_vector(11 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END twelve_bit_reg_single; 
 
-- internal structure 
ARCHITECTURE structural OF twelve_bit_reg_single IS 
 
-- COMPONENTS 
 



81 

 
COMPONENT scan_reg 
PORT ( 
 clk : IN std_logic; 
 data_in : IN std_logic; 
 data_out : OUT std_logic; 
 enable : IN std_logic; 
 resetn : IN std_logic; 
 scan_data_in : IN std_logic; 
 scan_enable : IN std_logic  
); 
END COMPONENT; 
 
-- SIGNALS 
 
 
signal buf_data_out : std_logic_vector (10 downto 0); 
 
 
 
 
-- INSTANCES 
BEGIN   
Data_out(0) <= buf_data_out(0);    
Data_out(1) <= buf_data_out(1); 
Data_out(2) <= buf_data_out(2); 
Data_out(3) <= buf_data_out(3); 
Data_out(4) <= buf_data_out(4); 
Data_out(5) <= buf_data_out(5); 
Data_out(6) <= buf_data_out(6); 
Data_out(7) <= buf_data_out(7); 
Data_out(8) <= buf_data_out(8); 
Data_out(9) <= buf_data_out(9); 
Data_out(10) <= buf_data_out(10); 
 
 
 
scan_reg_1 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(1), 
 data_out => buf_data_out(1), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(0), 
 scan_enable => Scan_Enable 
); 
scan_reg_2 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(2), 
 data_out => buf_data_out(2), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(1), 
 scan_enable => Scan_Enable 
); 
scan_reg_3 : scan_reg   PORT MAP( 
 clk => Clock, 
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 data_in => Data_In(3), 
 data_out => buf_data_out(3), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(2), 
 scan_enable => Scan_Enable 
); 
scan_reg_4 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(4), 
 data_out => buf_data_out(4), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(3), 
 scan_enable => Scan_Enable 
); 
scan_reg_5 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(0), 
 data_out => buf_data_out(0), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Scan_Data_In, 
 scan_enable => Scan_Enable 
); 
scan_reg_6 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(5), 
 data_out => buf_data_out(5), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(4), 
 scan_enable => Scan_Enable 
); 
scan_reg_7 : scan_reg   PORT MAP( 
 clk => Clock, 

 
 data_in => Data_In(6), 
 data_out => buf_data_out(6), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(5), 
 scan_enable => Scan_Enable 
); 
scan_reg_8 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(7), 
 data_out => buf_data_out(7), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(6), 
 scan_enable => Scan_Enable 
); 
scan_reg_9 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(8), 
 data_out => buf_data_out(8), 
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 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(7), 
 scan_enable => Scan_Enable 
); 
scan_reg_10 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(9), 
 data_out => buf_data_out(9), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(8), 
 scan_enable => Scan_Enable 
); 
scan_reg_11 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(10), 
 data_out => buf_data_out(10), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(9), 
 scan_enable => Scan_Enable 

 
); 
scan_reg_12 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(11), 
 data_out => Data_out(11), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => buf_data_out(10), 
 scan_enable => Scan_Enable 
); 
END structural; 
 
 
17. twenty_four_bit_reg_single 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** twenty_four_bit_reg_single model ***** 
-- external ports 
ENTITY twenty_four_bit_reg_single IS PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector (23 downto 0); 
  Data_out : OUT std_logic_vector (23 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END twenty_four_bit_reg_single; 
 
-- internal structure 
ARCHITECTURE structural OF twenty_four_bit_reg_single IS 
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-- COMPONENTS 
 
Component twelve_bit_reg_single  
 PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector(11 downto 0); 
 Data_out : OUT std_logic_vector(11 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END Component; 
 
 
 
-- SIGNALS 
SIGNAL Buf_Data_out11 : std_logic; 
 
 
-- INSTANCES 
BEGIN   
Data_out(11) <= Buf_Data_out11;  
 
twelve_bit_reg_single1 : twelve_bit_reg_single PORT MAP( 
  Clock => Clock, 
  Data_In => Data_In(11 downto 0), 
  Data_Out(10 downto 0) => Data_Out(10 downto 0), 
  Data_Out(11) => Buf_Data_out11, 
  Enable => Enable, 
  Resetn => Resetn, 
  Scan_Data_In => Scan_Data_In, 
  Scan_Enable => Scan_Enable 
); 
 
twelve_bit_reg_single2 : twelve_bit_reg_single PORT MAP( 
  Clock => Clock, 
  Data_In => Data_In(23 downto 12), 
  Data_Out => Data_Out(23 downto 12), 
  Enable => Enable, 
  Resetn => Resetn, 
  Scan_Data_In => Buf_Data_out11, 
  Scan_Enable => Scan_Enable 
); 
END structural; 
 
 
18. word_mux16 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** word_mux16 model ***** 
-- external ports 
ENTITY word_mux16 IS PORT ( 
 In_Word0 : IN std_logic_vector(15 downto 0); 
 In_Word1 : IN std_logic_vector(15 downto 0); 
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 In_Word2 : IN std_logic_vector(15 downto 0); 
 In_Word3 : IN std_logic_vector(15 downto 0); 
 In_Word4 : IN std_logic_vector(15 downto 0); 
 In_Word5 : IN std_logic_vector(15 downto 0); 
 In_Word6 : IN std_logic_vector(15 downto 0); 
 In_Word7 : IN std_logic_vector(15 downto 0); 
 In_Word8 : IN std_logic_vector(15 downto 0); 
 In_Word9 : IN std_logic_vector(15 downto 0); 
 In_Word10 : IN std_logic_vector(15 downto 0); 
 In_Word11 : IN std_logic_vector(15 downto 0); 
 In_Word12 : IN std_logic_vector(15 downto 0); 
 In_Word13 : IN std_logic_vector(15 downto 0); 
 In_Word14 : IN std_logic_vector(15 downto 0); 
 In_Word15 : IN std_logic_vector(15 downto 0); 
 Out_word : Out std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(3 downto 0) 
); 
END word_mux16; 
 
-- internal structure 
ARCHITECTURE rtl OF word_mux16 IS 
BEGIN 
 
with sel select 
   Out_word <= In_Word0 when  "0000", 
                       In_Word1 when  "0001", 
                 In_Word2 when  

"0010", 
                       In_Word3 when  "0011", 
                       In_Word4 when  "0100", 
                       In_Word5 when  "0101", 
                       In_Word6 when  "0110", 
                       In_Word7 when  "0111", 
                       In_Word8 when  "1000", 
                       In_Word9 when  "1001", 

 
                       In_Word10 when "1010", 
                       In_Word11 when "1011", 
                       In_Word12 when "1100", 
                       In_Word13 when "1101", 
                       In_Word14 when "1110", 
                       In_Word15 when others; 
 
END rtl; 
 
 
19. word_mux3 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** word_mux3 model ***** 
-- external ports 
ENTITY word_mux3 IS PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0); 
 C : IN std_logic_vector(15 downto 0); 
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 Out_word : Out std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(1 downto 0) 
); 
END word_mux3; 
 
-- internal structure 
ARCHITECTURE rtl OF word_mux3 IS 
BEGIN 
process (A, B, C, Sel) 
begin 
case sel is 
  when "00" => Out_word <= A; 
  when "01" => Out_word <= B; 
  when others => Out_word <= C; 
end case; 
end process; 
END rtl; 
 
 
20. word_mux4.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** word_mux4 model ***** 
-- external ports 
ENTITY word_mux4 IS PORT ( 
 A : IN std_logic_vector(15 downto 0); 
 B : IN std_logic_vector(15 downto 0); 
 C : IN std_logic_vector(15 downto 0); 
 D : IN std_logic_vector(15 downto 0); 
 Out_word : Out std_logic_vector(15 downto 0); 
 Sel : IN std_logic_vector(1 downto 0) 
); 
END word_mux4; 
 
-- internal structure 
ARCHITECTURE rtl OF word_mux4 IS 
BEGIN 
process (A, B, C, D, Sel) 
begin 
case sel is 
  when "00" => Out_word <= A; 
  when "01" => Out_word <= B; 
  when "10" => Out_word <= C; 
  when others => Out_word <= D; 
end case; 
end process; 
END rtl; 
 
 
21. word_reg_single.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** word_reg_single model ***** 
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-- external ports 
ENTITY word_reg_single IS PORT ( 
 Clock : IN std_logic; 
 Data_In : IN std_logic_vector (15 downto 0); 
 Data_out : OUT std_logic_vector (15 downto 0); 
 Enable : IN std_logic; 
 Resetn : IN std_logic; 
 Scan_Data_In : IN std_logic; 
 Scan_Enable : IN std_logic  
); 
END word_reg_single; 
 
-- internal structure 
ARCHITECTURE structural OF word_reg_single IS 
 
-- COMPONENTS 
 
COMPONENT scan_reg 
PORT ( 
 clk : IN std_logic; 
 data_in : IN std_logic; 
 data_out : OUT std_logic; 
 enable : IN std_logic; 
 resetn : IN std_logic; 
 scan_data_in : IN std_logic; 
 scan_enable : IN std_logic  
); 
END COMPONENT; 
 
 
 
-- SIGNALS 
 
SIGNAL Buf_Data_out : std_logic_vector(14 downto 0);  
 
 
 
 
-- INSTANCES 
BEGIN   
 
Data_out(0) <= Buf_Data_out(0); 
Data_out(1) <= Buf_Data_out(1); 
Data_out(2) <= Buf_Data_out(2); 
Data_out(3) <= Buf_Data_out(3); 
Data_out(4) <= Buf_Data_out(4); 
Data_out(5) <= Buf_Data_out(5); 
Data_out(6) <= Buf_Data_out(6); 
Data_out(7) <= Buf_Data_out(7); 
Data_out(8) <= Buf_Data_out(8); 
Data_out(9) <= Buf_Data_out(9); 
Data_out(10) <= Buf_Data_out(10); 
Data_out(11) <= Buf_Data_out(11); 
Data_out(12) <= Buf_Data_out(12); 
Data_out(13) <= Buf_Data_out(13); 
Data_out(14) <= Buf_Data_out(14);   
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scan_reg_1 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(1), 
 data_out => Buf_Data_out(1), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(0), 
 scan_enable => Scan_Enable 
); 
scan_reg_2 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(2), 
 data_out => Buf_Data_out(2), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(1), 
 scan_enable => Scan_Enable 
); 
scan_reg_3 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(3), 
 data_out => Buf_Data_out(3), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(2), 
 scan_enable => Scan_Enable 
); 
scan_reg_4 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(4), 
 data_out => Buf_Data_out(4), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(3), 
 scan_enable => Scan_Enable 
); 
scan_reg_6 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(5), 
 data_out => Buf_Data_out(5), 

 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(4), 
 scan_enable => Scan_Enable 
); 
scan_reg_7 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(6), 
 data_out => Buf_Data_out(6), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(5), 
 scan_enable => Scan_Enable 
); 
scan_reg_8 : scan_reg   PORT MAP( 
 clk => Clock, 
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 data_in => Data_In(7), 
 data_out => Buf_Data_out(7), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(6), 
 scan_enable => Scan_Enable 
); 
scan_reg_9 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(8), 
 data_out => Buf_Data_out(8), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(7), 
 scan_enable => Scan_Enable 
); 
scan_reg_10 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(9), 
 data_out => Buf_Data_out(9), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(8), 
 scan_enable => Scan_Enable 
); 
scan_reg_11 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(10), 
 data_out => Buf_Data_out(10), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(9), 
 scan_enable => Scan_Enable 
); 
scan_reg_12 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(11), 
 data_out => Buf_Data_out(11), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(10), 
 scan_enable => Scan_Enable 
); 
scan_reg_13 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(12), 
 data_out => Buf_Data_out(12), 
 enable => Enable, 

 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(11), 
 scan_enable => Scan_Enable 
); 
scan_reg_14 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(13), 
 data_out => Buf_Data_out(13), 
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 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(12), 
 scan_enable => Scan_Enable 
); 
scan_reg_15 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(14), 
 data_out => Buf_Data_out(14), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(13), 
 scan_enable => Scan_Enable 
); 
scan_reg_16 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(15), 
 data_out => Data_out(15), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Buf_Data_out(14), 
 scan_enable => Scan_Enable 
); 
scan_reg_5 : scan_reg   PORT MAP( 
 clk => Clock, 
 data_in => Data_In(0), 
 data_out => Buf_Data_out(0), 
 enable => Enable, 
 resetn => Resetn, 
 scan_data_in => Scan_Data_In, 
 scan_enable => Scan_Enable 
); 
END structural; 
 
 
22. word_set.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** word_set model ***** 
-- external ports 
ENTITY word_set IS PORT ( 
 In_word : IN std_logic_vector (15 downto 0); 
 set_op : IN std_logic_vector (2 downto 0); 
 set_out : OUT std_logic  
); 
END word_set; 
 
-- internal structure 
ARCHITECTURE rtl OF word_set IS 
 
component zero_test  
PORT ( 
 In_word : in std_logic_vector(15 downto 0); 
 zero_flag : OUT std_logic  
); 
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END component; 
signal zero_flag : std_logic; 
 
begin 
process (In_word, set_op, zero_flag) 
begin 
case set_op is 
  when "000" => set_out <= zero_flag; 
  when "001" => set_out <= (not(In_word(15)) or zero_flag); 
  when "010" => set_out <= not(In_word(15)) and not(zero_flag); 
  when "011" => set_out <= (In_word(15) or zero_flag); 

 
  when "100" => set_out <= In_word(15); 
  when others => set_out <= not(zero_flag); 
end case; 
end process; 
zero_test1 : zero_test port map ( 
                  In_word => In_word, 
                   zero_flag => zero_flag 
); 
 
 
 
END rtl; 
 
 
23. zero_test.vhd 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.all; 
 
-- ***** zero_test model ***** 
-- external ports 
ENTITY zero_test IS PORT ( 
 In_word : in std_logic_vector(15 downto 0); 
 zero_flag : OUT std_logic  
); 
END zero_test; 
 
-- internal structure 
ARCHITECTURE rtl OF zero_test IS 
begin 
 
process (In_word) 
begin 
  if (In_word = "0000000000000000") then 
    zero_flag <= '1'; 
  else zero_flag <= '0'; 
  end if; 
end process; 
 
END rtl; 
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24. interrup.vhd 
--  C:\XILINX\FULL_THING\INTERRUP.vhd 
--  VHDL code created by Xilinx's StateCAD 5.1i 
--  Thu Feb 27 09:36:14 2003 
 
--  This VHDL code (for use with Xilinx XST) was generated using:  
--  enumerated state assignment with structured code format. 
--  Minimization is enabled,  implied else is enabled,  
--  and outputs are speed optimized. 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY SHELL_INTERRUP IS 
 PORT (CLK,E,RESET,RFE: IN std_logic; 
 

 DataAccess,ErrSyn1,ErrSyn2,ErrSyn3,ErrSyn4,Instr0,Instr1,Instr2,I
nstr3, 

  
 Instr4,Instr5,Instr6,Instr7,Instr8,Instr9,Instr10,Instr11,Instr12
,Instr13, 

  
 Instr14,Instr15,Instr16,Instr17,Instr18,Instr19,Instr20,Instr21,I
nstr22, 

   Instr23,InstrAccess,TRAP : OUT std_logic); 
END; 
 
ARCHITECTURE BEHAVIOR OF SHELL_INTERRUP IS 
 TYPE type_sreg IS 

(ErrSyndSave1,ErrSyndSave2,ErrSyndSave3,ErrSyndSave4, 
 

 InterrInstr,ISRData,ISRErrSyndSave1,ISRErrSyndSave2,ISRErrSyndSav
e3, 

  ISRErrSyndSave4,ISRInst,NormData,NormInst); 
 SIGNAL sreg, next_sreg : type_sreg; 
 SIGNAL 

next_BP_DataAccess,next_BP_ErrSyn1,next_BP_ErrSyn2,next_BP_ErrSyn3, 
 

 next_BP_ErrSyn4,next_BP_Instr0,next_BP_Instr1,next_BP_Instr2,next
_BP_Instr3, 

 
 next_BP_Instr4,next_BP_Instr5,next_BP_Instr6,next_BP_Instr7,next_
BP_Instr8, 

 
 next_BP_Instr9,next_BP_Instr10,next_BP_Instr11,next_BP_Instr12, 

 
 next_BP_Instr13,next_BP_Instr14,next_BP_Instr15,next_BP_Instr16, 

 
 next_BP_Instr17,next_BP_Instr18,next_BP_Instr19,next_BP_Instr20, 

 
 next_BP_Instr21,next_BP_Instr22,next_BP_Instr23,next_BP_InstrAcce
ss, 

  next_BP_TRAP : std_logic; 
 SIGNAL BP_Instr : std_logic_vector (23 DOWNTO 0); 
 SIGNAL Instr : std_logic_vector (23 DOWNTO 0); 
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 SIGNAL 
BP_DataAccess,BP_ErrSyn1,BP_ErrSyn2,BP_ErrSyn3,BP_ErrSyn4,BP_Instr0, 

 
 BP_Instr1,BP_Instr2,BP_Instr3,BP_Instr4,BP_Instr5,BP_Instr6,BP_In
str7, 

 
 BP_Instr8,BP_Instr9,BP_Instr10,BP_Instr11,BP_Instr12,BP_Instr13,B
P_Instr14, 

 
 BP_Instr15,BP_Instr16,BP_Instr17,BP_Instr18,BP_Instr19,BP_Instr20
,BP_Instr21, 

  BP_Instr22,BP_Instr23,BP_InstrAccess,BP_TRAP: 
std_logic; 

BEGIN 
 PROCESS (CLK, RESET, next_sreg, next_BP_DataAccess, 

next_BP_ErrSyn1,  
  next_BP_ErrSyn2, next_BP_ErrSyn3, next_BP_ErrSyn4, 

next_BP_InstrAccess,  
  next_BP_TRAP, next_BP_Instr23, next_BP_Instr22, 

next_BP_Instr21,  
  next_BP_Instr20, next_BP_Instr19, next_BP_Instr18, 

next_BP_Instr17,  
  next_BP_Instr16, next_BP_Instr15, next_BP_Instr14, 

next_BP_Instr13,  
  next_BP_Instr12, next_BP_Instr11, next_BP_Instr10, 

next_BP_Instr9,  
  next_BP_Instr8, next_BP_Instr7, next_BP_Instr6, 

next_BP_Instr5,  
  next_BP_Instr4, next_BP_Instr3, next_BP_Instr2, 

next_BP_Instr1,  
  next_BP_Instr0) 
 BEGIN 
  IF ( RESET='1' ) THEN 
   sreg <= NormInst; 
   BP_DataAccess <= '0'; 
   BP_ErrSyn1 <= '0'; 
   BP_ErrSyn2 <= '0'; 
   BP_ErrSyn3 <= '0'; 
   BP_ErrSyn4 <= '0'; 
   BP_TRAP <= '0'; 
   BP_Instr23 <= '0'; 
   BP_Instr22 <= '0'; 
   BP_Instr21 <= '0'; 
   BP_Instr20 <= '0'; 
   BP_Instr19 <= '0'; 
   BP_Instr18 <= '0'; 
   BP_Instr17 <= '0'; 
   BP_Instr16 <= '0'; 
   BP_Instr15 <= '0'; 
   BP_Instr14 <= '0'; 
   BP_Instr13 <= '0'; 
   BP_Instr12 <= '0'; 
   BP_Instr11 <= '0'; 
   BP_Instr10 <= '0'; 
   BP_Instr9 <= '0'; 
   BP_Instr8 <= '0'; 
   BP_Instr7 <= '0'; 
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   BP_Instr6 <= '0'; 
   BP_Instr5 <= '0'; 
   BP_Instr4 <= '0'; 
   BP_Instr3 <= '0'; 
   BP_Instr2 <= '0'; 
   BP_Instr1 <= '0'; 
   BP_Instr0 <= '0'; 
   BP_InstrAccess <= '1'; 
  ELSIF CLK='1' AND CLK'event THEN 
   sreg <= next_sreg; 
   BP_DataAccess <= next_BP_DataAccess; 
   BP_ErrSyn1 <= next_BP_ErrSyn1; 
   BP_ErrSyn2 <= next_BP_ErrSyn2; 
   BP_ErrSyn3 <= next_BP_ErrSyn3; 
   BP_ErrSyn4 <= next_BP_ErrSyn4; 
   BP_InstrAccess <= next_BP_InstrAccess; 
   BP_TRAP <= next_BP_TRAP; 
   BP_Instr23 <= next_BP_Instr23; 
   BP_Instr22 <= next_BP_Instr22; 
   BP_Instr21 <= next_BP_Instr21; 
   BP_Instr20 <= next_BP_Instr20; 
   BP_Instr19 <= next_BP_Instr19; 
   BP_Instr18 <= next_BP_Instr18; 
   BP_Instr17 <= next_BP_Instr17; 
   BP_Instr16 <= next_BP_Instr16; 
   BP_Instr15 <= next_BP_Instr15; 
   BP_Instr14 <= next_BP_Instr14; 
   BP_Instr13 <= next_BP_Instr13; 
   BP_Instr12 <= next_BP_Instr12; 
   BP_Instr11 <= next_BP_Instr11; 
   BP_Instr10 <= next_BP_Instr10; 
   BP_Instr9 <= next_BP_Instr9; 
   BP_Instr8 <= next_BP_Instr8; 
   BP_Instr7 <= next_BP_Instr7; 
   BP_Instr6 <= next_BP_Instr6; 
   BP_Instr5 <= next_BP_Instr5; 
   BP_Instr4 <= next_BP_Instr4; 
   BP_Instr3 <= next_BP_Instr3; 
   BP_Instr2 <= next_BP_Instr2; 
   BP_Instr1 <= next_BP_Instr1; 
   BP_Instr0 <= next_BP_Instr0; 
  END IF; 
 END PROCESS; 
 
 PROCESS 

(sreg,BP_DataAccess,BP_ErrSyn1,BP_ErrSyn2,BP_ErrSyn3,BP_ErrSyn4, 
 

 BP_Instr0,BP_Instr1,BP_Instr2,BP_Instr3,BP_Instr4,BP_Instr5,BP_In
str6, 

 
 BP_Instr7,BP_Instr8,BP_Instr9,BP_Instr10,BP_Instr11,BP_Instr12,BP
_Instr13, 

 
 BP_Instr14,BP_Instr15,BP_Instr16,BP_Instr17,BP_Instr18,BP_Instr19
,BP_Instr20, 
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 BP_Instr21,BP_Instr22,BP_Instr23,BP_InstrAccess,BP_TRAP,E,RFE,BP_
Instr) 

 BEGIN 
  next_BP_DataAccess <= BP_DataAccess;next_BP_ErrSyn1 

<= BP_ErrSyn1; 
   next_BP_ErrSyn2 <= BP_ErrSyn2;next_BP_ErrSyn3 

<= BP_ErrSyn3;next_BP_ErrSyn4  
   <= BP_ErrSyn4;next_BP_Instr0 <= 

BP_Instr0;next_BP_Instr1 <= BP_Instr1; 
   next_BP_Instr2 <= BP_Instr2;next_BP_Instr3 <= 

BP_Instr3;next_BP_Instr4 <=  
   BP_Instr4;next_BP_Instr5 <= 

BP_Instr5;next_BP_Instr6 <= BP_Instr6; 
   next_BP_Instr7 <= BP_Instr7;next_BP_Instr8 <= 

BP_Instr8;next_BP_Instr9 <=  
   BP_Instr9;next_BP_Instr10 <= 

BP_Instr10;next_BP_Instr11 <= BP_Instr11; 
   next_BP_Instr12 <= BP_Instr12;next_BP_Instr13 

<= BP_Instr13;next_BP_Instr14  
   <= BP_Instr14;next_BP_Instr15 <= 

BP_Instr15;next_BP_Instr16 <= BP_Instr16; 
   next_BP_Instr17 <= BP_Instr17;next_BP_Instr18 

<= BP_Instr18;next_BP_Instr19  
   <= BP_Instr19;next_BP_Instr20 <= 

BP_Instr20;next_BP_Instr21 <= BP_Instr21; 
   next_BP_Instr22 <= BP_Instr22;next_BP_Instr23 

<= BP_Instr23; 
   next_BP_InstrAccess <= 

BP_InstrAccess;next_BP_TRAP <= BP_TRAP; 
 
  BP_Instr <= (( std_logic_vector'(BP_Instr23, 

BP_Instr22, BP_Instr21,  
   BP_Instr20, BP_Instr19, BP_Instr18, BP_Instr17, 

BP_Instr16, BP_Instr15,  
   BP_Instr14, BP_Instr13, BP_Instr12, BP_Instr11, 

BP_Instr10, BP_Instr9,  
   BP_Instr8, BP_Instr7, BP_Instr6, BP_Instr5, 

BP_Instr4, BP_Instr3, BP_Instr2,  
   BP_Instr1, BP_Instr0))); 
 
 
  next_sreg<=ErrSyndSave1; 
 
  CASE sreg IS 
   WHEN ErrSyndSave1 => 
    next_sreg<=ErrSyndSave2; 
    next_BP_ErrSyn1<='0'; 
    next_BP_ErrSyn2<='1'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
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    ELSE next_BP_InstrAccess<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
    ELSE next_BP_ErrSyn3<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
   WHEN ErrSyndSave2 => 
    next_sreg<=ErrSyndSave3; 
    next_BP_ErrSyn2<='0'; 
    next_BP_ErrSyn3<='1'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
    ELSE next_BP_InstrAccess<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
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    IF (( BP_ErrSyn1='1' )) THEN 
next_BP_ErrSyn1<='1'; 

    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
   WHEN ErrSyndSave3 => 
    next_sreg<=ErrSyndSave4; 
    next_BP_ErrSyn3<='0'; 
    next_BP_ErrSyn4<='1'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
    ELSE next_BP_InstrAccess<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
   WHEN ErrSyndSave4 => 
    next_sreg<=InterrInstr; 
    next_BP_ErrSyn4<='0'; 
    next_BP_InstrAccess<='1'; 
    next_BP_TRAP<='1'; 
 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
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    ELSE next_BP_ErrSyn3<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
    BP_Instr <= 

(std_logic_vector'("001010000000000000000000")); 
   WHEN InterrInstr => 
    next_sreg<=ISRData; 
    next_BP_DataAccess<='1'; 
    next_BP_InstrAccess<='0'; 
    next_BP_TRAP<='0'; 
 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
    ELSE next_BP_ErrSyn3<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    BP_Instr <= 

(std_logic_vector'("111111111111111111111111")); 
   WHEN ISRData => 
    IF ( E='1' ) THEN 
     next_sreg<=ISRErrSyndSave1; 
     next_BP_ErrSyn1<='1'; 
     next_BP_DataAccess<='0'; 
 
     IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
     ELSE next_BP_TRAP<='0'; 
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     END IF; 
 
     IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
     ELSE next_BP_InstrAccess<='0'; 
     END IF; 
 
     BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
      BP_Instr20, BP_Instr19, 

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,  
      BP_Instr14, BP_Instr13, 

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,  
      BP_Instr8, BP_Instr7, 

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
      BP_Instr1, BP_Instr0))); 
     IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
     ELSE next_BP_ErrSyn4<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
     ELSE next_BP_ErrSyn3<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
     ELSE next_BP_ErrSyn2<='0'; 
     END IF; 
 
    END IF; 
    IF ( RFE='1' AND E='0' ) THEN 
     next_sreg<=NormInst; 
     next_BP_InstrAccess<='1'; 
     next_BP_DataAccess<='0'; 
 
     IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
     ELSE next_BP_TRAP<='0'; 
     END IF; 
 
     BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
      BP_Instr20, BP_Instr19, 

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,  
      BP_Instr14, BP_Instr13, 

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,  
      BP_Instr8, BP_Instr7, 

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
      BP_Instr1, BP_Instr0))); 
     IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
     ELSE next_BP_ErrSyn4<='0'; 
     END IF; 
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     IF (( BP_ErrSyn3='1' )) THEN 
next_BP_ErrSyn3<='1'; 

     ELSE next_BP_ErrSyn3<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
     ELSE next_BP_ErrSyn2<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
     ELSE next_BP_ErrSyn1<='0'; 
     END IF; 
 
    END IF; 
    IF ( RFE='0' AND E='0' ) THEN 
     next_sreg<=ISRInst; 
     next_BP_ErrSyn4<='0'; 
     next_BP_InstrAccess<='1'; 
     next_BP_DataAccess<='0'; 
 
     IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
     ELSE next_BP_TRAP<='0'; 
     END IF; 
 
     BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
      BP_Instr20, BP_Instr19, 

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,  
      BP_Instr14, BP_Instr13, 

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,  
      BP_Instr8, BP_Instr7, 

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
      BP_Instr1, BP_Instr0))); 
     IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
     ELSE next_BP_ErrSyn3<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
     ELSE next_BP_ErrSyn2<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
     ELSE next_BP_ErrSyn1<='0'; 
     END IF; 
 
    END IF; 
   WHEN ISRErrSyndSave1 => 
    next_sreg<=ISRErrSyndSave2; 
    next_BP_ErrSyn1<='0'; 
    next_BP_ErrSyn2<='1'; 
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    IF (( BP_TRAP='1' )) THEN 
next_BP_TRAP<='1'; 

    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
    ELSE next_BP_InstrAccess<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
    ELSE next_BP_ErrSyn3<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
   WHEN ISRErrSyndSave2 => 
    next_sreg<=ISRErrSyndSave3; 
    next_BP_ErrSyn2<='0'; 
    next_BP_ErrSyn3<='1'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
    ELSE next_BP_InstrAccess<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
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     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
   WHEN ISRErrSyndSave3 => 
    next_sreg<=ISRErrSyndSave4; 
    next_BP_ErrSyn3<='0'; 
    next_BP_ErrSyn4<='1'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    IF (( BP_InstrAccess='1' )) THEN 

next_BP_InstrAccess<='1'; 
    ELSE next_BP_InstrAccess<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
 

     BP_Instr20, BP_Instr19, BP_Instr18, 
BP_Instr17, BP_Instr16, BP_Instr15,  

     BP_Instr14, BP_Instr13, BP_Instr12, 
BP_Instr11, BP_Instr10, BP_Instr9,  

     BP_Instr8, BP_Instr7, BP_Instr6, 
BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  

     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    IF (( BP_DataAccess='1' )) THEN 

next_BP_DataAccess<='1'; 
    ELSE next_BP_DataAccess<='0'; 
    END IF; 
 
   WHEN ISRErrSyndSave4 => 
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    next_sreg<=ISRInst; 
    next_BP_ErrSyn4<='0'; 
    next_BP_InstrAccess<='1'; 
    next_BP_DataAccess<='0'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
    ELSE next_BP_ErrSyn3<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
   WHEN ISRInst => 
    next_sreg<=ISRData; 
    next_BP_DataAccess<='1'; 
    next_BP_InstrAccess<='0'; 
    next_BP_TRAP<='0'; 
 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
    ELSE next_BP_ErrSyn3<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
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    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
    BP_Instr <= 

(std_logic_vector'("111111111111111111111111")); 
   WHEN NormData => 
    IF ( E='0' ) THEN 
     next_sreg<=NormInst; 
     next_BP_InstrAccess<='1'; 
     next_BP_DataAccess<='0'; 
 
     IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
     ELSE next_BP_TRAP<='0'; 
     END IF; 
 
     BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
      BP_Instr20, BP_Instr19, 

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,  
      BP_Instr14, BP_Instr13, 

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,  
      BP_Instr8, BP_Instr7, 

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
      BP_Instr1, BP_Instr0))); 
     IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
     ELSE next_BP_ErrSyn4<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
     ELSE next_BP_ErrSyn3<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
     ELSE next_BP_ErrSyn2<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
     ELSE next_BP_ErrSyn1<='0'; 
     END IF; 
 
    END IF; 
    IF ( E='1' ) THEN 
     next_sreg<=ErrSyndSave1; 
     next_BP_DataAccess<='0'; 
     next_BP_ErrSyn1<='1'; 
 
     IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
     ELSE next_BP_TRAP<='0'; 
     END IF; 
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     IF (( BP_InstrAccess='1' )) THEN 
next_BP_InstrAccess<='1'; 

     ELSE next_BP_InstrAccess<='0'; 
     END IF; 
 
     BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
      BP_Instr20, BP_Instr19, 

BP_Instr18, BP_Instr17, BP_Instr16, BP_Instr15,  
      BP_Instr14, BP_Instr13, 

BP_Instr12, BP_Instr11, BP_Instr10, BP_Instr9,  
      BP_Instr8, BP_Instr7, 

BP_Instr6, BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
      BP_Instr1, BP_Instr0))); 
     IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
     ELSE next_BP_ErrSyn4<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
     ELSE next_BP_ErrSyn3<='0'; 
     END IF; 
 
     IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
     ELSE next_BP_ErrSyn2<='0'; 
     END IF; 
 
    END IF; 
   WHEN NormInst => 
    next_sreg<=NormData; 
    next_BP_DataAccess<='1'; 
    next_BP_InstrAccess<='0'; 
 
    IF (( BP_TRAP='1' )) THEN 

next_BP_TRAP<='1'; 
    ELSE next_BP_TRAP<='0'; 
    END IF; 
 
    BP_Instr <= (( 

std_logic_vector'(BP_Instr23, BP_Instr22, BP_Instr21,  
     BP_Instr20, BP_Instr19, BP_Instr18, 

BP_Instr17, BP_Instr16, BP_Instr15,  
     BP_Instr14, BP_Instr13, BP_Instr12, 

BP_Instr11, BP_Instr10, BP_Instr9,  
     BP_Instr8, BP_Instr7, BP_Instr6, 

BP_Instr5, BP_Instr4, BP_Instr3, BP_Instr2,  
     BP_Instr1, BP_Instr0))); 
    IF (( BP_ErrSyn4='1' )) THEN 

next_BP_ErrSyn4<='1'; 
    ELSE next_BP_ErrSyn4<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn3='1' )) THEN 

next_BP_ErrSyn3<='1'; 
    ELSE next_BP_ErrSyn3<='0'; 
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    END IF; 
 
    IF (( BP_ErrSyn2='1' )) THEN 

next_BP_ErrSyn2<='1'; 
    ELSE next_BP_ErrSyn2<='0'; 
    END IF; 
 
    IF (( BP_ErrSyn1='1' )) THEN 

next_BP_ErrSyn1<='1'; 
    ELSE next_BP_ErrSyn1<='0'; 
    END IF; 
 
   WHEN OTHERS => 
  END CASE; 
 
  next_BP_Instr23 <= BP_Instr(23); 
  next_BP_Instr22 <= BP_Instr(22); 
  next_BP_Instr21 <= BP_Instr(21); 
  next_BP_Instr20 <= BP_Instr(20); 
  next_BP_Instr19 <= BP_Instr(19); 
  next_BP_Instr18 <= BP_Instr(18); 
  next_BP_Instr17 <= BP_Instr(17); 
  next_BP_Instr16 <= BP_Instr(16); 
  next_BP_Instr15 <= BP_Instr(15); 
  next_BP_Instr14 <= BP_Instr(14); 
  next_BP_Instr13 <= BP_Instr(13); 
  next_BP_Instr12 <= BP_Instr(12); 
  next_BP_Instr11 <= BP_Instr(11); 
  next_BP_Instr10 <= BP_Instr(10); 
  next_BP_Instr9 <= BP_Instr(9); 
  next_BP_Instr8 <= BP_Instr(8); 
  next_BP_Instr7 <= BP_Instr(7); 
  next_BP_Instr6 <= BP_Instr(6); 
  next_BP_Instr5 <= BP_Instr(5); 
  next_BP_Instr4 <= BP_Instr(4); 
  next_BP_Instr3 <= BP_Instr(3); 
  next_BP_Instr2 <= BP_Instr(2); 
  next_BP_Instr1 <= BP_Instr(1); 
  next_BP_Instr0 <= BP_Instr(0); 
 END PROCESS; 
 
 PROCESS (BP_DataAccess) 
 BEGIN 
  IF (( BP_DataAccess='1' )) THEN DataAccess<='1'; 
  ELSE DataAccess<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS (BP_ErrSyn1) 
 BEGIN 
  IF (( BP_ErrSyn1='1' )) THEN ErrSyn1<='1'; 
  ELSE ErrSyn1<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS (BP_ErrSyn2) 
 BEGIN 
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  IF (( BP_ErrSyn2='1' )) THEN ErrSyn2<='1'; 
  ELSE ErrSyn2<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS (BP_ErrSyn3) 
 BEGIN 
  IF (( BP_ErrSyn3='1' )) THEN ErrSyn3<='1'; 
  ELSE ErrSyn3<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS (BP_ErrSyn4) 
 BEGIN 
  IF (( BP_ErrSyn4='1' )) THEN ErrSyn4<='1'; 
  ELSE ErrSyn4<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS (BP_InstrAccess) 
 BEGIN 
  IF (( BP_InstrAccess='1' )) THEN InstrAccess<='1'; 
  ELSE InstrAccess<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS (BP_TRAP) 
 BEGIN 
  IF (( BP_TRAP='1' )) THEN TRAP<='1'; 
  ELSE TRAP<='0'; 
  END IF; 
 END PROCESS; 
 
 PROCESS 

(BP_Instr0,BP_Instr1,BP_Instr2,BP_Instr3,BP_Instr4,BP_Instr5, 
 

 BP_Instr6,BP_Instr7,BP_Instr8,BP_Instr9,BP_Instr10,BP_Instr11,BP_
Instr12, 

 
 BP_Instr13,BP_Instr14,BP_Instr15,BP_Instr16,BP_Instr17,BP_Instr18
,BP_Instr19, 

  BP_Instr20,BP_Instr21,BP_Instr22,BP_Instr23,Instr) 
 BEGIN 
  Instr <= (( std_logic_vector'(BP_Instr23, BP_Instr22, 

BP_Instr21,  
   BP_Instr20, BP_Instr19, BP_Instr18, BP_Instr17, 

BP_Instr16, BP_Instr15,  
   BP_Instr14, BP_Instr13, BP_Instr12, BP_Instr11, 

BP_Instr10, BP_Instr9,  
   BP_Instr8, BP_Instr7, BP_Instr6, BP_Instr5, 

BP_Instr4, BP_Instr3, BP_Instr2,  
   BP_Instr1, BP_Instr0))); 
  Instr0 <= Instr(0); 
  Instr1 <= Instr(1); 
  Instr2 <= Instr(2); 
  Instr3 <= Instr(3); 
  Instr4 <= Instr(4); 
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  Instr5 <= Instr(5); 
  Instr6 <= Instr(6); 
  Instr7 <= Instr(7); 
  Instr8 <= Instr(8); 
  Instr9 <= Instr(9); 
  Instr10 <= Instr(10); 
  Instr11 <= Instr(11); 
  Instr12 <= Instr(12); 
  Instr13 <= Instr(13); 
  Instr14 <= Instr(14); 
  Instr15 <= Instr(15); 
  Instr16 <= Instr(16); 
  Instr17 <= Instr(17); 
  Instr18 <= Instr(18); 
  Instr19 <= Instr(19); 
  Instr20 <= Instr(20); 
  Instr21 <= Instr(21); 
  Instr22 <= Instr(22); 
  Instr23 <= Instr(23); 
 END PROCESS; 
END BEHAVIOR; 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
 
ENTITY INTERRUP IS 
 PORT (Instr : OUT std_logic_vector (23 DOWNTO 0); 
  CLK,E,RESET,RFE: IN std_logic; 
 

 DataAccess,ErrSyn1,ErrSyn2,ErrSyn3,ErrSyn4,InstrAccess,TRAP : OUT 
std_logic 

   ); 
END; 
 
ARCHITECTURE BEHAVIOR OF INTERRUP IS 
 COMPONENT SHELL_INTERRUP 
  PORT (CLK,E,RESET,RFE: IN std_logic; 
  

 DataAccess,ErrSyn1,ErrSyn2,ErrSyn3,ErrSyn4,Instr0,Instr1,Instr2,I
nstr3, 

   
 Instr4,Instr5,Instr6,Instr7,Instr8,Instr9,Instr10,Instr11,Instr12
,Instr13, 

   
 Instr14,Instr15,Instr16,Instr17,Instr18,Instr19,Instr20,Instr21,I
nstr22, 

    Instr23,InstrAccess,TRAP : OUT 
std_logic); 

 END COMPONENT; 
BEGIN 
 SHELL1_INTERRUP : SHELL_INTERRUP PORT MAP 

(CLK=>CLK,E=>E,RESET=>RESET,RFE=> 
 

 RFE,DataAccess=>DataAccess,ErrSyn1=>ErrSyn1,ErrSyn2=>ErrSyn2,ErrS
yn3=>ErrSyn3 
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 ,ErrSyn4=>ErrSyn4,Instr0=>Instr(0),Instr1=>Instr(1),Instr2=>Instr
(2),Instr3=> 

 
 Instr(3),Instr4=>Instr(4),Instr5=>Instr(5),Instr6=>Instr(6),Instr
7=>Instr(7), 

 
 Instr8=>Instr(8),Instr9=>Instr(9),Instr10=>Instr(10),Instr11=>Ins
tr(11), 

 
 Instr12=>Instr(12),Instr13=>Instr(13),Instr14=>Instr(14),Instr15=
>Instr(15), 

 
 Instr16=>Instr(16),Instr17=>Instr(17),Instr18=>Instr(18),Instr19=
>Instr(19), 

 
 Instr20=>Instr(20),Instr21=>Instr(21),Instr22=>Instr(22),Instr23=
>Instr(23), 

  InstrAccess=>InstrAccess,TRAP=>TRAP); 
END BEHAVIOR; 
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APPENDIX B: SPACE EXPERIMENT REVIEW BOARD 

The original intent for the CFTP was to be a part of the Naval Postgraduate 

School Satellite NPSAT-1.  After talking with the Space Test Program Office, it was 

decided that the CFTP should request additional flights in order to increase the test data 

available for the design.  This required an extensive amount of time and research into the 

process whereby space experiments are approved by the Department of Defense for space 

flights.  This Appendix will go into detail on this process, called the Space Experiment 

Review Board (SERB). 

A. SERB OVERVIEW 

The SERB process has two stages.  A Service Board, presided over in the case of 

CFTP by the Navy, and a Department Board.  Both boards have the same criteria: mili-

tary relevance, quality of experiment and service priority. 

1. Military Relevance 

Military relevance is 60% of the overall grade for an experiment.  It is intended to 

ensure that the experiment does pertain directly to the military.  While science experi-

ments are allowed, the goal is to apply the experiment results to the war fighter in par-

ticular [9]. 

2. Quality of Experiment  

The quality of the experiment is 20% of the overall grade, and it is intended to en-

sure that, all other factors being equal, experiments that are only in a conceptual phase do 

not get too heavy a precedence over experiments that are largely completed. 

3. Service Priority 

Service Priority takes into account the previous two criteria and is a numerical 

ranking of the experiment against the entire group of experiments being presented that 

year.  In the example of the CFTP, it was ranked 13 of 24 experiments at the Navy SERB 

in 2002. 

Service Priority serves two different purposes at a Service Board.  If the experi-

ment has been presented in the past, it is an indication to the current board members of 
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the experiment's status the previous year.  It is also used to prioritize experiments at the 

Department Board for the Service experiments.  Again using the CFTP as an example, its 

ranking of 13 of 24 placed it in the middle of the Navy's experiments.  This gave the De-

partment Board members an indication of the Navy's priority for the experiment. 

B. SERB DOCUMENTATION 

The documentation required for the SERB process is not extensive, but it is quite 

critical to the process.  There are two documents which the SERB requires, the Space 

Test Program Flight Request (DD Form 1721) and the Space Test Program Flight 

Request Executive Summary (DD Form 1721/1) [9]. 

1. Space Test Program Flight Request 

DD Form 1721 contains all the information on the experiment.  It includes the 

objective of the experiment, experiment dimensions and mass, launch platform pref-

erences, orbital parameters, and communication requirements. 

2. Space Test Program Flight Request Executive Summary 

The Executive Summary contains the more important information from the DD 

1721.  It includes the points of contact for the experiment, the dimensions, funding data, 

orbital parameters, and launch platform data. 

C. PRESENTATION 

Each experiment team is given ten minutes to brief the experiment.  A Power 

Point Presentation template of five slides is provided to the team.  This template has the 

minimum information required for presentation.  It includes the concept, justification, a 

detailed overview, summary of data application and flight mode suitability [9]. 

1. Concept 

The concept is intended to provide the intent of the experiment.  It should include 

a description of the experiment, including performance parameters, and a graphical rep-

resentation of the experiment.  Figure 28 shows the graphical representation used by the 

CFTP at the Department Board in 2002. 
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Figure 28.   SERB Graphical Representation 

2. Justification 

Justification is perhaps the most critical portion of the presentation.  With this 

portion of the presentation, the presenter is using various documents and requirements of 

the Department of Defense to justify the experiment.  The documents include the US 

Space Command Long Range Plan, Defense Technology Area Plan, and the Air Force 

Space Command Strategic Master Plan.   

In these documents are specific requirements for war fighting support capability 

that can be accomplished with space assets.  Using this information, the experiment pre-

senter can show that the experiment is capable of satisfying DoD requirements. 
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3. Detailed Overview 

The detailed overview lists the flight data parameters of the experiment. This 

includes the types of orbit desired, such as geosynchronous or low earth orbit.  The 

weight and size of the experiment are also listed here.  The priority ranking given during 

the last SERB cycle and the services requested from the Space Test Program Office are 

next.  Finally comes the funding required versus actual funding broken down year-by- 

year through the life of the experiment. 

4. Summary of Data Application 

The summary of data application is an explanation of what the data the experi-

ment gathers will be used for.  It must include the category of research in which the 

experiment is.  In the case of the CFTP, it is applied research. 

5. Flight Mode Suitability 

The final slide lists the different types of platforms the experiment can ride on.  

These include the Space Shuttle, deployed from the Shuttle, deployed from the Shuttle 

with propulsion, the International Space Station, Piggyback on a Free-Flyer, or Dedicated 

Free-Flyer.  A Free-Flyer is a satellite such as a GPS or communications satellite.  A 

Piggyback flight is one where the experiment is not the primary payload of the satellite. 

The experiment team must list each of these flight modes and their ability to meet 

the experiment objectives.  In the case of the CFTP the Shuttle was unsatisfactory, since 

it is such a short duration flight.  Table 4 shows the full Flight Mode Suitability table for 

the CFTP from the 2002 SERB. 

 
Table 4.   Flight Mode Suitability for the CFTP 

 

 

FliohtMocie % Exoenment ODiectives Satisfieci 
Shuttle 0% 
Shutde DeplcryaDle 35% 
Shutde DeployaDle with Prapulsion 40% 
International Space Station 40% 
"Piggyhack" Free-flyer on ELV 100% 
Deciicateci Free-flyer on ELV 100% 
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D. EXPERIMENT MANIFESTATION 

Once the DoD SERB is complete, the Space Test Program Office (STP) reviews 

the list of experiments and determines flight manifestation.  This is done in the manner 

that is most efficient to the DoD, not by a direct ranking priority. 

For example, STP may have a satellite with space available for a small experi-

ment.  If the highest ranked experiment from the SERB is too large to get on this par-

ticular satellite, the second ranked experiment (or even further down the list) may 

actually be manifested first. 

This was the case for the CFTP.  Two satellites had space available for a small 

experiment.  Since the CFTP is small, light weight, and low in power, it is much easier to 

find flights for than larger experiments. 

The CFTP requested four flights during the 2002 DoD SERB: three at different 

inclinations in Low Earth Orbit (LEO) and one in a highly elliptical orbit such as a 

Geosynchronous Transfer Orbit (GTO). 

The purpose of the four orbits is to test the fault tolerance capability in both 

benign and high radiation environments.  In LEO, it expected that only a few SEUs will 

occur in a week.  With these orbits, testing basic functionality will be possible without 

concern for frequent SEU interrupts.  If the design is faulty, infrequent SEUs will allow 

for testing reconfiguration until a more robust design can be implemented. 

The GTO will test for severe radiation tolerance.  In a GTO, the CFTP will pass 

through the Van Allen radiation belts.  In this environment, SEU frequency is expected to 

be significantly higher.  If the CFTP can function properly in this high radiation environ-

ment, it is expected that it can function in any radiation environment. 
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